1
|
Jobson ME, Tomlinson BR, Mustor EM, Felton EA, Weiss A, Caswell CC, Shaw LN. SSR42 is a novel regulator of cytolytic activity in Staphylococcus aureus. mBio 2025:e0077225. [PMID: 40340377 DOI: 10.1128/mbio.00772-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 04/08/2025] [Indexed: 05/10/2025] Open
Abstract
SSR42 is the longest noncoding RNA in the Staphylococcus aureus cell and the second-most abundant transcript in the stationary-phase transcriptome, second only to RNAIII. It is highly conserved across strains and exhibits pronounced stability in stationary phase; however, the mechanism behind its regulatory role has yet to be fully elucidated. Herein, we used transcriptomic and proteomic approaches to probe the role of SSR42, revealing that it is a powerful, novel activator of the primary leukocidin LukAB. SSR42 is required for cytotoxicity toward, and escape from within, human neutrophils, and also mediates survival within human blood. We show that SSR42 wields this role via derepression by the peroxide repressor PerR in response to the presence of human neutrophils and governs lukAB induction in this niche. Importantly, this regulation is driven by direct RNA-RNA interaction, as we show binding of the 5' untranslated region (UTR) of the lukAB transcript with the 3' end of SSR42, which ultimately modulates transcript stability as well as translational activity. Finally, we demonstrate that this behavior is absolutely required for full virulence of S. aureus in murine models of both pneumonia and sepsis. Collectively, we present SSR42 as a pleiotropic regulatory RNA that acts as a nexus between environmental sensing and the regulation of pathogenesis, responding to environmental stimuli and host immune factors to bolster cytotoxic behavior and facilitate infection in S. aureus.IMPORTANCEStaphylococcus aureus is a master pathogen due to its formidable collection of virulence factors. These are tightly controlled by a diverse group of regulators that titrate their abundance to adapt to unique infectious niches. The role of regulatory RNAs in stress adaptation and pathogenesis is becoming increasingly more relevant in S. aureus. In this study, we provide the most comprehensive global analysis to date of just such a factor, SSR42. Specifically, we uncover that SSR42 is required for mediating cytotoxicity-one of the pillars of infection-in response to phagocytosis by human neutrophils. We find that SSR42 is induced by components of the host immune system and facilitates downstream activation of cytotoxic factors via RNA-RNA interactions. This illustrates that SSR42 forms a pivotal link between sensing the external environment and mediating resistance to oxidative stress while promoting virulence, solidifying it as a major global regulator in S. aureus.
Collapse
Affiliation(s)
- Mary-Elizabeth Jobson
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
- Center for Antimicrobial Resistance, University of South Florida, Tampa, Florida, USA
| | - Brooke R Tomlinson
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Emilee M Mustor
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
- Center for Antimicrobial Resistance, University of South Florida, Tampa, Florida, USA
| | - Emily A Felton
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
- Center for Antimicrobial Resistance, University of South Florida, Tampa, Florida, USA
| | - Andy Weiss
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Clayton C Caswell
- Department of Biomedical Sciences and Pathobiology, Center for One Health Research, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Lindsey N Shaw
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
- Center for Antimicrobial Resistance, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
2
|
Jobson ME, Tomlinson BR, Mustor EM, Felton EA, Weiss A, Caswell CC, Shaw LN. SSR42 is a Novel Regulator of Cytolytic Activity in Staphylococcus aureus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.11.603084. [PMID: 39026779 PMCID: PMC11257634 DOI: 10.1101/2024.07.11.603084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
SSR42 is the longest noncoding RNA in the S. aureus cell and the second-most abundant transcript in the stationary phase transcriptome, second only to RNAIII. It is highly conserved across strains and exhibits pronounced stability in stationary phase, however the mechanism behind its regulatory role has yet to be fully elucidated. Herein, we used transcriptomic and proteomic approaches to probe the role of SSR42, revealing that it is a powerful, novel activator of the primary leukocidin LukAB. SSR42 is required for cytotoxicity towards, and escape from within, human neutrophils, and also mediates survival within human blood. We show that SSR42 wields this role via derepression by the peroxide repressor PerR in response to the presence of human neutrophils and governs lukAB induction in this niche. Importantly, this regulation is driven by direct RNA-RNA interaction, as we show binding of the 5' UTR of the lukAB transcript with the 3' end of SSR42, which ultimately modulates transcript stability as well as translational activity. Finally, we demonstrate that this behavior is absolutely required for full virulence of S. aureus in murine models of both pneumonia and sepsis. Collectively, we present SSR42 as a pleiotropic regulatory RNA that acts as a nexus between environmental sensing and the regulation of pathogenesis, responding to environmental stimuli and host immune factors to bolster cytotoxic behavior and facilitate infection in S. aureus . Importance S. aureus is a master pathogen due to its formidable collection of virulence factors. These are tightly controlled by a diverse group of regulators that titrate their abundance to adapt to unique infectious niches. The role of regulatory RNAs in stress adaptation and pathogenesis is becoming increasingly more relevant in S. aureus . In this study, we provide the most comprehensive global analysis to date of just such a factor, SSR42. Specifically, we uncover that SSR42 is required for mediating cytotoxicity - one of the pillars of infection - in response to phagocytosis by human neutrophils. We find that SSR42 is induced by components of the host immune system and facilitates downstream activation of cytotoxic factors via RNA-RNA interactions. This illustrates that SSR42 forms a pivotal link between sensing the external environment and mediating resistance to oxidative stress while promoting virulence, solidifying it as a major global regulator in S. aureus .
Collapse
|
3
|
Iturrieta-Gonzalez I, Olivares-Ferretti P, Hidalgo A, Zambrano F, Ossa X, Fonseca-Salamanca F, Melo A. High frequency of point mutations in the nitroreductase 4 and 6 genes of Trichomonas vaginalis associated with metronidazole resistance. Folia Parasitol (Praha) 2024; 71:2024.021. [PMID: 39584737 DOI: 10.14411/fp.2024.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/17/2024] [Indexed: 11/26/2024]
Abstract
Trichomoniasis, a globally distributed sexually transmitted infection, is caused by the urogenital parasite Trichomonas vaginalis Donné, 1836 affecting both women and men. The treatment of choice is metronidazole (MTZ). In the present study, 15 samples of vaginal discharge and urine were analysed by sequencing nitroreductase genes (ntr4 and ntr6). An in silico model was structured to illustrate the location of point mutations (PM) in the protein. The ntr4 gene presented four PMs: G76C (10/10), C213G (9/10), C318A (5/10) and G424A (1/10), while the ntr6 gene had eight PMs; G593A (13/13) the most frequent, G72T and G627C, both in 8/13. The PM C213G and A438T generated a stop codon causing a truncated nitroreductase 4 and 6 protein. Docking analysis demonstrated that some models had a decrease in binding affinity to MTZ (p < 0.0001). A high frequency of mutations was observed in the samples analysed that could be associated with resistance to MTZ in Chile.
Collapse
Affiliation(s)
- Isabel Iturrieta-Gonzalez
- Centre of Excellence in Translational Medicine, Nucleus of Scientific and Technological Bioresources (CEMT-BIOREN), Faculty of Medicine. Universidad de La Frontera, Temuco, Chile
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera. Temuco, Chile
| | - Pamela Olivares-Ferretti
- Centre of Excellence in Translational Medicine, Nucleus of Scientific and Technological Bioresources (CEMT-BIOREN), Faculty of Medicine. Universidad de La Frontera, Temuco, Chile
| | - Alejandro Hidalgo
- Centre of Excellence in Translational Medicine, Nucleus of Scientific and Technological Bioresources (CEMT-BIOREN), Faculty of Medicine. Universidad de La Frontera, Temuco, Chile
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera. Temuco, Chile
| | - Fabiola Zambrano
- Centre of Excellence in Translational Medicine, Nucleus of Scientific and Technological Bioresources (CEMT-BIOREN), Faculty of Medicine. Universidad de La Frontera, Temuco, Chile
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera. Temuco, Chile
| | - Ximena Ossa
- Public Health Department, Centre of Excellence Training, Research and Management for Evidence-Based Health (CIGES), Universidad de La Frontera, Temuco, Chile
| | - Flery Fonseca-Salamanca
- Centre of Excellence in Translational Medicine, Nucleus of Scientific and Technological Bioresources (CEMT-BIOREN), Faculty of Medicine. Universidad de La Frontera, Temuco, Chile
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera. Temuco, Chile
| | - Angelica Melo
- Centre of Excellence in Translational Medicine, Nucleus of Scientific and Technological Bioresources (CEMT-BIOREN), Faculty of Medicine. Universidad de La Frontera, Temuco, Chile
- Department of Pathological Anatomy, Faculty of Medicine. Universidad de La Frontera. Temuco, Chile *Address for correspondence: Angelica Melo Angermeyer. Universidad de La Frontera, Faculty of Medicine, Edificio Biociencias, Av. Alemania 0458 Temuco, Chile. E-mail: ; ORCID-iD: 0000-0002-3576-1745
| |
Collapse
|
4
|
Khamari B, Bulagonda EP. Unlocking Nitrofurantoin: Understanding Molecular Mechanisms of Action and Resistance in Enterobacterales. Med Princ Pract 2024; 34:121-137. [PMID: 39471786 PMCID: PMC11936445 DOI: 10.1159/000542330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/28/2024] [Indexed: 11/01/2024] Open
Abstract
Antimicrobial resistance (AMR) is a global health crisis that has already claimed millions of lives and is projected to affect millions more unless urgent action is taken. Effective control of AMR requires the correct choice and dosage of antibiotics, as well as robust surveillance and research. Understanding the mechanisms of antibiotic action and the emergence of resistance phenotypes along with their genotypes is essential. This knowledge, combined with insights into resistance prevalence and spread, empowers clinicians to propose alternative therapies. Nitrofurantoin, a 70-year-old antibiotic, remains effective for the treatment of uncomplicated lower UTIs. Preventing emergence and spread of nitrofurantoin-resistant superbugs would preserve the efficacy of this antibiotic which is crucial for ongoing and future AMR efforts. Nitrofurantoin resistance evolves slowly, leading to low prevalence compared to other antibiotics. However, it is often linked with extensive drug resistance, complicating treatment outcomes. Even a minor percentage of nitrofurantoin-resistant bacteria can cause significant clinical challenges due to irreversible evolution. While detailed study of these mechanisms can guide the development of strategies to combat nitrofurantoin resistance, early detection of resistant infections is critical for saving lives. The current review aimed to provide a comprehensive analysis of nitrofurantoin's mechanisms of action, resistance evolution, prevalence, and resistance prediction. Our goal is to offer valuable insights for researchers and clinicians to enhance nitrofurantoin use and address the challenges posed by AMR. Antimicrobial resistance (AMR) is a global health crisis that has already claimed millions of lives and is projected to affect millions more unless urgent action is taken. Effective control of AMR requires the correct choice and dosage of antibiotics, as well as robust surveillance and research. Understanding the mechanisms of antibiotic action and the emergence of resistance phenotypes along with their genotypes is essential. This knowledge, combined with insights into resistance prevalence and spread, empowers clinicians to propose alternative therapies. Nitrofurantoin, a 70-year-old antibiotic, remains effective for the treatment of uncomplicated lower UTIs. Preventing emergence and spread of nitrofurantoin-resistant superbugs would preserve the efficacy of this antibiotic which is crucial for ongoing and future AMR efforts. Nitrofurantoin resistance evolves slowly, leading to low prevalence compared to other antibiotics. However, it is often linked with extensive drug resistance, complicating treatment outcomes. Even a minor percentage of nitrofurantoin-resistant bacteria can cause significant clinical challenges due to irreversible evolution. While detailed study of these mechanisms can guide the development of strategies to combat nitrofurantoin resistance, early detection of resistant infections is critical for saving lives. The current review aimed to provide a comprehensive analysis of nitrofurantoin's mechanisms of action, resistance evolution, prevalence, and resistance prediction. Our goal is to offer valuable insights for researchers and clinicians to enhance nitrofurantoin use and address the challenges posed by AMR.
Collapse
Affiliation(s)
- Balaram Khamari
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, India
| | - Eswarappa Pradeep Bulagonda
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, India
| |
Collapse
|
5
|
Russo S, Rozeboom HJ, Wijma HJ, Poelarends GJ, Fraaije MW. Biochemical, kinetic, and structural characterization of a Bacillus tequilensis nitroreductase. FEBS J 2024; 291:3889-3903. [PMID: 38946302 DOI: 10.1111/febs.17210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/17/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Nitroreductases (NRs) are NAD(P)H-dependent flavoenzymes that reduce nitro aromatic compounds to their corresponding arylamines via the nitroso and hydroxylamine intermediates. Because of their broad substrate scope and versatility, NRs have found application in multiple fields such as biocatalysis, bioremediation, cell-imaging and prodrug activation. However, only a limited number of members of the broad NR superfamily (> 24 000 sequences) have been experimentally characterized. Within this group of enzymes, only few are capable of amine synthesis, which is a fundamental chemical transformation for the pharmaceutical, agricultural, and textile industries. Herein, we provide a comprehensive description of a recently discovered NR from Bacillus tequilensis, named BtNR. This enzyme has previously been demonstrated to have the capability to fully convert nitro aromatic and heterocyclic compounds to their respective primary amines. In this study, we determined its biochemical, kinetic and structural properties, including its apparent melting temperature (Tm) of 59 °C, broad pH activity range (from pH 3 to 10) and a notably low redox potential (-236 ± 1 mV) in comparison to other well-known NRs. We also determined its steady-state and pre-steady-state kinetic parameters, which are consistent with other NRs. Additionally, we elucidated the crystal structure of BtNR, which resembles the well-characterized Escherichia coli oxygen-insensitive NAD(P)H nitroreductase (NfsB), and investigated the substrate binding in its active site through docking and molecular dynamics studies with four nitro aromatic substrates. Guided by these structural analyses, we probed the functional roles of active site residues by site-directed mutagenesis. Our findings provide valuable insights into the biochemical and structural properties of BtNR, as well as its potential applications in biotechnology.
Collapse
Affiliation(s)
- Sara Russo
- Molecular Enzymology Group, University of Groningen, The Netherlands
- Department of Chemical and Pharmaceutical Biology, University of Groningen, The Netherlands
| | | | - Hein J Wijma
- Molecular Enzymology Group, University of Groningen, The Netherlands
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, University of Groningen, The Netherlands
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, The Netherlands
| |
Collapse
|
6
|
Day MA, Jarrom D, Rajah N, Searle PF, Hyde EI, White SA. Oxygen-insensitive nitroreductase E. coli NfsA, but not NfsB, is inhibited by fumarate. Proteins 2023; 91:585-592. [PMID: 36443029 PMCID: PMC10953011 DOI: 10.1002/prot.26451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
Escherichia coli NfsA and NfsB are founding members of two flavoprotein families that catalyze the oxygen-insensitive reduction of nitroaromatics and quinones by NAD(P)H. This reduction is required for the activity of nitrofuran antibiotics and the enzymes have also been proposed for use with nitroaromatic prodrugs in cancer gene therapy and biocatalysis, but the roles of the proteins in vivo in bacteria are not known. NfsA is NADPH-specific whereas NfsB can also use NADH. The crystal structures of E. coli NfsA and NfsB and several analogs have been determined previously. In our crystal trials, we unexpectedly observed NfsA bound to fumarate. We here present the X-ray structure of the E. coli NfsA-fumarate complex and show that fumarate acts as a weak inhibitor of NfsA but not of NfsB. The structural basis of this differential inhibition is conserved in the two protein families and occurs at fumarate concentrations found in vivo, so impacting the efficacy of these proteins.
Collapse
Affiliation(s)
- Martin A. Day
- School of BiosciencesUniversity of BirminghamBirminghamUK
- Institute for Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - David Jarrom
- School of BiosciencesUniversity of BirminghamBirminghamUK
| | - Navina Rajah
- School of BiosciencesUniversity of BirminghamBirminghamUK
| | - Peter F. Searle
- Institute for Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Eva I. Hyde
- School of BiosciencesUniversity of BirminghamBirminghamUK
| | - Scott A. White
- School of BiosciencesUniversity of BirminghamBirminghamUK
| |
Collapse
|
7
|
White SA, Christofferson AJ, Grainger AI, Day MA, Jarrom D, Graziano AE, Searle PF, Hyde EI. The 3D-structure, kinetics and dynamics of the E. coli nitroreductase NfsA with NADP + provide glimpses of its catalytic mechanism. FEBS Lett 2022; 596:2425-2440. [PMID: 35648111 PMCID: PMC9912195 DOI: 10.1002/1873-3468.14413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 11/12/2022]
Abstract
Nitroreductases activate nitroaromatic antibiotics and cancer prodrugs to cytotoxic hydroxylamines and reduce quinones to quinols. Using steady-state and stopped-flow kinetics, we show that the Escherichia coli nitroreductase NfsA is 20-50 fold more active with NADPH than with NADH and that product release may be rate-limiting. The crystal structure of NfsA with NADP+ shows that a mobile loop forms a phosphate-binding pocket. The nicotinamide ring and nicotinamide ribose are mobile, as confirmed in molecular dynamics (MD) simulations. We present a model of NADPH bound to NfsA. Only one NADP+ is seen bound to the NfsA dimers, and MD simulations show that binding of a second NADP(H) cofactor is unfavourable, suggesting that NfsA and other members of this protein superfamily may have a half-of-sites mechanism.
Collapse
Affiliation(s)
| | | | - Alastair I. Grainger
- School of BiosciencesUniversity of BirminghamUK
- Present address:
School of Life and Health SciencesAston UniversityBirminghamB4 7ETUK
| | - Martin A. Day
- School of BiosciencesUniversity of BirminghamUK
- Institute for Cancer and Genomic SciencesUniversity of BirminghamUK
- Present address:
DurhamUK
| | - David Jarrom
- School of BiosciencesUniversity of BirminghamUK
- Present address:
Health Technology WalesCardiffCF10 4PLUK
| | - Antonio E. Graziano
- School of BiosciencesUniversity of BirminghamUK
- Present address:
Carlsberg Marstons Brewing CompanyNorthamptonNN1 1PZUK
| | - Peter F. Searle
- Institute for Cancer and Genomic SciencesUniversity of BirminghamUK
| | - Eva I. Hyde
- School of BiosciencesUniversity of BirminghamUK
| |
Collapse
|
8
|
García-Descalzo L, García-López E, Cid C. Comparative Proteomic Analysis of Psychrophilic vs. Mesophilic Bacterial Species Reveals Different Strategies to Achieve Temperature Adaptation. Front Microbiol 2022; 13:841359. [PMID: 35591995 PMCID: PMC9111180 DOI: 10.3389/fmicb.2022.841359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
The old debate of nature (genes) vs. nurture (environmental variables) is once again topical concerning the effect of climate change on environmental microorganisms. Specifically, the Polar Regions are experiencing a drastic increase in temperature caused by the rise in greenhouse gas emissions. This study, in an attempt to mimic the molecular adaptation of polar microorganisms, combines proteomic approaches with a classical microbiological analysis in three bacterial species Shewanella oneidensis, Shewanella frigidimarina, and Psychrobacter frigidicola. Both shewanellas are members of the same genus but they live in different environments. On the other hand, Shewanella frigidimarina and Psychrobacter frigidicola share the same natural environment but belong to a different genus. The comparison of the strategies employed by each bacterial species estimates the contribution of genome vs. environmental variables in the adaptation to temperature. The results show a greater versatility of acclimatization for the genus Shewanella with respect to Psychrobacter. Besides, S. frigidimarina was the best-adapted species to thermal variations in the temperature range 4–30°C and displayed several adaptation mechanisms common with the other two species. Regarding the molecular machinery used by these bacteria to face the consequences of temperature changes, chaperones have a pivoting role. They form complexes with other proteins in the response to the environment, establishing cooperation with transmembrane proteins, elongation factors, and proteins for protection against oxidative damage.
Collapse
Affiliation(s)
- Laura García-Descalzo
- Centro de Astrobiología, Department of Planetology and Habitability, CSIC-INTA, Madrid, Spain
| | - Eva García-López
- Centro de Astrobiología, Department of Molecular Ecology, CSIC-INTA, Madrid, Spain
| | - Cristina Cid
- Centro de Astrobiología, Department of Molecular Ecology, CSIC-INTA, Madrid, Spain
| |
Collapse
|
9
|
Wang Y, Meng X, Ma A, Sun M, Jiao S, Wang C. Rhodol-derived turn-on fluorescent chemosensor for ultrasensitive detection of nitroreductase activity in bacteria and bioimaging in oral cancer cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120836. [PMID: 34998052 DOI: 10.1016/j.saa.2021.120836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/29/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The detection of intracellular nitroreductase (NTR) activity is important for the study of hypoxia in organisms. In the present study, a Rhodol-derived fluorescent chemosensor (Rhod-NO2) was synthesized in a one-step procedure. Rhod-NO2 exhibits 110-fold fluorescence enhancement in the presence of NTR. Moreover, Rhod-NO2 demonstrates high NTR selectivity and sensitivity (LOD, 0.6 ng/mL). The mode of Rhod-NO2 binding to NTR was also revealed by molecular docking. In addition, the reaction and luminescence mechanisms were evaluated by MS and TDDFT theoretical calculations, respectively. Finally, Rhod-NO2 was successfully applied to monitor NTR production during Escherichia coli (E. coli) growth, and to visually analyze NTR production in malignant oral cancer cells under hypoxia. Thus, Rhod-NO2 represents a new molecular tool to further understanding of the biological function of NTR.
Collapse
Affiliation(s)
- Yingyi Wang
- Hospital of Stomatology, Jilin University, Qinghua Road 1500, Changchun 130021, China
| | - Xiuping Meng
- Hospital of Stomatology, Jilin University, Qinghua Road 1500, Changchun 130021, China
| | - Ang Ma
- Hospital of Stomatology, Jilin University, Qinghua Road 1500, Changchun 130021, China
| | - Mengyao Sun
- Hospital of Stomatology, Jilin University, Qinghua Road 1500, Changchun 130021, China
| | - Shan Jiao
- Hospital of Stomatology, Jilin University, Qinghua Road 1500, Changchun 130021, China.
| | - Chengkun Wang
- Hospital of Stomatology, Jilin University, Qinghua Road 1500, Changchun 130021, China.
| |
Collapse
|
10
|
The structures of E. coli NfsA bound to the antibiotic nitrofurantoin; to 1,4-benzoquinone and to FMN. Biochem J 2021; 478:2601-2617. [PMID: 34142705 PMCID: PMC8286842 DOI: 10.1042/bcj20210160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 01/23/2023]
Abstract
NfsA is a dimeric flavoprotein that catalyses the reduction in nitroaromatics and quinones by NADPH. This reduction is required for the activity of nitrofuran antibiotics. The crystal structure of free Escherichia coli NfsA and several homologues have been determined previously, but there is no structure of the enzyme with ligands. We present here crystal structures of oxidised E. coli NfsA in the presence of several ligands, including the antibiotic nitrofurantoin. Nitrofurantoin binds with the furan ring, rather than the nitro group that is reduced, near the N5 of the FMN. Molecular dynamics simulations show that this orientation is only favourable in the oxidised enzyme, while potentiometry suggests that little semiquinone is formed in the free protein. This suggests that the reduction occurs by direct hydride transfer from FMNH− to nitrofurantoin bound in the reverse orientation to that in the crystal structure. We present a model of nitrofurantoin bound to reduced NfsA in a viable hydride transfer orientation. The substrate 1,4-benzoquinone and the product hydroquinone are positioned close to the FMN N5 in the respective crystal structures with NfsA, suitable for reaction, but are mobile within the active site. The structure with a second FMN, bound as a ligand, shows that a mobile loop in the free protein forms a phosphate-binding pocket. NfsA is specific for NADPH and a similar conformational change, forming a phosphate-binding pocket, is likely to also occur with the natural cofactor.
Collapse
|
11
|
Analysis of the Oxidative Stress Regulon Identifies soxS as a Genetic Target for Resistance Reversal in Multidrug-Resistant Klebsiella pneumoniae. mBio 2021; 12:e0086721. [PMID: 34098732 PMCID: PMC8262902 DOI: 10.1128/mbio.00867-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In bacteria, the defense system deployed to counter oxidative stress is orchestrated by three transcriptional factors, SoxS, SoxR, and OxyR. Although the regulon that these factors control is known in many bacteria, similar data are not available for Klebsiella pneumoniae. To address this data gap, oxidative stress was artificially induced in K. pneumoniae MGH78578 using paraquat and the corresponding oxidative stress regulon recorded using transcriptome sequencing (RNA-seq). The soxS gene was significantly induced during oxidative stress, and a knockout mutant was constructed to explore its functionality. The wild type and mutant were grown in the presence of paraquat and subjected to RNA-seq to elucidate the soxS regulon in K. pneumoniae MGH78578. Genes that are commonly regulated both in the oxidative stress and soxS regulons were identified and denoted as the oxidative SoxS regulon; these included a group of genes specifically regulated by SoxS. Efflux pump-encoding genes and global regulators were identified as part of this regulon. Consequently, the isogenic soxS mutant was found to exhibit a reduction in the minimum bactericidal concentration against tetracycline compared to that of the wild type. Impaired efflux activity, allowing tetracycline to be accumulated in the cytoplasm to bactericidal levels, was further evaluated using a tetraphenylphosphonium (TPP+) accumulation assay. The soxS mutant was also susceptible to tetracycline in vivo in a zebrafish embryo model. We conclude that the soxS gene could be considered a genetic target against which an inhibitor could be developed and used in combinatorial therapy to combat infections associated with multidrug-resistant K. pneumoniae.
Collapse
|
12
|
Thomas C, Gwenin CD. The Role of Nitroreductases in Resistance to Nitroimidazoles. BIOLOGY 2021; 10:388. [PMID: 34062712 PMCID: PMC8147198 DOI: 10.3390/biology10050388] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 01/14/2023]
Abstract
Antimicrobial resistance is a major challenge facing modern medicine, with an estimated 700,000 people dying annually and a global cost in excess of $100 trillion. This has led to an increased need to develop new, effective treatments. This review focuses on nitroimidazoles, which have seen a resurgence in interest due to their broad spectrum of activity against anaerobic Gram-negative and Gram-positive bacteria. The role of nitroreductases is to activate the antimicrobial by reducing the nitro group. A decrease in the activity of nitroreductases is associated with resistance. This review will discuss the resistance mechanisms of different disease organisms, including Mycobacterium tuberculosis, Helicobacter pylori and Staphylococcus aureus, and how these impact the effectiveness of specific nitroimidazoles. Perspectives in the field of nitroimidazole drug development are also summarised.
Collapse
Affiliation(s)
- Carol Thomas
- School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK;
| | - Christopher D. Gwenin
- Department of Chemistry, Xi’an Jiaotong-Liverpool University, 111 Ren’ai Road, Suzhou Industrial Park, Suzhou 215123, China
| |
Collapse
|
13
|
Hall KR, Robins KJ, Williams EM, Rich MH, Calcott MJ, Copp JN, Little RF, Schwörer R, Evans GB, Patrick WM, Ackerley DF. Intracellular complexities of acquiring a new enzymatic function revealed by mass-randomisation of active-site residues. eLife 2020; 9:59081. [PMID: 33185191 PMCID: PMC7738182 DOI: 10.7554/elife.59081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/12/2020] [Indexed: 11/17/2022] Open
Abstract
Selection for a promiscuous enzyme activity provides substantial opportunity for competition between endogenous and newly-encountered substrates to influence the evolutionary trajectory, an aspect that is often overlooked in laboratory directed evolution studies. We selected the Escherichia coli nitro/quinone reductase NfsA for chloramphenicol detoxification by simultaneously randomising eight active-site residues and interrogating ~250,000,000 reconfigured variants. Analysis of every possible intermediate of the two best chloramphenicol reductases revealed complex epistatic interactions. In both cases, improved chloramphenicol detoxification was only observed after an R225 substitution that largely eliminated activity with endogenous quinones. Error-prone PCR mutagenesis reinforced the importance of R225 substitutions, found in 100% of selected variants. This strong activity trade-off demonstrates that endogenous cellular metabolites hold considerable potential to shape evolutionary outcomes. Unselected prodrug-converting activities were mostly unaffected, emphasising the importance of negative selection to effect enzyme specialisation, and offering an application for the evolved genes as dual-purpose selectable/counter-selectable markers. In the cell, most tasks are performed by big molecules called proteins, which behave like molecular machines. Although proteins are often described as having one job each, this is not always true, and many proteins can perform different roles. Enzymes are a type of protein that facilitate chemical reactions. They are often specialised to one reaction, but they can also accelerate other side-reactions. During evolution, these side-reactions can become more useful and, as a result, the role of the enzyme may change over time. The main role of the enzyme called NfsA in Escherichia coli bacteria is thought to be to convert molecules called quinones into hydroquinones, which can protect the cell from toxic molecules produced in oxidation reactions. As a side-reaction, NfsA has the potential to protect bacteria from an antibiotic called chloramphenicol, but it generally does this with such low efficacy that the effects are negligible. Producing hydroquinones is helpful to the cell in some situations, but if bacteria are regularly exposed to chloramphenicol, NfsA’s role aiding antibiotic resistance could become more important. Over time, the enzyme could evolve to become better at neutralising chloramphenicol. Therefore, NfsA provides an opportunity to study the evolution of proteins and how bacteria adapt to antibiotics. To see how evolution might affect the activity of NfsA, Hall et al. generated 250 million E. coli with either random or targeted changes to the gene that codes for the NfsA enzyme. The resulting variants of NfsA that were most effective against chloramphenicol all had a change that eliminated the enzyme’s ability to convert quinones. This result demonstrates a key trade-off between roles for NfsA, where one must be lost for the other to improve. These results demonstrate the interplay between a protein’s different roles and provide insight into bacterial drug resistance. Additionally, the experiments showed that the bacteria with improved resistance to chloramphenicol also became more sensitive to another antibiotic, metronidazole. These findings could inform the fight against drug-resistant bacterial infections and may also be helpful in guiding the design of proteins with different roles.
Collapse
Affiliation(s)
- Kelsi R Hall
- School of Biological Sciences, Victoria University of Wellington, Wellington, Wellington, New Zealand.,Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Katherine J Robins
- School of Biological Sciences, Victoria University of Wellington, Wellington, Wellington, New Zealand
| | - Elsie M Williams
- School of Biological Sciences, Victoria University of Wellington, Wellington, Wellington, New Zealand.,Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Michelle H Rich
- School of Biological Sciences, Victoria University of Wellington, Wellington, Wellington, New Zealand
| | - Mark J Calcott
- School of Biological Sciences, Victoria University of Wellington, Wellington, Wellington, New Zealand.,Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Janine N Copp
- School of Biological Sciences, Victoria University of Wellington, Wellington, Wellington, New Zealand
| | - Rory F Little
- School of Biological Sciences, Victoria University of Wellington, Wellington, Wellington, New Zealand
| | - Ralf Schwörer
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand.,Ferrier Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Gary B Evans
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand.,Ferrier Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Wayne M Patrick
- School of Biological Sciences, Victoria University of Wellington, Wellington, Wellington, New Zealand.,Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - David F Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington, Wellington, New Zealand.,Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
14
|
Boddu RS, Perumal O, K D. Microbial nitroreductases: A versatile tool for biomedical and environmental applications. Biotechnol Appl Biochem 2020; 68:1518-1530. [PMID: 33156534 DOI: 10.1002/bab.2073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022]
Abstract
Nitroreductases, enzymes found mostly in bacteria and also in few eukaryotes, use nicotinamide adenine dinucleotide (NADH) or nicotinamide adenine dinucleotide phosphate (NADPH) as a cofactor for their activity and metabolize an enormous list of a diverse nitro group-containing compounds. Nitroreductases that are capable of metabolizing nitroaromatic and nitro heterocyclic compounds have drawn great attention in recent years owing to their biotechnological, biomedical, environmental, and human impact. These enzymes attracted medicinal chemists and pharmacologists because of their prodrug selectivity for activation/reduction of nitro compounds that wipe out pathogens/cancer cells, leaving the host/normal cells unharmed. It is applied in diverse fields of study like prodrug activation in treating cancer and leishmaniasis, designing fluorescent probes for hypoxia detection, cell imaging, ablation of specific cell types, biodegradation of nitro-pollutants, and interpretation of mutagenicity of nitro compounds. Keeping in view the immense prospects of these enzymes and a large number of research contributions in this area, the present review encompasses the enzymatic reaction mechanism, their role in antibiotic resistance, hypoxia sensing, cell imaging, cancer therapy, reduction of recalcitrant nitro chemicals, enzyme variants, and their specificity to substrates, reaction products, and their applications.
Collapse
Affiliation(s)
- Ramya Sree Boddu
- Department of Biotechnology, National Institute of Technology, Warangal, India
| | - Onkara Perumal
- Department of Biotechnology, National Institute of Technology, Warangal, India
| | - Divakar K
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur, India
| |
Collapse
|
15
|
Nakagawa S, Kurimoto Y, Ezumi M, Nakatani K, Mizunaga S, Yamagishi Y, Mikamo H. In vitro and in vivo antibacterial activity of nitrofurantoin against clinical isolates of E. coli in Japan and evaluation of biological cost of nitrofurantoin resistant strains using a mouse urinary tract infection model. J Infect Chemother 2020; 27:250-255. [PMID: 33060044 DOI: 10.1016/j.jiac.2020.09.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/04/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Nitrofurantoin is a well-established antibiotic, and is an important first-line oral treatment for uncomplicated urinary tract infections. However, little information is available with respect to its antibacterial activity in Japan, in vivo efficacy, or the in vivo biological cost of resistant strains. METHODS We compared the susceptibility of six representative antibacterial agents-nitrofurantoin, sulfamethoxazole/trimethoprim, fosfomycin, mecillinam, ciprofloxacin, and cefdinir-against E. coli clinically isolated in Japan during 2017. We evaluated the in vivo efficacy of nitrofurantoin using a model of mouse urinary tract infection caused by ciprofloxacin resistant E. coli. We obtained nitrofurantoin resistant isolates through tests generating spontaneous mutations, and assessed the in vivo fitness of nitrofurantoin resistant isolates. RESULTS The MIC90 of nitrofurantoin was 16 μg/mL, and was the lowest among the drugs tested. It was found that, in the mouse urinary tract infection model, 30 mg/kg and 100 mg/kg of nitrofurantoin reduced the count of viable bacterial cells in the kidney, while 100 mg/kg of ciprofloxacin did not. All spontaneous bacterial mutants resistant to nitrofurantoin had deletions in the nfsA gene, and we found that the resistant strain had lower growth in the mouse urinary tract infection model than in the parent strain. CONCLUSIONS We demonstrated promising in vitro and in vivo activity of nitrofurantoin against E. coli clinical isolates in Japan, and lower in vivo fitness of the resistant strain of nitrofurantoin.
Collapse
Affiliation(s)
- Satoshi Nakagawa
- Department of Clinical Infectious Diseases, Aichi Medical University Graduate School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan; Bio Science & Engineering Research Laboratories Research & Development Management Headquarters, FUJIFILM Corporation, 4-1, Shimookui 2-chome, Toyama, 930-8508, Japan.
| | - Yusuke Kurimoto
- Bio Science & Engineering Research Laboratories Research & Development Management Headquarters, FUJIFILM Corporation, 577 Ushijima, Kaisei-Machi, Ashigarakami-Gun, Kanagawa, 258-8577, Japan
| | - Masayuki Ezumi
- Bio Science & Engineering Research Laboratories Research & Development Management Headquarters, FUJIFILM Corporation, 577 Ushijima, Kaisei-Machi, Ashigarakami-Gun, Kanagawa, 258-8577, Japan
| | - Keisuke Nakatani
- Bio Science & Engineering Research Laboratories Research & Development Management Headquarters, FUJIFILM Corporation, 577 Ushijima, Kaisei-Machi, Ashigarakami-Gun, Kanagawa, 258-8577, Japan
| | - Shingo Mizunaga
- Bio Science & Engineering Research Laboratories Research & Development Management Headquarters, FUJIFILM Corporation, 4-1, Shimookui 2-chome, Toyama, 930-8508, Japan
| | - Yuka Yamagishi
- Department of Clinical Infectious Diseases, Aichi Medical University Graduate School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University Graduate School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| |
Collapse
|
16
|
Kaur S, Benov LT. Methylene blue induces the soxRS regulon of Escherichia coli. Chem Biol Interact 2020; 329:109222. [PMID: 32771325 DOI: 10.1016/j.cbi.2020.109222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 12/31/2022]
Abstract
Extensive application of methylene blue (MB) for therapeutic and diagnostic purposes, and reports for unwanted side effects, demand better understanding of the mechanisms of biological action of this thiazine dye. Because MB is redox-active, its biological activities have been attributed to transfer of electrons, generation of reactive oxygen species, and antioxidant action. Results of this study show that MB is more toxic to a superoxide dismutase-deficient Escherichia coli mutant than to its SOD-proficient parent, which indicates that superoxide anion radical is involved. Incubation of E. coli with MB induced the enzymes fumarase C, SOD, nitroreductase A, and glucose-6-phosphate dehydrogenase, all controlled by the soxRS regulon. Induction of these enzymes was prevented by blocking protein synthesis with chloramphenicol and was not observed when soxRS-negative mutants were incubated with MB. These results show that MB is capable of inducing the soxRS regulon of E. coli, which plays a key role in protecting bacteria against oxidative stress and redox-cycling compounds. Irrespective of the abundance of heme-containing proteins in living cells, which are preferred acceptors of electrons from the reduced form of MB, reduction of oxygen to superoxide radical still takes place. Induction of the soxRS regulon suggests that in humans, beneficial effects of MB could be attributed to activation of redox-sensitive transcription factors like Nrf2 and FoxO. If defense systems are compromised or genes coding for protective proteins are not induced, MB would have deleterious effects.
Collapse
Affiliation(s)
- Simranbir Kaur
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait
| | - Ludmil T Benov
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait.
| |
Collapse
|
17
|
Evaluating the level of nitroreductase activity in clinical Klebsiella pneumoniae isolates to support strategies for nitro drug and prodrug development. Int J Antimicrob Agents 2019; 54:538-546. [PMID: 31398484 DOI: 10.1016/j.ijantimicag.2019.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/23/2019] [Accepted: 08/01/2019] [Indexed: 11/22/2022]
Abstract
To understand the potential utility of novel nitroreductase (NR)-activated prodrugs, NR enzyme activity was assessed in clinical Klebsiella pneumoniae isolates using a NR-activated fluorescent probe. NR activity was constant throughout the bacterial growth cycle, but individual K. pneumoniae isolates exhibited a wide range of NR activity levels. The genes of major NR enzymes (nfsA and nfnB) showed a number of sequence variants. Aside from a C-terminal extension of NfnB, which may be responsible for lower NR activity in specific isolates, the genetic differences did not explain the variation in activity. Analysis of important clinical strains (ST11, ST258, ST14 and ST101) showed significant variation in NR activity between isolates within the same sequence type despite conservation of nfsA/nfnB sequences. Addition of methyl viologen (MV), a known activator of soxRS, caused a significant increase in NR activity for all strains, with proportionally larger increases in activity seen for strains with low uninduced NR levels. Real-time PCR on selected strains following exposure to MV showed upregulation of soxS (15-32-fold) and nfsA (5-22-fold) in all strains tested. Expression of nfnB was upregulated 2-5-fold in 4/6 strains tested. High levels of NR activity in the absence of MV activation correlated with nitrofurantoin susceptibility. These data provide evidence that NR gene mutations and regulatory pathways influence NR activity in K. pneumoniae isolates and this is likely to impact treatment efficacy with novel nitro-containing drugs or prodrugs.
Collapse
|
18
|
Thomas M, Benov L. The Contribution of Superoxide Radical to Cadmium Toxicity in E. coli. Biol Trace Elem Res 2018; 181:361-368. [PMID: 28508189 DOI: 10.1007/s12011-017-1048-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/04/2017] [Indexed: 12/28/2022]
Abstract
Numerous reports suggest the involvement of oxidative stress in cadmium toxicity, but the nature of the reactive species and the mechanism of Cd-induced oxidative damage are not clear. In this study, E. coli mutants were used to investigate mechanisms of Cd toxicity. Effects of Cd on metabolic activity, production of superoxide radical by the respiratory chain, and induction of enzymes controlled by the soxRS regulon were investigated. In E. coli, the soxRS regulon controls defense against O2·-and univalent oxidants. Suppression of metabolic activity, inability of E. coli to adapt to new environment, and slow cell division were among the manifestations of Cd toxicity. Cd increased production of O2·- by the electron transport chain and prevented the induction of soxRS-controlled protective enzymes, even when the regulon was induced by the redox-cycling agent, paraquat. The effect was not limited to soxRS-dependent proteins and can be attributed to previously reported suppression of protein synthesis by Cd. Increased production of superoxide, combined with inability to express protective enzymes and to replace damaged proteins by de novo protein synthesis, seems to be the main reason for growth stasis and cell death in Cd poisoning.
Collapse
Affiliation(s)
- Milini Thomas
- Department of Biochemistry, Faculty of Medicine, Kuwait University, P. O. Box 24923, Safat, 13110, Kuwait City, Kuwait
| | - Ludmil Benov
- Department of Biochemistry, Faculty of Medicine, Kuwait University, P. O. Box 24923, Safat, 13110, Kuwait City, Kuwait.
| |
Collapse
|
19
|
Rich MH, Sharrock AV, Hall KR, Ackerley DF, MacKichan JK. Evaluation of NfsA-like nitroreductases from Neisseria meningitidis and Bartonella henselae for enzyme-prodrug therapy, targeted cellular ablation, and dinitrotoluene bioremediation. Biotechnol Lett 2017; 40:359-367. [DOI: 10.1007/s10529-017-2472-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 10/31/2017] [Indexed: 10/18/2022]
|
20
|
Akiva E, Copp JN, Tokuriki N, Babbitt PC. Evolutionary and molecular foundations of multiple contemporary functions of the nitroreductase superfamily. Proc Natl Acad Sci U S A 2017; 114:E9549-E9558. [PMID: 29078300 PMCID: PMC5692541 DOI: 10.1073/pnas.1706849114] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Insight regarding how diverse enzymatic functions and reactions have evolved from ancestral scaffolds is fundamental to understanding chemical and evolutionary biology, and for the exploitation of enzymes for biotechnology. We undertook an extensive computational analysis using a unique and comprehensive combination of tools that include large-scale phylogenetic reconstruction to determine the sequence, structural, and functional relationships of the functionally diverse flavin mononucleotide-dependent nitroreductase (NTR) superfamily (>24,000 sequences from all domains of life, 54 structures, and >10 enzymatic functions). Our results suggest an evolutionary model in which contemporary subgroups of the superfamily have diverged in a radial manner from a minimal flavin-binding scaffold. We identified the structural design principle for this divergence: Insertions at key positions in the minimal scaffold that, combined with the fixation of key residues, have led to functional specialization. These results will aid future efforts to delineate the emergence of functional diversity in enzyme superfamilies, provide clues for functional inference for superfamily members of unknown function, and facilitate rational redesign of the NTR scaffold.
Collapse
Affiliation(s)
- Eyal Akiva
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
| | - Janine N Copp
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4;
| | - Patricia C Babbitt
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158;
- California Institute for Quantitative Biosciences, University of California, San Francisco, CA 94158
| |
Collapse
|
21
|
Wang Y, Tong Q, Shou JW, Zhao ZX, Li XY, Zhang XF, Ma SR, He CY, Lin Y, Wen BY, Guo F, Fu J, Jiang JD. Gut Microbiota-Mediated Personalized Treatment of Hyperlipidemia Using Berberine. Theranostics 2017; 7:2443-2451. [PMID: 28744326 PMCID: PMC5525748 DOI: 10.7150/thno.18290] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/24/2017] [Indexed: 12/18/2022] Open
Abstract
Nitroreductases (NRs) are bacterial enzymes that reduce nitro-containing compounds. We have previously reported that NR of intestinal bacteria is a key factor promoting berberine (BBR) intestinal absorption. We show here that feeding hamsters with high fat diet (HFD) caused an increase in blood lipids and NR activity in the intestine. The elevation of fecal NR by HFD was due to the increase in either the fraction of NR-producing bacteria or their activity in the intestine. When given orally, BBR bioavailability in the HFD-fed hamsters was higher than that in those fed with normal chow (by +72%, *P<0.05). BBR (100 mg/kg/day, orally) decreased blood lipids in the HFD-fed hamsters (**P<0.01) but not in those fed with normal diet. Clinical studies indicated that patients with hyperlipidemia had higher fecal NR activity than that in the healthy individuals (**P<0.01). Similarly, after oral administration, the blood level of BBR in hyperlipidemic patients was higher than that in healthy individuals (*P<0.05). Correlation analysis revealed a positive relationship between blood BBR and fecal NR activity (r=0.703). Thus, the fecal NR activity might serve as a biomarker in the personalized treatment of hyperlipidemia using BBR.
Collapse
|
22
|
Chalansonnet V, Mercier C, Orenga S, Gilbert C. Identification of Enterococcus faecalis enzymes with azoreductases and/or nitroreductase activity. BMC Microbiol 2017; 17:126. [PMID: 28545445 PMCID: PMC5445473 DOI: 10.1186/s12866-017-1033-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/15/2017] [Indexed: 01/03/2023] Open
Abstract
Background Nitroreductases, NAD(P)H dependent flavoenzymes, are found in most of bacterial species. Even if Enterococcus faecalis strains seems to present such activity because of their sensitivity to nitrofurans, no enzyme has been described. Nitroreductases were separated of others reductases due to their capacity to reduce nitro compounds. They are further classified based on their preference in cofactor: NADH and/or NADPH. However, recently, azoreductases have been studied for their strong activity on nitro compounds, especially nitro pro-drugs. This result suggests a crossing in azo and nitro reductase activities. For the moment, no nitroreductase was demonstrated to possess azoreductase activity. But due to sequence divergence and activity specificity linked to substrates, activity prediction is not evident and biochemical characterisation remains necessary. Identifying enzymes active on these two classes of compounds: azo and nitro is of interest to consider a common physiological role. Results Four putative nitroreductases, EF0404, EF0648, EF0655 and EF1181 from Enterococcus faecalis V583 were overexpressed as his-tagged recombinant proteins in Escherichia coli and purified following a native or a denaturing/renaturing protocol. EF0648, EF0655 and EF1181 showed nitroreductase activity and their cofactor preferences were in agreement with their protein sequence phylogeny. EF0404 showed both nitroreductase and azoreductase activity. Interestingly, the biochemical characteristics (substrate and cofactor specificity) of EF0404 resembled the properties of the known azoreductase AzoA. But its sequence matched within nitroreductase group, the same as EF0648. Conclusions We here demonstrate nitroreductase activity of the putative reductases identified in the Enterococcus faecalis V583 genome. We identified the first nitroreductase able to reduce directly an azo compound, while its protein sequence is close to others nitroreductases. Consequently, it highlights the difficulty in classifying these enzymes solely on the basis of protein sequence alignment and hereby the necessity to experimentally demonstrate the activity. The results provide additional data to consider a broader functionality of these reductases.
Collapse
Affiliation(s)
- Valérie Chalansonnet
- bioMérieux, 3 route de port Michaud, 38390, La Balme les Grottes, France. .,CIRI, International Center for Infectiology Research, Legionella pathogenesis group, Université de Lyon, Lyon, France. .,INSERM, U1111, Lyon, France. .,Ecole Normale Supérieure de Lyon, F-69364, Lyon, France. .,Université Lyon 1, F-69622, Lyon, France. .,CNRS, UMR5308, Lyon, France.
| | - Claire Mercier
- bioMérieux, 3 route de port Michaud, 38390, La Balme les Grottes, France.,CIRI, International Center for Infectiology Research, Legionella pathogenesis group, Université de Lyon, Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, F-69364, Lyon, France.,Université Lyon 1, F-69622, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Sylvain Orenga
- bioMérieux, 3 route de port Michaud, 38390, La Balme les Grottes, France
| | - Christophe Gilbert
- CIRI, International Center for Infectiology Research, Legionella pathogenesis group, Université de Lyon, Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, F-69364, Lyon, France.,Université Lyon 1, F-69622, Lyon, France.,CNRS, UMR5308, Lyon, France
| |
Collapse
|
23
|
Copp JN, Mowday AM, Williams EM, Guise CP, Ashoorzadeh A, Sharrock AV, Flanagan JU, Smaill JB, Patterson AV, Ackerley DF. Engineering a Multifunctional Nitroreductase for Improved Activation of Prodrugs and PET Probes for Cancer Gene Therapy. Cell Chem Biol 2017; 24:391-403. [DOI: 10.1016/j.chembiol.2017.02.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/31/2016] [Accepted: 02/01/2017] [Indexed: 12/20/2022]
|
24
|
Valiauga B, Williams EM, Ackerley DF, Čėnas N. Reduction of quinones and nitroaromatic compounds by Escherichia coli nitroreductase A (NfsA): Characterization of kinetics and substrate specificity. Arch Biochem Biophys 2016; 614:14-22. [PMID: 27986535 DOI: 10.1016/j.abb.2016.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 11/16/2022]
Abstract
NfsA, a major FMN-associated nitroreductase of E. coli, reduces nitroaromatic compounds via consecutive two-electron transfers. NfsA has potential applications in the biodegradation of nitroaromatic environment pollutants, e.g. explosives, and is also of interest for the anticancer strategy gene-directed enzyme prodrug therapy. However, the catalytic mechanism of NfsA is poorly characterized. Here we examined the NADPH-dependent reduction of quinones (n = 16) and nitroaromatic compounds (n = 12) by NfsA. We confirmed a general "ping-pong" reaction scheme, and preliminary rapid reaction studies of the enzyme reduction by NADPH showed that this step is much faster than the steady-state turnover number, i.e., the enzyme turnover is limited by the oxidative half-reaction. The reactivity of nitroaromatic compounds (log kcat/Km) followed a linear dependence on their single-electron reduction potential (E17), indicating a limited role for compound structure or active site flexibility in their reactivity. The reactivity of quinones was lower than that of nitroaromatics having similar E17 values, except for the significantly enhanced reactivity of 2-OH-1,4-naphthoquinones, consistent with observations previously made for the group B nitroreductase of Enterobacter cloacae. We present evidence that the reduction of quinones by NfsA is most consistent with a single-step (H-) hydride transfer mechanism.
Collapse
Affiliation(s)
- Benjaminas Valiauga
- Institute of Biochemistry of Vilnius University, Mokslininkų 12, LT-08662 Vilnius, Lithuania
| | - Elsie M Williams
- Victoria University of Wellington, School of Biological Sciences, Kelburn Parade, New Zealand
| | - David F Ackerley
- Victoria University of Wellington, School of Biological Sciences, Kelburn Parade, New Zealand
| | - Narimantas Čėnas
- Institute of Biochemistry of Vilnius University, Mokslininkų 12, LT-08662 Vilnius, Lithuania.
| |
Collapse
|
25
|
Liochev SI. Reflections on the Theories of Aging, of Oxidative Stress, and of Science in General. Is It Time to Abandon the Free Radical (Oxidative Stress) Theory of Aging? Antioxid Redox Signal 2015; 23:187-207. [PMID: 24949668 DOI: 10.1089/ars.2014.5928] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE Aging and oxidative stress are complex phenomena, and their understanding is of enormous theoretical and practical significance. RECENT ADVANCES Numerous hypotheses and theories that attempt to explain these phenomena have been developed. These hypotheses and theories compete with each other, with each claiming to be the correct one, while significantly contradicting each other. CRITICAL ISSUES It is important to develop a maximally correct theory that may then trigger significant practical breakthroughs. FUTURE DIRECTIONS None of these theories is entirely correct or close enough to the truth. However, most of them contain many correct elements (CE). Finding these CE is possible by analysis of these theories. Once the CE are found, they can be merged by synthesis in a better new theory. An analysis of some of the theories of aging followed by synthesis is attempted.
Collapse
|
26
|
Abstract
Bacteria live in a toxic world in which their competitors excrete hydrogen peroxide or superoxide-generating redox-cycling compounds. They protect themselves by activating regulons controlled by the OxyR, PerR, and SoxR transcription factors. OxyR and PerR sense peroxide when it oxidizes key thiolate or iron moieties, respectively; they then induce overlapping sets of proteins that defend their vulnerable metalloenzymes. An additional role for OxyR in detecting electrophilic compounds is possible. In some nonenteric bacteria, SoxR appears to control the synthesis and export of redox-cycling compounds, whereas in the enteric bacteria it defends the cell against the same agents. When these compounds oxidize its iron-sulfur cluster, SoxR induces proteins that exclude, excrete, or modify them. It also induces enzymes that defend the cell against the superoxide that such compounds make. Recent work has brought new insight into the biochemistry and physiology of these responses, and comparative studies have clarified their evolutionary histories.
Collapse
Affiliation(s)
- James A Imlay
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801;
| |
Collapse
|
27
|
Green LK, La Flamme AC, Ackerley DF. Pseudomonas aeruginosa MdaB and WrbA are water-soluble two-electron quinone oxidoreductases with the potential to defend against oxidative stress. J Microbiol 2014; 52:771-7. [DOI: 10.1007/s12275-014-4208-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/25/2014] [Accepted: 07/02/2014] [Indexed: 10/25/2022]
|
28
|
Nitrofurantoin, phenazopyridine, and the superoxide-response regulon soxRS of Escherichia coli. J Infect Chemother 2013; 19:1135-40. [PMID: 23793794 DOI: 10.1007/s10156-013-0635-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
Abstract
Nitrofurantoin and phenazopyridine are two drugs commonly used against urinary tract infections. Both compounds exert oxidative damage in patients deficient in glucose-6-phosphate dehydrogenase. This study was done to assess the interactions of these drugs with the soxRS regulon of Escherichia coli, a superoxide-defense system (that includes a nitroreductase that yields the active metabolite of nitrofurantoin) involved in antibiotic multi-resistance. The effects of either nitrofurantoin or phenazopyridine, upon strains with different soxRS genotypes, were measured as minimum inhibitory concentrations (MICs) and growth curves. Also, the ability of these drugs to induce the expression of a soxS'::lacZ gene fusion was assessed. The effect of antibiotics in the presence of phenazopyridine, paraquat (a known soxRS inducer), or an efflux inhibitor, was measured using the disk diffusion method. A strain constitutively expressing the soxRS regulon was slightly more susceptible to nitrofurantoin, and more resistant to phenazopyridine, compared to wild-type and soxRS-deleted strains, during early treatment, but 24-h MICs were the same (8 mg/l nitrofurantoin, 1,000 mg/l phenazopyridine) for all strains. Both compounds were capable of inducing the expression of a soxS'::lacZ fusion, but less than paraquat. Subinhibitory concentrations of phenazopyridine increased the antimicrobial effect of ampicillin, chloramphenicol, tetracycline, and nitrofurantoin. The induction or constitutive expression of the soxRS regulon seems to be a disadvantage for E. coli during nitrofurantoin exposure; but might be an advantage during phenazopyridine exposure, indicating that the latter compound could act as a selective pressure for mutations related to virulence and antibiotic multi-resistance.
Collapse
|
29
|
Bonaventura C, Henkens R, Alayash AI, Banerjee S, Crumbliss AL. Molecular controls of the oxygenation and redox reactions of hemoglobin. Antioxid Redox Signal 2013; 18:2298-313. [PMID: 23198874 PMCID: PMC4047995 DOI: 10.1089/ars.2012.4947] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 11/12/2012] [Accepted: 12/01/2012] [Indexed: 01/04/2023]
Abstract
SIGNIFICANCE The broad classes of O(2)-binding proteins known as hemoglobins (Hbs) carry out oxygenation and redox functions that allow organisms with significantly different physiological demands to exist in a wide range of environments. This is aided by allosteric controls that modulate the protein's redox reactions as well as its O(2)-binding functions. RECENT ADVANCES The controls of Hb's redox reactions can differ appreciably from the molecular controls for Hb oxygenation and come into play in elegant mechanisms for dealing with nitrosative stress, in the malarial resistance conferred by sickle cell Hb, and in the as-yet unsuccessful designs for safe and effective blood substitutes. CRITICAL ISSUES An important basic principle in consideration of Hb's redox reactions is the distinction between kinetic and thermodynamic reaction control. Clarification of these modes of control is critical to gaining an increased understanding of Hb-mediated oxidative processes and oxidative toxicity in vivo. FUTURE DIRECTIONS This review addresses emerging concepts and some unresolved questions regarding the interplay between the oxygenation and oxidation reactions of structurally diverse Hbs, both within red blood cells and under acellular conditions. Developing methods that control Hb-mediated oxidative toxicity will be critical to the future development of Hb-based blood substitutes.
Collapse
Affiliation(s)
- Celia Bonaventura
- Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC 28516, USA.
| | | | | | | | | |
Collapse
|
30
|
Imlay JA. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 2013; 11:443-54. [PMID: 23712352 DOI: 10.1038/nrmicro3032] [Citation(s) in RCA: 1068] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Oxic environments are hazardous. Molecular oxygen adventitiously abstracts electrons from many redox enzymes, continuously forming intracellular superoxide and hydrogen peroxide. These species can destroy the activities of metalloenzymes and the integrity of DNA, forcing organisms to protect themselves with scavenging enzymes and repair systems. Nevertheless, elevated levels of oxidants quickly poison bacteria, and both microbial competitors and hostile eukaryotic hosts exploit this vulnerability by assaulting these bacteria with peroxides or superoxide-forming antibiotics. In response, bacteria activate elegant adaptive strategies. In this Review, I summarize our current knowledge of oxidative stress in Escherichia coli, the model organism for which our understanding of damage and defence is most well developed.
Collapse
Affiliation(s)
- James A Imlay
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
31
|
Shimizu K. Metabolic Regulation of a Bacterial Cell System with Emphasis on Escherichia coli Metabolism. ISRN BIOCHEMISTRY 2013; 2013:645983. [PMID: 25937963 PMCID: PMC4393010 DOI: 10.1155/2013/645983] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/25/2012] [Indexed: 12/19/2022]
Abstract
It is quite important to understand the overall metabolic regulation mechanism of bacterial cells such as Escherichia coli from both science (such as biochemistry) and engineering (such as metabolic engineering) points of view. Here, an attempt was made to clarify the overall metabolic regulation mechanism by focusing on the roles of global regulators which detect the culture or growth condition and manipulate a set of metabolic pathways by modulating the related gene expressions. For this, it was considered how the cell responds to a variety of culture environments such as carbon (catabolite regulation), nitrogen, and phosphate limitations, as well as the effects of oxygen level, pH (acid shock), temperature (heat shock), and nutrient starvation.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu Institute of Technology, Fukuoka, Iizuka 820-8502, Japan
- Institute of Advanced Bioscience, Keio University, Yamagata, Tsuruoka 997-0017, Japan
| |
Collapse
|
32
|
Duval V, Lister IM. MarA, SoxS and Rob of Escherichia coli - Global regulators of multidrug resistance, virulence and stress response. ACTA ACUST UNITED AC 2013; 2:101-124. [PMID: 24860636 DOI: 10.6000/1927-3037.2013.02.03.2] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Bacteria have a great capacity for adjusting their metabolism in response to environmental changes by linking extracellular stimuli to the regulation of genes by transcription factors. By working in a co-operative manner, transcription factors provide a rapid response to external threats, allowing the bacteria to survive. This review will focus on transcription factors MarA, SoxS and Rob in Escherichia coli, three members of the AraC family of proteins. These homologous proteins exemplify the ability to respond to multiple threats such as oxidative stress, drugs and toxic compounds, acidic pH, and host antimicrobial peptides. MarA, SoxS and Rob recognize similar DNA sequences in the promoter region of more than 40 regulatory target genes. As their regulons overlap, a finely tuned adaptive response allows E. coli to survive in the presence of different assaults in a co-ordinated manner. These regulators are well conserved amongst Enterobacteriaceae and due to their broad involvement in bacterial adaptation in the host, have recently been explored as targets to develop new anti-virulence agents. The regulators are also being examined for their roles in novel technologies such as biofuel production.
Collapse
Affiliation(s)
- Valérie Duval
- Center for Adaptation Genetics and Drug Resistance, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111
| | - Ida M Lister
- Arietis Corporation, 650 Albany Street, Room 130, Boston, MA 02118
| |
Collapse
|
33
|
Tweats D, Bourdin Trunz B, Torreele E. Genotoxicity profile of fexinidazole--a drug candidate in clinical development for human African trypanomiasis (sleeping sickness). Mutagenesis 2012; 27:523-32. [PMID: 22539226 DOI: 10.1093/mutage/ges015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The parasitic disease human African trypanomiasis (HAT), also known as sleeping sickness, is a highly neglected fatal condition endemic in sub-Saharan Africa, which is poorly treated with medicines that are toxic, no longer effective or very difficult to administer. New, safe, effective and easy-to-use treatments are urgently needed. Many nitroimidazoles possess antibacterial and antiprotozoal activity and examples such as tinidazole are used to treat trichomoniasis and guardiasis, but concerns about toxicity including genotoxicity limit their usefulness. Fexinidazole, a 2-substituted 5-nitroimidazole rediscovered by the Drugs for Neglected Diseases initiative (DNDi) after extensive compound mining of public and pharmaceutical company databases, has the potential to become a short-course, safe and effective oral treatment, curing both acute and chronic HAT. This paper describes the genotoxicity profile of fexinidazole and its two active metabolites, the sulfoxide and sulfone derivatives. All the three compounds are mutagenic in the Salmonella/Ames test; however, mutagenicity is either attenuated or lost in Ames Salmonella strains that lack one or more nitroreductase(s). It is known that these enzymes can nitroreduce compounds with low redox potentials, whereas their mammalian cell counterparts cannot, under normal conditions. Fexinidazole and its metabolites have low redox potentials and all mammalian cell assays to detect genetic toxicity, conducted for this study either in vitro (micronucleus test in human lymphocytes) or in vivo (ex vivo unscheduled DNA synthesis in rats; bone marrow micronucleus test in mice), were negative. Thus, fexinidazole does not pose a genotoxic hazard to patients and represents a promising drug candidate for HAT. Fexinidazole is expected to enter Phase II clinical trials in 2012.
Collapse
Affiliation(s)
- David Tweats
- Drugs for Neglected Diseases initiative, 15 Chemin Louis-Dunant, Geneva CH-1202, Switzerland.
| | | | | |
Collapse
|
34
|
Valle A, Le Borgne S, Bolívar J, Cabrera G, Cantero D. Study of the role played by NfsA, NfsB nitroreductase and NemA flavin reductase from Escherichia coli in the conversion of ethyl 2-(2'-nitrophenoxy)acetate to 4-hydroxy-(2H)-1,4-benzoxazin-3(4H)-one (D-DIBOA), a benzohydroxamic acid with interesting biological properties. Appl Microbiol Biotechnol 2011; 94:163-71. [PMID: 22173483 DOI: 10.1007/s00253-011-3787-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 11/06/2011] [Accepted: 11/23/2011] [Indexed: 10/14/2022]
Abstract
Benzohydroxamic acids, such as 4-hydroxy-(2H)-1,4-benzoxazin-3(4H)-one (D-DIBOA), exhibit interesting herbicidal, fungicidal and bactericidal properties. Recently, the chemical synthesis of D-DIBOA has been simplified to only two steps. In a previous paper, we demonstrated that the second step could be replaced by a biotransformation using Escherichia coli to reduce the nitro group of the precursor, ethyl 2-(2'-nitrophenoxy)acetate and obtain D-DIBOA. The NfsA and NfsB nitroreductases and the NemA xenobiotic reductase of E. coli have the capacity to reduce one or two nitro groups from a wide variety of nitroaromatic compounds, which are similar to the precursor. By this reason, we hypothesised that these three enzymes could be involved in this biotransformation. We have analysed the biotransformation yield (BY) of mutant strains in which one, two or three of these genes were knocked out, showing that only in the double nfsA/nfsB and in the triple nfsA/nfsB/nemA mutants, the BY was 0%. These results suggested that NfsA and NfsB are responsible for the biotransformation in the tested conditions. To confirm this, the nfsA and nfsB open reading frames were cloned into the pBAD expression vector and transformed into the nfsA and nfsB single mutants, respectively. In both cases, the biotransformation capacity of the strains was recovered (6.09 ± 0.06% as in the wild-type strain) and incremented considerably when NfsA and NfsB were overexpressed (40.33% ± 9.42% and 59.68% ± 2.0% respectively).
Collapse
Affiliation(s)
- Antonio Valle
- Department of Chemical Engineering and Food Technology, Campus de Excelencia Internacional Agroalimentario (ceiA3), University of Cádiz, Avda. República Saharaui s/n, 11510 Puerto Real, Cádiz, Spain.
| | | | | | | | | |
Collapse
|
35
|
Zheng J, Tian F, Cui S, Song J, Zhao S, Brown EW, Meng J. Differential gene expression by RamA in ciprofloxacin-resistant Salmonella Typhimurium. PLoS One 2011; 6:e22161. [PMID: 21811569 PMCID: PMC3139621 DOI: 10.1371/journal.pone.0022161] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 06/16/2011] [Indexed: 11/22/2022] Open
Abstract
Overexpression of ramA has been implicated in resistance to multiple drugs in several enterobacterial pathogens. In the present study, Salmonella Typhimurium strain LTL with constitutive expression of ramA was compared to its ramA-deletion mutant by employing both DNA microarrays and phenotype microarrays (PM). The mutant strain with the disruption of ramA showed differential expression of at least 33 genes involved in 11 functional groups. The study confirmed at the transcriptional level that the constitutive expression of ramA was directly associated with increased expression of multidrug efflux pump AcrAB-TolC and decreased expression of porin protein OmpF, thereby conferring multiple drug resistance phenotype. Compared to the parent strain constitutively expressing ramA, the ramA mutant had increased susceptibility to over 70 antimicrobials and toxic compounds. The PM analysis also uncovered that the ramA mutant was better in utilization of 10 carbon sources and 5 phosphorus sources. This study suggested that the constitutive expression of ramA locus regulate not only multidrug efflux pump and accessory genes but also genes involved in carbon metabolic pathways.
Collapse
Affiliation(s)
- Jie Zheng
- Joint Institute for Food Safety and Applied Nutrition, and Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, United States of America
- Center for Food Safety & Applied Nutrition, U.S. Food & Drug Administration, Maryland, University of Maryland, College Park, Maryland, United States of America
| | - Fei Tian
- Department of Animal and Avian Science, University of Maryland, College Park, Maryland, United States of America
| | - Shenghui Cui
- State Food and Drug Administration, Beijing, China
| | - Jiuzhou Song
- Department of Animal and Avian Science, University of Maryland, College Park, Maryland, United States of America
| | - Shaohua Zhao
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Maryland, University of Maryland, College Park, Maryland, United States of America
| | - Eric W. Brown
- Center for Food Safety & Applied Nutrition, U.S. Food & Drug Administration, Maryland, University of Maryland, College Park, Maryland, United States of America
| | - Jianghong Meng
- Joint Institute for Food Safety and Applied Nutrition, and Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
36
|
Batinić-Haberle I, Rajić Z, Benov L. A combination of two antioxidants (an SOD mimic and ascorbate) produces a pro-oxidative effect forcing Escherichia coli to adapt via induction of oxyR regulon. Anticancer Agents Med Chem 2011; 11:329-40. [PMID: 21355843 PMCID: PMC3652549 DOI: 10.2174/187152011795677562] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 03/10/2011] [Indexed: 11/22/2022]
Abstract
Cationic Mn(III) N-alkylpyridyl (MnTalkyl-2(or 3)-PyP(5+)) and N, N'-dialkylimidazolylporphyrins (MnTDalkyl-2-ImP(5+)) have been regarded as the most powerful SOD mimics/peroxynitrite scavengers - i. e. antioxidants. The ethyl-, MnTE-2-PyP(5+) (AEOL10113), and hexylpyridyl-, MnTnHex-2-PyP(5+) and diethylimidazolylporphyrin, MnTDE-2-ImP(5+) (AEOL10150) have been mostly studied in vitro and in vivo. Given the in vivo abundance of cellular reductants, MnPs can couple with them in removing superoxide. Thus, they could be readily reduced from Mn(III)P to Mn(II)P with ascorbate and glutathione, and in a subsequent step reduce either O(2)(.-) (while acting as superoxide reductase) or oxygen (while exerting pro-oxidative action). Moreover, MnPs can catalyze ascorbate oxidation and in turn hydrogen peroxide production. The in vivo type of MnP action (anti- or pro-oxidative) will depend upon the cellular levels of reactive species, endogenous antioxidants, availability of oxygen, ratio of O(2)(.-)- to peroxide-removing systems, redox ability of MnPs and their cellular localization/bioavailibility. To exemplify the switch from an anti- to pro-oxidative action we have explored a very simple and straightforward system - the superoxide-specific aerobic growth of SOD-deficient E. coli. In such a system, cationic MnPs, ortho and meta MnTE-2-(or 3)-PyP(5+) act as powerful SOD mimics. Yet, in the presence of exogenous ascorbate, the SOD mimics catalyze the H(2)O(2) production, causing oxidative damage to both wild and SOD-deficient strains and inhibiting their growth. Catalase added to the medium reversed the effect indicating that H(2)O(2) is a major damaging/signaling species involved in cell growth suppression. The experiments with oxyR- and soxRS-deficient E. coli were conducted to show that E. coli responds to increased oxidative stress exerted by MnP/ascorbate system by induction of oxyR regulon and thus upregulation of antioxidative defenses such as catalases and peroxidases. As anticipated, when catalase was added into medium to remove H(2)O(2), E. coli did not respond with upregulation of its own antioxidant systems.
Collapse
Affiliation(s)
- Ines Batinić-Haberle
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Zrinka Rajić
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ludmil Benov
- Department of Biochemistry, Faculty of Medicine, Kuwait School of Medicine, Kuwait
| |
Collapse
|
37
|
Gu M, Imlay JA. The SoxRS response of Escherichia coli is directly activated by redox-cycling drugs rather than by superoxide. Mol Microbiol 2011; 79:1136-50. [PMID: 21226770 PMCID: PMC3071027 DOI: 10.1111/j.1365-2958.2010.07520.x] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
When Escherichia coli is exposed to redox-cycling drugs, its SoxR transcription factor is activated by oxidation of its [2Fe-2S] cluster. In aerobic cells these drugs generate superoxide, and because superoxide dismutase (SOD) is a member of the SoxRS regulon, superoxide was initially thought to be the activator of SoxR. Its many-gene regulon was therefore believed to comprise a defence against superoxide stress. However, we found that abundant superoxide did not effectively activate SoxR in an SOD⁻ mutant, that overproduced SOD could not suppress activation by redox-cycling drugs, and that redox-cycling drugs were able to activate SoxR in anaerobic cells as long as alternative respiratory acceptors were provided. Thus superoxide is not the signal that SoxR senses. Indeed, redox-cycling drugs directly oxidized the cluster of purified SoxR in vitro, while superoxide did not. Redox-cycling drugs are excreted by both bacteria and plants. Their toxicity does not require superoxide, as they poisoned E. coli under anaerobic conditions, in part by oxidizing dehydratase iron-sulfur clusters. Under these conditions SoxRS induction was protective. Thus it is physiologically appropriate that the SoxR protein directly senses redox-cycling drugs rather than superoxide.
Collapse
Affiliation(s)
- Mianzhi Gu
- Department of Microbiology, University of Illinois, Urbana, IL 61801
| | - James A. Imlay
- Department of Microbiology, University of Illinois, Urbana, IL 61801
| |
Collapse
|
38
|
Zhou A, He Z, Redding-Johanson AM, Mukhopadhyay A, Hemme CL, Joachimiak MP, Luo F, Deng Y, Bender KS, He Q, Keasling JD, Stahl DA, Fields MW, Hazen TC, Arkin AP, Wall JD, Zhou J. Hydrogen peroxide-induced oxidative stress responses in Desulfovibrio vulgaris Hildenborough. Environ Microbiol 2011; 12:2645-57. [PMID: 20482586 DOI: 10.1111/j.1462-2920.2010.02234.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To understand how sulphate-reducing bacteria respond to oxidative stresses, the responses of Desulfovibrio vulgaris Hildenborough to H(2)O(2)-induced stresses were investigated with transcriptomic, proteomic and genetic approaches. H(2)O(2) and induced chemical species (e.g. polysulfide, ROS) and redox potential shift increased the expressions of the genes involved in detoxification, thioredoxin-dependent reduction system, protein and DNA repair, and decreased those involved in sulfate reduction, lactate oxidation and protein synthesis. A gene coexpression network analysis revealed complicated network interactions among differentially expressed genes, and suggested possible importance of several hypothetical genes in H(2)O(2) stress. Also, most of the genes in PerR and Fur regulons were highly induced, and the abundance of a Fur regulon protein increased. Mutant analysis suggested that PerR and Fur are functionally overlapped in response to stresses induced by H(2)O(2) and reaction products, and the upregulation of thioredoxin-dependent reduction genes was independent of PerR or Fur. It appears that induction of those stress response genes could contribute to the increased resistance of deletion mutants to H(2)O(2)-induced stresses. In addition, a conceptual cellular model of D. vulgaris responses to H(2)O(2) stress was constructed to illustrate that this bacterium may employ a complicated molecular mechanism to defend against the H(2)O(2)-induced stresses.
Collapse
Affiliation(s)
- Aifen Zhou
- Virtual Institute of Microbial Stress and Survival, Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Isarankura-Na-Ayudhya P, Isarankura-Na-Ayudhya C, Yainoy S, Thippakorn C, Singhagamol W, Polprachum W, Roytrakul S, Prachayasittikul V. Proteomic alterations of Escherichia coli by paraquat. EXCLI JOURNAL 2010; 9:108-118. [PMID: 29255394 PMCID: PMC5698890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 09/23/2010] [Indexed: 11/29/2022]
Abstract
Paraquat (PQ; a widely used herbicide) exerts its harmful effect to human, mammals and microorganisms upon intracellular conversion to superoxide radical. Cellular responses against toxic paraquat remain not fully understood, especially on the adaptive metabolic changes as a consequence of oxidative burden. In this study, alterations of metabolic processes of Escherichia coli (E. coli) by paraquat were systematically investigated by two-dimensional gel electrophoresis (2-DE) in conjunction with peptide mass fingerprinting (PMF). In host cells, the first line mechanism was scrutinized by a remarkable induction of endogenous superoxide dismutase (E. coli SOD). The second line involved in the metabolic adaptation and compensation for energy production by up- or down-regulation of the enzymes implicated in glycolysis and tricarboxylic acid cycle. Notably, down-regulation of aconitase enzyme and changes of enzyme isoform from the acidic (pI~5.29) to the higher basidic form (pI~5.59) were detected. Meanwhile, up-regulation of fumarase approximately 4-5 folds were observed. Importantly, overexpression of human manganese superoxide dismutase (human Mn-SOD) in E. coli cells could in turn down-regulate the expression of fumarase enzyme. This observation was not found when the cells expressing human catalase were tested. Other mechanisms such as changes of purine nucleoside phosphorylase and protein transporters (D-ribose-binding protein and oligopeptide binding protein) were also accounted. However, among all the differentially expressed proteins, the fumarase enzyme is evidenced to be a major target responsible for superoxide-generating paraquat, which may further be applied as a potential biomarker for paraquat toxicity in the future.
Collapse
Affiliation(s)
| | | | - Sakda Yainoy
- Department of Clinical Microbiology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Chadinee Thippakorn
- Department of Clinical Microbiology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Watsarach Singhagamol
- Department of Clinical Microbiology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Wilaiwan Polprachum
- Department of Clinical Microbiology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Sittiruk Roytrakul
- Genome Institute, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand,*To whom correspondence should be addressed: Virapong Prachayasittikul, Department of Clinical Microbiology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand; Tel: (662) 441-4376, Fax: (662) 441-4380, E-mail:
| |
Collapse
|
40
|
Structure and function of CinD (YtjD) of Lactococcus lactis, a copper-induced nitroreductase involved in defense against oxidative stress. J Bacteriol 2010; 192:4172-80. [PMID: 20562311 DOI: 10.1128/jb.00372-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Lactococcus lactis IL1403, 14 genes are under the control of the copper-inducible CopR repressor. This so-called CopR regulon encompasses the CopR regulator, two putative CPx-type copper ATPases, a copper chaperone, and 10 additional genes of unknown function. We addressed here the function of one of these genes, ytjD, which we renamed cinD (copper-induced nitroreductase). Copper, cadmium, and silver induced cinD in vivo, as shown by real-time quantitative PCR. A knockout mutant of cinD was more sensitive to oxidative stress exerted by 4-nitroquinoline-N-oxide and copper. Purified CinD is a flavoprotein and reduced 2,6-dichlorophenolindophenol and 4-nitroquinoline-N-oxide with k(cat) values of 27 and 11 s(-1), respectively, using NADH as a reductant. CinD also exhibited significant catalase activity in vitro. The X-ray structure of CinD was resolved at 1.35 A and resembles those of other nitroreductases. CinD is thus a nitroreductase which can protect L. lactis against oxidative stress that could be exerted by nitroaromatic compounds and copper.
Collapse
|
41
|
LinWu SW, Wang AHJ, Peng FC. Flavin-containing reductase: new perspective on the detoxification of nitrobenzodiazepine. Expert Opin Drug Metab Toxicol 2010; 6:967-81. [DOI: 10.1517/17425255.2010.482928] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
de Oliveira IM, Zanotto-Filho A, Moreira JCF, Bonatto D, Henriques JAP. The role of two putative nitroreductases, Frm2p and Hbn1p, in the oxidative stress response in Saccharomyces cerevisiae. Yeast 2010; 27:89-102. [PMID: 19904831 DOI: 10.1002/yea.1734] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The nitroreductase family is comprised of a group of FMN- or FAD-dependent enzymes that are able to metabolize nitrosubstituted compounds using the reducing power of NAD(P)H. These nitroreductases can be found in bacterial species and, to a lesser extent, in eukaryotes. There is little information on the biochemical functions of nitroreductases. Some studies suggest their possible involvement in the oxidative stress response. In the yeast Saccharomyces cerevisiae, two nitroreductase proteins, Frm2p and Hbn1p, have been described. While Frm2p appears to act in the lipid signalling pathway, the function of Hbn1p is completely unknown. In order to elucidate the functions of Frm2p and Hbn1p, we evaluated the sensitivity of yeast strains, proficient and deficient in both oxidative stress proteins, for respiratory competence, antioxidant-enzyme activities, intracellular reactive oxygen species (ROS) production and lipid peroxidation. We found reduced basal activity of superoxide dismutase (SOD), ROS production, lipid peroxidation and petite induction and higher sensitivity to 4-nitroquinoline-oxide (4-NQO) and N-nitrosodiethylamine (NDEA), as well as higher basal activity of catalase (CAT) and glutathione peroxidase (GPx) and reduced glutathione (GSH) content in the single and double mutant strains frm2Delta and frm2Delta hbn1Delta. These strains exhibited less ROS accumulation and lipid peroxidation when exposed to peroxides, H(2)O(2) and t-BOOH. In summary, the Frm1p and Hbn1p nitroreductases influence the response to oxidative stress in S. cerevisae yeast by modulating the GSH contents and antioxidant enzymatic activities, such as SOD, CAT and GPx.
Collapse
Affiliation(s)
- Iuri Marques de Oliveira
- Departamento de Biofísica/Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av Bento Gonçalves 9500, 91507-970 Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
43
|
Functional analysis of the RdxA and RdxB nitroreductases of Campylobacter jejuni reveals that mutations in rdxA confer metronidazole resistance. J Bacteriol 2010; 192:1890-901. [PMID: 20118248 DOI: 10.1128/jb.01638-09] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Campylobacter jejuni is a leading cause of gastroenteritis in humans and a commensal bacterium of the intestinal tracts of many wild and agriculturally significant animals. We identified and characterized a locus, which we annotated as rdxAB, encoding two nitroreductases. RdxA was found to be responsible for sensitivity to metronidazole (Mtz), a common therapeutic agent for another epsilonproteobacterium, Helicobacter pylori. Multiple, independently derived mutations in rdxA but not rdxB resulted in resistance to Mtz (Mtz(r)), suggesting that, unlike the case in H. pylori, Mtz(r) might not be a polygenic trait. Similarly, Mtz(r) C. jejuni was isolated after both in vitro and in vivo growth in the absence of selection that contained frameshift, point, insertion, or deletion mutations within rdxA, possibly revealing genetic variability of this trait in C. jejuni due to spontaneous DNA replication errors occurring during normal growth of the bacterium. Similar to previous findings with H. pylori RdxA, biochemical analysis of C. jejuni RdxA showed strong oxidase activity, with reduction of Mtz occurring only under anaerobic conditions. RdxB showed similar characteristics but at levels lower than those for RdxA. Genetic analysis confirmed that rdxA and rdxB are cotranscribed and induced during in vivo growth in the chick intestinal tract, but an absence of these genes did not strongly impair C. jejuni for commensal colonization. Further studies indicate that rdxA is a convenient locus for complementation of mutants in cis. Our work contributes to the growing knowledge of determinants contributing to susceptibility to Mtz (Mtz(s)) and supports previous observations of the fundamental differences in the activities of nitroreductases from epsilonproteobacteria.
Collapse
|
44
|
Toward systematic metabolic engineering based on the analysis of metabolic regulation by the integration of different levels of information. Biochem Eng J 2009. [DOI: 10.1016/j.bej.2009.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Comparison of the metabolic activities of four wild-type Clostridium perfringens strains with their gatifloxacin-selected resistant mutants. Arch Microbiol 2009; 191:895-902. [DOI: 10.1007/s00203-009-0518-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 09/26/2009] [Accepted: 09/30/2009] [Indexed: 10/20/2022]
|
46
|
Pérez-Reinado E, Roldán MD, Castillo F, Moreno-Vivián C. The NprA nitroreductase required for 2,4-dinitrophenol reduction in Rhodobacter capsulatus is a dihydropteridine reductase. Environ Microbiol 2008; 10:3174-83. [PMID: 18355323 DOI: 10.1111/j.1462-2920.2008.01585.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The Rhodobacter capsulatus nprA gene codes for a putative nitroreductase. A recombinant His(6)-NprA protein was overproduced in Escherichia coli and purified by affinity chromatography. This protein contained FMN and showed nitroreductase activity with a wide range of nitroaromatic compounds, such as 2-nitrophenol, 2,4-dinitrophenol, 2,6-dinitrophenol, 2,4,6-trinitrophenol (picric acid), 2,4-dinitrobenzoate and 2,4-dinitrotoluene, and with the nitrofuran derivatives nitrofurazone and furazolidone. NADPH was the main electron donor and the ortho nitro group was preferably reduced to the corresponding amino derivative. The apparent K(m) values of NprA for NADPH, 2,4-dinitrophenol, picric acid and furazolidone were 40 microM, 78 microM, 72 microM and 83 microM, respectively, at pH and temperature optima (pH 6.5, 30 degrees C). Escherichia coli cells overproducing the NprA protein were much more sensitive to the prodrug 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB1954) used in cancer therapy than non-transformed cells. NprA showed the highest activity with the quinonoid form of 6,7-dimethyl-7,8-dihydropterine as substrate, so that NprA may be involved in the synthesis of tetrahydrobiopterin in R. capsulatus. Expression of a transcriptional nprA-lacZ gene fusion was induced by phenylalanine or tyrosine, but not by other amino acids like glutamate or alanine. Furthermore, both nitroreductase activity and phenylalanine assimilation were inhibited in vivo by ammonium. A mutant defective in the nprA gene showed better growth rate with Phe or Tyr as nitrogen source than the wild-type strain, although both strains showed similar growth in media with Glu or without added nitrogen. These results suggest that the NprA nitroreductase may act in vivo as a dihydropteridine reductase involved in aromatic amino acids metabolism.
Collapse
Affiliation(s)
- Eva Pérez-Reinado
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | | | | | | |
Collapse
|
47
|
Roldán MD, Pérez-Reinado E, Castillo F, Moreno-Vivián C. Reduction of polynitroaromatic compounds: the bacterial nitroreductases. FEMS Microbiol Rev 2008; 32:474-500. [PMID: 18355273 DOI: 10.1111/j.1574-6976.2008.00107.x] [Citation(s) in RCA: 312] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Most nitroaromatic compounds are toxic and mutagenic for living organisms, but some microorganisms have developed oxidative or reductive pathways to degrade or transform these compounds. Reductive pathways are based either on the reduction of the aromatic ring by hydride additions or on the reduction of the nitro groups to hydroxylamino and/or amino derivatives. Bacterial nitroreductases are flavoenzymes that catalyze the NAD(P)H-dependent reduction of the nitro groups on nitroaromatic and nitroheterocyclic compounds. Nitroreductases have raised a great interest due to their potential applications in bioremediation, biocatalysis, and biomedicine, especially in prodrug activation for chemotherapeutic cancer treatments. Different bacterial nitroreductases have been purified and their biochemical and kinetic parameters have been determined. The crystal structure of some nitroreductases have also been solved. However, the physiological role(s) of these enzymes remains unclear. Nitroreductase genes are widely spread within bacterial genomes, but are also found in archaea and some eukaryotic species. Although studies on regulation of nitroreductase gene expression are scarce, it seems that nitroreductase genes may be controlled by the MarRA and SoxRS regulatory systems that are involved in responses to several antibiotics and environmental chemical hazards and to specific oxidative stress conditions. This review covers the microbial distribution, types, biochemical properties, structure and regulation of the bacterial nitroreductases. The possible physiological functions and the biotechnological applications of these enzymes are also discussed.
Collapse
Affiliation(s)
- María Dolores Roldán
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain.
| | | | | | | |
Collapse
|
48
|
Liu G, Zhou J, Lv H, Xiang X, Wang J, Zhou M, Qv Y. Azoreductase from Rhodobacter sphaeroides AS1.1737 is a flavodoxin that also functions as nitroreductase and flavin mononucleotide reductase. Appl Microbiol Biotechnol 2007; 76:1271-9. [PMID: 17846764 DOI: 10.1007/s00253-007-1087-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 06/04/2007] [Accepted: 06/10/2007] [Indexed: 11/30/2022]
Abstract
Previously reported azoreductase (AZR) from Rhodobacter sphaeroides AS1.1737 was shown to be a flavodoxin possessing nitroreductase and flavin mononucleotide (FMN) reductase activities. The structure model of AZR constructed with SWISS-MODEL displayed a flavodoxin-like fold with a three-layer alpha/beta/alpha structure. With nitrofurazone as substrate, the optimal pH value and temperature were 7.0 and 50 degrees C, respectively. AZR could reduce a number of nitroaromatic compounds including 2,4-dinitrotoluene, 2,6-dinitrotoluene, 3,5-dinitroaniline, and 2,4,6-trinitrotoluene (TNT). TNT resulted to be the most efficient nitro substrate and was reduced to hydroxylamino-dinitrotoluene. Both NADH and NADPH could serve as electron donors of AZR, where the latter was preferred. Externally added FMN was also reduced by AZR via ping-pong mechanism and was a competitive inhibitor of NADPH, methyl red, and nitrofurazone. AZR with broad substrate specificity is a member of a new nitro/FMN reductase family demonstrating potential application in bioremediation.
Collapse
Affiliation(s)
- Guangfei Liu
- School of Environmental and Biological Science and Technology, Dalian University of Technology, 116024 Dalian, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
49
|
de Oliveira IM, Henriques JAP, Bonatto D. In silico identification of a new group of specific bacterial and fungal nitroreductases-like proteins. Biochem Biophys Res Commun 2007; 355:919-25. [PMID: 17331467 DOI: 10.1016/j.bbrc.2007.02.049] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2007] [Accepted: 02/09/2007] [Indexed: 11/22/2022]
Abstract
The nitroreductase family comprises a group of FMN- or FAD-dependent and NAD(P)H-dependent enzymes able to metabolize nitrosubstituted compounds. The nitroreductases are found within bacterial and some eukaryotic species. In eukaryotes, there is little information concerning the phylogenetic position and biochemical functions of nitroreductases. The yeast Saccharomyces cerevisiae has two nitroreductase proteins: Frm2p and Hbn1p. While Frm2p acts in lipid signaling pathway, the function of Hbn1p is unknown. In order to elucidate the function of Frm2p/Hbn1p and the presence of homologous sequences in other prokaryotic and eukaryotic species, we performed an in-depth phylogenetic analysis of these proteins. The results showed that bacterial cells have Frm2p/Hbn1p-like sequences (termed NrlAp) forming a distinct clade within the fungal Frm2p/Hbn1p family. Hydrophobic cluster analysis and three-dimensional protein modeling allowed us to compare conserved regions among NrlAp and Frm2/Hbn1p proteins. In addition, the possible functions of bacterial NrlAp and fungal Frm2p/Hbn1p are discussed.
Collapse
Affiliation(s)
- Iuri Marques de Oliveira
- Centro de Biotecnologia/Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | | |
Collapse
|
50
|
Salamanca-Pinzón SG, Camacho-Carranza R, Hernández-Ojeda SL, Espinosa-Aguirre JJ. Nitrocompound activation by cell-free extracts of nitroreductase-proficient Salmonella typhimurium strains. Mutagenesis 2006; 21:369-74. [PMID: 16998228 DOI: 10.1093/mutage/gel042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A characterization of nitrocompounds activation by cell-free extracts (CFE) of wild-type (AB(+)), SnrA deficient (B(+)), Cnr deficient (A(+)) and SnrA/Cnr deficient (AB(-)) Salmonella typhimurium strains has been done. The Ames mutagenicity test (S. typhimurium his(+) reversion assay) was used, as well as nitroreductase (NR) activity determinations where the decrease in absorbance generated by nitrofurantoin (NFN) reduction and NADP(H) oxidation in the presence of NFN, nitrofurazone (NFZ), metronidazole (MTZ) and 4-nitroquinoline-1-oxide (4NQO) were followed. Different aromatic and heterocyclic compounds were tested for mutagenic activation: 2-nitrofluorene (2-NF); 2,7-dinitrofluorene (2,7-DNF); 1-nitropyrene (1-NP), 1,3-dinitropyrene (1,3-DNP); 1,6-dinitropyrene (1,6-DNP); and 1,8-dinitropyrene (1,8-DNP). Differential mutagenicity was found with individual cell free extracts, being higher when the wild type or Cnr containing extract was used; nevertheless, depending on the nitrocompound, activation was found when either NR, SnrA or Cnr, were present. In addition, all nitrocompounds were more mutagenic after metabolic activation by CFE of NR proficient strains, although AB(-) extract still showed activation capacity. On the other hand, NR activity was predominantly catalyzed by wild type CFE followed by A(+), B(+) and AB(-) extracts in that order. We can conclude that results from the Ames test indicate that Cnr is the major NR, while NFN and NFZ reductions were predominantly catalyzed by SnrA. The characterization of the residual NR activity detected by the mutagenicity assay and the biochemical determinations in the AB(-) CFE needs further investigation.
Collapse
Affiliation(s)
- S G Salamanca-Pinzón
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas Universidad Nacional Autónoma de México, México
| | | | | | | |
Collapse
|