1
|
Shah S, Mittal P, Kumar D, Mittal A, Ghosh SK. Evidence of kinesin motors involved in stable kinetochore assembly during early meiosis. Mol Biol Cell 2023; 34:ar107. [PMID: 37556230 PMCID: PMC10559306 DOI: 10.1091/mbc.e22-12-0569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023] Open
Abstract
During mitosis, the budding yeast, kinetochores remain attached to microtubules, except for a brief period during S phase. Sister-kinetochores separate into two clusters (bilobed organization) upon stable end-on attachment to microtubules emanating from opposite spindle poles. However, in meiosis, the outer kinetochore protein (Ndc80) reassembles at the centromeres much later after prophase I, establishing new kinetochore-microtubule attachments. Perhaps due to this, despite homolog bi-orientation, we observed that the Ndc80 are linearly dispersed between spindle poles during metaphase I of meiosis. The presence of end-on attachment marker Dam1 as a cluster near each pole suggests one of the other possibilities that the pole-proximal and pole-distal kinetochores are attached end-on and laterally to the microtubules, respectively. Colocalization studies of kinetochores and kinesin motors suggest that budding yeast kinesin 5, Cin8, and Kip1 perhaps localize to the end-on attached kinetochores while kinesin 8 and Kip3 resides at all the kinetochores. Our findings, including kinesin 5 and Ndc80 coappearance after prophase I and reduced Ndc80 levels in cin8 null mutant, suggest that kinesin motors are crucial for kinetochore reassembly and stability during early meiosis. Thus, this work reports yet another meiosis specific function of kinesin motors.
Collapse
Affiliation(s)
- Seema Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Priyanka Mittal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Deepanshu Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Anjani Mittal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Santanu K. Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| |
Collapse
|
2
|
Woolfson DN. Understanding a protein fold: the physics, chemistry, and biology of α-helical coiled coils. J Biol Chem 2023; 299:104579. [PMID: 36871758 PMCID: PMC10124910 DOI: 10.1016/j.jbc.2023.104579] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023] Open
Abstract
Protein science is being transformed by powerful computational methods for structure prediction and design: AlphaFold2 can predict many natural protein structures from sequence, and other AI methods are enabling the de novo design of new structures. This raises a question: how much do we understand the underlying sequence-to-structure/function relationships being captured by these methods? This perspective presents our current understanding of one class of protein assembly, the α-helical coiled coils. At first sight, these are straightforward: sequence repeats of hydrophobic (h) and polar (p) residues, (hpphppp)n, direct the folding and assembly of amphipathic α helices into bundles. However, many different bundles are possible: they can have two or more helices (different oligomers); the helices can have parallel, antiparallel or mixed arrangements (different topologies); and the helical sequences can be the same (homomers) or different (heteromers). Thus, sequence-to-structure relationships must be present within the hpphppp repeats to distinguish these states. I discuss the current understanding of this problem at three levels: First, physics gives a parametric framework to generate the many possible coiled-coil backbone structures. Second, chemistry provides a means to explore and deliver sequence-to-structure relationships. Third, biology shows how coiled coils are adapted and functionalized in nature, inspiring applications of coiled coils in synthetic biology. I argue that the chemistry is largely understood; the physics is partly solved, though the considerable challenge of predicting even relative stabilities of different coiled-coil states remains; but there is much more to explore in the biology and synthetic biology of coiled coils.
Collapse
Affiliation(s)
- Derek N Woolfson
- School of Chemistry, University of Bristol, Bristol, United Kingdom; School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol, United Kingdom; BrisEngBio, School of Chemistry, University of Bristol, Bristol, United Kingdom; Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
3
|
Mehta G, Sanyal K, Abhishek S, Rajakumara E, Ghosh SK. Minichromosome maintenance proteins in eukaryotic chromosome segregation. Bioessays 2021; 44:e2100218. [PMID: 34841543 DOI: 10.1002/bies.202100218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/02/2023]
Abstract
Minichromosome maintenance (Mcm) proteins are well-known for their functions in DNA replication. However, their roles in chromosome segregation are yet to be reviewed in detail. Following the discovery in 1984, a group of Mcm proteins, known as the ARS-nonspecific group consisting of Mcm13, Mcm16-19, and Mcm21-22, were characterized as bonafide kinetochore proteins and were shown to play significant roles in the kinetochore assembly and high-fidelity chromosome segregation. This review focuses on the structure, function, and evolution of this group of Mcm proteins. Our in silico analysis of the physical interactors of these proteins reveals that they share non-overlapping functions despite being copurified in biochemically stable complexes. We have discussed the contrasting results reported in the literature and experimental strategies to address them. Taken together, this review focuses on the structure-function of the ARS-nonspecific Mcm proteins and their evolutionary flexibility to maintain genome stability in various organisms.
Collapse
Affiliation(s)
- Gunjan Mehta
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Kaustuv Sanyal
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Bangalore, India
| | - Suman Abhishek
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Eerappa Rajakumara
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Santanu K Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
4
|
Dünkler A, Leda M, Kromer JM, Neller J, Gronemeyer T, Goryachev AB, Johnsson N. Type V myosin focuses the polarisome and shapes the tip of yeast cells. J Cell Biol 2021; 220:211845. [PMID: 33656555 PMCID: PMC7933982 DOI: 10.1083/jcb.202006193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/25/2021] [Accepted: 02/04/2021] [Indexed: 11/22/2022] Open
Abstract
The polarisome is a cortical proteinaceous microcompartment that organizes the growth of actin filaments and the fusion of secretory vesicles in yeasts and filamentous fungi. Polarisomes are compact, spotlike structures at the growing tips of their respective cells. The molecular forces that control the form and size of this microcompartment are not known. Here we identify a complex between the polarisome subunit Pea2 and the type V Myosin Myo2 that anchors Myo2 at the cortex of yeast cells. We discovered a point mutation in the cargo-binding domain of Myo2 that impairs the interaction with Pea2 and consequently the formation and focused localization of the polarisome. Cells carrying this mutation grow round instead of elongated buds. Further experiments and biophysical modeling suggest that the interactions between polarisome-bound Myo2 motors and dynamic actin filaments spatially focus the polarisome and sustain its compact shape.
Collapse
Affiliation(s)
- Alexander Dünkler
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, Ulm, Germany
| | - Marcin Leda
- Centre for Synthetic and Systems Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Jan-Michael Kromer
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, Ulm, Germany
| | - Joachim Neller
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, Ulm, Germany
| | - Thomas Gronemeyer
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, Ulm, Germany
| | - Andrew B Goryachev
- Centre for Synthetic and Systems Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Nils Johnsson
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, Ulm, Germany
| |
Collapse
|
5
|
Shao H, Huang W, Avilan L, Receveur-Bréchot V, Puppo C, Puppo R, Lebrun R, Gontero B, Launay H. A new type of flexible CP12 protein in the marine diatom Thalassiosira pseudonana. Cell Commun Signal 2021; 19:38. [PMID: 33761918 PMCID: PMC7992989 DOI: 10.1186/s12964-021-00718-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
Background CP12 is a small chloroplast protein that is widespread in various photosynthetic organisms and is an actor of the redox signaling pathway involved in the regulation of the Calvin Benson Bassham (CBB) cycle. The gene encoding this protein is conserved in many diatoms, but the protein has been overlooked in these organisms, despite their ecological importance and their complex and still enigmatic evolutionary background. Methods A combination of biochemical, bioinformatics and biophysical methods including electrospray ionization-mass spectrometry, circular dichroism, nuclear magnetic resonance spectroscopy and small X ray scattering, was used to characterize a diatom CP12. Results Here, we demonstrate that CP12 is expressed in the marine diatom Thalassiosira pseudonana constitutively in dark-treated and in continuous light-treated cells as well as in all growth phases. This CP12 similarly to its homologues in other species has some features of intrinsically disorder protein family: it behaves abnormally under gel electrophoresis and size exclusion chromatography, has a high net charge and a bias amino acid composition. By contrast, unlike other known CP12 proteins that are monomers, this protein is a dimer as suggested by native electrospray ionization-mass spectrometry and small angle X-ray scattering. In addition, small angle X-ray scattering revealed that this CP12 is an elongated cylinder with kinks. Circular dichroism spectra indicated that CP12 has a high content of α-helices, and nuclear magnetic resonance spectroscopy suggested that these helices are unstable and dynamic within a millisecond timescale. Together with in silico predictions, these results suggest that T. pseudonana CP12 has both coiled coil and disordered regions. Conclusions These findings bring new insights into the large family of dynamic proteins containing disordered regions, thus increasing the diversity of known CP12 proteins. As it is a protein that is more abundant in many stresses, it is not devoted to one metabolism and in particular, it is not specific to carbon metabolism. This raises questions about the role of this protein in addition to the well-established regulation of the CBB cycle. Choregraphy of metabolism by CP12 proteins in Viridiplantae and Heterokonta. While the monomeric CP12 in Viridiplantae is involved in carbon assimilation, regulating phosphoribulokinase (PRK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) through the formation of a ternary complex, in Heterokonta studied so far, the dimeric CP12 is associated with Ferredoxin-NADP reductase (FNR) and GAPDH. The Viridiplantae CP12 can bind metal ions and can be a chaperone, the Heterokonta CP12 is more abundant in all stresses (C, N, Si, P limited conditions) and is not specific to a metabolism. ![]()
Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-021-00718-x.
Collapse
Affiliation(s)
- Hui Shao
- CNRS, BIP UMR 7281, Aix Marseille Univ, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France
| | - Wenmin Huang
- CNRS, BIP UMR 7281, Aix Marseille Univ, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France.,Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Luisana Avilan
- CNRS, BIP UMR 7281, Aix Marseille Univ, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France.,Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | | | - Carine Puppo
- CNRS, BIP UMR 7281, Aix Marseille Univ, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France
| | - Rémy Puppo
- CNRS FR 3479, Plate-Forme Protéomique de L'Institut de Microbiologie de La Méditerranée (IMM), Aix Marseille Univ, 13009, Marseille, France
| | - Régine Lebrun
- CNRS FR 3479, Plate-Forme Protéomique de L'Institut de Microbiologie de La Méditerranée (IMM), Aix Marseille Univ, 13009, Marseille, France
| | - Brigitte Gontero
- CNRS, BIP UMR 7281, Aix Marseille Univ, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France.
| | - Hélène Launay
- CNRS, BIP UMR 7281, Aix Marseille Univ, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France.
| |
Collapse
|
6
|
King BR, Meehl JB, Vojnar T, Winey M, Muller EG, Davis TN. Microtubule-associated proteins and motors required for ectopic microtubule array formation in Saccharomyces cerevisiae. Genetics 2021; 218:6180076. [PMID: 33752231 DOI: 10.1093/genetics/iyab050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/04/2021] [Indexed: 12/17/2022] Open
Abstract
The mitotic spindle is resilient to perturbation due to the concerted, and sometimes redundant, action of motors and microtubule-associated proteins. Here, we utilize an inducible ectopic microtubule nucleation site in the nucleus of Saccharomyces cerevisiae to study three necessary steps in the formation of a bipolar array: the recruitment of the γ-tubulin complex, nucleation and elongation of microtubules (MTs), and the organization of MTs relative to each other. This novel tool, an Spc110 chimera, reveals previously unreported roles of the microtubule-associated proteins Stu2, Bim1, and Bik1, and the motors Vik1 and Kip3. We report that Stu2 and Bim1 are required for nucleation and that Bik1 and Kip3 promote nucleation at the ectopic site. Stu2, Bim1, and Kip3 join their homologs XMAP215, EB1 and kinesin-8 as promoters of microtubule nucleation, while Bik1 promotes MT nucleation indirectly via its role in SPB positioning. Furthermore, we find that the nucleation activity of Stu2 in vivo correlates with its polymerase activity in vitro. Finally, we provide the first evidence that Vik1, a subunit of Kar3/Vik1 kinesin-14, promotes microtubule minus end focusing at the ectopic site.
Collapse
Affiliation(s)
- Brianna R King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Janet B Meehl
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Tamira Vojnar
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Mark Winey
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Eric G Muller
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Trisha N Davis
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
7
|
Ji ZL, Yu MH, Ding YY, Li J, Zhu F, He JX, Yang LN. Coiled-Coil N21 of Hpa1 in Xanthomonas oryzae pv. oryzae Promotes Plant Growth, Disease Resistance and Drought Tolerance in Non-Hosts via Eliciting HR and Regulation of Multiple Defense Response Genes. Int J Mol Sci 2020; 22:E203. [PMID: 33379173 PMCID: PMC7795061 DOI: 10.3390/ijms22010203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/18/2022] Open
Abstract
Acting as a typical harpin protein, Hpa1 of Xanthomonas oryzae pv. oryzae is one of the pathogenic factors in hosts and can elicit hypersensitive responses (HR) in non-hosts. To further explain the underlying mechanisms of its induced resistance, we studied the function of the most stable and shortest three heptads in the N-terminal coiled-coil domain of Hpa1, named N21Hpa1. Proteins isolated from N21-transgenic tobacco elicited HR in Xanthi tobacco, which was consistent with the results using N21 and full-length Hpa1 proteins expressed in Escherichia coli. N21-expressing tobacco plants showed enhanced resistance to tobacco mosaic virus (TMV) and Pectobacterium carotovora subsp. carotovora (Pcc). Spraying of a synthesized N21 peptide solution delayed the disease symptoms caused by Botrytis cinerea and Monilinia fructicola and promoted the growth and drought tolerance of plants. Further analysis indicated that N21 upregulated the expression of multiple plant defense-related genes, such as genes mediated by salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) signaling, and genes related to reactive oxygen species (ROS) biosynthesis. Further, the bioavailability of N21 peptide was better than that of full-length Hpa1Xoo. Our studies support the broad application prospects of N21 peptide as a promising succedaneum to biopesticide Messenger or Illite or other biological pharmaceutical products, and provide a basis for further development of biopesticides using proteins with similar structures.
Collapse
Affiliation(s)
- Zhao-Lin Ji
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-L.J.); (Y.-Y.D.); (J.L.); (F.Z.)
| | - Mei-Hui Yu
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China;
| | - Ya-Yan Ding
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-L.J.); (Y.-Y.D.); (J.L.); (F.Z.)
| | - Jian Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-L.J.); (Y.-Y.D.); (J.L.); (F.Z.)
| | - Feng Zhu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-L.J.); (Y.-Y.D.); (J.L.); (F.Z.)
| | - Jun-Xian He
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China;
| | - Li-Na Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-L.J.); (Y.-Y.D.); (J.L.); (F.Z.)
| |
Collapse
|
8
|
Aurin MB, Haupt M, Görlach M, Rümpler F, Theißen G. Structural Requirements of the Phytoplasma Effector Protein SAP54 for Causing Homeotic Transformation of Floral Organs. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1129-1141. [PMID: 32689871 DOI: 10.1094/mpmi-02-20-0028-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phytoplasmas are intracellular bacterial plant pathogens that cause devastating diseases in crops and ornamental plants by the secretion of effector proteins. One of these effector proteins, termed SECRETED ASTER YELLOWS WITCHES' BROOM PROTEIN 54 (SAP54), leads to the degradation of a specific subset of floral homeotic proteins of the MIKC-type MADS-domain family via the ubiquitin-proteasome pathway. In consequence, the developing flowers show the homeotic transformation of floral organs into vegetative leaf-like structures. The molecular mechanism of SAP54 action involves binding to the keratin-like domain of MIKC-type proteins and to some RAD23 proteins, which translocate ubiquitylated substrates to the proteasome. The structural requirements and specificity of SAP54 function are poorly understood, however. Here, we report, based on biophysical and molecular biological analyses, that SAP54 folds into an α-helical structure. Insertion of helix-breaking mutations disrupts correct folding of SAP54 and compromises SAP54 binding to its target proteins and, concomitantly, its ability to evoke disease phenotypes in vivo. Interestingly, dynamic light scattering data together with electrophoretic mobility shift assays suggest that SAP54 preferentially binds to multimeric complexes of MIKC-type proteins rather than to dimers or monomers of these proteins. Together with data from literature, this finding suggests that MIKC-type proteins and SAP54 constitute multimeric α-helical coiled coils. Our investigations clarify the structure-function relationship of an important phytoplasma effector protein and may thus ultimately help to develop treatments against some devastating plant diseases.
Collapse
Affiliation(s)
- Marc-Benjamin Aurin
- Matthias Schleiden Institute / Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Michael Haupt
- Matthias Schleiden Institute / Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Matthias Görlach
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstr. 11, 07745 Jena, Germany
| | - Florian Rümpler
- Matthias Schleiden Institute / Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Günter Theißen
- Matthias Schleiden Institute / Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743 Jena, Germany
| |
Collapse
|
9
|
Mattiazzi Usaj M, Sahin N, Friesen H, Pons C, Usaj M, Masinas MPD, Shuteriqi E, Shkurin A, Aloy P, Morris Q, Boone C, Andrews BJ. Systematic genetics and single-cell imaging reveal widespread morphological pleiotropy and cell-to-cell variability. Mol Syst Biol 2020; 16:e9243. [PMID: 32064787 PMCID: PMC7025093 DOI: 10.15252/msb.20199243] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/16/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
Our ability to understand the genotype-to-phenotype relationship is hindered by the lack of detailed understanding of phenotypes at a single-cell level. To systematically assess cell-to-cell phenotypic variability, we combined automated yeast genetics, high-content screening and neural network-based image analysis of single cells, focussing on genes that influence the architecture of four subcellular compartments of the endocytic pathway as a model system. Our unbiased assessment of the morphology of these compartments-endocytic patch, actin patch, late endosome and vacuole-identified 17 distinct mutant phenotypes associated with ~1,600 genes (~30% of all yeast genes). Approximately half of these mutants exhibited multiple phenotypes, highlighting the extent of morphological pleiotropy. Quantitative analysis also revealed that incomplete penetrance was prevalent, with the majority of mutants exhibiting substantial variability in phenotype at the single-cell level. Our single-cell analysis enabled exploration of factors that contribute to incomplete penetrance and cellular heterogeneity, including replicative age, organelle inheritance and response to stress.
Collapse
Affiliation(s)
| | - Nil Sahin
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | | | - Carles Pons
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute for Science and TechnologyBarcelona, CataloniaSpain
| | - Matej Usaj
- The Donnelly CentreUniversity of TorontoTorontoONCanada
| | | | | | - Aleksei Shkurin
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Patrick Aloy
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute for Science and TechnologyBarcelona, CataloniaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)Barcelona, CataloniaSpain
| | - Quaid Morris
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
- Computational and Systems Biology ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Charles Boone
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
- RIKEN Centre for Sustainable Resource ScienceWakoSaitamaJapan
| | - Brenda J Andrews
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| |
Collapse
|
10
|
Wang LI, Das A, McKim KS. Sister centromere fusion during meiosis I depends on maintaining cohesins and destabilizing microtubule attachments. PLoS Genet 2019; 15:e1008072. [PMID: 31150390 PMCID: PMC6581285 DOI: 10.1371/journal.pgen.1008072] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/18/2019] [Accepted: 05/16/2019] [Indexed: 11/26/2022] Open
Abstract
Sister centromere fusion is a process unique to meiosis that promotes co-orientation of the sister kinetochores, ensuring they attach to microtubules from the same pole during metaphase I. We have found that the kinetochore protein SPC105R/KNL1 and Protein Phosphatase 1 (PP1-87B) regulate sister centromere fusion in Drosophila oocytes. The analysis of these two proteins, however, has shown that two independent mechanisms maintain sister centromere fusion. Maintenance of sister centromere fusion by SPC105R depends on Separase, suggesting cohesin proteins must be maintained at the core centromeres. In contrast, maintenance of sister centromere fusion by PP1-87B does not depend on either Separase or WAPL. Instead, PP1-87B maintains sister centromeres fusion by regulating microtubule dynamics. We demonstrate that this regulation is through antagonizing Polo kinase and BubR1, two proteins known to promote stability of kinetochore-microtubule (KT-MT) attachments, suggesting that PP1-87B maintains sister centromere fusion by inhibiting stable KT-MT attachments. Surprisingly, C(3)G, the transverse element of the synaptonemal complex (SC), is also required for centromere separation in Pp1-87B RNAi oocytes. This is evidence for a functional role of centromeric SC in the meiotic divisions, that might involve regulating microtubule dynamics. Together, we propose two mechanisms maintain co-orientation in Drosophila oocytes: one involves SPC105R to protect cohesins at sister centromeres and another involves PP1-87B to regulate spindle forces at end-on attachments.
Collapse
Affiliation(s)
- Lin-Ing Wang
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Arunika Das
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Kim S. McKim
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| |
Collapse
|
11
|
Evidence of Zip1 Promoting Sister Kinetochore Mono-orientation During Meiosis in Budding Yeast. G3-GENES GENOMES GENETICS 2018; 8:3691-3701. [PMID: 30254179 PMCID: PMC6222564 DOI: 10.1534/g3.118.200469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Halving of the genome during meiosis I is achieved as the homologous chromosomes move to the opposite spindle poles whereas the sister chromatids stay together and move to the same pole. This requires that the sister kinetochores should take a side-by-side orientation in order to connect to the microtubules emanating from the same pole. Factors that constrain sister kinetochores to adopt such orientation are therefore crucial to achieve reductional chromosome segregation in meiosis I. In budding yeast, a protein complex, known as monopolin, is involved in conjoining of the sister kinetochores and thus facilitates their binding to the microtubules from the same pole. In this study, we report Zip1, a synaptonemal complex component, as another factor that might help the sister kinetochores to take the side-by-side orientation and promote their mono-orientation on the meiosis I spindle. From our results, we propose that the localization of Zip1 at the centromere may provide an additional constraining factor that promotes monopolin to cross-link the sister kinetochores enabling them to mono-orient.
Collapse
|
12
|
Preisner H, Habicht J, Garg SG, Gould SB. Intermediate filament protein evolution and protists. Cytoskeleton (Hoboken) 2018; 75:231-243. [PMID: 29573204 DOI: 10.1002/cm.21443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/02/2018] [Accepted: 03/12/2018] [Indexed: 01/20/2023]
Abstract
Metazoans evolved from a single protist lineage. While all eukaryotes share a conserved actin and tubulin-based cytoskeleton, it is commonly perceived that intermediate filaments (IFs), including lamin, vimentin or keratin among many others, are restricted to metazoans. Actin and tubulin proteins are conserved enough to be detectable across all eukaryotic genomes using standard phylogenetic methods, but IF proteins, in contrast, are notoriously difficult to identify by such means. Since the 1950s, dozens of cytoskeletal proteins in protists have been identified that seemingly do not belong to any of the IF families described for metazoans, yet, from a structural and functional perspective fit criteria that define metazoan IF proteins. Here, we briefly review IF protein discovery in metazoans and the implications this had for the definition of this protein family. We argue that the many cytoskeletal and filament-forming proteins of protists should be incorporated into a more comprehensive picture of IF evolution by aligning it with the recent identification of lamins across the phylogenetic diversity of eukaryotic supergroups. This then brings forth the question of how the diversity of IF proteins has unfolded. The evolution of IF proteins likely represents an example of convergent evolution, which, in combination with the speed with which these cytoskeletal proteins are evolving, generated their current diversity. IF proteins did not first emerge in metazoa, but in protists. Only the emergence of cytosolic IF proteins that appear to stem from a nuclear lamin is unique to animals and coincided with the emergence of true animal multicellularity.
Collapse
Affiliation(s)
- Harald Preisner
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jörn Habicht
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sriram G Garg
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
13
|
Zhang W, Yeung CHL, Wu L, Yuen KWY. E3 ubiquitin ligase Bre1 couples sister chromatid cohesion establishment to DNA replication in Saccharomyces cerevisiae. eLife 2017; 6:28231. [PMID: 29058668 PMCID: PMC5699866 DOI: 10.7554/elife.28231] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/22/2017] [Indexed: 12/12/2022] Open
Abstract
Bre1, a conserved E3 ubiquitin ligase in Saccharomyces cerevisiae, together with its interacting partner Lge1, are responsible for histone H2B monoubiquitination, which regulates transcription, DNA replication, and DNA damage response and repair, ensuring the structural integrity of the genome. Deletion of BRE1 or LGE1 also results in whole chromosome instability. We discovered a novel role for Bre1, Lge1 and H2Bub1 in chromosome segregation and sister chromatid cohesion. Bre1’s function in G1 and S phases contributes to cohesion establishment, but it is not required for cohesion maintenance in G2 phase. Bre1 is dispensable for the loading of cohesin complex to chromatin in G1, but regulates the localization of replication factor Mcm10 and cohesion establishment factors Ctf4, Ctf18 and Eco1 to early replication origins in G1 and S phases, and promotes cohesin subunit Smc3 acetylation for cohesion stabilization. H2Bub1 epigenetically marks the origins, potentially signaling the coupling of DNA replication and cohesion establishment. Most of the DNA in a cell is stored in structures called chromosomes. During every cell cycle, each cell needs to replicate its chromosomes, hold the two chromosome copies (also known as “sister chromatids”) together before cell division, and distribute them equally to the two new cells. Each step must be executed accurately otherwise the new cells will have extra or missing chromosomes – a condition that is seen in many cancer cells and that can cause embryos to die. Since these processes are so essential to life, they are highly similar in a range of species, from single-celled organisms such as yeast to multicellular organisms like humans. However, it was not clear when and how sister chromatids first join together, or how this process is linked to DNA replication. The DNA in the sister chromatids is wrapped around proteins called histones to form a structure known as chromatin. An enzyme called Bre1 plays roles in gene transcription and DNA replication and repair by adding ubiquitin molecules to a histone called H2B. Now, by using genetic, molecular and cell biological approaches to study baker and brewer yeast cells, Zhang et al. show that the activity of Bre1 helps to hold sister chromatids together. Specifically, Bre1 recruits proteins to the chromatin before and during DNA replication, which help to initiate replication and to establish cohesion between the sister chromatids. The ubiquitin molecule attached to H2B by Bre1 is also essential for establishing cohesion, acting as a mark that helps to link the two processes. In the future it will be worthwhile to investigate whether genetic mutations that prevent sister chromatids adhering to each other is a major cause of the chromosome abnormalities seen in cancer cells. This knowledge may be useful for diagnosing cancers. Drugs that prevent the activity of Bre1 and other proteins involved in holding together sister chromatids could also be developed as potential cancer treatments that kill cancer cells by causing instability in their number of chromosomes.
Collapse
Affiliation(s)
- Wei Zhang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | | | - Liwen Wu
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Karen Wing Yee Yuen
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
14
|
Zhang W, Yeung CHL, Wu L, Yuen KWY. E3 ubiquitin ligase Bre1 couples sister chromatid cohesion establishment to DNA replication in Saccharomyces cerevisiae. eLife 2017; 6:28231. [PMID: 29058668 DOI: 10.7554/elife.28231.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/22/2017] [Indexed: 05/25/2023] Open
Abstract
Bre1, a conserved E3 ubiquitin ligase in Saccharomyces cerevisiae, together with its interacting partner Lge1, are responsible for histone H2B monoubiquitination, which regulates transcription, DNA replication, and DNA damage response and repair, ensuring the structural integrity of the genome. Deletion of BRE1 or LGE1 also results in whole chromosome instability. We discovered a novel role for Bre1, Lge1 and H2Bub1 in chromosome segregation and sister chromatid cohesion. Bre1's function in G1 and S phases contributes to cohesion establishment, but it is not required for cohesion maintenance in G2 phase. Bre1 is dispensable for the loading of cohesin complex to chromatin in G1, but regulates the localization of replication factor Mcm10 and cohesion establishment factors Ctf4, Ctf18 and Eco1 to early replication origins in G1 and S phases, and promotes cohesin subunit Smc3 acetylation for cohesion stabilization. H2Bub1 epigenetically marks the origins, potentially signaling the coupling of DNA replication and cohesion establishment.
Collapse
Affiliation(s)
- Wei Zhang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | | | - Liwen Wu
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Karen Wing Yee Yuen
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
15
|
Regulating the construction and demolition of the synaptonemal complex. Nat Struct Mol Biol 2017; 23:369-77. [PMID: 27142324 DOI: 10.1038/nsmb.3208] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/18/2016] [Indexed: 01/11/2023]
Abstract
The synaptonemal complex (SC) is a meiosis-specific scaffold that links homologous chromosomes from end to end during meiotic prophase and is required for the formation of meiotic crossovers. Assembly of SC components is regulated by a combination of associated nonstructural proteins and post-translational modifications, such as SUMOylation, which together coordinate the timing between homologous chromosome pairing, double-strand-break formation and recombination. In addition, transcriptional and translational control mechanisms ensure the timely disassembly of the SC after crossover resolution and before chromosome segregation at anaphase I.
Collapse
|
16
|
Dewangan PS, Sonawane PJ, Chouksey AR, Chauhan R. The Nup62 Coiled-Coil Motif Provides Plasticity for Triple-Helix Bundle Formation. Biochemistry 2017; 56:2803-2811. [PMID: 28406021 DOI: 10.1021/acs.biochem.6b01050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The central transport channel of the vertebrate nuclear pore complex (NPC) consists of nucleoporins: Nup62, Nup54, and Nup58. The coiled-coil domains in α-helical regions of these nucleoporins are thought to be crucial for several protein-protein interactions in the NPC subcomplexes. In this study, we determined the crystal structure of the coiled-coil domain of rat Nup62 fragment (residues 362-425) to 2.4 Å resolution. The crystal structure shows the conserved coiled-coil domain as a parallel three-helix bundle for the Nup62(362-425) fragment. On the basis of our size exclusion chromatography coupled to multiangle light scattering analysis and glutaraldehyde cross-linking experiments, we conclude that the Nup62(362-425) fragment displays dynamic behavior in solution and can also exist in either homodimeric or homotrimeric states. Our comparative analysis of the rat Nup62(362-425) homotrimeric structure with previously reported heterotrimeric structures [rat Nup62(362-425)·Nup54(346-407) and Xenopus Nup62(358-485)·Nup54(315-450)·Nup58(283-406) complexes] demonstrates the structural basis for parallel triple-helix bundle formation for Nup62 with different partners. Moreover, we show that the coiled-coil domain of Nup62 is sufficient for interaction with the coiled-coil domain of rat Exo70, a protein in an exocyst complex. On the basis of these observations, we suggest the plausible chain replacement mechanism that yields to diverse protein assemblies with Nup62. In summary, the coiled-coil motif present in Nup62 imparts the ability to form a homotrimer and heterotrimers either with Nup54 or with Nup54-Nup58 within the NPCs as well as with Exo70 beyond the NPCs. These complexes of Nup62 suggest the crucial role of the coiled-coil motifs in providing plasticity to various modular assemblies.
Collapse
Affiliation(s)
- Pravin S Dewangan
- National Centre for Cell Science , S. P. Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Parshuram J Sonawane
- National Centre for Cell Science , S. P. Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Ankita R Chouksey
- National Centre for Cell Science , S. P. Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Radha Chauhan
- National Centre for Cell Science , S. P. Pune University Campus, Ganeshkhind, Pune 411007, India
| |
Collapse
|
17
|
Hierarchical cascades of instability govern the mechanics of coiled coils: helix unfolding precedes coil unzipping. Biophys J 2015; 107:477-484. [PMID: 25028889 DOI: 10.1016/j.bpj.2014.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/13/2014] [Accepted: 06/03/2014] [Indexed: 12/31/2022] Open
Abstract
Coiled coils are a fundamental emergent motif in proteins found in structural biomaterials, consisting of α-helical secondary structures wrapped in a supercoil. A fundamental question regarding the thermal and mechanical stability of coiled coils in extreme environments is the sequence of events leading to the disassembly of individual oligomers from the universal coiled-coil motifs. To shed light on this phenomenon, here we report atomistic simulations of a trimeric coiled coil in an explicit water solvent and investigate the mechanisms underlying helix unfolding and coil unzipping in the assembly. We employ advanced sampling techniques involving steered molecular dynamics and metadynamics simulations to obtain the free-energy landscapes of single-strand unfolding and unzipping in a three-stranded assembly. Our comparative analysis of the free-energy landscapes of instability pathways shows that coil unzipping is a sequential process involving multiple intermediates. At each intermediate state, one heptad repeat of the coiled coil first unfolds and then unzips due to the loss of contacts with the hydrophobic core. This observation suggests that helix unfolding facilitates the initiation of coiled-coil disassembly, which is confirmed by our 2D metadynamics simulations showing that unzipping of one strand requires less energy in the unfolded state compared with the folded state. Our results explain recent experimental findings and lay the groundwork for studying the hierarchical molecular mechanisms that underpin the thermomechanical stability/instability of coiled coils and similar protein assemblies.
Collapse
|
18
|
Abstract
As a large, nonmembrane bound organelle, the centrosome must rely heavily on protein-protein interactions to assemble itself in the cytoplasm and perform its functions as a microtubule-organizing center. Therefore, to understand how this organelle is built and functions, one must understand the protein-protein interactions made by each centrosome protein. Unfortunately, the highly interconnected nature of the centrosome, combined with its predicted unstructured, coil-rich proteins, has made the use of many standard approaches to studying protein-protein interactions very challenging. The yeast-two hybrid (Y2H) system is well suited for studying the centrosome and is an important complement to other biochemical approaches. In this chapter we describe how to carry out a directed Y2H screen to identify the direct interactions between a given centrosome protein and a library of others. Specifically, we detail using a bioinformatics-based approach (structure prediction programs) to subdivide proteins and screen for interactions using an array-based Y2H approach. We also describe how to use the interaction information garnered from this screen to generate mutations to disrupt specific interactions using mutagenic-PCR and a "reverse" Y2H screen. Finally, we discuss how information from such a screen can be integrated into existing models of centrosome assembly and how it can initiate and guide extensive in vitro and in vivo experimentation to test these models.
Collapse
|
19
|
Chao JT, Wong AKO, Tavassoli S, Young BP, Chruscicki A, Fang NN, Howe LJ, Mayor T, Foster LJ, Loewen CJR. Polarization of the endoplasmic reticulum by ER-septin tethering. Cell 2015; 158:620-32. [PMID: 25083872 DOI: 10.1016/j.cell.2014.06.033] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/16/2014] [Accepted: 06/19/2014] [Indexed: 01/08/2023]
Abstract
Polarization of the plasma membrane (PM) into domains is an important mechanism to compartmentalize cellular activities and to establish cell polarity. Polarization requires formation of diffusion barriers that prevent mixing of proteins between domains. Recent studies have uncovered that the endoplasmic reticulum (ER) of budding yeast and neurons is polarized by diffusion barriers, which in neurons controls glutamate signaling in dendritic spines. The molecular identity of these barriers is currently unknown. Here, we show that a direct interaction between the ER protein Scs2 and the septin Shs1 creates the ER diffusion barrier in yeast. Barrier formation requires Epo1, a novel ER-associated subunit of the polarisome that interacts with Scs2 and Shs1. ER-septin tethering polarizes the ER into separate mother and bud domains, one function of which is to position the spindle in the mother until M phase by confining the spindle capture protein Num1 to the mother ER.
Collapse
Affiliation(s)
- Jesse T Chao
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver BC V6T 1Z3, Canada
| | - Andrew K O Wong
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver BC V6T 1Z3, Canada
| | - Shabnam Tavassoli
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver BC V6T 1Z3, Canada
| | - Barry P Young
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver BC V6T 1Z3, Canada
| | - Adam Chruscicki
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver BC V6T 1Z3, Canada
| | - Nancy N Fang
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver BC V6T 1Z3, Canada; Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver BC V6T 1Z4, Canada
| | - LeAnn J Howe
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver BC V6T 1Z3, Canada
| | - Thibault Mayor
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver BC V6T 1Z3, Canada; Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver BC V6T 1Z4, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver BC V6T 1Z3, Canada; Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver BC V6T 1Z4, Canada
| | - Christopher J R Loewen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver BC V6T 1Z3, Canada.
| |
Collapse
|
20
|
Melzer R, Härter A, Rümpler F, Kim S, Soltis PS, Soltis DE, Theißen G. DEF- and GLO-like proteins may have lost most of their interaction partners during angiosperm evolution. ANNALS OF BOTANY 2014; 114:1431-43. [PMID: 24902716 PMCID: PMC4204782 DOI: 10.1093/aob/mcu094] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/28/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS DEFICIENS (DEF)- and GLOBOSA (GLO)-like proteins constitute two sister clades of floral homeotic transcription factors that were already present in the most recent common ancestor (MRCA) of extant angiosperms. Together they specify the identity of petals and stamens in flowering plants. In core eudicots, DEF- and GLO-like proteins are functional in the cell only as heterodimers with each other. There is evidence that this obligate heterodimerization contributed to the canalization of the flower structure of core eudicots during evolution. It remains unknown as to whether this strict heterodimerization is an ancient feature that can be traced back to the MRCA of extant flowering plants or if it evolved later during the evolution of the crown group angiosperms. METHODS The interactions of DEF- and GLO-like proteins of the early-diverging angiosperms Amborella trichopoda and Nuphar advena and of the magnoliid Liriodendron tulipifera were analysed by employing yeast two-hybrid analysis and electrophoretic mobility shift assay (EMSA). Character-state reconstruction, including data from other species as well, was used to infer the ancestral interaction patterns of DEF- and GLO-like proteins. KEY RESULTS The yeast two-hybrid and EMSA data suggest that DEF- and GLO-like proteins from early-diverging angiosperms both homo- and heterodimerize. Character-state reconstruction suggests that the ability to form heterodimeric complexes already existed in the MRCA of extant angiosperms and that this property remained highly conserved throughout angiosperm evolution. Homodimerization of DEF- and GLO-like proteins also existed in the MRCA of all extant angiosperms. DEF-like protein homodimerization was probably lost very early in angiosperm evolution and was not present in the MRCA of eudicots and monocots. GLO-like protein homodimerization might have been lost later during evolution, but very probably was not present in the MRCA of eudicots. CONCLUSIONS The flexibility of DEF- and GLO-like protein interactions in early-diverging angiosperms may be one reason for the highly diverse flower morphologies observed in these species. The results strengthen the hypothesis that a reduction in the number of interaction partners of DEF- and GLO-like proteins, with DEF-GLO heterodimers remaining the only DNA-binding dimers in core eudicots, contributed to developmental robustness, canalization of flower development and the diversification of angiosperms.
Collapse
Affiliation(s)
- Rainer Melzer
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, D-07743 Jena, Germany Department of Genetics, Institute of Biology, University of Leipzig, Talstraße 33, D-04103 Leipzig, Germany
| | - Andrea Härter
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, D-07743 Jena, Germany
| | - Florian Rümpler
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, D-07743 Jena, Germany
| | | | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Douglas E Soltis
- Department of Biology Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Günter Theißen
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, D-07743 Jena, Germany
| |
Collapse
|
21
|
Roberts AJ, Goodman BS, Reck-Peterson SL. Reconstitution of dynein transport to the microtubule plus end by kinesin. eLife 2014; 3:e02641. [PMID: 24916158 PMCID: PMC4046564 DOI: 10.7554/elife.02641] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cytoplasmic dynein powers intracellular movement of cargo toward the microtubule minus end. The first step in a variety of dynein transport events is the targeting of dynein to the dynamic microtubule plus end, but the molecular mechanism underlying this spatial regulation is not understood. Here, we reconstitute dynein plus-end transport using purified proteins from S. cerevisiae and dissect the mechanism using single-molecule microscopy. We find that two proteins–homologs of Lis1 and Clip170–are sufficient to couple dynein to Kip2, a plus-end-directed kinesin. Dynein is transported to the plus end by Kip2, but is not a passive passenger, resisting its own plus-end-directed motion. Two microtubule-associated proteins, homologs of Clip170 and EB1, act as processivity factors for Kip2, helping it overcome dynein's intrinsic minus-end-directed motility. This reveals how a minimal system of proteins transports a molecular motor to the start of its track. DOI:http://dx.doi.org/10.7554/eLife.02641.001 Eukaryotic cells use transport systems to efficiently move materials from one location to another. Much transport in the cell interior is achieved using molecular motors, which carry cargoes along tracks called microtubules. Unlike roads of human construction, microtubules are very dynamic. One of their ends (the ‘plus’ end) explores the outskirts of the cell, growing and shrinking through the addition and loss of protein building blocks. The other microtubule end (the ‘minus’ end) typically lies in a hub near the center of the cell. There are two types of molecular motor that move on microtubules. Kinesin motors move toward the plus end of the microtubule, and dynein motors move in the opposite direction, toward the minus end. But if dynein only moves to the minus end of the microtubule, a problem arises: how would dynein initially reach the plus end of the microtubule and the outskirts of the cell, where it collects cargoes? Using purified yeast proteins, Roberts et al. reveal that a group of three proteins can solve this problem by transporting dynein to the plus end of the microtubule. The proteins comprise a kinesin motor, and two additional proteins that connect the dynein motor to the kinesin. Imaging the transport process shows that the dynein motor is not a passive passenger: it is able to resist against the kinesin. However, an additional microtubule-associated protein can help the kinesin motor to win this ‘tug of war’, and so the protein complex—including the dynein motor—moves toward the plus end of the microtubule. DOI:http://dx.doi.org/10.7554/eLife.02641.002
Collapse
Affiliation(s)
- Anthony J Roberts
- Department of Cell Biology, Harvard Medical School, Boston, United States Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Brian S Goodman
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | | |
Collapse
|
22
|
Abstract
In most organisms the synaptonemal complex (SC) connects paired homologs along their entire length during much of meiotic prophase. To better understand the structure of the SC, we aim to identify its components and to determine how each of these components contributes to SC function. Here, we report the identification of a novel SC component in Drosophila melanogaster female oocytes, which we have named Corolla. Using structured illumination microscopy, we demonstrate that Corolla is a component of the central region of the SC. Consistent with its localization, we show by yeast two-hybrid analysis that Corolla strongly interacts with Cona, a central element protein, demonstrating the first direct interaction between two inner-synaptonemal complex proteins in Drosophila. These observations help provide a more complete model of SC structure and function in Drosophila females.
Collapse
|
23
|
Chen DH, Huang Y, Liu C, Ruan Y, Shen WH. Functional conservation and divergence of J-domain-containing ZUO1/ZRF orthologs throughout evolution. PLANTA 2014; 239:1159-1173. [PMID: 24659052 DOI: 10.1007/s00425-014-2058-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/05/2014] [Indexed: 06/03/2023]
Abstract
Heat shock protein 40s (Hsp40s), also known as J-proteins, are conserved in prokaryotes and eukaryotes. The Zuotin/Zuotin-related factor (ZUO1/ZRF) family belongs to a novel Hsp40 clade exclusively found in eukaryotes. Zuotin/Zuotin-related factor proteins are characterized by a large N terminal ZUO1 domain originally identified in the yeast ZUO1 protein. The ZUO1 domain is characterized by a highly conserved J-domain, together with an atypical UBD domain first identified in the human ZRF1 protein. Furthermore, ZUO1/ZRF protein families in animals and plants harbor a pair of C terminal SANT domains, suggesting the divergence of their functions with those in fungi. Zuotin/Zuotin-related factor proteins retain the ancestral function as an Hsp70co-chaperone implicated in protein folding and renaturation after stress; these proteins also perform diverse neofunctions in the cytoplasm and transcriptional and/or epigenetic regulatory functions in the nucleus. Therefore, these proteins are involved in translational fidelity control, ribosomal biogenesis, asymmetric cell division, cell cycle, apoptosis, differentiation, and tumorigenesis. The results of sequence and domain organization analysis of proteins from diverse organisms provided valuable insights into the evolutionary conservation and diversity of ZUO1/ZRF protein family. Further, phylogenetic analysis provides a platform for future functional investigation on the ZUO1/ZRF protein family, particularly in higher plants.
Collapse
|
24
|
Tuerxun H, Zhang Y, Ji F, Aili A, Yang X, Ding Y. Application of two-dimensional electrophoresis and mass spectrometry to screen endometriosis-related proteins. Mol Med Rep 2014; 10:95-100. [PMID: 24737119 DOI: 10.3892/mmr.2014.2142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 01/14/2014] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to detect the differences in the protein expression between Uyghur females with or without endometriosis (EM). The two dimensional (2D) gel images of proteins extracted from the serum of Uyghur and Han females with EM and the controls were analyzed using Phoretix 2D software, and the differentially expressed proteins were identified primarily by database query. Having compared the reproducible 2D gel images of proteins from the serum of Uihgur and Han females with and without EM, 13 differentially expressed proteins were obtained from Uyghur females and eight differentially expressed proteins were obtained from Han females. The present study demonstrated ethnic differences in gene and protein expression between Uyghur and Han females with EM.
Collapse
Affiliation(s)
- Hanikezi Tuerxun
- Gynecology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Yanmei Zhang
- Department of Obstetrics, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang 830001, P.R. China
| | - Fei Ji
- Gynecology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Aixingzi Aili
- Department of Gynecology, Shanghai Dongfang Hospital, Shanghai 200120, P.R. China
| | - Xinhua Yang
- Gynecology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Yan Ding
- Gynecology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| |
Collapse
|
25
|
Mehta GD, Agarwal M, Ghosh SK. Functional characterization of kinetochore protein, Ctf19 in meiosis I: an implication of differential impact of Ctf19 on the assembly of mitotic and meiotic kinetochores in Saccharomyces cerevisiae. Mol Microbiol 2014; 91:1179-99. [PMID: 24446862 DOI: 10.1111/mmi.12527] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2014] [Indexed: 11/29/2022]
Abstract
Meiosis is a specialized cell division process through which chromosome numbers are reduced by half for the generation of gametes. Kinetochore, a multiprotein complex that connects centromeres to microtubules, plays essential role in chromosome segregation. Ctf19 is the key central kinetochore protein that recruits all the other non-essential proteins of the Ctf19 complex in budding yeast. Earlier studies have shown the role of Ctf19 complex in enrichment of cohesin around the centromeres both during mitosis and meiosis, leading to sister chromatid cohesion and meiosis II disjunction. Here we show that Ctf19 is also essential for the proper execution of the meiosis I specific unique events, such as non-homologous centromere coupling, homologue pairing, chiasmata resolution and proper orientation of homologues and sister chromatids with respect to the spindle poles. Additionally, this investigation reveals that proper kinetochore function is required for faithful chromosome condensation in meiosis. Finally, this study suggests that absence of Ctf19 affects the integrity of meiotic kinetochore differently than that of the mitotic kinetochore. Consequently, absence of Ctf19 leads to gross chromosome missegregation during meiosis as compared with mitosis. Hence, this study reports for the first time the differential impact of a non-essential kinetochore protein on the mitotic and meiotic kinetochore ensembles and hence chromosome segregation.
Collapse
Affiliation(s)
- Gunjan D Mehta
- Department of Biosciences and Bioengineering, Wadhawani Research Centre of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, 40076, India
| | | | | |
Collapse
|
26
|
Abstract
Rapid development of genomic and proteomic methodologies has provided a wealth of data for deciphering the biomolecular circuitry of a living cell. The main areas of computational research of proteomes outlined in this review are: understanding the system, its features and parameters to help plan the experiments; data integration, to help produce more reliable data sets; visualization and other forms of data representation to simplify interpretation; modeling of the functional regulation; and systems biology. With false-positive rates reaching 50% even in the more reliable data sets, handling the experimental error remains one of the most challenging tasks. Integrative approaches, incorporating results of various genome- and proteome-wide experiments, allow for minimizing the error and bring with them significant predictive power.
Collapse
|
27
|
The anaphase promoting complex regulates yeast lifespan and rDNA stability by targeting Fob1 for degradation. Genetics 2013; 196:693-709. [PMID: 24361936 DOI: 10.1534/genetics.113.158949] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Genomic stability, stress response, and nutrient signaling all play critical, evolutionarily conserved roles in lifespan determination. However, the molecular mechanisms coordinating these processes with longevity remain unresolved. Here we investigate the involvement of the yeast anaphase promoting complex (APC) in longevity. The APC governs passage through M and G1 via ubiquitin-dependent targeting of substrate proteins and is associated with cancer and premature aging when defective. Our two-hybrid screen utilizing Apc5 as bait recovered the lifespan determinant Fob1 as prey. Fob1 is unstable specifically in G1, cycles throughout the cell cycle in a manner similar to Clb2 (an APC target), and is stabilized in APC (apc5(CA)) and proteasome (rpn10) mutants. Deletion of FOB1 increased replicative lifespan (RLS) in wild type (WT), apc5(CA), and apc10 cells, and suppressed apc5(CA) cell cycle progression and rDNA recombination defects. Alternatively, increased FOB1 expression decreased RLS in WT cells, but did not reduce the already short apc5(CA) RLS, suggesting an epistatic interaction between apc5(CA) and fob1. Mutation to a putative L-Box (Fob1(E420V)), a Destruction Box-like motif, abolished Fob1 modifications, stabilized the protein, and increased rDNA recombination. Our work provides a mechanistic role played by the APC to promote replicative longevity and genomic stability in yeast.
Collapse
|
28
|
Whitworth K, Bradford MK, Camara N, Wendland B. Targeted disruption of an EH-domain protein endocytic complex, Pan1-End3. Traffic 2013; 15:43-59. [PMID: 24118836 DOI: 10.1111/tra.12125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 09/23/2013] [Accepted: 09/30/2013] [Indexed: 02/04/2023]
Abstract
Pan1 is a multi-domain scaffold that enables dynamic interactions with both structural and regulatory components of the endocytic pathway. Pan1 is composed of Eps15 Homology (EH) domains which interact with adaptor proteins, a central region that is responsible for its oligomerization and C-terminal binding sites for Arp2/3, F-actin, and type-I myosin motors. In this study, we have characterized the binding sites between Pan1 and its constitutive binding partner End3, another EH domain containing endocytic protein. The C-terminal End3 Repeats of End3 associate with the N-terminal part of Pan1's central coiled-coil region. These repeats appear to act independently of one another as tandem, redundant binding sites for Pan1. The end3-1 allele was sequenced, and corresponds to a C-terminal truncation lacking the End3 Repeats. Mutations of the End3 Repeats highlight that those residues which are identical between these repeats serve as contact sites for the interaction with Pan1.
Collapse
Affiliation(s)
- Karen Whitworth
- Department of Biology, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | | | | | | |
Collapse
|
29
|
Chong A, Child R, Wehrly TD, Rockx-Brouwer D, Qin A, Mann BJ, Celli J. Structure-Function Analysis of DipA, a Francisella tularensis Virulence Factor Required for Intracellular Replication. PLoS One 2013; 8:e67965. [PMID: 23840797 PMCID: PMC3694160 DOI: 10.1371/journal.pone.0067965] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 05/23/2013] [Indexed: 12/26/2022] Open
Abstract
Francisella tularensis is a highly infectious bacterium whose virulence relies on its ability to rapidly reach the macrophage cytosol and extensively replicate in this compartment. We previously identified a novel Francisella virulence factor, DipA (FTT0369c), which is required for intramacrophage proliferation and survival, and virulence in mice. DipA is a 353 amino acid protein with a Sec-dependent signal peptide, four Sel1-like repeats (SLR), and a C-terminal coiled-coil (CC) domain. Here, we determined through biochemical and localization studies that DipA is a membrane-associated protein exposed on the surface of the prototypical F. tularensis subsp. tularensis strain SchuS4 during macrophage infection. Deletion and substitution mutagenesis showed that the CC domain, but not the SLR motifs, of DipA is required for surface exposure on SchuS4. Complementation of the dipA mutant with either DipA CC or SLR domain mutants did not restore intracellular growth of Francisella, indicating that proper localization and the SLR domains are required for DipA function. Co-immunoprecipitation studies revealed interactions with the Francisella outer membrane protein FopA, suggesting that DipA is part of a membrane-associated complex. Altogether, our findings indicate that DipA is positioned at the host–pathogen interface to influence the intracellular fate of this pathogen.
Collapse
Affiliation(s)
- Audrey Chong
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| | - Robert Child
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Tara D. Wehrly
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Dedeke Rockx-Brouwer
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Aiping Qin
- Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Barbara J. Mann
- Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jean Celli
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| |
Collapse
|
30
|
Richmond D, Rizkallah R, Liang F, Hurt MM, Wang Y. Slk19 clusters kinetochores and facilitates chromosome bipolar attachment. Mol Biol Cell 2013; 24:566-77. [PMID: 23283988 PMCID: PMC3583661 DOI: 10.1091/mbc.e12-07-0552] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Yeast kinetochore protein Slk19 is required for kinetochore clustering, and nocodazole exposure to slk19 mutant cells causes impaired kinetochore capture and delayed chromosome bipolar attachment after nocodazole washout. In all eukaryotic cells, DNA is packaged into multiple chromosomes that are linked to microtubules through a large protein complex called a kinetochore. Previous data show that the kinetochores are clustered together during most of the cell cycle, but the mechanism and the biological significance of kinetochore clustering are unknown. As a kinetochore protein in budding yeast, the role of Slk19 in the stability of the anaphase spindle has been well studied, but its function in chromosome segregation has remained elusive. Here we show that Slk19 is required for kinetochore clustering when yeast cells are treated with the microtubule-depolymerizing agent nocodazole. We further find that slk19Δ mutant cells exhibit delayed kinetochore capture and chromosome bipolar attachment after the disruption of the kinetochore–microtubule interaction by nocodazole, which is likely attributed to defective kinetochore clustering. In addition, we show that Slk19 interacts with itself, suggesting that the dimerization of Slk19 may mediate the interaction between kinetochores for clustering. Therefore Slk19 likely acts as kinetochore glue that clusters kinetochores to facilitate efficient and faithful chromosome segregation.
Collapse
Affiliation(s)
- Daniel Richmond
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | | | |
Collapse
|
31
|
Wang Y, Zhang X, Zhang H, Lu Y, Huang H, Dong X, Chen J, Dong J, Yang X, Hang H, Jiang T. Coiled-coil networking shapes cell molecular machinery. Mol Biol Cell 2012; 23:3911-22. [PMID: 22875988 PMCID: PMC3459866 DOI: 10.1091/mbc.e12-05-0396] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Coiled coil is a principal oligomerization motif. A comprehensive map of coiled-coil interactions (CCIs) in yeast is reported. Computational analysis reveals that CCIs are extensively involved in cell machinery organization. Disrupting the CCIs in the kinetochore leads to defects in kinetochore assembly and cell division. The highly abundant α-helical coiled-coil motif not only mediates crucial protein–protein interactions in the cell but is also an attractive scaffold in synthetic biology and material science and a potential target for disease intervention. Therefore a systematic understanding of the coiled-coil interactions (CCIs) at the organismal level would help unravel the full spectrum of the biological function of this interaction motif and facilitate its application in therapeutics. We report the first identified genome-wide CCI network in Saccharomyces cerevisiae, which consists of 3495 pair-wise interactions among 598 predicted coiled-coil regions. Computational analysis revealed that the CCI network is specifically and functionally organized and extensively involved in the organization of cell machinery. We further show that CCIs play a critical role in the assembly of the kinetochore, and disruption of the CCI network leads to defects in kinetochore assembly and cell division. The CCI network identified in this study is a valuable resource for systematic characterization of coiled coils in the shaping and regulation of a host of cellular machineries and provides a basis for the utilization of coiled coils as domain-based probes for network perturbation and pharmacological applications.
Collapse
Affiliation(s)
- Yongqiang Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Rezvani K, Baalman K, Teng Y, Mee MP, Dawson SP, Wang H, De Biasi M, Mayer RJ. Proteasomal degradation of the metabotropic glutamate receptor 1α is mediated by Homer-3 via the proteasomal S8 ATPase: Signal transduction and synaptic transmission. J Neurochem 2012; 122:24-37. [PMID: 22486777 DOI: 10.1111/j.1471-4159.2012.07752.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The metabotropic glutamate receptors (mGluRs) fine-tune the efficacy of synaptic transmission. This unique feature makes mGluRs potential targets for the treatment of various CNS disorders. There is ample evidence to show that the ubiquitin proteasome system mediates changes in synaptic strength leading to multiple forms of synaptic plasticity. The present study describes a novel interaction between post-synaptic adaptors, long Homer-3 proteins, and one of the 26S proteasome regulatory subunits, the S8 ATPase, that influences the degradation of the metabotropic glutamate receptor 1α (mGluR1α). We have shown that the two human long Homer-3 proteins specifically interact with human proteasomal S8 ATPase. We identified that mGluR1α and long Homer-3s immunoprecipitate with the 26S proteasome both in vitro and in vivo. We further found that the mGluR1α receptor can be ubiquitinated and degraded by the 26S proteasome and that Homer-3A facilitates this process. Furthermore, the siRNA mediated silencing of Homer-3 led to increased levels of total and plasma membrane-associated mGluR1α receptors. These results suggest that long Homer-3 proteins control the degradation of mGluR1α receptors by shuttling ubiquitinated mGluR-1α receptors to the 26S proteasome via the S8 ATPase which may modulate synaptic transmission.
Collapse
Affiliation(s)
- Khosrow Rezvani
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, Vermillion, SD 57069, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
James K, Wipat A, Hallinan J. Is newer better?--evaluating the effects of data curation on integrated analyses in Saccharomyces cerevisiae. Integr Biol (Camb) 2012; 4:715-27. [PMID: 22526920 DOI: 10.1039/c2ib00123c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent high-throughput experiments have produced a wealth of heterogeneous datasets, each of which provides information about different aspects of the cell. Consequently, integration of diverse data types is essential in order to address many biological questions. The quality of any integrated analysis system is dependent upon the quality of its component data, and upon the Gold Standard data used to evaluate it. It is commonly assumed that the quality of data improves as databases grow and change, particularly for manually curated databases. However, the validity of this assumption can be questioned, given the constant changes in the data coupled with the high level of noise associated with high-throughput experimental techniques. One of the most powerful approaches to data integration is the use of Probabilistic Functional Integrated Networks (PFINs). Here, we systematically analyse the changes in four highly-curated and widely-used online databases and evaluate the extent to which these changes affect the protein function prediction performance of PFINs in the yeast Saccharomyces cerevisiae. We find that the global trend in network performance improves over time. Where individual areas of biology are concerned, however, the most recent files do not always produce the best results. Individual datasets have unique biases towards different biological processes and by selecting and integrating relevant datasets performance can be improved. When using any type of integrated system to answer a specific biological question careful selection of raw data and Gold Standard is vital, since the most recent data may not be the most appropriate.
Collapse
Affiliation(s)
- Katherine James
- School of Computing Science, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | | | | |
Collapse
|
34
|
Jin F, Liu H, Li P, Yu HG, Wang Y. Loss of function of the Cik1/Kar3 motor complex results in chromosomes with syntelic attachment that are sensed by the tension checkpoint. PLoS Genet 2012; 8:e1002492. [PMID: 22319456 PMCID: PMC3271067 DOI: 10.1371/journal.pgen.1002492] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 12/06/2011] [Indexed: 11/24/2022] Open
Abstract
The attachment of sister kinetochores by microtubules emanating from opposite spindle poles establishes chromosome bipolar attachment, which generates tension on chromosomes and is essential for sister-chromatid segregation. Syntelic attachment occurs when both sister kinetochores are attached by microtubules from the same spindle pole and this attachment is unable to generate tension on chromosomes, but a reliable method to induce syntelic attachments is not available in budding yeast. The spindle checkpoint can sense the lack of tension on chromosomes as well as detached kinetochores to prevent anaphase onset. In budding yeast Saccharomyces cerevisiae, tension checkpoint proteins Aurora/Ipl1 kinase and centromere-localized Sgo1 are required to sense the absence of tension but are dispensable for the checkpoint response to detached kinetochores. We have found that the loss of function of a motor protein complex Cik1/Kar3 in budding yeast leads to syntelic attachments. Inactivation of either the spindle or tension checkpoint enables premature anaphase entry in cells with dysfunctional Cik1/Kar3, resulting in co-segregation of sister chromatids. Moreover, the abolished Kar3-kinetochore interaction in cik1 mutants suggests that the Cik1/Kar3 complex mediates chromosome movement along microtubules, which could facilitate bipolar attachment. Therefore, we can induce syntelic attachments in budding yeast by inactivating the Cik1/Kar3 complex, and this approach will be very useful to study the checkpoint response to syntelic attachments. Chromosome bipolar attachment occurs when sister chromatids are attached by microtubules emanating from opposite spindle poles and is essential for faithful sister-chromatid segregation. Chromosomes are under tension once bipolar attachment is established. The absence of tension is sensed by the tension checkpoint that prevents chromosome segregation. The attachment of sister chromatids by microtubules from the same spindle pole generates syntelic attachment, which fails to generate tension on chromosomes. However, a reliable method to induce syntelic attachment is not available. Our findings indicate that the inactivation of the motor complex, Cik1/Kar3, results in chromosomes with syntelic attachment in budding yeast. In the absence of the tension checkpoint, yeast cells with dysfunctional Cik1/Kar3 enter anaphase, resulting in co-segregation of sister chromatids. Therefore, with this method we can experimentally induce syntelic attachment in yeast and investigate how cells respond to this incorrect attachment.
Collapse
Affiliation(s)
- Fengzhi Jin
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Hong Liu
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Ping Li
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Hong-Guo Yu
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Yanchang Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
- * E-mail:
| |
Collapse
|
35
|
Ji Z, Song C, Lu X, Wang J. Two coiled-coil regions of Xanthomonas oryzae pv. oryzae harpin differ in oligomerization and hypersensitive response induction. Amino Acids 2011; 40:381-92. [PMID: 20532949 DOI: 10.1007/s00726-010-0643-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 05/27/2010] [Indexed: 12/31/2022]
Abstract
Hpa1(Xoo) (harpin) is a type III secreted protein of the rice blight bacterial pathogen Xanthomonas oryzae pv. oryzae that elicits a hypersensitive response (HR) in nonhost tobacco. Hpa1(Xoo) is predicted to contain two potential coiled-coil (CC) regions, one at the N-terminus with a high probability of formation, and one at the C-terminus with a lower probability of formation. We constructed several CC-equivalent peptides by a chemosynthetic method, and investigated the structure-function of the predicted Hpa1(Xoo) CC regions, using biophysical and biochemical approaches. Both peptides elicited an HR in tobacco. Mutant versions of the N- and C-terminal peptides that were predicted to disrupt or favor CC formation were generated. The resulting altered HR activity and oligomerization indicated that the N-terminal CC region is essential for eliciting HR, but the C-terminus is not. The results also indicate that a 14-residue fragment (LDQLLCQLISALLQ) within the N-terminal CC region is a minimal and independent functional element for HR-induction in tobacco leaves. We propose that HR-induction requires a specific oligomerization of the CC regions of Hpa1(Xoo).
Collapse
Affiliation(s)
- Zhaolin Ji
- Department of Plant Pathology, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, People's Republic of China.
| | | | | | | |
Collapse
|
36
|
Schreiber G, Keating AE. Protein binding specificity versus promiscuity. Curr Opin Struct Biol 2011; 21:50-61. [PMID: 21071205 PMCID: PMC3053118 DOI: 10.1016/j.sbi.2010.10.002] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 10/10/2010] [Accepted: 10/14/2010] [Indexed: 10/18/2022]
Abstract
Interactions between macromolecules in general, and between proteins in particular, are essential for any life process. Examples include transfer of information, inhibition or activation of function, molecular recognition as in the immune system, assembly of macromolecular structures and molecular machines, and more. Proteins interact with affinities ranging from millimolar to femtomolar and, because affinity determines the concentration required to obtain 50% binding, the amount of different complexes formed is very much related to local concentrations. Although the concentration of a specific binding partner is usually quite low in the cell (nanomolar to micromolar), the total concentration of other macromolecules is very high, allowing weak and non-specific interactions to play important roles. In this review we address the question of binding specificity, that is, how do some proteins maintain monogamous relations while others are clearly polygamous. We examine recent work that addresses the molecular and structural basis for specificity versus promiscuity. We show through examples how multiple solutions exist to achieve binding via similar interfaces and how protein specificity can be tuned using both positive and negative selection (specificity by demand). Binding of a protein to numerous partners can be promoted through variation in which residues are used for binding, conformational plasticity and/or post-translational modification. Natively unstructured regions represent the extreme case in which structure is obtained only upon binding. Many natively unstructured proteins serve as hubs in protein-protein interaction networks and such promiscuity can be of functional importance in biology.
Collapse
Affiliation(s)
- Gideon Schreiber
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Amy E. Keating
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139
| |
Collapse
|
37
|
Rackham OJL, Madera M, Armstrong CT, Vincent TL, Woolfson DN, Gough J. The evolution and structure prediction of coiled coils across all genomes. J Mol Biol 2010; 403:480-93. [PMID: 20813113 DOI: 10.1016/j.jmb.2010.08.032] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 08/06/2010] [Accepted: 08/17/2010] [Indexed: 10/19/2022]
Abstract
Coiled coils are α-helical interactions found in many natural proteins. Various sequence-based coiled-coil predictors are available, but key issues remain: oligomeric state and protein-protein interface prediction and extension to all genomes. We present SpiriCoil (http://supfam.org/SUPERFAMILY/spiricoil), which is based on a novel approach to the coiled-coil prediction problem for coiled coils that fall into known superfamilies: hundreds of hidden Markov models representing coiled-coil-containing domain families. Using whole domains gives the advantage that sequences flanking the coiled coils help. SpiriCoil performs at least as well as existing methods at detecting coiled coils and significantly advances the state of the art for oligomer state prediction. SpiriCoil has been run on over 16 million sequences, including all completely sequenced genomes (more than 1200), and a resulting Web interface supplies data downloads, alignments, scores, oligomeric state classifications, three-dimensional homology models and visualisation. This has allowed, for the first time, a genomewide analysis of coiled-coil evolution. We found that coiled coils have arisen independently de novo well over a hundred times, and these are observed in 16 different oligomeric states. Coiled coils in almost all oligomeric states were present in the last universal common ancestor of life. The vast majority of occasions that individual coiled coils have arisen de novo were before the last universal common ancestor of life; we do, however, observe scattered instances throughout subsequent evolutionary history, mostly in the formation of the eukaryote superkingdom. Coiled coils do not change their oligomeric state over evolution and did not evolve from the rearrangement of existing helices in proteins; coiled coils were forged in unison with the fold of the whole protein.
Collapse
Affiliation(s)
- Owen J L Rackham
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, UK
| | | | | | | | | | | |
Collapse
|
38
|
Lai F, Wu R, Wang J, Li C, Zou L, Lu Y, Liang C. Far3p domains involved in the interactions of Far proteins and pheromone-induced cell cycle arrest in budding yeast. FEMS Yeast Res 2010; 11:72-9. [PMID: 20977626 DOI: 10.1111/j.1567-1364.2010.00691.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Far3p (factor arrest), a protein that interacts with Far7-11p, is required for the pheromone-mediated cell cycle arrest in G1 phase. We used a combination of computational and experimental strategies to identify the Far3p self-association, to map the Far3p domains that interact with Far3p itself and with other Far proteins, and to reveal the importance of the two coiled-coil motifs of Far3p in the integrity and function of the Far complex. We show that Far3p self-associates through its central region and its C-terminal coiled-coil domain, that the amino acid 61-100 region of Far3p interacts with Far7p, and that the Far3p N-terminal coiled-coil domain interacts with Far9p and Far10p. Mutation of the N-terminal coiled coil disrupts the interactions of Far3p with Far9p and Far10p, and mutation of the C-terminal domain weakens the Far3p self-interaction. Although the N- and C-terminal coiled-coil mutants reserve some of the interactions with itself and some other Far proteins, both mutants are defective in the pheromone-mediated G1 arrest, indicating that both coiled-coil motifs of Far3p are essential for the integrity and the function of the Far complex.
Collapse
Affiliation(s)
- Fenju Lai
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China Section of Biochemistry and Cell Biology, Division of Life Science, and Center for Cancer Research, Hong Kong University of Science and Technology, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Kinetochores mediate chromosome movement during cell division by interacting with the spindle microtubules. Sexual reproduction necessitates the daunting task of reducing ploidy (number of chromosome sets) in the gametes, which depends upon the specialized properties of meiosis. Kinetochores have a central role in the reduction process. In this review, we discuss the complexity of this role of kinetochores in meiosis-I.
Collapse
Affiliation(s)
- Amit Bardhan
- Crooked Lane, Chinsurah, Hooghly 712 101, India.
| |
Collapse
|
40
|
Esposito C, Carullo P, Pedone E, Graziano G, Del Vecchio P, Berisio R. Dimerisation and structural integrity of Heparin Binding Hemagglutinin A from Mycobacterium tuberculosis: implications for bacterial agglutination. FEBS Lett 2010; 584:1091-6. [PMID: 20178790 DOI: 10.1016/j.febslet.2010.02.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 02/12/2010] [Accepted: 02/16/2010] [Indexed: 11/19/2022]
Abstract
Heparin Binding Hemagglutinin A (HBHA) is hitherto the sole virulence factor associated with tuberculosis dissemination from the lungs, the site of primary infection, to epithelial cells. We have previously reported the solution structure of HBHA, a dimeric and elongated molecule. Since oligomerisation of HBHA is associated with its ability to induce bacterial agglutination, we investigated this process using experimental and modelling techniques. We here identified a short segment of HBHA whose presence is mandatory for the stability of folded conformation, whose denaturation is a reversible two-state process. Our data suggest that agglutination-driven cell-cell interactions do not occur via association of HBHA monomers, nor via association of HBHA dimers and open the scenario to a possible trans-dimerisation process.
Collapse
Affiliation(s)
- Carla Esposito
- Istitute of Biostructures and Bioimaging, CNR, Naples, Italy
| | | | | | | | | | | |
Collapse
|
41
|
A computationally guided protein-interaction screen uncovers coiled-coil interactions involved in vesicular trafficking. J Mol Biol 2009; 392:228-41. [PMID: 19591838 DOI: 10.1016/j.jmb.2009.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 06/15/2009] [Accepted: 07/02/2009] [Indexed: 11/21/2022]
Abstract
Mapping protein-protein interactions at a domain or motif level can provide structural annotation of the interactome. The alpha-helical coiled coil is among the most common protein-interaction motifs, and proteins predicted to contain coiled coils participate in diverse biological processes. Here, we introduce a combined computational/experimental screening strategy that we used to uncover coiled-coil interactions among proteins involved in vesicular trafficking in Saccharomyces cerevisiae. A number of coiled-coil complexes have already been identified and reported to play important roles in this important biological process. We identify additional examples of coiled coils that can form physical associations. The computational strategy used to prioritize coiled-coil candidates for testing dramatically improved the efficiency of discovery in a large experimental screen. As assessed by comprehensive yeast two-hybrid assays, computational prefiltering retained 90% of positive interacting pairs and eliminated >60% of negatives from a set of interaction candidates. The coiled-coil-mediated interaction network elucidated using the combined computational/experimental approach comprises 80 coiled-coil associations between 58 protein pairs, among which 21 protein interactions have not been previously reported in interaction databases and 26 interactions were previously known at the protein level but have now been localized to the coiled-coil motif. The coiled-coil-mediated interactions were specific rather than promiscuous, and many interactions could be recapitulated in a green fluorescent protein complementation assay. Our method provides an efficient route to discovering new coiled-coil interactions and uncovers a number of associations that may have functional significance for vesicular trafficking.
Collapse
|
42
|
Chiang T, Scholtens D. A general pipeline for quality and statistical assessment of protein interaction data using R and Bioconductor. Nat Protoc 2009; 4:535-46. [DOI: 10.1038/nprot.2009.26] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
43
|
Gibson TA, Goldberg DS. Questioning the ubiquity of neofunctionalization. PLoS Comput Biol 2009; 5:e1000252. [PMID: 19119408 PMCID: PMC2597716 DOI: 10.1371/journal.pcbi.1000252] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 11/12/2008] [Indexed: 11/19/2022] Open
Abstract
Gene duplication provides much of the raw material from which functional diversity evolves. Two evolutionary mechanisms have been proposed that generate functional diversity: neofunctionalization, the de novo acquisition of function by one duplicate, and subfunctionalization, the partitioning of ancestral functions between gene duplicates. With protein interactions as a surrogate for protein functions, evidence of prodigious neofunctionalization and subfunctionalization has been identified in analyses of empirical protein interactions and evolutionary models of protein interactions. However, we have identified three phenomena that have contributed to neofunctionalization being erroneously identified as a significant factor in protein interaction network evolution. First, self-interacting proteins are underreported in interaction data due to biological artifacts and design limitations in the two most common high-throughput protein interaction assays. Second, evolutionary inferences have been drawn from paralog analysis without consideration for concurrent and subsequent duplication events. Third, the theoretical model of prodigious neofunctionalization is unable to reproduce empirical network clustering and relies on untenable parameter requirements. In light of these findings, we believe that protein interaction evolution is more persuasively characterized by subfunctionalization and self-interactions.
Collapse
Affiliation(s)
- Todd A Gibson
- Computational Bioscience Program, University of Colorado Denver, Aurora, Colorado, United States of America.
| | | |
Collapse
|
44
|
Yamamura Y, Shim WB. The coiled-coil protein-binding motif in Fusarium verticillioides Fsr1 is essential for maize stalk rot virulence. MICROBIOLOGY-SGM 2008; 154:1637-1645. [PMID: 18524918 DOI: 10.1099/mic.0.2008/016782-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fusarium verticillioides (Sacc.) Nirenberg (teleomorph Gibberella moniliformis Wineland) is one of the key pathogens of maize stalk rot disease. However, a clear understanding of stalk rot pathogenesis is still lacking. Previously, we identified the F. verticillioides FSR1 gene, which plays a key role in fungal virulence and sexual mating. The predicted Fsr1 protein contains multiple protein-binding domains, namely a caveolin-binding domain, a coiled-coil structure, and a calmodulin-binding motif at the N terminus and a WD40 repeat domain at the C terminus. Fsr1 shares significant similarity to a family of striatin proteins that play a critical role in cellular mechanisms that regulate a variety of developmental processes. Significantly, FSR1 function is conserved in Fusarium graminearum, where it also plays a direct role in pathogenesis. In this study, our goal was to determine the motif(s) in Fsr1 that are directly associated with fungal virulence. We complemented the FSR1 knockout (Deltafsr1) strain with mutated versions of the FSR1 gene, and determined that the Fsr1 C-terminal WD40 repeat domain is dispensable for vegetative growth and maize stalk rot virulence. We also examined the potential link between FSR1-mediated virulence and cell wall-degrading enzyme (alpha-amylase, pectinase and cellulase) activities. Further characterization of the N-terminal region revealed that the coiled-coil structure is essential for virulence in F. verticillioides. The coiled-coil domain is involved in a variety of protein-protein interactions in eukaryotic systems, and thus we hypothesize that the interaction between Fsr1 and the putative Fsr1-binding protein triggers downstream gene signalling that is associated with F. verticillioides virulence.
Collapse
Affiliation(s)
- Yoshimi Yamamura
- Department of Plant Pathology and Microbiology, Program for the Biology of Filamentous Fungi, Texas A&M University, College Station, TX 77843-2132, USA
| | - Won-Bo Shim
- Department of Plant Pathology and Microbiology, Program for the Biology of Filamentous Fungi, Texas A&M University, College Station, TX 77843-2132, USA
| |
Collapse
|
45
|
Bachellier-Bassi S, Gadal O, Bourout G, Nehrbass U. Cell cycle-dependent kinetochore localization of condensin complex in Saccharomyces cerevisiae. J Struct Biol 2008; 162:248-59. [PMID: 18296067 DOI: 10.1016/j.jsb.2008.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 12/20/2007] [Accepted: 01/04/2008] [Indexed: 01/01/2023]
Abstract
In budding yeast mitosis is endonuclear and associated with a very limited condensation of the chromosomes. Despite this partial chromosomal condensation, condensin is conserved and essential for the Saccharomyces cerevisiae mitotic cycle. Here, we investigate the localization of condensin during the mitotic cycle. In addition to a constitutive association with rDNA, we have discovered that condensin is localized to the kinetochore in a cell cycle-dependent manner. Shortly after duplication of the spindle pole body, the yeast equivalent of the centrosome, we observed a local enrichment of condensin colocalizing with kinetochore components. This specific association is consistent with mutant phenotypes of chromosome loss and defective sister chromatid separation at anaphase. During a short period of the cell cycle, we observed, at the single cell level, a spatial proximity of condensin and a cohesin rosette, without colocalization. Furthermore, using a genetic screen we demonstrated that condensin localization at kinetochores is specifically impaired in a mutant for ulp2/smt4, an abundant SUMO protease. In conclusion, during chromosome segregation, we established a SUMO-dependent cell cycle-specific condensin concentration colocalizing with kinetochores.
Collapse
Affiliation(s)
- Sophie Bachellier-Bassi
- Unité de Biologie Cellulaire du Noyau, CNRS URA 2582, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris cedex 15, France.
| | | | | | | |
Collapse
|
46
|
Droit A, Hunter JM, Rouleau M, Ethier C, Picard-Cloutier A, Bourgais D, Poirier GG. PARPs database: a LIMS systems for protein-protein interaction data mining or laboratory information management system. BMC Bioinformatics 2007; 8:483. [PMID: 18093328 PMCID: PMC2266781 DOI: 10.1186/1471-2105-8-483] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 12/19/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the "post-genome" era, mass spectrometry (MS) has become an important method for the analysis of proteins and the rapid advancement of this technique, in combination with other proteomics methods, results in an increasing amount of proteome data. This data must be archived and analysed using specialized bioinformatics tools. DESCRIPTION We herein describe "PARPs database," a data analysis and management pipeline for liquid chromatography tandem mass spectrometry (LC-MS/MS) proteomics. PARPs database is a web-based tool whose features include experiment annotation, protein database searching, protein sequence management, as well as data-mining of the peptides and proteins identified. CONCLUSION Using this pipeline, we have successfully identified several interactions of biological significance between PARP-1 and other proteins, namely RFC-1, 2, 3, 4 and 5.
Collapse
Affiliation(s)
- Arnaud Droit
- Health and Environment Unit, Laval University Medical research Center, CHUQ, Québec, Canada.
| | | | | | | | | | | | | |
Collapse
|
47
|
Lee I, Li Z, Marcotte EM. An improved, bias-reduced probabilistic functional gene network of baker's yeast, Saccharomyces cerevisiae. PLoS One 2007; 2:e988. [PMID: 17912365 PMCID: PMC1991590 DOI: 10.1371/journal.pone.0000988] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 09/10/2007] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Probabilistic functional gene networks are powerful theoretical frameworks for integrating heterogeneous functional genomics and proteomics data into objective models of cellular systems. Such networks provide syntheses of millions of discrete experimental observations, spanning DNA microarray experiments, physical protein interactions, genetic interactions, and comparative genomics; the resulting networks can then be easily applied to generate testable hypotheses regarding specific gene functions and associations. METHODOLOGY/PRINCIPAL FINDINGS We report a significantly improved version (v. 2) of a probabilistic functional gene network of the baker's yeast, Saccharomyces cerevisiae. We describe our optimization methods and illustrate their effects in three major areas: the reduction of functional bias in network training reference sets, the application of a probabilistic model for calculating confidences in pair-wise protein physical or genetic interactions, and the introduction of simple thresholds that eliminate many false positive mRNA co-expression relationships. Using the network, we predict and experimentally verify the function of the yeast RNA binding protein Puf6 in 60S ribosomal subunit biogenesis. CONCLUSIONS/SIGNIFICANCE YeastNet v. 2, constructed using these optimizations together with additional data, shows significant reduction in bias and improvements in precision and recall, in total covering 102,803 linkages among 5,483 yeast proteins (95% of the validated proteome). YeastNet is available from http://www.yeastnet.org.
Collapse
Affiliation(s)
- Insuk Lee
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Zhihua Li
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Edward M. Marcotte
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
48
|
Analysis of septins across kingdoms reveals orthology and new motifs. BMC Evol Biol 2007; 7:103. [PMID: 17601340 PMCID: PMC1931588 DOI: 10.1186/1471-2148-7-103] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Accepted: 07/01/2007] [Indexed: 11/10/2022] Open
Abstract
Background Septins are cytoskeletal GTPase proteins first discovered in the fungus Saccharomyces cerevisiae where they organize the septum and link nuclear division with cell division. More recently septins have been found in animals where they are important in processes ranging from actin and microtubule organization to embryonic patterning and where defects in septins have been implicated in human disease. Previous studies suggested that many animal septins fell into independent evolutionary groups, confounding cross-kingdom comparison. Results In the current work, we identified 162 septins from fungi, microsporidia and animals and analyzed their phylogenetic relationships. There was support for five groups of septins with orthology between kingdoms. Group 1 (which includes S. cerevisiae Cdc10p and human Sept9) and Group 2 (which includes S. cerevisiae Cdc3p and human Sept7) contain sequences from fungi and animals. Group 3 (which includes S. cerevisiae Cdc11p) and Group 4 (which includes S. cerevisiae Cdc12p) contain sequences from fungi and microsporidia. Group 5 (which includes Aspergillus nidulans AspE) contains sequences from filamentous fungi. We suggest a modified nomenclature based on these phylogenetic relationships. Comparative sequence alignments revealed septin derivatives of already known G1, G3 and G4 GTPase motifs, four new motifs from two to twelve amino acids long and six conserved single amino acid positions. One of these new motifs is septin-specific and several are group specific. Conclusion Our studies provide an evolutionary history for this important family of proteins and a framework and consistent nomenclature for comparison of septin orthologs across kingdoms.
Collapse
|
49
|
Barbara KE, Willis KA, Haley TM, Deminoff SJ, Santangelo GM. Coiled coil structures and transcription: an analysis of the S. cerevisiae coilome. Mol Genet Genomics 2007; 278:135-47. [PMID: 17476531 DOI: 10.1007/s00438-007-0237-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 03/22/2007] [Indexed: 12/25/2022]
Abstract
The alpha-helical coiled coil is a simple but widespread motif that is an integral feature of many cellular structures. Coiled coils allow monomeric building blocks to form complex assemblages that can serve as molecular motors and springs. Previous parametrically delimited analyses of the distribution of coiled coils in the genomes of diverse organisms, including Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana, Caenorhabditis elegans and Homo sapiens, have identified conserved biological processes that make use of this versatile motif. Here we present a comprehensive inventory of the set of coiled coil proteins in S. cerevisiae by combining multiple coiled coil prediction algorithms with extensive literature curation. Our analysis of this set of proteins, which we call the coilome, reveals a wider role for this motif in transcription than was anticipated, particularly with respect to the category that includes nucleocytoplasmic shuttling factors involved in transcriptional regulation. We also show that the constitutively nuclear yeast transcription factor Gcr1 is homologous to the mammalian transcription factor MLL3, and that two coiled coil domains conserved between these homologs are important for Gcr1 dimerization and function. These data support the hypothesis that coiled coils are required to assemble structures essential for proper functioning of the transcriptional machinery.
Collapse
Affiliation(s)
- Kellie E Barbara
- Mississippi Functional Genomics Network, The University of Southern Mississippi, Hattiesburg, MS, USA
| | | | | | | | | |
Collapse
|
50
|
Pei P, Zhang A. A topological measurement for weighted protein interaction network. PROCEEDINGS. IEEE COMPUTATIONAL SYSTEMS BIOINFORMATICS CONFERENCE 2007:268-78. [PMID: 16447984 DOI: 10.1109/csb.2005.8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
High-throughput methods for detecting protein-protein interactions (PPI) have given researchers an initial global picture of protein interactions on a genomic scale. The usefulness of this understanding is, however, typically compromised by noisy data. The effective way of integrating and using these non-congruent data sets has received little attention to date. This paper proposes a model to integrate different data sets. We construct this model using our prior knowledge of data set reliability. Based on this model, we propose a topological measurement to select reliable interactions and to quantify the similarity between two proteins' interaction profiles. Our measurement exploits the small-world network topological properties of protein interaction network. Meanwhile, we discovered some additional properties of the network. We show that our measurement can be used to find reliable interactions with improved performance and to find protein pairs with higher function homogeneity.
Collapse
Affiliation(s)
- Pengjun Pei
- Department of Computer Science and Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA.
| | | |
Collapse
|