1
|
Angelone T, Rocca C, Lionetti V, Penna C, Pagliaro P. Expanding the Frontiers of Guardian Antioxidant Selenoproteins in Cardiovascular Pathophysiology. Antioxid Redox Signal 2024; 40:369-432. [PMID: 38299513 DOI: 10.1089/ars.2023.0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Significance: Physiological levels of reactive oxygen and nitrogen species (ROS/RNS) function as fundamental messengers for many cellular and developmental processes in the cardiovascular system. ROS/RNS involved in cardiac redox-signaling originate from diverse sources, and their levels are tightly controlled by key endogenous antioxidant systems that counteract their accumulation. However, dysregulated redox-stress resulting from inefficient removal of ROS/RNS leads to inflammation, mitochondrial dysfunction, and cell death, contributing to the development and progression of cardiovascular disease (CVD). Recent Advances: Basic and clinical studies demonstrate the critical role of selenium (Se) and selenoproteins (unique proteins that incorporate Se into their active site in the form of the 21st proteinogenic amino acid selenocysteine [Sec]), including glutathione peroxidase and thioredoxin reductase, in cardiovascular redox homeostasis, representing a first-line enzymatic antioxidant defense of the heart. Increasing attention has been paid to emerging selenoproteins in the endoplasmic reticulum (ER) (i.e., a multifunctional intracellular organelle whose disruption triggers cardiac inflammation and oxidative stress, leading to multiple CVD), which are crucially involved in redox balance, antioxidant activity, and calcium and ER homeostasis. Critical Issues: This review focuses on endogenous antioxidant strategies with therapeutic potential, particularly selenoproteins, which are very promising but deserve more detailed and clinical studies. Future Directions: The importance of selective selenoproteins in embryonic development and the consequences of their mutations and inborn errors highlight the need to improve knowledge of their biological function in myocardial redox signaling. This could facilitate the development of personalized approaches for the diagnosis, prevention, and treatment of CVD. Antioxid. Redox Signal. 40, 369-432.
Collapse
Affiliation(s)
- Tommaso Angelone
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Rende, Italy
- National Institute of Cardiovascular Research (INRC), Bologna, Italy
| | - Carmine Rocca
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Rende, Italy
| | - Vincenzo Lionetti
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, Interdisciplinary Research Center "Health Science," Scuola Superiore Sant'Anna, Pisa, Italy
- UOSVD Anesthesiology and Intensive Care Medicine, Fondazione Toscana "Gabriele Monasterio," Pisa, Italy
| | - Claudia Penna
- National Institute of Cardiovascular Research (INRC), Bologna, Italy
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Pasquale Pagliaro
- National Institute of Cardiovascular Research (INRC), Bologna, Italy
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| |
Collapse
|
2
|
Manickas EC, LaLonde AB, Hu MY, Alp EE, Lehnert N. Stabilization of a Heme-HNO Model Complex Using a Bulky Bis-Picket Fence Porphyrin and Reactivity Studies with NO. J Am Chem Soc 2023; 145:23014-23026. [PMID: 37824502 DOI: 10.1021/jacs.3c05333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Nitroxyl, HNO/NO-, the one-electron reduced form of NO, is suggested to take part in distinct signaling pathways in mammals and is also a key intermediate in various heme-catalyzed NOx interconversions in the nitrogen cycle. Cytochrome P450nor (Cyt P450nor) is a heme-containing enzyme that performs NO reduction to N2O in fungal denitrification. The reactive intermediate in this enzyme, termed "Intermediate I", is proposed to be an Fe-NHO/Fe-NHOH type species, but it is difficult to study its electronic structure and exact protonation state due to its instability. Here, we utilize a bulky bis-picket fence porphyrin to obtain the first stable heme-HNO model complex, [Fe(3,5-Me-BAFP)(MI)(NHO)], as a model for Intermediate I, and more generally HNO adducts of heme proteins. Due to the steric hindrance of the bis-picket fence porphyrin, [Fe(3,5-Me-BAFP)(MI)(NHO)] is stable (τ1/2 = 56 min at -30 °C), can be isolated as a solid, and is available for thorough spectroscopic characterization. In particular, we were able to solve a conundrum in the literature and provide the first full vibrational characterization of a heme-HNO complex using IR and nuclear resonance vibrational spectroscopy (NRVS). Reactivity studies of [Fe(3,5-Me-BAFP)(MI)(NHO)] with NO gas show a 91 ± 10% yield for N2O formation, demonstrating that heme-HNO complexes are catalytically competent intermediates for NO reduction to N2O in Cyt P450nor. The implications of these results for the mechanism of Cyt P450nor are further discussed.
Collapse
Affiliation(s)
- Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, The University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Ashley B LaLonde
- Department of Chemistry and Department of Biophysics, The University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Michael Y Hu
- Advanced Photon Source (APS), Argonne National Laboratory (ANL), Argonne, Illinois 60439, United States
| | - E Ercan Alp
- Advanced Photon Source (APS), Argonne National Laboratory (ANL), Argonne, Illinois 60439, United States
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, The University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
3
|
Miranda KM, Ridnour LA, Cheng RY, Wink DA, Thomas DD. The Chemical Biology of NO that Regulates Oncogenic Signaling and Metabolism: NOS2 and Its Role in Inflammatory Disease. Crit Rev Oncog 2023; 28:27-45. [PMID: 37824385 PMCID: PMC11318306 DOI: 10.1615/critrevoncog.2023047302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Nitric oxide (NO) and the enzyme that synthesizes it, nitric oxide synthase 2 (NOS2), have emerged as key players in inflammation and cancer. Expression of NOS2 in tumors has been correlated both with positive outcomes and with poor prognoses. The chemistry of NO is the major determinate to the biological outcome and the concentration of NO, which can range over five orders of magnitude, is critical in determining which pathways are activated. It is the activation of specific oncogenic and immunological mechanisms that shape the outcome. The kinetics of specific reactions determine the mechanisms of action. In this review, the relevant reactions of NO and related species are discussed with respect to these oncogenic and immunological signals.
Collapse
Affiliation(s)
| | - Lisa A. Ridnour
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland
| | - Robert Y.S. Cheng
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland
| | - David A. Wink
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland
| | - Douglas D. Thomas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
4
|
HNO Protects the Myocardium against Reperfusion Injury, Inhibiting the mPTP Opening via PKCε Activation. Antioxidants (Basel) 2022; 11:antiox11020382. [PMID: 35204265 PMCID: PMC8869498 DOI: 10.3390/antiox11020382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/05/2022] [Accepted: 02/07/2022] [Indexed: 12/10/2022] Open
Abstract
Donors of nitroxyl (HNO), the one electron-reduction product of nitric oxide (NO.), positively modulate cardiac contractility/relaxation while limiting ischemia-reperfusion (I/R) injury. The mechanisms underpinning HNO anti-ischemic effects remain poorly understood. Using isolated perfused rat hearts subjected to 30 min global ischemia/1 or 2 h reperfusion, here we tested whether, in analogy to NO., HNO protection requires PKCε translocation to mitochondria and KATP channels activation. To this end, we compared the benefits afforded by ischemic preconditioning (IPC; 3 cycles of I/R) with those eventually granted by the NO. donor, diethylamine/NO, DEA/NO, and two chemically unrelated HNO donors: Angeli’s salt (AS, a prototypic donor) and isopropylamine/NO (IPA/NO, a new HNO releaser). All donors were given for 19 min before I/R injury. In control I/R hearts (1 h reperfusion), infarct size (IS) measured via tetrazolium salt staining was 66 ± 5.5% of the area at risk. Both AS and IPA/NO were as effective as IPC in reducing IS [30.7 ± 2.2 (AS), 31 ± 2.9 (IPA/NO), and 31 ± 0.8 (IPC), respectively)], whereas DEA/NO was significantly less so (36.2 ± 2.6%, p < 0.001 vs. AS, IPA/NO, or IPC). IPA/NO protection was still present after 120 min of reperfusion, and the co-infusion with the PKCε inhibitor (PKCV1-2500 nM) prevented it (IS = 30 ± 0.5 vs. 61 ± 1.8% with IPA/NO alone, p < 0.01). Irrespective of the donor, HNO anti-ischemic effects were insensitive to the KATP channel inhibitor, 5-OH decanoate (5HD, 100 μM), that, in contrast, abrogated DEA/NO protection. Finally, both HNO donors markedly enhanced the mitochondrial permeability transition pore (mPTP) ROS threshold over control levels (≅35–40%), an action again insensitive to 5HD. Our study shows that HNO donors inhibit mPTP opening, thus limiting myocyte loss at reperfusion, a beneficial effect that requires PKCε translocation to the mitochondria but not mitochondrial K+ channels activation.
Collapse
|
5
|
Carrone G, Mazzeo A, Marceca E, Pellegrino J, Suárez S, Zarenkiewicz J, Toscano JP, Doctorovich F. Solid-gas reactions for nitroxyl (HNO) generation in the gas phase. J Inorg Biochem 2021; 223:111535. [PMID: 34298305 DOI: 10.1016/j.jinorgbio.2021.111535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/01/2021] [Accepted: 07/05/2021] [Indexed: 02/02/2023]
Abstract
We present a novel nitroxyl (HNO) generation method, which avoids the need of using a liquid system or extreme experimental conditions. This method consists of the reaction between a gaseous base and an HNO donor (Piloty's acid) in the solid phase, allowing the formation of gaseous HNO in a fast and economical way. Detection of HNO was carried out indirectly, measuring the nitrous oxide (N2O) byproduct of HNO dimerization using infrared spectroscopy, and directly, using mass spectrometry techniques and an electrochemical HNO sensor.
Collapse
Affiliation(s)
- Guillermo Carrone
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria, Pab. 2, C1428EHA Buenos Aires, Argentina
| | - Agostina Mazzeo
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria, Pab. 2, C1428EHA Buenos Aires, Argentina
| | - Ernesto Marceca
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria, Pab. 2, C1428EHA Buenos Aires, Argentina
| | - Juan Pellegrino
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria, Pab. 2, C1428EHA Buenos Aires, Argentina
| | - Sebastián Suárez
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria, Pab. 2, C1428EHA Buenos Aires, Argentina
| | - Jessica Zarenkiewicz
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, United States
| | - John P Toscano
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Fabio Doctorovich
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria, Pab. 2, C1428EHA Buenos Aires, Argentina.
| |
Collapse
|
6
|
Huang YQ, Jin HF, Zhang H, Tang CS, Du JB. Interaction among Hydrogen Sulfide and Other Gasotransmitters in Mammalian Physiology and Pathophysiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:205-236. [PMID: 34302694 DOI: 10.1007/978-981-16-0991-6_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydrogen sulfide (H2S), nitric oxide (NO), carbon monoxide (CO), and sulfur dioxide (SO2) were previously considered as toxic gases, but now they are found to be members of mammalian gasotransmitters family. Both H2S and SO2 are endogenously produced in sulfur-containing amino acid metabolic pathway in vivo. The enzymes catalyzing the formation of H2S are mainly CBS, CSE, and 3-MST, and the key enzymes for SO2 production are AAT1 and AAT2. Endogenous NO is produced from L-arginine under catalysis of three isoforms of NOS (eNOS, iNOS, and nNOS). HO-mediated heme catabolism is the main source of endogenous CO. These four gasotransmitters play important physiological and pathophysiological roles in mammalian cardiovascular, nervous, gastrointestinal, respiratory, and immune systems. The similarity among these four gasotransmitters can be seen from the same and/or shared signals. With many studies on the biological effects of gasotransmitters on multiple systems, the interaction among H2S and other gasotransmitters has been gradually explored. H2S not only interacts with NO to form nitroxyl (HNO), but also regulates the HO/CO and AAT/SO2 pathways. Here, we review the biosynthesis and metabolism of the gasotransmitters in mammals, as well as the known complicated interactions among H2S and other gasotransmitters (NO, CO, and SO2) and their effects on various aspects of cardiovascular physiology and pathophysiology, such as vascular tension, angiogenesis, heart contractility, and cardiac protection.
Collapse
Affiliation(s)
- Ya-Qian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hong-Fang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China.
| | - Heng Zhang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Chao-Shu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China
| | - Jun-Bao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China.
| |
Collapse
|
7
|
Updating NO •/HNO interconversion under physiological conditions: A biological implication overview. J Inorg Biochem 2020; 216:111333. [PMID: 33385637 DOI: 10.1016/j.jinorgbio.2020.111333] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/13/2020] [Accepted: 12/05/2020] [Indexed: 12/12/2022]
Abstract
Azanone (HNO/NO-), also called nitroxyl, is a highly reactive compound whose biological role is still a matter of debate. A key issue that remains to be clarified regarding HNO and its biological activity is that of its endogenous formation. Given the overlap of the molecular targets and reactivity of nitric oxide (NO•) and HNO, its chemical biology was perceived to be similar to that of NO• as a biological signaling agent. However, despite their closely related reactivity, NO• and HNO's biochemical pathways are quite different. Moreover, the reduction of nitric oxide to azanone is possible but necessarily coupled to other reactions, which drive the reaction forward, overcoming the unfavorable thermodynamic barrier. The mechanism of this NO•/HNO interplay and its downstream effects in different contexts were studied recently, showing that more than fifteen moderate reducing agents react with NO• producing HNO. Particularly, it is known that the reaction between nitric oxide and hydrogen sulfide (H2S) produces HNO. However, this rate constant was not reported yet. In this work, firstly the NO•/H2S effective rate constant was measured as a function of the pH. Then, the implications of these chemical (non-enzymatic), biologically compatible, routes to endogenous HNO formation was discussed. There is no doubt that HNO could be (is?) a new endogenously produced messenger that mediates specific physiological responses, many of which were attributed yet to direct NO• effects.
Collapse
|
8
|
Sun HJ, Wu ZY, Cao L, Zhu MY, Nie XW, Huang DJ, Sun MT, Bian JS. Role of nitroxyl (HNO) in cardiovascular system: From biochemistry to pharmacology. Pharmacol Res 2020; 159:104961. [DOI: 10.1016/j.phrs.2020.104961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/16/2020] [Accepted: 05/24/2020] [Indexed: 12/12/2022]
|
9
|
Mazzeo A, Pellegrino J, Doctorovich F. Water-Soluble Nitroxyl Porphyrin Complexes Fe IITPPSHNO and Fe IITPPSNO - Obtained from Isolated Fe IITPPSNO •. J Am Chem Soc 2019; 141:18521-18530. [PMID: 31657216 DOI: 10.1021/jacs.9b09161] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first biomimetic water-soluble FeII-porphyrin nitroxyl complexes were obtained and characterized by UV-vis in protonated and deprotonated forms by reduction of previously isolated and characterized FeIITPPSNO•. The pKa involved in the FeII-HNO ⇄ FeII-NO- + H+ equilibrium was estimated to be around 9.7. The FeIITPPSHNO complex spontaneously reoxidizes to the nitrosyl form following a first-order kinetic decay with a measured kinetic constant of k = 0.017 s-1. Experiments show that the HNO adduct undergoes unimolecular homolytic cleavage of the H-NO bond. DFT calculations suggest a phlorin radical intermediate for this reaction. The deprotonated NO- complex resulted to be more stable, with a half-life of about 10 min.
Collapse
Affiliation(s)
- Agostina Mazzeo
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , INQUIMAE-CONICET, Ciudad Universitaria, Pab. 2, C1428EHA , Buenos Aires , Argentina
| | - Juan Pellegrino
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , INQUIMAE-CONICET, Ciudad Universitaria, Pab. 2, C1428EHA , Buenos Aires , Argentina
| | - Fabio Doctorovich
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , INQUIMAE-CONICET, Ciudad Universitaria, Pab. 2, C1428EHA , Buenos Aires , Argentina
| |
Collapse
|
10
|
Fukuto JM. A recent history of nitroxyl chemistry, pharmacology and therapeutic potential. Br J Pharmacol 2019; 176:135-146. [PMID: 29859009 PMCID: PMC6295406 DOI: 10.1111/bph.14384] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022] Open
Abstract
Due to the excitement surrounding the discovery of NO as an endogenously generated signalling molecule, a number of other nitrogen oxides were also investigated as possible physiological mediators. Among these was nitroxyl (HNO). Over the past 25 years or so, a significant amount of work by this laboratory and many others has disclosed that HNO possesses unique chemical properties and important pharmacological utility. Indeed, the pharmacological potential for HNO as a treatment for heart failure, among other uses, has garnered this curious molecule a considerable amount of recent attention. This review summarizes the events that led to this recent attention as well as poses important questions that are still to be answered with regards to understanding the chemistry and biology of HNO. LINKED ARTICLES: This article is part of a themed section on Nitric Oxide 20 Years from the 1998 Nobel Prize. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.2/issuetoc.
Collapse
Affiliation(s)
- Jon M Fukuto
- Department of ChemistrySonoma State UniversityRohnert ParkCAUSA
| |
Collapse
|
11
|
Shi Y, Zhang Y. Mechanisms of HNO Reactions with Ferric Heme Proteins. Angew Chem Int Ed Engl 2018; 57:16654-16658. [PMID: 30347123 PMCID: PMC6522253 DOI: 10.1002/anie.201807699] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Indexed: 02/06/2023]
Abstract
Many HNO-scavenging pathways exist to regulate its biological and pharmacological activities. Such reactions often involve ferric heme proteins and form an important basis for HNO probe development. However, mechanisms of HNO reactions with ferric heme proteins are largely unknown. We performed a computational investigation using metmyoglobin and catalase as representative ferric heme proteins with neutral and negatively charged axial ligands to provide the first detailed pathways. The results reproduced experimental barriers well with an average error of 0.11 kcal mol-1 . The rate-limiting step was found to be dissociation of the resting ligand or HNO coordination when there is no resting ligand. For both heme proteins, in contrast to the non-heme case, the reductive nitrosylation step was found to be barrierless proton-coupled electron transfer, which provides the major thermodynamic driving force for the overall reaction. The origin of the difference in reactivity between metmyoglobin and catalase was also revealed.
Collapse
Affiliation(s)
- Yelu Shi
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ, 07030, USA
| | - Yong Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ, 07030, USA
| |
Collapse
|
12
|
|
13
|
Palanisamy S, Wang YL, Chen YJ, Chen CY, Tsai FT, Liaw WF, Wang YM. In Vitro and in Vivo Imaging of Nitroxyl with Copper Fluorescent Probe in Living Cells and Zebrafish. Molecules 2018; 23:molecules23102551. [PMID: 30301224 PMCID: PMC6222915 DOI: 10.3390/molecules23102551] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 01/16/2023] Open
Abstract
Nitroxyl (HNO) plays a critical role in many physiological processes which includes vasorelaxation in heart failure, neuroregulation, and myocardial contractility. Powerful imaging tools are required to obtain information for understanding the mechanisms involved in these in vivo processes. In order to develop a rapid and high sensitive probe for HNO detection in living cells and the zebrafish model organism, 2-((2-(benzothiazole-2yl)benzylidene) amino)benzoic acid (AbTCA) as a ligand, and its corresponding copper(II) complex Cu(II)-AbTCA were synthesized. The reaction results of Cu(II)-AbTCA with Angeli's salt showed that Cu(II)-AbTCA could detect HNO quantitatively in a range of 40⁻360 µM with a detection limit of 9.05 µM. Furthermore, Cu(II)-AbTCA is more selective towards HNO over other biological species including thiols, reactive nitrogen, and reactive oxygen species. Importantly, Cu(II)-AbTCA was successfully applied to detect HNO in living cells and zebrafish. The collective data reveals that Cu(II)-AbTCA could be used as a potential probe for HNO detection in living systems.
Collapse
Affiliation(s)
- Sathyadevi Palanisamy
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan.
| | - Yu-Liang Wang
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan.
| | - Yu-Jen Chen
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan.
| | - Chiao-Yun Chen
- Department of Radiology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Medical Imaging, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Fu-Te Tsai
- Department of Chemistry, National Tsing Hua University, Hsinchu 30043, Taiwan.
| | - Wen-Feng Liaw
- Department of Chemistry, National Tsing Hua University, Hsinchu 30043, Taiwan.
| | - Yun-Ming Wang
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan.
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
14
|
Dong B, Kong X, Lin W. Reaction-Based Fluorescent Probes for the Imaging of Nitroxyl (HNO) in Biological Systems. ACS Chem Biol 2018; 13:1714-1720. [PMID: 29210560 DOI: 10.1021/acschembio.7b00901] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nitroxyl (HNO) has been identified as an important signaling molecule in biological systems and plays critical roles in many physiological processes. Fluorescence imaging could provide a robust approach to explore the biological formation of HNO and its physiological functions. Herein, we summarize the organic reaction types for constructing HNO probes and specifically focus on review of the recent advances in the development of the reaction-based HNO probes and their imaging applications in living systems.
Collapse
Affiliation(s)
- Baoli Dong
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, People’s Republic of China
| | - Xiuqi Kong
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, People’s Republic of China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, People’s Republic of China
| |
Collapse
|
15
|
Shumaev KB, Dudylina AL, Ivanova MV, Pugachenko IS, Ruuge EK. Dinitrosyl iron complexes: Formation and antiradical action in heart mitochondria. Biofactors 2018; 44:237-244. [PMID: 29469215 DOI: 10.1002/biof.1418] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 01/25/2018] [Indexed: 02/02/2023]
Abstract
Mitochondria are widely known as a major source of reactive oxygen and nitrogen species for the cardiovascular system. Numerous studies established that superoxide anion radical production by heart mitochondria is only slightly suppressed under conditions of deep hypoxia, but is completely blocked under anoxia. It was found also that dinitrosyl iron complexes (DNIC) compare favourably with other physiologically active derivatives of nitric oxide (NO). DNIC with glutathione effectively scavenge superoxide radicals generated by mitochondria at different partial pressures of oxygen. Under conditions of simulated hypoxia, the synthesis of thiol-containing DNIC takes place in mitochondria and is concomitant with a significant decrease in the concentration of NO metabolites at the reoxygenation step. Free NO required for DNIC synthesis is generated in the reaction of S-nitrosothiols with superoxide or during single-electron oxidation of the nitroxyl radical (HNO) by coenzyme Q. Plausible mechanisms of antiradical effects of DNIC and their protective role in oxidative stress induced by hypoxia/reoxygenation of myocardial tissues are considered. © 2018 BioFactors, 44(3):237-244, 2018.
Collapse
Affiliation(s)
- Konstantin B Shumaev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
- National Medical Research Centre for Cardiology, Moscow, 121552, Russia
| | - Arina L Dudylina
- Faculty of Physics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Marina V Ivanova
- National Medical Research Centre for Cardiology, Moscow, 121552, Russia
| | - Igor S Pugachenko
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Enno K Ruuge
- National Medical Research Centre for Cardiology, Moscow, 121552, Russia
- Faculty of Physics, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
16
|
Marcolongo JP, Zeida A, Semelak JA, Foglia NO, Morzan UN, Estrin DA, González Lebrero MC, Scherlis DA. Chemical Reactivity and Spectroscopy Explored From QM/MM Molecular Dynamics Simulations Using the LIO Code. Front Chem 2018; 6:70. [PMID: 29619365 PMCID: PMC5871697 DOI: 10.3389/fchem.2018.00070] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/05/2018] [Indexed: 12/13/2022] Open
Abstract
In this work we present the current advances in the development and the applications of LIO, a lab-made code designed for density functional theory calculations in graphical processing units (GPU), that can be coupled with different classical molecular dynamics engines. This code has been thoroughly optimized to perform efficient molecular dynamics simulations at the QM/MM DFT level, allowing for an exhaustive sampling of the configurational space. Selected examples are presented for the description of chemical reactivity in terms of free energy profiles, and also for the computation of optical properties, such as vibrational and electronic spectra in solvent and protein environments.
Collapse
Affiliation(s)
- Juan P Marcolongo
- DQIAyQF, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ari Zeida
- DQIAyQF, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Jonathan A Semelak
- DQIAyQF, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nicolás O Foglia
- DQIAyQF, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Uriel N Morzan
- DQIAyQF, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Dario A Estrin
- DQIAyQF, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariano C González Lebrero
- DQIAyQF, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Damián A Scherlis
- DQIAyQF, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
17
|
Liu Y, Xia C, Wang R, Zhang J, Yin T, Ma Y, Tao L. The opposite effects of nitric oxide donor, S-nitrosoglutathione, on myocardial ischaemia/reperfusion injury in diabetic and non-diabetic mice. Clin Exp Pharmacol Physiol 2018; 44:854-861. [PMID: 28500760 DOI: 10.1111/1440-1681.12781] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 03/27/2017] [Accepted: 04/26/2017] [Indexed: 12/31/2022]
Abstract
Nitric oxide is a potent anti-apoptotic and cardioprotective molecule in healthy animals. However, recent study demonstrates that overexpression of eNOS exacerbates the liver injury in diabetic animals. whether diabetes may also alter NO's biologic activity in ischaemic/reperfused heart remains unknown. The present experiment was designed to determine whether the nitric oxide donor, S-nitrosoglutathione, may exert different effects on diabetic and non-diabetic myocardial ischaemia/reperfusion (MI/R) injury. Diabetic state was induced in mice by multiple intraperitoneal injections of low-dose streptozotocin (STZ). The control or diabetic mice were subjected to 30 minutes ischaemia and 3 or 24 hours reperfusion. At 10 minutes before reperfusion, diabetic and non-diabetic mice were received an intraperitoneal injection of S-nitrosoglutathione (GSNO, a nitric oxide donor, 1 μmol/kg). GSNO attenuated MI/R injury in non-diabetic mice, as measured by improved cardiac function, reduced infarct size and decreased cardiomyocyte apoptosis. In contrast, GSNO failed to attenuate but, rather, aggravated the MI/R injury in diabetic mice. Mechanically, the diabetic heart exhibited an increased nitrative/oxidative stress level, as measured by peroxynitrite formation, compared with non-diabetic mice. Co-administration of GSNO with EUK134 (a peroxynitrite scavenger) or MnTE-2-PyP5 (a superoxide dismutase mimetic) or Apocynin (a NADPH oxidase inhibitor) 10 minutes before reperfusion significantly decreased the MI/R-induced peroxynitrite formation and the MI/R injury. Collectively, the present study for the first time demonstrated that diabetes may cause superoxide overproduction, increase NO inactivation and peroxynitrite formation, and thus convert GSNO from a cardioprotective molecule to a cardiotoxic molecule.
Collapse
Affiliation(s)
- Yi Liu
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Chenhai Xia
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Rutao Wang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jinglong Zhang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Tao Yin
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yanzuo Ma
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
18
|
Folino A, Accomasso L, Giachino C, Montarolo PG, Losano G, Pagliaro P, Rastaldo R. Apelin-induced cardioprotection against ischaemia/reperfusion injury: roles of epidermal growth factor and Src. Acta Physiol (Oxf) 2018; 222. [PMID: 28748611 DOI: 10.1111/apha.12924] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/31/2017] [Accepted: 07/24/2017] [Indexed: 12/30/2022]
Abstract
AIM Apelin, the ligand of the G-protein-coupled receptor (GPCR) APJ, exerts a post-conditioning-like protection against ischaemia/reperfusion injury through activation of PI3K-Akt-NO signalling. The pathway connecting APJ to PI3K is still unknown. As other GPCR ligands act through transactivation of epidermal growth factor receptor (EGFR) via a matrix metalloproteinase (MMP) or Src kinase, we investigated whether EGFR transactivation is involved in the following three features of apelin-induced cardioprotection: limitation of infarct size, suppression of contracture and improvement of post-ischaemic contractile recovery. METHOD Isolated rat hearts underwent 30 min of global ischaemia and 2 h of reperfusion. Apelin (0.5 μm) was infused during the first 20 min of reperfusion. EGFR, MMP or Src was inhibited to study the pathway connecting APJ to PI3K. Key components of RISK pathway, namely PI3K, guanylyl cyclase or mitochondrial K+ -ATP channels, were also inhibited. Apelin-induced EGFR and phosphatase and tensing homolog (PTEN) phosphorylation were assessed. Left ventricular pressure and infarct size were measured. RESULTS Apelin-induced reductions in infarct size and myocardial contracture were prevented by the inhibition of EGFR, Src, MMP or RISK pathway. The involvement of EGFR was confirmed by its phosphorylation. However, neither direct EGFR nor MMP inhibition affected apelin-induced improvement of early post-ischaemic contractile recovery, which was suppressed by Src and RISK inhibitors only. Apelin also increased PTEN phosphorylation, which was removed by Src inhibition. CONCLUSION While EGFR and MMP limit infarct size and contracture, Src or RISK pathway inhibition suppresses the three features of cardioprotection. Src does not only transactivate EGFR, but also inhibits PTEN by phosphorylation thus playing a crucial role in apelin-induced cardioprotection.
Collapse
Affiliation(s)
- A. Folino
- Department of Clinical and Biological Sciences; University of Turin; Orbassano Italy
| | - L. Accomasso
- Department of Clinical and Biological Sciences; University of Turin; Orbassano Italy
| | - C. Giachino
- Department of Clinical and Biological Sciences; University of Turin; Orbassano Italy
| | - P. G. Montarolo
- Department of Neurosciences; University of Turin; Torino Italy
| | - G. Losano
- Department of Neurosciences; University of Turin; Torino Italy
| | - P. Pagliaro
- Department of Clinical and Biological Sciences; University of Turin; Orbassano Italy
| | - R. Rastaldo
- Department of Clinical and Biological Sciences; University of Turin; Orbassano Italy
| |
Collapse
|
19
|
Beckett D, Edelmann M, Raff JD, Raghavachari K. Hidden complexities in the reaction of H 2O 2 and HNO revealed by ab initio quantum chemical investigations. Phys Chem Chem Phys 2017; 19:29549-29560. [PMID: 29082395 DOI: 10.1039/c7cp05883g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nitroxyl (HNO) and hydrogen peroxide have both been implicated in a variety of reactions relevant to environmental and physiological processes and may contribute to a unique, unexplored, pathway for the production of nitrous acid (HONO) in soil. To investigate the potential for this reaction, we report an in-depth investigation of the reaction pathway of H2O2 and HNO forming HONO and water. We find the breaking of the peroxide bond and a coupled proton transfer in the first step leads to hydrogen nitryl (HNO2) and an endogenous water, with an extrapolated NEVPT2 (multireference perturbation theory) barrier of 29.3 kcal mol-1. The first transition state is shown to possess diradical character linking the far peroxide oxygen to the bridging, reacting, peroxide oxygen. The energy of this first step, when calculated using hybrid density functional theory, is shown to depend heavily on the amount of Hartree-Fock exchange in the functional, with higher amounts leading to a higher barrier and more diradical character. Additionally, high amounts of spin contamination cause CCSD(T) to significantly overestimate the TS1 barrier with a value of 36.2 kcal mol-1 when using the stable UHF wavefunction as the reference wavefunction. However, when using the restricted Hartree-Fock reference wavefunction, the TS1 CCSD(T) energy is lowered to yield a barrier of 31.2 kcal mol-1, in much better agreement with the NEVPT2 result. The second step in the reaction is the isomerization of HNO2 to trans-HONO through a Grotthuss-like mechanism accepting a proton from and donating a proton to the endogenous water. This new mechanism for the isomerization of HNO2 is shown to have an NEVPT2 barrier of 23.3 kcal mol-1, much lower than previous unimolecular estimates not including an explicit water. Finally, inclusion of an additional explicit water is shown to lower the HNO2 isomerization barrier even further.
Collapse
Affiliation(s)
- Daniel Beckett
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | | | | | | |
Collapse
|
20
|
Suarez SA, Muñoz M, Alvarez L, Venâncio MF, Rocha WR, Bikiel DE, Marti MA, Doctorovich F. HNO Is Produced by the Reaction of NO with Thiols. J Am Chem Soc 2017; 139:14483-14487. [DOI: 10.1021/jacs.7b06968] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sebastian A. Suarez
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| | - Martina Muñoz
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| | - Lucia Alvarez
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| | - Mateus F. Venâncio
- Departamento
de Química, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Willian R. Rocha
- Departamento
de Química, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Damian E. Bikiel
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| | - Marcelo A. Marti
- Departamento
de Química Biológica, Facultad de Ciencias Exactas y
Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Ciudad Universitaria, Buenos
Aires C1428EHA, Argentina
| | - Fabio Doctorovich
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
21
|
Tullio F, Penna C, Cabiale K, Femminò S, Galloni M, Pagliaro P. Cardioprotective effects of calcitonin gene-related peptide in isolated rat heart and in H9c2 cells via redox signaling. Biomed Pharmacother 2017; 90:194-202. [PMID: 28364596 DOI: 10.1016/j.biopha.2017.03.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/10/2017] [Accepted: 03/14/2017] [Indexed: 02/02/2023] Open
Abstract
The calcitonin-gene-related-peptide (CGRP) release is coupled to the signaling of Angeli's salt in determining vasodilator effects. However, it is unknown whether CGRP is involved in Angeli's salt cardioprotective effects and which are the mechanisms of protection. We aimed to determine whether CGRP is involved in myocardial protection induced by Angeli's salt. We also analyzed the intracellular signaling pathway activated by CGRP. Isolated rat hearts were pre-treated with Angeli's salt or Angeli's salt plus CGRP8-37, a specific CGRP-receptor antagonist, and subjected to ischemia (30-min) and reperfusion (120-min). Moreover, we studied CGRP-induced protection during oxidative stress (H2O2) and hypoxia/reoxygenation protocols in H9c2 cardiomyocytes. Cell vitality and mitochondrial membrane potential (ΔYm, MMP) were measured using MTT and JC-1 dyes. Angeli's salt reduced infarct size and ameliorated post-ischemic cardiac function via a CGRP-receptor-dependent mechanism. Pre-treatment with CGRP increased H9c2 survival upon challenging with either H2O2 (redox stress) or hypoxia/reoxygenation (H/R stress). Under these stress conditions, reduction in MMP and cell death were partly prevented by CGRP. These CGRP beneficial effects were blocked by CGRP8-37. During H/R stress, pre-treatment with either CGRP-receptor, protein kinase C (PKC) or mitochondrial KATP channel antagonists, and pre-treatment with an antioxidant (2-mercaptopropionylglycine) blocked the protection mediated by CGRP. In conclusion, CGRP is involved in the cardioprotective effects of Angeli's salt. In H9c2 cardiomyocytes, CGRP elicits PKC-dependent and mitochondrial-KATP-redox-dependent mechanisms. Hence, CGRP is an important factor in the redox-sensible cardioprotective effects of Angeli's salt.
Collapse
Affiliation(s)
- Francesca Tullio
- Department of Clinical and Biological Sciences, University of Turin, Italy
| | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Italy.
| | - Karine Cabiale
- Department of Clinical and Biological Sciences, University of Turin, Italy; Department of Veterinary Science, University of Torino, Italy
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Turin, Italy
| | - Marco Galloni
- Department of Veterinary Science, University of Torino, Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Italy.
| |
Collapse
|
22
|
Shumaev KB, Kosmachevskaya OV, Nasybullina EI, Gromov SV, Novikov AA, Topunov AF. New dinitrosyl iron complexes bound with physiologically active dipeptide carnosine. J Biol Inorg Chem 2016; 22:153-160. [PMID: 27878396 DOI: 10.1007/s00775-016-1418-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/15/2016] [Indexed: 01/08/2023]
Abstract
Dinitrosyl iron complexes (DNICs) are physiological NO derivatives and account for many NO functions in biology. Polyfunctional dipeptide carnosine (beta-alanyl-L-histidine) is considered to be a very promising pharmacological agent. It was shown that in the system containing carnosine, iron ions and Angeli's salt, a new type of DNICs bound with carnosine as ligand {(carnosine)2-Fe-(NO)2}, was formed. We studied how the carbonyl compound methylglyoxal influenced this process. Carnosine-bound DNICs appear to be one of the cell's adaptation mechanisms when the amount of reactive carbonyl compounds increases at hyperglycemia. These complexes can also participate in signal and regulatory ways of NO and can act as protectors at oxidative and carbonyl stress conditions.
Collapse
Affiliation(s)
- Konstantin B Shumaev
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow, 119071, Russian Federation
| | - Olga V Kosmachevskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow, 119071, Russian Federation
| | - Elvira I Nasybullina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow, 119071, Russian Federation
| | - Sergey V Gromov
- National University of Science and Technology MISiS, Moscow, 119049, Russian Federation
| | - Alexander A Novikov
- National University of Science and Technology MISiS, Moscow, 119049, Russian Federation
| | - Alexey F Topunov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow, 119071, Russian Federation.
| |
Collapse
|
23
|
Bringas M, Semelak J, Zeida A, Estrin DA. Theoretical investigation of the mechanism of nitroxyl decomposition in aqueous solution. J Inorg Biochem 2016; 162:102-108. [DOI: 10.1016/j.jinorgbio.2016.06.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 06/08/2016] [Accepted: 06/14/2016] [Indexed: 11/24/2022]
|
24
|
Kemp-Harper BK, Horowitz JD, Ritchie RH. Therapeutic Potential of Nitroxyl (HNO) Donors in the Management of Acute Decompensated Heart Failure. Drugs 2016; 76:1337-48. [DOI: 10.1007/s40265-016-0631-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
25
|
Chin KY, Michel L, Qin CX, Cao N, Woodman OL, Ritchie RH. The HNO donor Angeli’s salt offers potential haemodynamic advantages over NO or dobutamine in ischaemia–reperfusion injury in the rat heart ex vivo. Pharmacol Res 2016; 104:165-75. [DOI: 10.1016/j.phrs.2015.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/12/2015] [Accepted: 12/03/2015] [Indexed: 11/29/2022]
|
26
|
HNO/Thiol Biology as a Therapeutic Target. OXIDATIVE STRESS IN APPLIED BASIC RESEARCH AND CLINICAL PRACTICE 2016. [DOI: 10.1007/978-3-319-30705-3_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Basudhar D, Ridnour LA, Cheng R, Kesarwala AH, Heinecke J, Wink DA. Biological signaling by small inorganic molecules. Coord Chem Rev 2016; 306:708-723. [PMID: 26688591 PMCID: PMC4680994 DOI: 10.1016/j.ccr.2015.06.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Small redox active molecules such as reactive nitrogen and oxygen species and hydrogen sulfide have emerged as important biological mediators that are involved in various physiological and pathophysiological processes. Advancement in understanding of cellular mechanisms that tightly regulate both generation and reactivity of these molecules is central to improved management of various disease states including cancer and cardiovascular dysfunction. Imbalance in the production of redox active molecules can lead to damage of critical cellular components such as cell membranes, proteins and DNA and thus may trigger the onset of disease. These small inorganic molecules react independently as well as in a concerted manner to mediate physiological responses. This review provides a general overview of the redox biology of these key molecules, their diverse chemistry relevant to physiological processes and their interrelated nature in cellular signaling.
Collapse
Affiliation(s)
- Debashree Basudhar
- Radiation Biology Branch, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Lisa A. Ridnour
- Radiation Biology Branch, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Robert Cheng
- Radiation Biology Branch, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Aparna H. Kesarwala
- Radiation Oncology Branch, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Julie Heinecke
- Radiation Biology Branch, National Cancer Institute, NIH, Bethesda, MD 20892
| | - David A. Wink
- Radiation Biology Branch, National Cancer Institute, NIH, Bethesda, MD 20892
| |
Collapse
|
28
|
Nitroxyl (HNO): A Reduced Form of Nitric Oxide with Distinct Chemical, Pharmacological, and Therapeutic Properties. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:4867124. [PMID: 26770654 PMCID: PMC4685437 DOI: 10.1155/2016/4867124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/14/2015] [Accepted: 09/01/2015] [Indexed: 01/18/2023]
Abstract
Nitroxyl (HNO), the one-electron reduced form of nitric oxide (NO), shows a distinct chemical and biological profile from that of NO. HNO is currently being viewed as a vasodilator and positive inotropic agent that can be used as a potential treatment for heart failure. The ability of HNO to react with thiols and thiol containing proteins is largely used to explain the possible biological actions of HNO. Herein, we summarize different aspects related to HNO including HNO donors, chemistry, biology, and methods used for its detection.
Collapse
|
29
|
Tan Y, Liu R, Zhang H, Peltier R, Lam YW, Zhu Q, Hu Y, Sun H. Design and Synthesis of Near-infrared Fluorescent Probes for Imaging of Biological Nitroxyl. Sci Rep 2015; 5:16979. [PMID: 26584764 PMCID: PMC4653807 DOI: 10.1038/srep16979] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/22/2015] [Indexed: 11/09/2022] Open
Abstract
Nitroxyl (HNO), the reduced and protonated form of nitric oxide (NO), has recently been identified as an interesting and important signaling molecule in biological systems. However, research on its biosynthesis and bioactivities are hampered by the lack of versatile HNO detection methods applicable to living cells. In this report, two new near-infrared (NIR) probes were designed and synthesized for HNO imaging in living cells. One of the probes was found to display high sensitivity towards HNO, with up to 67-fold of fluorescence increment after reaction with HNO. The detection limit was determined to be as low as 0.043 μM. The probe displayed high selectivity towards HNO over other biologically related species including metal ions, reactive oxygen species, reactive nitrogen species and reactive sulfur species. Furthermore, the probe was shown to be suitable for imaging of exogenous and endogenous HNO in living cells. Interestingly, the probe was found to be mainly localized in lysosomes. We envision that the new NIR probe described here will serve as a useful tool for further elucidation of the intricate roles of HNO in living cells.
Collapse
Affiliation(s)
- Yi Tan
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China
| | - Ruochuan Liu
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China
| | - Huatang Zhang
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China
| | - Raoul Peltier
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China
| | - Yun-Wah Lam
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China
| | - Qing Zhu
- Insitute of Bioengineering, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310014, China
| | - Yi Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Key Lab of Nuclear Radiation and Nuclear Energy Technology, Center for Multidisciplinary Research, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Hongyan Sun
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China
| |
Collapse
|
30
|
Koenitzer JR, Bonacci G, Woodcock SR, Chen CS, Cantu-Medellin N, Kelley EE, Schopfer FJ. Fatty acid nitroalkenes induce resistance to ischemic cardiac injury by modulating mitochondrial respiration at complex II. Redox Biol 2015; 8:1-10. [PMID: 26722838 PMCID: PMC4710799 DOI: 10.1016/j.redox.2015.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/09/2015] [Indexed: 12/02/2022] Open
Abstract
Nitro-fatty acids (NO2-FA) are metabolic and inflammatory-derived electrophiles that mediate pleiotropic signaling actions. It was hypothesized that NO2-FA would impact mitochondrial redox reactions to induce tissue-protective metabolic shifts in cells. Nitro-oleic acid (OA-NO2) reversibly inhibited complex II-linked respiration in isolated rat heart mitochondria in a pH-dependent manner and suppressed superoxide formation. Nitroalkylation of Fp subunit was determined by BME capture and the site of modification by OA-NO2 defined by mass spectrometric analysis. These effects translated into reduced basal and maximal respiration and favored glycolytic metabolism in H9C2 cardiomyoblasts as assessed by extracellular H+ and O2 flux analysis. The perfusion of NO2-FA induced acute cardioprotection in an isolated perfused heart ischemia/reperfusion (IR) model as evidenced by significantly higher rate-pressure products. Together these findings indicate that NO2-FA can promote cardioprotection by inducing a shift from respiration to glycolysis and suppressing reactive species formation in the post-ischemic interval. Nitro-oleic acid (OA-NO2) reversibly inhibits complex II-linked respiration. Nitrated fatty acid favor a switch from beta oxidation to glycolysis in cardiomyoblasts. Nitrated fatty acid induce cardioprotection in a heart ischemia/reperfusion model.
Collapse
Affiliation(s)
- Jeffrey R Koenitzer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Gustavo Bonacci
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Steven R Woodcock
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Chen-Shan Chen
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | - Eric E Kelley
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Francisco J Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
31
|
Zhang H, Liu R, Tan Y, Xie WH, Lei H, Cheung HY, Sun H. A FRET-based ratiometric fluorescent probe for nitroxyl detection in living cells. ACS APPLIED MATERIALS & INTERFACES 2015; 7:5438-43. [PMID: 25658137 DOI: 10.1021/am508987v] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
HNO has recently been found to possess distinct biological functions from NO. Studying the biological functions of HNO calls for the development of sensitive and selective fluorescent probes. Herein, we designed and synthesized a FRET-based ratiometric probe to detect HNO in living cells. Our studies revealed that the probe is capable of detecting HNO in a rapid and ratiometric manner under physiological conditions. In bioimaging studies, the probe displayed a clear color change from blue to green when treated with HNO.
Collapse
Affiliation(s)
- Huatang Zhang
- Department of Biology and Chemistry, City University of Hong Kong , 83 Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
32
|
Liu C, Wu H, Wang Z, Shao C, Zhu B, Zhang X. A fast-response, highly sensitive and selective fluorescent probe for the ratiometric imaging of nitroxyl in living cells. Chem Commun (Camb) 2014; 50:6013-6. [DOI: 10.1039/c4cc00980k] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Basudhar D, Bharadwaj G, Cheng RY, Jain S, Shi S, Heinecke JL, Holland RJ, Ridnour LA, Caceres VM, Spadari-Bratfisch RC, Paolocci N, Velázquez-Martínez CA, Wink DA, Miranda KM. Synthesis and chemical and biological comparison of nitroxyl- and nitric oxide-releasing diazeniumdiolate-based aspirin derivatives. J Med Chem 2013; 56:7804-20. [PMID: 24102516 DOI: 10.1021/jm400196q] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Structural modifications of nonsteroidal anti-inflammatory drugs (NSAIDs) have successfully reduced the side effect of gastrointestinal ulceration without affecting anti-inflammatory activity, but they may increase the risk of myocardial infarction with chronic use. The fact that nitroxyl (HNO) reduces platelet aggregation, preconditions against myocardial infarction, and enhances contractility led us to synthesize a diazeniumdiolate-based HNO-releasing aspirin and to compare it to an NO-releasing analogue. Here, the decomposition mechanisms are described for these compounds. In addition to protection against stomach ulceration, these prodrugs exhibited significantly enhanced cytotoxcity compared to either aspirin or the parent diazeniumdiolate toward nonsmall cell lung carcinoma cells (A549), but they were not appreciably toxic toward endothelial cells (HUVECs). The HNO-NSAID prodrug inhibited cylcooxgenase-2 and glyceraldehyde 3-phosphate dehydrogenase activity and triggered significant sarcomere shortening on murine ventricular myocytes compared to control. Together, these anti-inflammatory, antineoplasic, and contractile properties suggest the potential of HNO-NSAIDs in the treatment of inflammation, cancer, or heart failure.
Collapse
Affiliation(s)
- Debashree Basudhar
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Johnson GM, Chozinski TJ, Salmon DJ, Moghaddam AD, Chen HC, Miranda KM. Quantitative detection of nitroxyl upon trapping with glutathione and labeling with a specific fluorogenic reagent. Free Radic Biol Med 2013; 63:476-84. [PMID: 23685286 DOI: 10.1016/j.freeradbiomed.2013.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 05/08/2013] [Indexed: 11/25/2022]
Abstract
Donors of nitroxyl (HNO) have shown promise for treatment of stroke, heart failure, alcoholism and cancer. However, comparing the pharmacological capacities of various donors is difficult without first quantifying the amount of HNO released from each donor. Detection and quantitation of HNO has been complicated by the rapid self-consumption of HNO through irreversible dimerization, poor selectivity of trapping agents against other nitrogen oxides, and/or low sensitivity towards HNO. Here, an assay is described for the trapping of HNO by glutathione (GSH) followed by labeling of GSH with the fluorogenic agent, naphthalene-2,3-dicarboxaldehyde (NDA), and subsequent quantitation by fluorescence difference. The newly developed assay was used to validate the pH-dependence of HNO release from isopropylamine NONOate (IPA/NO), which is a dual donor of HNO and NO at physiological pH. Furthermore, varied assay conditions were utilized to suggest the ratios of the products of the reaction of GSH with HNO. At intracellular concentrations of GSH, the disulfide (GSSG) was the major product, but significant concentrations of glutathione sulfinamide (GS(O)NH₂) were also detected. This suggests that GS(O)NH₂, which is a selective biomarker of HNO, may be produced in concentrations that are amenable to in vivo analysis.
Collapse
Affiliation(s)
- Gail M Johnson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
| | | | | | | | | | | |
Collapse
|
35
|
Irvine JC, Ravi RM, Kemp-Harper BK, Widdop RE. Nitroxyl donors retain their depressor effects in hypertension. Am J Physiol Heart Circ Physiol 2013; 305:H939-45. [PMID: 23851276 DOI: 10.1152/ajpheart.00630.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitroxyl (HNO), the redox congener of nitric oxide, has numerous vasoprotective actions including an ability to induce vasodilation and inhibit platelet aggregation. Given HNO is resistant to scavenging by superoxide and does not develop tolerance, we hypothesised that HNO would retain its in vivo vasodilatory action in the setting of hypertension. The in vitro and in vivo vasodilator properties of the HNO donors Angeli's salt (AS) and isopropylamine/NONOate (IPA/NO) were compared with the NO donor diethylamine/NONOate (DEA/NO) in spontaneously hypertensive rats (SHR) and normotensive [Wistar-Kyoto (WKY) rats]. AS (10, 50, and 200 μg/kg), IPA/NO (10, 50, and 200 μg/kg), and DEA/NO (1, 5, and 20 μg/kg) caused dose-dependent depressor responses in conscious WKY rats of similar magnitude. Depressor responses to AS and IPA/NO were significantly attenuated (P < 0.01) after infusion of the HNO scavenger N-acetyl-l-cysteine (NAC), confirming that AS and IPA/NO function as HNO donors in vivo. In contrast, responses to DEA/NO were unchanged following NAC infusion. Depressor responses to AS and IPA/NO in conscious SHR retained their sensitivity to the inhibitory effects of NAC (P < 0.01), yet those to DEA/NO in SHR were significantly (P < 0.05) enhanced following NAC infusion. Importantly, depressor responses to AS, IPA/NO, and DEA/NO were preserved in hypertension and vasorelaxation to AS and DEA/NO, in isolated aorta, unchanged in SHR as compared with WKY rats. This study has shown for the first time that HNO donors exert antihypertensive effects in vivo and may, therefore, offer a therapeutic alternative to traditional nitrovasodilators in the treatment of cardiovascular disorders such as hypertension.
Collapse
Affiliation(s)
- Jennifer C Irvine
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
36
|
Aizawa K, Nakagawa H, Matsuo K, Kawai K, Ieda N, Suzuki T, Miyata N. Piloty’s acid derivative with improved nitroxyl-releasing characteristics. Bioorg Med Chem Lett 2013; 23:2340-3. [DOI: 10.1016/j.bmcl.2013.02.062] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/06/2013] [Accepted: 02/13/2013] [Indexed: 10/27/2022]
|
37
|
Bellavia L, DuMond JF, Perlegas A, Bruce King S, Kim-Shapiro DB. Nitroxyl accelerates the oxidation of oxyhemoglobin by nitrite. Nitric Oxide 2013; 31:38-47. [PMID: 23545404 DOI: 10.1016/j.niox.2013.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 03/19/2013] [Accepted: 03/22/2013] [Indexed: 11/25/2022]
Abstract
Angeli's salt (Na₂N₂O₃) decomposes into nitroxyl (HNO) and nitrite (NO₂(-)), compounds of physiological and therapeutic interest for their impact on biological signaling both through nitric oxide and nitric oxide independent pathways. Both nitrite and HNO oxidize oxygenated hemoglobin to methemoglobin. Earlier work has shown that HNO catalyzes the reduction of nitrite by deoxygenated hemoglobin. In this work, we have shown that HNO accelerates the oxidation of oxygenated hemoglobin by NO₂(-). We have demonstrated this HNO mediated acceleration of the nitrite/oxygenated hemoglobin reaction with oxygenated hemoglobin being in excess to HNO and nitrite (as would be found under physiological conditions) by monitoring the formation of methemoglobin in the presence of Angeli's salt with and without added NO₂(-). In addition, this acceleration has been demonstrated using the HNO donor 4-nitrosotetrahydro-2H-pyran-4-yl pivalate, a water-soluble acyloxy nitroso compound that does not release NO₂(-) but generates HNO in the presence of esterase. This HNO donor was used both with and without NO₂(-) and acceleration of the NO₂(-) induced formation of methemoglobin was observed. We found that the acceleration was not substantially affected by catalase, superoxide dismutase, c-PTIO, or IHP, suggesting that it is not due to formation of extramolecular peroxide, NO₂ or H₂O₂, or to modulation of allosteric properties. In addition, we found that the acceleration is not likely to be related to HNO binding to free reduced hemoglobin, as we found HNO binding to reduced hemoglobin to be much weaker than has previously been proposed. We suggest that the mechanism of the acceleration involves local propagation of autocatalysis in the nitrite-oxygenated Hb reaction. This acceleration of the nitrite oxyhemoglobin reaction could affect studies aimed at understanding physiological roles of HNO and perhaps nitrite and use of these agents in therapeutics such as hemolytic anemias, heart failure, and ischemia reperfusion injury.
Collapse
Affiliation(s)
- Landon Bellavia
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
| | | | | | | | | |
Collapse
|
38
|
Donzelli S, Fischer G, King BS, Niemann C, DuMond JF, Heeren J, Wieboldt H, Baldus S, Gerloff C, Eschenhagen T, Carrier L, Böger RH, Espey MG. Pharmacological characterization of 1-nitrosocyclohexyl acetate, a long-acting nitroxyl donor that shows vasorelaxant and antiaggregatory effects. J Pharmacol Exp Ther 2013; 344:339-47. [PMID: 23211362 PMCID: PMC3558825 DOI: 10.1124/jpet.112.199836] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 11/19/2012] [Indexed: 11/22/2022] Open
Abstract
Nitroxyl (HNO) donors have potential benefit in the treatment of heart failure and other cardiovascular diseases. 1-Nitrosocyclohexyl acetate (NCA), a new HNO donor, in contrast to the classic HNO donors Angeli's salt and isopropylamine NONOate, predominantly releases HNO and has a longer half-life. This study investigated the vasodilatative properties of NCA in isolated aortic rings and human platelets and its mechanism of action. NCA was applied on aortic rings isolated from wild-type mice and apolipoprotein E-deficient mice and in endothelial-denuded aortae. The mechanism of action of HNO was examined by applying NCA in the absence and presence of the HNO scavenger glutathione (GSH) and inhibitors of soluble guanylyl cyclase (sGC), adenylyl cyclase (AC), calcitonin gene-related peptide receptor (CGRP), and K(+) channels. NCA induced a concentration-dependent relaxation (EC(50), 4.4 µM). This response did not differ between all groups, indicating an endothelium-independent relaxation effect. The concentration-response was markedly decreased in the presence of excess GSH; the nitric oxide scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide had no effect. Inhibitors of sGC, CGRP, and voltage-dependent K(+) channels each significantly impaired the vasodilator response to NCA. In contrast, inhibitors of AC, ATP-sensitive K(+) channels, or high-conductance Ca(2+)-activated K(+) channels did not change the effects of NCA. NCA significantly reduced contractile response and platelet aggregation mediated by the thromboxane A(2) mimetic 9,11-dideoxy-11α,9α-epoxymethanoprostaglandin F(2)(α) in a cGMP-dependent manner. In summary, NCA shows vasoprotective effects and may have a promising profile as a therapeutic agent in vascular dysfunction, warranting further evaluation.
Collapse
Affiliation(s)
- Sonia Donzelli
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf., Martinistr. 52, D-20246 Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Solomon SB, Bellavia L, Sweeney D, Piknova B, Perlegas A, Helms CC, Ferreyra GA, Bruce King S, Raat NJH, Kern SJ, Sun J, McPhail LC, Schechter AN, Natanson C, Gladwin MT, Kim-Shapiro DB. Angeli's salt counteracts the vasoactive effects of elevated plasma hemoglobin. Free Radic Biol Med 2012; 53:2229-39. [PMID: 23099417 PMCID: PMC3600400 DOI: 10.1016/j.freeradbiomed.2012.10.548] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 10/07/2012] [Accepted: 10/16/2012] [Indexed: 11/23/2022]
Abstract
Plasma hemoglobin (Hb) released during intravascular hemolysis has been associated with numerous deleterious effects that may stem from increased nitric oxide (NO) scavenging, but has also been associated with reactive oxygen species generation and platelet activation. Therapies that convert plasma oxyHb to metHb, or metHb to iron-nitrosyl Hb, could be beneficial because these species do not scavenge NO. In this study, we investigated the effects of Angeli's salt (AS; sodium α-oxyhyponitrite, Na2N2O3), a nitroxyl (HNO) and nitrite (NO2(-)) donor, on plasma Hb oxidation and formation of iron-nitrosyl Hb from metHb and on the vasoactivity of plasma Hb. We hypothesized that AS could ameliorate hemolysis-associated pathology via its preferential reactivity with plasma Hb, as opposed to red-cell-encapsulated Hb, and through its intrinsic vasodilatory activity. To test this hypothesis, we infused (n=3 per group) (1) cell-free Hb and AS, (2) cell-free Hb+0.9% NaCl, (3) AS+3% albumin, and (4) 3% albumin+0.9% NaCl (colloid controls for Hb and AS, respectively) in a canine model. Co-infusion of AS and cell-free Hb led to preferential conversion of plasma Hb to metHb, but the extent of conversion was lower than anticipated based on the in vivo concentration of AS relative to plasma Hb. This lower metHb yield was probably due to reactions of nitroxyl-derived AS with plasma components such as thiol-containing compounds. From a physiological and therapeutic standpoint, the infusion of Hb alone led to significant increases in mean arterial pressure (p=0.03) and systemic vascular resistance index (p=0.01) compared to controls. Infusion of AS alone led to significant decreases in these parameters and co-infusion of AS along with Hb had an additive effect in reversing the effects of Hb alone on the systemic circulation. Interestingly, in the pulmonary system, the decrease in pressure when AS was added to Hb was significantly less than would have been expected compared to the effects of Hb and AS alone, suggesting that inactivation of scavenging with AS reduced the direct vasodilatory effects of AS on the vasculature. We also found that AS reduced platelet activation when administered to whole blood in vitro. These data suggest that AS-like compounds could serve as therapeutic agents to counteract the negative vasoconstrictive consequences of hemolysis that occur in hemolytic anemias, transfusion of stored blood, and other diseases. Increases in metHb in the red blood cell, the potential of AS for neurotoxicity, and hypotension would need to be carefully monitored in a clinical trial.
Collapse
Affiliation(s)
- Steven B Solomon
- Critical Care Medicine Department, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | - Daniel Sweeney
- Critical Care Medicine Department, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barbora Piknova
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Christine C Helms
- Department of Physics; Translational Science Center, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Gabriela A Ferreyra
- Critical Care Medicine Department, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Nicolaas J H Raat
- Vascular Medicine Institute; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Steven J Kern
- Critical Care Medicine Department, National Institutes of Health, Bethesda, MD 20892, USA
| | - Junfeng Sun
- Critical Care Medicine Department, National Institutes of Health, Bethesda, MD 20892, USA
| | - Linda C McPhail
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Alan N Schechter
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Charles Natanson
- Critical Care Medicine Department, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark T Gladwin
- Vascular Medicine Institute; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Daniel B Kim-Shapiro
- Department of Physics; Translational Science Center, Wake Forest University, Winston-Salem, NC 27109, USA.
| |
Collapse
|
40
|
Royzen M, Wilson JJ, Lippard SJ. Physical and structural properties of [Cu(BOT1)Cl]Cl, a fluorescent imaging probe for HNO. J Inorg Biochem 2012; 118:162-70. [PMID: 23102502 DOI: 10.1016/j.jinorgbio.2012.08.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/29/2012] [Accepted: 08/17/2012] [Indexed: 10/27/2022]
Abstract
Nitroxyl, or HNO, is involved in a number of important physiological processes, such as vascular relaxation and neuroregulation. Effective imaging tools are required in order to gain a deeper understanding of the in vivo mechanisms of these processes and to identify the endogenous sources of HNO. Here, we further investigate the physical properties of our previously reported fluorescent nitroxyl sensor, [Cu(BOT1)Cl]Cl (J. Am. Chem. Soc.2010, 132, 5536; BOT1=BODIPY·triazole, a tetradentate ligand). A new high-yielding synthetic procedure for BOT1 is reported. The X-ray crystal structures of two Cu(II) complexes of BOT1 are described. These structural studies show that the BOT1 ligand can form Cu(II) coordination complexes of both square-pyramidal and trigonal-bipyramidal geometries. Cyclic voltammograms of [Cu(BOT1)Cl]Cl were acquired, revealing the presence of a quasi-reversible feature at 130 mV (vs the ferrocene/ferrocenium couple) in MeCN and at -40 mV (vs Ag/AgCl) in aqueous buffer, which is assigned to the Cu(II)/Cu(I) couple. The reactivity of [Cu(BOT1)Cl]Cl with Angeli's salt, a stable source of HNO, was further investigated. A 1000-fold excess of Angeli's salt elicits an immediate 10-fold emission turn-on response of the sensor, consistent with our previous report. A new observation, reported here, is that the intensity of this turn-on emission diminishes at longer incubation times. Fluorescent imaging of nitroxyl by [Cu(BOT1)Cl]Cl in HeLa cells was carried out. Upon treatment of the cells with Angeli's salt, there was a modest 2-fold intracellular turn-on in emission intensity.
Collapse
Affiliation(s)
- Maksim Royzen
- Massachusetts Institute of Technology, Department of Chemistry, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
41
|
Zhang Y. Computational investigations of HNO in biology. J Inorg Biochem 2012; 118:191-200. [PMID: 23103077 DOI: 10.1016/j.jinorgbio.2012.09.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 09/01/2012] [Accepted: 09/27/2012] [Indexed: 10/27/2022]
Abstract
HNO (nitroxyl) has been found to have many physiological effects in numerous biological processes. Computational investigations have been employed to help understand the structural properties of HNO complexes and HNO reactivities in some interesting biologically relevant systems. The following computational aspects were reviewed in this work: 1) structural and energetic properties of HNO isomers; 2) interactions between HNO and non-metal molecules; 3) structural and spectroscopic properties of HNO metal complexes; 4) HNO reactions with biologically important non-metal systems; 5) involvement of HNO in reactions of metal complexes and metalloproteins. Results indicate that computational investigations are very helpful to elucidate interesting experimental phenomena and provide new insights into unique structural, spectroscopic, and mechanistic properties of HNO involvement in biology.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Chemistry, Chemical Biology, and Biomedical Engineering, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ 07030, USA.
| |
Collapse
|
42
|
Yan LJ, Liu L, Forster MJ. Reversible inactivation of dihydrolipoamide dehydrogenase by Angeli's salt. SHENG WU WU LI HSUEH BAO 2012; 28:341-350. [PMID: 23139597 PMCID: PMC3490496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Dihydrolipoamide dehydrogenase (DLDH) is a key component of 3 mitochondrial α-keto acid dehydrogenase complexes including pyruvate dehydrogenase complex, α-ketoglutarate dehydrogenase complex, and branched chain amino acid dehydrogenase complex. It is a pyridine-dependent disulfide oxidoreductase that is very sensitive to oxidative modifications by reactive nitrogen species (RNS) and reactive oxygen species (ROS). The objective of this study was to investigate the mechanisms of DLDH modification by RNS derived from Angeli's salt. Studies were conducted using isolated rat brain mitochondria that were incubated with varying concentrations of Angeli's salt followed by spectrophotometric enzyme assays, blue native gel analysis, and 2-dimensional gel-based proteomic approaches. Results show that DLDH could be inactivated by Angeli's salt in a concentration dependent manner and the inactivation was a targeting rather than a random process as peroxynitrite did not show any detectable inhibitory effect on the enzyme's activity under the same experimental conditions. Since Angeli's salt can readily decompose at physiological pH to yield nitroxyl anion (HNO) and nitric oxide, further studies were conducted to determine the actual RNS that was responsible for DLDH inactivation. Results indicate that it was HNO that exerted the effect of Angeli's salt on DLDH. Finally, two-dimensional Western blot analysis indicates that DLDH inactivation by Angeli's salt was accompanied by formation of protein s-nitrosothiols, suggesting that s-nitrosylation is likely the cause of loss in enzyme's activity. Taken together, the present study provides insights into mechanisms of DLDH inactivation induced by HNO derived from Angeli's salt.
Collapse
Affiliation(s)
- Liang-Jun Yan
- Department of Pharmacology and Neuroscience and Institute for Aging and Alzheimer’s Disease Research, University of North Texas Health Science Center, Fort Worth, Texas
| | - Li Liu
- The First Affiliated Hospital of Nanjing Medical University, Jiangsu, China
| | - Michael J. Forster
- Department of Pharmacology and Neuroscience and Institute for Aging and Alzheimer’s Disease Research, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
43
|
Tocchetti CG, Stanley BA, Murray CI, Sivakumaran V, Donzelli S, Mancardi D, Pagliaro P, Gao WD, van Eyk J, Kass DA, Wink DA, Paolocci N. Playing with cardiac "redox switches": the "HNO way" to modulate cardiac function. Antioxid Redox Signal 2011; 14:1687-98. [PMID: 21235349 PMCID: PMC3066693 DOI: 10.1089/ars.2010.3859] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nitric oxide (NO(•)) sibling, nitroxyl or nitrosyl hydride (HNO), is emerging as a molecule whose pharmacological properties include providing functional support to failing hearts. HNO also preconditions myocardial tissue, protecting it against ischemia-reperfusion injury while exerting vascular antiproliferative actions. In this review, HNO's peculiar cardiovascular assets are discussed in light of its unique chemistry that distinguish HNO from NO(•) as well as from reactive oxygen and nitrogen species such as the hydroxyl radical and peroxynitrite. Included here is a discussion of the possible routes of HNO formation in the myocardium and its chemical targets in the heart. HNO has been shown to have positive inotropic/lusitropic effects under normal and congestive heart failure conditions in animal models. The mechanistic intricacies of the beneficial cardiac effects of HNO are examined in cellular models. In contrast to β-receptor/cyclic adenosine monophosphate/protein kinase A-dependent enhancers of myocardial performance, HNO uses its "thiophylic" nature as a vehicle to interact with redox switches such as cysteines, which are located in key components of the cardiac electromechanical machinery ruling myocardial function. Here, we will briefly review new features of HNO's cardiovascular effects that when combined with its positive inotropic/lusitropic action may render HNO donors an attractive addition to the current therapeutic armamentarium for treating patients with acutely decompensated congestive heart failure.
Collapse
Affiliation(s)
- Carlo G Tocchetti
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Due to recent discoveries of important and novel biological activity, nitroxyl (HNO) has become a molecule of significant interest. Although it has been used in the past as a treatment for alcoholism, it is currently being touted as a treatment for heart failure. It is becoming increasingly clear that many of the biological actions of HNO can be attributed to its ability to react with specific thiol- and, possibly, heme-proteins. Herein is discussed the chemistry of HNO with likely biological targets. A particular focus is given to targets associated with the pharmacological utility of HNO as a cardiovascular agent and for the treatment of alcoholism.
Collapse
Affiliation(s)
- Jon M Fukuto
- Department of Chemistry, Sonoma State University, Rohnert Park, California 94928, USA.
| | | |
Collapse
|
45
|
Flores-Santana W, Salmon DJ, Donzelli S, Switzer CH, Basudhar D, Ridnour L, Cheng R, Glynn SA, Paolocci N, Fukuto JM, Miranda KM, Wink DA. The specificity of nitroxyl chemistry is unique among nitrogen oxides in biological systems. Antioxid Redox Signal 2011; 14:1659-74. [PMID: 21235346 PMCID: PMC3070000 DOI: 10.1089/ars.2010.3841] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The importance of nitric oxide in mammalian physiology has been known for nearly 30 years. Similar attention for other nitrogen oxides such as nitroxyl (HNO) has been more recent. While there has been speculation as to the biosynthesis of HNO, its pharmacological benefits have been demonstrated in several pathophysiological settings such as cardiovascular disorders, cancer, and alcoholism. The chemical biology of HNO has been identified as related to, but unique from, that of its redox congener nitric oxide. A summary of these findings as well as a discussion of possible endogenous sources of HNO is presented in this review.
Collapse
Affiliation(s)
- Wilmarie Flores-Santana
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Nitroxyl (HNO), the one electron reduced and protonated congener of nitric oxide, is emerging as a novel nitrogen oxide with distinct chemistry and biological actions as compared with its redox sibling. The "thiophilic" nature of HNO underlies many of its unique properties, and attention has been focused on its regulation of cellular function and therapeutic potential, particularly in the treatment of cardiovascular disease. The present Forum issue summarizes the intriguing chemistry and biology of HNO and highlights its impact in the cardiovascular and central nervous systems. Recent advances in the development of new HNO donors and their potential use as tools to study HNO signaling and therapeutic agents are discussed. Evidence is also provided for a role of HNO as a putative, endogenous regulator of vascular function. However, as highlighted in this Forum issue, the development of sensitive methods for HNO detection in a biological system is needed to conclusively prove its in vivo generation. As research expands in this area, it is likely that new targets and pharmacological applications of HNO will be discovered.
Collapse
Affiliation(s)
- Barbara K Kemp-Harper
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
47
|
Bullen ML, Miller AA, Andrews KL, Irvine JC, Ritchie RH, Sobey CG, Kemp-Harper BK. Nitroxyl (HNO) as a vasoprotective signaling molecule. Antioxid Redox Signal 2011; 14:1675-86. [PMID: 20673125 DOI: 10.1089/ars.2010.3327] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Nitroxyl (HNO), the one electron reduced and protonated form of nitric oxide (NO(•)), is rapidly emerging as a novel nitrogen oxide with distinct pharmacology and therapeutic advantages over its redox sibling. Whilst the cardioprotective effects of HNO in heart failure have been established, it is apparent that HNO may also confer a number of vasoprotective properties. Like NO(•), HNO induces vasodilatation, inhibits platelet aggregation, and limits vascular smooth muscle cell proliferation. In addition, HNO can be putatively generated within the vasculature, and recent evidence suggests it also serves as an endothelium-derived relaxing factor (EDRF). Significantly, HNO targets signaling pathways distinct from NO(•) with an ability to activate K(V) and K(ATP) channels in resistance arteries, cause coronary vasodilatation in part via release of calcitonin-gene related peptide (CGRP), and exhibits resistance to scavenging by superoxide and vascular tolerance development. As such, HNO synthesis and bioavailability may be preserved and/or enhanced during disease states, in particular those associated with oxidative stress. Moreover, it may compensate, in part, for a loss of NO(•) signaling. Here we explore the vasoprotective actions of HNO and discuss the therapeutic potential of HNO donors in the treatment of vascular dysfunction.
Collapse
Affiliation(s)
- Michelle L Bullen
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
48
|
Choe CU, Lewerenz J, Gerloff C, Magnus T, Donzelli S. Nitroxyl in the central nervous system. Antioxid Redox Signal 2011; 14:1699-711. [PMID: 21235347 DOI: 10.1089/ars.2010.3852] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Nitroxyl (HNO) is the one-electron-reduced and protonated congener of nitric oxide (NO). Compared to NO, it is far more reactive with thiol groups either in proteins or in small antioxidant molecules either converting those into sulfinamides or inducing disulfide bond formation. HNO might mediate cytoprotective changes of protein function through thiol modifications. However, HNO is a strong oxidant that in vitro reacts with glutathione to form glutathione disulfide and glutathione sulfinamide. The resulting oxidative stress might aggravate tissue damage in inflammatory diseases. In this review, we will summarize the current knowledge of how exogenous HNO affects the central nervous system, especially nerve cells and glia in health and disease. Unlike most other organs, the brain is separated from the circulation by the blood-brain barrier, which limits access of many pharmacological compounds. Given that, we will review what is known about the ability of currently used HNO donors to cross the blood-brain barrier. Moreover, considering that the physiology and composition of the brain has unique properties, for example, expression of brain-specific enzymes like neuronal NO synthase, its high iron content, and increased energy metabolism, we will discuss possible sources of endogenous HNO in the brain.
Collapse
Affiliation(s)
- Chi-Un Choe
- Department of Neurology, University Hospital Hamburg-Eppendorf, Germany
| | | | | | | | | |
Collapse
|
49
|
Irvine JC, Kemp-Harper BK, Widdop RE. Chronic administration of the HNO donor Angeli's salt does not lead to tolerance, cross-tolerance, or endothelial dysfunction: comparison with GTN and DEA/NO. Antioxid Redox Signal 2011; 14:1615-24. [PMID: 20849324 DOI: 10.1089/ars.2010.3269] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Nitroxyl (HNO) displays distinct pharmacology to its redox congener nitric oxide (NO(•)) with therapeutic potential in the treatment of heart failure. It remains unknown if HNO donors are resistant to tolerance development following chronic in vivo administration. Wistar-Kyoto rats received a 3-day subcutaneous infusion of one of the NO(•) donors, glyceryl trinitrate (GTN) or diethylamine/NONOate (DEA/NO), or the HNO donor Angeli's salt (AS). GTN infusion (10 μg/kg/min) resulted in significantly blunted depressor responses to intravenous bolus doses of GTN, demonstrating tolerance development. By contrast, infusion with AS (20 μg/kg/min) or DEA/NO (2 μg/kg/min) did not alter their subsequent depressor responses. Similarly, ex vivo vasorelaxation responses in isolated aortae revealed that GTN infusion elicited a significant 6-fold decrease in the sensitivity to GTN and reduction in the maximum response to acetylcholine (ACh). Chronic infusion of AS or DEA/NO had no effect on subsequent vasorelaxation responses to themselves or to ACh. No functional cross-tolerance between nitrovasodilators was evident, either in vivo or ex vivo, although an impaired ability of a nitrovasodilator to increase tissue cGMP content was not necessarily indicative of a reduced functional response. In conclusion, HNO donors may represent novel therapies for cardiovascular disease with therapeutic potential over clinically used organic nitrates.
Collapse
Affiliation(s)
- Jennifer C Irvine
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | | | | |
Collapse
|
50
|
Salmon DJ, Torres de Holding CL, Thomas L, Peterson KV, Goodman GP, Saavedra JE, Srinivasan A, Davies KM, Keefer LK, Miranda KM. HNO and NO release from a primary amine-based diazeniumdiolate as a function of pH. Inorg Chem 2011; 50:3262-70. [PMID: 21405089 PMCID: PMC3075328 DOI: 10.1021/ic101736e] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The growing evidence that nitroxyl (HNO) has a rich pharmacological potential that differs from that of nitric oxide (NO) has intensified interest in HNO donors. Recently, the diazeniumdiolate (NONOate) based on isopropylamine (IPA/NO; Na[(CH(3))(2)CHNH(N(O)NO)]) was demonstrated to function under physiological conditions as an organic analogue to the commonly used HNO donor Angeli's salt (Na(2)N(2)O(3)). The decomposition mechanism of Angeli's salt is dependent on pH, with transition from an HNO to an NO donor occurring abruptly near pH 3. Here, pH is shown to also affect product formation from IPA/NO. Chemical analysis of HNO and NO production led to refinement of an earlier, quantum mechanically based prediction of the pH-dependent decomposition mechanisms of primary amine NONOates such as IPA/NO. Under basic conditions, the amine proton of IPA/NO is able to initiate decomposition to HNO by tautomerization to the nitroso nitrogen (N(2)). At lower pH, protonation activates a competing pathway to NO production. At pH 8, the donor properties of IPA/NO and Angeli's salt are demonstrated to be comparable, suggesting that at or above this pH, IPA/NO is primarily an HNO donor. Below pH 5, NO is the major product, while IPA/NO functions as a dual donor of HNO and NO at intermediate pH. This pH-dependent variability in product formation may prove useful in examination of the chemistry of NO and HNO. Furthermore, primary amine NONOates may serve as a tunable class of nitrogen oxide donor.
Collapse
|