1
|
Goncalves K, Przyborski S. Modulation of the Nogo signaling pathway to overcome amyloid-β-mediated neurite inhibition in human pluripotent stem cell-derived neurites. Neural Regen Res 2025; 20:2645-2654. [PMID: 39105379 PMCID: PMC11801276 DOI: 10.4103/nrr.nrr-d-23-01628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/29/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202509000-00026/figure1/v/2024-11-05T132919Z/r/image-tiff Neuronal cell death and the loss of connectivity are two of the primary pathological mechanisms underlying Alzheimer's disease. The accumulation of amyloid-β peptides, a key hallmark of Alzheimer's disease, is believed to induce neuritic abnormalities, including reduced growth, extension, and abnormal growth cone morphology, all of which contribute to decreased connectivity. However, the precise cellular and molecular mechanisms governing this response remain unknown. In this study, we used an innovative approach to demonstrate the effect of amyloid-β on neurite dynamics in both two-dimensional and three-dimensional culture systems, in order to provide more physiologically relevant culture geometry. We utilized various methodologies, including the addition of exogenous amyloid-β peptides to the culture medium, growth substrate coating, and the utilization of human-induced pluripotent stem cell technology, to investigate the effect of endogenous amyloid-β secretion on neurite outgrowth, thus paving the way for potential future applications in personalized medicine. Additionally, we also explore the involvement of the Nogo signaling cascade in amyloid-β-induced neurite inhibition. We demonstrate that inhibition of downstream ROCK and RhoA components of the Nogo signaling pathway, achieved through modulation with Y-27632 (a ROCK inhibitor) and Ibuprofen (a Rho A inhibitor), respectively, can restore and even enhance neuronal connectivity in the presence of amyloid-β. In summary, this study not only presents a novel culture approach that offers insights into the biological process of neurite growth and inhibition, but also proposes a specific mechanism for reduced neural connectivity in the presence of amyloid-β peptides, along with potential intervention points to restore neurite growth. Thereby, we aim to establish a culture system that has the potential to serve as an assay for measuring preclinical, predictive outcomes of drugs and their ability to promote neurite outgrowth, both generally and in a patient-specific manner.
Collapse
Affiliation(s)
| | - Stefan Przyborski
- Department of Biosciences, Durham University, Durham, UK
- Reprocell Europe Ltd., Glasgow, UK
| |
Collapse
|
2
|
Vanherle S, Janssen A, Gutiérrez de Ravé M, Janssen B, Lodder C, Botella Lucena P, Kessels S, Hardy J, Vandeput E, Wang Y, Stancu IC, Segal A, Kleinewietfeld M, Voets T, Brône B, Poovathingal S, Alpizar YA, Dewachter I. APOE deficiency inhibits amyloid-facilitated (A) tau pathology (T) and neurodegeneration (N), halting progressive ATN pathology in a preclinical model. Mol Psychiatry 2025:10.1038/s41380-025-03036-7. [PMID: 40307424 DOI: 10.1038/s41380-025-03036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 03/12/2025] [Accepted: 04/15/2025] [Indexed: 05/02/2025]
Abstract
In AD, amyloid pathology (A) precedes progressive development of tau pathology (T) and neurodegeneration (N), with the latter (T/N) processes associated with symptom progression. Recent anti-amyloid beta (Aβ) clinical trials raise hope but indicate the need for multi-targeted therapies, to effectively halt clinical AD and ATN pathology progression. APOE-related putative protective mutations (including APOE3Christchurch, RELN-COLBOS) were recently identified in case reports with exceptionally high resilience to autosomal dominant AD. In these cases, Nature provided proof of concept for halting autosomal dominant AD and ATN progression in humans, despite a high amyloid load, and pointing to the APOE pathway as a potential target. This is further supported by the recent identification of APOE4 homozygosity as genetic AD. Here we studied the role of APOE in a preclinical model that robustly mimics amyloid-facilitated (A) tau pathology (T) and subsequent neurodegeneration (N), denoted as ATN model, generated by crossing 5xFAD (F +) and TauP301S (T +) mice. We show that APOE deficiency, markedly inhibited progression to tau pathology and tau-induced neurodegeneration in this ATN model, despite a high Aβ load, reminiscent of the high resilience ADAD case reports. Further study identified, despite increased Aβ load (W02 stained), a significant decrease in compacted, dense core plaques stained by ThioS in APOE deficient ATN mice. Furthermore, single-cell RNA sequencing (scRNA-seq) showed a crucial role of APOE in microglial conversion beyond homeostatic microglia to reactive and disease associated microglia (DAM) in this ATN preclinical model. Microglial elimination significantly decreased amyloid-driven tau pathology, in the presence of APOE, but not in APOE deficient mice. Together the data demonstrate that APOE deficiency inhibits amyloid-driven tau pathology and subsequent neurodegeneration, by pleiotropic effects including prevention of dense core plaque formation and halting conversion of homeostatic microglia. We here present a model recapitulating inhibition of amyloid-facilitated tau pathology by APOE deficiency despite high Aβ load, important for understanding the role of APOE, and APOE-dependent processes in ATN progression and its therapeutic exploitation in AD.
Collapse
Affiliation(s)
- Sarah Vanherle
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Art Janssen
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Manuel Gutiérrez de Ravé
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Bieke Janssen
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Chritica Lodder
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Pablo Botella Lucena
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Sofie Kessels
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Jana Hardy
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Eline Vandeput
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Yanyan Wang
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Ilie-Cosmin Stancu
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Andrei Segal
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Markus Kleinewietfeld
- VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research (IRC), Hasselt University, Diepenbeek, Belgium
- Department of Immunology and Infection, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Bert Brône
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | | | - Yeranddy A Alpizar
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Ilse Dewachter
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
3
|
Zou Y, Yang L, Zhu J, Fan J, Zheng H, Liao X, Yang Z, Zhang K, Jia H, Konnerth A, Wang YJ, Zhang C, Zhang Y, Li SC, Chen X. Pitolisant alleviates brain network dysfunction and cognitive deficits in a mouse model of Alzheimer's disease. Transl Psychiatry 2025; 15:126. [PMID: 40185739 PMCID: PMC11971262 DOI: 10.1038/s41398-025-03358-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 03/16/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025] Open
Abstract
Histamine H3 receptor (H3R) antagonists regulate histamine release that modulates neuronal activity and cognitive function. Although H3R is elevated in Alzheimer's disease (AD) patients, whether H3R antagonists can rescue AD-associated neural impairments and cognitive deficits remains unknown. Pitolisant is a clinically approved H3R antagonist/inverse agonist that treats narcolepsy. Here, we find that pitolisant reverses AD-like pathophysiology and cognitive impairments in an AD mouse model. Behavioral assays and in vivo wide-field Ca2+ imaging revealed that recognition memory, learning flexibility, and slow-wave impairment were all improved following the 15-day pitolisant treatment. Improved recognition memory was tightly correlated with slow-wave coherence, suggesting slow waves serve as a biomarker for treatment response and for AD drug screening. Furthermore, pitolisant reduced amyloid-β deposition and dystrophic neurites surrounding plaques, and enhanced neuronal lysosomal activity, inhibiting which blocked cognitive and slow-wave restoration. Our findings identify pitolisant as a potential therapeutic agent for AD treatments.
Collapse
Affiliation(s)
- Yang Zou
- Guangxi Key Laboratory of Special Biomedicine/Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning, 530004, China
| | - Linhan Yang
- Guangxi Key Laboratory of Special Biomedicine/Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning, 530004, China
| | - Jiahui Zhu
- Guangxi Key Laboratory of Special Biomedicine/Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning, 530004, China
| | - Jihua Fan
- Guangxi Key Laboratory of Special Biomedicine/Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning, 530004, China
| | - Hanrun Zheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Xiang Liao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Zhiqi Yang
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, 400038, China
| | - Kuan Zhang
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, 400038, China
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing, 400038, China
- LFC Laboratory and Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China
| | - Hongbo Jia
- Guangxi Key Laboratory of Special Biomedicine/Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning, 530004, China
- Institute of Neuroscience and Munich Cluster for Systems Neurology, Technical University Munich, 80802, Munich, Germany
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
- Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Arthur Konnerth
- Institute of Neuroscience and Munich Cluster for Systems Neurology, Technical University Munich, 80802, Munich, Germany
| | - Yan-Jiang Wang
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing, 400038, China
- LFC Laboratory and Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China
| | - Chunqing Zhang
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing, 400038, China.
- LFC Laboratory and Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China.
| | - Yun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
| | - Sunny C Li
- LFC Laboratory and Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China.
- NewLight Neuroscience Unit, Chongqing, 400064, China.
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, 400038, China.
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing, 400038, China.
- LFC Laboratory and Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China.
| |
Collapse
|
4
|
He S, Li X, Mittra N, Bhattacharjee A, Wang H, Song S, Zhao S, Liu F, Han X. Microglial cGAS Deletion Preserves Intercellular Communication and Alleviates Amyloid-β-Induced Pathogenesis of Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410910. [PMID: 39908354 PMCID: PMC11948024 DOI: 10.1002/advs.202410910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/03/2025] [Indexed: 02/07/2025]
Abstract
Innate immune activation plays a crucial role in the pathogenesis of Alzheimer's disease (AD) and related dementias (ADRD). The cytosolic DNA sensing pathway, involving cGAMP synthase (cGAS) and Stimulator of Interferon Genes (STING), has emerged as a key mediator of neurodegenerative diseases. However, the precise mechanisms through which cGAS activation influences AD progression remain poorly understood. In this study, we observed significant up-regulation of cGAS-STING signaling pathway in AD. Notably, this increase is primarily attributed to microglia, rather than non-microglial cell types. Using an inducible, microglia-specific cGAS knockout mouse model in the 5xFAD background, we demonstrated that deleting microglial cGAS at the onset of amyloid-β (Aβ) pathology profoundly restricts plaque accumulation and protects mice from Aβ-induced cognitive impairment. Mechanistically, our study revealed cGAS promotes plaque-associated microglia accumulation and is essential for inflammasome activation. Moreover, we showed that restricting cGAS-mediated innate immunity is crucial for preserving inter-cellular communication in the brain and induces pleiotrophin, a neuroprotective factor. These findings offer novel insights into the specific roles of the innate immune system in AD employing a cell-type-specific approach. The conclusions provide a foundation for targeted interventions to modulate the microglial cGAS-STING signaling pathway, offering promising therapeutic strategy for AD treatment.
Collapse
Affiliation(s)
- Sijia He
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
- Department of Cellular and Integrative PhysiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Xin Li
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Namrata Mittra
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Anindita Bhattacharjee
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Hu Wang
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Shujie Song
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Shangang Zhao
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
- Division of EndocrinologyDepartment of MedicineUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Feng Liu
- Metabolic Syndrome Research CenterThe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Xianlin Han
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
- Division of DiabetesDepartment of MedicineUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| |
Collapse
|
5
|
Cai Y, Kanyo J, Wilson R, Bathla S, Cardozo PL, Tong L, Qin S, Fuentes LA, Pinheiro-de-Sousa I, Huynh T, Sun L, Mansuri MS, Tian Z, Gan HR, Braker A, Trinh HK, Huttner A, Lam TT, Petsalaki E, Brennand KJ, Nairn AC, Grutzendler J. Subcellular proteomics and iPSC modeling uncover reversible mechanisms of axonal pathology in Alzheimer's disease. NATURE AGING 2025; 5:504-527. [PMID: 40065072 PMCID: PMC11922768 DOI: 10.1038/s43587-025-00823-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 01/29/2025] [Indexed: 03/21/2025]
Abstract
Dystrophic neurites (also termed axonal spheroids) are found around amyloid deposits in Alzheimer's disease (AD), where they impair axonal electrical conduction, disrupt neural circuits and correlate with AD severity. Despite their importance, the mechanisms underlying spheroid formation remain incompletely understood. To address this, we developed a proximity labeling approach to uncover the proteome of spheroids in human postmortem and mouse brains. Additionally, we established a human induced pluripotent stem cell (iPSC)-derived AD model enabling mechanistic investigation and optical electrophysiology. These complementary approaches revealed the subcellular molecular architecture of spheroids and identified abnormalities in key biological processes, including protein turnover, cytoskeleton dynamics and lipid transport. Notably, the PI3K/AKT/mTOR pathway, which regulates these processes, was activated in spheroids. Furthermore, phosphorylated mTOR levels in spheroids correlated with AD severity in humans. Notably, mTOR inhibition in iPSC-derived neurons and mice ameliorated spheroid pathology. Altogether, our study provides a multidisciplinary toolkit for investigating mechanisms and therapeutic targets for axonal pathology in neurodegeneration.
Collapse
Affiliation(s)
- Yifei Cai
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| | - Jean Kanyo
- Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT, USA
| | - Rashaun Wilson
- Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT, USA
| | - Shveta Bathla
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | | | - Lei Tong
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Shanshan Qin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Lukas A Fuentes
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Tram Huynh
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Liyuan Sun
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Mohammad Shahid Mansuri
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Zichen Tian
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Hao-Ran Gan
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Amber Braker
- Yale College, Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Hoang Kim Trinh
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Anita Huttner
- Department of Pathology, Yale University, New Haven, CT, USA
| | - TuKiet T Lam
- Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT, USA
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Kristen J Brennand
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Genetics, Yale University, New Haven, CT, USA
| | - Angus C Nairn
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Jaime Grutzendler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
- Department of Neuroscience, Yale University, New Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
6
|
Han YE, Lim S, Lee SE, Nam MH, Oh SJ. Novel mouse model of Alzheimer's disease exhibits pathology through synergistic interactions among amyloid-β, tau, and reactive astrogliosis. Zool Res 2025; 46:41-53. [PMID: 39757019 DOI: 10.24272/j.issn.2095-8137.2024.257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive impairment and distinct neuropathological features, including amyloid-β plaques, neurofibrillary tangles, and reactive astrogliosis. Developing effective diagnostic, preventative, and therapeutic strategies for AD necessitates the establishment of animal models that accurately recapitulate the pathophysiological processes of the disease. Existing transgenic mouse models have significantly contributed to understanding AD pathology but often fail to replicate the complexity of human AD. Additionally, these models are limited in their ability to elucidate the interplay among amyloid-β plaques, neurofibrillary tangles, and reactive astrogliosis due to the absence of spatially and temporally specific genetic manipulation. In this study, we introduce a novel AD mouse model (APP/PS1-TauP301L-Adeno mice) designed to rapidly induce pathological symptoms and enhance understanding of AD mechanisms. Neurofibrillary tangles and severe reactive astrogliosis were induced by injecting AAV DJ-EF1a-hTauP301L-EGFP and Adeno-GFAP-GFP viruses into the hippocampi of 5-month-old APP/PS1 mice. Three months post-injection, these mice exhibited pronounced astrogliosis, substantial amyloid-β plaque accumulation, extensive neurofibrillary tangles, accelerated neuronal loss, elevated astrocytic GABA levels, and significant spatial memory deficits. Notably, these pathological features were less severe in AAV-TauP301L-expressing APP/PS1 mice without augmented reactive astrogliosis. These findings indicate an exacerbating role of severe reactive astrogliosis in amyloid-β plaque and neurofibrillary tangle-associated pathology. The APP/PS1-TauP301L-Adeno mouse model provides a valuable tool for advancing therapeutic research aimed at mitigating the progression of AD.
Collapse
Affiliation(s)
- Young-Eun Han
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Sunhwa Lim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Seung Eun Lee
- Research Animal Resources Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Soo-Jin Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea. E-mail:
| |
Collapse
|
7
|
Dongol A, Xie Y, Zheng P, Chen X, Huang XF. Olanzapine attenuates amyloid-β-induced microglia-mediated progressive neurite lesions. Int Immunopharmacol 2024; 137:112469. [PMID: 38908083 DOI: 10.1016/j.intimp.2024.112469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
The accumulation of amyloid-β (Aβ) in the brain is the first pathological mechanism to initiate Alzheimer's disease (AD) pathogenesis. However, the precise role of Aβ in the disease progression remains unclear. Through decades of research, prolonged inflammation has emerged as an important core pathology in AD. Previously, a study has demonstrated the neurotoxic effect of Aβ-induced neuroinflammation in neuron-glia co-culture at 72 h. Here, we hypothesise that initial stage Aβ may trigger microglial inflammation, synergistically contributing to the progression of neurite lesions relevant to AD progression. In the present study, we aimed to determine whether olanzapine, an antipsychotic drug possessing anti-inflammatory properties, can ameliorate Aβ-induced progressive neurite lesions. Our study reports that Aβ induces neurite lesions with or without inflammatory microglial cells in vitro. More intriguingly, the present study revealed that Aβ exacerbates neurite lesions in synergy with microglia. Moreover, the time course study revealed that Aβ promotes microglia-mediated neurite lesions by eliciting the secretion of pro-inflammatory cytokines. Furthermore, our study shows that olanzapine at lower doses prevents Aβ-induced microglia-mediated progressive neurite lesions. The increase in pro-inflammatory cytokines induced by Aβ is attenuated by olanzapine administration, associated with a reduction in microglial inflammation. Finally, this study reports that microglial senescence induced by Aβ was rescued by olanzapine. Thus, our study provides the first evidence that 1 µM to 5 µM of olanzapine can effectively prevent Aβ-induced microglia-mediated progressive neurite lesions by modulating microglial inflammation. These observations reinforce the potential of targeting microglial remodelling to slow disease progression in AD.
Collapse
Affiliation(s)
- Anjila Dongol
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, Northfields Avenue, NSW 2522, Australia
| | - Yuanyi Xie
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, Northfields Avenue, NSW 2522, Australia
| | - Peng Zheng
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, Northfields Avenue, NSW 2522, Australia
| | - Xi Chen
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, Northfields Avenue, NSW 2522, Australia
| | - Xu-Feng Huang
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, Northfields Avenue, NSW 2522, Australia.
| |
Collapse
|
8
|
Bagheri S, Saboury AA, Saso L. Sequence of Molecular Events in the Development of Alzheimer's Disease: Cascade Interactions from Beta-Amyloid to Other Involved Proteins. Cells 2024; 13:1293. [PMID: 39120323 PMCID: PMC11312137 DOI: 10.3390/cells13151293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Alzheimer's disease is the primary neurodegenerative disease affecting the elderly population. Despite the first description of its pathology over a century ago, its precise cause and molecular mechanism remain unknown. Numerous factors, including beta-amyloid, tau protein, the APOEε4 gene, and different metals, have been extensively investigated in relation to this disease. However, none of them have been proven to have a decisive causal relationship. Furthermore, no single theory has successfully integrated these puzzle pieces thus far. In this review article, we propose the most probable molecular mechanism for AD, which clearly shows the relationship between the main aspects of the disease, and addresses fundamental questions such as: Why is aging the major risk factor for the disease? Are amyloid plaques and tau tangles the causes or consequences of AD? Why are the distributions of senile plaques and tau tangles in the brain different and independent of each other? Why is the APOEε4 gene a risk factor for AD? Finally, why is the disease more prevalent in women?
Collapse
Affiliation(s)
- Soghra Bagheri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
9
|
Tsering W, Prokop S. Neuritic Plaques - Gateways to Understanding Alzheimer's Disease. Mol Neurobiol 2024; 61:2808-2821. [PMID: 37940777 PMCID: PMC11043180 DOI: 10.1007/s12035-023-03736-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/21/2023] [Indexed: 11/10/2023]
Abstract
Extracellular deposits of amyloid-β (Aβ) in the form of plaques are one of the main pathological hallmarks of Alzheimer's disease (AD). Over the years, many different Aβ plaque morphologies such as neuritic plaques, dense cored plaques, cotton wool plaques, coarse-grain plaques, and diffuse plaques have been described in AD postmortem brain tissues, but correlation of a given plaque type with AD progression or AD symptoms is not clear. Furthermore, the exact trigger causing the development of one Aβ plaque morphological subtype over the other is still unknown. Here, we review the current knowledge about neuritic plaques, a subset of Aβ plaques surrounded by swollen or dystrophic neurites, which represent the most detrimental and consequential Aβ plaque morphology. Neuritic plaques have been associated with local immune activation, neuronal network dysfunction, and cognitive decline. Given that neuritic plaques are at the interface of Aβ deposition, tau aggregation, and local immune activation, we argue that understanding the exact mechanism of neuritic plaque formation is crucial to develop targeted therapies for AD.
Collapse
Affiliation(s)
- Wangchen Tsering
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida, Gainesville, USA.
- Department of Pathology, University of Florida, Gainesville, USA.
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, USA.
| |
Collapse
|
10
|
de Vries LE, Huitinga I, Kessels HW, Swaab DF, Verhaagen J. The concept of resilience to Alzheimer's Disease: current definitions and cellular and molecular mechanisms. Mol Neurodegener 2024; 19:33. [PMID: 38589893 PMCID: PMC11003087 DOI: 10.1186/s13024-024-00719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Some individuals are able to maintain their cognitive abilities despite the presence of significant Alzheimer's Disease (AD) neuropathological changes. This discrepancy between cognition and pathology has been labeled as resilience and has evolved into a widely debated concept. External factors such as cognitive stimulation are associated with resilience to AD, but the exact cellular and molecular underpinnings are not completely understood. In this review, we discuss the current definitions used in the field, highlight the translational approaches used to investigate resilience to AD and summarize the underlying cellular and molecular substrates of resilience that have been derived from human and animal studies, which have received more and more attention in the last few years. From these studies the picture emerges that resilient individuals are different from AD patients in terms of specific pathological species and their cellular reaction to AD pathology, which possibly helps to maintain cognition up to a certain tipping point. Studying these rare resilient individuals can be of great importance as it could pave the way to novel therapeutic avenues for AD.
Collapse
Affiliation(s)
- Luuk E de Vries
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands.
| | - Inge Huitinga
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Helmut W Kessels
- Swammerdam Institute for Life Sciences, Amsterdam Neuroscience, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - Dick F Swaab
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, Netherlands
| | - Joost Verhaagen
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Zhang Y, Miao D, Liu S, Hao X. Revealing the binding mechanism of BACE1 inhibitors through molecular dynamics simulations. J Biomol Struct Dyn 2024:1-13. [PMID: 38375603 DOI: 10.1080/07391102.2024.2319676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/11/2024] [Indexed: 02/21/2024]
Abstract
Alzheimer's disease is a debilitating neurodegenerative disorder, and the Beta-Site Amyloid Precursor Protein Cleaving Enzyme 1 (BACE1) is a key therapeutic target in its treatment. This study employs molecular dynamics simulations and binding energy analysis to investigate the binding interactions between BACE1 and four selected small molecules: CNP520, D9W, NB641, and NB360. The binding model analysis indicates that the binding of BACE1 with four molecules are stable, except the loop regions show significant fluctuation. The binding free energy analyses reveal that NB360 exhibits the highest binding affinity with BACE1, surpassing other molecules (CNP520, D9W, and NB641). Detailed energy component assessments highlight the critical roles of electrostatic interactions and van der Waals forces in the binding process. Furthermore, residue contribution analysis identifies key amino acids influencing the binding process across all systems. Hydrogen bond analysis reveals a limited number of bonds between BACE1 and each small molecule, highlighting the importance of structural modifications to enable more stable hydrogen bonds. This research provides valuable insights into the molecular mechanisms of potential Alzheimer's disease therapeutics, guiding the way for improved drug design and the development of effective treatments targeting BACE1.
Collapse
Affiliation(s)
- Yanjun Zhang
- School of Mathematics & Physics, Hebei University of Engineering, Handan, China
| | - Dongqiang Miao
- School of Mathematics & Physics, Hebei University of Engineering, Handan, China
| | - Senchen Liu
- School of Mathematics & Physics, Hebei University of Engineering, Handan, China
| | - Xiafei Hao
- Medical College, Hebei University of Engineering, Handan, China
| |
Collapse
|
12
|
Nuñez-Diaz C, Andersson E, Schultz N, Pocevičiūtė D, Hansson O, Nilsson KPR, Wennström M. The fluorescent ligand bTVBT2 reveals increased p-tau uptake by retinal microglia in Alzheimer's disease patients and App NL-F/NL-F mice. Alzheimers Res Ther 2024; 16:4. [PMID: 38167557 PMCID: PMC10763304 DOI: 10.1186/s13195-023-01375-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Amyloid beta (Aβ) deposits and hyperphosphorylated tau (p-tau) accumulation have been identified in the retina of Alzheimer's disease (AD) patients and transgenic AD mice. Previous studies have shown that retinal microglia engulf Aβ, but this property decreases in AD patients. Whether retinal microglia also take up p-tau and if this event is affected in AD is yet not described. In the current study, we use the p-tau-specific thiophene-based ligand bTVBT2 to investigate the relationship between disease progression and p-tau uptake by microglia in the retina of AD patients and AppNL-F/NL-F knock-in mice, an AD mouse model known to demonstrate extracellular Aβ plaques and dystrophic neurites in the brain from 6 months of age. METHODS Evaluation of bTVBT2 specificity and its presence within microglia was assessed by immunofluorescent staining of hippocampal sections and flat-mount retina samples from non-demented controls, AD patients, 3-, 9-, and 12-month-old AppNL-F/NL-F knock-in mice and 12- and 18-month-old wild type (WT) mice. We used ImageJ to analyze the amount of bTVBT2 inside Iba1-positive microglia. Co-localization between the ligand and p-tau variant Ser396/Ser404 (PHF-1), Aβ, phosphorylated TAR DNA binding protein 43 (pTDP-43), and islet amyloid polypeptide (IAPP) in the brain and retina was analyzed using confocal imaging. RESULTS Confocal imaging analysis showed that bTVBT2 binds to PHF-1- and AT8-positive aggregates inside retinal microglia, and not to Aβ, pTDP-43, or IAPP. The density of bTVBT2-positive microglia was higher in cases with a high Aβ load compared to those with a low Aβ load. This density correlated with the neurofibrillary tangle load in the brain, but not with retinal levels of high molecular weight (aggregated) Aβ40 or Aβ42. Analysis of AppNL-F/NL-F knock-in mouse retina further showed that 50% of microglia in 3-month-old AppNL-F/NL-F knock-in mice contained bTVBT2. The percentage significantly increased in 9- and 12-month-old mice. CONCLUSION Our study suggests that the microglial capability to uptake p-tau in the retina persists and intensifies with AD progression. These results also highlight bTVBT2 as a ligand of interest in future monitoring of retinal AD pathology.
Collapse
Affiliation(s)
- Cristina Nuñez-Diaz
- Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Emelie Andersson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Nina Schultz
- Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Dovilė Pocevičiūtė
- Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - K Peter R Nilsson
- Department of Physics, Chemistry and Biology IFM, Linköping University, 581 83, Linköping, Sweden
| | - Malin Wennström
- Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.
| |
Collapse
|
13
|
Tsering W, Hery GP, Phillips JL, Lolo K, Bathe T, Villareal JA, Ruan IY, Prokop S. Transformation of non-neuritic into neuritic plaques during AD progression drives cortical spread of tau pathology via regenerative failure. Acta Neuropathol Commun 2023; 11:190. [PMID: 38037144 PMCID: PMC10691154 DOI: 10.1186/s40478-023-01688-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023] Open
Abstract
Extracellular amyloid-β (Aβ) plaques and intracellular aggregates of tau protein in form of neurofibrillary tangles (NFT) are pathological hallmarks of Alzheimer's disease (AD). The exact mechanism how these two protein aggregates interact in AD is still a matter of debate. Neuritic plaques (NP), a subset of Aβ plaques containing dystrophic neurites (DN), are suggested to be unique to AD and might play a role in the interaction of Aβ and tau. Quantifying NP and non-NP in postmortem brain specimens from patients with increasing severity of AD neuropathological changes (ADNC), we demonstrate that the total number of Aβ plaques and NP increase, while the number of non-NP stagnates. Furthermore, investigating the correlation between NP and NFT, we identified unexpected brain region-specific differences when comparing cases with increasingly more severe ADNC. In neocortical regions NFT counts increase in parallel with NP counts during the progression of ADNC, while this correlation is not observed in hippocampus. These data support the notion that non-NP are transformed into NP during the progression of ADNC and indicate that NP might drive cortical NFT formation. Next, using spatial transcriptomics, we analyzed the gene expression profile of the microenvironment around non-NP and NP. We identified an upregulation of neuronal systems and Ca-dependent event pathways around NP compared to non-NP. We speculate that the upregulation of these transcripts may hint at a compensatory mechanism underlying NP formation. Our studies suggest that the transformation of non-NP to NP is a key event in ADNC progression and points to regenerative failure as a potential driving force of this process.
Collapse
Affiliation(s)
- Wangchen Tsering
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- College of Medicine, Mcknight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Gabriela P Hery
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jennifer L Phillips
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Kiara Lolo
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Tim Bathe
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL, USA
- College of Medicine, Mcknight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Jonathan A Villareal
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Isabelle Y Ruan
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA.
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL, USA.
- College of Medicine, Mcknight Brain Institute, University of Florida, Gainesville, FL, USA.
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
14
|
Hao C, Han M, Wang W, Yang C, Wang J, Guo Y, Xu T, Zhang L, Li C. The neuroprotective effects of peracetylated chitosan oligosaccharides against β-amyloid-induced cognitive deficits in rats. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:211-222. [PMID: 37275539 PMCID: PMC10232394 DOI: 10.1007/s42995-023-00172-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 01/17/2023] [Indexed: 06/07/2023]
Abstract
Chitosan oligosaccharides (COSs) have been reported to possess a broad range of activities such as antitumor, antioxidant and neuroprotective activities. In this study, the protective effects and mechanisms of peracetylated chitosan oligosaccharides (PACOs) against Aβ-induced cognitive deficits were investigated in Sprague-Dawley (SD) rats. PACOs treatment significantly improved the learning and memory function of Alzheimer's disease (AD) rats and attenuated the neuron cell damage caused by Aβ. PACOs also markedly reduced the levels of lactate dehydrogenase (LDH) and Malondialdehyde (MDA) and decreased the phosphorylation of Tau protein to inhibit oxidative injury and inflammatory responses in AD rats. Further studies indicated that PACOs may promote the repair of Aβ induced nerve damage and inhibit neuronal apoptosis mainly through regulating PI3K/Akt/GSK3β signaling pathway. Consistently, the transcriptome analysis verified that the differentially expressed genes (DEGs) were mainly involved in neuron development and the PI3K-Akt signaling pathway. Taken together, peracetylated chitosan oligosaccharides (PACOs) have the potential to be developed into novel anti-AD agents targeting the cellular PI3K/Akt/GSK3β signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00172-3.
Collapse
Affiliation(s)
- Cui Hao
- Medical Research Center, Affiliated Hospital of Qingdao University, Qingdao, 266003 China
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, 266003 China
- Center of Integrated Traditional and Western Medicine, Qingdao University, Qingdao, 266003 China
| | - Minmin Han
- Medical Research Center, Affiliated Hospital of Qingdao University, Qingdao, 266003 China
- Center of Integrated Traditional and Western Medicine, Qingdao University, Qingdao, 266003 China
- Qingdao Women’s and Children’s Hospital, Qingdao, 266003 China
| | - Wei Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Cheng Yang
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Jigang Wang
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, 266003 China
| | - Yunliang Guo
- Medical Research Center, Affiliated Hospital of Qingdao University, Qingdao, 266003 China
- Center of Integrated Traditional and Western Medicine, Qingdao University, Qingdao, 266003 China
| | - Tao Xu
- Center of Integrated Traditional and Western Medicine, Qingdao University, Qingdao, 266003 China
- Qingdao Women’s and Children’s Hospital, Qingdao, 266003 China
| | - Lijuan Zhang
- Medical Research Center, Affiliated Hospital of Qingdao University, Qingdao, 266003 China
| | - Chunxia Li
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
15
|
Lazarev VF, Dutysheva EA, Kanunikov IE, Guzhova IV, Margulis BA. Protein Interactome of Amyloid-β as a Therapeutic Target. Pharmaceuticals (Basel) 2023; 16:312. [PMID: 37259455 PMCID: PMC9965366 DOI: 10.3390/ph16020312] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 04/12/2024] Open
Abstract
The amyloid concept of Alzheimer's disease (AD) assumes the β-amyloid peptide (Aβ) as the main pathogenic factor, which injures neural and other brain cells, causing their malfunction and death. Although Aβ has been documented to exert its cytotoxic effect in a solitary manner, there is much evidence to claim that its toxicity can be modulated by other proteins. The list of such Aβ co-factors or interactors includes tau, APOE, transthyretin, and others. These molecules interact with the peptide and affect the ability of Aβ to form oligomers or aggregates, modulating its toxicity. Thus, the list of potential substances able to reduce the harmful effects of the peptide should include ones that can prevent the pathogenic interactions by specifically binding Aβ and/or its partners. In the present review, we discuss the data on Aβ-based complexes in AD pathogenesis and on the compounds directly targeting Aβ or the destructors of its complexes with other polypeptides.
Collapse
Affiliation(s)
- Vladimir F. Lazarev
- Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Elizaveta A. Dutysheva
- Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Igor E. Kanunikov
- Biological Faculty, St. Petersburg State University, 199034 Saint Petersburg, Russia
| | - Irina V. Guzhova
- Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Boris A. Margulis
- Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| |
Collapse
|
16
|
Chockanathan U, Padmanabhan K. From synapses to circuits and back: Bridging levels of understanding in animal models of Alzheimer's disease. Eur J Neurosci 2022; 56:5564-5586. [PMID: 35244297 PMCID: PMC10926359 DOI: 10.1111/ejn.15636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/04/2022] [Accepted: 02/23/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by behavioural changes that include memory loss and cognitive decline and is associated with the appearance of amyloid-β plaques and neurofibrillary tangles throughout the brain. Although aspects of the disease percolate across multiple levels of neuronal organization, from the cellular to the behavioural, it is increasingly clear that circuits are a critical junction between the cellular pathology and the behavioural phenotypes that bookend these levels of analyses. In this review, we discuss critical aspects of neural circuit research, beginning with synapses and progressing to network activity and how they influence our understanding of disease processed in AD.
Collapse
Affiliation(s)
- Udaysankar Chockanathan
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Neuroscience Graduate Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Medical Scientist Training Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Krishnan Padmanabhan
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Neuroscience Graduate Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Medical Scientist Training Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Center for Visual Science, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Intellectual and Developmental Disabilities Research Center, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
17
|
de Lara-Sánchez SS, Sánchez-Pérez AM. Probiotics Treatment Can Improve Cognition in Patients with Mild Cognitive Impairment: A Systematic Review. J Alzheimers Dis 2022; 89:1173-1191. [DOI: 10.3233/jad-220615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: In recent years, the existence of the gut-brain axis and the impact of intestinal microbiota on brain function has received much attention. Accumulated evidence has prompted the postulation of the infectious hypothesis underlying or facilitating neurodegenerative diseases, such as Alzheimer’s disease. Under this hypothesis, intervention with probiotics could be useful at a preventive and therapeutic level. Objective: The objective of this systematic review is to reveal a benefit of improved cognitive function following the use of probiotics in individuals with mild cognitive impairment. Methods: We searched bibliographic databases and analyzed in detail the evidence and methodological quality of five recent randomized, double-blind, placebo-controlled clinical trials using the Cochrane Tool and the SIGN checklist. Results: Overall, and with satisfactory methodological quality, the studies evaluated support the use of probiotics as a weapon to slow the progression of cognitive decline in subjects with mild cognitive impairment. The literature review also indicates that maximum benefit of probiotics is found in subjects with incipient cognitive dysfunction and has no effect in those with advanced disease or absence of disease. Conclusion: These results support the intervention with probiotics, especially as a preventive approach. However, caution is required in the interpretation of the results as microbiota has not been evaluated in all studies, and further large-scale research with a prolonged study period is necessary to ensure the translatability of the results into real practice.
Collapse
Affiliation(s)
| | - Ana María Sánchez-Pérez
- Faculty of Health Sciences, University Jaume I. Avda Sos Banyat, s/n. Castellon, Spain
- Institute of Advances Materials (INAM), University Jaume I. Avda Sos Banyat, s/n. Castellon, Spain
| |
Collapse
|
18
|
Bjorkli C, Hemler M, Julian JB, Sandvig A, Sandvig I. Combined targeting of pathways regulating synaptic formation and autophagy attenuates Alzheimer’s disease pathology in mice. Front Pharmacol 2022; 13:913971. [PMID: 36052130 PMCID: PMC9426773 DOI: 10.3389/fphar.2022.913971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
All drug trials completed to date have fallen short of meeting the clinical endpoint of significantly slowing cognitive decline in Alzheimer’s disease (AD) patients. In this study, we repurposed two FDA-approved drugs, Fasudil and Lonafarnib, targeting synaptic formation (i.e., Wnt signaling) and cellular clearance (i.e., autophagic) pathways respectively, to test their therapeutic potential for attenuating AD-related pathology. We characterized our 3xTg AD mouse colony to select timepoints for separate and combinatorial treatment of both drugs while collecting cerebrospinal fluid (CSF) using an optimized microdialysis method. We found that treatment with Fasudil reduced Aβ at early and later stages of AD, whereas administration of Lonafarnib had no effect on Aβ, but did reduce tau, at early stages of the disease. Induction of autophagy led to increased size of amyloid plaques when administered at late phases of the disease. We show that combinatorial treatment with both drugs was effective at reducing intraneuronal Aβ and led to improved cognitive performance in mice. These findings lend support to regulating Wnt and autophagic pathways in order to attenuate AD-related pathology.
Collapse
Affiliation(s)
- Christiana Bjorkli
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology, St. Olav’s Hospital, Trondheim, Norway
- *Correspondence: Christiana Bjorkli,
| | - Mary Hemler
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology, St. Olav’s Hospital, Trondheim, Norway
| | - Joshua B. Julian
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology, St. Olav’s Hospital, Trondheim, Norway
- Department of Clinical Neurosciences, Division of Neuro Head and Neck, Umeå University Hospital, Umeå, Sweden
- Department of Community Medicine and Rehabilitation, Umeå University, Umeå, Sweden
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology, St. Olav’s Hospital, Trondheim, Norway
| |
Collapse
|
19
|
Nasal Microbiota, Olfactory Health, Neurological Disorders and Aging—A Review. Microorganisms 2022; 10:microorganisms10071405. [PMID: 35889124 PMCID: PMC9320618 DOI: 10.3390/microorganisms10071405] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/07/2023] Open
Abstract
The nasal region is one of the distinct environments for the survival of various microbiota. The human microbial niche begins to inhabit the human body right from birth, and the microbiota survive as commensals or opportunistic pathogens throughout the life of humans in their bodies in various habitats. These microbial communities help to maintain a healthy microenvironment by preventing the attack of pathogens and being involved in immune regulation. Any dysbiosis of microbiota residing in the mucosal surfaces, such as the nasal passages, guts, and genital regions, causes immune modulation and severe infections. The coexistence of microorganisms in the mucosal layers of respiratory passage, resulting in infections due to their co-abundance and interactions, and the background molecular mechanisms responsible for such interactions, need to be considered for investigation. Additional clinical evaluations can explain the interactions among the nasal microbiota, nasal dysbiosis and neurodegenerative diseases (NDs). The respiratory airways usually act as a substratum place for the microbes and can act as the base for respiratory tract infections. The microbial metabolites and the microbes can cross the blood–brain barrier and may cause NDs, such as Parkinson’s disease (PD), Alzheimer’s disease (AD), and multiple sclerosis (MS). The scientific investigations on the potential role of the nasal microbiota in olfactory functions and the relationship between their dysfunction and neurological diseases are limited. Recently, the consequences of the severe acute respiratory syndrome coronavirus (SARS-CoV-2) in patients with neurological diseases are under exploration. The crosstalk between the gut and the nasal microbiota is highly influential, because their mucosal regions are the prominent microbial niche and are connected to the olfaction, immune regulation, and homeostasis of the central nervous system. Diet is one of the major factors, which strongly influences the mucosal membranes of the airways, gut, and lung. Unhealthy diet practices cause dysbiosis in gut microbiota and the mucosal barrier. The current review summarizes the interrelationship between the nasal microbiota dysbiosis, resulting olfactory dysfunctions, and the progression of NDs during aging and the involvement of coronavirus disease 2019 in provoking the NDs.
Collapse
|
20
|
Gómez-Isla T, Frosch MP. Lesions without symptoms: understanding resilience to Alzheimer disease neuropathological changes. Nat Rev Neurol 2022; 18:323-332. [PMID: 35332316 PMCID: PMC10607925 DOI: 10.1038/s41582-022-00642-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2022] [Indexed: 12/12/2022]
Abstract
Since the original description of amyloid-β plaques and tau tangles more than 100 years ago, these lesions have been considered the neuropathological hallmarks of Alzheimer disease (AD). The prevalence of plaques, tangles and dementia increases with age, and the lesions are considered to be causally related to the cognitive symptoms of AD. Current schemes for assessing AD lesion burden examine the distribution, abundance and characteristics of plaques and tangles at post mortem, yielding an estimate of the likelihood of cognitive impairment. Although this approach is highly predictive for most individuals, in some instances, a striking mismatch between lesions and symptoms can be observed. A small subset of individuals harbour a high burden of plaques and tangles at autopsy, which would be expected to have had devastating clinical consequences, but remain at their cognitive baseline, indicating 'resilience'. The study of these brains might provide the key to understanding the 'black box' between the accumulation of plaques and tangles and cognitive impairment, and show the way towards disease-modifying treatments for AD. In this Review, we begin by considering the heterogeneity of clinical manifestations associated with the presence of plaques and tangles, and then focus on insights derived from the rare yet informative individuals who display high amounts of amyloid and tau deposition in their brains (observed directly at autopsy) without manifesting dementia during life. The resilient response of these individuals to the gradual accumulation of plaques and tangles has potential implications for assessing an individual's risk of AD and for the development of interventions aimed at preserving cognition.
Collapse
Affiliation(s)
- Teresa Gómez-Isla
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Massachusetts Alzheimer's Disease Research Center, Boston, MA, USA.
| | - Matthew P Frosch
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts Alzheimer's Disease Research Center, Boston, MA, USA
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
21
|
García-Morales V, González-Acedo A, Melguizo-Rodríguez L, Pardo-Moreno T, Costela-Ruiz VJ, Montiel-Troya M, Ramos-Rodríguez JJ. Current Understanding of the Physiopathology, Diagnosis and Therapeutic Approach to Alzheimer's Disease. Biomedicines 2021; 9:1910. [PMID: 34944723 PMCID: PMC8698840 DOI: 10.3390/biomedicines9121910] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. It is characterized by cognitive decline and progressive memory loss. The aim of this review was to update the state of knowledge on the pathophysiological mechanisms, diagnostic methods and therapeutic approach to AD. Currently, the amyloid cascade hypothesis remains the leading theory in the pathophysiology of AD. This hypothesis states that amyloid-β (Aβ) deposition triggers a chemical cascade of events leading to the development of AD dementia. The antemortem diagnosis of AD is still based on clinical parameters. Diagnostic procedures in AD include fluid-based biomarkers such as those present in cerebrospinal fluid and plasma or diagnostic imaging methods. Currently, the therapeutic armory available focuses on symptom control and is based on four pillars: pharmacological treatment where acetylcholinesterase inhibitors stand out; pharmacological treatment under investigation which includes drugs focused on the control of Aβ pathology and tau hyperphosphorylation; treatment focusing on risk factors such as diabetes; or nonpharmacological treatments aimed at preventing development of the disease or treating symptoms through occupational therapy or psychological help. AD remains a largely unknown disease. Further research is needed to identify new biomarkers and therapies that can prevent progression of the pathology.
Collapse
Affiliation(s)
- Victoria García-Morales
- Department of Biomedicine, Biotechnology and Public Health, Physiology Area, Faculty of Medicine, University of Cádiz, 11003 Cádiz, Spain;
| | - Anabel González-Acedo
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, 18016 Granada, Spain; (A.G.-A.); (V.J.C.-R.)
| | - Lucía Melguizo-Rodríguez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, 18016 Granada, Spain; (A.G.-A.); (V.J.C.-R.)
- Instituto de Investigación Biosanitaria, Ibs Granada, 18012 Granada, Spain
| | - Teresa Pardo-Moreno
- Instituto Nacional de Gestión Sanitaria (INGESA), Primary Health Care, 51003 Ceuta, Spain;
| | - Víctor Javier Costela-Ruiz
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, 18016 Granada, Spain; (A.G.-A.); (V.J.C.-R.)
- Instituto de Investigación Biosanitaria, Ibs Granada, 18012 Granada, Spain
| | - María Montiel-Troya
- Department of Nursing, Faculty of Health Sciences (Ceuta), University of Granada, 51001 Ceuta, Spain;
| | - Juan José Ramos-Rodríguez
- Department of Physiology, Faculty of Health Sciences (Ceuta), University of Granada, 51001 Ceuta, Spain;
| |
Collapse
|
22
|
Huang K, Lou S, Wang C, Thanawala MS, Turner J, Fink A, Ji L, Sadaghiani M, Huang P, Dai H. DeepNeurite™: Identification of neurites from non‐specific binding of fluorescence probes through deep learning. FASEB Bioadv 2021. [DOI: 10.1096/fba.2021-00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
| | - Shan Lou
- Cygnal Therapeutics Cambridge Massachusetts USA
| | | | | | | | - Alex Fink
- Cygnal Therapeutics Cambridge Massachusetts USA
| | - Lexiang Ji
- Cygnal Therapeutics Cambridge Massachusetts USA
| | | | - Pearl Huang
- Cygnal Therapeutics Cambridge Massachusetts USA
| | - Hongyue Dai
- Cygnal Therapeutics Cambridge Massachusetts USA
| |
Collapse
|
23
|
Gonzalez S, McHugh TLM, Yang T, Syriani W, Massa SM, Longo FM, Simmons DA. Small molecule modulation of TrkB and TrkC neurotrophin receptors prevents cholinergic neuron atrophy in an Alzheimer's disease mouse model at an advanced pathological stage. Neurobiol Dis 2021; 162:105563. [PMID: 34838668 DOI: 10.1016/j.nbd.2021.105563] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/05/2021] [Accepted: 11/22/2021] [Indexed: 12/23/2022] Open
Abstract
Degeneration of basal forebrain cholinergic neurons (BFCNs) in the nucleus basalis of Meynert (NBM) and vertical diagonal band (VDB) along with their connections is a key pathological event leading to memory impairment in Alzheimer's disease (AD). Aberrant neurotrophin signaling via Trks and the p75 neurotrophin receptor (p75NTR) contributes importantly to BFCN dystrophy. While NGF/TrkA signaling has received the most attention in this regard, TrkB and TrkC signaling also provide trophic support to BFCNs and these receptors may be well located to preserve BFCN connectivity. We previously identified a small molecule TrkB/TrkC ligand, LM22B-10, that promotes cell survival and neurite outgrowth in vitro and activates TrkB/TrkC signaling in the hippocampus of aged mice when given intranasally, but shows poor oral bioavailability. An LM22B-10 derivative, PTX-BD10-2, with improved oral bioavailability has been developed and this study examined its effects on BFCN atrophy in the hAPPLond/Swe (APPL/S) AD mouse model. Oral delivery of PTX-BD10-2 was started after appreciable amyloid and cholinergic pathology was present to parallel the clinical context, as most AD patients start treatment at advanced pathological stages. PTX-BD10-2 restored cholinergic neurite integrity in the NBM and VDB, and reduced NBM neuronal atrophy in symptomatic APPL/S mice. Dystrophy of cholinergic neurites in BF target regions, including the cortex, hippocampus, and amygdala, was also reduced with treatment. Finally, PTX-BD10-2 reduced NBM tau pathology and improved the survival of cholinergic neurons derived from human induced pluripotent stem cells (iPSCs) after amyloid-β exposure. These data provide evidence that targeting TrkB and TrkC signaling with PTX-BD10-2 may be an effective disease-modifying strategy for combating cholinergic dysfunction in AD. The potential for clinical translation is further supported by the compound's reduction of AD-related degenerative processes that have progressed beyond early stages and its neuroprotective effects in human iPSC-derived cholinergic neurons.
Collapse
Affiliation(s)
- Selena Gonzalez
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Tyne L M McHugh
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Tao Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Wassim Syriani
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Stephen M Massa
- Department of Neurology, Laboratory for Computational Neurochemistry and Drug Discovery, Veterans Affairs Health Care System and Department of Neurology, University of California-San Francisco, San Francisco, CA 94121, United States of America
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Danielle A Simmons
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States of America.
| |
Collapse
|
24
|
Chen CD, Joseph-Mathurin N, Sinha N, Zhou A, Li Y, Friedrichsen K, McCullough A, Franklin EE, Hornbeck R, Gordon B, Sharma V, Cruchaga C, Goate A, Karch C, McDade E, Xiong C, Bateman RJ, Ghetti B, Ringman JM, Chhatwal J, Masters CL, McLean C, Lashley T, Su Y, Koeppe R, Jack C, Klunk WE, Morris JC, Perrin RJ, Cairns NJ, Benzinger TLS. Comparing amyloid-β plaque burden with antemortem PiB PET in autosomal dominant and late-onset Alzheimer disease. Acta Neuropathol 2021; 142:689-706. [PMID: 34319442 PMCID: PMC8815340 DOI: 10.1007/s00401-021-02342-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/31/2022]
Abstract
Pittsburgh compound B (PiB) radiotracer for positron emission tomography (PET) imaging can bind to different types of amyloid-β plaques and blood vessels (cerebral amyloid angiopathy). However, the relative contributions of different plaque subtypes (diffuse versus cored/compact) to in vivo PiB PET signal on a region-by-region basis are incompletely understood. Of particular interest is whether the same staging schemes for summarizing amyloid-β burden are appropriate for both late-onset and autosomal dominant forms of Alzheimer disease (LOAD and ADAD). Here, we compared antemortem PiB PET with follow-up postmortem estimation of amyloid-β burden using stereologic methods to estimate the relative area fraction of diffuse and cored/compact amyloid-β plaques across 16 brain regions in 15 individuals with ADAD and 14 individuals with LOAD. In ADAD, we found that PiB PET correlated with diffuse plaques in the frontal, parietal, temporal, and striatal regions commonly used to summarize amyloid-β burden in PiB PET, and correlated with both diffuse and cored/compact plaques in the occipital lobe and parahippocampal gyrus. In LOAD, we found that PiB PET correlated with both diffuse and cored/compact plaques in the anterior cingulate, frontal lobe (middle frontal gyrus), and parietal lobe, and showed additional correlations with diffuse plaque in the amygdala and occipital lobe, and with cored/compact plaque in the temporal lobe. Thus, commonly used PiB PET summary regions predominantly reflect diffuse plaque burden in ADAD and a mixture of diffuse and cored/compact plaque burden in LOAD. In direct comparisons of ADAD and LOAD, postmortem stereology identified much greater mean amyloid-β plaque burdens in ADAD versus LOAD across almost all brain regions studied. However, standard PiB PET did not recapitulate these stereologic findings, likely due to non-trivial amyloid-β plaque burdens in ADAD within the cerebellum and brainstem-commonly used reference regions in PiB PET. Our findings suggest that PiB PET summary regions correlate with amyloid-β plaque burden in both ADAD and LOAD; however, they might not be reliable in direct comparisons of regional amyloid-β plaque burden between the two forms of AD.
Collapse
Affiliation(s)
- Charles D Chen
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Nelly Joseph-Mathurin
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Namita Sinha
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pathology, University of Manitoba, Shared Health, Winnipeg, MB, Canada
| | - Aihong Zhou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yan Li
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Karl Friedrichsen
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Austin McCullough
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Erin E Franklin
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - Russ Hornbeck
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Brian Gordon
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Vijay Sharma
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Alison Goate
- Department of Genetics and Genomic Sciences, Ichan School of Medicine at Mount Sinai, New York, NY, USA
| | - Celeste Karch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Eric McDade
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Chengjie Xiong
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Randall J Bateman
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - John M Ringman
- Department of Neurology, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Jasmeer Chhatwal
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Catriona McLean
- Department of Anatomic Pathology, Alfred Hospital, Melbourne, VIC, Australia
| | - Tammaryn Lashley
- UCL Queen Square Institute of Neurology, University College London, London, UK
- Queen Square Brain Bank for Neurological Disorders, University College London, London, UK
| | - Yi Su
- Banner Alzheimer's Institute, Banner Health, Phoenix, AZ, USA
- Arizona Alzheimer's Consortium, Banner Health, Phoenix, AZ, USA
| | - Robert Koeppe
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Clifford Jack
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - William E Klunk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - John C Morris
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Richard J Perrin
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Nigel J Cairns
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - Tammie L S Benzinger
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
25
|
Hampel H, Hardy J, Blennow K, Chen C, Perry G, Kim SH, Villemagne VL, Aisen P, Vendruscolo M, Iwatsubo T, Masters CL, Cho M, Lannfelt L, Cummings JL, Vergallo A. The Amyloid-β Pathway in Alzheimer's Disease. Mol Psychiatry 2021; 26:5481-5503. [PMID: 34456336 PMCID: PMC8758495 DOI: 10.1038/s41380-021-01249-0] [Citation(s) in RCA: 843] [Impact Index Per Article: 210.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023]
Abstract
Breakthroughs in molecular medicine have positioned the amyloid-β (Aβ) pathway at the center of Alzheimer's disease (AD) pathophysiology. While the detailed molecular mechanisms of the pathway and the spatial-temporal dynamics leading to synaptic failure, neurodegeneration, and clinical onset are still under intense investigation, the established biochemical alterations of the Aβ cycle remain the core biological hallmark of AD and are promising targets for the development of disease-modifying therapies. Here, we systematically review and update the vast state-of-the-art literature of Aβ science with evidence from basic research studies to human genetic and multi-modal biomarker investigations, which supports a crucial role of Aβ pathway dyshomeostasis in AD pathophysiological dynamics. We discuss the evidence highlighting a differentiated interaction of distinct Aβ species with other AD-related biological mechanisms, such as tau-mediated, neuroimmune and inflammatory changes, as well as a neurochemical imbalance. Through the lens of the latest development of multimodal in vivo biomarkers of AD, this cross-disciplinary review examines the compelling hypothesis- and data-driven rationale for Aβ-targeting therapeutic strategies in development for the early treatment of AD.
Collapse
Affiliation(s)
- Harald Hampel
- Eisai Inc., Neurology Business Group, Woodcliff Lake, NJ, USA.
| | - John Hardy
- UK Dementia Research Institute at UCL and Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Christopher Chen
- Memory Aging and Cognition Centre, Departments of Pharmacology and Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - George Perry
- Department of Biology and Neurosciences Institute, University of Texas at San Antonio (UTSA), San Antonio, TX, USA
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea; Cell Therapy Center, Hanyang University Hospital, Seoul, Republic of Korea
| | - Victor L Villemagne
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Paul Aisen
- USC Alzheimer's Therapeutic Research Institute, San Diego, CA, USA
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Colin L Masters
- Laureate Professor of Dementia Research, Florey Institute and The University of Melbourne, Parkville, VIC, Australia
| | - Min Cho
- Eisai Inc., Neurology Business Group, Woodcliff Lake, NJ, USA
| | - Lars Lannfelt
- Uppsala University, Department of of Public Health/Geriatrics, Uppsala, Sweden
- BioArctic AB, Stockholm, Sweden
| | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA
| | - Andrea Vergallo
- Eisai Inc., Neurology Business Group, Woodcliff Lake, NJ, USA.
| |
Collapse
|
26
|
Jani V, Sonavane U, Joshi R. Destabilization potential of beta sheet breaker peptides on Abeta fibril structure: an insight from molecular dynamics simulation study. RSC Adv 2021; 11:23557-23573. [PMID: 35479797 PMCID: PMC9036544 DOI: 10.1039/d1ra03609b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/29/2021] [Indexed: 02/02/2023] Open
Abstract
Alzheimer's disease is characterized by amyloid-β aggregation. Currently, all the approved medications are to treat the symptoms but there is no clinically approved treatment for the cure or to prevent the progression of Alzheimer's disease (AD). Earlier reports suggest the use of small molecules and peptides to target and destabilize the amyloid fibril. The use of Beta Sheet Breaker (BSB) peptides seems to be a promising and attractive therapeutic approach as it can strongly bind and destabilize the preformed amyloid fibril. There are experimental studies describing the destabilization role of various BSB peptides, but the exact mechanism remains elusive. In the current work, an attempt is made to study the destabilization mechanism of different BSB peptides on preformed amyloid protofibril using molecular docking and simulations. Molecular docking of eight different BSB peptides of varying length (5-mer to 10-mer) on the Abeta protofibril was done. Docking was followed by multiple sets of molecular simulations for the Abeta protofibril–BSB peptide complex for each of the top ranked poses of the eight BSB peptides. As a control, multiple sets of simulations for the Abeta protofibril (APO) were also carried out. An increase in the RMSD, decrease in the number of interchain hydrogen bonds, destabilization of important salt bridge interactions (D23–K28), and destabilization of interchain hydrophobic interactions suggested the destabilization of Abeta protofibril by BSB peptides. The MM-GBSA free energy of binding for each of the BSB peptides was calculated to measure the binding affinity of BSB peptides to Abeta protofibril. Further residue wise contribution of free energy of binding was also calculated. The study showed that 7-mer peptides tend to bind strongly to Abeta protofibril as compared to other BSB peptides. The KKLVFFA peptide showed better destabilization potential as compared to the other BSB peptides. The details about the destabilization mechanism of BSB peptides will help in the design of other peptides for the therapeutic intervention for AD. Destabilzation of Abeta protofibril by Beta Sheet Breaker (BSB) peptides.![]()
Collapse
Affiliation(s)
- Vinod Jani
- Centre for Development of Advanced Computing (C-DAC) Panchavati, Pashan Pune India
| | - Uddhavesh Sonavane
- Centre for Development of Advanced Computing (C-DAC) Panchavati, Pashan Pune India
| | - Rajendra Joshi
- Centre for Development of Advanced Computing (C-DAC) Panchavati, Pashan Pune India
| |
Collapse
|
27
|
Sanati M, Aminyavari S, Khodagholi F, Hajipour MJ, Sadeghi P, Noruzi M, Moshtagh A, Behmadi H, Sharifzadeh M. PEGylated superparamagnetic iron oxide nanoparticles (SPIONs) ameliorate learning and memory deficit in a rat model of Alzheimer's disease: Potential participation of STIMs. Neurotoxicology 2021; 85:145-159. [PMID: 34058247 DOI: 10.1016/j.neuro.2021.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
The amyloid-beta (Aβ) fibrillation process seems to execute a principal role in the neuropathology of Alzheimer's disease (AD). Accordingly, novel therapeutic plans have concentrated on the inhibition or degradation of Aβ oligomers and fibrils. Biocompatible nanoparticles (NPs), e.g., gold and iron oxide NPs, take a unique capacity in redirecting Aβ fibrillation kinetics; nevertheless, their impacts on AD-related memory impairment have not been adequately evaluated in vivo. Here, we examined the effect of commercial PEGylated superparamagnetic iron oxide nanoparticles (SPIONs) on the learning and memory of an AD-animal model. The outcomes demonstrated the dose-dependent effect of SPIONs on Aβ fibrillation and learning and memory processes. In vitro and in vivo findings revealed that Low doses of SPIONs inhibited Aβ aggregation and ameliorated learning and memory deficit in the AD model, respectively. Enhanced level of hippocampal proteins, including brain-derived neurotrophic factor, BDNF, phosphorylated-cAMP response element-binding protein, p-CREB, and stromal interaction molecules, e.g., STIM1 and STIM2, were also observed. However, at high doses, SPIONs did not improve the detrimental impacts of Aβ fibrillation on spatial memory and hippocampal proteins expression. Overall, we revealed the potential capacity of SPIONs on retrieval of behavioral and molecular manifestations of AD in vivo, which needs further investigations to determine the mechanistic effect of SPIONs in the AD conundrum.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Hajipour
- The Persian Gulf Biomedical Sciences Research Institute, Persian Gulf Marine Biotechnology Research Center, Bushehr University of Medical Sciences, Bushehr, 47263, Iran; Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Payam Sadeghi
- Department of Plastic Surgery, Cleveland Clinic, OH, USA
| | - Marzieh Noruzi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Aynaz Moshtagh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Homayoon Behmadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1416753955, Iran.
| |
Collapse
|
28
|
Sciaccaluga M, Megaro A, Bellomo G, Ruffolo G, Romoli M, Palma E, Costa C. An Unbalanced Synaptic Transmission: Cause or Consequence of the Amyloid Oligomers Neurotoxicity? Int J Mol Sci 2021; 22:ijms22115991. [PMID: 34206089 PMCID: PMC8199544 DOI: 10.3390/ijms22115991] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/18/2022] Open
Abstract
Amyloid-β (Aβ) 1-40 and 1-42 peptides are key mediators of synaptic and cognitive dysfunction in Alzheimer's disease (AD). Whereas in AD, Aβ is found to act as a pro-epileptogenic factor even before plaque formation, amyloid pathology has been detected among patients with epilepsy with increased risk of developing AD. Among Aβ aggregated species, soluble oligomers are suggested to be responsible for most of Aβ's toxic effects. Aβ oligomers exert extracellular and intracellular toxicity through different mechanisms, including interaction with membrane receptors and the formation of ion-permeable channels in cellular membranes. These damages, linked to an unbalance between excitatory and inhibitory neurotransmission, often result in neuronal hyperexcitability and neural circuit dysfunction, which in turn increase Aβ deposition and facilitate neurodegeneration, resulting in an Aβ-driven vicious loop. In this review, we summarize the most representative literature on the effects that oligomeric Aβ induces on synaptic dysfunction and network disorganization.
Collapse
Affiliation(s)
- Miriam Sciaccaluga
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (A.M.); (G.B.)
- Correspondence: (M.S.); (C.C.); Tel.: +39-0755858180 (M.S.); +39-0755784233 (C.C.)
| | - Alfredo Megaro
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (A.M.); (G.B.)
| | - Giovanni Bellomo
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (A.M.); (G.B.)
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, Istituto Pasteur—Fondazione Cenci Bolognetti, University of Rome Sapienza, 00185 Rome, Italy; (G.R.); (E.P.)
- IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Michele Romoli
- Neurology Unit, Rimini “Infermi” Hospital—AUSL Romagna, 47923 Rimini, Italy;
| | - Eleonora Palma
- Department of Physiology and Pharmacology, Istituto Pasteur—Fondazione Cenci Bolognetti, University of Rome Sapienza, 00185 Rome, Italy; (G.R.); (E.P.)
| | - Cinzia Costa
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (A.M.); (G.B.)
- Correspondence: (M.S.); (C.C.); Tel.: +39-0755858180 (M.S.); +39-0755784233 (C.C.)
| |
Collapse
|
29
|
Mold MJ, O’Farrell A, Morris B, Exley C. Aluminum and Tau in Neurofibrillary Tangles in Familial Alzheimer's Disease. J Alzheimers Dis Rep 2021; 5:283-294. [PMID: 34113785 PMCID: PMC8150251 DOI: 10.3233/adr-210011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Familial Alzheimer's disease (fAD) is driven by genetic predispositions affecting the expression and metabolism of the amyloid-β protein precursor. Aluminum is a non-essential yet biologically-reactive metal implicated in the etiology of AD. Recent research has identified aluminum intricately and unequivocally associated with amyloid-β in senile plaques and, more tentatively, co-deposited with neuropil-like threads in the brains of a Colombian cohort of donors with fAD. OBJECTIVE Herein, we have assessed the co-localization of aluminum to immunolabelled phosphorylated tau to probe the potential preferential binding of aluminum to senile plaques or neurofibrillary tangles in the same Colombian kindred. METHODS Herein, we have performed phosphorylated tau-specific immunolabelling followed by aluminum-specific fluorescence microscopy of the identical brain tissue sections via a sequential labelling method. RESULTS Aluminum was co-localized with immunoreactive phosphorylated tau in the brains of donors with fAD. While aluminum was predominantly co-located to neurofibrillary tangles in the temporal cortex, aluminum was more frequently co-deposited with cortical senile plaques. CONCLUSION These data suggest that the co-deposition of aluminum with amyloid-β precedes that with neurofibrillary tangles. Extracellularly deposited amyloid-β may also be more immediately available to bind aluminum versus intracellular aggregates of tau. Therapeutic approaches to reduce tau have demonstrated the amelioration of its synergistic interactions with amyloid-β, ultimately reducing tau pathology and reducing neuronal loss. These data support the intricate associations of aluminum in the neuropathology of fAD, of which its subsequent reduction may further therapeutic benefits observed in ongoing clinical trials in vivo.
Collapse
Affiliation(s)
- Matthew John Mold
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire, UK
| | - Adam O’Farrell
- School of Life Sciences, Huxley Building, Keele University, Keele, Staffordshire, UK
| | - Benjamin Morris
- School of Life Sciences, Huxley Building, Keele University, Keele, Staffordshire, UK
| | - Christopher Exley
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire, UK
| |
Collapse
|
30
|
Wegmann S, DeVos SL, Zeitler B, Marlen K, Bennett RE, Perez-Rando M, MacKenzie D, Yu Q, Commins C, Bannon RN, Corjuc BT, Chase A, Diez L, Nguyen HOB, Hinkley S, Zhang L, Goodwin A, Ledeboer A, Lam S, Ankoudinova I, Tran H, Scarlott N, Amora R, Surosky R, Miller JC, Robbins AB, Rebar EJ, Urnov FD, Holmes MC, Pooler AM, Riley B, Zhang HS, Hyman BT. Persistent repression of tau in the brain using engineered zinc finger protein transcription factors. SCIENCE ADVANCES 2021; 7:7/12/eabe1611. [PMID: 33741591 PMCID: PMC7978433 DOI: 10.1126/sciadv.abe1611] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/05/2021] [Indexed: 05/12/2023]
Abstract
Neuronal tau reduction confers resilience against β-amyloid and tau-related neurotoxicity in vitro and in vivo. Here, we introduce a novel translational approach to lower expression of the tau gene MAPT at the transcriptional level using gene-silencing zinc finger protein transcription factors (ZFP-TFs). Following a single administration of adeno-associated virus (AAV), either locally into the hippocampus or intravenously to enable whole-brain transduction, we selectively reduced tau messenger RNA and protein by 50 to 80% out to 11 months, the longest time point studied. Sustained tau lowering was achieved without detectable off-target effects, overt histopathological changes, or molecular alterations. Tau reduction with AAV ZFP-TFs was able to rescue neuronal damage around amyloid plaques in a mouse model of Alzheimer's disease (APP/PS1 line). The highly specific, durable, and controlled knockdown of endogenous tau makes AAV-delivered ZFP-TFs a promising approach for the treatment of tau-related human brain diseases.
Collapse
Affiliation(s)
- Susanne Wegmann
- Massachusetts General Hospital, Massachusetts Institute of Neurodegenerative Disease, Charlestown, MA 02129, USA.
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Sarah L DeVos
- Massachusetts General Hospital, Massachusetts Institute of Neurodegenerative Disease, Charlestown, MA 02129, USA
| | | | | | - Rachel E Bennett
- Massachusetts General Hospital, Massachusetts Institute of Neurodegenerative Disease, Charlestown, MA 02129, USA
| | - Marta Perez-Rando
- Massachusetts General Hospital, Massachusetts Institute of Neurodegenerative Disease, Charlestown, MA 02129, USA
| | - Danny MacKenzie
- Massachusetts General Hospital, Massachusetts Institute of Neurodegenerative Disease, Charlestown, MA 02129, USA
| | - Qi Yu
- Sangamo Therapeutics Inc., Richmond, CA 94804, USA
| | - Caitlin Commins
- Massachusetts General Hospital, Massachusetts Institute of Neurodegenerative Disease, Charlestown, MA 02129, USA
| | - Riley N Bannon
- Massachusetts General Hospital, Massachusetts Institute of Neurodegenerative Disease, Charlestown, MA 02129, USA
| | - Bianca T Corjuc
- Massachusetts General Hospital, Massachusetts Institute of Neurodegenerative Disease, Charlestown, MA 02129, USA
| | - Alison Chase
- Massachusetts General Hospital, Massachusetts Institute of Neurodegenerative Disease, Charlestown, MA 02129, USA
| | - Lisa Diez
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | | | | | - Lei Zhang
- Sangamo Therapeutics Inc., Richmond, CA 94804, USA
| | | | | | - Stephen Lam
- Sangamo Therapeutics Inc., Richmond, CA 94804, USA
| | | | - Hung Tran
- Sangamo Therapeutics Inc., Richmond, CA 94804, USA
| | | | | | | | | | - Ashley B Robbins
- Massachusetts General Hospital, Massachusetts Institute of Neurodegenerative Disease, Charlestown, MA 02129, USA
| | | | | | | | - Amy M Pooler
- Sangamo Therapeutics Inc., Richmond, CA 94804, USA
| | - Brigit Riley
- Sangamo Therapeutics Inc., Richmond, CA 94804, USA
| | | | - Bradley T Hyman
- Massachusetts General Hospital, Massachusetts Institute of Neurodegenerative Disease, Charlestown, MA 02129, USA.
| |
Collapse
|
31
|
Steinman J, Sun HS, Feng ZP. Microvascular Alterations in Alzheimer's Disease. Front Cell Neurosci 2021; 14:618986. [PMID: 33536876 PMCID: PMC7849053 DOI: 10.3389/fncel.2020.618986] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/17/2020] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with continual decline in cognition and ability to perform routine functions such as remembering familiar places or understanding speech. For decades, amyloid beta (Aβ) was viewed as the driver of AD, triggering neurodegenerative processes such as inflammation and formation of neurofibrillary tangles (NFTs). This approach has not yielded therapeutics that cure the disease or significant improvements in long-term cognition through removal of plaques and Aβ oligomers. Some researchers propose alternate mechanisms that drive AD or act in conjunction with amyloid to promote neurodegeneration. This review summarizes the status of AD research and examines research directions including and beyond Aβ, such as tau, inflammation, and protein clearance mechanisms. The effect of aging on microvasculature is highlighted, including its contribution to reduced blood flow that impairs cognition. Microvascular alterations observed in AD are outlined, emphasizing imaging studies of capillary malfunction. The review concludes with a discussion of two therapies to protect tissue without directly targeting Aβ for removal: (1) administration of growth factors to promote vascular recovery in AD; (2) inhibiting activity of a calcium-permeable ion channels to reduce microglial activation and restore cerebral vascular function.
Collapse
Affiliation(s)
- Joe Steinman
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Hong-Shuo Sun
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Zhong-Ping Feng
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
32
|
Jankovska N, Olejar T, Kukal J, Matej R. Different Morphology of Neuritic Plaques in the Archicortex of Alzheimer's Disease with Comorbid Synucleinopathy: A Pilot Study. Curr Alzheimer Res 2021; 17:948-958. [PMID: 33327912 DOI: 10.2174/1875692117999201215162043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 10/01/2020] [Accepted: 11/23/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Bulbous neuritic changes in neuritic plaques have already been described, and their possible effect on the clinical course of the disease has been discussed. OBJECTIVE In our study, we focused on the location and density of these structures in patients with only Alzheimer's disease (AD) and patients with AD in comorbidity with synucleinopathies. METHODS Utilizing immunohistochemistry and confocal microscopy, we evaluated differences of neocortical and archicortical neuritic plaques and the frequency of bulbous changes in the archicortex of 14 subjects with Alzheimer's disease (AD), 10 subjects with the Lewy body variant of Alzheimer's disease (AD/DLB), and 4 subjects with Alzheimer's disease with amygdala Lewy bodies (AD/ALB). Also, the progression and density of neuritic changes over the time course of the disease were evaluated. RESULTS We found structural differences in bulbous dystrophic neurites more often in AD/DLB and AD/ALB than in pure AD cases. The bulbous neuritic changes were more prominent in the initial and progressive phases and were reduced in cases with a long clinical course. CONCLUSION Our results indicate that there is a prominent difference in the shape and composition of neocortical and archicortical neuritic plaques and, moreover, that bulbous neuritic changes can be observed at a higher rate in AD/DLB and AD/ALB subjects compared to pure AD subjects. This observation probably reflects that these subacute changes are more easily seen in the faster clinical course of AD patients with comorbidities.
Collapse
Affiliation(s)
- Nikol Jankovska
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Tomas Olejar
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Jaromir Kukal
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Prague, Czech Republic
| | - Radoslav Matej
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| |
Collapse
|
33
|
Jankovska N, Olejar T, Matej R. Extracellular Amyloid Deposits in Alzheimer's and Creutzfeldt-Jakob Disease: Similar Behavior of Different Proteins? Int J Mol Sci 2020; 22:E7. [PMID: 33374972 PMCID: PMC7792617 DOI: 10.3390/ijms22010007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases are characterized by the deposition of specific protein aggregates, both intracellularly and/or extracellularly, depending on the type of disease. The extracellular occurrence of tridimensional structures formed by amyloidogenic proteins defines Alzheimer's disease, in which plaques are composed of amyloid β-protein, while in prionoses, the same term "amyloid" refers to the amyloid prion protein. In this review, we focused on providing a detailed didactic description and differentiation of diffuse, neuritic, and burnt-out plaques found in Alzheimer's disease and kuru-like, florid, multicentric, and neuritic plaques in human transmissible spongiform encephalopathies, followed by a systematic classification of the morphological similarities and differences between the extracellular amyloid deposits in these disorders. Both conditions are accompanied by the extracellular deposits that share certain signs, including neuritic degeneration, suggesting a particular role for amyloid protein toxicity.
Collapse
Affiliation(s)
- Nikol Jankovska
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer Hospital, 100 00 Prague, Czech Republic; (T.O.); (R.M.)
| | - Tomas Olejar
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer Hospital, 100 00 Prague, Czech Republic; (T.O.); (R.M.)
| | - Radoslav Matej
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer Hospital, 100 00 Prague, Czech Republic; (T.O.); (R.M.)
- Department of Pathology, First Faculty of Medicine, Charles University, and General University Hospital, 100 00 Prague, Czech Republic
- Department of Pathology, Third Faculty of Medicine, Charles University, and University Hospital Kralovske Vinohrady, 100 00 Prague, Czech Republic
| |
Collapse
|
34
|
Zhu X, Wu Y, Pan J, Li C, Huang J, Cui E, Chen Z, Zhou W, Chai X, Zhao S. Neuroinflammation Induction and Alteration of Hippocampal Neurogenesis in Mice Following Developmental Exposure to Gossypol. Int J Neuropsychopharmacol 2020; 24:419-433. [PMID: 33283869 PMCID: PMC8130202 DOI: 10.1093/ijnp/pyaa093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/12/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Neurogenesis in the neonatal period involves the proliferation and differentiation of neuronal stem/progenitor cells and the establishment of synaptic connections. This process plays a critical role in determining the normal development and maturation of the brain throughout life. Exposure to certain physical or chemical factors during the perinatal period can lead to many neuropathological defects that cause high cognitive dysfunction and are accompanied by abnormal hippocampal neurogenesis and plasticity. As an endocrine disruptor, gossypol is generally known to exert detrimental effects in animals exposed under experimental conditions. However, it is unclear whether gossypol affects neurogenesis in the hippocampal dentate gyrus during early developmental stages. METHODS Pregnant Institute of Cancer Research mice were treated with gossypol at a daily dose of 0, 20, and 50 mg/kg body weight from embryonic day 6.5 to postnatal day (P) 21. The changes of hippocampal neurogenesis as well as potential mechanisms were investigated by 5-bromo-2-deoxyuridine labeling, behavioral tests, immunofluorescence, quantitative reverse transcription-polymerase chain reaction, and western-blot analyses. RESULTS At P8, maternal gossypol exposure impaired neural stem cell proliferation in the dentate gyrus and decreased the number of newborn cells as a result of reduced proliferation of BLBP+ radial glial cells and Tbr2+ intermediate progenitor cells. At P21, the numbers of NeuN+ neurons and parvalbumin+ γ-aminobutyric acid-ergic interneurons were increased following 50 mg/kg gossypol exposure. In addition, gossypol induced hippocampal neuroinflammation, which may contribute to behavioral abnormalities and cognitive deficits and decrease synaptic plasticity. CONCLUSIONS Our findings suggest that developmental gossypol exposure affects hippocampal neurogenesis by targeting the proliferation and differentiation of neuronal stem/progenitor cells, cognitive functions, and neuroinflammation. The present data provide novel insights into the neurotoxic effects of gossypol on offspring.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China,Correspondence: Xiaoyan Zhu, PhD, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China ()
| | - Yongji Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Jiarong Pan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Cixia Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Jian Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Enhui Cui
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Ziluo Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Wentai Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Xuejun Chai
- College of Basic Medicine, Xi’An Medical University, Xi’An, PR China
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| |
Collapse
|
35
|
Shi YB, Tu T, Jiang J, Zhang QL, Ai JQ, Pan A, Manavis J, Tu E, Yan XX. Early Dendritic Dystrophy in Human Brains With Primary Age-Related Tauopathy. Front Aging Neurosci 2020; 12:596894. [PMID: 33364934 PMCID: PMC7750631 DOI: 10.3389/fnagi.2020.596894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022] Open
Abstract
Dystrophic neurites (DNs) are found in many neurological conditions such as traumatic brain injury and age-related neurodegenerative diseases. In Alzheimer's disease (AD) specifically, senile plaques containing silver-stained DNs were already described in the original literature defining this disease. These DNs could be both axonal and dendritic in origin, while axonal dystrophy relative to plaque formation has been more extensively studied. Here, we demonstrate an early occurrence of dendritic dystrophy in the hippocampal CA1 and subicular regions in human brains (n = 23) with primary age-related tauopathy (PART), with neurofibrillary tangle (NFT) burden ranging from Braak stages I to III in the absence of cerebral β-amyloid (Aβ) deposition. In Bielschowsky's silver stain, segmented fusiform swellings on the apical dendrites of hippocampal and subicular pyramidal neurons were observed in all the cases, primarily over the stratum radiatum (s.r.). The numbers of silver-stained neuronal somata and dendritic swellings counted over CA1 to subiculum were positively correlated among the cases. Swollen dendritic processes were also detected in sections immunolabeled for phosphorylated tau (pTau) and sortilin. In aged and AD brains with both Aβ and pTau pathologies, silver- and immunolabeled dystrophic-like dendritic profiles occurred around and within individual neuritic plaques. These findings implicate that dendritic dystrophy can occur among hippocampal pyramidal neurons in human brains with PART. Therefore, as with the case of axonal dystrophy reported in literature, dendritic dystrophy can develop prior to Alzheimer-type plaque and tangle formation in the human brain.
Collapse
Affiliation(s)
- Yan-Bin Shi
- Medical Doctor Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Tian Tu
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Juan Jiang
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Qi-Lei Zhang
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jia-Qi Ai
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jim Manavis
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Ewen Tu
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
36
|
Abstract
Mounting evidence has identified that impaired amyloid-β (Aβ) clearance might contribute to Alzheimer's disease (AD) pathology. The lysosome-autophagy network plays an important role in protein homeostasis and cell health by removing abnormal protein aggregates via intracellular degradation. Therefore, stimulation of cellular degradative machinery for efficient removal of Aβ has emerged as a growing field in AD research. However, mechanisms controlling such pathways and drugs to promote such mechanisms are poorly understood. Aspirin is a widely used drug throughout the world and recent studies have identified a new function of this drug. At low doses, aspirin stimulates lysosomal biogenesis and autophagy to clear amyloid plaques in an animal model of AD. This review delineates such functions of aspirin and analyzes underlying mechanisms that involve peroxisome proliferator-activated receptor alpha (PPARα)-mediated transcription of transcription factor EB (TFEB), the master regulator of lysosomal biogenesis.
Collapse
Affiliation(s)
- Sujyoti Chandra
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Avik Roy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.,Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Dhruv R Patel
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.,Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| |
Collapse
|
37
|
Ashe KH. The biogenesis and biology of amyloid β oligomers in the brain. Alzheimers Dement 2020; 16:1561-1567. [PMID: 32543725 PMCID: PMC7984270 DOI: 10.1002/alz.12084] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 01/03/2023]
Abstract
The repeated failure of clinical trials targeting the amyloid beta (Aβ) protein has challenged the amyloid cascade hypothesis. In this perspective, I discuss the biogenesis and biology of Aβ, from the arrangement of its atoms to its effects on the human brain. I hope that this analysis will help guide future attempts to home in on this elusive therapeutic target.
Collapse
Affiliation(s)
- Karen Hsiao Ashe
- Department of NeurologyN. Bud Grossman Center for Memory Research and CareUniversity of Minnesota Medical School, and Minneapolis VA Medical Center, Minneapolis, Minnesota
| |
Collapse
|
38
|
Vitamin B3-Based Biologically Active Compounds as Inhibitors of Human Cholinesterases. Int J Mol Sci 2020; 21:ijms21218088. [PMID: 33138280 PMCID: PMC7663184 DOI: 10.3390/ijms21218088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/21/2022] Open
Abstract
We evaluated the potential of nine vitamin B3 scaffold-based derivatives as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors, as a starting point for the development of novel drugs for treating disorders with cholinergic neurotransmission-linked pathology. As the results indicate, all compounds reversibly inhibited both enzymes in the micromolar range pointing to the preference of AChE over BChE for binding the tested derivatives. Molecular docking studies revealed the importance of interactions with AChE active site residues Tyr337 and Tyr124, which dictated most of the observed differences. The most potent inhibitor of both enzymes with Ki of 4 μM for AChE and 8 μM for BChE was the nicotinamide derivative 1-(4′-phenylphenacyl)-3-carbamoylpyridinium bromide. Such a result places it within the range of several currently studied novel cholinesterase inhibitors. Cytotoxicity profiling did not classify this compound as highly toxic, but the induced effects on cells should not be neglected in any future detailed studies and when considering this scaffold for drug development.
Collapse
|
39
|
Kesika P, Suganthy N, Sivamaruthi BS, Chaiyasut C. Role of gut-brain axis, gut microbial composition, and probiotic intervention in Alzheimer's disease. Life Sci 2020; 264:118627. [PMID: 33169684 DOI: 10.1016/j.lfs.2020.118627] [Citation(s) in RCA: 286] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Gut microbiota represents a diverse and dynamic population of microorganisms harboring the gastrointestinal tract, which influences the host health and disease. Gut microbiota communicates with the brain and vice versa through complex bidirectional communication systems - the gut-brain axis, which integrates the peripheral intestinal function with emotional and cognitive brain centers via neuro-immuno-endocrine mediators. Aging alters the gut microbial population, which not only leads to gastrointestinal disturbances but also causes central nervous system (CNS) disorders such as dementia. Alzheimer's disease (AD) is the most common form of dementia affecting the older person, characterized by beta-amyloid (Aβ) plaques and neurofibrillary tangles leading to the cognitive deficit and memory impairment. Multiple experimental and clinical studies revealed the role of gut microbiota in host cognition, and its dysbiosis associated with aging leads to neurodegeneration. Gut microbial dysbiosis leads to the secretion of amyloid and lipopolysaccharides (LPS), which disturbs the gastrointestinal permeability and blood-brain barrier. Thereby modulates the inflammatory signaling pathway promoting neuroinflammation, neuronal injury, and ultimately leading to neuronal death in AD. A recent study revealed the antimicrobial property of Aβ peptide as an innate immune response against pathogenic microbes. Another study showed that bacterial amyloid shares molecular mimicry with Aβ peptide, which elicits misfolding and aggregation of Aβ peptide, it's seeding, and propagation through the gut-brain axis followed by microglial cell activation. As aging together with poor diet and gut-derived inflammatory response due to dysbiosis contributes to the pathogenesis of AD, modification of gut microbial composition by uptake of probiotic-rich food can act as a preventive/therapeutic option for AD. The objective of the present review is to summarize the recent findings on the role of gut microbiota in the development of AD. Understanding the relationship between gut microbiota and CNS will help identify novel therapeutic strategies, especially probiotic-based supplementation, for the treatment of AD.
Collapse
Affiliation(s)
- Periyanaina Kesika
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Natarajan Suganthy
- Department of Nanoscience and Technology, Alagappa University, Karaikudi 630003, India
| | - Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
40
|
Parra-Damas A, Saura CA. Tissue Clearing and Expansion Methods for Imaging Brain Pathology in Neurodegeneration: From Circuits to Synapses and Beyond. Front Neurosci 2020; 14:914. [PMID: 33122983 PMCID: PMC7571329 DOI: 10.3389/fnins.2020.00914] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/07/2020] [Indexed: 11/30/2022] Open
Abstract
Studying the structural alterations occurring during diseases of the nervous system requires imaging heterogeneous cell populations at the circuit, cellular and subcellular levels. Recent advancements in brain tissue clearing and expansion methods allow unprecedented detailed imaging of the nervous system through its entire scale, from circuits to synapses, including neurovascular and brain lymphatics elements. Here, we review the state-of-the-art of brain tissue clearing and expansion methods, mentioning their main advantages and limitations, and suggest their parallel implementation for circuits-to-synapses brain imaging using conventional (diffraction-limited) light microscopy -such as confocal, two-photon and light-sheet microscopy- to interrogate the cellular and molecular basis of neurodegenerative diseases. We discuss recent studies in which clearing and expansion methods have been successfully applied to study neuropathological processes in mouse models and postmortem human brain tissue. Volumetric imaging of cleared intact mouse brains and large human brain samples has allowed unbiased assessment of neuropathological hallmarks. In contrast, nanoscale imaging of expanded cells and brain tissue has been used to study the effect of protein aggregates on specific subcellular structures. Therefore, these approaches can be readily applied to study a wide range of brain processes and pathological mechanisms with cellular and subcellular resolution in a time- and cost-efficient manner. We consider that a broader implementation of these technologies is necessary to reveal the full landscape of cellular and molecular mechanisms underlying neurodegenerative diseases.
Collapse
Affiliation(s)
- Arnaldo Parra-Damas
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos A Saura
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
41
|
Raman S, Brookhouser N, Brafman DA. Using human induced pluripotent stem cells (hiPSCs) to investigate the mechanisms by which Apolipoprotein E (APOE) contributes to Alzheimer's disease (AD) risk. Neurobiol Dis 2020; 138:104788. [PMID: 32032733 PMCID: PMC7098264 DOI: 10.1016/j.nbd.2020.104788] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/14/2020] [Accepted: 01/31/2020] [Indexed: 01/02/2023] Open
Abstract
Although the biochemical and pathological hallmarks of Alzheimer's disease (AD), such as axonal transport defects, synaptic loss, and selective neuronal death, are well characterized, the underlying mechanisms that cause AD are largely unknown, thereby making it difficult to design effective therapeutic interventions. Genome-wide association studies (GWAS) studies have identified several factors associated with increased AD risk. Of these genetic factors, polymorphisms in the Apolipoprotein E (APOE) gene are the strongest and most prevalent. While it has been established that the ApoE protein modulates the formation of amyloid plaques and neurofibrillary tangles, the precise molecular mechanisms by which various ApoE isoforms enhance or mitigate AD onset and progression in aging adults are yet to be elucidated. Advances in cellular reprogramming to generate disease-in-a-dish models now provide a simplified and accessible system that complements animal and primary cell models to study ApoE in the context of AD. In this review, we will describe the use and manipulation of human induced pluripotent stem cells (hiPSCs) in dissecting the interaction between ApoE and AD. First, we will provide an overview of the proposed roles that ApoE plays in modulating pathophysiology of AD. Next, we will summarize the recent studies that have employed hiPSCs to model familial and sporadic AD. Lastly, we will speculate on how current advances in genome editing technologies and organoid culture systems can be used to improve hiPSC-based tools to investigate ApoE-dependent modulation of AD onset and progression.
Collapse
Affiliation(s)
- Sreedevi Raman
- School of Biological and Health Systems Engineering, Arizona State University, United States of America
| | - Nicholas Brookhouser
- School of Biological and Health Systems Engineering, Arizona State University, United States of America; Graduate Program in Clinical Translational Sciences, University of Arizona College of Medicine-Phoenix, United States of America
| | - David A Brafman
- School of Biological and Health Systems Engineering, Arizona State University, United States of America.
| |
Collapse
|
42
|
DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer's disease. Mol Neurodegener 2019; 14:32. [PMID: 31375134 PMCID: PMC6679484 DOI: 10.1186/s13024-019-0333-5] [Citation(s) in RCA: 1768] [Impact Index Per Article: 294.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disease most often associated with memory deficits and cognitive decline, although less common clinical presentations are increasingly recognized. The cardinal pathological features of the disease have been known for more than one hundred years, and today the presence of these amyloid plaques and neurofibrillary tangles are still required for a pathological diagnosis. Alzheimer's disease is the most common cause of dementia globally. There remain no effective treatment options for the great majority of patients, and the primary causes of the disease are unknown except in a small number of familial cases driven by genetic mutations. Confounding efforts to develop effective diagnostic tools and disease-modifying therapies is the realization that Alzheimer's disease is a mixed proteinopathy (amyloid and tau) frequently associated with other age-related processes such as cerebrovascular disease and Lewy body disease. Defining the relationships between and interdependence of various co-pathologies remains an active area of investigation. This review outlines etiologically-linked pathologic features of Alzheimer's disease, as well as those that are inevitable findings of uncertain significance, such as granulovacuolar degeneration and Hirano bodies. Other disease processes that are frequent, but not inevitable, are also discussed, including pathologic processes that can clinically mimic Alzheimer's disease. These include cerebrovascular disease, Lewy body disease, TDP-43 proteinopathies and argyrophilic grain disease. The purpose of this review is to provide an overview of Alzheimer's disease pathology, its defining pathologic substrates and the related pathologies that can affect diagnosis and treatment.
Collapse
Affiliation(s)
- Michael A. DeTure
- Department of Neuroscience, The Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Dennis W. Dickson
- Department of Neuroscience, The Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| |
Collapse
|
43
|
Sleep architecture changes in the APP23 mouse model manifest at onset of cognitive deficits. Behav Brain Res 2019; 373:112089. [PMID: 31325518 DOI: 10.1016/j.bbr.2019.112089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/26/2019] [Accepted: 07/16/2019] [Indexed: 01/16/2023]
Abstract
Alzheimer's disease (AD), which accounts for most of the dementia cases, is, aside from cognitive deterioration, often characterized by the presence of non-cognitive symptoms such as activity and sleep disturbances. AD patients typically experience increased sleep fragmentation, excessive daytime sleepiness and night-time insomnia. Here, we sought to investigate the link between sleep architecture, cognition and amyloid pathology in the APP23 amyloidosis mouse model for AD. By means of polysomnographic recordings the sleep-wake cycle of freely-moving APP23 and wild-type (WT) littermates of 3, 6 and 12 months of age was examined. In addition, ambulatory cage activity was assessed by interruption of infrared beams surrounding the home cage. To assess visuo-spatial learning and memory a hidden-platform Morris-type Water Maze (MWM) experiment was performed. We found that sleep architecture is only slightly altered at early stages of pathology, but significantly deteriorates from 12 months of age, when amyloid plaques become diffusely present. APP23 mice of 12 months old had quantitative reductions of NREM and REM sleep and were more awake during the dark phase compared to WT littermates. These findings were confirmed by increased ambulatory cage activity during that phase of the light-dark cycle. No quantitative differences in sleep parameters were observed during the light phase. However, during this light phase, the sleep pattern of APP23 mice was more fragmented from 6 months of age, the point at which also cognitive abilities started to be affected in the MWM. Sleep time also positively correlated with MWM performance. We also found that spectral components in the EEG started to alter at the age of 6 months. To conclude, our results indicate that sleep architectural changes arise around the time the first amyloid plaques start to form and cognitive deterioration becomes apparent. These changes start subtle, but gradually worsen with age, adequately mimicking the clinical condition.
Collapse
|
44
|
Chandra S, Pahan K. Gemfibrozil, a Lipid-Lowering Drug, Lowers Amyloid Plaque Pathology and Enhances Memory in a Mouse Model of Alzheimer's Disease via Peroxisome Proliferator-Activated Receptor α. J Alzheimers Dis Rep 2019; 3:149-168. [PMID: 31259309 PMCID: PMC6597963 DOI: 10.3233/adr-190104] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Deposition of extracellular senile plaques containing amyloid-β is one of the major neuropathological characteristics of Alzheimer’s disease (AD). Therefore, targeting amyloid-β dyshomeostasis is an important therapeutic strategy for treatment of AD. In this study, we demonstrate that gemfibrozil, an FDA-approved drug for hyperlipidemia, can lower the amyloid plaque burden in the hippocampus and cortex of the 5XFAD model of AD. Additionally, gemfibrozil reduced microgliosis and astrogliosis associated with plaque in these mice. Administration of gemfibrozil also improved spatial learning and memory of the 5XFAD mice. Finally, we delineate that gemfibrozil requires the transcription factor peroxisome proliferator-activated receptor alpha (PPARα) to exhibit its amyloid lowering and memory enhancing effects in 5XFAD mice. These results highlight a new therapeutic property of gemfibrozil and suggest that this drug may be repurposed for treatment of AD.
Collapse
Affiliation(s)
- Sujyoti Chandra
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.,Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| |
Collapse
|
45
|
Khatun S, Morshed BI, Bidelman GM. A Single-Channel EEG-Based Approach to Detect Mild Cognitive Impairment via Speech-Evoked Brain Responses. IEEE Trans Neural Syst Rehabil Eng 2019; 27:1063-1070. [PMID: 30998476 DOI: 10.1109/tnsre.2019.2911970] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mild cognitive impairment (MCI) is the preliminary stage of dementia, which may lead to Alzheimer's disease (AD) in the elderly people. Therefore, early detection of MCI has the potential to minimize the risk of AD by ensuring the proper mental health care before it is too late. In this paper, we demonstrate a single-channel EEG-based MCI detection method, which is cost-effective and portable, and thus suitable for regular home-based patient monitoring. We collected the scalp EEG data from 23 subjects, while they were stimulated with five auditory speech signals. The cognitive state of the subjects was evaluated by the Montreal cognitive assessment test (MoCA). We extracted 590 features from the event-related potential (ERP) of the collected EEG signals, which included time and spectral domain characteristics of the response. The top 25 features, ranked by the random forest method, were used for classification models to identify subjects with MCI. Robustness of our model was tested using leave-one-out cross-validation while training the classifiers. Best results (leave-one-out cross-validation accuracy 87.9%, sensitivity 84.8%, specificity 95%, and F score 85%) were obtained using support vector machine (SVM) method with radial basis kernel (RBF) (sigma = 10/cost = 102 ). Similar performances were also observed with logistic regression (LR), further validating the results. Our results suggest that single-channel EEG could provide a robust biomarker for early detection of MCI.
Collapse
|
46
|
Hudry E, Klickstein J, Cannavo C, Jackson R, Muzikansky A, Gandhi S, Urick D, Sargent T, Wrobleski L, Roe AD, Hou SS, Kuchibhotla KV, Betensky RA, Spires-Jones T, Hyman BT. Opposing Roles of apolipoprotein E in aging and neurodegeneration. Life Sci Alliance 2019; 2:2/1/e201900325. [PMID: 30760557 PMCID: PMC6374993 DOI: 10.26508/lsa.201900325] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 11/24/2022] Open
Abstract
Apolipoprotein E (APOE) effects on brain function remain controversial. Removal of APOE not only impairs cognitive functions but also reduces neuritic amyloid plaques in mouse models of Alzheimer's disease (AD). Can APOE simultaneously protect and impair neural circuits? Here, we dissociated the role of APOE in AD versus aging to determine its effects on neuronal function and synaptic integrity. Using two-photon calcium imaging in awake mice to record visually evoked responses, we found that genetic removal of APOE improved neuronal responses in adult APP/PSEN1 mice (8-10 mo). These animals also exhibited fewer neuritic plaques with less surrounding synapse loss, fewer neuritic dystrophies, and reactive glia. Surprisingly, the lack of APOE in aged mice (18-20 mo), even in the absence of amyloid, disrupted visually evoked responses. These results suggest a dissociation in APOE's role in AD versus aging: APOE may be neurotoxic during early stages of amyloid deposition, although being neuroprotective in latter stages of aging.
Collapse
Affiliation(s)
- Eloise Hudry
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Jacob Klickstein
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Claudia Cannavo
- Centre for Discovery Brain Sciences, UK Dementia Research Institute, and Edinburgh Neuroscience, The University of Edinburgh, Edinburgh, UK
| | - Rosemary Jackson
- Centre for Discovery Brain Sciences, UK Dementia Research Institute, and Edinburgh Neuroscience, The University of Edinburgh, Edinburgh, UK
| | - Alona Muzikansky
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sheetal Gandhi
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - David Urick
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Taylie Sargent
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Lauren Wrobleski
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Allyson D Roe
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Steven S Hou
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | | | - Rebecca A Betensky
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tara Spires-Jones
- Centre for Discovery Brain Sciences, UK Dementia Research Institute, and Edinburgh Neuroscience, The University of Edinburgh, Edinburgh, UK
| | - Bradley T Hyman
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
47
|
Prediger RD, Schamne MG, Sampaio TB, Moreira ELG, Rial D. Animal models of olfactory dysfunction in neurodegenerative diseases. HANDBOOK OF CLINICAL NEUROLOGY 2019; 164:431-452. [PMID: 31604561 DOI: 10.1016/b978-0-444-63855-7.00024-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Olfactory dysfunction seems to occur earlier than classic motor and cognitive symptoms in many neurodegenerative diseases, including Parkinson's disease (PD) and Alzheimer's disease (AD). Thus, the use of the olfactory system as a clinical marker for neurodegenerative diseases is helpful in the characterization of prodromal stages of these diseases, early diagnostic strategies, differential diagnosis, and, potentially, prediction of treatment success. The use of genetic and neurotoxin animal models has contributed to the understanding of the mechanisms underlying olfactory dysfunction in a number of neurodegenerative diseases. In this chapter, we provide an overview of behavioral and neurochemical alterations observed in animal models of different neurodegenerative diseases (such as genetic and Aβ infusion models for AD and neurotoxins and genetic models of PD), in which olfactory dysfunction has been described.
Collapse
Affiliation(s)
- Rui D Prediger
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil.
| | - Marissa G Schamne
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Tuane B Sampaio
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Eduardo L G Moreira
- Department of Physiological Sciences, Center of Biological Sciences¸ Federal University of Santa Catarina, Florianópolis, Brazil
| | - Daniel Rial
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
48
|
Jin M, O'Nuallain B, Hong W, Boyd J, Lagomarsino VN, O'Malley TT, Liu W, Vanderburg CR, Frosch MP, Young-Pearse T, Selkoe DJ, Walsh DM. An in vitro paradigm to assess potential anti-Aβ antibodies for Alzheimer's disease. Nat Commun 2018; 9:2676. [PMID: 29992960 PMCID: PMC6041266 DOI: 10.1038/s41467-018-05068-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 05/24/2018] [Indexed: 01/08/2023] Open
Abstract
Although the amyloid β-protein (Aβ) is believed to play an initiating role in Alzheimer's disease (AD), the molecular characteristics of the key pathogenic Aβ forms are not well understood. As a result, it has proved difficult to identify optimal agents that target disease-relevant forms of Aβ. Here, we combined the use of Aβ-rich aqueous extracts of brain samples from AD patients as a source of human Aβ and live-cell imaging of iPSC-derived human neurons to develop a bioassay capable of quantifying the relative protective effects of multiple anti-Aβ antibodies. We report the characterization of 1C22, an aggregate-preferring murine anti-Aβ antibody, which better protects against forms of Aβ oligomers that are toxic to neurites than do the murine precursors of the clinical immunotherapeutics, bapineuzumab and solanezumab. These results suggest further examination of 1C22 is warranted, and that this bioassay maybe useful as a primary screen to identify yet more potent anti-Aβ therapeutics.
Collapse
Affiliation(s)
- Ming Jin
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Brian O'Nuallain
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Wei Hong
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Justin Boyd
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Valentina N Lagomarsino
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Tiernan T O'Malley
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Wen Liu
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Charles R Vanderburg
- Massachusetts General Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Matthew P Frosch
- Massachusetts General Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Tracy Young-Pearse
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Dennis J Selkoe
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
49
|
Chiang ACA, Fowler SW, Savjani RR, Hilsenbeck SG, Wallace CE, Cirrito JR, Das P, Jankowsky JL. Combination anti-Aβ treatment maximizes cognitive recovery and rebalances mTOR signaling in APP mice. J Exp Med 2018; 215:1349-1364. [PMID: 29626114 PMCID: PMC5940263 DOI: 10.1084/jem.20171484] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/03/2018] [Accepted: 03/07/2018] [Indexed: 01/01/2023] Open
Abstract
Chiang et al. show that combining two complementary approaches for Aβ reduction improved cognitive function in a mouse model of amyloidosis relative to either treatment alone. Efficacy corresponded with restoration of mTOR signaling, TFEB expression, and autophagic flux, suggesting additional targets for future polytherapy in AD. Drug development for Alzheimer’s disease has endeavored to lower amyloid β (Aβ) by either blocking production or promoting clearance. The benefit of combining these approaches has been examined in mouse models and shown to improve pathological measures of disease over single treatment; however, the impact on cellular and cognitive functions affected by Aβ has not been tested. We used a controllable APP transgenic mouse model to test whether combining genetic suppression of Aβ production with passive anti-Aβ immunization improved functional outcomes over either treatment alone. Compared with behavior before treatment, arresting further Aβ production (but not passive immunization) was sufficient to stop further decline in spatial learning, working memory, and associative memory, whereas combination treatment reversed each of these impairments. Cognitive improvement coincided with resolution of neuritic dystrophy, restoration of synaptic density surrounding deposits, and reduction of hyperactive mammalian target of rapamycin signaling. Computational modeling corroborated by in vivo microdialysis pointed to the reduction of soluble/exchangeable Aβ as the primary driver of cognitive recovery.
Collapse
Affiliation(s)
- Angie C A Chiang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | | | | | - Susan G Hilsenbeck
- Department of Medicine, Lester and Sue Smith Breast Center, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Clare E Wallace
- Department of Neurology, Knight Alzheimer's Disease Research Center, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO
| | - John R Cirrito
- Department of Neurology, Knight Alzheimer's Disease Research Center, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO
| | - Pritam Das
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL
| | - Joanna L Jankowsky
- Department of Neuroscience, Baylor College of Medicine, Houston, TX .,Departments of Neurology, Neurosurgery, and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
50
|
Liu P, Reichl JH, Rao ER, McNellis BM, Huang ES, Hemmy LS, Forster CL, Kuskowski MA, Borchelt DR, Vassar R, Ashe KH, Zahs KR. Quantitative Comparison of Dense-Core Amyloid Plaque Accumulation in Amyloid-β Protein Precursor Transgenic Mice. J Alzheimers Dis 2018; 56:743-761. [PMID: 28059792 DOI: 10.3233/jad-161027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
There exist several dozen lines of transgenic mice that express human amyloid-β protein precursor (AβPP) with Alzheimer's disease (AD)-linked mutations. AβPP transgenic mouse lines differ in the types and amounts of Aβ that they generate and in their spatiotemporal patterns of expression of Aβ assemblies, providing a toolkit to study Aβ amyloidosis and the influence of Aβ aggregation on brain function. More complete quantitative descriptions of the types of Aβ assemblies present in transgenic mice and in humans during disease progression should add to our understanding of how Aβ toxicity in mice relates to the pathogenesis of AD. Here, we provide a direct quantitative comparison of amyloid plaque burdens and plaque sizes in four lines of AβPP transgenic mice. We measured the fraction of cortex and hippocampus occupied by dense-core plaques, visualized by staining with Thioflavin S, in mice from young adulthood through advanced age. We found that the plaque burdens among the transgenic lines varied by an order of magnitude: at 15 months of age, the oldest age studied, the median cortical plaque burden in 5XFAD mice was already ∼4.5 times that of 21-month-old Tg2576 mice and ∼15 times that of 21-24-month-old rTg9191 mice. Plaque-size distributions changed across the lifespan in a line- and region-dependent manner. We also compared the dense-core plaque burdens in the mice to those measured in a set of pathologically-confirmed AD cases from the Nun Study. Cortical plaque burdens in Tg2576, APPSwePS1ΔE9, and 5XFAD mice eventually far exceeded those measured in the human cohort.
Collapse
Affiliation(s)
- Peng Liu
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA.,N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, USA
| | - John H Reichl
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA.,N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, USA
| | - Eshaan R Rao
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, USA.,Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Brittany M McNellis
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, USA.,Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Eric S Huang
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA.,N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, USA
| | - Laura S Hemmy
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA.,GRECC, VA Medical Center, Minneapolis, MN, USA
| | - Colleen L Forster
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, USA.,UMN Academic Health Center Biological Materials Procurement Network, University of Minnesota, Minneapolis, MN, USA
| | | | - David R Borchelt
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Robert Vassar
- Department of Cellular and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Karen H Ashe
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA.,N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, USA.,Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.,GRECC, VA Medical Center, Minneapolis, MN, USA
| | - Kathleen R Zahs
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA.,N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|