1
|
Golzari-Sorkheh M, Yoganathan K, Chen ELY, Singh J, Zúñiga-Pflücker JC. T Cell Development: From T-Lineage Specification to Intrathymic Maturation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1471:81-137. [PMID: 40067585 DOI: 10.1007/978-3-031-77921-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
T cell development occurs in the thymus in both mice and humans. Upon entry into the thymus, bone marrow-derived blood-borne progenitors receive instructive signals, including Notch signaling, to eliminate their potential to develop into alternative immune lineages while committing to the T cell fate. Upon T-lineage commitment, developing T cells receive further instructional cues to generate different T cell sublineages, which together possess diverse immunological functions to provide host immunity. Over the years, numerous studies have contributed to a greater understanding of key thymic signals that govern T cell differentiation and subset generation. Here, we review these critical signaling factors that govern the different stages of both mouse and human T cell development, while also focusing on the transcriptional changes that mediate T cell identity and diversity.
Collapse
Affiliation(s)
- Mahdieh Golzari-Sorkheh
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | - Kogulan Yoganathan
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | - Edward L Y Chen
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | - Jastaranpreet Singh
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | | |
Collapse
|
2
|
Park S, Mossmann D, Chen Q, Wang X, Dazert E, Colombi M, Schmidt A, Ryback B, Ng CKY, Terracciano LM, Heim MH, Hall MN. Transcription factors TEAD2 and E2A globally repress acetyl-CoA synthesis to promote tumorigenesis. Mol Cell 2022; 82:4246-4261.e11. [PMID: 36400009 DOI: 10.1016/j.molcel.2022.10.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/22/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022]
Abstract
Acetyl-coenzyme A (acetyl-CoA) plays an important role in metabolism, gene expression, signaling, and other cellular processes via transfer of its acetyl group to proteins and metabolites. However, the synthesis and usage of acetyl-CoA in disease states such as cancer are poorly characterized. Here, we investigated global acetyl-CoA synthesis and protein acetylation in a mouse model and patient samples of hepatocellular carcinoma (HCC). Unexpectedly, we found that acetyl-CoA levels are decreased in HCC due to transcriptional downregulation of all six acetyl-CoA biosynthesis pathways. This led to hypo-acetylation specifically of non-histone proteins, including many enzymes in metabolic pathways. Importantly, repression of acetyl-CoA synthesis promoted oncogenic dedifferentiation and proliferation. Mechanistically, acetyl-CoA synthesis was repressed by the transcription factors TEAD2 and E2A, previously unknown to control acetyl-CoA synthesis. Knockdown of TEAD2 and E2A restored acetyl-CoA levels and inhibited tumor growth. Our findings causally link transcriptional reprogramming of acetyl-CoA metabolism, dedifferentiation, and cancer.
Collapse
Affiliation(s)
- Sujin Park
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Dirk Mossmann
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Qian Chen
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland; Division of Gastroenterology and Hepatology, Clarunis, University Center for Gastrointestinal and Liver Diseases, 4031 Basel, Switzerland
| | - Xueya Wang
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland; Division of Gastroenterology and Hepatology, Clarunis, University Center for Gastrointestinal and Liver Diseases, 4031 Basel, Switzerland
| | - Eva Dazert
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Marco Colombi
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | - Brendan Ryback
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Charlotte K Y Ng
- Institute of Pathology, University Hospital Basel, 4031 Basel, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | | | - Markus H Heim
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland; Division of Gastroenterology and Hepatology, Clarunis, University Center for Gastrointestinal and Liver Diseases, 4031 Basel, Switzerland
| | - Michael N Hall
- Biozentrum, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
3
|
Singh K, Baird M, Fischer R, Chaitankar V, Seifuddin F, Chen YC, Tunc I, Waterman CM, Pirooznia M. Misregulation of ELK1, AP1, and E12 Transcription Factor Networks Is Associated with Melanoma Progression. Cancers (Basel) 2020; 12:E458. [PMID: 32079144 PMCID: PMC7072154 DOI: 10.3390/cancers12020458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 01/17/2023] Open
Abstract
Melanoma is among the most malignant cutaneous cancers and when metastasized results in dramatically high mortality. Despite advances in high-throughput gene expression profiling in cancer transcriptomic studies, our understanding of mechanisms driving melanoma progression is still limited. We present here an in-depth bioinformatic analysis of the melanoma RNAseq, chromatin immunoprecipitation (ChIP)seq, and single-cell (sc)RNA seq data to understand cancer progression. Specifically, we have performed a consensus network analysis of RNA-seq data from clinically re-grouped melanoma samples to identify gene co-expression networks that are conserved in early (stage 1) and late (stage 4/invasive) stage melanoma. Overlaying the fold-change information on co-expression networks revealed several coordinately up or down-regulated subnetworks that may play a critical role in melanoma progression. Furthermore, by incorporating histone lysine-27 acetylation information and highly expressed genes identified from the single-cell RNA data from melanoma patient samples, we present a comprehensive list of pathways, putative protein-protein interactions (PPIs) and transcription factor (TF) networks that are driving cancer progression. From this analysis, we have identified Elk1, AP1 and E12 TF networks that coordinately change expression in late melanoma when compared to early melanoma, implicating these TFs in melanoma progression. Additionally, the sumoylation-associated interactome is upregulated in invasive melanoma. Together, this bioinformatic analysis potentially implicates a combination of TF networks and PPIs in melanoma progression, which if confirmed in the experimental systems, could be used as targets for drug intervention in melanoma.
Collapse
Affiliation(s)
- Komudi Singh
- Bioinformatics and Computational Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.S.); (V.C.); (F.S.); (Y.-C.C.); (I.T.)
| | - Michelle Baird
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (M.B.); (R.F.); (C.M.W.)
| | - Robert Fischer
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (M.B.); (R.F.); (C.M.W.)
| | - Vijender Chaitankar
- Bioinformatics and Computational Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.S.); (V.C.); (F.S.); (Y.-C.C.); (I.T.)
| | - Fayaz Seifuddin
- Bioinformatics and Computational Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.S.); (V.C.); (F.S.); (Y.-C.C.); (I.T.)
| | - Yun-Ching Chen
- Bioinformatics and Computational Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.S.); (V.C.); (F.S.); (Y.-C.C.); (I.T.)
| | - Ilker Tunc
- Bioinformatics and Computational Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.S.); (V.C.); (F.S.); (Y.-C.C.); (I.T.)
| | - Clare M. Waterman
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (M.B.); (R.F.); (C.M.W.)
| | - Mehdi Pirooznia
- Bioinformatics and Computational Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.S.); (V.C.); (F.S.); (Y.-C.C.); (I.T.)
| |
Collapse
|
4
|
Zhao H, Zhao C, Li H, Zhang D, Liu G. E2A attenuates tumor-initiating capacity of colorectal cancer cells via the Wnt/beta-catenin pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:276. [PMID: 31234887 PMCID: PMC6591938 DOI: 10.1186/s13046-019-1261-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/31/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND The E2A gene, which encodes two basic helix-loop-helix transcription factors, E12 and E47, regulates colorectal cancer progression and epithelial-mesenchymal transition. However, whether E2A regulates the tumor-initiating capacity of colorectal cancer is unclear. Thus, we have studied E2A expression in the initiation of colorectal cancer in vivo and in vitro. METHODS Immunohistochemistry and immunoblot were performed to determine protein levels of E2A in colorectal cancer specimens and cells. RNAi was employed to downregulate E2A expression, and the subsequent change in protein level was evaluated by immunoblot. Sphere-forming assay and enumeration of liver metastasis in mouse models were used to identify the tumor formation ability of colorectal cancer cells. RESULTS E2A expression in colorectal cancer clinical specimens was inversely associated with patients' progression-free survival. Functional studies demonstrated that E2A significantly decreased tumor formation in vitro and in vivo. Furthermore, nuclear translocation of beta-catenin and activation of the Wnt/beta-catenin pathway occurred after suppression of E2A in colorectal cancer cells. FoxM1 was identified as a down-stream target by mRNA microarray, implying that FoxM1 plays a main role in determining how E2A regulates the tumor-initiating capacity of colorectal cancer. CONCLUSION E2A suppresses tumor-initiating capacity by targeting the FoxM1-Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Hongchao Zhao
- Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, 41 Jianshe Road, Zhengzhou, Henan, China
| | - Chunlin Zhao
- Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, 41 Jianshe Road, Zhengzhou, Henan, China
| | - Haohao Li
- Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, 41 Jianshe Road, Zhengzhou, Henan, China
| | - Danhua Zhang
- Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, 41 Jianshe Road, Zhengzhou, Henan, China.
| | - Guanghui Liu
- Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, 41 Jianshe Road, Zhengzhou, Henan, China.
| |
Collapse
|
5
|
Blume J, Ziętara N, Witzlau K, Liu Y, Sanchez OO, Puchałka J, Winter SJ, Kunze-Schumacher H, Saran N, Düber S, Roy B, Weiss S, Klein C, Wurst W, Łyszkiewicz M, Krueger A. miR-191 modulates B-cell development and targets transcription factors E2A, Foxp1, and Egr1. Eur J Immunol 2018; 49:121-132. [PMID: 30281154 DOI: 10.1002/eji.201847660] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/17/2018] [Accepted: 10/01/2018] [Indexed: 01/07/2023]
Abstract
The interdependence of posttranscriptional gene regulation via miRNA and transcriptional regulatory networks in lymphocyte development is poorly understood. Here, we identified miR-191 as direct upstream modulator of a transcriptional module comprising the transcription factors Foxp1, E2A, and Egr1. Deletion as well as ectopic expression of miR-191 resulted in developmental arrest in B lineage cells, indicating that fine tuning of the combined expression levels of Foxp1, E2A, and Egr1, which in turn control somatic recombination and cytokine-driven expansion, constitutes a prerequisite for efficient B-cell development. In conclusion, we propose that miR-191 acts as a rheostat in B-cell development by fine tuning a key transcriptional program.
Collapse
Affiliation(s)
- Jonas Blume
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Natalia Ziętara
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Katrin Witzlau
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Yanshan Liu
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | | | - Jacek Puchałka
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Samantha J Winter
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | | | - Namita Saran
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Sandra Düber
- Molecular Immunology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Bishnudeo Roy
- Molecular Immunology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Siegfried Weiss
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Molecular Immunology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Centre Munich, Germany.,Technische Universität München-Weihenstephan, Neuherberg/Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Marcin Łyszkiewicz
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Andreas Krueger
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
6
|
Paradoxical role of Id proteins in regulating tumorigenic potential of lymphoid cells. Front Med 2018; 12:374-386. [PMID: 30043222 DOI: 10.1007/s11684-018-0652-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Abstract
A family of transcription factors known as Id proteins, or inhibitor of DNA binding and differentiation, is capable of regulating cell proliferation, survival and differentiation, and is often upregulated in multiple types of tumors. Due to their ability to promote self-renewal, Id proteins have been considered as oncogenes, and potential therapeutic targets in cancer models. On the contrary, certain Id proteins are reported to act as tumor suppressors in the development of Burkitt's lymphoma in humans, and hepatosplenic and innate-like T cell lymphomas in mice. The contexts and mechanisms by which Id proteins can serve in such contradictory roles to determine tumor outcomes are still not well understood. In this review, we explore the roles of Id proteins in lymphocyte development and tumorigenesis, particularly with respect to inhibition of their canonical DNA binding partners known as E proteins. Transcriptional regulation by E proteins, and their antagonism by Id proteins, act as gatekeepers to ensure appropriate lymphocyte development at key checkpoints. We re-examine the derailment of these regulatory mechanisms in lymphocytes that facilitate tumor development. These mechanistic insights can allow better appreciation of the context-dependent roles of Id proteins in cancers and improve considerations for therapy.
Collapse
|
7
|
Luo L, Zhang H, Nian S, Lv C, Ni B, Wang D, Tian Z. Up-regulation of Transcription Factor 3 Is Correlated With Poor Prognosis in Cervical Carcinoma. Int J Gynecol Cancer 2017; 27:1422-1430. [PMID: 28604457 DOI: 10.1097/igc.0000000000001032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES Transcription factor 3 (TCF3, or E2A) is a multifunctional bHLH (basic helix loop helix) transcription factor. The role of TCF3 expression in cancer and the multiple cell signaling pathways that regulate or are influenced by TCF3 are unclear. Therefore, the expression level of TCF3 in patients with cervical squamous cell carcinoma (CSCC) is discussed in this study. METHODS Total RNA was extracted using real-time quantitative reverse transcription-polymerase chain reaction. Western blotting was applied to confirm the results. Immunohistochemistry was used to characterize the expression patterns of TCF3 in CSCC specimens. The close relationship between the expression levels of TCF3 and the 5-year overall survival time was described by survival curves. The association between TCF3 expression and clinicopathological characteristics of 119 CSCC patients was analyzed by Chi-square, Fisher exact test, and Cox regression analysis. TCF3 was overexpressed or inhibited by plasmid transfection, and the proliferation, invasion, and migration of cells were detected using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), wound healing, and Transwell assays. RESULTS The expression of TCF3 was higher in CSCC tissues than in nonmalignant cervical tissues. Messenger RNA (mRNA) and protein in patient tissues were increased compared with nonmalignant cervical tissues. Moreover, the level of expression in early-stage disease was higher than in the advanced stage. From FIGO (International Federation of Gynecology and Obstetrics) stages I to IV, immunohistochemistry staining intensity gradually increased. A high level of expression was closely related to clinical stages. The expression of TCF3 was negatively correlated with overall survival time. TCF3 can promote HeLa cell growth, invasion, and migration in vitro. CONCLUSIONS Based on our results, TCF3 is clearly associated with the progression of CSCC. This is the first time that it has been reported that TCF3 can act as a tumor promoter in cervical cancer and thus might be of great significance in the prognosis of CSCC.
Collapse
Affiliation(s)
- Liwen Luo
- *Department of Pathophysiology and High Altitude Pathology, †Institute of Immunology, PLA, and ‡Battalion 13 of Cadet Brigade, Third Military Medical University; §Department of Emergency, The Second Affiliated Hospital of Chongqing Medical University; and ∥Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
8
|
New insights into transcriptional and leukemogenic mechanisms of AML1-ETO and E2A fusion proteins. ACTA ACUST UNITED AC 2016; 11:285-304. [PMID: 28261265 DOI: 10.1007/s11515-016-1415-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Nearly 15% of acute myeloid leukemia (AML) cases are caused by aberrant expression of AML1-ETO, a fusion protein generated by the t(8;21) chromosomal translocation. Since its discovery, AML1-ETO has served as a prototype to understand how leukemia fusion proteins deregulate transcription to promote leukemogenesis. Another leukemia fusion protein, E2A-Pbx1, generated by the t(1;19) translocation, is involved in acute lymphoblastic leukemias (ALLs). While AML1-ETO and E2A-Pbx1 are structurally unrelated fusion proteins, we have recently shown that a common axis, the ETO/E-protein interaction, is involved in the regulation of both fusion proteins, underscoring the importance of studying protein-protein interactions in elucidating the mechanisms of leukemia fusion proteins. OBJECTIVE In this review, we aim to summarize these new developments while also providing a historic overview of the related early studies. METHODS A total of 218 publications were reviewed in this article, a majority of which were published after 2004.We also downloaded 3D structures of AML1-ETO domains from Protein Data Bank and provided a systematic summary of their structures. RESULTS By reviewing the literature, we summarized early and recent findings on AML1-ETO, including its protein-protein interactions, transcriptional and leukemogenic mechanisms, as well as the recently reported involvement of ETO family corepressors in regulating the function of E2A-Pbx1. CONCLUSION While the recent development in genomic and structural studies has clearly demonstrated that the fusion proteins function by directly regulating transcription, a further understanding of the underlying mechanisms, including crosstalk with other transcription factors and cofactors, and the protein-protein interactions in the context of native proteins, may be necessary for the development of highly targeted drugs for leukemia therapy.
Collapse
|
9
|
Patel D, Chinaranagari S, Chaudhary J. Basic helix loop helix (bHLH) transcription factor 3 (TCF3, E2A) is regulated by androgens in prostate cancer cells. Am J Cancer Res 2015; 5:3407-3421. [PMID: 26807321 PMCID: PMC4697687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/06/2015] [Indexed: 06/05/2023] Open
Abstract
TCF3 (E2A) is a multifunctional basic helix loop helix (bHLH) transcription factor that is over-expressed in prostate cancer (PCa) as compared to normal prostate and that it acts as a tumor promoter in PCa. Given the diverse biological pathways regulated/influenced by TCF3, little is known about the mechanisms that regulate its expression. TCF3 expression in androgen sensitive LNCaP and insensitive C81 PCa cell lines was determined following treatments with androgen receptor (AR) agonist R1881 and antagonist Casodex. In silico analysis was used to discover putative Androgen Response Elements (ARE) in the TCF3 promoter/intron region. Chromatin Immunoprecipitation (ChIP) with AR antibody and luciferase reporter assays on the above mentioned cell lines was used to confirm AR biding and AR dependent transcriptional activity respectively. The results were confirmed by demonstrating TCF3 expression in LNCaP PCa xenograft models. The results suggested that TCF3 transcript increased in response to R1881 in LNCaP cells but was constitutively expressed in C-81 cell lines. The promoter/Intron region of the TCF3 gene was predicted to contain two putative ARE sites ARE1 and ARE2. ChIP after treatment of LNCaP and C81 cells with R1881 and Casodex showed that the ARE1 and ARE2 were bound by AR in LNCaP cells only in the presence of R1881, whereas C81 cells showed constitutive AR binding. Similar results were observed in luciferase reporter assays indicating that TCF3 is activated by AR in LNCaP cell lines whereas it is independent of androgens in C81 cell line. Luciferase reporter assays also confirmed that ARE1 alone drives androgen dependent transcription. TCF3 expression was only observed in castration resistant LNCaP xenografts in castrated mice. In conclusion, we demonstrate that in PCa androgen receptor regulates the expression of TCF3 which is mediated in part via a consensus androgen response element. The shift in TCF3 expression from androgen regulated to androgen independent during prostate cancer progression, together with lack of expression in normal prostate may provide mechanistic basis underlying the transition of androgen receptor from a tumor suppressor to an oncogene in prostate cancer.
Collapse
Affiliation(s)
- Divya Patel
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University Atlanta, GA, USA
| | - Swathi Chinaranagari
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University Atlanta, GA, USA
| | - Jaideep Chaudhary
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University Atlanta, GA, USA
| |
Collapse
|
10
|
Hirano T, Murakami T, Ono H, Sakurai A, Tominaga T, Takahashi T, Nagai K, Doi T, Abe H. A Novel Interaction between FLICE-Associated Huge Protein (FLASH) and E2A Regulates Cell Proliferation and Cellular Senescence via Tumor Necrosis Factor (TNF)-Alpha-p21WAF1/CIP1 Axis. PLoS One 2015. [PMID: 26208142 PMCID: PMC4514670 DOI: 10.1371/journal.pone.0133205] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Dysregulation of the cell proliferation has been implicated in the pathophysiology of a number of diseases. Cellular senescence limits proliferation of cancer cells, preventing tumorigenesis and restricting tissue damage. However, the role of cellular senescence in proliferative nephritis has not been determined. The proliferative peak in experimental rat nephritis coincided with a peak in E2A expression in the glomeruli. Meanwhile, E12 (an E2A-encoded transcription factor) did not promote proliferation of Mesangial cells (MCs) by itself. We identified caspase-8-binding protein FLICE-associated huge protein (FLASH) as a novel E2A-binding partner by using a yeast two-hybrid screening. Knockdown of FLASH suppressed proliferation of MCs. This inhibitory effect was partially reversed by the knockdown of E2A. In addition, the knockdown of FLASH induced cyclin-dependent kinase inhibitor p21WAF1/CIP1 (p21) expression, but did not affect p53 expression. Furthermore, overexpression of E12 and E47 induced p21, but not p53 in MCs, in the absence of FLASH. We also demonstrated that E2A and p21 expression at the peak of proliferation was followed by significant induction of FLASH in mesangial areas in rat proliferative glomerulonephritis. Moreover, we revealed that FLASH negatively regulates cellular senescence via the interaction with E12. We also demonstrated that FLASH is involved in the TNF-α-induced p21 expressions. These results suggest that the functional interaction of E2A and FLASH play an important role in cell proliferation and cellular senescence via regulation of p21 expression in experimental glomerulonephritis.
Collapse
Affiliation(s)
- Takahiro Hirano
- Department of Nephrology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Taichi Murakami
- Department of Nephrology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Hiroyuki Ono
- Department of Nephrology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Akiko Sakurai
- Department of Nephrology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Tatsuya Tominaga
- Department of Nephrology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Toshikazu Takahashi
- Department of Nephrology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Kojiro Nagai
- Department of Nephrology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Toshio Doi
- Department of Nephrology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Hideharu Abe
- Department of Nephrology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
- * E-mail:
| |
Collapse
|
11
|
Beyeler S, Joly S, Fries M, Obermair FJ, Burn F, Mehmood R, Tabatabai G, Raineteau O. Targeting the bHLH transcriptional networks by mutated E proteins in experimental glioma. Stem Cells 2015; 32:2583-95. [PMID: 24965159 DOI: 10.1002/stem.1776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 05/06/2014] [Accepted: 05/19/2013] [Indexed: 01/15/2023]
Abstract
Glioblastomas (GB) are aggressive primary brain tumors. Helix-loop-helix (HLH, ID proteins) and basic HLH (bHLH, e.g., Olig2) proteins are transcription factors that regulate stem cell proliferation and differentiation throughout development and into adulthood. Their convergence on many oncogenic signaling pathways combined with the observation that their overexpression in GB correlates with poor clinical outcome identifies these transcription factors as promising therapeutic targets. Important dimerization partners of HLH/bHLH proteins are E proteins that are necessary for nuclear translocation and DNA binding. Here, we overexpressed a wild type or a dominant negative form of E47 (dnE47) that lacks its nuclear localization signal thus preventing nuclear translocation of bHLH proteins in long-term glioma cell lines and in glioma-initiating cell lines and analyzed the effects in vitro and in vivo. While overexpression of E47 was sufficient to induce apoptosis in absence of bHLH proteins, dnE47 was necessary to prevent nuclear translocation of Olig2 and to achieve similar proapoptotic responses. Transcriptional analyses revealed downregulation of the antiapoptotic gene BCL2L1 and the proproliferative gene CDC25A as underlying mechanisms. Overexpression of dnE47 in glioma-initiating cell lines with high HLH and bHLH protein levels reduced sphere formation capacities and expression levels of Nestin, BCL2L1, and CDC25A. Finally, the in vivo induction of dnE47 expression in established xenografts prolonged survival. In conclusion, our data introduce a novel approach to jointly neutralize HLH and bHLH transcriptional networks activities, and identify these transcription factors as potential targets in glioma.
Collapse
Affiliation(s)
- Sarah Beyeler
- Brain Research Institute, University of Zurich/Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Goodings C, Tripathi R, Cleveland SM, Elliott N, Guo Y, Shyr Y, Davé UP. Enforced expression of E47 has differential effects on Lmo2-induced T-cell leukemias. Leuk Res 2014; 39:100-9. [PMID: 25499232 DOI: 10.1016/j.leukres.2014.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/30/2014] [Accepted: 11/22/2014] [Indexed: 11/18/2022]
Abstract
LIM domain only-2 (LMO2) overexpression in T cells induces leukemia but the molecular mechanism remains to be elucidated. In hematopoietic stem and progenitor cells, Lmo2 is part of a protein complex comprised of class II basic helix loop helix proteins, Tal1and Lyl1. The latter transcription factors heterodimerize with E2A proteins like E47 and Heb to bind E boxes. LMO2 and TAL1 or LYL1 cooperate to induce T-ALL in mouse models, and are concordantly expressed in human T-ALL. Furthermore, LMO2 cooperates with the loss of E2A suggesting that LMO2 functions by creating a deficiency of E2A. In this study, we tested this hypothesis in Lmo2-induced T-ALL cell lines. We transduced these lines with an E47/estrogen receptor fusion construct that could be forced to homodimerize with 4-hydroxytamoxifen. We discovered that forced homodimerization induced growth arrest in 2 of the 4 lines tested. The lines sensitive to E47 homodimerization accumulated in G1 and had reduced S phase entry. We analyzed the transcriptome of a resistant and a sensitive line to discern the E47 targets responsible for the cellular effects. Our results suggest that E47 has diverse effects in T-ALL but that functional deficiency of E47 is not a universal feature of Lmo2-induced T-ALL.
Collapse
Affiliation(s)
- Charnise Goodings
- Departments of Cancer Biology and Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rati Tripathi
- Departments of Cancer Biology and Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Susan M Cleveland
- Departments of Cancer Biology and Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Natalina Elliott
- Departments of Cancer Biology and Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yan Guo
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yu Shyr
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Utpal P Davé
- Departments of Cancer Biology and Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
13
|
Huang A, Zhao H, Quan Y, Jin R, Feng B, Zheng M. E2A predicts prognosis of colorectal cancer patients and regulates cancer cell growth by targeting miR-320a. PLoS One 2014; 9:e85201. [PMID: 24454819 PMCID: PMC3890311 DOI: 10.1371/journal.pone.0085201] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/25/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Transcriptional factor E2A is crucial for the normal development and differentiation of B and T lymphocytes. Dysregulation of E2A leads to leukemia and tumorigenesis of some solid tumors. The expression and clinical significance of E2A as well as its role in colorectal cancer (CRC) are still unknown. This study aims to assess E2A expression in CRC tissues, evaluate its prognosis value, and investigate its role in colon cancer cell growth. METHODS E2A expression in CRC tissues and normal mucosa was detected by immunohistochemical staining; Kaplan-Meier survival curve and Cox regression model were used to evaluate the prognostic value of E2A. Lentivirus was used to construct E2A stably knocked-down cells. MTT assay was employed to detect cell proliferation change; cell cycle was analyzed by flow cytometry; and chromatin immunoprecipitation (ChIP) assay was used to validate the predicted binding target of E2A. RESULTS Expression of E2A was lower in CRC tissues than normal mucosa; low E2A expression correlated with advanced TNM stage and larger tumor size, and predicted poor prognosis of CRC patients. E2A knockdown resulted in increased cell proliferation rate and cell cycle acceleration. ChIP assay showed miR-320a was a direct target of E2A and upregulation of miR-320a in E2A downregulated cells could reverse cell proliferation and cell cycle changes caused by E2A deficiency. CONCLUSIONS E2A is an independent prognostic factor for CRC patients and targets miR-320a to regulate cell proliferation of colon cancer cells.
Collapse
Affiliation(s)
- Ao Huang
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Institute of Digestive Surgery, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Shanghai, China
| | - Hongchao Zhao
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Institute of Digestive Surgery, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Shanghai, China
| | - Yingjun Quan
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Institute of Digestive Surgery, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Shanghai, China
| | - Runsen Jin
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Institute of Digestive Surgery, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Shanghai, China
| | - Bo Feng
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Institute of Digestive Surgery, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Shanghai, China
| | - Minhua Zheng
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Institute of Digestive Surgery, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Shanghai, China
- * E-mail:
| |
Collapse
|
14
|
Abstract
As members of the basic helix-loop-helix (bHLH) family of transcription factors, E proteins function in the immune system by directing and maintaining a vast transcriptional network that regulates cell survival, proliferation, differentiation, and function. Proper activity of this network is essential to the functionality of the immune system. Aberrations in E protein expression or function can cause numerous defects, ranging from impaired lymphocyte development and immunodeficiency to aberrant function, cancer, and autoimmunity. Additionally, disruption of inhibitor of DNA-binding (Id) proteins, natural inhibitors of E proteins, can induce additional defects in development and function. Although E proteins have been investigated for several decades, their study continues to yield novel and exciting insights into the workings of the immune system. The goal of this chapter is to discuss the various classical roles of E proteins in lymphocyte development and highlight new and ongoing research into how these roles, if compromised, can lead to disease.
Collapse
Affiliation(s)
- Ian Belle
- Department of Immunology, Duke University Medical Center, Durham North Carolina, USA.
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham North Carolina, USA
| |
Collapse
|
15
|
Zhao H, Huang A, Li P, Quan Y, Feng B, Chen X, Mao Z, Zhu Z, Zheng M. E2A suppresses invasion and migration by targeting YAP in colorectal cancer cells. J Transl Med 2013; 11:317. [PMID: 24369055 PMCID: PMC3879192 DOI: 10.1186/1479-5876-11-317] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/25/2013] [Indexed: 01/03/2023] Open
Abstract
Background E2A gene, which encodes two basic helix–loop–helix (bHLH) transcription factors E12 and E47, has been identified as regulator of B lymphoid hematopoiesis and suppressor of lymphoma. E47 protein was found to decrease E-cadherin expression and induce epithelial-mesenchymal transition (EMT). However, the role of E2A in colorectal cancer (CRC) metastasis is still elusive. Methods qRT-PCR and semi-qRT-PCR were performed to determine mRNA level of E2A in CRC specimens and colorectal cancer cells. RNAi was employed to downregulate E2A expression and subsequent protein level change was evaluated by immunoblot. Cell invasion and migration capacity were detected by transwell assay using cell culture inserts with or without basement membrane matrix, respectively. Results E2A expression was decreased in metastatic CRC tissues. Invasion and migration assays showed downregulation of E2A increased metastatic capacity of CRC cells while forced expression of E12 or E47 could offset this effect. Both E12 and E47 suppressed EMT induced by E2A downregulation. Moreover, Yes-Associated Protein (YAP) was a downstream target of E2A and suppression of YAP inhibited the pro-migration/invasion of E2A deficiency. Conclusion Our results suggest that E2A suppresses CRC cell metastasis, at least partially if not all, by inhibiting YAP expression.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhihai Mao
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 197 Rui Jin Er Rd, Shanghai 200025, People's Republic of China.
| | | | | |
Collapse
|
16
|
Gow CH, Guo C, Wang D, Hu Q, Zhang J. Differential involvement of E2A-corepressor interactions in distinct leukemogenic pathways. Nucleic Acids Res 2013; 42:137-52. [PMID: 24064250 PMCID: PMC3874172 DOI: 10.1093/nar/gkt855] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
E2A is a member of the E-protein family of transcription factors. Previous studies have reported context-dependent regulation of E2A-dependent transcription. For example, whereas the E2A portion of the E2A-Pbx1 leukemia fusion protein mediates robust transcriptional activation in t(1;19) acute lymphoblastic leukemia, the transcriptional activity of wild-type E2A is silenced by high levels of corepressors, such as the AML1-ETO fusion protein in t(8;21) acute myeloid leukemia and ETO-2 in hematopoietic cells. Here, we show that, unlike the HEB E-protein, the activation domain 1 (AD1) of E2A has specifically reduced corepressor interaction due to E2A-specific amino acid changes in the p300/CBP and ETO target motif. Replacing E2A-AD1 with HEB-AD1 abolished the ability of E2A-Pbx1 to activate target genes and to induce cell transformation. On the other hand, the weak E2A-AD1-corepressor interaction imposes a critical importance on another ETO-interacting domain, downstream ETO-interacting sequence (DES), for corepressor-mediated repression. Deletion of DES abrogates silencing of E2A activity by AML1-ETO in t(8;21) leukemia cells or by ETO-2 in normal hematopoietic cells. Our results reveal an E2A-specific mechanism important for its context-dependent activation and repression function, and provide the first evidence for the differential involvement of E2A-corepressor interactions in distinct leukemogenic pathways.
Collapse
Affiliation(s)
- Chien-Hung Gow
- Department of Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | | | | | | | | |
Collapse
|
17
|
The transcription factor Th-POK negatively regulates Th17 differentiation in Vα14i NKT cells. Blood 2012; 120:4524-32. [PMID: 23034280 DOI: 10.1182/blood-2012-01-406280] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The majority of mouse Vα14 invariant natural killer T (Vα14i NKT) cells produce several cytokines, including IFNγ and IL-4, very rapidly after activation. A subset of these cells, known as NKT17 cells, however, differentiates in the thymus to preferentially produce IL-17. Here, we show that the transcription factor-known as T helper, Poxviruses, and Zinc-finger and Krüppel family, (Th-POK)-represses the formation of NKT17 cells. Vα14i NKT cells from Th-POK-mutant helper deficient (hd/hd) mice have increased transcripts of genes normally expressed by Th17 and NKT17 cells, and even heterozygosity for this mutation leads to dramatically increased numbers of Vα14i NKT cells that are poised to express IL-17, especially in the thymus and lymph nodes. In addition, using gene reporter mice, we demonstrate that NKT17 cells from wild-type mice express lower amounts of Th-POK than the majority population of Vα14i NKT cells. We also show that retroviral transduction of Th-POK represses the expression of the Th17 master regulator RORγT in Vα14i NKT-cell lines. Our data suggest that NKT17-cell differentiation is intrinsically regulated by Th-POK activity, with only low levels of Th-POK permissive for the differentiation of NKT17 cells.
Collapse
|
18
|
Increased expression of bHLH transcription factor E2A (TCF3) in prostate cancer promotes proliferation and confers resistance to doxorubicin induced apoptosis. Biochem Biophys Res Commun 2012; 422:146-51. [PMID: 22564737 DOI: 10.1016/j.bbrc.2012.04.126] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 04/21/2012] [Indexed: 11/20/2022]
Abstract
E2A (TCF3) is a multifunctional basic helix loop helix (bHLH), transcription factor. E2A regulates transcription of target genes by homo- or heterodimerization with cell specific bHLH proteins. In general, E2A promotes cell differentiation, acts as a negative regulator of cell proliferation in normal cells and cancer cell lines and is required for normal B-cell development. Given the diverse biological pathways regulated/influenced by E2A little is known about its expression in cancer. In this study we investigated the expression of E2A in prostate cancer. Unexpectedly, E2A immuno-histochemistry demonstrated increased E2A expression in prostate cancer as compared to normal prostate. Silencing of E2A in prostate cancer cells DU145 and PC3 led to a significant reduction in proliferation due to G1 arrest that was in part mediated by increased CDKN1A(p21) and decreased Id1, Id3 and c-myc. E2A silencing in prostate cancer cell lines also resulted in increased apoptosis due to increased mitochondrial permeability and caspase 3/7 activation. Moreover, silencing of E2A increased sensitivity to doxorubicin induced apoptosis. Based on our results, we propose that E2A could be an upstream regulator of Id1 and c-Myc which are highly expressed in prostate cancer. These results for the first time demonstrate that E2A could in fact acts as a tumor promoter at least in prostate cancer.
Collapse
|
19
|
HEB in the spotlight: Transcriptional regulation of T-cell specification, commitment, and developmental plasticity. Clin Dev Immunol 2012; 2012:678705. [PMID: 22577461 PMCID: PMC3346973 DOI: 10.1155/2012/678705] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 12/12/2011] [Indexed: 12/02/2022]
Abstract
The development of T cells from multipotent progenitors in the thymus occurs by cascades of interactions between signaling molecules and transcription factors, resulting in the loss of alternative lineage potential and the acquisition of the T-cell functional identity. These processes require Notch signaling and the activity of GATA3, TCF1, Bcl11b, and the E-proteins HEB and E2A. We have shown that HEB factors are required to inhibit the thymic NK cell fate and that HEBAlt allows the passage of T-cell precursors from the DN to DP stage but is insufficient for suppression of the NK cell lineage choice. HEB factors are also required to enforce the death of cells that have not rearranged their TCR genes. The synergistic interactions between Notch1, HEBAlt, HEBCan, GATA3, and TCF1 are presented in a gene network model, and the influence of thymic stromal architecture on lineage choice in the thymus is discussed.
Collapse
|
20
|
Abstract
Lymphopoiesis generates mature B, T, and NK lymphocytes from hematopoietic stem cells via a series of increasingly restricted developmental intermediates. The transcriptional networks that regulate these fate choices are composed of both common and lineage-specific components, which combine to create a cellular context that informs the developmental response to external signals. E proteins are an important factor during lymphopoiesis, and E2A in particular is required for normal T- and B-cell development. Although the other E proteins, HEB and E2-2, are expressed during lymphopoiesis and can compensate for some of E2A's activity, E2A proteins have non-redundant functions during early T-cell development and at multiple checkpoints throughout B lymphopoiesis. More recently, a role for E2A has been demonstrated in the generation of lymphoid-primed multipotent progenitors and shown to favor their specification toward lymphoid over myeloid lineages. This review summarizes both our current understanding of the wide-ranging functions of E proteins during the development of adaptive lymphocytes and the novel functions of E2A in orchestrating a lymphoid-biased cellular context in early multipotent progenitors.
Collapse
Affiliation(s)
- Renée F de Pooter
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
21
|
Cornils H, Stegert MR, Hergovich A, Hynx D, Schmitz D, Dirnhofer S, Hemmings BA. Ablation of the kinase NDR1 predisposes mice to the development of T cell lymphoma. Sci Signal 2010; 3:ra47. [PMID: 20551432 DOI: 10.1126/scisignal.2000681] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Defective apoptosis contributes to the development of various human malignancies. The kinases nuclear Dbf2-related 1 (NDR1) and NDR2 mediate apoptosis downstream of the tumor suppressor proteins RASSF1A (Ras association domain family member 1A) and MST1 (mammalian Ste20-like kinase 1). To further analyze the role of NDR1 in apoptosis, we generated NDR1-deficient mice. Although NDR1 is activated by both intrinsic and extrinsic proapoptotic stimuli, which indicates a role for NDR1 in regulating apoptosis, NDR1-deficient T cells underwent apoptosis in a manner similar to that of wild-type cells in response to different proapoptotic stimuli. Analysis of the abundances of NDR1 and NDR2 proteins revealed that loss of NDR1 was functionally compensated for by an increase in the abundance of NDR2 protein. Despite this compensation, NDR1(-/-) and NDR1(+/-) mice were more prone to the development of T cell lymphomas than were wild-type mice. Tumor development in mice and humans was accompanied by a decrease in the overall amounts of NDR proteins in T cell lymphoma samples. Thus, reduction in the abundance of NDR1 triggered a decrease in the total amount of both isoforms. Together, our data suggest that a reduction in the abundances of the NDR proteins results in defective responses to proapoptotic stimuli, thereby facilitating the development of tumors.
Collapse
Affiliation(s)
- Hauke Cornils
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
22
|
Engel I, Hammond K, Sullivan BA, He X, Taniuchi I, Kappes D, Kronenberg M. Co-receptor choice by V alpha14i NKT cells is driven by Th-POK expression rather than avoidance of CD8-mediated negative selection. ACTA ACUST UNITED AC 2010; 207:1015-29. [PMID: 20404101 PMCID: PMC2867285 DOI: 10.1084/jem.20090557] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Mouse natural killer T (NKT) cells with an invariant Vα14-Jα18 rearrangement (Vα14 invariant [Vα14i] NKT cells) are either CD4+CD8− or CD4−CD8−. Because transgenic mice with forced CD8 expression in all T cells exhibited a profound NKT cell deficit, the absence of CD8 has been attributed to negative selection. We now present evidence that CD8 does not serve as a coreceptor for CD1d recognition and that the defect in development in CD8 transgene homozygous mice is the result of a reduction in secondary T cell receptor α rearrangements. Thymocytes from mice hemizygous for the CD8 transgene have a less severe rearrangement defect and have functional CD8+ Vα14i NKT cells. Furthermore, we demonstrate that the transcription factor Th, Poxviruses and Zinc finger, and Krüppel family (Th-POK) is expressed by Vα14i NKT cells throughout their differentiation and is necessary both to silence CD8 expression and for the functional maturity of Vα14i NKT cells. We therefore suggest that Th-POK expression is required for the normal development of Vα14i NKT cells and that the absence of CD8 expression by these cells is a by-product of such expression, as opposed to the result of negative selection of CD8-expressing Vα14i NKT cells.
Collapse
Affiliation(s)
- Isaac Engel
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
D'Cruz LM, Yang CY, Goldrath AW. Transcriptional regulation of NKT cell development and homeostasis. Curr Opin Immunol 2010; 22:199-205. [PMID: 20171073 PMCID: PMC2854242 DOI: 10.1016/j.coi.2010.01.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Accepted: 01/20/2010] [Indexed: 11/29/2022]
Abstract
NKT cells comprise a distinct T cell subset that acquires effector function during development and prior to antigen exposure. NKT cells are of limited antigen specificity but possess the ability to be recruited into an immune response without the need for further differentiation or proliferation and thus may be considered to function as memory cells or as part of the innate immune system. Although the development and maturation of NKT cells share some similarities with conventional T cell populations, many transcriptional regulators and signaling molecules are known to be uniquely required for NKT cell development. Recently, new transcription factors that specify NKT lineage and effector function and novel roles for previously identified transcriptional regulators in the differentiation of the NKT cell population have been discovered.
Collapse
Affiliation(s)
- Louise M D'Cruz
- University of California San Diego, Division of Biology, La Jolla, CA 92093-0377, USA
| | | | | |
Collapse
|
24
|
Transcriptional regulator Id2 controls survival of hepatic NKT cells. Proc Natl Acad Sci U S A 2009; 106:19461-6. [PMID: 19884494 DOI: 10.1073/pnas.0908249106] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Natural killer T cells expressing an invariant T-cell receptor (iNKT) regulate activation of both innate and adaptive immunity in many contexts. iNKT cells accumulate in the liver and rapidly produce prodigious amounts of numerous cytokines upon activation, impacting the immune response to viral infection, immunosurveillance for malignant cells, and liver regeneration. However, little is known about the factors controlling iNKT homeostasis, survival and hepatic localization. Here, we report that the absence of the transcriptional regulator Id2 resulted in a severe, intrinsic defect in the accumulation of hepatic iNKT cells. Id2-deficient iNKT cells showed increased cell death in the liver, although migration and functional activity were not impaired in comparison to Id2-expressing iNKT cells. Id2-deficient iNKT cells exhibited diminished expression of CXCR6, a critical determinant of iNKT cell accumulation in the liver, and of the anti-apoptotic molecules bcl-2 and bcl-X(L), compared to Id2-sufficient iNKT cells. Furthermore, survival and accumulation of iNKT cells lacking Id2 expression was rescued by deficiency in bim, a key pro-apoptotic molecule. Thus, Id2 was necessary to establish a hepatic iNKT cell population, defining a role for Id2 and implicating the Id targets, E protein transcription factors, in the regulation of iNKT cell homeostasis.
Collapse
|
25
|
Jones ME, Kondo M, Zhuang Y. A tamoxifen inducible knock-in allele for investigation of E2A function. BMC DEVELOPMENTAL BIOLOGY 2009; 9:51. [PMID: 19822014 PMCID: PMC2765948 DOI: 10.1186/1471-213x-9-51] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 10/12/2009] [Indexed: 01/02/2023]
Abstract
Background E-proteins are transcription factors important for the development of a variety of cell types, including neural, muscle and lymphocytes of the immune system. E2A, the best characterized E-protein family member in mammals, has been shown to have stage specific roles in cell differentiation, lineage commitment, proliferation, and survival. However, due to the complexity of E2A function, it is often difficult to separate these roles using conventional genetic approaches. Here, we have developed a new genetic model for reversible control of E2A protein activity at physiological levels. This system was created by inserting a tamoxifen-responsive region of the estrogen receptor (ER) at the carboxyl end of the tcfe2a gene to generate E2AER fusion proteins. We have characterized and analyzed the efficiency and kinetics of this inducible E2AER system in the context of B cell development. Results B cell development has been shown previously to be blocked at an early stage in E2A deficient animals. Our E2AER/ER mice demonstrated this predicted block in B cell development, and E2AER DNA binding activity was not detected in the absence of ligand. In vitro studies verified rapid induction of E2AER DNA binding activity upon tamoxifen treatment. While tamoxifen treatment of E2AER/ER mice showed inefficient rescue of B cell development in live animals, direct exposure of bone marrow cells to tamoxifen in an ex vivo culture was sufficient to rescue and support early B cell development from the pre-proB cell stage. Conclusion The E2AER system provides inducible and reversible regulation of E2A function at the protein level. Many previous studies have utilized over-expression systems to induce E2A function, which are complicated by the toxicity often resulting from high levels of E2A. The E2AER model instead restores E2A activity at an endogenous level and in addition, allows for tight regulation of the timing of induction. These features make our E2AER ex vivo culture system attractive to study both immediate and gradual downstream E2A-mediated events.
Collapse
Affiliation(s)
- Mary E Jones
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
26
|
Toyonaga K, Kikuchi H, Yamashita K, Nakayama M, Chijiiwa K, Nakayama T. E2A participates in a fine control of pre-mature B-cell apoptosis mediated by B-cell receptor signaling via transcriptional regulation of survivin, IAP2 and caspase-8 genes. FEBS J 2009; 276:1418-28. [DOI: 10.1111/j.1742-4658.2009.06881.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Yabuki M, Ordinario EC, Cummings WJ, Fujii MM, Maizels N. E2A acts in cis in G1 phase of cell cycle to promote Ig gene diversification. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:408-15. [PMID: 19109172 PMCID: PMC2637363 DOI: 10.4049/jimmunol.182.1.408] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Rearranged Ig genes undergo diversification in sequence and structure initiated by the DNA deaminase, activation-induced deaminase. Ig genes must be transcribed for diversification to occur, but whether there are additional requirements for cis activation has not been established. Here we show, by chromatin immunoprecipitation, that the regulatory factor E2A associates with the rearranged Ig lambda(R) gene in the chicken DT40 B cell line, which performs constitutive Ig gene diversification. By analysis of a DT40 derivative in which polymerized lactose operator tags the rearranged lambda(R) gene, we show that E2A must function in cis to promote diversification and that stimulation of diversification in cis depends on the E2A activation domains. By direct imaging, we show that lambda(R)/E2A colocalizations are most prominent in G(1). We further show that expression of the E2A antagonist Id1 prevents lambda(R)/E2A colocalizations in G(1) and impairs diversification but not transcription of lambda(R). Thus, E2A acts in cis to promote Ig gene diversification, and G(1) phase is the critical window for E2A action.
Collapse
Affiliation(s)
- Munehisa Yabuki
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98195-7650
| | - Ellen C. Ordinario
- Department of Biochemistry, University of Washington School of Medicine, Seattle, Washington 98195-7650
| | - W. Jason Cummings
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98195-7650
| | - Monica M. Fujii
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98195-7650
| | - Nancy Maizels
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98195-7650
- Department of Biochemistry, University of Washington School of Medicine, Seattle, Washington 98195-7650
| |
Collapse
|
28
|
Control of pathogenicity and disease specificity of a T-lymphomagenic gammaretrovirus by E-box motifs but not by an overlapping glucocorticoid response element. J Virol 2008; 83:336-46. [PMID: 18945767 DOI: 10.1128/jvi.01368-08] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although transcription factors of the basic helix-loop-helix family have been shown to regulate enhancers of lymphomagenic gammaretroviruses through E-box motifs, the overlap of an E-box motif (Egre) with the glucocorticoid response element (GRE) has obscured their function in vivo. We report here that Egre, but not the GRE, affects disease induction by the murine T-lymphomagenic SL3-3 virus. Mutating all three copies of Egre prolonged the tumor latency period from 60 to 109 days. Further mutating an E-box motif (Ea/s) outside the enhancer prolonged the latency period to 180 days, suggesting that Ea/s works as a backup site for Egre. While wild-type SL3-3 and GRE and Ea/s mutants exclusively induced T-cell lymphomas with wild-type latencies mainly of the CD4(+) CD8(-) phenotype, Egre as well as the Egre and Ea/s mutants induced B-cell lymphomas and myeloid leukemia in addition to T-cell lymphomas. T-cell lymphomas induced by the two Egre mutants had the same phenotype as those induced by wild-type SL3-3, indicating the incomplete disruption of T-cell lymphomagenesis, which is in contrast to previous findings for a Runx site mutant of SL3-3. Mutating the Egre site or Egre and Ea/s triggered several tumor phenotype-associated secondary enhancer changes encompassing neighboring sites, none of which led to the regeneration of an E-box motif. Taken together, our results demonstrate a role for the E-box but not the GRE in T lymphomagenesis by SL3-3, unveil an inherent broader disease specificity of the virus, and strengthen the notion of selection for more potent enhancer variants of mutated viruses during tumor development.
Collapse
|
29
|
Ko J, Patel N, Ikawa T, Kawamoto H, Frank O, Rivera RR, Van Etten RA, Murre C. Suppression of E-protein activity interferes with the development of BCR-ABL-mediated myeloproliferative disease. Proc Natl Acad Sci U S A 2008; 105:12967-72. [PMID: 18725623 PMCID: PMC2529058 DOI: 10.1073/pnas.0805073105] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Indexed: 12/21/2022] Open
Abstract
E-proteins are a class of helix-loop-helix (HLH) proteins, which play multiple roles throughout lymphoid development. The DNA binding activities of the E-proteins are regulated by a distinct class of antagonistic HLH proteins, named Id1-4. Here we demonstrate that Id2 deficient mice in a C57BL/6 genetic background exhibit increased cellularity in the granulocyte/myeloid progenitor compartment and show significantly higher numbers of maturing neutrophils. Within 6 months of age, Id2 deficient mice succumbed from overwhelming granulocytosis. The disease closely mimicked the distinctive features of human chronic myeloid leukemia: leukocytosis with maturing neutrophils, splenomegaly, hepatomegaly, and myeloid infiltration into peripheral tissues, including spleen, liver, and lungs. Strikingly, forced Id2 expression in murine bone marrow cells substantially delayed the onset of myeloproliferative disease (MPD). Collectively, these studies show that suppression of E-protein activity interferes with the development of BCR-ABL-mediated MPD.
Collapse
Affiliation(s)
- Jinkyung Ko
- *Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093
| | - Nihal Patel
- Tufts Medical Center, 800 Washington Street, Boston, MA 02111
| | - Tomokatsu Ikawa
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama 230-0045, Japan; and
| | - Hiroshi Kawamoto
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama 230-0045, Japan; and
| | - Oliver Frank
- III Medizinische Klinik, Medizinische Fakultät Mannheim der Universität Heidelberg, Wiesbadener Strasse 7-11, 68305 Mannheim, Germany
| | - Richard R. Rivera
- *Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093
| | | | - Cornelis Murre
- *Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093
| |
Collapse
|
30
|
Bhalla S, Spaulding C, Brumbaugh RL, Zagort DE, Massari ME, Murre C, Kee BL. differential roles for the E2A activation domains in B lymphocytes and macrophages. THE JOURNAL OF IMMUNOLOGY 2008; 180:1694-703. [PMID: 18209066 DOI: 10.4049/jimmunol.180.3.1694] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The E2A gene encodes two E protein/class I basic helix-loop-helix transcription factors, E12 and E47, that are essential for B lymphopoiesis. In addition to the DNA-binding and protein dimerization domain, the E proteins share two highly conserved transcription activation domains. In this study, we show that both activation domains are required for optimal E2A-dependent transcription. Surprisingly, however, neither activation domain is required for E2A to rescue B lymphopoiesis from E2A(-/-) hemopoietic progenitors, although the N terminus of E2A, which harbors some transcription capacity, is required. Therefore, the E protein activation domains function redundantly in promoting B cell development. In contrast, the N-terminal activation domain, AD1, is required for a newly described ability of E2A to suppress macrophage development in vitro. Our findings demonstrate distinct functionalities for the E protein activation domains in B lymphocytes and macrophages.
Collapse
Affiliation(s)
- Savita Bhalla
- Department of Pathology, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Bhattacharya S, Guo H, Ray RM, Johnson LR. Basic helix-loop-helix protein E47-mediated p21Waf1/Cip1 gene expression regulates apoptosis of intestinal epithelial cells. Biochem J 2008; 407:243-54. [PMID: 17617061 PMCID: PMC2049013 DOI: 10.1042/bj20070293] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Inhibition of ornithine decarboxylase by DFMO (alpha-difluromethylornithine) and subsequent polyamine depletion increases p21Cip1 protein, induces cell cycle arrest and confers resistance to apoptosis on intestinal epithelial cells. However, the mechanism by which polyamines regulate p21Cip1 expression and apoptosis is unknown. On the basis of the involvement of p21Cip1 as an anti-apoptotic protein, we tested the role of p21Cip1 in providing protection from apoptosis. Simultaneously, we investigated the role of E47, a basic helix-loop-helix protein, in the regulation of p21Cip1 gene transcription. Gene-specific siRNA (small interfering RNA) decreased E47 protein levels, increased p21Cip1 promoter activity and protein levels and protected cells from TNFalpha (tumour necrosis factor alpha)-induced apoptosis. Knockdown of p21Cip1 protein by siRNA resulted in cells becoming more susceptible to apoptosis. In contrast, incubation with EGF (epidermal growth factor) stimulated p21Cip1 mRNA and protein levels and rescued cells from apoptosis. During apoptosis, the level of E47 mRNA increased, causing a concomitant decrease in p21Cip1 mRNA and protein levels. Polyamine depletion decreased E47 mRNA levels and cell survival. Caspase 3-mediated cleavage of p130Cas has been implicated in p21Cip1 transcription. The progression of apoptosis led to a caspase 3-dependent cleavage of p130Cas and generated a 31 kDa fragment, which translocated to the nucleus, associated with nuclear E47 and inhibited p21Cip1 transcription. Polyamine depletion inhibited all these effects. Transient expression of the 31 kDa fragment prevented the expression of p21Cip1 protein and increased apoptosis. These results implicate p21Cip1 as an anti-apoptotic protein and suggest a role for polyamines in the regulation of p21Cip1 via the transcription repressor E47. Caspase-mediated cleavage of p130Cas generates a 31 kDa fragment, inhibits p21Cip1 transcription and acts as an amplifier of apoptotic signalling.
Collapse
Affiliation(s)
- Sujoy Bhattacharya
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | |
Collapse
|
32
|
Lietz A, Janz M, Sigvardsson M, Jundt F, Dörken B, Mathas S. Loss of bHLH transcription factor E2A activity in primary effusion lymphoma confers resistance to apoptosis. Br J Haematol 2007; 137:342-8. [PMID: 17456056 DOI: 10.1111/j.1365-2141.2007.06583.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Similar to classical Hodgkin lymphoma (HL) tumour cells, primary effusion lymphoma (PEL) originates from mature B cells but displays a non-B cell phenotype, the mechanisms and consequences of which are not yet understood. This study showed that PEL lacked DNA binding activity of the B cell-determining transcription factors E2A, EBF and Pax5. PEL overexpressed the E2A antagonists ABF-1 and Id2, which have been described to block the B-cell differentiation program in classical HL. However, in contrast to HL cells, B lineage-inappropriate genes were not similarly upregulated in PEL, and reconstitution of B cell-specific E2A homodimer activity in PEL induced apoptosis. These data demonstrate that lineage infidelity in PEL is not as pronounced as in HL, and that the loss of the B cell-specific transcription factor E2A in PEL is implicated in apoptosis protection.
Collapse
Affiliation(s)
- Andreas Lietz
- Max-Delbrück-Centre for Molecular Medicine, Berlin and Haematology, Oncology and Tumorimmunology, Chartié, Medical University Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Boos MD, Yokota Y, Eberl G, Kee BL. Mature natural killer cell and lymphoid tissue-inducing cell development requires Id2-mediated suppression of E protein activity. ACTA ACUST UNITED AC 2007; 204:1119-30. [PMID: 17452521 PMCID: PMC2118569 DOI: 10.1084/jem.20061959] [Citation(s) in RCA: 303] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Id2 transcriptional repressor is essential for development of natural killer (NK) cells, lymphoid tissue–inducing (LTi) cells, and secondary lymphoid tissues. Id2 was proposed to regulate NK and LTi lineage specification from multipotent progenitors through suppression of E proteins. We report that NK cell progenitors are not reduced in the bone marrow (BM) of Id2−/− mice, demonstrating that Id2 is not essential for NK lineage specification. Rather, Id2 is required for development of mature (m) NK cells. We define the mechanism by which Id2 functions by showing that a reduction in E protein activity, through deletion of E2A, overcomes the need for Id2 in development of BM mNK cells, LTi cells, and secondary lymphoid tissues. However, mNK cells are not restored in the blood or spleen of Id2−/−E2A−/− mice, suggesting a role for Id2 in suppression of alternative E proteins after maturation. Interestingly, the few splenic mNK cells in Id2−/− and Id2−/−E2A−/− mice have characteristics of thymus-derived NK cells, which develop in the absence of Id2, implying a differential requirement for Id2 in BM and thymic mNK development. Our findings redefine the essential functions of Id2 in lymphoid development and provide insight into the dynamic regulation of E and Id proteins during this process.
Collapse
Affiliation(s)
- Markus D Boos
- Committee on Immunology, University of Chicago, Chicago, IL 60657, USA
| | | | | | | |
Collapse
|
34
|
Xu W, Kee BL. Growth factor independent 1B (Gfi1b) is an E2A target gene that modulates Gata3 in T-cell lymphomas. Blood 2007; 109:4406-14. [PMID: 17272506 DOI: 10.1182/blood-2006-08-043331] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The E2A transcription factors are required for normal T lymphopoiesis and to prevent T-lymphocyte progenitor transformation. Ectopic expression of E2A proteins in E2A-deficient lymphomas results in growth arrest and apoptosis, indicating that these cells remain responsive to the targets of E2A. Here we identify the transcriptional repressor growth factor independent 1B (Gfi1b) as a target of E2A that promotes growth arrest and apoptosis in lymphomas. Gfi1b expression in primary T-lymphocyte progenitors is dependent on E2A and excess Gfi1b prevents the outgrowth of T lymphocyte progenitors in vitro. Gfi1b represses expression of Gata3, a transcription factor whose appropriate regulation is required for survival of lymphomas and T-lymphocyte progenitors. We also show that ectopic expression of Gata3 in lymphomas promotes expression of Gfi1b, indicating that these proteins may function in an autoregulatory loop that maintains appropriate levels of Gata3. Therefore, we propose that E2A proteins prevent lymphoma cell expansion, at least in part through regulation of Gfi1b and modulation of Gata3 expression.
Collapse
Affiliation(s)
- Wei Xu
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
35
|
Cannarile MA, Lind NA, Rivera R, Sheridan AD, Camfield KA, Wu BB, Cheung KP, Ding Z, Goldrath AW. Transcriptional regulator Id2 mediates CD8+ T cell immunity. Nat Immunol 2006; 7:1317-25. [PMID: 17086188 DOI: 10.1038/ni1403] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Accepted: 09/29/2006] [Indexed: 11/08/2022]
Abstract
Transcriptional programs that initiate and sustain the proliferation, differentiation and survival of CD8(+) T cells during immune responses are not completely understood. Here we show that inhibitor of DNA binding 2 (Id2), an antagonist of E protein transcription factors, was upregulated in CD8(+) T cells during infection and that expression of Id2 was maintained in memory CD8(+) T cells. Although Id2-deficient naive CD8(+) T cells recognized antigen and proliferated normally early after infection, effector CD8(+) T cells did not accumulate because the cells were highly susceptible to apoptosis. Id2-deficient CD8(+) T cells responding to infection had changes in the expression of genes that influence survival and had altered memory formation. Our data emphasize the importance of Id2 in regulating gene expression by CD8(+) T cells and the magnitude of effector responses, suggesting a mechanism involving Id protein- and E protein-mediated survival and differentiation of mature T cells.
Collapse
Affiliation(s)
- Michael A Cannarile
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lazorchak AS, Wojciechowski J, Dai M, Zhuang Y. E2A promotes the survival of precursor and mature B lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 177:2495-504. [PMID: 16888011 PMCID: PMC2228329 DOI: 10.4049/jimmunol.177.4.2495] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The basic helix-loop-helix transcription factor E2A is an essential regulator of B lymphocyte lineage commitment and is required to activate the expression of numerous B lineage-specific genes. Studies involving ectopic expression of Id proteins, which inhibit E2A as well as other basic helix-loop-helix proteins such as HEB, suggest additional roles of E2A at later stages of B cell development. We use E2A-deficient and E2A and HEB double-deficient pre-B cell lines to directly assess the function of E2A and HEB in B cell development after lineage commitment. We show that, in contrast to the established role of E2A in lineage commitment, elimination of E2A and HEB in pre-B cell lines has only a modest negative impact on B lineage gene expression. However, E2A single and E2A and HEB double-deficient but not HEB single-deficient cell lines show dramatically enhanced apoptosis upon growth arrest. To address the possible role of E2A in the regulation of B cell survival in vivo, we crossed IFN-inducible Cre-transgenic mice to E2A conditional mice. Cre-mediated E2A deletion resulted in a block in bone marrow B cell development and a significant reduction in the proportion and total number of splenic B cells in these mice. We show that Cre-mediated deletion of E2A in adoptively transferred mature B cells results in the rapid depletion of the transferred population within 24 h of Cre induction. These results reveal that E2A is not required to maintain B cell fate but is essential in promoting pre-B and B cell survival.
Collapse
Affiliation(s)
- Adam S. Lazorchak
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | | | - Meifang Dai
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
37
|
Wang D, Claus CL, Vaccarelli G, Braunstein M, Schmitt TM, Zúñiga-Pflücker JC, Rothenberg EV, Anderson MK. The basic helix-loop-helix transcription factor HEBAlt is expressed in pro-T cells and enhances the generation of T cell precursors. THE JOURNAL OF IMMUNOLOGY 2006; 177:109-19. [PMID: 16785505 DOI: 10.4049/jimmunol.177.1.109] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The basic helix-loop-helix (bHLH) transcription factors HEB and E2A are critical mediators of gene regulation during lymphocyte development. We have cloned a new transcription factor, called HEBAlt, from a pro-T cell cDNA library. HEBAlt is generated by alternative transcriptional initiation and splicing from the HEB gene locus, which also encodes the previously characterized E box protein HEBCan. HEBAlt contains a unique N-terminal coding exon (the Alt domain) that replaces the first transactivation domain of HEBCan. Downstream of the Alt domain, HEBAlt is identical to HEBCan, including the DNA binding domain. HEBAlt is induced in early thymocyte precursors and down-regulated permanently at the double negative to double positive (DP) transition, whereas HEBCan mRNA expression peaks at the DP stage of thymocyte development. HEBAlt mRNA is up-regulated synergistically by a combination of HEBCan activity and Delta-Notch signaling. Retroviral transduction of HEBAlt or HEBCan into hemopoietic stem cells followed by OP9-DL1 coculture revealed that HEBAlt-transduced precursors generated more early T lineage precursors and more DP pre-T cells than control transduced cells. By contrast, HEBCan-transduced cells that maintained high level expression of the HEBCan transgene were inhibited in expansion and progression through T cell development. HEB(-/-) fetal liver precursors transduced with HEBAlt were rescued from delayed T cell specification, but HEBCan-transduced HEB(-/-) precursors were not. Therefore, HEBAlt and HEBCan are functionally distinct transcription factors, and HEBAlt is specifically required for the efficient generation of early T cell precursors.
Collapse
Affiliation(s)
- Duncheng Wang
- Sunnybrook Research Institute, and Department of Immunology, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Xi H, Schwartz R, Engel I, Murre C, Kersh GJ. Interplay between RORgammat, Egr3, and E proteins controls proliferation in response to pre-TCR signals. Immunity 2006; 24:813-826. [PMID: 16782036 DOI: 10.1016/j.immuni.2006.03.023] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2005] [Revised: 12/20/2005] [Accepted: 03/21/2006] [Indexed: 10/24/2022]
Abstract
The response of thymocytes to pre-T cell receptor (pre-TCR) signaling includes proliferation and gene rearrangement, two cellular processes that are incompatible. The control of proliferation by pre-TCR signals depends on the activities of the transcription factors RORgammat, Egr3, E12, and E47. Here, we describe a regulatory network in which interplay between these factors ensures transient proliferation that is temporally distinct from gene rearrangement. RORgammat expression was elevated after pre-TCR signaling, and RORgammat promoted gene rearrangement in CD4+, CD8+ cells by inhibiting cell division, promoting survival via Bcl-X(L), and inducing Rag2. Egr3 was transiently induced by pre-TCR signals and promoted a distinct proliferative phase by reducing E protein-dependent RORgammat expression and interacting with RORgammat to prevent induction of target genes. After Egr3 subsided, the expression and function of RORgammat increased. Thus, transient induction of Egr3 delays the effects of RORgammat and enables pre-TCR signaling to induce both proliferation and gene rearrangement.
Collapse
MESH Headings
- Animals
- E-Box Elements
- Early Growth Response Protein 3/genetics
- Early Growth Response Protein 3/metabolism
- Gene Rearrangement, T-Lymphocyte
- Inhibitor of Differentiation Proteins/metabolism
- Lymphocyte Activation/genetics
- Mice
- Mice, Mutant Strains
- Nuclear Receptor Subfamily 1, Group F, Member 3
- Promoter Regions, Genetic
- RNA-Binding Proteins/genetics
- Rats
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/metabolism
- Signal Transduction
- T-Lymphocytes/immunology
- TCF Transcription Factors/metabolism
- Transcription Factor 7-Like 1 Protein
Collapse
Affiliation(s)
- Hongkang Xi
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, 101 Woodruff Circle, Atlanta, Georgia 30322
| | - Ruth Schwartz
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92903
| | - Isaac Engel
- La Jolla Institute for Allergy and Immunology, San Diego, California 92121
| | - Cornelis Murre
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92903
| | - Gilbert J Kersh
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, 101 Woodruff Circle, Atlanta, Georgia 30322.
| |
Collapse
|
39
|
Graux C, Cools J, Michaux L, Vandenberghe P, Hagemeijer A. Cytogenetics and molecular genetics of T-cell acute lymphoblastic leukemia: from thymocyte to lymphoblast. Leukemia 2006; 20:1496-510. [PMID: 16826225 DOI: 10.1038/sj.leu.2404302] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
For long, T-cell acute lymphoblastic leukemia (T-ALL) remained in the shadow of precursor B-ALL because it was more seldom, and showed a normal karyotype in more than 50% of cases. The last decennia, intense research has been carried out on different fronts. On one side, development of normal thymocyte and its regulation mechanisms have been studied in multiple mouse models and subsequently validated. On the other side, molecular cytogenetics (fluorescence in situ hybridization) and mutation analysis revealed cytogenetically cryptic aberrations in almost all cases of T-ALL. Also, expression microarray analysis disclosed gene expression signatures that recapitulate specific stages of thymocyte development. Investigations are still very much actual, fed by the discovery of new genetic aberrations. In this review, we present a summary of the current cytogenetic changes associated with T-ALL. The genes deregulated by translocations or mutations appear to encode proteins that are also implicated in T-cell development, which prompted us to review the 'normal' and 'leukemogenic' functions of these transcription regulators. To conclude, we show that the paradigm of multistep leukemogenesis is very much applicable to T-ALL and that the different genetic insults collaborate to maintain self-renewal capacity, and induce proliferation and differentiation arrest of T-lymphoblasts. They also open perspectives for targeted therapies.
Collapse
Affiliation(s)
- C Graux
- Department of Hematology, Cliniques Universitaires St Luc, Catholic University of Louvain, Brussels, Belgium
| | | | | | | | | |
Collapse
|
40
|
Schwartz R, Engel I, Fallahi-Sichani M, Petrie HT, Murre C. Gene expression patterns define novel roles for E47 in cell cycle progression, cytokine-mediated signaling, and T lineage development. Proc Natl Acad Sci U S A 2006; 103:9976-81. [PMID: 16782810 PMCID: PMC1502564 DOI: 10.1073/pnas.0603728103] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Indexed: 11/18/2022] Open
Abstract
In maturing T lineage cells, the helix-loop-helix protein E47 has been shown to enforce a critical proliferation and developmental checkpoint commonly referred to as beta selection. To examine how E47 regulates cellular expansion and developmental progression, we have used an E2A-deficient lymphoma cell line and DNA microarray analysis to identify immediate E47 target genes. Hierarchical cluster analysis of gene expression patterns revealed that E47 coordinately regulates the expression of genes involved in cell survival, cell cycle progression, lipid metabolism, stress response, and lymphoid maturation. These include Plcgamma2, Cdk6, CD25, Tox, Gadd45a, Gadd45b, Gfi1, Gfi1b, Socs1, Socs3, Id2, Eto2, and Xbp1. We propose a regulatory network linking Janus kinase (JAK)/signal transducer and activator of transcription (STAT)-mediated signaling, E47, and suppressor of cytokine signaling (SOCS) proteins in a common pathway. Finally, we suggest that the aberrant activation of Cdk6 in E47-deficient T lineage cells contributes to the development of lymphoid malignancy.
Collapse
Affiliation(s)
- Ruth Schwartz
- *Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0377; and
| | - Isaac Engel
- *Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0377; and
| | | | - Howard T. Petrie
- Scripps/Florida Research Institute, 5353 Parkside Drive, RF-1, Jupiter, FL 33458
| | - Cornelis Murre
- *Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0377; and
| |
Collapse
|
41
|
Slattery C, McMorrow T, Ryan MP. Overexpression of E2A proteins induces epithelial-mesenchymal transition in human renal proximal tubular epithelial cells suggesting a potential role in renal fibrosis. FEBS Lett 2006; 580:4021-30. [PMID: 16814783 DOI: 10.1016/j.febslet.2006.06.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 06/06/2006] [Accepted: 06/09/2006] [Indexed: 11/24/2022]
Abstract
Epithelial-mesenchymal transition (EMT), a process whereby renal tubular epithelial cells lose phenotype and gain fibroblast-like characteristics, has been demonstrated to contribute significantly to the development of renal fibrosis. The immunosuppressant cyclosporine A (CsA) has been shown to induce renal fibrosis, a major complication of CsA therapy. The mechanisms that drive CsA-induced fibrosis remain undefined, however, CsA has been demonstrated to induce EMT in human renal proximal tubular epithelial cells (RPTEC). E2A transcription factors were identified as being upregulated by CsA treatment. To further examine the role of E2A proteins in EMT, E12 and E47 were overexpressed, alone and in combination, in human RPTEC. Both E12 and E47 elicited EMT effects on tubular epithelial cells with E47 more potent in inducing the fibroblast-like phenotype. These results indicate the important role of the E2A gene products in the progression of CsA-induced EMT and provide novel insights into CsA-induced renal fibrosis.
Collapse
Affiliation(s)
- Craig Slattery
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
42
|
Abstract
Transcriptional regulation of T-cell development involves successive interactions between complexes of transcriptional regulators and their binding sites within the regulatory regions of each gene. The regulatory modules that control expression of T-lineage genes frequently include binding sites for a core set of regulators that set the T-cell-specific background for signal-dependent control, including GATA-3, Notch/CSL, c-myb, TCF-1, Ikaros, HEB/E2A, Ets, and Runx factors. Additional regulators in early thymocytes include PU.1, Id-2, SCL, Spi-B, Erg, Gfi-1, and Gli. Many of these factors are involved in simultaneous regulation of non-T-lineage genes, T-lineage genes, and genes involved in cell cycle control, apoptosis, or survival. Potential and known interactions between early thymic transcription factors such as GATA-3, SCL, PU.1, Erg, and Spi-B are explored. Regulatory modules involved in the expression of several critical T-lineage genes are described, and models are presented for shifting occupancy of the DNA-binding sites in the regulatory modules of pre-Talpha, T-cell receptor beta (TCRbeta), recombinase activating genes 1 and 2 (Rag-1/2), and CD4 during T-cell development. Finally, evidence is presented that c-kit, Erg, Hes-1, and HEBAlt are expressed differently in Rag-2(-/-) thymocytes versus normal early thymocytes, which provide insight into potential regulatory interactions that occur during normal T-cell development.
Collapse
Affiliation(s)
- Michele K Anderson
- Sunnybrook and Women's College Health Sciences Center, Division of Molecular and Cell Biology, University of Toronto, Department of Immunology, Toronto, ON, Canada.
| |
Collapse
|
43
|
Bloor AJC, Kotsopoulou E, Hayward P, Champion BR, Green AR. RFP represses transcriptional activation by bHLH transcription factors. Oncogene 2005; 24:6729-36. [PMID: 16007160 DOI: 10.1038/sj.onc.1208828] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Basic helix-loop-helix (bHLH) transcription factors play a pivotal role in the regulation of tumorigenesis, and also in a wide range of other developmental processes in diverse species from yeast to humans. Here we demonstrate for the first time that Ret finger protein (RFP), a member of the TRIM family of proteins initially identified as a recombined transforming gene from a human lymphoma, is a novel interaction partner for four different bHLH proteins (SCL, E47, MyoD and mASH-1), but does not interact with GATA-1 or PU.1. Interaction with SCL required the B-box and first coiled-coil region of RFP together with the bHLH domain of SCL. RFP was able to repress transcriptional activation by E47, MyoD and mASH-1, but not by members of several other transcription factor families. Transcriptional repression by RFP was trichostatin A sensitive and did not involve an Id-like mechanism or ubiquitination with subsequent degradation of bHLH proteins. Instead, our results suggest that bHLH transcription factors are regulated by a previously undescribed interaction with RFP, which functions to recruit HDAC and/or Polycomb proteins and thus repress target genes of bHLH proteins. These results reveal an unexpected link between the bHLH and TRIM protein families.
Collapse
Affiliation(s)
- Adrian J C Bloor
- Department of Haematology, Cambridge Institute for Medical Research, Cambridge University, Hills Road, Cambridge CB2 2XY, UK
| | | | | | | | | |
Collapse
|
44
|
Kee BL. Id3 induces growth arrest and caspase-2-dependent apoptosis in B lymphocyte progenitors. THE JOURNAL OF IMMUNOLOGY 2005; 175:4518-27. [PMID: 16177095 DOI: 10.4049/jimmunol.175.7.4518] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The E-protein transcription factors E2A, HEB, and E2-2 play an essential role in the differentiation, proliferation, and survival of B lymphocyte progenitors (BLPs). In this study, we show that the E-protein antagonist Id3 induces apoptosis of both primary and transformed BLPs through a caspase-2-dependent mechanism that does not require p53 and is not inhibited by bcl-2. Id3 expressing B lineage cells show reduced expression of known E-protein target genes as well as multiple genes involved in cell proliferation. We hypothesize that Id3 induces activation of caspase-2 as a consequence of severe or "catastrophic" growth arrest. In support of this hypothesis, we show that chemical-induced growth arrest is sufficient to activate caspase-2 and induce apoptosis in BLPs. Our data suggest that E-proteins function in the control of differentiation and proliferation and that diminished E-protein activity results in apoptosis as a consequence of growth arrest.
Collapse
Affiliation(s)
- Barbara L Kee
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
45
|
Abstract
Helix-loop-helix (HLH) proteins are transcriptional regulators that control a wide variety of developmental pathways in both invertebrate and vertebrate organisms. Results obtained in the past decade have shown that HLH proteins also contribute to the development of lymphoid lineages. A subset of HLH proteins, the 'E proteins', seems to be particularly important for proper lymphoid development. Members of the E protein family include E12, E47, E2-2 and HEB. The E proteins contribute to B lineage- and T lineage-specific gene expression programs, regulate lymphocyte survival and cellular proliferation, activate the rearrangement of antigen receptor genes and control progression through critical developmental checkpoints. This review discusses HLH proteins in lymphocyte development and homeostasis.
Collapse
Affiliation(s)
- Cornelis Murre
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92903, USA.
| |
Collapse
|
46
|
Itkin-Ansari P, Marcora E, Geron I, Tyrberg B, Demeterco C, Hao E, Padilla C, Ratineau C, Leiter A, Lee JE, Levine F. NeuroD1 in the endocrine pancreas: Localization and dual function as an activator and repressor. Dev Dyn 2005; 233:946-53. [PMID: 15906379 DOI: 10.1002/dvdy.20443] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The basic helix-loop-helix transcription factor NeuroD1 regulates cell fate in the nervous system but previously has not been considered to function similarly in the endocrine pancreas due to its reported expression in all islet cell types in the newborn mouse. Because we found that NeuroD1 potently represses somatostatin expression in vitro, its pattern of expression was examined in both strains of mice in which lacZ has been introduced into the NeuroD1 locus by homologous recombination. Analysis of adult transgenic mice revealed that NeuroD1 is predominantly expressed in beta-cells and either absent or expressed below the limit of lacZ detection in mature alpha-, delta-, or PP cells. Consistent with a previous report, NeuroD1 colocalizes with glucagon as well as insulin in immature islets of the newborn mouse. However, no colocalization of NeuroD1with somatostatin was detected in the newborn. In vitro, ectopic expression of NeuroD1 in TRM-6/PDX-1, a human pancreatic delta-cell line, resulted in potent repression of somatostatin concomitant with induction of the beta-cell hormones insulin and islet amyloid polypeptide. Additionally, NeuroD1 induced expression of Nkx2.2, a transcription factor expressed in beta- but not delta-cells. Transfection studies using insulin and somatostatin promoters confirm the ability of NeuroD1 to act as both a transcriptional repressor and activator in the same cell, suggesting a more complex role for NeuroD1 in the establishment and/or maintenance of mature endocrine cells than has been recognized previously.
Collapse
Affiliation(s)
- P Itkin-Ansari
- Cancer Center, University of California, San Diego, School of Medicine, Stem Cell Program, The Burnham Institute, La Jolla, California 92093-0816, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Song S, Cooperman J, Letting DL, Blobel GA, Choi JK. Identification of cyclin D3 as a direct target of E2A using DamID. Mol Cell Biol 2004; 24:8790-802. [PMID: 15367695 PMCID: PMC516727 DOI: 10.1128/mcb.24.19.8790-8802.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factor E2A can promote precursor B cell expansion, promote G(1) cell cycle progression, and induce the expressions of multiple G(1)-phase cyclins. To better understand the mechanism by which E2A induces these cyclins, we characterized the relationship between E2A and the cyclin D3 gene promoter. E2A transactivated the 1-kb promoter of cyclin D3, which contains two E boxes. However, deletion of the E boxes did not disrupt the transactivation by E2A, raising the possibility of indirect activation via another transcription factor or binding of E2A to non-E-box DNA elements. To distinguish between these two possibilities, promoter occupancy was examined using the DamID approach. A fusion construct composed of E2A and the Escherichia coli DNA adenosine methyltransferase (E47Dam) was subcloned in lentivirus vectors and used to transduce precursor B-cell and myeloid progenitor cell lines. In both cell types, specific adenosine methylation was identified at the cyclin D3 promoter. Chromatin immunoprecipitation analysis confirmed the DamID findings and localized the binding to within 1 kb of the two E boxes. The methylation by E47Dam was not disrupted by mutations in the E2A portion that block DNA binding. We conclude that E2A can be recruited to the cyclin D3 promoter independently of E boxes or E2A DNA binding activity.
Collapse
Affiliation(s)
- Siyuan Song
- Children's Hospital of Philadelphia, 802F ARC, 3516 Civic Center Blvd., Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
48
|
Zhang J, Kalkum M, Yamamura S, Chait BT, Roeder RG. E protein silencing by the leukemogenic AML1-ETO fusion protein. Science 2004; 305:1286-9. [PMID: 15333839 DOI: 10.1126/science.1097937] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The AML1-ETO fusion protein, generated by the t(8;21) chromosomal translocation, is causally involved in nearly 15% of acute myeloid leukemia (AML) cases. This study shows that AML1-ETO, as well as ETO, inhibits transcriptional activation by E proteins through stable interactions that preclude recruitment of p300/CREB-binding protein (CBP) coactivators. These interactions are mediated by a conserved ETO TAF4 homology domain and a 17-amino acid p300/CBP and ETO target motif within AD1 activation domains of E proteins. In t(8;21) leukemic cells, very stable interactions between AML1-ETO and E proteins underlie a t(8;21) translocation-specific silencing of E protein function through an aberrant cofactor exchange mechanism. These studies identify E proteins as AML1-ETO targets whose dysregulation may be important for t(8;21) leukemogenesis, as well as an E protein silencing mechanism that is distinct from that associated with differentiation-inhibitory proteins.
Collapse
Affiliation(s)
- Jinsong Zhang
- Laboratory of Biochemistry and Molecular Biology, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
49
|
Seet CS, Brumbaugh RL, Kee BL. Early B cell factor promotes B lymphopoiesis with reduced interleukin 7 responsiveness in the absence of E2A. ACTA ACUST UNITED AC 2004; 199:1689-700. [PMID: 15210745 PMCID: PMC2212815 DOI: 10.1084/jem.20032202] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The basic helix-loop-helix transcription factors encoded by the E2A gene function at the apex of a transcriptional hierarchy involving E2A, early B cell factor (EBF), and Pax5, which is essential for B lymphopoiesis. In committed B lineage progenitors, E2A proteins have also been shown to regulate many lineage-associated genes. Herein, we demonstrate that the block in B lymphopoiesis imposed by the absence of E2A can be overcome by expression of EBF, but not Pax5, indicating that EBF is the essential target of E2A required for development of B lineage progenitors. Our data demonstrate that EBF, in synergy with low levels of alternative E2A-related proteins (E proteins), is sufficient to promote expression of most B lineage genes. Remarkably, however, we find that E2A proteins are required for interleukin 7-dependent proliferation due, in part, to a role for E2A in optimal expression of N-myc. Therefore, high levels of E protein activity are essential for the activation of EBF and N-myc, whereas lower levels of E protein activity, in synergy with other B lineage transcription factors, are sufficient for expression of most B lineage genes.
Collapse
Affiliation(s)
- Christopher S Seet
- Department of Pathology, University of Chicago, 5841 S. Maryland Avenue, MC 1089, Chicago, IL 60637, USA
| | | | | |
Collapse
|
50
|
O'Neil J, Shank J, Cusson N, Murre C, Kelliher M. TAL1/SCL induces leukemia by inhibiting the transcriptional activity of E47/HEB. Cancer Cell 2004; 5:587-96. [PMID: 15193261 DOI: 10.1016/j.ccr.2004.05.023] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Revised: 03/16/2004] [Accepted: 04/12/2004] [Indexed: 11/24/2022]
Abstract
Activation of the basic-helix-loop-helix (bHLH) gene TAL1 (or SCL) is a frequent gain-of-function mutation in T cell acute lymphoblastic leukemia (T-ALL). To provide genetic evidence that tal1/scl induces leukemia by interfering with E47 and HEB, we expressed tal1/scl in an E2A or HEB heterozygous background. These mice exhibit disease acceleration and perturbed thymocyte development due to repression of E47/HEB target genes. In tal1/scl thymocytes, we find the corepressor mSin3A bound to the CD4 enhancer, whereas an E47/HEB/p300 complex is detected in wild-type thymocytes. Furthermore, tal1/scl tumors are sensitive to pharmacologic inhibition of HDAC and undergo apoptosis. These data demonstrate that tal1/scl induces leukemia by repressing E47/HEB and suggest that HDAC inhibitors may prove efficacious in T-ALL patients who express TAL1/SCL.
Collapse
Affiliation(s)
- Jennifer O'Neil
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|