1
|
Li Y, Zhu J, Zhai F, Kong L, Li H, Jin X. Advances in the understanding of nuclear pore complexes in human diseases. J Cancer Res Clin Oncol 2024; 150:374. [PMID: 39080077 PMCID: PMC11289042 DOI: 10.1007/s00432-024-05881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Nuclear pore complexes (NPCs) are sophisticated and dynamic protein structures that straddle the nuclear envelope and act as gatekeepers for transporting molecules between the nucleus and the cytoplasm. NPCs comprise up to 30 different proteins known as nucleoporins (NUPs). However, a growing body of research has suggested that NPCs play important roles in gene regulation, viral infections, cancer, mitosis, genetic diseases, kidney diseases, immune system diseases, and degenerative neurological and muscular pathologies. PURPOSE In this review, we introduce the structure and function of NPCs. Then We described the physiological and pathological effects of each component of NPCs which provide a direction for future clinical applications. METHODS The literatures from PubMed have been reviewed for this article. CONCLUSION This review summarizes current studies on the implications of NPCs in human physiology and pathology, highlighting the mechanistic underpinnings of NPC-associated diseases.
Collapse
Affiliation(s)
- Yuxuan Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Jie Zhu
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Fengguang Zhai
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Lili Kong
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Hong Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| | - Xiaofeng Jin
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
2
|
Amm I, Weberruss M, Hellwig A, Schwarz J, Tatarek-Nossol M, Lüchtenborg C, Kallas M, Brügger B, Hurt E, Antonin W. Distinct domains in Ndc1 mediate its interaction with the Nup84 complex and the nuclear membrane. J Cell Biol 2023; 222:e202210059. [PMID: 37154843 PMCID: PMC10165475 DOI: 10.1083/jcb.202210059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/31/2023] [Accepted: 03/17/2023] [Indexed: 05/10/2023] Open
Abstract
Nuclear pore complexes (NPCs) are embedded in the nuclear envelope and built from ∼30 different nucleoporins (Nups) in multiple copies, few are integral membrane proteins. One of these transmembrane nucleoporins, Ndc1, is thought to function in NPC assembly at the fused inner and outer nuclear membranes. Here, we show a direct interaction of Ndc1's transmembrane domain with Nup120 and Nup133, members of the pore membrane coating Y-complex. We identify an amphipathic helix in Ndc1's C-terminal domain binding highly curved liposomes. Upon overexpression, this amphipathic motif is toxic and dramatically alters the intracellular membrane organization in yeast. Ndc1's amphipathic motif functionally interacts with related motifs in the C-terminus of the nucleoporins Nup53 and Nup59, important for pore membrane binding and interconnecting NPC modules. The essential function of Ndc1 can be suppressed by deleting the amphipathic helix from Nup53. Our data indicate that nuclear membrane and presumably NPC biogenesis depends on a balanced ratio between amphipathic motifs in diverse nucleoporins.
Collapse
Affiliation(s)
- Ingo Amm
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg, Heidelberg, Germany
| | - Marion Weberruss
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Andrea Hellwig
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Johannes Schwarz
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg, Heidelberg, Germany
| | - Marianna Tatarek-Nossol
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Christian Lüchtenborg
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg, Heidelberg, Germany
| | - Martina Kallas
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg, Heidelberg, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg, Heidelberg, Germany
| | - Ed Hurt
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg, Heidelberg, Germany
| | - Wolfram Antonin
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
3
|
Regulatory basis for reproductive flexibility in a meningitis-causing fungal pathogen. Nat Commun 2022; 13:7938. [PMID: 36566249 PMCID: PMC9790007 DOI: 10.1038/s41467-022-35549-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
Pathogenic fungi of the genus Cryptococcus can undergo two sexual cycles, involving either bisexual diploidization (after fusion of haploid cells of different mating type) or unisexual diploidization (by autodiploidization of a single cell). Here, we construct a gene-deletion library for 111 transcription factor genes in Cryptococcus deneoformans, and explore the roles of these regulatory networks in the two reproductive modes. We show that transcription factors crucial for bisexual syngamy induce the expression of known mating determinants as well as other conserved genes of unknown function. Deletion of one of these genes, which we term FMP1, leads to defects in bisexual reproduction in C. deneoformans, its sister species Cryptococcus neoformans, and the ascomycete Neurospora crassa. Furthermore, we show that a recently evolved regulatory cascade mediates pre-meiotic unisexual autodiploidization, supporting that this reproductive process is a recent evolutionary innovation. Our findings indicate that genetic circuits with different evolutionary ages govern hallmark events distinguishing unisexual and bisexual reproduction in Cryptococcus.
Collapse
|
4
|
Chen J, Xiong Z, Miller DE, Yu Z, McCroskey S, Bradford WD, Cavanaugh AM, Jaspersen SL. The role of gene dosage in budding yeast centrosome scaling and spontaneous diploidization. PLoS Genet 2020; 16:e1008911. [PMID: 33332348 PMCID: PMC7775121 DOI: 10.1371/journal.pgen.1008911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 12/31/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Ploidy is the number of whole sets of chromosomes in a species. Ploidy is typically a stable cellular feature that is critical for survival. Polyploidization is a route recognized to increase gene dosage, improve fitness under stressful conditions and promote evolutionary diversity. However, the mechanism of regulation and maintenance of ploidy is not well characterized. Here, we examine the spontaneous diploidization associated with mutations in components of the Saccharomyces cerevisiae centrosome, known as the spindle pole body (SPB). Although SPB mutants are associated with defects in spindle formation, we show that two copies of the mutant in a haploid yeast favors diploidization in some cases, leading us to speculate that the increased gene dosage in diploids ‘rescues’ SPB duplication defects, allowing cells to successfully propagate with a stable diploid karyotype. This copy number-based rescue is linked to SPB scaling: certain SPB subcomplexes do not scale or only minimally scale with ploidy. We hypothesize that lesions in structures with incompatible allometries such as the centrosome may drive changes such as whole genome duplication, which have shaped the evolutionary landscape of many eukaryotes. Ploidy is the number of whole sets of chromosomes in a species. Most eukaryotes alternate between a diploid (two copy) and haploid (one copy) state during their life and sexual cycle. However, as part of normal human development, specific tissues increase their DNA content. This gain of entire sets of chromosomes is known as polyploidization, and it is observed in invertebrates, plants and fungi, as well. Polyploidy is thought to improve fitness under stressful conditions and promote evolutionary diversity, but how ploidy is determined is poorly understood. Here, we use budding yeast to investigate mechanisms underlying the ploidy of wild-type cells and specific mutants that affect the centrosome, a conserved structure involved in chromosome segregation during cell division. Our work suggests that different scaling relationships (allometry) between the genome and cellular structures underlies alterations in ploidy. Furthermore, mutations in cellular structures with incompatible allometric relationships with the genome may drive genomic changes such duplications, which are underly the evolution of many species including both yeasts and humans.
Collapse
Affiliation(s)
- Jingjing Chen
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Zhiyong Xiong
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Danny E. Miller
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Scott McCroskey
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - William D. Bradford
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Ann M. Cavanaugh
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Sue L. Jaspersen
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
5
|
Comparing the utility of in vivo transposon mutagenesis approaches in yeast species to infer gene essentiality. Curr Genet 2020; 66:1117-1134. [PMID: 32681306 PMCID: PMC7599172 DOI: 10.1007/s00294-020-01096-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 06/26/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
In vivo transposon mutagenesis, coupled with deep sequencing, enables large-scale genome-wide mutant screens for genes essential in different growth conditions. We analyzed six large-scale studies performed on haploid strains of three yeast species (Saccharomyces cerevisiae, Schizosaccaromyces pombe, and Candida albicans), each mutagenized with two of three different heterologous transposons (AcDs, Hermes, and PiggyBac). Using a machine-learning approach, we evaluated the ability of the data to predict gene essentiality. Important data features included sufficient numbers and distribution of independent insertion events. All transposons showed some bias in insertion site preference because of jackpot events, and preferences for specific insertion sequences and short-distance vs long-distance insertions. For PiggyBac, a stringent target sequence limited the ability to predict essentiality in genes with few or no target sequences. The machine learning approach also robustly predicted gene function in less well-studied species by leveraging cross-species orthologs. Finally, comparisons of isogenic diploid versus haploid S. cerevisiae isolates identified several genes that are haplo-insufficient, while most essential genes, as expected, were recessive. We provide recommendations for the choice of transposons and the inference of gene essentiality in genome-wide studies of eukaryotic haploid microbes such as yeasts, including species that have been less amenable to classical genetic studies.
Collapse
|
6
|
Simonetti G, Padella A, do Valle IF, Fontana MC, Fonzi E, Bruno S, Baldazzi C, Guadagnuolo V, Manfrini M, Ferrari A, Paolini S, Papayannidis C, Marconi G, Franchini E, Zuffa E, Laginestra MA, Zanotti F, Astolfi A, Iacobucci I, Bernardi S, Sazzini M, Ficarra E, Hernandez JM, Vandenberghe P, Cools J, Bullinger L, Ottaviani E, Testoni N, Cavo M, Haferlach T, Castellani G, Remondini D, Martinelli G. Aneuploid acute myeloid leukemia exhibits a signature of genomic alterations in the cell cycle and protein degradation machinery. Cancer 2018; 125:712-725. [PMID: 30480765 PMCID: PMC6587451 DOI: 10.1002/cncr.31837] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/08/2018] [Accepted: 06/26/2018] [Indexed: 12/19/2022]
Abstract
Background Aneuploidy occurs in more than 20% of acute myeloid leukemia (AML) cases and correlates with an adverse prognosis. Methods To understand the molecular bases of aneuploid acute myeloid leukemia (A‐AML), this study examined the genomic profile in 42 A‐AML cases and 35 euploid acute myeloid leukemia (E‐AML) cases. Results A‐AML was characterized by increased genomic complexity based on exonic variants (an average of 26 somatic mutations per sample vs 15 for E‐AML). The integration of exome, copy number, and gene expression data revealed alterations in genes involved in DNA repair (eg, SLX4IP, RINT1, HINT1, and ATR) and the cell cycle (eg, MCM2, MCM4, MCM5, MCM7, MCM8, MCM10, UBE2C, USP37, CK2, CK3, CK4, BUB1B, NUSAP1, and E2F) in A‐AML, which was associated with a 3‐gene signature defined by PLK1 and CDC20 upregulation and RAD50 downregulation and with structural or functional silencing of the p53 transcriptional program. Moreover, A‐AML was enriched for alterations in the protein ubiquitination and degradation pathway (eg, increased levels of UHRF1 and UBE2C and decreased UBA3 expression), response to reactive oxygen species, energy metabolism, and biosynthetic processes, which may help in facing the unbalanced protein load. E‐AML was associated with BCOR/BCORL1 mutations and HOX gene overexpression. Conclusions These findings indicate that aneuploidy‐related and leukemia‐specific alterations cooperate to tolerate an abnormal chromosome number in AML, and they point to the mitotic and protein degradation machineries as potential therapeutic targets. Aneuploid acute myeloid leukemia (A‐AML) is associated with genomic and transcriptional alterations in the cell cycle and protein degradation pathways. The upregulation of PLK1 and CDC20 and the downregulation of RAD50 and of a p53‐related signature are hallmarks of A‐AML.
Collapse
Affiliation(s)
- Giorgia Simonetti
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Antonella Padella
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Italo Farìa do Valle
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy.,CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Maria Chiara Fontana
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Eugenio Fonzi
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Samantha Bruno
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Carmen Baldazzi
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Viviana Guadagnuolo
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Marco Manfrini
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Anna Ferrari
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Stefania Paolini
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Cristina Papayannidis
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Giovanni Marconi
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Eugenia Franchini
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Elisa Zuffa
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Maria Antonella Laginestra
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Federica Zanotti
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Annalisa Astolfi
- Giorgio Prodi Cancer Research Center, University of Bologna, Bologna, Italy
| | - Ilaria Iacobucci
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Simona Bernardi
- Unit of Blood Diseases and Stem Cell Transplantation, University of Brescia, Brescia, Italy
| | - Marco Sazzini
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | | | - Jesus Maria Hernandez
- Fundación de Investigación del Cáncer de la Universidad de Salamanca, Salamanca, Spain
| | | | - Jan Cools
- Katholieke Universiteit Leuven, Leuven, Belgium
| | | | - Emanuela Ottaviani
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Nicoletta Testoni
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Michele Cavo
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | | | - Gastone Castellani
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Daniel Remondini
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Giovanni Martinelli
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| |
Collapse
|
7
|
Jones MH, O'Toole ET, Fabritius AS, Muller EG, Meehl JB, Jaspersen SL, Winey M. Key phosphorylation events in Spc29 and Spc42 guide multiple steps of yeast centrosome duplication. Mol Biol Cell 2018; 29:2280-2291. [PMID: 30044722 PMCID: PMC6249810 DOI: 10.1091/mbc.e18-05-0296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Phosphorylation modulates many cellular processes during cell cycle progression. The yeast centrosome (called the spindle pole body, SPB) is regulated by the protein kinases Mps1 and Cdc28/Cdk1 as it nucleates microtubules to separate chromosomes during mitosis. Previously we completed an SPB phosphoproteome, identifying 297 sites on 17 of the 18 SPB components. Here we describe mutagenic analysis of phosphorylation events on Spc29 and Spc42, two SPB core components that were shown in the phosphoproteome to be heavily phosphorylated. Mutagenesis at multiple sites in Spc29 and Spc42 suggests that much of the phosphorylation on these two proteins is not essential but enhances several steps of mitosis. Of the 65 sites examined on both proteins, phosphorylation of the Mps1 sites Spc29-T18 and Spc29-T240 was shown to be critical for function. Interestingly, these two sites primarily influence distinct successive steps; Spc29-T240 is important for the interaction of Spc29 with Spc42, likely during satellite formation, and Spc29-T18 facilitates insertion of the new SPB into the nuclear envelope and promotes anaphase spindle elongation. Phosphorylation sites within Cdk1 motifs affect function to varying degrees, but mutations only have significant effects in the presence of an MPS1 mutation, supporting a theme of coregulation by these two kinases.
Collapse
Affiliation(s)
- Michele Haltiner Jones
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Eileen T O'Toole
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Amy S Fabritius
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Eric G Muller
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Janet B Meehl
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO 64110.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Mark Winey
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309
| |
Collapse
|
8
|
Sing TL, Hung MP, Ohnuki S, Suzuki G, San Luis BJ, McClain M, Unruh JR, Yu Z, Ou J, Marshall-Sheppard J, Huh WK, Costanzo M, Boone C, Ohya Y, Jaspersen SL, Brown GW. The budding yeast RSC complex maintains ploidy by promoting spindle pole body insertion. J Cell Biol 2018; 217:2445-2462. [PMID: 29875260 PMCID: PMC6028538 DOI: 10.1083/jcb.201709009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 02/13/2018] [Accepted: 05/09/2018] [Indexed: 01/31/2023] Open
Abstract
Ploidy is tightly regulated in eukaryotic cells and is critical for cell function and survival. Cells coordinate multiple pathways to ensure replicated DNA is segregated accurately to prevent abnormal changes in chromosome number. In this study, we characterize an unanticipated role for the Saccharomyces cerevisiae "remodels the structure of chromatin" (RSC) complex in ploidy maintenance. We show that deletion of any of six nonessential RSC genes causes a rapid transition from haploid to diploid DNA content because of nondisjunction events. Diploidization is accompanied by diagnostic changes in cell morphology and is stably maintained without further ploidy increases. We find that RSC promotes chromosome segregation by facilitating spindle pole body (SPB) duplication. More specifically, RSC plays a role in distributing two SPB insertion factors, Nbp1 and Ndc1, to the new SPB. Thus, we provide insight into a role for a SWI/SNF family complex in SPB duplication and ploidy maintenance.
Collapse
Affiliation(s)
- Tina L Sing
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Minnie P Hung
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Shinsuke Ohnuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
| | - Godai Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
| | - Bryan-Joseph San Luis
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO
| | - Jiongwen Ou
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Jesse Marshall-Sheppard
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Won-Ki Huh
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Michael Costanzo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Charles Boone
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO
- Department of Molecular and Integrative Physiology, University of Kansas Medical Centre, Kansas City, KS
| | - Grant W Brown
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Ohnuki S, Ohya Y. High-dimensional single-cell phenotyping reveals extensive haploinsufficiency. PLoS Biol 2018; 16:e2005130. [PMID: 29768403 PMCID: PMC5955526 DOI: 10.1371/journal.pbio.2005130] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/06/2018] [Indexed: 12/17/2022] Open
Abstract
Haploinsufficiency, a dominant phenotype caused by a heterozygous loss-of-function mutation, has been rarely observed. However, high-dimensional single-cell phenotyping of yeast morphological characteristics revealed haploinsufficiency phenotypes for more than half of 1,112 essential genes under optimal growth conditions. Additionally, 40% of the essential genes with no obvious phenotype under optimal growth conditions displayed haploinsufficiency under severe growth conditions. Haploinsufficiency was detected more frequently in essential genes than in nonessential genes. Similar haploinsufficiency phenotypes were observed mostly in mutants with heterozygous deletion of functionally related genes, suggesting that haploinsufficiency phenotypes were caused by functional defects of the genes. A global view of the gene network was presented based on the similarities of the haploinsufficiency phenotypes. Our dataset contains rich information regarding essential gene functions, providing evidence that single-cell phenotyping is a powerful approach, even in the heterozygous condition, for analyzing complex biological systems. Diploid organisms harboring a wild-type gene and a loss-of-function mutation are called heterozygotes. They are expected to have weak or no individual phenotypes because the mutation is compensated for by the intact allele. The dominant inheritance of phenotypes in heterozygotes is an exceptional phenomenon called haploinsufficiency. Haploinsufficiency was thought to be a rare occurrence; however, a sensitive technique called high-dimensional single-cell phenotyping challenges this perspective. Investigations of single-cell phenotypes revealed that a large extent of the essential genes in yeast exhibit haploinsufficiency. Our analyses also provided crucial information on gene functional networks based on haploinsufficiency phenotypes. This work shows that high-dimensional single-cell phenotyping is a useful tool that can be used to better understand complex biological systems.
Collapse
Affiliation(s)
- Shinsuke Ohnuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, Chiba, Japan
- * E-mail:
| |
Collapse
|
10
|
Yaguchi K, Yamamoto T, Matsui R, Tsukada Y, Shibanuma A, Kamimura K, Koda T, Uehara R. Uncoordinated centrosome cycle underlies the instability of non-diploid somatic cells in mammals. J Cell Biol 2018; 217:2463-2483. [PMID: 29712735 PMCID: PMC6028549 DOI: 10.1083/jcb.201701151] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 09/27/2017] [Accepted: 04/09/2018] [Indexed: 12/22/2022] Open
Abstract
Mammalian somatic cells are more stable as diploids, but the mechanisms underlying this stability are unclear. Yaguchi et al. show that changes in centriole licensing compromise the control of centrosome number in haploid or tetraploid human cells, suggesting that the ploidy-dependent control of the centrosome cycle explains the instability of non-diploid karyotypes. In animals, somatic cells are usually diploid and are unstable when haploid for unknown reasons. In this study, by comparing isogenic human cell lines with different ploidies, we found frequent centrosome loss specifically in the haploid state, which profoundly contributed to haploid instability through subsequent mitotic defects. We also found that the efficiency of centriole licensing and duplication changes proportionally to ploidy level, whereas that of DNA replication stays constant. This caused gradual loss or frequent overduplication of centrioles in haploid and tetraploid cells, respectively. Centriole licensing efficiency seemed to be modulated by astral microtubules, whose development scaled with ploidy level, and artificial enhancement of aster formation in haploid cells restored centriole licensing efficiency to diploid levels. The ploidy–centrosome link was observed in different mammalian cell types. We propose that incompatibility between the centrosome duplication and DNA replication cycles arising from different scaling properties of these bioprocesses upon ploidy changes underlies the instability of non-diploid somatic cells in mammals.
Collapse
Affiliation(s)
- Kan Yaguchi
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Takahiro Yamamoto
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Ryo Matsui
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Yuki Tsukada
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Atsuko Shibanuma
- Creative Research Institution, Hokkaido University, Sapporo, Japan
| | - Keiko Kamimura
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Toshiaki Koda
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Ryota Uehara
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan .,Creative Research Institution, Hokkaido University, Sapporo, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
11
|
Burns S, Avena JS, Unruh JR, Yu Z, Smith SE, Slaughter BD, Winey M, Jaspersen SL. Structured illumination with particle averaging reveals novel roles for yeast centrosome components during duplication. eLife 2015; 4. [PMID: 26371506 PMCID: PMC4564689 DOI: 10.7554/elife.08586] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/11/2015] [Indexed: 01/23/2023] Open
Abstract
Duplication of the yeast centrosome (called the spindle pole body, SPB) is thought to occur through a series of discrete steps that culminate in insertion of the new SPB into the nuclear envelope (NE). To better understand this process, we developed a novel two-color structured illumination microscopy with single-particle averaging (SPA-SIM) approach to study the localization of all 18 SPB components during duplication using endogenously expressed fluorescent protein derivatives. The increased resolution and quantitative intensity information obtained using this method allowed us to demonstrate that SPB duplication begins by formation of an asymmetric Sfi1 filament at mitotic exit followed by Mps1-dependent assembly of a Spc29- and Spc42-dependent complex at its tip. Our observation that proteins involved in membrane insertion, such as Mps2, Bbp1, and Ndc1, also accumulate at the new SPB early in duplication suggests that SPB assembly and NE insertion are coupled events during SPB formation in wild-type cells. DOI:http://dx.doi.org/10.7554/eLife.08586.001 Cells divide to produce two new daughter cells that each contain the same genetic material. First, the DNA of the parent cell is copied, then it must be physically separated into the daughter cells by a structure made of filaments called microtubules. To ensure that the DNA is separated into two equal parts, the microtubules must emerge from two points in the cell, known as spindle poles. Each spindle pole is made of a group (or ‘complex’) of proteins and these have to be copied before the cell can divide. While we understand how DNA is copied, we do not know how cells copy proteins. The spindle pole in yeast—known as the spindle pole body—is an ideal model to study this problem because the proteins that form it have already been identified and it is easy to study yeast in the laboratory. Burns et al. developed a new method to study the spindle pole body using fluorescent protein tags and a sophisticated microscopy technique. The experiments mapped the positions of 18 proteins within the spindle pole body during its duplication. Some of these proteins enable the spindle pole to insert into the membrane that surrounds the cell's nucleus. Unexpectedly, Burns et al. observed that this set of proteins interact with the new spindle pole as it forms, instead of afterwards as was previously believed. Burns et al.'s findings suggest that the spindle pole body assembles into the membrane surrounding the nucleus at the same time as it is copied. The next challenges are to understand the details of how this works and to use the same method to study other large protein complexes in cells. Until now, highly detailed surveys of protein structures have been limited to a handful of proteins and conditions. The method developed by Burns et al. makes it possible to carry out studies that examine the movements of whole protein complexes during cell division. DOI:http://dx.doi.org/10.7554/eLife.08586.002
Collapse
Affiliation(s)
- Shannon Burns
- Stowers Institute for Medical Research, Kansas City, United States
| | - Jennifer S Avena
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, United States
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, United States
| | - Sarah E Smith
- Stowers Institute for Medical Research, Kansas City, United States
| | | | - Mark Winey
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, United States
| |
Collapse
|
12
|
Chen J, Smoyer CJ, Slaughter BD, Unruh JR, Jaspersen SL. The SUN protein Mps3 controls Ndc1 distribution and function on the nuclear membrane. ACTA ACUST UNITED AC 2014; 204:523-39. [PMID: 24515347 PMCID: PMC3926959 DOI: 10.1083/jcb.201307043] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ndc1–Mps3 interaction is important for controlling the distribution of Ndc1 between the nuclear pore complex and spindle pole body to ensure proper nuclear envelope insertion of both complexes. In closed mitotic systems such as Saccharomyces cerevisiae, nuclear pore complexes (NPCs) and the spindle pole body (SPB) must assemble into an intact nuclear envelope (NE). Ndc1 is a highly conserved integral membrane protein involved in insertion of both complexes. In this study, we show that Ndc1 interacts with the SUN domain–containing protein Mps3 on the NE in live yeast cells using fluorescence cross-correlation spectroscopy. Genetic and molecular analysis of a series of new ndc1 alleles allowed us to understand the role of Ndc1–Mps3 binding at the NE. We show that the ndc1-L562S allele is unable to associate specifically with Mps3 and find that this mutant is lethal due to a defect in SPB duplication. Unlike other ndc1 alleles, the growth and Mps3 binding defect of ndc1-L562S is fully suppressed by deletion of POM152, which encodes a NPC component. Based on our data we propose that the Ndc1–Mps3 interaction is important for controlling the distribution of Ndc1 between the NPC and SPB.
Collapse
Affiliation(s)
- Jingjing Chen
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | | | | | | | | |
Collapse
|
13
|
Siegrist KJ, Reynolds SH, Kashon ML, Lowry DT, Dong C, Hubbs AF, Young SH, Salisbury JL, Porter DW, Benkovic SA, McCawley M, Keane MJ, Mastovich JT, Bunker KL, Cena LG, Sparrow MC, Sturgeon JL, Dinu CZ, Sargent LM. Genotoxicity of multi-walled carbon nanotubes at occupationally relevant doses. Part Fibre Toxicol 2014; 11:6. [PMID: 24479647 PMCID: PMC3923549 DOI: 10.1186/1743-8977-11-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 01/16/2014] [Indexed: 11/24/2022] Open
Abstract
Carbon nanotubes are commercially-important products of nanotechnology; however, their low density and small size makes carbon nanotube respiratory exposures likely during their production or processing. We have previously shown mitotic spindle aberrations in cultured primary and immortalized human airway epithelial cells exposed to single-walled carbon nanotubes (SWCNT). In this study, we examined whether multi-walled carbon nanotubes (MWCNT) cause mitotic spindle damage in cultured cells at doses equivalent to 34 years of exposure at the NIOSH Recommended Exposure Limit (REL). MWCNT induced a dose responsive increase in disrupted centrosomes, abnormal mitotic spindles and aneuploid chromosome number 24 hours after exposure to 0.024, 0.24, 2.4 and 24 μg/cm2 MWCNT. Monopolar mitotic spindles comprised 95% of disrupted mitoses. Three-dimensional reconstructions of 0.1 μm optical sections showed carbon nanotubes integrated with microtubules, DNA and within the centrosome structure. Cell cycle analysis demonstrated a greater number of cells in S-phase and fewer cells in the G2 phase in MWCNT-treated compared to diluent control, indicating a G1/S block in the cell cycle. The monopolar phenotype of the disrupted mitotic spindles and the G1/S block in the cell cycle is in sharp contrast to the multi-polar spindle and G2 block in the cell cycle previously observed following exposure to SWCNT. One month following exposure to MWCNT there was a dramatic increase in both size and number of colonies compared to diluent control cultures, indicating a potential to pass the genetic damage to daughter cells. Our results demonstrate significant disruption of the mitotic spindle by MWCNT at occupationally relevant exposure levels.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Cerasela Zoica Dinu
- National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA.
| | | |
Collapse
|
14
|
The RNA-binding protein Whi3 is a key regulator of developmental signaling and ploidy in Saccharomyces cerevisiae. Genetics 2013; 195:73-86. [PMID: 23770701 DOI: 10.1534/genetics.113.153775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In Saccharomyces cerevisiae, the RNA-binding protein Whi3 controls cell cycle progression, biofilm formation, and stress response by post-transcriptional regulation of the Cdc28-Cln3 cyclin-dependent protein kinase and the dual-specificity protein kinase Yak1. Previous work has indicated that Whi3 might govern these processes by additional, yet unknown mechanisms. In this study, we have identified additional effectors of Whi3 that include the G1 cyclins Cln1/Cln2 and two known regulators of biofilm formation, the catalytic PKA subunit Tpk1 and the transcriptional activator Tec1. We also provide evidence that Whi3 regulates production of these factors by post-transcriptional control and might exert this function by affecting translational elongation. Unexpectedly, we also discovered that Whi3 is a key regulator of cellular ploidy, because haploid whi3Δ mutant strains exhibit a significant increase-in-ploidy phenotype that depends on environmental conditions. Our data further suggest that Whi3 might control stability of ploidy by affecting the expression of many key genes involved in sister chromatid cohesion and of NIP100 that encodes a component of the yeast dynactin complex for chromosome distribution. Finally, we show that absence of Whi3 induces a transcriptional stress response in haploid cells that is relieved by whole-genome duplication. In summary, our study suggests that the RNA-binding protein Whi3 acts as a central regulator of cell division and development by post-transcriptional control of key genes involved in chromosome distribution and cell signaling.
Collapse
|
15
|
Integrity and function of the Saccharomyces cerevisiae spindle pole body depends on connections between the membrane proteins Ndc1, Rtn1, and Yop1. Genetics 2012; 192:441-55. [PMID: 22798490 DOI: 10.1534/genetics.112.141465] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The nuclear envelope in Saccharomyces cerevisiae harbors two essential macromolecular protein assemblies: the nuclear pore complexes (NPCs) that enable nucleocytoplasmic transport, and the spindle pole bodies (SPBs) that mediate chromosome segregation. Previously, based on metazoan and budding yeast studies, we reported that reticulons and Yop1/DP1 play a role in the early steps of de novo NPC assembly. Here, we examined if Rtn1 and Yop1 are required for SPB function in S. cerevisiae. Electron microscopy of rtn1Δ yop1Δ cells revealed lobular abnormalities in SPB structure. Using an assay that monitors lateral expansion of the SPB central layer, we found that rtn1Δ yop1Δ SPBs had decreased connections to the NE compared to wild type, suggesting that SPBs are less stable in the NE. Furthermore, large budded rtn1Δ yop1Δ cells exhibited a high incidence of short mitotic spindles, which were frequently misoriented with respect to the mother-daughter axis. This correlated with cytoplasmic microtubule defects. We found that overexpression of the SPB insertion factors NDC1, MPS2, or BBP1 rescued the SPB defects observed in rtn1Δ yop1Δ cells. However, only overexpression of NDC1, which is also required for NPC biogenesis, rescued both the SPB and NPC associated defects. Rtn1 and Yop1 also physically interacted with Ndc1 and other NPC membrane proteins. We propose that NPC and SPB biogenesis are altered in cells lacking Rtn1 and Yop1 due to competition between these complexes for Ndc1, an essential common component of both NPCs and SPBs.
Collapse
|
16
|
Jaspersen SL, Ghosh S. Nuclear envelope insertion of spindle pole bodies and nuclear pore complexes. Nucleus 2012; 3:226-36. [PMID: 22572959 PMCID: PMC3414398 DOI: 10.4161/nucl.20148] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The defining feature of eukaryotic cells is the double lipid bilayer of the nuclear envelope (NE) that serves as a physical barrier separating the genome from the cytosol. Nuclear pore complexes (NPCs) are embedded in the NE to facilitate transport of proteins and other macromolecules into and out of the nucleus. In fungi and early embryos where the NE does not completely breakdown during mitosis, microtubule-organizing centers such as the spindle pole body (SPB) must also be inserted into the NE to facilitate organization of the mitotic spindle. Several recent papers have shed light on the mechanism by which SPB complexes are inserted into the NE. An unexpected link between the SPB and NPCs suggests that assembly of these NE complexes is tightly coordinated. We review the findings of these reports in light of our current knowledge of SPB, NPC and NE structure, assembly and function.
Collapse
Affiliation(s)
- Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO, USA.
| | | |
Collapse
|
17
|
Independent modulation of the kinase and polo-box activities of Cdc5 protein unravels unique roles in the maintenance of genome stability. Proc Natl Acad Sci U S A 2011; 108:E914-23. [PMID: 21987786 DOI: 10.1073/pnas.1106448108] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Polo-like kinases (PLKs) are evolutionarily conserved kinases essential for cell cycle regulation. These kinases are characterized by the presence of a C-terminal phosphopeptide-interaction domain, the polo-box domain (PBD). How the functional domains of PLKs work together to promote cell division is not understood. To address this, we performed a genetic screen to identify mutations that independently modulate the kinase and PBD activities of yeast PLK/Cdc5. This screen identified a mutagenic hotspot in the F-helix region of Cdc5 kinase domain that allows one to control kinase activity in vivo. These mutations can be systematically engineered into other major eukaryotic cell cycle kinases to similarly regulate their activity in live cells. Here, using this approach, we show that the kinase activity of Cdc5 can promote the execution of several stages of mitosis independently of PBD activity. In particular, we observe that the activation of Cdc14 and execution of mitotic exit are uniquely sensitive to the modulation of Cdc5 kinase activity. In contrast, PBD-defective mutants are capable of completing mitosis but are unable to maintain spindle pole body integrity. Consistent with this defect, PBD-deficient cells progressively double the size of their genome and ultimately lose genome integrity. Collectively, these results highlight the specific contributions of Cdc5 functional domains to cell division and reveal unexpected mechanisms controlling spindle pole body behavior and genome stability.
Collapse
|
18
|
Kupke T, Di Cecco L, Müller HM, Neuner A, Adolf F, Wieland F, Nickel W, Schiebel E. Targeting of Nbp1 to the inner nuclear membrane is essential for spindle pole body duplication. EMBO J 2011; 30:3337-52. [PMID: 21785410 DOI: 10.1038/emboj.2011.242] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 06/30/2011] [Indexed: 12/29/2022] Open
Abstract
Spindle pole bodies (SPBs), like nuclear pore complexes, are embedded in the nuclear envelope (NE) at sites of fusion of the inner and outer nuclear membranes. A network of interacting proteins is required to insert a cytoplasmic SPB precursor into the NE. A central player of this network is Nbp1 that interacts with the conserved integral membrane protein Ndc1. Here, we establish that Nbp1 is a monotopic membrane protein that is essential for SPB insertion at the inner face of the NE. In vitro and in vivo studies identified an N-terminal amphipathic α-helix of Nbp1 as a membrane-binding element, with crucial functions in SPB duplication. The karyopherin Kap123 binds to a nuclear localization sequence next to this amphipathic α-helix and prevents unspecific tethering of Nbp1 to membranes. After transport into the nucleus, Nbp1 binds to the inner nuclear membrane. These data define the targeting pathway of a SPB component and suggest that the amphipathic α-helix of Nbp1 is important for SPB insertion into the NE from within the nucleus.
Collapse
Affiliation(s)
- Thomas Kupke
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Chan K, Goldmark JP, Roth MB. Suspended animation extends survival limits of Caenorhabditis elegans and Saccharomyces cerevisiae at low temperature. Mol Biol Cell 2010; 21:2161-71. [PMID: 20462960 PMCID: PMC2893981 DOI: 10.1091/mbc.e09-07-0614] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We show that Saccharomyces cerevisiae and Caenorhabditis elegans embryos experience high lethality at low temperature due to cell cycle errors and that anoxia-induced suspended animation prevents such lethality by preventing occurrence of such errors. The orderly progression through the cell division cycle is of paramount importance to all organisms, as improper progression through the cycle could result in defects with grave consequences. Previously, our lab has shown that model eukaryotes such as Saccharomyces cerevisiae, Caenorhabditis elegans, and Danio rerio all retain high viability after prolonged arrest in a state of anoxia-induced suspended animation, implying that in such a state, progression through the cell division cycle is reversibly arrested in an orderly manner. Here, we show that S. cerevisiae (both wild-type and several cold-sensitive strains) and C. elegans embryos exhibit a dramatic decrease in viability that is associated with dysregulation of the cell cycle when exposed to low temperatures. Further, we find that when the yeast or worms are first transitioned into a state of anoxia-induced suspended animation before cold exposure, the associated cold-induced viability defects are largely abrogated. We present evidence that by imposing an anoxia-induced reversible arrest of the cell cycle, the cells are prevented from engaging in aberrant cell cycle events in the cold, thus allowing the organisms to avoid the lethality that would have occurred in a cold, oxygenated environment.
Collapse
Affiliation(s)
- Kin Chan
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | |
Collapse
|
20
|
Chromosome-scale genetic mapping using a set of 16 conditionally stable Saccharomyces cerevisiae chromosomes. Genetics 2008; 180:1799-808. [PMID: 18832360 DOI: 10.1534/genetics.108.087999] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have created a resource to rapidly map genetic traits to specific chromosomes in yeast. This mapping is done using a set of 16 yeast strains each containing a different chromosome with a conditionally functional centromere. Conditional centromere function is achieved by integration of a GAL1 promoter in cis to centromere sequences. We show that the 16 yeast chromosomes can be individually lost in diploid strains, which become hemizygous for the destabilized chromosome. Interestingly, most 2n - 1 strains endoduplicate and become 2n. We also demonstrate how chromosome loss in this set of strains can be used to map both recessive and dominant markers to specific chromosomes. In addition, we show that this method can be used to rapidly validate gene assignments from screens of strain libraries such as the yeast gene disruption collection.
Collapse
|
21
|
Abstract
Loss of heterozygosity (LOH) can be a driving force in the evolution of mitotic/somatic diploid cells, and cellular changes that increase the rate of LOH have been proposed to facilitate this process. In the yeast Saccharomyces cerevisiae, spontaneous LOH occurs by a number of mechanisms including chromosome loss and reciprocal and nonreciprocal recombination. We performed a screen in diploid yeast to identify mutants with increased rates of LOH using the collection of homozygous deletion alleles of nonessential genes. Increased LOH was quantified at three loci (MET15, SAM2, and MAT) on three different chromosomes, and the LOH events were analyzed as to whether they were reciprocal or nonreciprocal in nature. Nonreciprocal LOH was further characterized as chromosome loss or truncation, a local mutational event (gene conversion or point mutation), or break-induced replication (BIR). The 61 mutants identified could be divided into several groups, including ones that had locus-specific effects. Mutations in genes involved in DNA replication and chromatin assembly led to LOH predominantly via reciprocal recombination. In contrast, nonreciprocal LOH events with increased chromosome loss largely resulted from mutations in genes implicated in kinetochore function, sister chromatid cohesion, or relatively late steps of DNA recombination. Mutants of genes normally involved in early steps of DNA damage repair and signaling produced nonreciprocal LOH without an increased proportion of chromosome loss. Altogether, this study defines a genetic landscape for the basis of increased LOH and the processes by which it occurs.
Collapse
|
22
|
Stavru F, Hülsmann BB, Spang A, Hartmann E, Cordes VC, Görlich D. NDC1: a crucial membrane-integral nucleoporin of metazoan nuclear pore complexes. ACTA ACUST UNITED AC 2006; 173:509-19. [PMID: 16702233 PMCID: PMC2063861 DOI: 10.1083/jcb.200601001] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
POM121 and gp210 were, until this point, the only known membrane-integral nucleoporins (Nups) of vertebrates and, thus, the only candidate anchors for nuclear pore complexes (NPCs) within the nuclear membrane. In an accompanying study (see Stavru et al. on p. 477 of this issue), we provided evidence that NPCs can exist independently of POM121 and gp210, and we predicted that vertebrate NPCs contain additional membrane-integral constituents. We identify such an additional membrane protein in the NPCs of mammals, frogs, insects, and nematodes as the orthologue to yeast Ndc1p/Cut11p. Human NDC1 (hNDC1) likely possesses six transmembrane segments, and it is located at the nuclear pore wall. Depletion of hNDC1 from human HeLa cells interferes with the assembly of phenylalanine-glycine repeat Nups into NPCs. The loss of NDC1 function in Caenorhabditis elegans also causes severe NPC defects and very high larval and embryonic mortality. However, it is not ultimately lethal. Instead, homozygous NDC1-deficient worms can be propagated. This indicates that none of the membrane-integral Nups is universally essential for NPC assembly, and suggests that NPC biogenesis is an extremely fault-tolerant process.
Collapse
Affiliation(s)
- Fabrizia Stavru
- Zentrum für Molekulare Biologie der Universität Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Araki Y, Lau CK, Maekawa H, Jaspersen SL, Giddings TH, Schiebel E, Winey M. The Saccharomyces cerevisiae spindle pole body (SPB) component Nbp1p is required for SPB membrane insertion and interacts with the integral membrane proteins Ndc1p and Mps2p. Mol Biol Cell 2006; 17:1959-70. [PMID: 16436507 PMCID: PMC1415324 DOI: 10.1091/mbc.e05-07-0668] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 01/17/2006] [Accepted: 01/18/2006] [Indexed: 11/11/2022] Open
Abstract
The spindle pole body (SPB) in Saccharomyces cerevisiae functions to nucleate and organize spindle microtubules, and it is embedded in the nuclear envelope throughout the yeast life cycle. However, the mechanism of membrane insertion of the SPB has not been elucidated. Ndc1p is an integral membrane protein that localizes to SPBs, and it is required for insertion of the SPB into the nuclear envelope during SPB duplication. To better understand the function of Ndc1p, we performed a dosage suppressor screen using the ndc1-39 temperature-sensitive allele. We identified an essential SPB component, Nbp1p. NBP1 shows genetic interactions with several SPB genes in addition to NDC1, and two-hybrid analysis revealed that Nbp1p binds to Ndc1p. Furthermore, Nbp1p is in the Mps2p-Bbp1p complex in the SPB. Immunoelectron microscopy confirmed that Nbp1p localizes to the SPB, suggesting a function at this location. Consistent with this hypothesis, nbp1-td (a degron allele) cells fail in SPB duplication upon depletion of Nbp1p. Importantly, these cells exhibit a "dead" SPB phenotype, similar to cells mutant in MPS2, NDC1, or BBP1. These results demonstrate that Nbp1p is a SPB component that acts in SPB duplication at the point of SPB insertion into the nuclear envelope.
Collapse
Affiliation(s)
- Yasuhiro Araki
- The Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Manchester M20 4BX, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
24
|
Waghmare SK, Bruschi CV. Differential chromosome control of ploidy in the yeast Saccharomyces cerevisiae. Yeast 2005; 22:625-39. [PMID: 16034824 DOI: 10.1002/yea.1226] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In Saccharomyces cerevisiae, aneuploidy is well tolerated and stable. We analysed whether the induced loss of a disomic chromosome favours endo-reduplication of the remaining chromosome or the cells prefer to retain the acquired euploidy. Chromosome VIII disomes and trisomes were tagged with GFP (green fluorescent protein), DsRed (red fluorescent protein) and BFP (blue fluorescent protein) integrated at the thr1 locus, using our newly designed STIK (specific targeted integration of kanamycin resistance-associated, non-selectable DNA) plasmid system. A knockout cassette for centromere 8 was constructed with the hygromycin-B marker, which was transformed into the strains. The transformants lost sensitivity to hygromycin, thereby indicating the event of centromere replacement. Quantitative PCR and Southern analysis were performed for chromosome VIII copy number determination by probing the markers located on both the right (ARG4 and THR1) and left (GUT1) arm whereas, for chromosome V, markers such as HIS1, located on right arm, and URA3, on left arm, were used. The loss of an extranumerary chromosome VIII in a disome and trisome leads to stable euploidy. Furthermore, in a wild-type diploid, deletion of a copy of chromosome VIII, leads to monosomy, and restoration of euploidy after 22 generations, by reduplication of chromosome VIII, and consequent loss of heterozygosis (LOH). However, chromosome V knockouts in chromosome VIII trisome, still showed LOH and duplication of chromosome V, with return to the original aneuploid condition. These results suggest that yeast cells could control the integrity of their genetic complement acting at the individual chromosome level.
Collapse
Affiliation(s)
- Sanjeev K Waghmare
- Microbiology Group, International Centre for Genetic Engineering and Biotechnology, AREA Science Park--W, Padriciano-99, I-34012 Trieste, Italy
| | | |
Collapse
|
25
|
Lo YC, Kurtz RB, Nickoloff JA. Analysis of chromosome/allele loss in genetically unstable yeast by quantitative real-time PCR. Biotechniques 2005; 38:685-6, 688, 690. [PMID: 15948291 DOI: 10.2144/05385bm01] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yi-Chen Lo
- University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | |
Collapse
|
26
|
Deutschbauer AM, Jaramillo DF, Proctor M, Kumm J, Hillenmeyer ME, Davis RW, Nislow C, Giaever G. Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. Genetics 2005; 169:1915-25. [PMID: 15716499 PMCID: PMC1449596 DOI: 10.1534/genetics.104.036871] [Citation(s) in RCA: 409] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Haploinsufficiency is defined as a dominant phenotype in diploid organisms that are heterozygous for a loss-of-function allele. Despite its relevance to human disease, neither the extent of haploinsufficiency nor its precise molecular mechanisms are well understood. We used the complete set of Saccharomyces cerevisiae heterozygous deletion strains to survey the genome for haploinsufficiency via fitness profiling in rich (YPD) and minimal media to identify all genes that confer a haploinsufficient growth defect. This assay revealed that approximately 3% of all approximately 5900 genes tested are haploinsufficient for growth in YPD. This class of genes is functionally enriched for metabolic processes carried out by molecular complexes such as the ribosome. Much of the haploinsufficiency in YPD is alleviated by slowing the growth rate of each strain in minimal media, suggesting that certain gene products are rate limiting for growth only in YPD. Overall, our results suggest that the primary mechanism of haploinsufficiency in yeast is due to insufficient protein production. We discuss the relevance of our findings in yeast to human haploinsufficiency disorders.
Collapse
Affiliation(s)
- Adam M Deutschbauer
- Department of Genetics, Stanford University School of Medicine, California 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Lamont LB, Crittenden SL, Bernstein D, Wickens M, Kimble J. FBF-1 and FBF-2 regulate the size of the mitotic region in the C. elegans germline. Dev Cell 2004; 7:697-707. [PMID: 15525531 DOI: 10.1016/j.devcel.2004.09.013] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Revised: 08/03/2004] [Accepted: 08/30/2004] [Indexed: 11/24/2022]
Abstract
In the C. elegans germline, GLP-1/Notch signaling and two nearly identical RNA binding proteins, FBF-1 and FBF-2, promote proliferation. Here, we show that the fbf-1 and fbf-2 genes are largely redundant for promoting mitosis but that they have opposite roles in fine-tuning the size of the mitotic region. The mitotic region is smaller than normal in fbf-1 mutants but larger than normal in fbf-2 mutants. Consistent with gene-specific roles, fbf-2 expression is limited to the distal germline, while fbf-1 expression is broader. The fbf-2 gene, but apparently not fbf-1, is controlled by GLP-1/Notch signaling, and the abundance of FBF-1 and FBF-2 proteins is limited by reciprocal 3'UTR repression. We propose that the divergent fbf genes and their regulatory subnetwork enable a precise control over size of the mitotic region. Therefore, fbf-1 and fbf-2 provide a paradigm for how recently duplicated genes can diverge to fine-tune patterning during animal development.
Collapse
Affiliation(s)
- Liana B Lamont
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
28
|
Lau CK, Giddings TH, Winey M. A novel allele of Saccharomyces cerevisiae NDC1 reveals a potential role for the spindle pole body component Ndc1p in nuclear pore assembly. EUKARYOTIC CELL 2004; 3:447-58. [PMID: 15075274 PMCID: PMC387647 DOI: 10.1128/ec.3.2.447-458.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Both the spindle pole body (SPB) and the nuclear pore complex (NPC) are essential organelles embedded in the nuclear envelope throughout the life cycle of the budding yeast Saccharomyces cerevisiae. However, the mechanism by which these two multisubunit structures are inserted into the nuclear envelope during their biogenesis is not well understood. We have previously shown that Ndc1p is the only known integral membrane protein that localizes to both the SPBs and the NPCs and is required for SPB duplication. For this study, we generated a novel temperature-sensitive (ts) allele of NDC1 to investigate the role of Ndc1p at the NPCs. Yeast cells carrying this allele (ndc1-39) failed to insert the SPB into the nuclear envelope at the restrictive temperature. Importantly, the double mutation of ndc1-39 and NPC assembly mutant nic96-1 resulted in cells with enhanced growth defects. While nuclear protein import and NPC distribution in the nuclear envelope were unaffected, ndc1-39 mutants failed to properly incorporate the nucleoporin Nup49p into NPCs. These results provide evidence that Ndc1p is required for NPC assembly in addition to its role in SPB duplication. We postulate that Ndc1p is crucial for the biogenesis of both the SPBs and the NPCs at the step of insertion into the nuclear envelope.
Collapse
Affiliation(s)
- Corine K Lau
- MCD Biology, University of Colorado-Boulder, Boulder, Colorado 80309-0347, USA
| | | | | |
Collapse
|
29
|
Evert BA, Salmon TB, Song B, Jingjing L, Siede W, Doetsch PW. Spontaneous DNA Damage in Saccharomyces cerevisiae Elicits Phenotypic Properties Similar to Cancer Cells. J Biol Chem 2004; 279:22585-94. [PMID: 15020594 DOI: 10.1074/jbc.m400468200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To determine the spectrum of effects elicited by specific levels of spontaneous DNA damage, a series of isogenic Saccharomyces cerevisiae strains defective in base excision repair (BER) and nucleotide excision repair (NER) were analyzed. In log phase of growth, when compared with wild type (WT) or NER-defective cells, BER-defective cells and BER/NER-defective cells possess elevated levels of unrepaired, spontaneous oxidative DNA damage. This system allowed establishment of a range of approximately 400 to 1400 Ntg1p-recognized DNA lesions per genome necessary to provoke profound biological changes similar in many respects to the phenotypic properties of cancer cells. The BER/NER-defective cells are genetically unstable, exhibiting mutator and hyper-recombinogenic phenotypes. They also exhibit aberrations in morphology, DNA content, and growth characteristics compared with WT, BER-defective, and NER-defective cells. The BER/NER-defective cells also possess increased levels of intracellular reactive oxygen species, activate the yeast checkpoint response pathway via Rad53p phosphorylation in stationary phase, and show profound changes in transcription patterns, a subset of which can be ascribed to responses resulting from unrepaired DNA damage. By establishing a relationship between specific levels of spontaneous DNA damage and the ensuing deleterious biological consequences, these yeast DNA excision repair-defective strains are an informative model for gauging the progressive biological consequences of spontaneous DNA damage accumulation and may have relevancy for delineating underlying mechanisms in tumorigenesis.
Collapse
Affiliation(s)
- Barbara A Evert
- Department of Biochemistry, Graduate Program in Genetics and Molecular Biology, School of Medicine, Emory University, Atlanta, Georgia, 30322, USA
| | | | | | | | | | | |
Collapse
|
30
|
Mendelsohn BA, Li AM, Vargas CA, Riehman K, Watson A, Fridovich-Keil JL. Genetic and biochemical interactions between SCP160 and EAP1 in yeast. Nucleic Acids Res 2003; 31:5838-47. [PMID: 14530432 PMCID: PMC219487 DOI: 10.1093/nar/gkg810] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Revised: 09/05/2003] [Accepted: 09/05/2003] [Indexed: 12/25/2022] Open
Abstract
Scp160p is a multiple KH-domain RNA-binding protein in yeast known to associate with polyribosomes as an mRNP component, although its biological role remains unclear. As a genetic approach to examine Scp160p function, we applied an ethyl methanesulfonate (EMS) screen for loci synthetically lethal with scp160 loss, and identified a single candidate gene, EAP1, whose protein product functions in translation as an eIF4E-binding protein, with additional uncharacterized spindle pole body functions. To reconfirm scp160/eap1 synthetic lethality, we constructed a strain null for both genes, supported by an SCP160 maintenance plasmid. We used this strain to establish a quantitative assay for both Scp160p and Eap1p functions in vivo, and applied this assay to demonstrate that Y109A EAP1, a previously described allele of EAP1 that cannot bind eIF4E, is markedly impaired with regard to its SCP160-related activity. In addition, we explored the possibility of physical interaction between Eap1p and Scp160p, and discovered that Eap1p associates with Scp160p-containing complexes in an RNA-dependent manner. Finally, we probed the impact of EAP1 loss on Scp160p, and vice versa, and found that loss of each gene resulted in a significant change in either the complex associations or subcellular distribution of the other protein. These results clearly support the hypothesis that Scp160p plays a role in translation, demonstrate that the interaction of SCP160 and EAP1 is biologically significant, and provide important tools for future studies of the in vivo functions of both genes.
Collapse
Affiliation(s)
- Bryce A Mendelsohn
- Department of Biology, Emory College, Emory University School of Medicine, Room 325.2 Whitehead Building, 615 Michael Street, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
31
|
Kitazono AA, Garza DA, Kron SJ. Mutations in the yeast cyclin-dependent kinase Cdc28 reveal a role in the spindle assembly checkpoint. Mol Genet Genomics 2003; 269:672-84. [PMID: 12827501 DOI: 10.1007/s00438-003-0870-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2003] [Accepted: 05/22/2003] [Indexed: 11/26/2022]
Abstract
Anaphase onset and mitotic exit are regulated by the spindle assembly or kinetochore checkpoint, which inhibits the anaphase-promoting complex (APC), preventing the degradation of anaphase inhibitors and mitotic cyclins. As a result, cells arrest with high cyclin-dependent kinase (CDK) activity due to the accumulation of cyclins. Aside from this, a clear-cut demonstration of a direct role for CDKs in the spindle checkpoint response has been elusive. Cdc28 is the main CDK driving the cell cycle in budding yeast. In this report, mutations in cdc28 are described that confer specific checkpoint defects, supersensitivity towards microtubule poisons and chromosome loss. Two alleles encode single mutations in the N and C terminal regions, respectively (R10G and R288G), and one allele specifies two mutations near the C terminus (F245L, I284T). These cdc28 mutants are unable to arrest or efficiently prevent sister chromatid separation during treatment with nocodazole. Genetic interactions with checkpoint and apc mutants suggest Cdc28 may regulate checkpoint arrest downstream of the MAD2 and BUB2 pathways. These studies identify a C-terminal domain of Cdc28 required for checkpoint arrest upon spindle damage that mediates chromosome stability during vegetative growth, suggesting that it has an essential surveillance function in the unperturbed cell cycle.
Collapse
Affiliation(s)
- A A Kitazono
- Center for Molecular Oncology and Dept. of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
32
|
McBratney S, Winey M. Mutant membrane protein of the budding yeast spindle pole body is targeted to the endoplasmic reticulum degradation pathway. Genetics 2002; 162:567-78. [PMID: 12399372 PMCID: PMC1462292 DOI: 10.1093/genetics/162.2.567] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mutation of either the yeast MPS2 or the NDC1 gene leads to identical spindle pole body (SPB) duplication defects: The newly formed SPB is improperly inserted into the nuclear envelope (NE), preventing the cell from forming a bipolar mitotic spindle. We have previously shown that both MPS2 and NDC1 encode integral membrane proteins localized at the SPB. Here we show that CUE1, previously known to have a role in coupling ubiquitin conjugation to ER degradation, is an unusual dosage suppressor of mutations in MPS2 and NDC1. Cue1p has been shown to recruit the soluble ubiquitin-conjugating enzyme, Ubc7p, to the cytoplasmic face of the ER membrane where it can ubiquitinate its substrates and target them for degradation by the proteasome. Both mps2-1 and ndc1-1 are also suppressed by disruption of UBC7 or its partner, UBC6. The Mps2-1p mutant protein level is markedly reduced compared to wild-type Mps2p, and deletion of CUE1 restores the level of Mps2-1p to nearly wild-type levels. Our data indicate that Mps2p may be targeted for degradation by the ER quality control pathway.
Collapse
Affiliation(s)
- Susan McBratney
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder 80309-0347, USA
| | | |
Collapse
|
33
|
Tennyson RB, Ebran N, Herrera AE, Lindsley JE. A novel selection system for chromosome translocations in Saccharomyces cerevisiae. Genetics 2002; 160:1363-73. [PMID: 11973293 PMCID: PMC1462053 DOI: 10.1093/genetics/160.4.1363] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chromosomal translocations are common genetic abnormalities found in both leukemias and solid tumors. While much has been learned about the effects of specific translocations on cell proliferation, much less is known about what causes these chromosome rearrangements. This article describes the development and use of a system that genetically selects for rare translocation events using the yeast Saccharomyces cerevisiae. A translocation YAC was created that contains the breakpoint cluster region from the human MLL gene, a gene frequently involved in translocations in leukemia patients, flanked by positive and negative selection markers. A translocation between the YAC and a yeast chromosome, whose breakpoint falls within the MLL DNA, physically separates the markers and forms the basis for the selection. When RAD52 is deleted, essentially all of the selected and screened cells contain simple translocations. The detectable translocation rates are the same in haploids and diploids, although the mechanisms involved and true translocation rates may be distinct. A unique double-strand break induced within the MLL sequences increases the number of detectable translocation events 100- to 1000-fold. This novel system provides a tractable assay for answering basic mechanistic questions about the development of chromosomal translocations.
Collapse
Affiliation(s)
- Rachel B Tennyson
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84132-3201, USA
| | | | | | | |
Collapse
|
34
|
Saeki A, Tamura S, Ito N, Kiso S, Matsuda Y, Yabuuchi I, Kawata S, Matsuzawa Y. Frequent impairment of the spindle assembly checkpoint in hepatocellular carcinoma. Cancer 2002; 94:2047-54. [PMID: 11932908 DOI: 10.1002/cncr.10448] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Chromosomal instability (CI) leading to aneuploidy is one form of genetic instability, a characteristic feature of various types of cancers. Recent work has suggested that CI can be induced by a spindle assembly checkpoint defect. The aim of the current study was to determine the frequency of a defect of the checkpoint in hepatocellular carcinoma (HCC) and to establish whether alterations of genes encoding the checkpoint were associated with CI in HCC. METHODS Aneuploidy and the function of the spindle assembly checkpoint were examined using DNA flow cytometry and morphologic analysis with microtubule disrupting drugs. To explore the molecular basis, the authors examined the expression and alterations of the mitotic checkpoint gene, BUB1, using Northern hybridization and direct sequencing in 8 HCC cell lines and 50 HCC specimens. Furthermore, the authors examined the alterations of other mitotic checkpoint genes, BUBR1, BUB3, MAD2B, and CDC20, using direct sequencing in HCC cell lines with aneuploidy. RESULTS An impaired spindle assembly checkpoint was found in five (62.5%) of the eight aneuploid cell lines. Transcriptional expressions of the BUB1 gene appeared in all cell lines. While some polymorphic base changes were noted in BUB1, BUBR1, and CDC20, no mutations responsible for impairment of the mitotic checkpoint were found in either the HCC cell lines or HCC specimens, which suggests that these genes did not seem to be involved in tumor development in HCC. CONCLUSIONS The loss of spindle assembly checkpoint occurred with a high frequency in HCC with CI. However, other mechanisms might also contribute to CI in HCC.
Collapse
Affiliation(s)
- Ayuko Saeki
- Department of Internal Medicine and Molecular Science, Graduate School of Medicine, Osaka University, 2-2 B-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Euskirchen GM. Nnf1p, Dsn1p, Mtw1p, and Nsl1p: a new group of proteins important for chromosome segregation in Saccharomyces cerevisiae. EUKARYOTIC CELL 2002; 1:229-40. [PMID: 12455957 PMCID: PMC118027 DOI: 10.1128/ec.1.2.229-240.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previously, antibodies were raised against a nuclear envelope-enriched fraction of yeast, and the essential gene NNF1 was cloned by reverse genetics. Here it is shown that the conditional nnf1-17 mutant has decreased stability of a minichromosome in addition to mitotic spindle defects. I have identified the novel essential genes DSN1, DSN3, and NSL1 through genetic interactions with nnf1-17. Dsn3p was found to be equivalent to the kinetochore protein Mtw1p. By indirect immunofluorescence, all four proteins, Nnf1p, Mtw1p, Dsn1p, and Nsl1p, colocalize and are found in the region of the spindle poles. Based on the colocalization of these four proteins, the minichromosome instability and the spindle defects seen in nnf1 mutants, I propose that Nnf1p is part of a new group of proteins necessary for chromosome segregation.
Collapse
Affiliation(s)
- Ghia M Euskirchen
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA.
| |
Collapse
|
36
|
Bajgier BK, Malzone M, Nickas M, Neiman AM. SPO21 is required for meiosis-specific modification of the spindle pole body in yeast. Mol Biol Cell 2001; 12:1611-21. [PMID: 11408572 PMCID: PMC37328 DOI: 10.1091/mbc.12.6.1611] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
During meiosis II in the yeast Saccharomyces cerevisiae, the cytoplasmic face of the spindle pole body changes from a site of microtubule initiation to a site of de novo membrane formation. These membranes are required to package the haploid meiotic products into spores. This functional change in the spindle pole body involves the expansion and modification of its cytoplasmic face, termed the outer plaque. We report here that SPO21 is required for this modification. The Spo21 protein localizes to the spindle pole in meiotic cells. In the absence of SPO21 the structure of the outer plaque is abnormal, and prospore membranes do not form. Further, decreased dosage of SPO21 leaves only two of the four spindle pole bodies competent to generate membranes. Mutation of CNM67, encoding a known component of the mitotic outer plaque, also results in a meiotic outer plaque defect but does not block membrane formation, suggesting that Spo21p may play a direct role in initiating membrane formation.
Collapse
Affiliation(s)
- B K Bajgier
- Department of Biochemistry and Cell Biology and Institute for Cell and Developmental Biology, State University of New York at Stony Brook, 11794-5215, USA
| | | | | | | |
Collapse
|
37
|
Salisbury JL. The contribution of epigenetic changes to abnormal centrosomes and genomic instability in breast cancer. J Mammary Gland Biol Neoplasia 2001; 6:203-12. [PMID: 11501580 DOI: 10.1023/a:1011312808421] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The centrosome is the major microtubule organizing center of the cell and as such it plays an important role in cytoskeletal organization and in the formation of the bipolar mitotic spindle. Centrosome defects, characterized by abnormal size, number, and microtubule nucleation capacity, are distinguishing features of most high grade breast tumors and have been implicated as a possible cause for the loss of tissue architecture and the origin of mitotic abnormalities seen in solid tumors in general. Centrosome defects arise through uncoupling of centriole duplication and the cell cycle as a result of either genetic alterations or through physical or chemical perturbation of centrosome function. Centrosomes manifest unique epigenetic properties whereby positional or structural information can be propagated through somatic cell lineages by way of nongenetic pathways. Because aberrant centrosome function can result in chromosomal instability, these properties may have important implications for the origin of malignant breast tumors.
Collapse
Affiliation(s)
- J L Salisbury
- Tumor Biology Program, Mayo Clinic Foundation, Rochester, Minnesota 55905, USA.
| |
Collapse
|
38
|
Giddings TH, O'Toole ET, Morphew M, Mastronarde DN, McIntosh JR, Winey M. Using rapid freeze and freeze-substitution for the preparation of yeast cells for electron microscopy and three-dimensional analysis. Methods Cell Biol 2001; 67:27-42. [PMID: 11550475 PMCID: PMC4433161 DOI: 10.1016/s0091-679x(01)67003-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- T H Giddings
- Department of Molecular, Cellular and Developmental Biology, Porter Biosciences, University of Colorado-Boulder, Boulder, Colorado 80309, USA
| | | | | | | | | | | |
Collapse
|
39
|
Chial HJ, Stemm-Wolf AJ, McBratney S, Winey M. Yeast Eap1p, an eIF4E-associated protein, has a separate function involving genetic stability. Curr Biol 2000; 10:1519-22. [PMID: 11114520 DOI: 10.1016/s0960-9822(00)00829-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A rate-limiting step during translation initiation in eukaryotic cells involves binding of the initiation factor eIF4E to the 7-methylguanosine-containing cap of mRNAs. Overexpression of eIF4E leads to malignant transformation [1-3], and eIF4E is elevated in many human cancers [4-7]. In mammalian cells, three eIF4E-binding proteins each interact with eIF4E and inhibit its function [8-10]. In yeast, EAP1 encodes a protein that binds eIF4E and inhibits cap-dependent translation in vitro [11]. A point mutation in the canonical eIF4E-binding motif of Eap1p blocks its interaction with eIF4E [11]. Here, we characterized the genetic interactions between EAP1 and NDC1, a gene whose function is required for duplication of the spindle pole body (SPB) [12], the centrosome-equivalent organelle in yeast that functions as the centrosome. We found that the deletion of EAP1 is lethal when combined with the ndc1-1 mutation. Mutations in NDC1 or altered NDC1 gene dosage lead to genetic instability [13,14]. Yeast strains lacking EAP1 also exhibit genetic instability. We tested whether these phenotypes are due to loss of EAP1 function in regulating translation. We found that both the synthetic lethal phenotype and the genetic instability phenotypes are rescued by a mutant allele of EAP1 that is unable to bind eIF4E. Our findings suggest that Eap1p carries out an eIF4E-independent function to maintain genetic stability, most likely involving SPBs.
Collapse
Affiliation(s)
- H J Chial
- Present address: Department of Biology, St Olaf College, Northfield, Minnesota 55057-1098, USA
| | | | | | | |
Collapse
|
40
|
Schramm C, Elliott S, Shevchenko A, Schiebel E. The Bbp1p-Mps2p complex connects the SPB to the nuclear envelope and is essential for SPB duplication. EMBO J 2000; 19:421-33. [PMID: 10654940 PMCID: PMC305579 DOI: 10.1093/emboj/19.3.421] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In budding yeast, microtubules are organized by the spindle pole body (SPB), which is embedded in the nuclear envelope via its central plaque structure. Here, we describe the identification of BBP1 in a suppressor screen with a conditional lethal allele of SPC29. Bbp1p was detected at the central plaque periphery of the SPB and bbp1-1 cells were found to be defective in SPB duplication. bbp1-1 cells extend their satellite into a duplication plaque like wild-type cells; however, this duplication plaque then fails to insert properly into the nuclear envelope and does not assemble a functional inner plaque. This function in SPB duplication is probably fulfilled by a stable complex of Bbp1p and Mps2p, a nuclear envelope protein that is also essential for duplication plaque insertion. In addition, we found that Bbp1p interacts with Spc29p and the half-bridge component Kar1p. These interactions are likely to play a role in connecting the SPB with the nuclear envelope and the central plaque with the half-bridge.
Collapse
Affiliation(s)
- C Schramm
- The Beatson Institute for Cancer Research, CRC Beatson Laboratories, Glasgow G61 1BD, UK
| | | | | | | |
Collapse
|