1
|
Characterization of the Biosynthetic Gene Cluster and Shunt Products Yields Insights into the Biosynthesis of Balmoralmycin. Appl Environ Microbiol 2022; 88:e0120822. [PMID: 36350133 PMCID: PMC9746310 DOI: 10.1128/aem.01208-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Angucyclines are a family of structurally diverse, aromatic polyketides with some members that exhibit potent bioactivity. Angucyclines have also attracted considerable attention due to the intriguing biosynthetic origins that underlie their structural complexity and diversity. Balmoralmycin (compound 1) represents a unique group of angucyclines that contain an angular benz[α]anthracene tetracyclic system, a characteristic C-glycosidic bond-linked deoxy-sugar (d-olivose), and an unsaturated fatty acid chain. In this study, we identified a Streptomyces strain that produces balmoralmycin and seven biosynthetically related coproducts (compounds 2-8). Four of the coproducts (compounds 5-8) are novel compounds that feature a highly oxygenated or fragmented lactone ring, and three of them (compounds 3-5) exhibited cytotoxicity against the human pancreatic cancer cell line MIA PaCa-2 with IC50 values ranging from 0.9 to 1.2 μg/mL. Genome sequencing and CRISPR/dCas9-assisted gene knockdown led to the identification of the ~43 kb balmoralmycin biosynthetic gene cluster (bal BGC). The bal BGC encodes a type II polyketide synthase (PKS) system for assembling the angucycline aglycone, six enzymes for generating the deoxysugar d-olivose, and a hybrid type II/III PKS system for synthesizing the 2,4-decadienoic acid chain. Based on the genetic and chemical information, we propose a mechanism for the biosynthesis of balmoralmycin and the shunt products. The chemical and genetic studies yielded insights into the biosynthetic origin of the structural diversity of angucyclines. IMPORTANCE Angucyclines are structurally diverse aromatic polyketides that have attracted considerable attention due to their potent bioactivity and intriguing biosynthetic origin. Balmoralmycin is a representative of a small family of angucyclines with unique structural features and an unknown biosynthetic origin. We report a newly isolated Streptomyces strain that produces balmoralmycin in a high fermentation titer as well as several structurally related shunt products. Based on the chemical and genetic information, a biosynthetic pathway that involves a type II polyketide synthase (PKS) system, cyclases/aromatases, oxidoreductases, and other ancillary enzymes was established. The elucidation of the balmoralmycin pathway enriches our understanding of how structural diversity is generated in angucyclines and opens the door for the production of balmoralmycin derivatives via pathway engineering.
Collapse
|
2
|
Harirchi S, Sar T, Ramezani M, Aliyu H, Etemadifar Z, Nojoumi SA, Yazdian F, Awasthi MK, Taherzadeh MJ. Bacillales: From Taxonomy to Biotechnological and Industrial Perspectives. Microorganisms 2022; 10:2355. [PMID: 36557608 PMCID: PMC9781867 DOI: 10.3390/microorganisms10122355] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
For a long time, the genus Bacillus has been known and considered among the most applicable genera in several fields. Recent taxonomical developments resulted in the identification of more species in Bacillus-related genera, particularly in the order Bacillales (earlier heterotypic synonym: Caryophanales), with potential application for biotechnological and industrial purposes such as biofuels, bioactive agents, biopolymers, and enzymes. Therefore, a thorough understanding of the taxonomy, growth requirements and physiology, genomics, and metabolic pathways in the highly diverse bacterial order, Bacillales, will facilitate a more robust designing and sustainable production of strain lines relevant to a circular economy. This paper is focused principally on less-known genera and their potential in the order Bacillales for promising applications in the industry and addresses the taxonomical complexities of this order. Moreover, it emphasizes the biotechnological usage of some engineered strains of the order Bacillales. The elucidation of novel taxa, their metabolic pathways, and growth conditions would make it possible to drive industrial processes toward an upgraded functionality based on the microbial nature.
Collapse
Affiliation(s)
- Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Mohaddaseh Ramezani
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Habibu Aliyu
- Institute of Process Engineering in Life Science II: Technical Biology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Zahra Etemadifar
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran
| | - Seyed Ali Nojoumi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Xianyang 712100, China
| | | |
Collapse
|
3
|
Prabhakaran P, Raethong N, Nazir Y, Halim H, Yang W, Vongsangnak W, Abdul Hamid A, Song Y. Whole Genome Analysis and Elucidation of Docosahexaenoic Acid (DHA) Biosynthetic Pathway in Aurantiochytrium sp. SW1. Gene 2022; 846:146850. [PMID: 36044942 DOI: 10.1016/j.gene.2022.146850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 11/15/2022]
Abstract
Aurantiochytrium sp., a fungoid marine protist that belongs to Stramenophila has proven its potential in the production of polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acids (DHA). In this study, genomic characterisation of a potential producer for commercial production of DHA, Aurantiochytrium sp. SW1 has been carried out via whole genome sequencing analysis. The genome size of this strain is 60.89 Mb, with a total of 11,588 protein-coding genes. Among these, 9,127 genes could be functionally annotated into a total of 7,248 (62.5%) from UniProt, 6,554 (56.6%) from KEGG and 8,643 (74.6%) genes from eggNOG protein database. The highest proportion of genes belongs to the protein family of metabolism were further assigned into 11 metabolic categories. The highest number of genes belonging to lipid metabolism (321 genes) followed by carbohydrate metabolism (290 genes), metabolism of cofactors and vitamins (197 genes) and amino acid metabolism (188 genes). Further analysis into the biosynthetic pathway for DHA showed evidence of all genes involved in PKS (polyketide synthase)-like PUFA synthase pathway and incomplete fatty acid synthase-elongase/desaturase pathway. Analysis of PUFA synthase showed the presence of up to ten tandem acyl carrier protein (ACP) domains which might have contributed to high DHA production in this organism. In addition, a hybrid system incorporating elements of FAS, Type I PKS and Type II PKS systems were found to be involved in the biosynthetic pathways of fatty acids in Aurantiochytrium sp. SW1. This study delivers an important reference for future research to enhance the lipid, especially DHA production in Aurantiochytrium sp, SW1 and establishment of this strain as an oleaginous thraustochytrid model.
Collapse
Affiliation(s)
- Pranesha Prabhakaran
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, China; Interdisciplinary Graduate Programs in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Nachon Raethong
- Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand
| | - Yusuf Nazir
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, China; Department of Food Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, UKM Bangi 43600, Malaysia
| | - Hafiy Halim
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Wu Yang
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand; Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok 10900
| | - Aidil Abdul Hamid
- Department of Biological Science and Biotechnology, Faculty of Science and Technology, National University of Malaysia, Bangi, Malaysia.
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, China.
| |
Collapse
|
4
|
Girija A, Vijayanathan M, Sreekumar S, Basheer J, Menon TG, Krishnankutty RE, Soniya EV. Harnessing the natural pool of polyketide and non-ribosomal peptide family: A route map towards novel drug development. Curr Mol Pharmacol 2021; 15:265-291. [PMID: 33745440 DOI: 10.2174/1874467214666210319145816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/10/2020] [Accepted: 12/31/2020] [Indexed: 11/22/2022]
Abstract
Emergence of communicable and non-communicable diseases possess health challenge to millions of people worldwide and is a major threat to the economic and social development in the coming century. The occurrence of recent pandemic, SARS-CoV-2 caused by lethal severe acute respiratory syndrome coronavirus 2 is one such example. Rapid research and development of drugs for the treatment and management of these diseases has been an incredibly challenging task for the pharmaceutical industry. Although, substantial focus has been made in the discovery of therapeutic compounds from natural sources having significant medicinal potential, their synthesis has shown a slow progress. Hence, the discovery of new targets by the application of the latest biotechnological and synthetic biology approaches is very much the need of the hour. Polyketides (PKs) and non-ribosomal peptides (NRPs) found in bacteria, fungi and plants are a large diverse family of natural products synthesized by two classes of enzymes: polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS). These enzymes possess immense biomedical potential due to their simple architecture, catalytic capacity, as well as diversity. With the advent of latest in-silico and in-vitro strategies, these enzymes and their related metabolic pathways, if targeted, can contribute highly towards the biosynthesis of an array of potentially natural drug leads that have antagonist effects on biopolymers associated with various human diseases. In the face of the rising threat from the multidrug-resistant pathogens, this will further open new avenues for the discovery of novel and improved drugs by combining the natural and the synthetic approaches. This review discusses the relevance of polyketides and non-ribosomal peptides and the improvement strategies for the development of their derivatives and scaffolds, and how they will be beneficial to the future bioprospecting and drug discovery.
Collapse
Affiliation(s)
- Aiswarya Girija
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Institute of Biological Environmental Rural Sciences (IBERS), Aberystwyth University, United Kingdom
| | - Mallika Vijayanathan
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Biology Centre - Institute of Plant Molecular Biology, Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic
| | - Sweda Sreekumar
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Research Centre, University of Kerala, India
| | - Jasim Basheer
- School of Biosciences, Mahatma Gandhi University, PD Hills, Kottayam, Kerala, India.,Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacky University, Olomouc, Czech Republic
| | - Tara G Menon
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| | | | - Eppurathu Vasudevan Soniya
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| |
Collapse
|
5
|
Harwood CR, Mouillon JM, Pohl S, Arnau J. Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group. FEMS Microbiol Rev 2018; 42:721-738. [PMID: 30053041 PMCID: PMC6199538 DOI: 10.1093/femsre/fuy028] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/17/2018] [Indexed: 11/14/2022] Open
Abstract
Members of the 'Bacillus subtilis group' include some of the most commercially important bacteria, used for the production of a wide range of industrial enzymes and fine biochemicals. Increasingly, group members have been developed for use as animal feed enhancers and antifungal biocontrol agents. The group has long been recognised to produce a range of secondary metabolites and, despite their long history of safe usage, this has resulted in an increased focus on their safety. Traditional methods used to detect the production of secondary metabolites and other potentially harmful compounds have relied on phenotypic tests. Such approaches are time consuming and, in some cases, lack specificity. Nowadays, accessibility to genome data and associated bioinformatical tools provides a powerful means for identifying gene clusters associated with the synthesis of secondary metabolites. This review focuses primarily on well-characterised strains of B. subtilis and B. licheniformis and their synthesis of non-ribosomally synthesised peptides and polyketides. Where known, the activities and toxicities of their secondary metabolites are discussed, together with the limitations of assays currently used to assess their toxicity. Finally, the regulatory framework under which such strains are authorised for use in the production of food and feed enzymes is also reviewed.
Collapse
Affiliation(s)
- Colin R Harwood
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biology, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Jean-Marie Mouillon
- Department of Fungal Strain Technology and Strain Approval Support, Novozymes A/S, Krogshoevej 36, DK-2880 Bagsvaerd, Denmark
| | - Susanne Pohl
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biology, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - José Arnau
- Department of Fungal Strain Technology and Strain Approval Support, Novozymes A/S, Krogshoevej 36, DK-2880 Bagsvaerd, Denmark
| |
Collapse
|
6
|
Muchiri R, Walker KD. Paclitaxel Biosynthesis: Adenylation and Thiolation Domains of an NRPS TycA PheAT Module Produce Various Arylisoserine CoA Thioesters. Biochemistry 2017; 56:1415-1425. [PMID: 28230972 DOI: 10.1021/acs.biochem.6b01188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structure-activity relationship studies show that the phenylisoserinyl moiety of paclitaxel (Taxol) is largely necessary for the effective anticancer activity. Several paclitaxel analogues with a variant isoserinyl side chain have improved pharmaceutical properties versus those of the parent drug. To produce the isoserinyl CoAs as intermediates needed for enzyme catalysis on a semibiosynthetic pathway to paclitaxel analogues, we repurposed the adenylation and thiolation domains (Phe-AT) of a nonribosomal peptide synthetase (TycA) so that they would function as a CoA ligase. Twenty-eight isoserine analogue racemates were synthesized by an established procedure based on the Staudinger [2+2] cycloaddition reaction. Phe-AT converted 16 substituted phenylisoserines, one β-(heteroaryl)isoserine, and one β-(cyclohexyl)isoserine to their corresponding isoserinyl CoAs. We imagine that these CoA thioesters can likely serve as linchpin biosynthetic acyl donors transferred by a 13-O-acyltransferase to a paclitaxel precursor baccatin III to make drug analogues with better efficacy. It was also interesting to find that an active site mutant [Phe-AT (W227S)] turned over 2-pyridylisoserine and the sterically demanding p-methoxyphenylisoserine substrates to their CoA thioesters, while Phe-AT did not. This mutant is promising for further development to make 3-fluoro-2-pyridylisoserinyl CoA, a biosynthetic precursor of the oral pharmaceutical tesetaxel used for gastric cancers.
Collapse
Affiliation(s)
- Ruth Muchiri
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - Kevin D Walker
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States.,Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| |
Collapse
|
7
|
Luo Y, Li BZ, Liu D, Zhang L, Chen Y, Jia B, Zeng BX, Zhao H, Yuan YJ. Engineered biosynthesis of natural products in heterologous hosts. Chem Soc Rev 2015; 44:5265-90. [PMID: 25960127 PMCID: PMC4510016 DOI: 10.1039/c5cs00025d] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Natural products produced by microorganisms and plants are a major resource of antibacterial and anticancer drugs as well as industrially useful compounds. However, the native producers often suffer from low productivity and titers. Here we summarize the recent applications of heterologous biosynthesis for the production of several important classes of natural products such as terpenoids, flavonoids, alkaloids, and polyketides. In addition, we will discuss the new tools and strategies at multi-scale levels including gene, pathway, genome and community levels for highly efficient heterologous biosynthesis of natural products.
Collapse
Affiliation(s)
- Yunzi Luo
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Su C, Zhao XQ, Wang HN, Qiu RG, Tang L. Seamless stitching of biosynthetic gene cluster containing type I polyketide synthases using Red/ET mediated recombination for construction of stably co-existing plasmids. Gene 2014; 554:233-40. [PMID: 25311549 DOI: 10.1016/j.gene.2014.10.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/23/2014] [Accepted: 10/09/2014] [Indexed: 01/27/2023]
Abstract
Type I polyketides are natural products with diverse functions that are important for medical and agricultural applications. Manipulation of large biosynthetic gene clusters containing type I polyketide synthases (PKS) for heterologous expression is difficult due to the existence of conservative sequences of PKS in multiple modules. Red/ET mediated recombination has permitted rapid manipulation of large fragments; however, it requires insertion of antibiotic selection marker in the cassette, raising the problem of interference of expression by leaving "scar" sequence. Here, we report a method for precise seamless stitching of large polyketide biosynthetic gene cluster using a 48.4kb fragment containing type I PKS involved in fostriecin biosynthesis as an example. rpsL counter-selection was used to assist seamless stitching of large fragments, where we have overcome both the size limitations and the restriction on endonuclease sites during the Red/ET recombination. The compatibility and stability of the co-existing vectors (p184 and pMT) which respectively accommodate 16kb and 32.4kb inserted fragments were demonstrated. The procedure described here is efficient for manipulation of large DNA fragments for heterologous expression.
Collapse
Affiliation(s)
- Chun Su
- Research Center for Molecular Medicine, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xin-Qing Zhao
- Research Center for Molecular Medicine, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024, China; School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Hai-Na Wang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Rong-Guo Qiu
- Research Center for Molecular Medicine, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024, China; Beijing Biostar Technologies, Ltd., Beijing 101111, China
| | - Li Tang
- Research Center for Molecular Medicine, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024, China; Beijing Biostar Technologies, Ltd., Beijing 101111, China.
| |
Collapse
|
9
|
Kiran GS, Sabarathnam B, Thajuddin N, Selvin J. Production of Glycolipid Biosurfactant from Sponge-Associated Marine Actinobacterium Brachybacterium paraconglomeratum MSA21. J SURFACTANTS DETERG 2014. [DOI: 10.1007/s11743-014-1564-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Structural basis of mRNA recognition and cleavage by toxin MazF and its regulation by antitoxin MazE in Bacillus subtilis. Mol Cell 2013; 52:447-58. [PMID: 24120662 DOI: 10.1016/j.molcel.2013.09.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/30/2013] [Accepted: 09/05/2013] [Indexed: 11/21/2022]
Abstract
MazF is an mRNA interferase, which, upon activation during stress conditions, cleaves mRNAs in a sequence-specific manner, resulting in cellular growth arrest. During normal growth conditions, the MazF toxin is inactivated through binding to its cognate antitoxin, MazE. How MazF specifically recognizes its mRNA target and carries out cleavage and how the formation of the MazE-MazF complex inactivates MazF remain unclear. We present crystal structures of MazF in complex with mRNA substrate and antitoxin MazE in Bacillus subtilis. The structure of MazF in complex with uncleavable UUdUACAUAA RNA substrate defines the molecular basis underlying the sequence-specific recognition of UACAU and the role of residues involved in the cleavage through site-specific mutational studies. The structure of the heterohexameric (MazF)2-(MazE)2-(MazF)2 complex in Bacillus subtilis, supplemented by mutational data, demonstrates that the positioning of the C-terminal helical segment of MazE within the RNA-binding channel of the MazF dimer prevents mRNA binding and cleavage by MazF.
Collapse
|
11
|
Jiao J, Zhang Y. Transgenic Biosynthesis of Polyunsaturated Fatty Acids: A Sustainable Biochemical Engineering Approach for Making Essential Fatty Acids in Plants and Animals. Chem Rev 2013; 113:3799-814. [DOI: 10.1021/cr300007p] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jingjing Jiao
- Chronic Disease Research Institute,
Department of Nutrition and Food Hygiene, School of Public Health,
Zhejiang University, Hangzhou 310058, China
| | - Yu Zhang
- Department of Food Science and
Nutrition, School of Biosystems Engineering and Food Science, Zhejiang
University, Hangzhou 310058, China
| |
Collapse
|
12
|
Park JH, Yamaguchi Y, Inouye M. Bacillus subtilis MazF-bs (EndoA) is a UACAU-specific mRNA interferase. FEBS Lett 2011; 585:2526-32. [PMID: 21763692 PMCID: PMC3167231 DOI: 10.1016/j.febslet.2011.07.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/06/2011] [Accepted: 07/06/2011] [Indexed: 11/20/2022]
Abstract
MazF is an mRNA interferase which cleaves mRNAs at a specific sequence. Here, we show that in contrast to MazF-ec from Escherichia coli, which specifically cleaves ACA sequences, MazF-bs from Bacillus subtilis is an mRNA interferase that specifically cleaves a five-base sequence, UACAU. MazF homologues widely prevailing in Gram-positive bacteria were found to be highly homologous to MazF-bs, suggesting that they may also have similar cleavage specificity. This cleavage site is over-represented in the B. subtilis genes associated with biosynthesis of secondary metabolites, suggesting that MazF-bs may be involved in the regulation of the production of secondary metabolites.
Collapse
Affiliation(s)
- Jung-Ho Park
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey, 08854, USA
| | - Yoshihiro Yamaguchi
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey, 08854, USA
| | - Masayori Inouye
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey, 08854, USA
| |
Collapse
|
13
|
|
14
|
|
15
|
Brunauer G, Muggia L, Stocker-Wörgötter E, Grube M. A transcribed polyketide synthase gene from Xanthoria elegans. ACTA ACUST UNITED AC 2008; 113:82-92. [PMID: 18822374 DOI: 10.1016/j.mycres.2008.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 07/23/2008] [Accepted: 08/12/2008] [Indexed: 11/24/2022]
Abstract
We characterize the transcript of a polyketide synthase gene (PKS) from the cultured mycobiont of Xanthoria elegans (XePKS1) using SMART-rapid amplification of cDNA ends (RACE) cDNA synthesis. Sequence analysis of the cloned cDNA reveals an open reading frame of 2144 amino acid residues. It contains features of a non-reducing fungal type I PKS with an N-terminal starter unit: acyl carrier protein (ACP) transacetylase domain, ketosynthase, acyltransferase, two acyl carrier protein domains, and a thioesterase domain. XePKS1 was the only paralogue detected in the cDNA and the genomic DNA of the cultured X. elegans mycobiont by using a degenerate PCR approach targeted at the conserved regions of non-reducing type I PKS genes. The hypothetical protein is phylogenetically related to genes that are basal to a clade of dihydroxynaphthalene synthases (non-reducing clade II) and anthraquinone type synthases of non-lichenized fungi (non-reducing clade I). According to hplc and tlc analyses, the cultured mycobiont exclusively produced anthraquinones and its precursors. Therefore, we discuss whether the characterized paralogue is involved in anthraquinone production, which raises the possibility of a paraphyletic origin of lichen anthraquinone biosynthesis. The cDNA of XePKS1 was the first full-length coding sequence of a lichen PKS to be published. This proves SMART RACE to be a suitable tool for obtaining full-length coding sequences of genes from environmental samples and organisms, which are hardly amenable to standard molecular approaches or genomic sequencing.
Collapse
Affiliation(s)
- Georg Brunauer
- Department of Organismic Biology, University of Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria.
| | | | | | | |
Collapse
|
16
|
Zhang YM, Frank MW, Zhu K, Mayasundari A, Rock CO. PqsD is responsible for the synthesis of 2,4-dihydroxyquinoline, an extracellular metabolite produced by Pseudomonas aeruginosa. J Biol Chem 2008; 283:28788-94. [PMID: 18728009 DOI: 10.1074/jbc.m804555200] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
2,4-Dihydroxyquinoline (DHQ) is an abundant extracellular metabolite of the opportunistic pathogen Pseudomonas aeruginosa that is secreted into growth medium in stationary phase to concentrations comparable with those of the Pseudomonas quinolone signal. Using a combination of biochemical and genetic approaches, we show that PqsD, a condensing enzyme in the pqs operon that is essential for Pseudomonas quinolone signal synthesis, accounts for DHQ formation in vivo. First, the anthraniloyl moiety is transferred to the active-site Cys of PqsD to form an anthraniloyl-PqsD intermediate, which then condenses with either malonyl-CoA or malonyl-acyl carrier protein to produce 3-(2-aminophenyl)-3-oxopropanoyl-CoA. This short-lived intermediate undergoes an intramolecular rearrangement to form DHQ. DHQ was produced by Escherichia coli coexpressing PqsA and PqsD, illustrating that these two proteins are the only factors necessary for DHQ synthesis. Thus, PqsD is responsible for the production of DHQ in P. aeruginosa.
Collapse
Affiliation(s)
- Yong-Mei Zhang
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-2794, USA.
| | | | | | | | | |
Collapse
|
17
|
Park JW, Jung WS, Park SR, Park BC, Yoon YJ. Analysis of intracellular short organic acid-coenzyme A esters from actinomycetes using liquid chromatography-electrospray ionization-mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2007; 42:1136-47. [PMID: 17565713 DOI: 10.1002/jms.1240] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A method employing silicone oil density centrifugation, solid-phase extraction (SPE) cleanup, and LC-ESI-MS/MS analysis was developed for the rapid, selective, sensitive, and quantitative detection of an intracellular pool of short organic acid-CoA esters in actinomycetes. The detection limit was determined to be approximately 0.8 pmol (1.2 ng/ml) for each standard CoA-ester analyzed by the present LC-ESI-MS/MS method. A selected ion chromatogram for a typical fragment ion (m/z 428) specific to CoA-esters enabled the detection of eight intracellular CoA-esters involved in both primary and secondary metabolisms. The application of this method to bacterial metabolomic study is demonstrated by the profiling of the intracellular CoA-ester pools in the wild-type Streptomyces venezuelae strain producing polyketide antibiotics (methymycin and pikromycin), a polyketide synthase (PKS)-deleted S. venezuelae mutant, and a S. venezuelae mutant expressing the heterologous PKS genes. By quantifying the individual CoA-esterlevel in three different genotypes of the S. venezuela e strain, further insight could be gained into the role of CoA-estersin polyketide biosynthesis. This analytical approach can be extended to the quantification of the size and composition of in vivo CoA-ester pools in various microbes, and can provide a detailed understanding of the relationship between the in vivo CoA-ester pool and the production of pharmaceutically important polyketides.
Collapse
Affiliation(s)
- Je Won Park
- Division of Nano Sciences and Department of Chemistry, Ewha Womans University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
18
|
Hou YH, Li FC, Wang SJ, Qin S, Wang QF. Intergeneric conjugation in holomycin-producing marine Streptomyces sp. strain M095. Microbiol Res 2006; 163:96-104. [PMID: 16890414 DOI: 10.1016/j.micres.2006.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 06/13/2006] [Accepted: 07/04/2006] [Indexed: 11/17/2022]
Abstract
Marine Streptomyces are potential candidates for novel natural products and industrial catalysts. In order to set up biosynthesis approach for a holomycin-producing strain M095 isolated from Jiaozhou Bay, China, a genetic transformation system was established using intergeneric conjugation. The plasmid pIJ8600 consists of an origin of replication for Escherichia coli, a phage integrase directing efficient site-specific integration in bacterial chromosome, thiostrepton-induced promoter and an attP sequence. Using E. coli ET12567 (pUZ8002) carrying pIJ8600 as a conjugal donor, while it was mated with strain M095, pIJ8600 was mobilized to the recipient and the transferred DNA was also integrated into the recipient chromosome. The frequency of exconjugants was 1.9+/-0.13x10(-4) per recipient cell. Analysis of eight exconjugants showed pIJ8600 was stable integrated at a single chromosomal site (attB) of the Streptomyces genome. The DNA sequence of the attB was cloned and shown to be conserved. The results of growth and antimicrobial activity analysis indicated that the integration of pIJ8600 did not seem to affect the biosynthesis of antibiotics or other essential amino acids. To demonstrate the feasibility of above gene transfer system, the allophycocyanin gene (apc) from cyanobacterium Anacystis nidulans UTEX625 was expressed in strain M095, and the results indicated heterologous allophycocyanin could be expressed and folded effectively.
Collapse
Affiliation(s)
- Yan-Hua Hou
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China
| | | | | | | | | |
Collapse
|
19
|
Kim YT, Lee YR, Jin J, Han KH, Kim H, Kim JC, Lee T, Yun SH, Lee YW. Two different polyketide synthase genes are required for synthesis of zearalenone in Gibberella zeae. Mol Microbiol 2006; 58:1102-13. [PMID: 16262793 DOI: 10.1111/j.1365-2958.2005.04884.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Zearalenone (ZEA) is a polyketide mycotoxin produced by some species of Gibberella/Fusarium and causes hyperestrogenic syndrome in animals. ZEA occurs naturally in cereals infected by Gibberella zeae in temperate regions and threatens animal health. In this study, we report on a set of genes that participate in the biosynthesis of ZEA in G. zeae. Focusing on the non-reducing polyketide synthase (PKS) genes of the G. zeae genome, we demonstrated that PKS13 is required for ZEA production. Subsequent analyses revealed that a continuous, 50 kb segment of DNA carrying PKS13 consisted of three additional open reading frames that were coexpressed as a cluster during the condition for ZEA biosynthesis. These genes, in addition to PKS13, were essential for the ZEA biosynthesis. They include another PKS gene (PKS4) encoding a fungal reducing PKS; zearalenone biosynthesis gene 1 (ZEB1), which shows a high similarity to putative isoamyl alcohol oxidase genes; and ZEB2 whose deduced product carries a conserved, basic-region leucine zipper domain. ZEB1 is responsible for the chemical conversion of beta-zearalenonol (beta-ZOL) to ZEA in the biosynthetic pathway, and ZEB2 controls transcription of the cluster members. Transcription of these genes was strongly influenced by different culture conditions such as nutrient starvations and ambient pH. Furthermore, the same set of genes regulated by ZEB2 was dramatically repressed in the transgenic G. zeae strain with the deletion of PKS13 or PKS4 but not in the ZEB1 deletion strain, suggesting that ZEA or beta-ZOL may be involved in transcriptional activation of the gene cluster required for ZEA biosynthesis in G. zeae. This is the first published report on the molecular characterization of genes required for ZEA biosynthesis.
Collapse
Affiliation(s)
- Yong-Tae Kim
- School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Christian OE, Compton J, Christian KR, Mooberry SL, Valeriote FA, Crews P. Using jasplakinolide to turn on pathways that enable the isolation of new chaetoglobosins from Phomospis asparagi. JOURNAL OF NATURAL PRODUCTS 2005; 68:1592-7. [PMID: 16309305 PMCID: PMC3972004 DOI: 10.1021/np050293f] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The isolation and structure elucidation of three new secondary metabolites, chaetoglobosin-510 (1), -540 (2), and -542 (3), are described. These compounds were produced by cultures of the marine-derived fungus Phomopsis asparagi, challenged with the known F-actin inhibitor jasplakinolide. Chaetoglobosin-542 (3) displayed antimicrofilament activity and was cytotoxic toward murine colon and leukemia cancer cell lines.
Collapse
Affiliation(s)
- Omar E. Christian
- Department of Chemistry and Biochemistry and Institute for Marine Sciences, University of California, Santa Cruz, California 95064
| | - Jennifer Compton
- Department of Chemistry and Biochemistry and Institute for Marine Sciences, University of California, Santa Cruz, California 95064
| | - Keisha R. Christian
- Department of Chemistry and Biochemistry and Institute for Marine Sciences, University of California, Santa Cruz, California 95064
| | - Susan L. Mooberry
- Southwest Foundation for Biomedical Research, San Antonio, Texas 78245
| | - Fredrick A. Valeriote
- Division of Hematology and Oncology, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan 48202
| | - Phillip Crews
- Department of Chemistry and Biochemistry and Institute for Marine Sciences, University of California, Santa Cruz, California 95064
| |
Collapse
|
21
|
Kim JE, Han KH, Jin J, Kim H, Kim JC, Yun SH, Lee YW. Putative polyketide synthase and laccase genes for biosynthesis of aurofusarin in Gibberella zeae. Appl Environ Microbiol 2005; 71:1701-8. [PMID: 15811992 PMCID: PMC1082506 DOI: 10.1128/aem.71.4.1701-1708.2005] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycelia of Gibberella zeae (anamorph, Fusarium graminearum), an important pathogen of cereal crops, are yellow to tan with white to carmine red margins. We isolated genes encoding the following two proteins that are required for aurofusarin biosynthesis from G. zeae: a type I polyketide synthase (PKS) and a putative laccase. Screening of insertional mutants of G. zeae, which were generated by using a restriction enzyme-mediated integration procedure, resulted in the isolation of mutant S4B3076, which is a pigment mutant. In a sexual cross of the mutant with a strain with normal pigmentation, the pigment mutation was linked to the inserted vector. The vector insertion site in S4B3076 was a HindIII site 38 bp upstream from an open reading frame (ORF) on contig 1.116 in the F. graminearum genome database. The ORF, designated Gip1 (for Gibberella zeae pigment mutation 1), encodes a putative laccase. A 30-kb region surrounding the insertion site and Gip1 contains 10 additional ORFs, including a putative ORF identified as PKS12 whose product exhibits about 40% amino acid identity to the products of type I fungal PKS genes, which are involved in pigment biosynthesis. Targeted gene deletion and complementation analyses confirmed that both Gip1 and PKS12 are required for aurofusarin production in G. zeae. This information is the first information concerning the biosynthesis of these pigments by G. zeae and could help in studies of their toxicity in domesticated animals.
Collapse
Affiliation(s)
- Jung-Eun Kim
- School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
22
|
Oksman-Caldentey KM, Inzé D. Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. TRENDS IN PLANT SCIENCE 2004; 9:433-40. [PMID: 15337493 DOI: 10.1016/j.tplants.2004.07.006] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
|
23
|
Sankaranarayanan R, Saxena P, Marathe UB, Gokhale RS, Shanmugam VM, Rukmini R. A novel tunnel in mycobacterial type III polyketide synthase reveals the structural basis for generating diverse metabolites. Nat Struct Mol Biol 2004; 11:894-900. [PMID: 15286723 DOI: 10.1038/nsmb809] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Accepted: 06/22/2004] [Indexed: 11/08/2022]
Abstract
The superfamily of plant and bacterial type III polyketide synthases (PKSs) produces diverse metabolites with distinct biological functions. PKS18, a type III PKS from Mycobacterium tuberculosis, displays an unusual broad specificity for aliphatic long-chain acyl-coenzyme A (acyl-CoA) starter units (C(6)-C(20)) to produce tri- and tetraketide pyrones. The crystal structure of PKS18 reveals a 20 A substrate binding tunnel, hitherto unidentified in this superfamily of enzymes. This remarkable tunnel extends from the active site to the surface of the protein and is primarily generated by subtle changes of backbone dihedral angles in the core of the protein. Mutagenic studies combined with structure determination provide molecular insights into the structural elements that contribute to the chain length specificity of the enzyme. This first bacterial type III PKS structure underlines a fascinating example of the way in which subtle changes in protein architecture can generate metabolite diversity in nature.
Collapse
|
24
|
Abstract
We identified a polyketide synthase (PKS) gene, pksN, from a strain of Nectria haematococca by complementing a mutant unable to synthesize a red perithecial pigment. pksN encodes a 2,106-amino-acid polypeptide with conserved motifs characteristic of type I PKS enzymatic domains: beta-ketoacyl synthase, acyltransferase, duplicated acyl carrier proteins, and thioesterase. The pksN product groups with the Aspergillus nidulans WA-type PKSs involved in conidial pigmentation and melanin, bikaverin, and aflatoxin biosynthetic pathways. Inactivation of pksN did not cause any visible change in fungal growth, asexual sporulation, or ascospore formation, suggesting that it is involved in a specific developmental function. We propose that pksN encodes a novel PKS required for the perithecial red pigment biosynthesis.
Collapse
Affiliation(s)
- Stephane Graziani
- Institut de Génétique et Microbiologie, Université Paris-Sud, 91405 Orsay Cedex, France
| | | | | |
Collapse
|
25
|
Abstract
Combinatorial biosynthesis involves the genetic manipulation of natural product biosynthetic enzymes to produce potential new drug candidates that would otherwise be difficult to obtain. In either a theoretical or practical sense, the number of combinations possible from different types of natural product pathways ranges widely. Enzymes that have been the most amenable to this technology synthesize the polyketides, nonribosomal peptides, and hybrids of the two. The number of polyketide or peptide natural products theoretically possible is huge, but considerable work remains before these large numbers can be realized. Nevertheless, many analogs have been created by this technology, providing useful structure-activity relationship data and leading to a few compounds that may reach the clinic in the next few years. In this review the focus is on recent advances in our understanding of how different enzymes for natural product biosynthesis can be used successfully in this technology.
Collapse
|
26
|
Paradkar A, Trefzer A, Chakraburtty R, Stassi D. Streptomyces genetics: a genomic perspective. Crit Rev Biotechnol 2003; 23:1-27. [PMID: 12693442 DOI: 10.1080/713609296] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Streptomycetes are gram-positive, soil-inhabiting bacteria of the order Actinomycetales. These organisms exhibit an unusual, developmentally complex life cycle and produce many economically important secondary metabolites, such as antibiotics, immunosuppressants, insecticides, and anti-tumor agents. Streptomyces species have been the subject of genetic investigation for over 50 years, with many studies focusing on the developmental cycle and the production of secondary metabolites. This information provides a solid foundation for the application of structural and functional genomics to the actinomycetes. The complete DNA sequence of the model organism, Streptomyces coelicolor M145, has been published recently, with others expected to follow soon. As more genomic sequences become available, the rational genetic manipulation of these organisms to elucidate metabolic and regulatory networks, to increase the production of commercially important compounds, and to create novel secondary metabolites will be greatly facilitated. This review presents the current state of the field of genomics as it is being applied to the actinomycetes.
Collapse
Affiliation(s)
- Ashish Paradkar
- Small Molecule Discovery, Diversa Corporation, 4955 Directors Place, San Diego, CA 92121, USA
| | | | | | | |
Collapse
|
27
|
Ostash BO, Fedorenko VO. Gene engineering of novel polyketide antibiotics producers. ACTA ACUST UNITED AC 2002. [DOI: 10.7124/bc.000629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Metsä-Ketelä M, Halo L, Munukka E, Hakala J, Mäntsälä P, Ylihonko K. Molecular evolution of aromatic polyketides and comparative sequence analysis of polyketide ketosynthase and 16S ribosomal DNA genes from various streptomyces species. Appl Environ Microbiol 2002; 68:4472-9. [PMID: 12200302 PMCID: PMC124067 DOI: 10.1128/aem.68.9.4472-4479.2002] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 613-bp fragment of an essential ketosynthase gene from the biosynthetic pathway of aromatic polyketide antibiotics was sequenced from 99 actinomycetes isolated from soil. Phylogenetic analysis showed that the isolates clustered into clades that correspond to the various classes of aromatic polyketides. Additionally, sequencing of a 120-bp fragment from the gamma-variable region of 16S ribosomal DNA (rDNA) and subsequent comparative sequence analysis revealed incongruity between the ketosynthase and 16S rDNA phylogenetic trees, which strongly suggests that there has been horizontal transfer of aromatic polyketide biosynthesis genes. The results show that the ketosynthase tree could be used for DNA fingerprinting of secondary metabolites and for screening interesting aromatic polyketide biosynthesis genes. Furthermore, the movement of the ketosynthase genes suggests that traditional marker molecules like 16S rDNA give misleading information about the biosynthesis potential of aromatic polyketides, and thus only molecules that are directly involved in the biosynthesis of secondary metabolites can be used to gain information about the biodiversity of antibiotic production in different actinomycetes.
Collapse
Affiliation(s)
- Mikko Metsä-Ketelä
- Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland.
| | | | | | | | | | | |
Collapse
|
29
|
Wang L, White RL, Vining LC. Biosynthesis of the dideoxysugar component of jadomycin B: genes in the jad cluster of Streptomyces venezuelae ISP5230 for L-digitoxose assembly and transfer to the angucycline aglycone. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1091-1103. [PMID: 11932454 DOI: 10.1099/00221287-148-4-1091] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Eight additional genes, jadX, O, P, Q, S, T, U and V, in the jad cluster of Streptomyces venezuelae ISP5230, were located immediately downstream of jadN by chromosome walking. Sequence analyses and comparisons implicated them in biosynthesis of the 2,6-dideoxysugar in jadomycin B. The genes were cloned in Escherichia coli, inactivated by inserting an apramycin resistance cassette with a promoter driving transcription of downstream genes, and transferred into Streptomyces venezuelae by intergeneric conjugation. Analysis by HPLC and NMR of intermediates accumulated by cultures of the insertionally inactivated Streptomyces venezuelae mutants indicated that jadO, P, Q, S, T, U and V mediate formation of the dideoxysugar moiety of jadomycin B and its attachment to the aglycone. Based on these results and sequence similarities to genes described in other species producing deoxysugar derivatives, a biosynthetic pathway is proposed in which the jadQ product (glucose-1-phosphate nucleotidyltransferase) activates glucose to its nucleotide diphosphate (NDP) derivative, and the jadT product (a 4,6-dehydratase) converts this to NDP-4-keto-6-deoxy-D-glucose. An NDP-hexose 2,3-dehydratase and an oxidoreductase, encoded by jadO and jadP, respectively, catalyse ensuing reactions that produce an NDP-2,6-dideoxy-D-threo-4-hexulose. The product of jadU (NDP-4-keto-2,6-dideoxy-5-epimerase) converts this intermediate to its L-erythro form and the jadV product (NDP-4-keto-2,6-dideoxyhexose 4-ketoreductase) reduces the keto group of the NDP-4-hexulose to give an activated form of the L-digitoxose moiety in jadomycin B. Finally, a glycosyltransferase encoded by jadS transfers the activated sugar to jadomycin aglycone. The function of jadX is unclear; the gene is not essential for jadomycin B biosynthesis, but its presence ensures complete conversion of the aglycone to the glycoside. The deduced amino acid sequence of a 612 bp ORF (jadR*) downstream of the dideoxysugar biosynthesis genes resembles many TetR-family transcriptional regulator sequences.
Collapse
Affiliation(s)
- Liru Wang
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, CanadaB3H 4J11
| | - Robert L White
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, CanadaB3H 4J32
| | - Leo C Vining
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, CanadaB3H 4J11
| |
Collapse
|
30
|
Thompson CJ, Fink D, Nguyen LD. Principles of microbial alchemy: insights from the Streptomyces coelicolor genome sequence. Genome Biol 2002; 3:REVIEWS1020. [PMID: 12184813 PMCID: PMC139385 DOI: 10.1186/gb-2002-3-7-reviews1020] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The world's most creative producers of natural pharmaceutical compounds are soil-dwelling bacteria classified as Streptomyces. The availability of the recently completed Streptomyces coelicolor genome sequence provides a link between the folklore of antibiotics and other bioactive compounds to underlying biochemical, molecular genetic and evolutionary principles.
Collapse
Affiliation(s)
- Charles J Thompson
- Biozentrum, University of Basel, Division of Molecular Microbiology, 70 Klingelbergstrasse, 4056 Basel, Switzerland.
| | | | | |
Collapse
|
31
|
Abstract
Nature has been a source of medicinal agents for thousands of years, and an impressive number of modern drugs have been isolated from natural sources, many based on their use in traditional medicine. The use of herbal drugs is once more escalating in the form of complementary and alternative medicine. The past century, however, has seen an increasing role played by microorganisms in the production of the antibiotics and other drugs for the treatment of some serious diseases. With less than 1% of the microbial world currently known, advances in procedures for microbial cultivation and the extraction of nucleic acids from environmental samples from soil and marine habitats, and from symbiotic and endophytic microbes associated with terrestrial and marine macro-organisms, will provide access to a vast untapped reservoir of genetic and metabolic diversity. By use of combinatorial chemical and biosynthetic technology, novel natural product leads will be optimized on the basis of their biological activities to yield effective chemotherapeutic and other bioactive agents.
Collapse
Affiliation(s)
- G M Cragg
- Natural Products Branch, DTP, DCTD, National Cancer Institute, Frederick, Maryland 21702-1201, USA.
| | | |
Collapse
|
32
|
Taguchi T, Ebizuka Y, Hopwood DA, Ichinose K. A new mode of stereochemical control revealed by analysis of the biosynthesis of dihydrogranaticin in Streptomyces violaceoruber Tü22. J Am Chem Soc 2001; 123:11376-80. [PMID: 11707113 DOI: 10.1021/ja015981+] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A class of Streptomyces aromatic polyketide antibiotics, the benzoisochromanequinones, all shows trans stereochemistry at C-3 and C-15 in the pyran ring. The opposite stereochemical control found in actinorhodin (3S, 15R, ACT) from S. coelicolor A3(2) and dihydrogranaticin (3R, 15S, DHGRA) from S. violaceoruber Tü22 was studied by functional expression of the potentially relevant ketoreductase genes, actIII, actVI-ORF1, gra-ORF5, and gra-ORF6. A common bicyclic intermediate was postulated to undergo stereospecific reduction to provide either the 3-(S) or the 3-(R) configuration of an advanced intermediate, 4-dihydro-9-hydroxy-1-methyl-10-oxo-3-H-naphtho[2,3-c]pyran-3-acetic acid (DNPA). Combinations of the four ketoreductase genes were coexpressed with the early biosynthetic genes encoding a type II minimal polyketide synthase, aromatase, and cyclase. gra-ORF6 was essential to produce (R)-DNPA in DHGRA biosynthesis. Out of the various recombinants carrying the relevant ketoreductases, the set of gra-ORF5 and -ORF6 under translational coupling (on pIK191) led to the most efficient production of (R)-DNPA as a single product, implying a possible unique cooperative function whereby gra-ORF6 might encode a "guiding" protein to control the regio- and stereochemical course of reduction at C-3 catalyzed by the gra-ORF5 protein. Updated BLAST-based database analysis suggested that the gra-ORF6 product, a putative short-chain dehydrogenase, has virtually no sequence homology with the actVI-ORF1 protein, which was previously shown to determine the 3-(S) configuration of DNPA in ACT biosynthesis. This demonstrates an example of opposite stereochemical control in antibiotic biosynthesis, providing a key branch point to afford diverse chiral metabolic pools.
Collapse
Affiliation(s)
- T Taguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
33
|
|
34
|
|
35
|
Lyon WR, Madden JC, Levin JC, Stein JL, Caparon MG. Mutation of luxS affects growth and virulence factor expression in Streptococcus pyogenes. Mol Microbiol 2001; 42:145-57. [PMID: 11679074 DOI: 10.1046/j.1365-2958.2001.02616.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adaptive responses of bacteria that involve sensing the presence of other bacteria are often critical for proliferation and the expression of virulence characteristics. The autoinducer II (AI-2) pathway has recently been shown to be a mechanism for sensing other bacteria that is highly conserved among diverse bacterial species, including Gram-positive pathogens. However, a role for this pathway in the regulation of virulence factors in Gram-positive pathogens has yet to be established. In this study, we have inactivated luxS, an essential component of the AI-2 pathway, in the Gram-positive pathogen Streptococcus pyogenes. Analyses of the resulting mutants revealed the aberrant expression of several virulence properties that are regulated in response to growth phase, including enhanced haemolytic activity, and a dramatic reduction in the expression of secreted proteolytic activity. This latter defect was associated with a reduced ability to secrete and process the precursor of the cysteine protease (SpeB) as well as a difference in the timing of expression of the protease. Enhanced haemolytic activity of the luxS strain was also shown to be linked with an increased expression of the haemolysin S-associated gene sagA. Disruptions of luxS in these mutants also produced a media-dependent growth defect. Finally, an allelic replacement analysis of an S. pyogenes strain with a naturally occurring insertion of IS1239 in luxS suggested a mechanism for modulation of virulence during infection. Results from this study suggest that luxS makes an important contribution to the regulation of S. pyogenes virulence factors.
Collapse
Affiliation(s)
- W R Lyon
- Department of Molecular Microbiology, Washington University School of Medicine, Box 8230, St Louis, MO 63110-1093, USA
| | | | | | | | | |
Collapse
|
36
|
Schembri MA, Neilan BA, Saint CP. Identification of genes implicated in toxin production in the cyanobacterium Cylindrospermopsis raciborskii. ENVIRONMENTAL TOXICOLOGY 2001; 16:413-21. [PMID: 11594028 DOI: 10.1002/tox.1051] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cylindrospermopsis raciborskii is a bloom-forming cyanobacterium found in both tropical and temperate climates which produces cylindrospermopsin, a potent hepatotoxic secondary metabolite. This organism is notorious for its association with a significant human poisoning incident on Palm Island, Australia, which resulted in the hospitalization of 148 people. We have screened 13 C. raciborskii isolates from various regions of Australia and shown that both toxic and nontoxic strains exist within this species. No association was observed between geographical origin and toxin production. Polyketide synthases (PKSs) and peptide synthetases (PSs) are enzymes involved in secondary metabolite biosynthesis in cyanobacteria. Putative PKS and PS genes from C. raciborskii strains AWT205 and CYP020B were identified by PCR using degenerate primers based on conserved regions within each gene. Examination of the strain-specific distribution of the PKS and PS genes in C. raciborskii isolates demonstrated a direct link between the presence of these two genes and the ability to produce cylindrospermopsin. Interestingly, the possession of these two genes was also linked. They were also identified in an Anabaena bergii isolate that was demonstrated to produce cylindrospermopsin. Taken together, these data suggest a likely role for these determinants in secondary metabolite and toxin production by C. raciborskii.
Collapse
Affiliation(s)
- M A Schembri
- CRC for Water Quality and Treatment, Australian Water Quality Centre, SA Water Corporation, Private Mail Bag 3, Salisbury, South Australia 5108, Australia
| | | | | |
Collapse
|
37
|
Daiyasu H, Osaka K, Ishino Y, Toh H. Expansion of the zinc metallo-hydrolase family of the beta-lactamase fold. FEBS Lett 2001; 503:1-6. [PMID: 11513844 DOI: 10.1016/s0014-5793(01)02686-2] [Citation(s) in RCA: 261] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recently, the zinc metallo-hydrolase family of the beta-lactamase fold has grown quite rapidly, accompanied by the accumulation of sequence and structure data. The variety of the biological functions of the family is higher than expected. In addition, the members often have mosaic structures with additional domains. The family includes class B beta-lactamase, glyoxalase II, arylsulfatase, flavoprotein, cyclase/dehydrase, an mRNA 3'-processing protein, a DNA cross-link repair enzyme, a DNA uptake-related protein, an alkylphosphonate uptake-related protein, CMP-N-acetylneuraminate hydroxylase, the romA gene product, alkylsulfatase, and insecticide hydrolases. In this minireview, the functional and structural varieties of the growing protein family are described.
Collapse
Affiliation(s)
- H Daiyasu
- Department of Bioinformatics, Biomolecular Engineering Research Institute, Osaka, Japan
| | | | | | | |
Collapse
|
38
|
Kutchan TM. The biotechnological exploitation of medicinal plants. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2001:269-85. [PMID: 11077613 DOI: 10.1007/978-3-662-04042-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- T M Kutchan
- Leibniz Institut für Pflanzenbiochemie, Halle, Germany
| |
Collapse
|
39
|
Huang YT, Liaw YC, Gorbatyuk VY, Huang TH. Backbone dynamics of Escherichia coli thioesterase/protease I: evidence of a flexible active-site environment for a serine protease. J Mol Biol 2001; 307:1075-90. [PMID: 11286557 DOI: 10.1006/jmbi.2001.4539] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Escherichia coli thioesterase/protease I (TEP-I) is a member of a novel subclass of the lipolytic enzymes with a distinctive GDSLS motif. In addition to possessing thioesterase and protease activities, TEP-I also exhibits arylesterase activity. We have determined the (15)N nuclear magnetic spin relaxation rates, R(1) and R(2), and the steady state (1)H-(15)N heteronuclear Overhauser effect, measured at both 11.74 T and 14.09 T, of (u-(15)N) TEP-I. These data were analyzed using model-free formalism (with axially symmetric rotational diffusion anisotropy) to extract the backbone dynamics of TEP-I. The results reveal that the core structure of the central beta-sheet and the long alpha-helices are rigid, while the binding pocket appears to be rather flexible. The rigid core serves as a scaffold to anchor the essential loops, which form the binding pocket. The most flexible residues display large amplitude fast (ps/ns time-scale) motion and lie on one stripe whose orientation is presumed to be the ligand-binding orientation. We also detected the presence of several residues displaying slow (microseconds/ms time-scale) conformational exchanging processes. These residues lie around the binding pocket and are oriented perpendicularly to the orientation of the flexible stripe. Two of the putative catalytic triads, Ser10 and His157, and their neighbors show motion on the microseconds/ms time-scale, suggesting that their slow motion may have a role in catalysis, in addition to their possible roles in ligand binding. The presence of a flexible substrate-binding pocket may also facilitate binding to a wide range of substrates and confer the versatile functional property of this protein.
Collapse
Affiliation(s)
- Y T Huang
- Institute of Biomedical Sciences, Nankang Taipei, Taiwan, 11529, Rupublic of China
| | | | | | | |
Collapse
|
40
|
Carreras CW, Ashley GW. Manipulation of polyketide biosynthesis for new drug discovery. EXS 2001; 89:89-108. [PMID: 10997284 DOI: 10.1007/978-3-0348-8393-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Modular polyketide synthases (PKS) are large multifunctional proteins which direct the condensation of activated short chain carboxylic acids into products of defined length and functionality using a dedicated set of active sites, or module, for each step in the polymerization. The structure of the product is directly related to the number, content and sequence of modules in a PKS. Technology is described which allows the rational manipulation of the biosynthesis of these compounds and enables the generation of specific novel polyketide structures. Examples of polyketide drugs whose structures may be manipulated using this technology are given.
Collapse
Affiliation(s)
- C W Carreras
- Department of New Technologies, Kosan Biosciences, Inc., Hayward, CA 94545, USA
| | | |
Collapse
|
41
|
Abstract
Metabolic engineering of natural products is a science that has been built on the goals of traditional strain improvement with the availability of modern molecular biological technologies. In the past 15 years, the state of the art in metabolic engineering of natural products has advanced from the first proof-of-principle experiment based on minimal known genetics to a commonplace event using highly specific and sophisticated gene manipulation methods. With the availability of genes, host organisms, vector systems, and standard molecular biological tools, it is expected that metabolic engineering will be translated into industrial reality.
Collapse
Affiliation(s)
- W R Strohl
- Natural Products Drug Discovery-Microbiology, Merck Research Labs, Rahway, New Jersey 07065, USA.
| |
Collapse
|
42
|
Abstract
Crotonyl-CoA reductase (CCR), which catalyzes the reduction of crotonyl-CoA to butyryl-CoA, is common to most streptomycetes and appears to be inducible by either lysine or its catabolites in Streptomyces cinnamonensis grown in chemically defined medium. A major role of CCR in providing butyryl-CoA from acetate for monensin A biosynthesis has been demonstrated by the observation of a change in the monensin A/monensin B ratio in the parent C730.1 strain (50/50) and a ccr (encoding CCR) disruptant (12:88) of S. cinnamonensis in a complex medium. Both strains produce significantly higher monensin A/monensin B ratios in a chemically defined medium containing valine as a major carbon source than in either complex medium or chemically defined medium containing alternate amino acids. This observation demonstrates that under certain growth conditions valine catabolism may have a more significant role than CCR in providing butyryl-CoA. Such a process most likely involves an isomerization of the valine catabolite isobutyryl-CoA, catalyzed by the coenzyme B(12)-dependent isobutyryl-CoA mutase. Monensin labeling experiments using dual (13)C-labeled acetate in the ccr-disrupted S. cinnamonensis indicate the presence of an additional coenzyme B(12)-dependent mutase linking branched and straight-chain C(4) compounds by a new pathway.
Collapse
Affiliation(s)
- H Liu
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23219, USA
| | | |
Collapse
|
43
|
Moffitt MC, Neilan BA. The expansion of mechanistic and organismic diversity associated with non-ribosomal peptides. FEMS Microbiol Lett 2000; 191:159-67. [PMID: 11024258 DOI: 10.1111/j.1574-6968.2000.tb09334.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Non-ribosomal peptides are a group of secondary metabolites with a wide range of bioactivities, produced by prokaryotes and lower eukaryotes. Recently, non-ribosomal synthesis has been detected in diverse microorganisms, including the myxobacteria and cyanobacteria. Peptides biosynthesized non-ribosomally may often play a primary or secondary role in the producing organism. Non-ribosomal peptides are often small in size and contain unusual or modified amino acids. Biosynthesis occurs via large modular enzyme complexes, with each module responsible for the activation and thiolation of each amino acid, followed by peptide bond formation between activated amino acids. Modules may also be responsible for the enzymatic modification of the substrate amino acid. Recent analysis of biosynthetic gene clusters has identified novel integrated, mixed and hybrid enzyme systems. These diverse mechanisms of biosynthesis result in the wide variety of non-ribosomal peptide structures and bioactivities seen today. Knowledge of these biosynthetic systems is rapidly increasing and methods of genetically engineering these systems are being developed. In the future, this may lead to rational drug design through combinatorial biosynthesis of these enzyme systems.
Collapse
Affiliation(s)
- M C Moffitt
- School of Microbiology and Immunology, University of New South Wales, 2052, NSW, Sydney, Australia
| | | |
Collapse
|
44
|
Abstract
Why do microbes make secondary products? That question has been the subject of intense debate for many decades. There are two extreme opinions. Some argue that most secondary metabolites play no role in increasing the fitness of an organism. The opposite view, now widely held, is that every secondary metabolite is made because it possesses (or did possess at some stage in evolution) a biological activity that endows the producer with increased fitness. These opposing views can be reconciled by recognizing that, because of the principles governing molecular interactions, potent biological activity is a rare property for any molecule to possess. Consequently, in order for an organism to evolve the rare potent, biologically active molecule, a great many chemical structures have to be generated, most of which will possess no useful biological activity. Thus, the two sides of the debate about the role and evolution of secondary metabolism can be accommodated within the view that the possession of secondary metabolism can enhance fitness, but that many products of secondary metabolism will not enhance the fitness of the producer. It is proposed that secondary metabolism will have evolved such that traits that optimize the production and retention of chemical diversity at minimum cost will have been selected. Evidence exists for some of these predicted traits. Opportunities now exist to exploit these unique properties of secondary metabolism to enhance secondary product diversity and to devise new strategies for biotransformation and bioremediation.
Collapse
Affiliation(s)
- R D Firn
- Institute of Ecosystem Studies (IES), PO Box AB, Millbrook, NY 12545, USA
| | | |
Collapse
|
45
|
Siani MA, Skillman AG, Carreras CW, Ashley G, Kuntz ID, Santi DV. Development and screening of a polyketide virtual library for drug leads against a motilide pharmacophore. J Mol Graph Model 2000; 18:497-511, 539-40. [PMID: 11143565 DOI: 10.1016/s1093-3263(00)00070-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A virtual library of macrocyclic polyketide molecules was generated and screened to identify novel, conformationally constrained potential motilin receptor agonists ("motilides"). A motilide pharmacophore model was generated from the potent 6,9-enol ether erythromycin and known derivatives from the literature. The pharmacophore for each molecular conformation was a point in a distance-volume space based on presentation of the putative binding moieties. Two methods, one fragment based method and the other reaction based, were explored for constructing the polyketide virtual library. First, a virtual library was assembled from monomeric fragments using the CHORTLES language. Second, the virtual library was assembled by the in silico application of all possible polyketide synthase enzyme reactions to generate the product library. Each library was converted to low-energy 3D conformations by distance geometry and standard minimization methods. The distance-volume metric was calculated for low-energy conformations of the members of the virtual polyketide library and screened against the enol ether pharmacophore. The goal was to identify novel macrocycles that satisfy the pharmacophore. We identified three conformationally constrained, novel polyketide series that have low-energy conformations satisfying the distance-volume constraints of the motilide pharmacophore.
Collapse
Affiliation(s)
- M A Siani
- Kosan Biosciences, 3832 Bay Center Place, Hayward, CA, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Site-directed mutagenesis is still a very efficient strategy to elaborate improved enzymes. Recently, advances have been made in developing rational strategies aimed at reshaping enzyme specificities and mechanisms, and at engineering biocatalysts through molecular assembling. These knowledge-based studies greatly benefit from the most recent computational analyses of enzyme structures and functions. The combination of rational and combinatorial methods opens up new vistas in the design of stable and efficient enzymes.
Collapse
Affiliation(s)
- F Cedrone
- CEA, Département d'Ingénierie et d'Etudes des Protéines, Gif-sur-Yvette, France
| | | | | |
Collapse
|
47
|
Trefzer A, Hoffmeister D, Künzel E, Stockert S, Weitnauer G, Westrich L, Rix U, Fuchser J, Bindseil KU, Rohr J, Bechthold A. Function of glycosyltransferase genes involved in urdamycin A biosynthesis. CHEMISTRY & BIOLOGY 2000; 7:133-42. [PMID: 10662691 DOI: 10.1016/s1074-5521(00)00079-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Urdamycin A, the principle product of Streptomyces fradiae Tü2717, is an angucycline-type antibiotic. The polyketide-derived aglycone moiety is glycosylated at two positions, but only limited information is available about glycosyltransferases involved in urdamycin biosynthesis. RESULTS To determine the function of three glycosyltransferase genes in the urdamycin biosynthetic gene cluster, we have carried out gene inactivation and expression experiments. Inactivation of urdGT1a resulted in the predominant accumulation of urdamycin B. A mutant lacking urdGT1b and urdGT1c mainly produced compound 100-2. When urdGT1c was expressed in the urdGT1b/urdGT1c double mutant, urdamycin G and urdamycin A were detected. The mutant lacking all three genes mainly accumulated aquayamycin and urdamycinone B. Expression of urdGT1c in the triple mutant led to the formation of compound 100-1, whereas expression of urdGT1a resulted in the formation of compound 100-2. Co-expression of urdGT1b and urdGT1c resulted in the production of 12b-derhodinosyl-urdamycin A, and co-expression of urdGT1a, urdGT1b and urdGT1c resulted in the formation of urdamycin A. CONCLUSIONS Analysis of glycosyltransferase genes of the urdamycin biosynthetic gene cluster led to an unambiguous assignment of each glycosyltransferase to a certain biosynthetic saccharide attachment step.
Collapse
Affiliation(s)
- A Trefzer
- Pharmazeutische Biologie, Universität Tübingen, Pharmazeutisches Institut, Tübingen, D-72076, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|