1
|
Ye X, Zhang P, Tao J, Wang JCK, Mafi A, Grob NM, Quartararo AJ, Baddock HT, Chan LJG, McAllister FE, Foe I, Loas A, Eaton DL, Hao Q, Nile AH, Pentelute BL. Discovery of reactive peptide inhibitors of human papillomavirus oncoprotein E6. Chem Sci 2023; 14:12484-12497. [PMID: 38020382 PMCID: PMC10646941 DOI: 10.1039/d3sc02782a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/22/2023] [Indexed: 12/01/2023] Open
Abstract
Human papillomavirus (HPV) infections account for nearly all cervical cancer cases, which is the fourth most common cancer in women worldwide. High-risk variants, including HPV16, drive tumorigenesis in part by promoting the degradation of the tumor suppressor p53. This degradation is mediated by the HPV early protein 6 (E6), which recruits the E3 ubiquitin ligase E6AP and redirects its activity towards ubiquitinating p53. Targeting the protein interaction interface between HPV E6 and E6AP is a promising modality to mitigate HPV-mediated degradation of p53. In this study, we designed a covalent peptide inhibitor, termed reactide, that mimics the E6AP LXXLL binding motif by selectively targeting cysteine 58 in HPV16 E6 with quantitative conversion. This reactide provides a starting point in the development of covalent peptidomimetic inhibitors for intervention against HPV-driven cancers.
Collapse
Affiliation(s)
- Xiyun Ye
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Peiyuan Zhang
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Jason Tao
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - John C K Wang
- Calico Life Sciences LLC 1170 Veterans Boulevard South San Francisco CA 94080 USA
| | - Amirhossein Mafi
- Calico Life Sciences LLC 1170 Veterans Boulevard South San Francisco CA 94080 USA
| | - Nathalie M Grob
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Anthony J Quartararo
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Hannah T Baddock
- Calico Life Sciences LLC 1170 Veterans Boulevard South San Francisco CA 94080 USA
| | - Leanne J G Chan
- Calico Life Sciences LLC 1170 Veterans Boulevard South San Francisco CA 94080 USA
| | - Fiona E McAllister
- Calico Life Sciences LLC 1170 Veterans Boulevard South San Francisco CA 94080 USA
| | - Ian Foe
- Calico Life Sciences LLC 1170 Veterans Boulevard South San Francisco CA 94080 USA
| | - Andrei Loas
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Dan L Eaton
- Calico Life Sciences LLC 1170 Veterans Boulevard South San Francisco CA 94080 USA
| | - Qi Hao
- Calico Life Sciences LLC 1170 Veterans Boulevard South San Francisco CA 94080 USA
| | - Aaron H Nile
- Calico Life Sciences LLC 1170 Veterans Boulevard South San Francisco CA 94080 USA
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology 500 Main Street Cambridge MA 02142 USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
- Broad Institute of MIT and Harvard 415 Main Street Cambridge MA 02142 USA
| |
Collapse
|
2
|
Fang Y, Xu Y, Liao W, Ji T, Yu L, Li L, Pan M, Yang D. Multiomics analyses and machine learning of nuclear receptor coactivator 6 reveal its essential role in hepatocellular carcinoma. Cancer Sci 2022; 114:75-90. [PMID: 36086920 PMCID: PMC9807532 DOI: 10.1111/cas.15577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 01/07/2023] Open
Abstract
Nuclear receptor coactivator 6 (NCOA6), a coactivator of numerous nuclear receptors and transcription factors, regulates multiple critical cellular functions. Nuclear receptor coactivator 6 is dysregulated in various cancers, including hepatocellular carcinoma (HCC); however, its role remains largely unknown. Here we reported that NCOA6 was highly expressed in HCC compared to the adjacent liver tissue, and NCOA6 overexpression was significantly correlated with poor HCC prognosis. Experiments revealed that the knockdown of NCOA6 damaged the proliferation, migration, and invasion of HCC cells. Multiomics and immune infiltration analyses showed a close relationship between NCOA6 expression, multiple cancer-related malignant pathways, and the immunosuppressive microenvironment. Finally, we established an effective NCOA6-related microRNA (miRNA) signature to distinguish HCC from hepatitis\liver cirrhosis patients. To the best of our knowledge, this study is the first to provide a comprehensive analysis of NCOA6 expression in HCC. We found that NCOA6 plays an important role in HCC development and has a potential mechanism of action. Establishing an NCOA6-related miRNA signature will help develop novel diagnostic strategies for HCC patients.
Collapse
Affiliation(s)
- Yinghao Fang
- Unit of Hepatobiliary Surgery, General Surgery DepartmentNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Yuyan Xu
- General Surgery Center, Department of Hepatobiliary Surgery IIGuangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Wei Liao
- Unit of Hepatobiliary Surgery, General Surgery DepartmentNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Tao Ji
- Unit of Hepatobiliary Surgery, General Surgery DepartmentNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Linyuan Yu
- Unit of Hepatobiliary Surgery, General Surgery DepartmentNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Longhai Li
- Unit of Hepatobiliary Surgery, General Surgery DepartmentNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Mingxin Pan
- General Surgery Center, Department of Hepatobiliary Surgery IIGuangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Dinghua Yang
- Unit of Hepatobiliary Surgery, General Surgery DepartmentNanfang Hospital, Southern Medical UniversityGuangzhouChina
| |
Collapse
|
3
|
Oh GS, Kim SR, Lee ES, Yoon J, Shin MK, Ryu HK, Kim DS, Kim SW. Regulation of Hepatic Gluconeogenesis by Nuclear Receptor Coactivator 6. Mol Cells 2022; 45:180-192. [PMID: 35258009 PMCID: PMC9001147 DOI: 10.14348/molcells.2022.2222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/09/2021] [Accepted: 01/04/2022] [Indexed: 11/27/2022] Open
Abstract
Nuclear receptor coactivator 6 (NCOA6) is a transcriptional coactivator of nuclear receptors and other transcription factors. A general Ncoa6 knockout mouse was previously shown to be embryonic lethal, but we here generated liver-specific Ncoa6 knockout (Ncoa6 LKO) mice to investigate the metabolic function of NCOA6 in the liver. These Ncoa6 LKO mice exhibited similar blood glucose and insulin levels to wild type but showed improvements in glucose tolerance, insulin sensitivity, and pyruvate tolerance. The decrease in glucose production from pyruvate in these LKO mice was consistent with the abrogation of the fasting-stimulated induction of gluconeogenic genes, phosphoenolpyruvate carboxykinase 1 (Pck1) and glucose-6-phosphatase (G6pc). The forskolin-stimulated inductions of Pck1 and G6pc were also dramatically reduced in primary hepatocytes isolated from Ncoa6 LKO mice, whereas the expression levels of other gluconeogenic gene regulators, including cAMP response element binding protein (Creb), forkhead box protein O1 and peroxisome proliferator-activated receptor γ coactivator 1α, were unaltered in the LKO mouse livers. CREB phosphorylation via fasting or forskolin stimulation was normal in the livers and primary hepatocytes of the LKO mice. Notably, it was observed that CREB interacts with NCOA6. The transcriptional activity of CREB was found to be enhanced by NCOA6 in the context of Pck1 and G6pc promoters. NCOA6-dependent augmentation was abolished in cAMP response element (CRE) mutant promoters of the Pck1 and G6pc genes. Our present results suggest that NCOA6 regulates hepatic gluconeogenesis by modulating glucagon/cAMP-dependent gluconeogenic gene transcription through an interaction with CREB.
Collapse
Affiliation(s)
- Gyun-Sik Oh
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Bio-Medical Institute of Technology, University of Ulsan, Seoul 05505, Korea
| | - Si-Ryong Kim
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Eun-Sook Lee
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Bio-Medical Institute of Technology, University of Ulsan, Seoul 05505, Korea
| | - Jin Yoon
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Min-Kyung Shin
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Hyeon Kyoung Ryu
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Dong Seop Kim
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Seung-Whan Kim
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Bio-Medical Institute of Technology, University of Ulsan, Seoul 05505, Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
4
|
Watanabe N, Kawagoe J, Sugiyama A, Takehara I, Ohta T, Nagase S. Nuclear receptor coactivator-6 is essential for the morphological change of human uterine stromal cell decidualization via regulating actin fiber reorganization. Mol Reprod Dev 2022; 89:165-174. [PMID: 35384116 DOI: 10.1002/mrd.23568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 11/09/2022]
Abstract
Nuclear receptor coactivator 6 (Ncoa6), a modulator of several nuclear receptors and transcription factors, is essential for the decidualization of endometrial stromal cells in mice. However, the function of Ncoa6 in the human endometrium remains unclear. We investigated its function in the decidualization of human endometrial stromal cells (HESCs) isolated from resected uteri. Knockdown of Ncoa6 was performed using two independent small interfering RNAs. Decidualization was induced in vitro via medroxyprogesterone and cyclic adenosine monophosphate. We compared decidualized cellular morphology between the Ncoa6 knockdown cells and control cells. Messenger RNA (mRNA) sequencing was performed to determine the Ncoa6 target genes in undecidualized HESCs. We found that the knockdown of Ncoa6 caused the failure of morphological changes in decidualized HESCs compared to that in the control cells. mRNA sequencing revealed that Ncoa6 regulates the expression of genes associated with the regulation of actin fibers. Ncoa6 knockdown cells failed to reorganize actin fibers during the decidualization of HESCs. Ncoa6 was shown to play an essential role in decidualization via the appropriate regulation of actin fiber regulation in HESCs. Herein, our in vitro studies revealed a part of the mechanisms involved in endometrial decidualization. Future research is needed to investigate these mechanisms in women with implantation defects.
Collapse
Affiliation(s)
- Norikazu Watanabe
- Department of Obstetrics and Gynecology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Jun Kawagoe
- Department of Obstetrics and Gynecology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Akiko Sugiyama
- Department of Obstetrics and Gynecology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Isao Takehara
- Department of Obstetrics and Gynecology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Tsuyoshi Ohta
- Department of Obstetrics and Gynecology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Satoru Nagase
- Department of Obstetrics and Gynecology, Yamagata University Faculty of Medicine, Yamagata, Japan
| |
Collapse
|
5
|
Wu L, Zhao KQ, Wang W, Cui LN, Hu LL, Jiang XX, Shuai J, Sun YP. Nuclear receptor coactivator 6 promotes HTR-8/SVneo cell invasion and migration by activating NF-κB-mediated MMP9 transcription. Cell Prolif 2020; 53:e12876. [PMID: 32790097 PMCID: PMC7507070 DOI: 10.1111/cpr.12876] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/19/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
Objectives NCOA6 is a transcription coactivator; its deletion in mice results in growth retardation and lethality between 8.5 and 12.5 dpc with defects in the placenta. However, the transcription factor(s) and the mechanism(s) involved in the function of NCOA6 in placentation have not been elucidated. Here, the roles of NCOA6 in human cytotrophoblast invasion and migration were studied. Materials and Methods Human placenta tissues were collected from normal pregnancies and pregnancies complicated by early‐onset severe preeclampsia (sPE). Immunofluorescence, RT‐qPCR and Western blotting were used to determine NCOA6 expression. Transwell invasion/migration assays were performed to explore whether NCOA6 knockdown affected human placenta‐derived HTR‐8/SVneo cell invasion/migration. Gelatin zymography was performed to examine the change in the gelatinolytic activities of secreted MMP2 and MMP9. Luciferase reporter assays were used to explore whether NCOA6 coactivated NF‐κB‐mediated MMP9 transcription. Results NCOA6 is mainly expressed in the human placental trophoblast column, as well as in the EVTs. HTR‐8/SVneo cell invasion and migration were significantly attenuated after NCOA6 knockdown, and the secretion of MMP9 was decreased due to transcriptional suppression. NCOA6 was further found to coactivate NF‐κB‐mediated MMP9 transcription. Moreover, expression of NCOA6 was impaired in placentas of patients complicated by early‐onset sPE. Conclusions Thus, we demonstrated that NCOA6 is important for cytotrophoblast invasion/migration, at least partially, by activating NF‐κB‐mediated MMP9 transcription; the downregulation of NCOA6 may contribute to the pathogenesis of early‐onset sPE.
Collapse
Affiliation(s)
- Liang Wu
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kun-Qing Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Li-Na Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lin-Li Hu
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiang-Xiang Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jun Shuai
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ying-Pu Sun
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Jang Y, Elsayed Z, Eki R, He S, Du KP, Abbas T, Kai M. Intrinsically disordered protein RBM14 plays a role in generation of RNA:DNA hybrids at double-strand break sites. Proc Natl Acad Sci U S A 2020; 117:5329-5338. [PMID: 32094185 PMCID: PMC7071921 DOI: 10.1073/pnas.1913280117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Accumulating evidence suggests participation of RNA-binding proteins with intrinsically disordered domains (IDPs) in the DNA damage response (DDR). These IDPs form liquid compartments at DNA damage sites in a poly(ADP ribose) (PAR)-dependent manner. However, it is greatly unknown how the IDPs are involved in DDR. We have shown previously that one of the IDPs RBM14 is required for the canonical nonhomologous end joining (cNHEJ). Here we show that RBM14 is recruited to DNA damage sites in a PARP- and RNA polymerase II (RNAPII)-dependent manner. Both KU and RBM14 are required for RNAPII-dependent generation of RNA:DNA hybrids at DNA damage sites. In fact, RBM14 binds to RNA:DNA hybrids. Furthermore, RNA:DNA hybrids and RNAPII are detected at gene-coding as well as at intergenic areas when double-strand breaks (DSBs) are induced. We propose that the cNHEJ pathway utilizes damage-induced transcription and intrinsically disordered protein RBM14 for efficient repair of DSBs.
Collapse
Affiliation(s)
- Yumi Jang
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Zeinab Elsayed
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Rebeka Eki
- Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908
- Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Shuaixin He
- Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Kang-Ping Du
- Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908
- Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Tarek Abbas
- Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908
- Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Mihoko Kai
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231;
| |
Collapse
|
7
|
Tong Z, Liu Y, Yu X, Martinez JD, Xu J. The transcriptional co-activator NCOA6 promotes estrogen-induced GREB1 transcription by recruiting ERα and enhancing enhancer-promoter interactions. J Biol Chem 2019; 294:19667-19682. [PMID: 31744881 DOI: 10.1074/jbc.ra119.010704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/13/2019] [Indexed: 11/06/2022] Open
Abstract
Estrogen and its cognate receptor, ERα, regulate cell proliferation, differentiation, and carcinogenesis in the endometrium by controlling gene transcription. ERα requires co-activators to mediate transcription via mechanisms that are largely uncharacterized. Herein, using growth-regulating estrogen receptor binding 1 (GREB1) as an ERα target gene in Ishikawa cells, we demonstrate that nuclear receptor co-activator 6 (NCOA6) is essential for estradiol (E2)/ERα-activated GREB1 transcription. We found that NCOA6 associates with the GREB1 promoter and enhancer in an E2-independent manner and that NCOA6 knockout reduces chromatin looping, enhancer-promoter interactions, and basal GREB1 expression in the absence of E2. In the presence of E2, ERα bound the GREB1 enhancer and also associated with its promoter, and p300, myeloid/lymphoid or mixed-lineage leukemia protein 4 (MLL4), and RNA polymerase II were recruited to the GREB1 enhancer and promoter. Consequently, the levels of the histone modifications H3K4me1/3, H3K9ac, and H3K27ac were significantly increased; enhancer and promoter regions were transcribed; and GREB1 mRNA was robustly transcribed. NCOA6 knockout reduced ERα recruitment and abolished all of the aforementioned E2-induced events, making GREB1 completely insensitive to E2 induction. We also found that GREB1-deficient Ishikawa cells are much more resistant to chemotherapy and that human endometrial cancers with low GREB1 expression predict poor overall survival. These results indicate that NCOA6 has an essential role in ERα-mediated transcription by increasing enhancer-promoter interactions through chromatin looping and by recruiting RNA polymerase II and the histone-code modifiers p300 and MLL4. Moreover, GREB1 loss may predict chemoresistance of endometrial cancer.
Collapse
Affiliation(s)
- Zhangwei Tong
- Department of Molecular and Cellular Biology and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030
| | - Yonghong Liu
- Department of Molecular and Cellular Biology and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030
| | - Xiaobin Yu
- Department of Molecular and Cellular Biology and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030
| | - Jarrod D Martinez
- Department of Molecular and Cellular Biology and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030
| | - Jianming Xu
- Department of Molecular and Cellular Biology and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
8
|
Fukui Y, Hirota Y, Matsuo M, Gebril M, Akaeda S, Hiraoka T, Osuga Y. Uterine receptivity, embryo attachment, and embryo invasion: Multistep processes in embryo implantation. Reprod Med Biol 2019; 18:234-240. [PMID: 31312101 PMCID: PMC6613011 DOI: 10.1002/rmb2.12280] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/12/2019] [Accepted: 05/13/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Recurrent implantation failure is a critical issue in IVF-ET treatment. Successful embryo implantation needs appropriate molecular and cellular communications between embryo and uterus. Rodent models have been used intensively to understand these mechanisms. METHODS The molecular and cellular mechanisms of embryo implantation were described by referring to the previous literature investigated by us and others. The studies using mouse models of embryo implantation were mainly cited. RESULTS Progesterone (P4) produced by ovarian corpus luteum provides the uterus with receptivity to the embryo, and uterine epithelial growth arrest and stromal proliferation, what we call uterine proliferation-differentiation switching (PDS), take place in the peri-implantation period before embryo attachment. Uterine PDS is a hallmark of uterine receptivity, and several genes such as HAND2 and BMI1, control uterine PDS by modulating P4-PR signaling. As the next implantation process, embryo attachment onto the luminal epithelium occurs. This process is regulated by FOXA2-LIF pathway and planar cell polarity signaling. Then, the luminal epithelium at the embryo attachment site detaches from the stroma, which enables trophoblast invasion. This process of embryo invasion is regulated by HIF2α in the stroma. CONCLUSION These findings indicate that embryo implantation contains multistep processes regulated by specific molecular pathways.
Collapse
Affiliation(s)
- Yamato Fukui
- Department of Obstetrics and Gynecology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Mitsunori Matsuo
- Department of Obstetrics and Gynecology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Mona Gebril
- Department of Obstetrics and Gynecology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Shun Akaeda
- Department of Obstetrics and Gynecology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Takehiro Hiraoka
- Department of Obstetrics and Gynecology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
9
|
Aronheim A. The Ras Recruitment System (RRS) for the Identification and Characterization of Protein-Protein Interactions. Methods Mol Biol 2019; 1794:61-73. [PMID: 29855951 DOI: 10.1007/978-1-4939-7871-7_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Protein-protein interactions are the basis for all biochemical cellular activities. The Ras Recruitment System, RRS, is a method for studying interactions between known proteins as well as identification of novel interactions following a cDNA library screen. The method is based on the recruitment of the Ras protein to the plasma membrane via protein-protein interactions. The interaction between proteins is studied in a temperature-sensitive yeast Saccharomyces cerevisiae mutant strain. This mutant is able to grow under restrictive temperature conditions when the Ras viability pathway becomes activated as a result of a positive protein-protein interaction. The RRS complements the limitations and problems that arise from the yeast two-hybrid system.
Collapse
Affiliation(s)
- Ami Aronheim
- Department of Cell Biology and Cancer Science, The B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
10
|
Heinen CA, Losekoot M, Sun Y, Watson PJ, Fairall L, Joustra SD, Zwaveling-Soonawala N, Oostdijk W, van den Akker ELT, Alders M, Santen GWE, van Rijn RR, Dreschler WA, Surovtseva OV, Biermasz NR, Hennekam RC, Wit JM, Schwabe JWR, Boelen A, Fliers E, van Trotsenburg ASP. Mutations in TBL1X Are Associated With Central Hypothyroidism. J Clin Endocrinol Metab 2016; 101:4564-4573. [PMID: 27603907 PMCID: PMC5155687 DOI: 10.1210/jc.2016-2531] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
CONTEXT Isolated congenital central hypothyroidism (CeH) can result from mutations in TRHR, TSHB, and IGSF1, but its etiology often remains unexplained. We identified a missense mutation in the transducin β-like protein 1, X-linked (TBL1X) gene in three relatives diagnosed with isolated CeH. TBL1X is part of the thyroid hormone receptor-corepressor complex. OBJECTIVE The objectives of the study were the identification of TBL1X mutations in patients with unexplained isolated CeH, Sanger sequencing of relatives of affected individuals, and clinical and biochemical characterization; in vitro investigation of functional consequences of mutations; and mRNA expression in, and immunostaining of, human hypothalami and pituitary glands. DESIGN This was an observational study. SETTING The study was conducted at university medical centers. PATIENTS Nineteen individuals with and seven without a mutation participated in the study. MAIN OUTCOME MEASURES Outcome measures included sequencing results, clinical and biochemical characteristics of mutation carriers, and results of in vitro functional and expression studies. RESULTS Sanger sequencing yielded five additional mutations. All patients (n = 8; six males) were previously diagnosed with CeH (free T4 [FT4] concentration below the reference interval, normal thyrotropin). Eleven relatives (two males) also carried mutations. One female had CeH, whereas 10 others had low-normal FT4 concentrations. As a group, adult mutation carriers had 20%-25% lower FT4 concentrations than controls. Twelve of 19 evaluated carriers had hearing loss. Mutations are located in the highly conserved WD40-repeat domain of the protein, influencing its expression and thermal stability. TBL1X mRNA and protein are expressed in the human hypothalamus and pituitary. CONCLUSIONS TBL1X mutations are associated with CeH and hearing loss. FT4 concentrations in mutation carriers vary from low-normal to values compatible with CeH.
Collapse
Affiliation(s)
- Charlotte A Heinen
- Department of Endocrinology and Metabolism (C.A.H., O.V.S., A.B., E.F.), Clinical Genetics (M.A.), and Clinical and Experimental Audiology (W.A.D.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Paediatric Endocrinology (C.A.H., N.Z.-S., A.S.P.v.T.), Radiology (R.R.v.R.), and Paediatrics (R.C.H.), Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Clinical Genetics (M.L., Y.S., G.W.E.S.), Paediatrics (S.D.J., W.O., J.M.W.), and Endocrinology and Metabolism (S.D.J., N.R.B.), Leiden University Medical Centre, 2300 RC Leiden, The Netherlands; Henry Wellcome Laboratories of Structural Biology (P.J.W., L.F., J.W.R.S.), Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, United Kingdom; and Department of Paediatric Endocrinology (E.L.T.v.d.A.), Erasmus Medical Centre, 3000 CB Rotterdam, The Netherlands
| | - Monique Losekoot
- Department of Endocrinology and Metabolism (C.A.H., O.V.S., A.B., E.F.), Clinical Genetics (M.A.), and Clinical and Experimental Audiology (W.A.D.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Paediatric Endocrinology (C.A.H., N.Z.-S., A.S.P.v.T.), Radiology (R.R.v.R.), and Paediatrics (R.C.H.), Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Clinical Genetics (M.L., Y.S., G.W.E.S.), Paediatrics (S.D.J., W.O., J.M.W.), and Endocrinology and Metabolism (S.D.J., N.R.B.), Leiden University Medical Centre, 2300 RC Leiden, The Netherlands; Henry Wellcome Laboratories of Structural Biology (P.J.W., L.F., J.W.R.S.), Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, United Kingdom; and Department of Paediatric Endocrinology (E.L.T.v.d.A.), Erasmus Medical Centre, 3000 CB Rotterdam, The Netherlands
| | - Yu Sun
- Department of Endocrinology and Metabolism (C.A.H., O.V.S., A.B., E.F.), Clinical Genetics (M.A.), and Clinical and Experimental Audiology (W.A.D.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Paediatric Endocrinology (C.A.H., N.Z.-S., A.S.P.v.T.), Radiology (R.R.v.R.), and Paediatrics (R.C.H.), Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Clinical Genetics (M.L., Y.S., G.W.E.S.), Paediatrics (S.D.J., W.O., J.M.W.), and Endocrinology and Metabolism (S.D.J., N.R.B.), Leiden University Medical Centre, 2300 RC Leiden, The Netherlands; Henry Wellcome Laboratories of Structural Biology (P.J.W., L.F., J.W.R.S.), Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, United Kingdom; and Department of Paediatric Endocrinology (E.L.T.v.d.A.), Erasmus Medical Centre, 3000 CB Rotterdam, The Netherlands
| | - Peter J Watson
- Department of Endocrinology and Metabolism (C.A.H., O.V.S., A.B., E.F.), Clinical Genetics (M.A.), and Clinical and Experimental Audiology (W.A.D.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Paediatric Endocrinology (C.A.H., N.Z.-S., A.S.P.v.T.), Radiology (R.R.v.R.), and Paediatrics (R.C.H.), Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Clinical Genetics (M.L., Y.S., G.W.E.S.), Paediatrics (S.D.J., W.O., J.M.W.), and Endocrinology and Metabolism (S.D.J., N.R.B.), Leiden University Medical Centre, 2300 RC Leiden, The Netherlands; Henry Wellcome Laboratories of Structural Biology (P.J.W., L.F., J.W.R.S.), Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, United Kingdom; and Department of Paediatric Endocrinology (E.L.T.v.d.A.), Erasmus Medical Centre, 3000 CB Rotterdam, The Netherlands
| | - Louise Fairall
- Department of Endocrinology and Metabolism (C.A.H., O.V.S., A.B., E.F.), Clinical Genetics (M.A.), and Clinical and Experimental Audiology (W.A.D.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Paediatric Endocrinology (C.A.H., N.Z.-S., A.S.P.v.T.), Radiology (R.R.v.R.), and Paediatrics (R.C.H.), Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Clinical Genetics (M.L., Y.S., G.W.E.S.), Paediatrics (S.D.J., W.O., J.M.W.), and Endocrinology and Metabolism (S.D.J., N.R.B.), Leiden University Medical Centre, 2300 RC Leiden, The Netherlands; Henry Wellcome Laboratories of Structural Biology (P.J.W., L.F., J.W.R.S.), Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, United Kingdom; and Department of Paediatric Endocrinology (E.L.T.v.d.A.), Erasmus Medical Centre, 3000 CB Rotterdam, The Netherlands
| | - Sjoerd D Joustra
- Department of Endocrinology and Metabolism (C.A.H., O.V.S., A.B., E.F.), Clinical Genetics (M.A.), and Clinical and Experimental Audiology (W.A.D.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Paediatric Endocrinology (C.A.H., N.Z.-S., A.S.P.v.T.), Radiology (R.R.v.R.), and Paediatrics (R.C.H.), Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Clinical Genetics (M.L., Y.S., G.W.E.S.), Paediatrics (S.D.J., W.O., J.M.W.), and Endocrinology and Metabolism (S.D.J., N.R.B.), Leiden University Medical Centre, 2300 RC Leiden, The Netherlands; Henry Wellcome Laboratories of Structural Biology (P.J.W., L.F., J.W.R.S.), Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, United Kingdom; and Department of Paediatric Endocrinology (E.L.T.v.d.A.), Erasmus Medical Centre, 3000 CB Rotterdam, The Netherlands
| | - Nitash Zwaveling-Soonawala
- Department of Endocrinology and Metabolism (C.A.H., O.V.S., A.B., E.F.), Clinical Genetics (M.A.), and Clinical and Experimental Audiology (W.A.D.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Paediatric Endocrinology (C.A.H., N.Z.-S., A.S.P.v.T.), Radiology (R.R.v.R.), and Paediatrics (R.C.H.), Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Clinical Genetics (M.L., Y.S., G.W.E.S.), Paediatrics (S.D.J., W.O., J.M.W.), and Endocrinology and Metabolism (S.D.J., N.R.B.), Leiden University Medical Centre, 2300 RC Leiden, The Netherlands; Henry Wellcome Laboratories of Structural Biology (P.J.W., L.F., J.W.R.S.), Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, United Kingdom; and Department of Paediatric Endocrinology (E.L.T.v.d.A.), Erasmus Medical Centre, 3000 CB Rotterdam, The Netherlands
| | - Wilma Oostdijk
- Department of Endocrinology and Metabolism (C.A.H., O.V.S., A.B., E.F.), Clinical Genetics (M.A.), and Clinical and Experimental Audiology (W.A.D.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Paediatric Endocrinology (C.A.H., N.Z.-S., A.S.P.v.T.), Radiology (R.R.v.R.), and Paediatrics (R.C.H.), Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Clinical Genetics (M.L., Y.S., G.W.E.S.), Paediatrics (S.D.J., W.O., J.M.W.), and Endocrinology and Metabolism (S.D.J., N.R.B.), Leiden University Medical Centre, 2300 RC Leiden, The Netherlands; Henry Wellcome Laboratories of Structural Biology (P.J.W., L.F., J.W.R.S.), Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, United Kingdom; and Department of Paediatric Endocrinology (E.L.T.v.d.A.), Erasmus Medical Centre, 3000 CB Rotterdam, The Netherlands
| | - Erica L T van den Akker
- Department of Endocrinology and Metabolism (C.A.H., O.V.S., A.B., E.F.), Clinical Genetics (M.A.), and Clinical and Experimental Audiology (W.A.D.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Paediatric Endocrinology (C.A.H., N.Z.-S., A.S.P.v.T.), Radiology (R.R.v.R.), and Paediatrics (R.C.H.), Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Clinical Genetics (M.L., Y.S., G.W.E.S.), Paediatrics (S.D.J., W.O., J.M.W.), and Endocrinology and Metabolism (S.D.J., N.R.B.), Leiden University Medical Centre, 2300 RC Leiden, The Netherlands; Henry Wellcome Laboratories of Structural Biology (P.J.W., L.F., J.W.R.S.), Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, United Kingdom; and Department of Paediatric Endocrinology (E.L.T.v.d.A.), Erasmus Medical Centre, 3000 CB Rotterdam, The Netherlands
| | - Mariëlle Alders
- Department of Endocrinology and Metabolism (C.A.H., O.V.S., A.B., E.F.), Clinical Genetics (M.A.), and Clinical and Experimental Audiology (W.A.D.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Paediatric Endocrinology (C.A.H., N.Z.-S., A.S.P.v.T.), Radiology (R.R.v.R.), and Paediatrics (R.C.H.), Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Clinical Genetics (M.L., Y.S., G.W.E.S.), Paediatrics (S.D.J., W.O., J.M.W.), and Endocrinology and Metabolism (S.D.J., N.R.B.), Leiden University Medical Centre, 2300 RC Leiden, The Netherlands; Henry Wellcome Laboratories of Structural Biology (P.J.W., L.F., J.W.R.S.), Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, United Kingdom; and Department of Paediatric Endocrinology (E.L.T.v.d.A.), Erasmus Medical Centre, 3000 CB Rotterdam, The Netherlands
| | - Gijs W E Santen
- Department of Endocrinology and Metabolism (C.A.H., O.V.S., A.B., E.F.), Clinical Genetics (M.A.), and Clinical and Experimental Audiology (W.A.D.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Paediatric Endocrinology (C.A.H., N.Z.-S., A.S.P.v.T.), Radiology (R.R.v.R.), and Paediatrics (R.C.H.), Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Clinical Genetics (M.L., Y.S., G.W.E.S.), Paediatrics (S.D.J., W.O., J.M.W.), and Endocrinology and Metabolism (S.D.J., N.R.B.), Leiden University Medical Centre, 2300 RC Leiden, The Netherlands; Henry Wellcome Laboratories of Structural Biology (P.J.W., L.F., J.W.R.S.), Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, United Kingdom; and Department of Paediatric Endocrinology (E.L.T.v.d.A.), Erasmus Medical Centre, 3000 CB Rotterdam, The Netherlands
| | - Rick R van Rijn
- Department of Endocrinology and Metabolism (C.A.H., O.V.S., A.B., E.F.), Clinical Genetics (M.A.), and Clinical and Experimental Audiology (W.A.D.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Paediatric Endocrinology (C.A.H., N.Z.-S., A.S.P.v.T.), Radiology (R.R.v.R.), and Paediatrics (R.C.H.), Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Clinical Genetics (M.L., Y.S., G.W.E.S.), Paediatrics (S.D.J., W.O., J.M.W.), and Endocrinology and Metabolism (S.D.J., N.R.B.), Leiden University Medical Centre, 2300 RC Leiden, The Netherlands; Henry Wellcome Laboratories of Structural Biology (P.J.W., L.F., J.W.R.S.), Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, United Kingdom; and Department of Paediatric Endocrinology (E.L.T.v.d.A.), Erasmus Medical Centre, 3000 CB Rotterdam, The Netherlands
| | - Wouter A Dreschler
- Department of Endocrinology and Metabolism (C.A.H., O.V.S., A.B., E.F.), Clinical Genetics (M.A.), and Clinical and Experimental Audiology (W.A.D.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Paediatric Endocrinology (C.A.H., N.Z.-S., A.S.P.v.T.), Radiology (R.R.v.R.), and Paediatrics (R.C.H.), Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Clinical Genetics (M.L., Y.S., G.W.E.S.), Paediatrics (S.D.J., W.O., J.M.W.), and Endocrinology and Metabolism (S.D.J., N.R.B.), Leiden University Medical Centre, 2300 RC Leiden, The Netherlands; Henry Wellcome Laboratories of Structural Biology (P.J.W., L.F., J.W.R.S.), Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, United Kingdom; and Department of Paediatric Endocrinology (E.L.T.v.d.A.), Erasmus Medical Centre, 3000 CB Rotterdam, The Netherlands
| | - Olga V Surovtseva
- Department of Endocrinology and Metabolism (C.A.H., O.V.S., A.B., E.F.), Clinical Genetics (M.A.), and Clinical and Experimental Audiology (W.A.D.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Paediatric Endocrinology (C.A.H., N.Z.-S., A.S.P.v.T.), Radiology (R.R.v.R.), and Paediatrics (R.C.H.), Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Clinical Genetics (M.L., Y.S., G.W.E.S.), Paediatrics (S.D.J., W.O., J.M.W.), and Endocrinology and Metabolism (S.D.J., N.R.B.), Leiden University Medical Centre, 2300 RC Leiden, The Netherlands; Henry Wellcome Laboratories of Structural Biology (P.J.W., L.F., J.W.R.S.), Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, United Kingdom; and Department of Paediatric Endocrinology (E.L.T.v.d.A.), Erasmus Medical Centre, 3000 CB Rotterdam, The Netherlands
| | - Nienke R Biermasz
- Department of Endocrinology and Metabolism (C.A.H., O.V.S., A.B., E.F.), Clinical Genetics (M.A.), and Clinical and Experimental Audiology (W.A.D.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Paediatric Endocrinology (C.A.H., N.Z.-S., A.S.P.v.T.), Radiology (R.R.v.R.), and Paediatrics (R.C.H.), Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Clinical Genetics (M.L., Y.S., G.W.E.S.), Paediatrics (S.D.J., W.O., J.M.W.), and Endocrinology and Metabolism (S.D.J., N.R.B.), Leiden University Medical Centre, 2300 RC Leiden, The Netherlands; Henry Wellcome Laboratories of Structural Biology (P.J.W., L.F., J.W.R.S.), Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, United Kingdom; and Department of Paediatric Endocrinology (E.L.T.v.d.A.), Erasmus Medical Centre, 3000 CB Rotterdam, The Netherlands
| | - Raoul C Hennekam
- Department of Endocrinology and Metabolism (C.A.H., O.V.S., A.B., E.F.), Clinical Genetics (M.A.), and Clinical and Experimental Audiology (W.A.D.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Paediatric Endocrinology (C.A.H., N.Z.-S., A.S.P.v.T.), Radiology (R.R.v.R.), and Paediatrics (R.C.H.), Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Clinical Genetics (M.L., Y.S., G.W.E.S.), Paediatrics (S.D.J., W.O., J.M.W.), and Endocrinology and Metabolism (S.D.J., N.R.B.), Leiden University Medical Centre, 2300 RC Leiden, The Netherlands; Henry Wellcome Laboratories of Structural Biology (P.J.W., L.F., J.W.R.S.), Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, United Kingdom; and Department of Paediatric Endocrinology (E.L.T.v.d.A.), Erasmus Medical Centre, 3000 CB Rotterdam, The Netherlands
| | - Jan M Wit
- Department of Endocrinology and Metabolism (C.A.H., O.V.S., A.B., E.F.), Clinical Genetics (M.A.), and Clinical and Experimental Audiology (W.A.D.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Paediatric Endocrinology (C.A.H., N.Z.-S., A.S.P.v.T.), Radiology (R.R.v.R.), and Paediatrics (R.C.H.), Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Clinical Genetics (M.L., Y.S., G.W.E.S.), Paediatrics (S.D.J., W.O., J.M.W.), and Endocrinology and Metabolism (S.D.J., N.R.B.), Leiden University Medical Centre, 2300 RC Leiden, The Netherlands; Henry Wellcome Laboratories of Structural Biology (P.J.W., L.F., J.W.R.S.), Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, United Kingdom; and Department of Paediatric Endocrinology (E.L.T.v.d.A.), Erasmus Medical Centre, 3000 CB Rotterdam, The Netherlands
| | - John W R Schwabe
- Department of Endocrinology and Metabolism (C.A.H., O.V.S., A.B., E.F.), Clinical Genetics (M.A.), and Clinical and Experimental Audiology (W.A.D.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Paediatric Endocrinology (C.A.H., N.Z.-S., A.S.P.v.T.), Radiology (R.R.v.R.), and Paediatrics (R.C.H.), Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Clinical Genetics (M.L., Y.S., G.W.E.S.), Paediatrics (S.D.J., W.O., J.M.W.), and Endocrinology and Metabolism (S.D.J., N.R.B.), Leiden University Medical Centre, 2300 RC Leiden, The Netherlands; Henry Wellcome Laboratories of Structural Biology (P.J.W., L.F., J.W.R.S.), Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, United Kingdom; and Department of Paediatric Endocrinology (E.L.T.v.d.A.), Erasmus Medical Centre, 3000 CB Rotterdam, The Netherlands
| | - Anita Boelen
- Department of Endocrinology and Metabolism (C.A.H., O.V.S., A.B., E.F.), Clinical Genetics (M.A.), and Clinical and Experimental Audiology (W.A.D.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Paediatric Endocrinology (C.A.H., N.Z.-S., A.S.P.v.T.), Radiology (R.R.v.R.), and Paediatrics (R.C.H.), Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Clinical Genetics (M.L., Y.S., G.W.E.S.), Paediatrics (S.D.J., W.O., J.M.W.), and Endocrinology and Metabolism (S.D.J., N.R.B.), Leiden University Medical Centre, 2300 RC Leiden, The Netherlands; Henry Wellcome Laboratories of Structural Biology (P.J.W., L.F., J.W.R.S.), Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, United Kingdom; and Department of Paediatric Endocrinology (E.L.T.v.d.A.), Erasmus Medical Centre, 3000 CB Rotterdam, The Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism (C.A.H., O.V.S., A.B., E.F.), Clinical Genetics (M.A.), and Clinical and Experimental Audiology (W.A.D.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Paediatric Endocrinology (C.A.H., N.Z.-S., A.S.P.v.T.), Radiology (R.R.v.R.), and Paediatrics (R.C.H.), Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Clinical Genetics (M.L., Y.S., G.W.E.S.), Paediatrics (S.D.J., W.O., J.M.W.), and Endocrinology and Metabolism (S.D.J., N.R.B.), Leiden University Medical Centre, 2300 RC Leiden, The Netherlands; Henry Wellcome Laboratories of Structural Biology (P.J.W., L.F., J.W.R.S.), Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, United Kingdom; and Department of Paediatric Endocrinology (E.L.T.v.d.A.), Erasmus Medical Centre, 3000 CB Rotterdam, The Netherlands
| | - A S Paul van Trotsenburg
- Department of Endocrinology and Metabolism (C.A.H., O.V.S., A.B., E.F.), Clinical Genetics (M.A.), and Clinical and Experimental Audiology (W.A.D.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Paediatric Endocrinology (C.A.H., N.Z.-S., A.S.P.v.T.), Radiology (R.R.v.R.), and Paediatrics (R.C.H.), Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Departments of Clinical Genetics (M.L., Y.S., G.W.E.S.), Paediatrics (S.D.J., W.O., J.M.W.), and Endocrinology and Metabolism (S.D.J., N.R.B.), Leiden University Medical Centre, 2300 RC Leiden, The Netherlands; Henry Wellcome Laboratories of Structural Biology (P.J.W., L.F., J.W.R.S.), Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, United Kingdom; and Department of Paediatric Endocrinology (E.L.T.v.d.A.), Erasmus Medical Centre, 3000 CB Rotterdam, The Netherlands
| |
Collapse
|
11
|
Wang FF, Yang W, Shi YH, Le GW. Probing the structural requirements for thyroid hormone receptor inhibitory activity of sulfonylnitrophenylthiazoles (SNPTs) using 2D-QSAR and 3D-QSAR approaches. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1751-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Galli GG, Carrara M, Yuan WC, Valdes-Quezada C, Gurung B, Pepe-Mooney B, Zhang T, Geeven G, Gray NS, de Laat W, Calogero RA, Camargo FD. YAP Drives Growth by Controlling Transcriptional Pause Release from Dynamic Enhancers. Mol Cell 2015; 60:328-37. [PMID: 26439301 PMCID: PMC4624327 DOI: 10.1016/j.molcel.2015.09.001] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/23/2015] [Accepted: 08/28/2015] [Indexed: 12/31/2022]
Abstract
The Hippo/YAP signaling pathway is a crucial regulator of tissue growth, stem cell activity, and tumorigenesis. However, the mechanism by which YAP controls transcription remains to be fully elucidated. Here, we utilize global chromatin occupancy analyses to demonstrate that robust YAP binding is restricted to a relatively small number of distal regulatory elements in the genome. YAP occupancy defines a subset of enhancers and superenhancers with the highest transcriptional outputs. YAP modulates transcription from these elements predominantly by regulating promoter-proximal polymerase II (Pol II) pause release. Mechanistically, YAP interacts and recruits the Mediator complex to enhancers, allowing the recruitment of the CDK9 elongating kinase. Genetic and chemical perturbation experiments demonstrate the requirement for Mediator and CDK9 in YAP-driven phenotypes of overgrowth and tumorigenesis. Our results here uncover the molecular mechanisms employed by YAP to exert its growth and oncogenic functions, and suggest strategies for intervention.
Collapse
Affiliation(s)
- Giorgio G Galli
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Matteo Carrara
- Molecular Biotechnology Center, Department of Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Wei-Chien Yuan
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Christian Valdes-Quezada
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Basanta Gurung
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Brian Pepe-Mooney
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Tinghu Zhang
- Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Geert Geeven
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | | | - Wouter de Laat
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Raffaele A Calogero
- Molecular Biotechnology Center, Department of Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Fernando D Camargo
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Hahm JB, Schroeder AC, Privalsky ML. The two major isoforms of thyroid hormone receptor, TRα1 and TRβ1, preferentially partner with distinct panels of auxiliary proteins. Mol Cell Endocrinol 2014; 383:80-95. [PMID: 24325866 DOI: 10.1016/j.mce.2013.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/18/2013] [Accepted: 11/21/2013] [Indexed: 10/25/2022]
Abstract
Thyroid hormone receptors (TRs) are expressed primarily as two major isoforms, TRα1 and TRβ1, which are expressed at different times in development and at different tissue abundances in the adult. The transcription properties and biological properties of TRα1 and TRβ1 can differ. We report here that although overlapping, TRα1 and TRβ1 recruit distinct panels of partner proteins that may account for their divergent biological functions, and which appear to explain their distinct target gene regulatory properties.
Collapse
Affiliation(s)
- Johnnie B Hahm
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, Davis, CA 95616, USA.
| | - Amy C Schroeder
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, Davis, CA 95616, USA.
| | - Martin L Privalsky
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, Davis, CA 95616, USA.
| |
Collapse
|
14
|
Kawagoe J, Li Q, Mussi P, Liao L, Lydon JP, DeMayo FJ, Xu J. Nuclear receptor coactivator-6 attenuates uterine estrogen sensitivity to permit embryo implantation. Dev Cell 2013; 23:858-65. [PMID: 23079602 DOI: 10.1016/j.devcel.2012.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 07/26/2012] [Accepted: 09/06/2012] [Indexed: 11/25/2022]
Abstract
Uterine receptivity to embryo implantation is coordinately regulated by 17β-estradiol (E(2)) and progesterone (P(4)). Although increased E(2) sensitivity causes infertility, the mechanisms underlying the modulation of E(2) sensitivity are unknown. We show that nuclear receptor coactivator-6 (NCOA6), a reported coactivator for estrogen receptor α (ERα), actually attenuates E(2) sensitivity to determine uterine receptivity to embryo implantation under normal physiological conditions. Specifically, conditional knockout of Ncoa6 in uterine epithelial and stromal cells does not decrease, but rather markedly increases E(2) sensitivity, which disrupts embryo implantation and inhibits P(4)-regulated genes and decidual response. NCOA6 enhances ERα ubiquitination and accelerates its degradation, while loss of NCOA6 causes ERα accumulation in stromal cells during the preimplantation period. During the same period, NCOA6 deficiency also caused a failure in downregulation of steroid receptor coactivator-3 (SRC-3), a potent ERα coactivator. Therefore, NCOA6 controls E(2) sensitivity and uterine receptivity by regulating multiple E(2)-signaling components.
Collapse
Affiliation(s)
- Jun Kawagoe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Davis MB, SanGil I, Berry G, Olayokun R, Neves LH. Identification of common and cell type specific LXXLL motif EcR cofactors using a bioinformatics refined candidate RNAi screen in Drosophila melanogaster cell lines. BMC DEVELOPMENTAL BIOLOGY 2011; 11:66. [PMID: 22050674 PMCID: PMC3227616 DOI: 10.1186/1471-213x-11-66] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 11/03/2011] [Indexed: 12/31/2022]
Abstract
Background During Drosophila development, titers of the steroid ecdysone trigger and maintain temporal and tissue specific biological transitions. Decades of evidence reveal that the ecdysone response is both unique to specific tissues and distinct among developmental timepoints. To achieve this diversity in response, the several isoforms of the Ecdysone Receptor, which transduce the hormone signal to the genome level, are believed to interact with tissue specific cofactors. To date, little is known about the identity of these cofactor interactions; therefore, we conducted a bioinformatics informed, RNAi luciferase reporter screen against a subset of putative candidate cofactors identified through an in silico proteome screen. Candidates were chosen based on criteria obtained from bioinformatic consensus of known nuclear receptor cofactors and homologs, including amino acid sequence motif content and context. Results The bioinformatics pre-screen of the Drosophila melanogaster proteome was successful in identifying an enriched putative candidate gene cohort. Over 80% of the genes tested yielded a positive hit in our reporter screen. We have identified both cell type specific and common cofactors which appear to be necessary for proper ecdysone induced gene regulation. We have determined that certain cofactors act as co-repressors to reduce target gene expression, while others act as co-activators to increase target gene expression. Interestingly, we find that a few of the cofactors shared among cell types have a reversible roles to function as co-repressors in certain cell types while in other cell types they serve as co-activators. Lastly, these proteins are highly conserved, with higher order organism homologs also harboring the LXXLL steroid receptor interaction domains, suggesting a highly conserved mode of steroid cell target specificity. Conclusions In conclusion, we submit these cofactors as novel components of the ecdysone signaling pathway in order to further elucidate the dynamics of steroid specificity.
Collapse
Affiliation(s)
- Melissa B Davis
- Department of Genetics, University of Georgia, Athens, GA 30502, USA.
| | | | | | | | | |
Collapse
|
16
|
Li Q, Xu J. Identification and characterization of the alternatively spliced nuclear receptor coactivator-6 isoforms. Int J Biol Sci 2011; 7:505-16. [PMID: 21552418 PMCID: PMC3088874 DOI: 10.7150/ijbs.7.505] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 04/04/2011] [Indexed: 11/30/2022] Open
Abstract
The nuclear receptor coactivator-6 (NCOA6, AIB3, PRIP, ASC-2, TRBP, RAP250 or NRC) is a co-activator for nuclear hormone receptors and certain other transcription factors. NCOA6 plays an important role in embryonic development, adipocyte differentiation, metabolism and breast carcinogenesis. The human and mouse NCOA6 genes had 15 and 14 previously identified exons, respectively. This study further identified an alternatively spliced exon 11b (E11b) in human or E10b in mouse, which codes a short polypeptide and a Stop codon, resulting in splicing variants lacking the last four exon-coded polypeptide. Analyses of mouse testis NCOA6 mRNAs identified four alternatively spliced variants, NCOA6-α (without E10b), -β (without E10a and E10b), -γ (with E10a and E10b) and -δ (without E10a but with E10b). These isoforms were detected in multiple mouse tissues and in MDA-MB-435 human cells. NCOA6-α and -β are mainly located in the nucleus; NCOA6-γ is located in both cytoplasm and nucleus; and NCOA6-δ is mainly located in mitochondria. The C-terminus coded by the last four exons was responsible for locating NCOA6-α and -β into the nucleus. The human E11a or mouse E10a-coded region is responsible for distributing NCOA6-γ in both cytoplasm and nucleus, while the region coded by E8-E9 in human or E7-E8 in mouse is responsible for directing NCOA6-δ to mitochondria. Our assays also demonstrated that NCOA6-α and -β could significantly enhance estrogen receptor α-mediated transcription, but NCOA6-γ and -δ were unable to do so. These results suggest that the diverse physiological function of NCOA6 may be mediated by multiple isoforms expressed in different tissues and localized in different subcellular compartments.
Collapse
Affiliation(s)
- Qingtian Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
17
|
Majdalawieh A, Ro HS. PPARgamma1 and LXRalpha face a new regulator of macrophage cholesterol homeostasis and inflammatory responsiveness, AEBP1. NUCLEAR RECEPTOR SIGNALING 2010; 8:e004. [PMID: 20419060 PMCID: PMC2858268 DOI: 10.1621/nrs.08004] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 03/09/2010] [Indexed: 12/26/2022]
Abstract
Peroxisome proliferator-activated receptor γ1 (PPARγ1) and liver X receptor α (LXRα) are nuclear receptors that play pivotal roles in macrophage cholesterol homeostasis and inflammation; key biological processes in atherogenesis. The activation of PPARγ1 and LXRα by natural or synthetic ligands results in the transactivation of ABCA1, ABCG1, and ApoE; integral players in cholesterol efflux and reverse cholesterol transport. In this review, we describe the structure, isoforms, expression pattern, and functional specificity of PPARs and LXRs. Control of PPARs and LXRs transcriptional activity by coactivators and corepressors is also highlighted. The specific roles that PPARγ1 and LXRα play in inducing macrophage cholesterol efflux mediators and antagonizing macrophage inflammatory responsiveness are summarized. Finally, this review focuses on the recently reported regulatory functions that adipocyte enhancer-binding protein 1 (AEBP1) exerts on PPARγ1 and LXRα transcriptional activity in the context of macrophage cholesterol homeostasis and inflammation.
Collapse
|
18
|
Roles of histone H3-lysine 4 methyltransferase complexes in NR-mediated gene transcription. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 87:343-82. [PMID: 20374709 DOI: 10.1016/s1877-1173(09)87010-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transcriptional regulation by nuclear hormone receptors (NRs) requires multiple coregulators that modulate chromatin structures by catalyzing a diverse array of posttranslational modifications of histones. Different combinations of these modifications yield dynamic functional outcomes, constituting an epigenetic histone code. This code is inscribed by histone-modifying enzymes and decoded by effector proteins that recognize specific covalent marks. One important modification associated with active chromatin structures is methylation of histone H3-lysine 4 (H3K4). Crucial roles for this modification in NR transactivation have been recently highlighted through our purification and subsequent characterization of a steady-state complex associated with ASC-2, a coactivator of NRs and other transcription factors. This complex, designated ASCOM for ASC-2 complex, contains H3K4-methyltransferase MLL3/HALR or its paralogue MLL4/ALR and represents the first Set1-like H3K4-methyltransferase complex to be reported in vertebrates. This review focuses on recent progress in our understanding of how ASCOM-MLL3 and ASCOM-MLL4 influence NR-mediated gene transcription and of their physiological function.
Collapse
|
19
|
Kim GH, Park K, Yeom SY, Lee KJ, Kim G, Ko J, Rhee DK, Kim YH, Lee HK, Kim HW, Oh GT, Lee KU, Lee JW, Kim SW. Characterization of ASC-2 as an antiatherogenic transcriptional coactivator of liver X receptors in macrophages. Mol Endocrinol 2009; 23:966-74. [PMID: 19342446 DOI: 10.1210/me.2008-0308] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Activating signal cointegrator-2 (ASC-2) functions as a transcriptional coactivator of many nuclear receptors and also plays important roles in the physiology of the liver and pancreas by interacting with liver X receptors (LXRs), which antagonize the development of atherosclerosis. This study was undertaken to establish the specific function of ASC-2 in macrophages and atherogenesis. Intriguingly, ASC-2 was more highly expressed in macrophages than in the liver and pancreas. To inhibit LXR-specific activity of ASC-2, we used DN2, which contains the C-terminal LXXLL motif of ASC-2 and thereby acts as an LXR-specific, dominant-negative mutant of ASC-2. In DN2-overexpressing transgenic macrophages, cellular cholesterol content was higher and cholesterol efflux lower than in control macrophages. DN2 reduced LXR ligand-dependent increases in the levels of ABCA1, ABCG1, and apolipoprotein E (apoE) transcripts as well as the activity of luciferase reporters driven by the LXR response elements (LXREs) of ABCA1, ABCG1, and apoE genes. These inhibitory effects of DN2 were reversed by overexpression of ASC-2. Chromatin immunoprecipitation analysis demonstrated that ASC-2 was recruited to the LXREs of the ABCA1, ABCG1, and apoE genes in a ligand-dependent manner and that DN2 interfered with the recruitment of ASC-2 to these LXREs. Furthermore, low-density lipoprotein receptor (LDLR)-null mice receiving bone marrow transplantation from DN2-transgenic mice showed accelerated atherogenesis when administered a high-fat diet. Taken together, these results indicate that suppression of the LXR-specific activity of ASC-2 results in both defective cholesterol metabolism in macrophages and accelerated atherogenesis, suggesting that ASC-2 is an antiatherogenic coactivator of LXRs in macrophages.
Collapse
Affiliation(s)
- Geun Hyang Kim
- Department of Pharmacology, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhu YT, Hu L, Qi C, Zhu YJ. PRIP promotes tumor formation through enhancing serum-responsive factor-mediated FOS expression. J Biol Chem 2009; 284:14485-92. [PMID: 19329434 DOI: 10.1074/jbc.m900935200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
PRIP (peroxisome proliferator-activator receptor interacting protein) is a nuclear receptor coactivator required for mammary gland development. To understand the function of PRIP in breast tumorigenesis, we established a mammary tumor cell line with the PRIP(Loxp/Loxp) genotype. By knocking out the PRIP gene in the tumor cell line, we demonstrated that PRIP deficiency led to inhibited tumor formation without affecting tumor cell proliferation. The PRIP deficiency was associated with decreased cell invasion and migration capabilities. We found that PRIP deficiency substantially reduced FOS gene expression. A chromatin immunoprecipitation assay revealed that PRIP was recruited to the FOS promoter. In addition, we demonstrated that PRIP also directly up-regulated the FOS gene expression in human breast cancer cells. Promoter analysis showed that PRIP acted through serum-responsive factor to regulate FOS gene expression. Finally, by re-expressing the FOS gene, we confirmed that the inhibited tumor formation of PRIP-deficient tumor cells was due to reduced expression of the FOS gene.
Collapse
Affiliation(s)
- Yiwei Tony Zhu
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
21
|
Lee S, Kim DH, Goo YH, Lee YC, Lee SK, Lee JW. Crucial roles for interactions between MLL3/4 and INI1 in nuclear receptor transactivation. Mol Endocrinol 2009; 23:610-9. [PMID: 19221051 DOI: 10.1210/me.2008-0455] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nuclear receptor (NR) transactivation involves multiple coactivators, and the molecular basis for how these are functionally integrated needs to be determined to fully understand the NR action. Activating signal cointegrator-2 (ASC-2), a transcriptional coactivator of many NRs and transcription factors, forms a steady-state complex, ASCOM (for ASC-2 complex), which contains histone H3-lysine-4 (H3K4) methyltransferase MLL3 or its paralog MLL4. Here, we show that ASCOM requires a functional cross talk with the ATPase-dependent chromatin remodeling complex Swi/Snf for efficient NR transactivation. Our results reveal that ASCOM and Swi/Snf are tightly colocalized in the nucleus and that ASCOM and Swi/Snf promote each other's binding to NR target genes. We further show that the C-terminal SET domain of MLL3 and MLL4 directly interacts with INI1, an integral subunit of Swi/Snf. Our mutational analysis demonstrates that this interaction underlies the mutual facilitation of ASCOM and Swi/Snf recruitment to NR target genes. Importantly, this study uncovers a specific protein-protein interaction as a novel venue to couple two distinct enzymatic coactivator complexes during NR transactivation.
Collapse
Affiliation(s)
- Seunghee Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
22
|
Oyama S, Yamakawa H, Sasagawa N, Hosoi Y, Futai E, Ishiura S. Dysbindin-1, a schizophrenia-related protein, functionally interacts with the DNA- dependent protein kinase complex in an isoform-dependent manner. PLoS One 2009; 4:e4199. [PMID: 19142223 PMCID: PMC2614472 DOI: 10.1371/journal.pone.0004199] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 12/03/2008] [Indexed: 11/18/2022] Open
Abstract
DTNBP1 has been recognized as a schizophrenia susceptible gene, and its protein product, dysbindin-1, is down-regulated in the brains of schizophrenic patients. However, little is known about the physiological role of dysbindin-1 in the central nervous system. We hypothesized that disruption of dysbindin-1 with unidentified proteins could contribute to pathogenesis and the symptoms of schizophrenia. GST pull-down from human neuroblastoma lysates showed an association of dysbindin-1 with the DNA-dependent protein kinase (DNA-PK) complex. The DNA-PK complex interacts only with splice isoforms A and B, but not with C. We found that isoforms A and B localized in nucleus, where the kinase complex exist, whereas the isoform C was found exclusively in cytosol. Furthermore, results of phosphorylation assay suggest that the DNA-PK complex phosphorylated dysbindin-1 isoforms A and B in cells. These observations suggest that DNA-PK regulates the dysbindin-1 isoforms A and B by phosphorylation in nucleus. Isoform C does not contain exons from 1 to 6. Since schizophrenia-related single nucleotide polymorphisms (SNPs) occur in these introns between exon 1 and exon 6, we suggest that these SNPs might affect splicing of DTNBP1, which leads to impairment of the functional interaction between dysbindin-1 and DNA-PK in schizophrenic patients.
Collapse
Affiliation(s)
- Satoko Oyama
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Hidekuni Yamakawa
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Noboru Sasagawa
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Yoshio Hosoi
- Department of Radiological Technology, School of Health Sciences, Niigata University, Niigata-shi, Niigata, Japan
| | - Eugene Futai
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Shoichi Ishiura
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
23
|
Garapaty S, Xu CF, Trojer P, Mahajan MA, Neubert TA, Samuels HH. Identification and characterization of a novel nuclear protein complex involved in nuclear hormone receptor-mediated gene regulation. J Biol Chem 2009; 284:7542-52. [PMID: 19131338 DOI: 10.1074/jbc.m805872200] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NRC/NCoA6 plays an important role in mediating the effects of ligand-bound nuclear hormone receptors as well as other transcription factors. NRC interacting factor 1 (NIF-1) was cloned as a novel factor that interacts in vivo with NRC. Although NIF-1 does not directly interact with nuclear hormone receptors, it enhances activation by nuclear hormone receptors presumably through its interaction with NRC. To further understand the cellular and biological function of NIF-1, we identified NIF-1-associated proteins by in-solution proteolysis followed by mass spectrometry. The identified components revealed factors involved in histone methylation and cell cycle control and include Ash2L, RbBP5, WDR5, HCF-1, DBC-1, and EMSY. Although the NIF-1 complex contains Ash2L, RbBP5, and WDR5, suggesting that the complex might methylate histone H3-Lys-4, we found that the complex contains a H3 methyltransferase activity that modifies a residue other than H3-Lys-4. The identified components form at least two distinctly sized NIF-1 complexes. DBC-1 and EMSY were identified as integral components of an NIF-1 complex of approximately 1.5 MDa and were found to play an important role in the regulation of nuclear receptor-mediated transcription. Stimulation of the Sox9 and HoxA1 genes by retinoic acid receptor-alpha was found to require both DBC-1 and EMSY in addition to NIF-1 for maximal transcriptional activation. Interestingly, NRC was not identified as a component of the NIF-1 complex, suggesting that NIF-1 and NRC do not exist as stable in vitro purified complexes, although the separate NIF-1 and NRC complexes appear to functionally interact in the cell.
Collapse
Affiliation(s)
- Shivani Garapaty
- Department of Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | |
Collapse
|
24
|
Targeted inactivation of MLL3 histone H3-Lys-4 methyltransferase activity in the mouse reveals vital roles for MLL3 in adipogenesis. Proc Natl Acad Sci U S A 2008; 105:19229-34. [PMID: 19047629 DOI: 10.1073/pnas.0810100105] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activating signal cointegrator-2 (ASC-2), a transcriptional coactivator of multiple transcription factors that include the adipogenic factors peroxisome proliferator-activated receptor gamma (PPARgamma) and C/EBPalpha, is associated with histone H3-Lys-4-methyltransferase (H3K4MT) MLL3 or its paralogue MLL4 in a complex named ASCOM (ASC-2 complex). Indeed, ASC-2-null mouse embryonic fibroblasts (MEFs) have been demonstrated to be refractory to PPARgamma-stimulated adipogenesis and fail to express the PPARgamma-responsive adipogenic marker gene aP2. However, the specific roles for MLL3 and MLL4 in adipogenesis remain undefined. Here, we provide evidence that MLL3 plays crucial roles in adipogenesis. First, MLL3(Delta/Delta) mice expressing a H3K4MT-inactivated mutant of MLL3 have significantly less white fat. Second, MLL3(Delta/Delta) MEFs are mildly but consistently less responsive to inducers of adipogenesis than WT MEFs. Third, ASC-2, MLL3, and MLL4 are recruited to the PPARgamma-activated aP2 gene during adipogenesis, and PPARgamma is shown to interact directly with the purified ASCOM. Moreover, although H3K4 methylation of aP2 is readily induced in WT MEFs, it is not induced in ASC-2(-/-) MEFs and only partially induced in MLL3(Delta/Delta) MEFs. These results suggest that ASCOM-MLL3 and ASCOM-MLL4 likely function as crucial but redundant H3K4MT complexes for PPARgamma-dependent adipogenesis.
Collapse
|
25
|
Burghardt H, López-Bermejo A, Baumgartner B, Ibáñez L, Vendrell J, Ricart W, Palacín M, Fernández-Real JM, Zorzano A. The nuclear receptor coactivator AIB3 is a modulator of HOMA beta-cell function in nondiabetic children. Clin Endocrinol (Oxf) 2008; 69:730-6. [PMID: 18462265 DOI: 10.1111/j.1365-2265.2008.03232.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The amplified in breast cancer-3 protein (AIB3) is a nuclear coactivator involved in proliferation, apoptosis and development. AIB3 loss of function causes deficient insulin secretion in mice, indicating that AIB3 participates in beta-cell regulation. Our objective was to evaluate genetic variants located on AIB3 associated with beta-cell function in children and to analyse the effect of AIB3 overexpression on gene expression in insulin 1 (INS-1) beta-pancreatic cells. DESIGN Polymorphisms from AIB3 were genotyped in 148 children with normal or low birthweights for gestational age. The effect of AIB3 overexpression on gene expression was analysed by real-time polymerase chain reaction (PCR) in INS-1 cells. RESULTS AIB3 variants were associated with homeostasis model assessment of beta-cell function (HOMA-beta-cell) in children with normal or low birthweights for gestational age, but not with HOMA of insulin resistance (HOMA-IR), or with birthweight. AIB3 overexpression increased the expression of genes involved in signalling, such as IRS-1, IRS-2, IGF-II receptor or Foxo1, or of genes that control insulin secretion, such as Cplx2, Glut2 or Kv3.1 in INS-1 cells. CONCLUSIONS Our results suggest that AIB3 contributes to the maintenance of beta-cell function in nondiabetic children and regulates gene expression in INS-1 cells.
Collapse
Affiliation(s)
- Hans Burghardt
- Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ye J. Regulation of PPARgamma function by TNF-alpha. Biochem Biophys Res Commun 2008; 374:405-8. [PMID: 18655773 DOI: 10.1016/j.bbrc.2008.07.068] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 07/14/2008] [Indexed: 12/22/2022]
Abstract
The nuclear receptor PPARgamma is a lipid sensor that regulates lipid metabolism through gene transcription. Inhibition of PPARgamma activity by TNF-alpha is involved in pathogenesis of insulin resistance, atherosclerosis, inflammation, and cancer cachexia. PPARgamma activity is regulated by TNF-alpha at pre-translational and post-translational levels. Activation of serine kinases including IKK, ERK, JNK, and p38 may be involved in the TNF-regulation of PPARgamma. Of the four kinases, IKK is a dominant signaling molecule in the TNF-regulation of PPARgamma. IKK acts through at least two mechanisms: inhibition of PPARgamma expression and activation of PPARgamma corepressor. In this review article, literature is reviewed with a focus on the mechanisms of PPARgamma inhibition by TNF-alpha.
Collapse
Affiliation(s)
- Jianping Ye
- Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| |
Collapse
|
27
|
Clerc I, Polakowski N, André-Arpin C, Cook P, Barbeau B, Mesnard JM, Lemasson I. An interaction between the human T cell leukemia virus type 1 basic leucine zipper factor (HBZ) and the KIX domain of p300/CBP contributes to the down-regulation of tax-dependent viral transcription by HBZ. J Biol Chem 2008; 283:23903-13. [PMID: 18599479 DOI: 10.1074/jbc.m803116200] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Activation of human T cell leukemia virus type 1 (HTLV-1) transcription is established through the formation of protein complexes on the viral promoter that are essentially composed of the cellular basic leucine zipper (bZIP) transcription factor cAMP-response element-binding protein (CREB (or certain other members of the ATF/CREB family), the HTLV-1-encoded transactivator Tax, and the pleiotropic cellular coactivators p300/CBP. HTLV-1 bZIP factor (HBZ) is a protein encoded by HTLV-1 that contains a bZIP domain and functions to repress HTLV-1 transcription. HBZ has been shown to repress viral transcription by dimerizing with CREB, which occurs specifically through the bZIP domain in each protein, and preventing CREB from binding to the DNA. However, we previously found that HBZ causes only partial removal of CREB from a chromosomally integrated viral promoter, and more importantly, an HBZ mutant lacking the COOH-terminal bZIP domain retains the ability to repress viral transcription. These results suggest that an additional mechanism contributes to HBZ-mediated repression of HTLV-1 transcription. In this study, we show that HBZ binds directly to the p300 and CBP coactivators. Two LXXLL-like motifs located within the NH(2)-terminal region of HBZ are important for this interaction and specifically mediate binding to the KIX domain of p300/CBP. We provide evidence that this interaction interferes with the ability of Tax to bind p300/CBP and thereby inhibits the association of the coactivators with the viral promoter. Our findings demonstrate that HBZ utilizes a bipartite mechanism to repress viral transcription.
Collapse
Affiliation(s)
- Isabelle Clerc
- Université Montpellier 1 and CNRS, UM5236, Centre d'Etudes d'Agents Pathogènes et Biotechnologies pour la Santé (CPBS), Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Antonson P, Jakobsson T, Almlöf T, Guldevall K, Steffensen KR, Gustafsson JÅ. RAP250 Is a Coactivator in the Transforming Growth Factor β Signaling Pathway That Interacts with Smad2 and Smad3. J Biol Chem 2008; 283:8995-9001. [DOI: 10.1074/jbc.m707203200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
29
|
Garapaty S, Mahajan MA, Samuels HH. Components of the CCR4-NOT Complex Function as Nuclear Hormone Receptor Coactivators via Association with the NRC-interacting Factor NIF-1. J Biol Chem 2008; 283:6806-16. [DOI: 10.1074/jbc.m706986200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
30
|
OHNO M. Functional Analysis of Nuclear Receptor FXR Controlling Metabolism of Cholesterol. YAKUGAKU ZASSHI 2008; 128:343-55. [DOI: 10.1248/yakushi.128.343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Masae OHNO
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
31
|
Mahajan MA, Samuels HH. Nuclear receptor coactivator/coregulator NCoA6(NRC) is a pleiotropic coregulator involved in transcription, cell survival, growth and development. NUCLEAR RECEPTOR SIGNALING 2008; 6:e002. [PMID: 18301782 PMCID: PMC2254332 DOI: 10.1621/nrs.06002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 12/11/2007] [Indexed: 11/20/2022]
Abstract
NCoA6 (also referred to as NRC, ASC-2, TRBP, PRIP and RAP250) was originally isolated as a ligand-dependent nuclear receptor interacting protein. However, NCoA6 is a multifunctional coregulator or coactivator necessary for transcriptional activation of a wide spectrum of target genes. The NCoA6 gene is amplified and overexpressed in breast, colon and lung cancers. NCoA6 is a 250 kDa protein which harbors a potent N-terminal activation domain, AD1; and a second, centrally-located activation domain, AD2, which is necessary for nuclear receptor signaling. The intrinsic activation potential of NCoA6 is regulated by its C-terminal STL regulatory domain. Near AD2 is an LxxLL-1 motif which interacts with a wide spectrum of ligand-bound NRs with high-affinity. A second LxxLL motif (LxxLL-2) located towards the C-terminal region is more restricted in its NR specificity. The potential role of NCoA6 as a co-integrator is suggested by its ability to enhance transcriptional activation of a wide variety of transcription factors and from its in vivo association with a number of known cofactors including CBP/p300. NCoA6 has been shown to associate with at least three distinct coactivator complexes containing Set methyltransferases as core polypeptides. The composition of these complexes suggests that NCoA6 may play a fundamental role in transcriptional activation by modulating chromatin structure through histone methylation. Knockout studies in mice suggest that NCoA6 is an essential coactivator. NCoA6-/- embryos die between 8.5-12.5 dpc from general growth retardation coupled with developmental defects in the heart, liver, brain and placenta. NCoA6-/- MEFs grow at a reduced rate compared to WT MEFs and spontaneously undergo apoptosis, indicating the importance of NCoA6 as a prosurvival and anti-apoptotic gene. Studies with NCoA6+/- and conditional knockout mice suggest that NCoA6 is a pleiotropic coregulator involved in growth, development, wound healing and maintenance of energy homeostasis.
Collapse
Affiliation(s)
- Muktar A Mahajan
- Department of Pharmacology, NYU School of Medicine, New York, New York, USA.
| | | |
Collapse
|
32
|
Vargas D, Celis L, Romero C, Lizcano F. Modulation of thyroid hormone receptor transactivation by the early region 1A (E1A)-like inhibitor of differentiation 1 (EID1). Genet Mol Biol 2008. [DOI: 10.1590/s1415-47572008000300003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
33
|
Li Q, Chu MJ, Xu J. Tissue- and nuclear receptor-specific function of the C-terminal LXXLL motif of coactivator NCoA6/AIB3 in mice. Mol Cell Biol 2007; 27:8073-86. [PMID: 17908797 PMCID: PMC2169164 DOI: 10.1128/mcb.00451-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 05/11/2007] [Accepted: 09/17/2007] [Indexed: 02/04/2023] Open
Abstract
Although the LXXLL motif of nuclear receptor (NR) coactivators is essential for interaction with NRs, its role has not been assessed in unbiased animal models. The nuclear receptor coactivator 6 (NCoA6; also AIB3, PRIP, ASC-2, TRBP, RAP250, or NRC) is a coactivator containing an N-terminal LXXLL-1 (L1) and a C-terminal L2. L1 interacts with many NRs, while L2 interacts with the liver X receptor alpha (LXRalpha) and the estrogen receptor alpha (ERalpha). We generated mice in which L2 was mutated into AXXAL (L2m) to disrupt its interaction with LXRalpha and ERalpha. NCoA6(L2m/L2m) mice exhibited normal reproduction, mammary gland morphogenesis, and ERalpha target gene expression. In contrast, when treated with an LXRalpha agonist, lipogenesis and the LXRalpha target gene expression were significantly reduced in NCoA6(L2m/L2m) mice. The induction of Cyp7A1 expression by a high-cholesterol diet was impaired in NCoA6(L2m/L2m) mice, which reduced bile acid synthesis in the liver and excretion in the feces and resulted in cholesterol accumulation in the liver and blood. These results demonstrate that L2 plays a tissue- and NR-specific role: it is required for NCoA6 to mediate LXRalpha-regulated lipogenesis and cholesterol/bile acid homeostasis in the liver but not required for ERalpha function in the mammary gland.
Collapse
Affiliation(s)
- Qingtian Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | |
Collapse
|
34
|
Alternative mechanisms by which mediator subunit MED1/TRAP220 regulates peroxisome proliferator-activated receptor gamma-stimulated adipogenesis and target gene expression. Mol Cell Biol 2007; 28:1081-91. [PMID: 18039840 DOI: 10.1128/mcb.00967-07] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mediator is a general coactivator complex connecting transcription activators and RNA polymerase II. Recent work has shown that the nuclear receptor-interacting MED1/TRAP220 subunit of Mediator is required for peroxisome proliferator-activated receptor gamma (PPARgamma)-stimulated adipogenesis of mouse embryonic fibroblasts (MEFs). However, the molecular mechanisms remain undefined. Here, we show an intracellular PPARgamma-Mediator interaction that requires the two LXXLL nuclear receptor recognition motifs on MED1/TRAP220 and, furthermore, we show that the intact LXXLL motifs are essential for optimal PPARgamma function in a reconstituted cell-free transcription system. Surprisingly, a conserved N-terminal region of MED1/TRAP220 that lacks the LXXLL motifs but gets incorporated into Mediator fully supports PPARgamma-stimulated adipogenesis. Moreover, in undifferentiated MEFs, MED1/TRAP220 is dispensable both for PPARgamma-mediated target gene activation and for recruitment of Mediator to a PPAR response element on the aP2 target gene promoter. However, PPARgamma shows significantly reduced transcriptional activity in cells deficient for a subunit (MED24/TRAP100) important for the integrity of the Mediator complex, indicating a general Mediator requirement for PPARgamma function. These results indicate that there is a conditional requirement for MED1/TRAP220 and that a direct interaction between PPARgamma and Mediator through MED1/TRAP220 is not essential either for PPARgamma-stimulated adipogenesis or for PPARgamma target gene expression in cultured fibroblasts. As Mediator is apparently essential for PPARgamma transcriptional activity, our data indicate the presence of alternative mechanisms for Mediator recruitment, possibly through intermediate cofactors or other cofactors that are functionally redundant with MED1/TRAP220.
Collapse
|
35
|
Abstract
Thyroid hormones (THs) have important effects on cellular development, growth, and metabolism. They bind to thyroid hormone receptors (TRs), TRalpha and TRbeta, which belong to the nuclear hormone receptor superfamily. These receptors also bind to enhancer elements in the promoters of target genes, and can regulate both positive and negative transcription. Recent emerging evidence has characterized some of the molecular mechanisms by which THs regulate transcription as co-repressors, and co-activators have been identified and their effects on histone acetylation examined. THs also have rapid effects that do not require transcription. These can occur via TRs or other cellular proteins, and typically occur outside the nucleus. It appears that THs regulate multiple cellular functions using a diverse array of receptors and signaling systems. TR isoform- or pathway-specific drugs might provide the therapeutic benefits of TH action such as decreasing obesity or lowering cholesterol levels without some of the side effects of hyperthyroidism.
Collapse
Affiliation(s)
- Alexis Oetting
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Development, National Institute of Health, Bethesda, MD, USA
| | | |
Collapse
|
36
|
Yang Z, Sui Y, Xiong S, Liour SS, Phillips AC, Ko L. Switched alternative splicing of oncogene CoAA during embryonal carcinoma stem cell differentiation. Nucleic Acids Res 2007; 35:1919-32. [PMID: 17337438 PMCID: PMC1874587 DOI: 10.1093/nar/gkl1092] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 11/20/2006] [Accepted: 11/29/2006] [Indexed: 01/10/2023] Open
Abstract
Alternative splicing produces functionally distinct proteins participating in cellular processes including differentiation and development. CoAA is a coactivator that regulates transcription-coupled splicing and its own pre-mRNA transcript is alternatively spliced. We show here that the CoAA gene is embryonically expressed and alternatively spliced in multiple tissues to three splice variants, CoAA, CoAM and CoAR. During retinoic-acid-induced P19 stem cell differentiation, the expression of CoAA undergoes a rapid switch to its dominant negative splice variant CoAM in the cavity of the embryoid body. CoAM functionally inhibits CoAA, and their switched expression up-regulates differentiation marker Sox6. Using a CoAA minigene cassette, we find that the switched alternative splicing of CoAA and CoAM is regulated by the cis-regulating sequence upstream of the CoAA basal promoter. Consistent to this, we show that p54(nrb) and PSF induce CoAM splice variant through the cis-regulating sequence. We have previously shown that the CoAA gene is amplified in human cancers with a recurrent loss of this cis-regulating sequence. These results together suggest that the upstream regulatory sequence contributes to alternative splicing of the CoAA gene during stem cell differentiation, and its selective loss in human cancers potentially deregulates CoAA alternative splicing and alters stem cell differentiation.
Collapse
Affiliation(s)
- Zheqiong Yang
- Institute of Molecular Medicine and Genetics and Department of Pathology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Yang Sui
- Institute of Molecular Medicine and Genetics and Department of Pathology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Shiqin Xiong
- Institute of Molecular Medicine and Genetics and Department of Pathology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Sean S. Liour
- Institute of Molecular Medicine and Genetics and Department of Pathology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Andrew C. Phillips
- Institute of Molecular Medicine and Genetics and Department of Pathology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Lan Ko
- Institute of Molecular Medicine and Genetics and Department of Pathology, Medical College of Georgia, Augusta, GA 30912, USA
| |
Collapse
|
37
|
Sarkar J, Qi C, Guo D, Ahmed MR, Jia Y, Usuda N, Viswakarma N, Rao MS, Reddy JK. Transcription coactivator PRIP, the peroxisome proliferator-activated receptor (PPAR)-interacting protein, is redundant for the function of nuclear receptors PParalpha and CAR, the constitutive androstane receptor, in mouse liver. Gene Expr 2007; 13:255-69. [PMID: 17605299 PMCID: PMC6032459 DOI: 10.3727/000000006780666948] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Disruption of the genes encoding for the transcription coactivators, peroxisome proliferator-activated receptor (PPAR)-interacting protein (PRIP/ASC-2/RAP250/TRBP/NRC) and PPAR-binding protein (PBP/TRAP220/DRIP205/MED1), results in embryonic lethality by affecting placental and multiorgan development. Targeted deletion of coactivator PBP gene in liver parenchymal cells (PBP(LIV-/-)) results in the near abrogation of the induction of PPARalpha and CAR (constitutive androstane receptor)-regulated genes in liver. Here, we show that targeted deletion of coactivator PRIP gene in liver (PRIP(LIV-/-)) does not affect the induction of PPARalpha-regulated pleiotropic responses, including hepatomegaly, hepatic peroxisome proliferation, and induction of mRNAs of genes involved in fatty acid oxidation system, indicating that PRIP is not essential for PPARalpha-mediated transcriptional activity. We also provide additional data to show that liver-specific deletion of PRIP gene does not interfere with the induction of genes regulated by nuclear receptor CAR. Furthermore, disruption of PRIP gene in liver did not alter zoxazolamine-induced paralysis, and acetaminophen-induced hepatotoxicity. Studies with adenovirally driven EGFP-CAR expression in liver demonstrated that, unlike PBP, the absence of PRIP does not prevent phenobarbital-mediated nuclear translocation/retention of the receptor CAR in liver in vivo and cultured hepatocytes in vitro. These results show that PRIP deficiency in liver does not interfere with the function of nuclear receptors PPARalpha and CAR. The dependence of PPARalpha- and CAR-regulated gene transcription on coactivator PBP but not on PRIP attests to the existence of coactivator selectivity in nuclear receptor function.
Collapse
Affiliation(s)
- Joy Sarkar
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Nagaoka R, Iwasaki T, Rokutanda N, Takeshita A, Koibuchi Y, Horiguchi J, Shimokawa N, Iino Y, Morishita Y, Koibuchi N. Tamoxifen activates CYP3A4 and MDR1 genes through steroid and xenobiotic receptor in breast cancer cells. Endocrine 2006; 30:261-8. [PMID: 17526937 DOI: 10.1007/s12020-006-0003-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 10/31/2006] [Accepted: 11/27/2006] [Indexed: 10/23/2022]
Abstract
Cytochrome P450 monooxygenase 3A4 (CYP3A4) and P-glycoprotein, encoded by multidrug resistance 1 (MDR1) gene, are responsible for the metabolism of endogenous steroids, prescribed drugs, and xenobiotics. Both genes are regulated by steroid and xenobiotic receptor (SXR), a member of nuclear hormone receptors. Various endogenous steroids and drugs function as ligands of SXR. Although CYP3A4, MDR1, and SXR are expressed mainly in the liver and the small intestine, these gene products are also expressed in breast cancer cells. Because tamoxifen (TAM) is known to be metabolized by CYP3A4 and P-glycoprotein, we investigated the effect of TAM on these SXR-targeted genes in breast cancer cells. Transient transfection-based reporter gene assays showed 4-hydroxy TAM activated the SXR-mediated transcription through CYP3A4 and MDR1 promoters in a ligand- and receptor concentration-dependent manner. We confirmed the binding of 4-hydroxy TAM to SXR by ligand binding assay. Moreover, semiquantitative RT-PCR studies revealed that 4-hydroxy TAM activated the expression of CYP3A4 and MDR1 mRNA in MCF-7 cells. These results suggest that TAM induces CYP3A4 and MDR1 gene expression through SXR, which may affect TAM metabolic pathway in breast cancer cells.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Adenocarcinoma/metabolism
- Antineoplastic Agents, Hormonal/metabolism
- Breast Neoplasms/metabolism
- Cell Line, Tumor
- Cytochrome P-450 CYP3A
- Cytochrome P-450 Enzyme System/genetics
- Cytochrome P-450 Enzyme System/metabolism
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm/physiology
- Estrogen Antagonists/metabolism
- Gene Expression Regulation, Neoplastic
- Genes, MDR
- Humans
- Pregnane X Receptor
- RNA, Messenger/metabolism
- Receptors, Steroid/metabolism
- Receptors, Steroid/physiology
- Retinoid X Receptors/metabolism
- Tamoxifen/analogs & derivatives
- Tamoxifen/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Rin Nagaoka
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ascenzi P, Bocedi A, Marino M. Structure-function relationship of estrogen receptor alpha and beta: impact on human health. Mol Aspects Med 2006; 27:299-402. [PMID: 16914190 DOI: 10.1016/j.mam.2006.07.001] [Citation(s) in RCA: 369] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
17Beta-estradiol (E2) controls many aspects of human physiology, including development, reproduction and homeostasis, through regulation of the transcriptional activity of its cognate receptors (ERs). The crystal structures of ERs with agonists and antagonists and the use of transgenic animals have revealed much about how hormone binding influences ER conformation(s) and how this conformation(s), in turn, influences the interaction of ERs with co-activators or co-repressors and hence determines ER binding to DNA and cellular outcomes. This information has helped to shed light on the connection between E2 and the development or progression of numerous diseases. Current therapeutic strategy in the treatment of E2-related pathologies relies on the modulation of ER trancriptional activity by anti-estrogens; however, data accumulated during the last five years reveal that ER activities are not only restricted to the nucleus. ERs are very mobile proteins continuously shuttling between protein targets located within various cellular compartments (e.g., membrane, nucleus). This allows E2 to generate different and synergic signal transduction pathways (i.e., non-genomic and genomic) which provide plasticity for cell response to E2. Understanding the structural basis and the molecular mechanisms by which ER transduce E2 signals in target cells will allow to create new pharmacologic therapies aimed at the treatment of a variety of human diseases affecting the cardiovascular system, the reproductive system, the skeletal system, the nervous system, the mammary gland, and many others.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Department of Biology, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | | | | |
Collapse
|
40
|
Fujimura T, Kimura C, Oe T, Takata Y, Sakuma H, Aramori I, Mutoh S. A selective peroxisome proliferator-activated receptor gamma modulator with distinct fat cell regulation properties. J Pharmacol Exp Ther 2006; 318:863-71. [PMID: 16682454 DOI: 10.1124/jpet.106.102459] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Adipogenesis is an important process for the improvement of insulin resistance by peroxisome proliferator-activated receptor (PPAR) gamma agonists, such as rosiglitazone and pioglitazone. FK614 [3-(2,4-dichlorobenzyl)-2-methyl-N-(pentylsulfonyl)-3-Hbenzimidazole-5-carboxamide] is a structurally novel class of PPARgamma agonist that improves insulin sensitivity in animal models of type 2 diabetes. Herein, we characterize FK614, a selective PPARgamma modulator (SPPARM) with differential properties affecting the regulation of fat cell function. FK614 behaves as a partial agonist in inducing the interaction of PPARgamma with both transcriptional coactivators, cAMP response element-binding protein-binding protein and steroid receptor coactivator-1, but as a full agonist with both PPAR-binding protein and PPAR-interacting protein, which are required for PPARgamma-mediated adipogenesis. In the differentiating 3T3-L1 adipocytes, the levels of adipose fatty acid-binding protein (aP2) mRNA expression and triglyceride accumulation induced by FK614 were as efficacious as those of rosiglitazone and pioglitazone. In contrast, the effect of FK614 on aP2 gene expression in mature adipocytes was less than that of the other PPARgamma agonists. Furthermore, the long-term treatment of mature adipocytes with rosiglitazone and pioglitazone reduced the expression of phosphodiesterase 3B, the down-regulation of which has an important role in the development of insulin resistance; however, FK614 had no such effect in mature adipocytes. Thus, FK614 behaves as an SPPARM with differential effects on the activation of PPARgamma at each stage of adipocyte differentiation. The stage-dependent selectivity of FK614 may contribute to its enhanced insulin sensitization in differentiating adipocytes and to reduced insulin resistance at the stage of adipocyte hypertrophy.
Collapse
Affiliation(s)
- Takao Fujimura
- Molecular Medicine Research Laboratories, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | |
Collapse
|
41
|
Sui Y, Yang Z, Xiong S, Zhang L, Blanchard KL, Peiper SC, Dynan WS, Tuan D, Ko L. Gene amplification and associated loss of 5' regulatory sequences of CoAA in human cancers. Oncogene 2006; 26:822-35. [PMID: 16878147 PMCID: PMC9245580 DOI: 10.1038/sj.onc.1209847] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CoAA is an RRM-containing transcriptional coactivator that stimulates transcriptional activation and regulates alternative splicing. We show that the CoAA gene is amplified at the chromosome 11q13 locus in a subset of primary human cancers including non-small cell lung carcinoma, squamous cell skin carcinoma and lymphoma. Analysis of 42 primary tumors suggests that CoAA amplifies independently from the CCND1 locus. Detailed mapping of three CoAA amplicons reveals that the amplified CoAA gene is consistently located at the 5' boundaries of the amplicons. The CoAA coding and basal promoter sequences are retained within the amplicons but upstream silencing sequences are lost. CoAA protein is overexpressed in tumors containing the amplified CoAA gene. RNA dot blot analysis of 100 cases of primary tumors suggests elevated CoAA mRNA expression. CoAA positively regulates its own basal promoter in transfection assays. Thus, gene amplification, loss of silencing sequence and positive feedback regulation may lead to drastic upregulation of CoAA protein. CoAA has transforming activities when tested in soft agar assays, and CoAA is homologous to oncoproteins EWS and TLS, which regulate alternative splicing. These data imply that CoAA may share a similar oncogenic mechanism with oncogene EWS and that CoAA deregulation may alter the alternative splicing of target genes.
Collapse
Affiliation(s)
- Y Sui
- Department of Pathology, Medical College of Georgia, Augusta, GA, USA
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA
| | - Z Yang
- Department of Pathology, Medical College of Georgia, Augusta, GA, USA
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA
| | - S Xiong
- Department of Pathology, Medical College of Georgia, Augusta, GA, USA
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA
| | - L Zhang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA
| | - KL Blanchard
- Lilly Research Laboratories, Indianapolis, IN, USA
| | - SC Peiper
- Department of Pathology, Medical College of Georgia, Augusta, GA, USA
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA
| | - WS Dynan
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA
| | - D Tuan
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA
| | - L Ko
- Department of Pathology, Medical College of Georgia, Augusta, GA, USA
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA
| |
Collapse
|
42
|
Yeom SY, Kim GH, Kim CH, Jung HD, Kim SY, Park JY, Pak YK, Rhee DK, Kuang SQ, Xu J, Han DJ, Song DK, Lee JW, Lee KU, Kim SW. Regulation of insulin secretion and beta-cell mass by activating signal cointegrator 2. Mol Cell Biol 2006; 26:4553-63. [PMID: 16738321 PMCID: PMC1489122 DOI: 10.1128/mcb.01412-05] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Activating signal cointegrator 2 (ASC-2) is a transcriptional coactivator of many nuclear receptors (NRs) and other transcription factors and contains two NR-interacting LXXLL motifs (NR boxes). In the pancreas, ASC-2 is expressed only in the endocrine cells of the islets of Langerhans, but not in the exocrine cells. Thus, we examined the potential role of ASC-2 in insulin secretion from pancreatic beta-cells. Overexpressed ASC-2 increased glucose-elicited insulin secretion, whereas insulin secretion was decreased in islets from ASC-2+/- mice. DN1 and DN2 are two dominant-negative fragments of ASC-2 that contain NR boxes 1 and 2, respectively, and block the interactions of cognate NRs with the endogenous ASC-2. Primary rat islets ectopically expressing DN1 or DN2 exhibited decreased insulin secretion. Furthermore, relative to the wild type, ASC-2+/- mice showed reduced islet mass and number, which correlated with increased apoptosis and decreased proliferation of ASC-2+/- islets. These results suggest that ASC-2 regulates insulin secretion and beta-cell survival and that the regulatory role of ASC-2 in insulin secretion appears to involve, at least in part, its interaction with NRs via its two NR boxes.
Collapse
Affiliation(s)
- Seon-Yong Yeom
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Songpa-gu, Seoul 138-736, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ju BG, Lunyak VV, Perissi V, Garcia-Bassets I, Rose DW, Glass CK, Rosenfeld MG. A topoisomerase IIbeta-mediated dsDNA break required for regulated transcription. Science 2006; 312:1798-802. [PMID: 16794079 DOI: 10.1126/science.1127196] [Citation(s) in RCA: 698] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multiple enzymatic activities are required for transcriptional initiation. The enzyme DNA topoisomerase II associates with gene promoter regions and can generate breaks in double-stranded DNA (dsDNA). Therefore, it is of interest to know whether this enzyme is critical for regulated gene activation. We report that the signal-dependent activation of gene transcription by nuclear receptors and other classes of DNA binding transcription factors, including activating protein 1, requires DNA topoisomerase IIbeta-dependent, transient, site-specific dsDNA break formation. Subsequent to the break, poly(adenosine diphosphate-ribose) polymerase-1 enzymatic activity is induced, which is required for a nucleosome-specific histone H1-high-mobility group B exchange event and for local changes of chromatin architecture. Our data mechanistically link DNA topoisomerase IIbeta-dependent dsDNA breaks and the components of the DNA damage and repair machinery in regulated gene transcription.
Collapse
Affiliation(s)
- Bong-Gun Ju
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, 9500 Gilman Drive, University of California, San Diego, La Jolla, CA 92093-0648, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Surapureddi S, Viswakarma N, Yu S, Guo D, Rao MS, Reddy JK. PRIC320, a transcription coactivator, isolated from peroxisome proliferator-binding protein complex. Biochem Biophys Res Commun 2006; 343:535-43. [PMID: 16554032 DOI: 10.1016/j.bbrc.2006.02.160] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Accepted: 02/20/2006] [Indexed: 11/17/2022]
Abstract
Ciprofibrate, a potent peroxisome proliferator, induces pleiotropic responses in liver by activating peroxisome proliferator-activated receptor alpha (PPARalpha), a nuclear receptor. Transcriptional regulation by liganded nuclear receptors involves the participation of coregulators that form multiprotein complexes possibly to achieve cell and gene specific transcription. SDS-PAGE and matrix-assisted laser desorption/ionization reflection time-of-flight mass spectrometric analyses of ciprofibrate-binding proteins from liver nuclear extracts obtained using ciprofibrate-Sepharose affinity matrix resulted in the identification of a new high molecular weight nuclear receptor coactivator, which we designated PRIC320. The full-length human cDNA encoding this protein has an open-reading frame that codes for a 320kDa protein containing 2882 amino acids. PRIC320 contains five LXXLL signature motifs that mediate interaction with nuclear receptors. PRIC320 binds avidly to nuclear receptors PPARalpha, CAR, ERalpha, and RXR, but only minimally with PPARgamma. PRIC320 also interacts with transcription cofactors CBP, PRIP, and PBP. Immunoprecipitation-immunoblotting as well as cellular localization studies confirmed the interaction between PPARalpha and PRIC320. PRIC320 acts as a transcription coactivator by stimulating PPARalpha-mediated transcription. We conclude that ciprofibrate, a PPARalpha ligand, binds a multiprotein complex and PRIC320 cloned from this complex functions as a nuclear receptor coactivator.
Collapse
Affiliation(s)
- Sailesh Surapureddi
- The Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
45
|
Iwasaki T, Takeshita A, Miyazaki W, Chin WW, Koibuchi N. The interaction of TRbeta1-N terminus with steroid receptor coactivator-1 (SRC-1) serves a full transcriptional activation function of SRC-1. Endocrinology 2006; 147:1452-7. [PMID: 16357047 DOI: 10.1210/en.2005-0782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Steroid receptor coactivator-1 (SRC-1) plays a crucial role in nuclear receptor-mediated transcription including thyroid hormone receptor (TR)-dependent gene expression. Interaction of the TR-ligand binding domain and SRC-1 through LXXLL motifs is required for this action. However, potential interactions between the TRbeta1-N terminus (N) and SRC-1 have not been explored and thus are examined in this manuscript. Far-Western studies showed that protein construct containing TRbeta1-N + DNA binding domain (DBD) bound to nuclear receptor binding domain (NBD)-1 (amino acid residue, aa 595-780) of SRC-1 without ligand. Mammalian two-hybrid studies showed that NBD-1, as well as SRC-1 (aa 595-1440), bound to TRbeta1-N+DBD in the absence of ligand in CV-1 cells. However, NBD-2 (aa 1237-1440) did not bind to this protein. Glutathione-S-transferase pull-down studies showed that TRbeta1-N (aa 1-105) bound to the broad region of SRC-1-C terminus. Expression vectors encoding a series of truncations and/or point mutations of TRbeta1 were used in transient transfection-based reporter assays in CV-1 cells. N-terminal truncated TRbeta1 (DeltaN-TRbeta1) showed lower activity than that of wild-type in both artificial F2-thyroid hormone response element and native malic enzyme response element. These results suggest that there is the interaction between N terminus of TRbeta1 and SRC-1, which may serve a full activation of SRC-1, together with activation function-2 on TRbeta1-mediated transcription.
Collapse
Affiliation(s)
- Toshiharu Iwasaki
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Gunma, Japan.
| | | | | | | | | |
Collapse
|
46
|
Kasper LH, Fukuyama T, Biesen MA, Boussouar F, Tong C, de Pauw A, Murray PJ, van Deursen JMA, Brindle PK. Conditional knockout mice reveal distinct functions for the global transcriptional coactivators CBP and p300 in T-cell development. Mol Cell Biol 2006; 26:789-809. [PMID: 16428436 PMCID: PMC1347027 DOI: 10.1128/mcb.26.3.789-809.2006] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The global transcriptional coactivators CREB-binding protein (CBP) and the closely related p300 interact with over 312 proteins, making them among the most heavily connected hubs in the known mammalian protein-protein interactome. It is largely uncertain, however, if these interactions are important in specific cell lineages of adult animals, as homozygous null mutations in either CBP or p300 result in early embryonic lethality in mice. Here we describe a Cre/LoxP conditional p300 null allele (p300flox) that allows for the temporal and tissue-specific inactivation of p300. We used mice carrying p300flox and a CBP conditional knockout allele (CBPflox) in conjunction with an Lck-Cre transgene to delete CBP and p300 starting at the CD4- CD8- double-negative thymocyte stage of T-cell development. Loss of either p300 or CBP led to a decrease in CD4+ CD8+ double-positive thymocytes, but an increase in the percentage of CD8+ single-positive thymocytes seen in CBP mutant mice was not observed in p300 mutants. T cells completely lacking both CBP and p300 did not develop normally and were nonexistent or very rare in the periphery, however. T cells lacking CBP or p300 had reduced tumor necrosis factor alpha gene expression in response to phorbol ester and ionophore, while signal-responsive gene expression in CBP- or p300-deficient macrophages was largely intact. Thus, CBP and p300 each supply a surprising degree of redundant coactivation capacity in T cells and macrophages, although each gene has also unique properties in thymocyte development.
Collapse
Affiliation(s)
- Lawryn H Kasper
- Department of Biochemistry, St. Jude Children's Research Hospital, 332 N. Lauderdale, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Gao Z, He Q, Peng B, Chiao P, Ye J. Regulation of nuclear translocation of HDAC3 by IkappaBalpha is required for tumor necrosis factor inhibition of peroxisome proliferator-activated receptor gamma function. J Biol Chem 2006; 281:4540-7. [PMID: 16371367 PMCID: PMC1447600 DOI: 10.1074/jbc.m507784200] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Inhibition of peroxisome proliferator-activated receptor gamma (PPARgamma) function by TNF-alpha contributes to glucose and fatty acid metabolic disorders in inflammation and cancer, although the molecular mechanism is not fully understood. In this study, we demonstrate that nuclear translocation of HDAC3 is regulated by TNF-alpha, and this event is required for inhibition of transcriptional activity of PPARgamma by TNF-alpha. HDAC3 is associated with IkappaBalpha in the cytoplasm. After IkappaBalpha degradation in response to TNF-alpha, HDAC3 is subject to nuclear translocation, leading to an increase in HDAC3 activity in the nucleus. This event leads to subcellular redistribution of HDAC3. Knock-out of IkappaBalpha, but not p65 or p50, leads to disappearance of HDAC3 in the cytoplasm, which is associated with HDAC3 enrichment in the nucleus. These data suggest that inhibition of PPARgamma by TNF-alpha is not associated with a reduction in the DNA binding activity of PPARgamma. Rather, these results suggest that IkappaBalpha-dependent nuclear translocation of HDAC3 is responsible for PPARgamma inhibition by TNF-alpha.
Collapse
Affiliation(s)
- Zhanguo Gao
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808
| | - Qing He
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808
| | - Bailu Peng
- Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Paul Chiao
- Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Jianping Ye
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808
| |
Collapse
|
48
|
Feige JN, Gelman L, Michalik L, Desvergne B, Wahli W. From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog Lipid Res 2006; 45:120-59. [PMID: 16476485 DOI: 10.1016/j.plipres.2005.12.002] [Citation(s) in RCA: 578] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) compose a family of three nuclear receptors which act as lipid sensors to modulate gene expression. As such, PPARs are implicated in major metabolic and inflammatory regulations with far-reaching medical consequences, as well as in important processes controlling cellular fate. Throughout this review, we focus on the cellular functions of these receptors. The molecular mechanisms through which PPARs regulate transcription are thoroughly addressed with particular emphasis on the latest results on corepressor and coactivator action. Their implication in cellular metabolism and in the control of the balance between cell proliferation, differentiation and survival is then reviewed. Finally, we discuss how the integration of various intra-cellular signaling pathways allows PPARs to participate to whole-body homeostasis by mediating regulatory crosstalks between organs.
Collapse
Affiliation(s)
- Jérôme N Feige
- Center for Integrative Genomics, NCCR Frontiers in Genetics, Le Génopode, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
49
|
Arnold LA, Estébanez-Perpiñá E, Togashi M, Jouravel N, Shelat A, McReynolds AC, Mar E, Nguyen P, Baxter JD, Fletterick RJ, Webb P, Guy RK. Discovery of Small Molecule Inhibitors of the Interaction of the Thyroid Hormone Receptor with Transcriptional Coregulators. J Biol Chem 2005; 280:43048-55. [PMID: 16263725 DOI: 10.1074/jbc.m506693200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Thyroid hormone (3,5,3'-triiodo-L-thyronine, T3) is an endocrine hormone that exerts homeostatic regulation of basal metabolic rate, heart rate and contractility, fat deposition, and other phenomena (1, 2). T3 binds to the thyroid hormone receptors (TRs) and controls their regulation of transcription of target genes. The binding of TRs to thyroid hormone induces a conformational change in TRs that regulates the composition of the transcriptional regulatory complex. Recruitment of the correct coregulators (CoR) is important for successful gene regulation. In principle, inhibition of the TR-CoR interaction can have a direct influence on gene transcription in the presence of thyroid hormones. Herein we report a high throughput screen for small molecules capable of inhibiting TR coactivator interactions. One class of inhibitors identified in this screen was aromatic beta-aminoketones, which exhibited IC50 values of approximately 2 microm. These compounds can undergo a deamination, generating unsaturated ketones capable of reacting with nucleophilic amino acids. Several experiments confirm the hypothesis that these inhibitors are covalently bound to TR. Optimization of these compounds produced leads that inhibited the TR-CoR interaction in vitro with potency of approximately 0.6 microm and thyroid signaling in cellular systems. These are the first small molecules irreversibly inhibiting the coactivator binding of a nuclear receptor and suppressing its transcriptional activity.
Collapse
Affiliation(s)
- Leggy A Arnold
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Nuclear receptors are transcription factors that are essential in embryonic development, maintenance of differentiated cellular phenotypes, metabolism, and apoptosis. Dysfunction of nuclear receptor signaling leads to a wide spectra of proliferative, reproductive, and metabolic diseases, including cancers, infertility, obesity, and diabetes. In addition, many proteins have been identified as coregulators which can be recruited by DNA-binding nuclear receptors to affect transcriptional regulation. The cellular level of coregulators is crucial for nuclear receptor-mediated transcription and many coregulators have been shown to be targets for diverse intracellular signaling pathways and posttranslational modifications. This review provides a general overview of the roles and mechanism of action of nuclear receptors and their coregulators. Since progression of renal diseases is almost always associated with inflammatory processes and/or involve metabolic disorders of lipid and glucose, cell proliferation, hypertrophy, apoptosis, and hypertension, the importance of nuclear receptors and their coregulators in these contexts will be addressed.
Collapse
Affiliation(s)
- Xiong Z Ruan
- Centre for Nephrology, Royal Free and University College Medical School, University College London, Royal Free Campus, Rowland Hill Street, London, United Kingdom.
| | | | | | | |
Collapse
|