1
|
Lohia GK, Riquelme SA. Influence of cell bioenergetics on host-pathogen interaction in the lung. Front Immunol 2025; 16:1549293. [PMID: 40248701 PMCID: PMC12003392 DOI: 10.3389/fimmu.2025.1549293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/19/2025] [Indexed: 04/19/2025] Open
Abstract
Pulmonary diseases, arising from infections caused by bacteria, fungi, and viruses, or stemming from underlying genetic factors are one of the leading causes of mortality in humans, accounting for millions of deaths every year. At the onset of pulmonary diseases, crucial roles are played by phagocytic immune cells, particularly tissue-resident macrophages, in regulating the immune response at the mucosal barrier. Recent strides have illuminated the pivotal role of host bioenergetics modulated by metabolites derived from both pathogens and hosts in influencing the pathophysiology of major organs. Their influence extends to processes such as the infiltration of immune cells, activation of macrophages, and the polarization phenomenon. Furthermore, host-derived metabolites, such as itaconate, contribute to the promotion of anti-inflammatory responses, thereby preventing immunopathology and facilitating the preservation of mucosal niches to thrive for the long-term. This review explores recent advancements in the field of immunometabolism, with a particular emphasis on the intricacies of disease progression in pulmonary infections caused by bacteria such as P. aeruginosa, M. tuberculosis and S. aureus and fungi like C. albicans.
Collapse
|
2
|
He H, Zhang W, Jiang L, Tong X, Zheng Y, Xia Z. Endothelial Cell Dysfunction Due to Molecules Secreted by Macrophages in Sepsis. Biomolecules 2024; 14:980. [PMID: 39199368 PMCID: PMC11352357 DOI: 10.3390/biom14080980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Sepsis is recognized as a syndrome of systemic inflammatory reaction induced by dysregulation of the body's immunity against infection. The multiple organ dysfunction associated with sepsis is a serious threat to the patient's life. Endothelial cell dysfunction has been extensively studied in sepsis. However, the role of macrophages in sepsis is not well understood and the intrinsic link between the two cells has not been elucidated. Macrophages are first-line cells of the immune response, whereas endothelial cells are a class of cells that are highly altered in function and morphology. In sepsis, various cytokines secreted by macrophages and endothelial cell dysfunction are inextricably linked. Therefore, investigating how macrophages affect endothelial cells could offer a theoretical foundation for the treatment of sepsis. This review links molecules (TNF-α, CCL2, ROS, VEGF, MMP-9, and NO) secreted by macrophages under inflammatory conditions to endothelial cell dysfunction (adhesion, permeability, and coagulability), refining the pathophysiologic mechanisms of sepsis. At the same time, multiple approaches (a variety of miRNA and medicines) regulating macrophage polarization are also summarized, providing new insights into reversing endothelial cell dysfunction and improving the outcome of sepsis treatment.
Collapse
Affiliation(s)
- Heng He
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
| | - Wei Zhang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
| | - Luofeng Jiang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
| | - Xirui Tong
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
| | - Yongjun Zheng
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
| | - Zhaofan Xia
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai 200433, China
| |
Collapse
|
3
|
Wang X, Yu H, Zhang Y, Chang X, Liu C, Wen X, Tian F, Li Y. Curcumin Alleviates Osteoarthritis Through the p38MAPK Pathway: Network Pharmacological Prediction and Experimental Confirmation. J Inflamm Res 2024; 17:5039-5056. [PMID: 39081871 PMCID: PMC11288354 DOI: 10.2147/jir.s459867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Objective Osteoarthritis (OA) is a common degenerative disease worldwide. While curcumin has shown therapeutic effects on OA, its mechanism remains unknown. This study aimed to investigate the molecular mechanism of curcumin in treating OA through network pharmacology and both in vivo and in vitro experiments. Methods Curcumin-related targets were obtained using the HERB and DrugBank databases. GeneCards and DisGeNET were used to build a target database for OA. The STRING database was employed to construct protein-protein interaction networks and analyze related protein interactions. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and gene ontology enrichment analyses of core targets were performed using Metascape. In addition, Autodock software was utilized for molecular docking validation of curcumin and disease targets. Further validation of the main findings was conducted through in vitro and in vivo experiments. In the in vitro experiments, an inflammation model was constructed through nitric oxide donor (SNP) stimulation of chondrocytes. Subsequently, the regulatory effects of curcumin on core targets and signaling pathways were validated using Western blotting and immunofluorescence staining techniques. In the in vivo experiments, an OA model was established by performing medial meniscectomy on male Sprague-Dawley rats. The therapeutic effects were evaluated using enzyme-linked immunosorbent assays, histologic staining, and micro-computed tomography (micro-CT) techniques. Results Core targets of curcumin relevant to OA therapy included tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, IL-6, matrix metalloproteinase 9 (MMP-9), B-cell lymphoma 2 (BCL-2), and caspase-3. The major biological processes involved oxidative stress and apoptotic processes, among others. The p38 mitogen-activated protein kinase (p38/MAPK) pathway was identified as the most likely pathway involved. In vitro experiments showed that curcumin significantly reduced oxidative stress levels, inhibited the expression of inflammatory factors IL-6 and Cyclooxygenase-2 (COX-2) and downregulated the expression of MMP-9 and MMP-1. In addition, curcumin was found to regulate the expression of BCL-2 and caspase-3 through the p38/MAPK pathway, inhibiting chondrocyte apoptosis. In vivo animal experiments demonstrated that curcumin significantly reduced the expression of OA-related factors (IL-1, IL-6, and TNF-α). Histological analysis and micro-CT results revealed that curcumin treatment significantly increased cartilage thickness, improved cartilage morphology, structure, and function, inhibited cartilage degradation, and enhanced the resorption of subchondral bone in the knee joints of rats with OA. Conclusion Curcumin regulates oxidative stress and maintains mitochondrial function, thereby protecting chondrocyte guard. In addition, curcumin attenuates the inflammatory response of chondrocytes by inhibiting the phosphorylation of P38MAPK, slowing down the breakdown of the extrachondral matrix while preventing apoptosis of chondrocytes. Additionally curcumin attenuated cartilage degradation and bone damage while helping to boost bone density.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an, Shaanxi, People’s Republic of China
| | - Yunheng Zhang
- The Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People’s Republic of China
| | - Xin Chang
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Chengyi Liu
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Xiaodong Wen
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Feng Tian
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yi Li
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
4
|
Meng T, He D, Han Z, Shi R, Wang Y, Ren B, Zhang C, Mao Z, Luo G, Deng J. Nanomaterial-Based Repurposing of Macrophage Metabolism and Its Applications. NANO-MICRO LETTERS 2024; 16:246. [PMID: 39007981 PMCID: PMC11250772 DOI: 10.1007/s40820-024-01455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024]
Abstract
Macrophage immunotherapy represents an emerging therapeutic approach aimed at modulating the immune response to alleviate disease symptoms. Nanomaterials (NMs) have been engineered to monitor macrophage metabolism, enabling the evaluation of disease progression and the replication of intricate physiological signal patterns. They achieve this either directly or by delivering regulatory signals, thereby mapping phenotype to effector functions through metabolic repurposing to customize macrophage fate for therapy. However, a comprehensive summary regarding NM-mediated macrophage visualization and coordinated metabolic rewiring to maintain phenotypic equilibrium is currently lacking. This review aims to address this gap by outlining recent advancements in NM-based metabolic immunotherapy. We initially explore the relationship between metabolism, polarization, and disease, before delving into recent NM innovations that visualize macrophage activity to elucidate disease onset and fine-tune its fate through metabolic remodeling for macrophage-centered immunotherapy. Finally, we discuss the prospects and challenges of NM-mediated metabolic immunotherapy, aiming to accelerate clinical translation. We anticipate that this review will serve as a valuable reference for researchers seeking to leverage novel metabolic intervention-matched immunomodulators in macrophages or other fields of immune engineering.
Collapse
Affiliation(s)
- Tingting Meng
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Danfeng He
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Zhuolei Han
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Rong Shi
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
- Department of Breast Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, 730030, People's Republic of China
| | - Yuhan Wang
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Bibo Ren
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Cheng Zhang
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Zhengwei Mao
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China.
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
5
|
Adler MY, Issoual I, Rückert M, Deloch L, Meier C, Tschernig T, Alexiou C, Pfister F, Ramsperger AF, Laforsch C, Gaipl US, Jüngert K, Paulsen F. Effect of micro- and nanoplastic particles on human macrophages. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134253. [PMID: 38642497 DOI: 10.1016/j.jhazmat.2024.134253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/22/2024]
Abstract
Micro- and nanoplastics (MNPs) are ubiquitous in the environment, resulting in the uptake of MNPs by a variety of organisms, including humans, leading to particle-cell interaction. Human macrophages derived from THP-1 cell lines take up Polystyrene (PS), a widespread plastic. The question therefore arises whether primary human macrophages also take up PS micro- and nanobeads (MNBs) and how they react to this stimulation. Major aim of this study is to visualize this uptake and to validate the isolation of macrophages from peripheral blood mononuclear cells (PBMCs) to assess the impact of MNPs on human macrophages. Uptake of macrophages from THP-1 cell lines and PBMCs was examined by transmission electron microscopy (TEM), scanning electron microscopy and live cell imaging. In addition, the reaction of the macrophages was analyzed in terms of metabolic activity, cytotoxicity, production of reactive oxygen species (ROS) and macrophage polarization. This study is the first to visualize PS MNBs in primary human cells using TEM and live cell imaging. Metabolic activity was size- and concentration-dependent, necrosis and ROS were increased. The methods demonstrated in this study outline an approach to assess the influence of MNP exposure on human macrophages and help investigating the consequences of worldwide plastic pollution.
Collapse
Affiliation(s)
- Maike Y Adler
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Insaf Issoual
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Chair of Machine Learning and Data Analytics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Rückert
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lisa Deloch
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Carola Meier
- Institute of Anatomy and Cell Biology, Saarland University, Homburg/Saar, Germany
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, Saarland University, Homburg/Saar, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Felix Pfister
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Christian Laforsch
- Animal Ecology I and Bay CEER, University of Bayreuth, Bayreuth, Germany
| | - Udo S Gaipl
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Katharina Jüngert
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Friedrich Paulsen
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
6
|
Marques E, Kramer R, Ryan DG. Multifaceted mitochondria in innate immunity. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:6. [PMID: 38812744 PMCID: PMC11129950 DOI: 10.1038/s44324-024-00008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/14/2024] [Indexed: 05/31/2024]
Abstract
The ability of mitochondria to transform the energy we obtain from food into cell phosphorylation potential has long been appreciated. However, recent decades have seen an evolution in our understanding of mitochondria, highlighting their significance as key signal-transducing organelles with essential roles in immunity that extend beyond their bioenergetic function. Importantly, mitochondria retain bacterial motifs as a remnant of their endosymbiotic origin that are recognised by innate immune cells to trigger inflammation and participate in anti-microbial defence. This review aims to explore how mitochondrial physiology, spanning from oxidative phosphorylation (OxPhos) to signalling of mitochondrial nucleic acids, metabolites, and lipids, influences the effector functions of phagocytes. These myriad effector functions include macrophage polarisation, efferocytosis, anti-bactericidal activity, antigen presentation, immune signalling, and cytokine regulation. Strict regulation of these processes is critical for organismal homeostasis that when disrupted may cause injury or contribute to disease. Thus, the expanding body of literature, which continues to highlight the central role of mitochondria in the innate immune system, may provide insights for the development of the next generation of therapies for inflammatory diseases.
Collapse
Affiliation(s)
- Eloïse Marques
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Robbin Kramer
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Dylan G. Ryan
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Yao Q, Xu H, Zhuang J, Cui D, Ma R, Jiao Z. Inhibition of Fungal Growth and Aflatoxin B 1 Synthesis in Aspergillus flavus by Plasma-Activated Water. Foods 2023; 12:2490. [PMID: 37444228 DOI: 10.3390/foods12132490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The gaseous reactive oxygen/nitrogen species (RONS) generated by cold atmospheric plasma (CAP) can effectively inactivate Aspergillus flavus (A. flavus) and prolong the shelf-life of food. Plasma-activated water (PAW) is the extension of cold plasma sterilization technology. Without the limitation of a plasma device, PAW can be applied to more scenarios of food decontamination. However, the efficacy of PAW as a carrier of RONS for eradicating A. flavus or inhibiting its growth remains unclear. In this study, the immediate fungicidal effect and long-term inhibitory effect of PAW on A. flavus were investigated. The results demonstrated that 60-min instant-prepared PAW could achieve a 3.22 log reduction CFU/mL of A. flavus and the fungicidal efficacy of PAW gradually declined with the extension of storage time. Peroxynitrite (ONOO-/ONOOH) played a crucial role in this inactivation process, which could damage the cell wall and membrane structure, disrupt intracellular redox homeostasis, and impair mitochondrial function, ultimately leading to fungal inactivation. In addition to the fungicidal effect, PAW also exhibited fungistatic properties and inhibited the synthesis of aflatoxin B1 (AFB1) in A. flavus. By analyzing the cellular antioxidant capacity, energy metabolism, and key gene expression in the AFB1 synthesis pathway, it was discovered that PAW can significantly reduce ATP levels, while increasing SOD and CAT activity during 5-d cultivation. Meanwhile, PAW effectively suppressed the expression of genes related to AFB1 synthesis.
Collapse
Affiliation(s)
- Qihuan Yao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
- Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Hangbo Xu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
- Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Zhuang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Dongjie Cui
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Ruonan Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Zhen Jiao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
- Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
8
|
Di Mambro T, Pellielo G, Agyapong ED, Carinci M, Chianese D, Giorgi C, Morciano G, Patergnani S, Pinton P, Rimessi A. The Tricky Connection between Extracellular Vesicles and Mitochondria in Inflammatory-Related Diseases. Int J Mol Sci 2023; 24:8181. [PMID: 37175888 PMCID: PMC10179665 DOI: 10.3390/ijms24098181] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondria are organelles present in almost all eukaryotic cells, where they represent the main site of energy production. Mitochondria are involved in several important cell processes, such as calcium homeostasis, OXPHOS, autophagy, and apoptosis. Moreover, they play a pivotal role also in inflammation through the inter-organelle and inter-cellular communications, mediated by the release of mitochondrial damage-associated molecular patterns (mtDAMPs). It is currently well-documented that in addition to traditional endocrine and paracrine communication, the cells converse via extracellular vesicles (EVs). These small membrane-bound particles are released from cells in the extracellular milieu under physio-pathological conditions. Importantly, EVs have gained much attention for their crucial role in inter-cellular communication, translating inflammatory signals into recipient cells. EVs cargo includes plasma membrane and endosomal proteins, but EVs also contain material from other cellular compartments, including mitochondria. Studies have shown that EVs may transport mitochondrial portions, proteins, and/or mtDAMPs to modulate the metabolic and inflammatory responses of recipient cells. Overall, the relationship between EVs and mitochondria in inflammation is an active area of research, although further studies are needed to fully understand the mechanisms involved and how they may be targeted for therapeutic purposes. Here, we have reported and discussed the latest studies focused on this fascinating and recent area of research, discussing of tricky connection between mitochondria and EVs in inflammatory-related diseases.
Collapse
Affiliation(s)
- Tommaso Di Mambro
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Giulia Pellielo
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Esther Densu Agyapong
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Marianna Carinci
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Diego Chianese
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Carlotta Giorgi
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Giampaolo Morciano
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Simone Patergnani
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandro Rimessi
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
9
|
Yang Y, Zhan X, Zhang C, Shi J, Wu J, Deng X, Hong Y, Li Q, Ge S, Xu G, He F. USP25-PKM2-glycolysis axis contributes to ischemia reperfusion-induced acute kidney injury by promoting M1-like macrophage polarization and proinflammatory response. Clin Immunol 2023; 251:109279. [PMID: 36894047 DOI: 10.1016/j.clim.2023.109279] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
M1-like macrophages have been reported to play critical roles in acute kidney injury (AKI). Here, we elucidated the role of ubiquitin-specific protease 25 (USP25) in M1-like macrophages polarization and AKI. High USP25 expression was correlated with a decline in renal function in patients with acute kidney tubular injury and in mice with AKI. In contrast, USP25 knockout reduced M1-like macrophage infiltration, suppressed M1-like polarization, and improved AKI in mice, indicating that USP25 was necessary for M1-like polarization and proinflammatory response. Immunoprecipitation assay and liquid chromatography-tandem mass spectrometry showed that the M2 isoform of pyruvate kinase, muscle (PKM2) was a target substrate of USP25. Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated the USP25 regulated aerobic glycolysis and lactate production during M1-like polarization via PKM2. Further analysis showed that the USP25-PKM2-aerobic glycolysis axis positively regulated M1-like polarization and exacerbated AKI in mice, providing potential therapeutic targets for AKI treatment.
Collapse
Affiliation(s)
- Yi Yang
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaona Zhan
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cailin Zhang
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jia Shi
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jianliang Wu
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang 330008, China
| | - Xuan Deng
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yu Hong
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qing Li
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuwang Ge
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Gang Xu
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Fan He
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
10
|
Padinharayil H, Rai V, George A. Mitochondrial Metabolism in Pancreatic Ductal Adenocarcinoma: From Mechanism-Based Perspectives to Therapy. Cancers (Basel) 2023; 15:1070. [PMID: 36831413 PMCID: PMC9954550 DOI: 10.3390/cancers15041070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the fourteenth most common malignancy, is a major contributor to cancer-related death with the utmost case fatality rate among all malignancies. Functional mitochondria, regardless of their complex ecosystem relative to normal cells, are essential in PDAC progression. Tumor cells' potential to produce ATP as energy, despite retaining the redox potential optimum, and allocating materials for biosynthetic activities that are crucial for cell growth, survival, and proliferation, are assisted by mitochondria. The polyclonal tumor cells with different metabolic profiles may add to carcinogenesis through inter-metabolic coupling. Cancer cells frequently possess alterations in the mitochondrial genome, although they do not hinder metabolism; alternatively, they change bioenergetics. This can further impart retrograde signaling, educate cell signaling, epigenetic modifications, chromatin structures, and transcription machinery, and ultimately satisfy cancer cellular and nuclear demands. To maximize the tumor microenvironment (TME), tumor cells remodel nearby stromal cells and extracellular matrix. These changes initiate polyclonality, which is crucial for growth, stress response, and metastasis. Here, we evaluate all the intrinsic and extrinsic pathways drawn by mitochondria in carcinogenesis, emphasizing the perspectives of mitochondrial metabolism in PDAC progression and treatment.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| |
Collapse
|
11
|
Zhang Y, Shen W, Ding J, Gao X, Wu X, Zhu J. Comparative Transcriptome Analysis of Head Kidney of Aeromonas hydrophila-infected Hypoxia-tolerant and Normal Large Yellow Croaker. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:1039-1054. [PMID: 36129638 DOI: 10.1007/s10126-022-10158-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The large yellow croaker (Larimichthys crocea) is one of the most economically important marine fish on the southeast coast of China and much of its yield is usually lost by hypoxia. To address this problem and lay a foundation for culturing a new strain of large yellow croaker with hypoxia tolerance, our research group screened a hypoxia-tolerant population of L. crocea. Surprisingly, we also found that hypoxia-tolerant population exhibited higher survival when infected with pathogens compared to the normal population during the farming operation. In order to understand the mechanism underlying the higher survival rate of the hypoxia-tolerant population and enrich the head kidney immune mechanism of L. crocea infected with pathogens, we compared and analyzed the head kidney transcriptome of the hypoxia-tolerant and normal individuals under Aeromonas hydrophila infection. We obtained 159.68 GB high-quality reads, of which more than 87.61% were successfully localized to the reference genome of L. crocea. KEGG analysis revealed differentially expressed genes in the signaling pathways involving immunity, cell growth and death, transport and catabolism, and metabolism. Among these, the toll-like receptor signaling pathway, Nod-like receptor signaling pathway, cytokine-cytokine receptor interaction, phagosome, apoptosis, and OXPHOS pathways were enriched in both groups after infection compared to before, and were enriched in infected tolerant individuals compared to normal individuals. In addition, we found that the expression of hif1α and its downstream genes were higher in the hypoxia-sensitive group of fish than in the normal group. In conclusion, our results showed some signaling pathways and hub genes, which may participate in A. hydrophila defense in the head kidney of two populations, and may contribute to the higher survival rate in the hypoxia-tolerant population. Overall, these findings increase our understanding of the defense mechanism within the head kidney of L. crocea under A. hydrophila infection, and suggest a preliminary hypothesis for why hypoxia-tolerant individuals may exhibit a higher survival rates after infection. Our study provides scientific evidence for the breeding of a new hypoxia-tolerant strain of L. crocea for aquaculture.
Collapse
Affiliation(s)
- Yibo Zhang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Weiliang Shen
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China.
| | - Jie Ding
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Xinming Gao
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Xiongfei Wu
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Junquan Zhu
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
12
|
The Role of NO/sGC/cGMP/PKG Signaling Pathway in Regulation of Platelet Function. Cells 2022; 11:cells11223704. [PMID: 36429131 PMCID: PMC9688146 DOI: 10.3390/cells11223704] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Circulating blood platelets are controlled by stimulatory and inhibitory factors, and a tightly regulated equilibrium between these two opposing processes is essential for normal platelet and vascular function. NO/cGMP/ Protein Kinase G (PKG) pathways play a highly significant role in platelet inhibition, which is supported by a large body of studies and data. This review focused on inconsistent and controversial data of NO/sGC/cGMP/PKG signaling in platelets including sources of NO that activate sGC in platelets, the role of sGC/PKG in platelet inhibition/activation, and the complexity of the regulation of platelet inhibitory mechanisms by cGMP/PKG pathways. In conclusion, we suggest that the recently developed quantitative phosphoproteomic method will be a powerful tool for the analysis of PKG-mediated effects. Analysis of phosphoproteins in PKG-activated platelets will reveal many new PKG substrates. A future detailed analysis of these substrates and their involvement in different platelet inhibitory pathways could be a basis for the development of new antiplatelet drugs that may target only specific aspects of platelet functions.
Collapse
|
13
|
Sun X, Li Y, Deng Q, Hu Y, Dong J, Wang W, Wang Y, Li C. Macrophage Polarization, Metabolic Reprogramming, and Inflammatory Effects in Ischemic Heart Disease. Front Immunol 2022; 13:934040. [PMID: 35924253 PMCID: PMC9339672 DOI: 10.3389/fimmu.2022.934040] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Macrophages are highly plastic cells, and the polarization-activating actions that represent their functional focus are closely related to metabolic reprogramming. The metabolic reprogramming of macrophages manifests itself as a bias toward energy utilization, transforming their inflammatory phenotype by changing how they use energy. Metabolic reprogramming effects crosstalk with the biological processes of inflammatory action and are key to the inflammatory function of macrophages. In ischemic heart disease, phenotypic polarization and metabolic shifts in circulating recruitment and tissue-resident macrophages can influence the balance of inflammatory effects in the heart and determine disease regression and prognosis. In this review, we present the intrinsic link between macrophage polarization and metabolic reprogramming, discussing the factors that regulate macrophages in the inflammatory effects of ischemic heart disease. Our aim is to estabilsh reliable regulatory pathways that will allow us to better target the macrophage metabolic reprogramming process and improve the symptoms of ischemic heart disease.
Collapse
Affiliation(s)
- Xiaoqian Sun
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yanqin Li
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qiong Deng
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yueyao Hu
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jianteng Dong
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Formula, Beijing University of Chinese Medicine, Beijing, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Wei Wang, ; Yong Wang, ; Chun Li,
| | - Yong Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Formula, Beijing University of Chinese Medicine, Beijing, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Wei Wang, ; Yong Wang, ; Chun Li,
| | - Chun Li
- Beijing Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Formula, Beijing University of Chinese Medicine, Beijing, China
- Modern Research Center for Traditional Chinese Medicine (TCM), Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Wei Wang, ; Yong Wang, ; Chun Li,
| |
Collapse
|
14
|
Stepanov YV, Golovynska I, Zhang R, Golovynskyi S, Stepanova LI, Gorbach O, Dovbynchuk T, Garmanchuk LV, Ohulchanskyy TY, Qu J. Near-infrared light reduces β-amyloid-stimulated microglial toxicity and enhances survival of neurons: mechanisms of light therapy for Alzheimer's disease. Alzheimers Res Ther 2022; 14:84. [PMID: 35717405 PMCID: PMC9206341 DOI: 10.1186/s13195-022-01022-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/11/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND Low-intensity light can decelerate neurodegenerative disease progression and reduce amyloid β (Aβ) levels in the cortex, though the cellular and molecular mechanisms by which photobiomodulation (PBM) protects against neurodegeneration are still in the early stages. Microglia cells play a key role in the pathology of Alzheimer's disease by causing chronic inflammation. We present new results concerning the PBM of both oxidative stress and microglia metabolism associated with the activation of metabolic processes by 808 nm near-infrared light. METHODS The studies were carried out using healthy male mice to obtain the microglial cell suspension from the hippocampus. Oligomeric β-amyloid (1-42) was prepared and used to treat microglia cells. Light irradiation of cells was performed using diode lasers emitting at 808 nm (30 mW/cm2 for 5 min, resulting in a dose of 10 J/cm2). Mitochondrial membrane potential, ROS level studies, cell viability, apoptosis, and necrosis assays were performed using epifluorescence microscopy. Phagocytosis, nitric oxide and H2O2 production, arginase, and glucose 6-phosphate dehydrogenase activities were measured using standard assays. Cytokines, glucose, lactate, and ATP were measurements with ELISA. As our data were normally distributed, two-way ANOVA test was used. RESULTS The light induces a metabolic shift from glycolysis to mitochondrial activity in pro-inflammatory microglia affected by oligomeric Aβ. Thereby, the level of anti-inflammatory microglia increases. This process is accompanied by a decrease in pro-inflammatory cytokines and an activation of phagocytosis. Light exposure decreases the Aβ-induced activity of glucose-6-phosphate dehydrogenase, an enzyme that regulates the rate of the pentose phosphate pathway, which activates nicotinamide adenine dinucleotide phosphate oxidases to further produce ROS. During co-cultivation of neurons with microglia, light prevents the death of neurons, which is caused by ROS produced by Aβ-altered microglia. CONCLUSIONS These original data clarify reasons for how PBM protects against neurodegeneration and support the use of light for therapeutic research in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Yurii V Stepanov
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Iuliia Golovynska
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Renlong Zhang
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Sergii Golovynskyi
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Liudmyla I Stepanova
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | - Oleksandr Gorbach
- Laboratory of Experimental Oncology, National Cancer Institute of Ukraine, Kyiv, 03022, Ukraine
| | - Taisa Dovbynchuk
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | - Liudmyla V Garmanchuk
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | - Tymish Y Ohulchanskyy
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Junle Qu
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
15
|
Celsi F, Staffa P, Lamba M, Castro V, Chermetz M, Orzan E, Sagredini R, Barbi E. Photobiomodulation for Lowering Pain after Tonsillectomy: Low Efficacy and a Possible Unexpected Adverse Effect. Life (Basel) 2022; 12:life12020202. [PMID: 35207489 PMCID: PMC8878042 DOI: 10.3390/life12020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Tonsillectomy is one of the most common surgical procedures performed in children as a treatment for obstructive sleep apnea due to tonsil hypertrophy or highly recurrent tonsillitis. Odynophagia, associated with food refusal for the first few days, is a common post-operative complaint. Available drugs for pain management, while efficacious, present some drawbacks, and a novel strategy would be welcome. Photobiomodulation (PBMT), in this context, can represent a possible choice, together with pharmacological therapy. The aim of this study was to evaluate PBMT effects compared to standard pain therapy on nociceptive sensation at different time points and administration of painkiller. Methods: A registered, controlled, randomized, double-blind clinical trial was performed. Twenty-two patients were recruited and divided into laser-treated (T) or untreated (UT) groups, based on random assignment. In T group, immediately after tonsillectomy, performed with cold dissection technique, laser light was applied to the surgery site (using a Cube 4 from Eltech K-Laser s.r.l., Treviso, Italy), and then hemostasis was performed using bismuth subgallate paste. In C group, the same procedure was performed, except that laser light was switched off. The primary outcome was the difference in pain scores between subject receiving photobiomodulation (PBMT) and subjects receiving standard care after 24 h; the secondary outcomes were pain scores at awakening and at 48 h together with distress (delirium) at awakening. Results: Two patients from the T group experienced a post-surgery bleeding, and one of them required revision of the hemostasis under general anesthesia. A preliminary analysis of pain sensation reported by the patients or caregivers did not show differences between treated and untreated subjects. Conclusion: These data suggest that PBMT could increase post-surgical bleeding.
Collapse
Affiliation(s)
- Fulvio Celsi
- Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 65/1 Via dell’Istria, 34137 Trieste, Italy; (P.S.); (M.L.); (V.C.); (M.C.); (E.O.); (R.S.); (E.B.)
- Correspondence: or ; Tel.: +39-040-3857-0216
| | - Paola Staffa
- Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 65/1 Via dell’Istria, 34137 Trieste, Italy; (P.S.); (M.L.); (V.C.); (M.C.); (E.O.); (R.S.); (E.B.)
| | - Martino Lamba
- Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 65/1 Via dell’Istria, 34137 Trieste, Italy; (P.S.); (M.L.); (V.C.); (M.C.); (E.O.); (R.S.); (E.B.)
| | - Veronica Castro
- Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 65/1 Via dell’Istria, 34137 Trieste, Italy; (P.S.); (M.L.); (V.C.); (M.C.); (E.O.); (R.S.); (E.B.)
| | - Maddalena Chermetz
- Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 65/1 Via dell’Istria, 34137 Trieste, Italy; (P.S.); (M.L.); (V.C.); (M.C.); (E.O.); (R.S.); (E.B.)
| | - Eva Orzan
- Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 65/1 Via dell’Istria, 34137 Trieste, Italy; (P.S.); (M.L.); (V.C.); (M.C.); (E.O.); (R.S.); (E.B.)
| | - Raffaella Sagredini
- Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 65/1 Via dell’Istria, 34137 Trieste, Italy; (P.S.); (M.L.); (V.C.); (M.C.); (E.O.); (R.S.); (E.B.)
| | - Egidio Barbi
- Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 65/1 Via dell’Istria, 34137 Trieste, Italy; (P.S.); (M.L.); (V.C.); (M.C.); (E.O.); (R.S.); (E.B.)
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
| |
Collapse
|
16
|
Ni XW, Chen K, Qiao SL. Photocontrollable thermosensitive chemical spatiotemporally destabilizes mitochondrial membranes for cell fate manipulation. Biomater Sci 2022; 10:2550-2556. [DOI: 10.1039/d2bm00212d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Perturbations in mitochondrial membrane stability lead to cytochrome c release and induce caspase-dependent apoptosis. Using synthetic smart chemicals that with changeable physicochemical properties to interfere the mitochondrial membrane stability has...
Collapse
|
17
|
Kükürt A, Karapehlivan M. Protective effect of astaxanthin on experimental ovarian damage in rats. J Biochem Mol Toxicol 2021; 36:e22966. [PMID: 34870888 DOI: 10.1002/jbt.22966] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 09/20/2021] [Accepted: 10/26/2021] [Indexed: 11/09/2022]
Abstract
This study aimed to investigate the protective effect of astaxanthin (AS) on 3-nitropropionic acid (3-NPA) induced experimental ovarian damage in rats. Thirty two female Wistar rats were divided into four equal groups of eight each: control group (C); phosphate-buffered saline, AS group; AS (80 mg/kg) for 14 days, 3-NPA group; 3-NPA (6.25 mg/kg) twice a day for 7 days, 3-NPA + AS group; administered AS (80 mg/kg) for 14 days and 3-NPA (6.25 mg/kg) for 7 days. All injections were administered intraperitoneally. Rats were fed ad libitum with standard rat chow and tap water. Plasma and ovarian tissue total antioxidant capacity (TAC), total oxidant capacity (TOC) and oxidative stress index (OSI) levels, whole blood reduced glutathione (GSH), plasma paraoxonase 1 (PON1) activity, lipid profile, malondialdehyde (MDA), nitric oxide (NO), total sialic acid (TSA) and total thiol (TT) concentrations were analysed spectrophotometrically. Also, ovarian tissue histopathology was performed. We observed 3-NPA-induced histopathological ovarian damage significantly decreased the TAC (p < 0.001), GSH (p < 0.001), high-density lipoprotein (p < 0.01) levels and PON1 activity (p < 0.01), and significantly increased TOC, OSI (p < 0.001), MDA, NO, TSA, cholesterol, low-density lipoprotein (p < 0.01) and triglyceride (p < 0.05) levels. In conclusion, cotreatment with AS restored the negative effect of 3-NPA on all biochemical parameters cited above and improved the histopathological ovarian damage. Ovarian toxicity induced by 3-NPA might be due to oxidative damage. The improvement of AS seems to be related to its antioxidant properties.
Collapse
Affiliation(s)
- Abdulsamed Kükürt
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafkas University, Kars, Turkey
| | - Mahmut Karapehlivan
- Department of Biochemistry, Faculty of Medicine, Kafkas University, Kars, Turkey
| |
Collapse
|
18
|
Hao F, Tang LC, Sun JX, Li WX, Zhao Y, Xu XH, Jin LP. Decreased nitric oxide content mediated by asymmetrical dimethylarginine and protein l-arginine methyltransferase 3 in macrophages induces trophoblast apoptosis: a potential cause of recurrent miscarriage. Hum Reprod 2021; 36:3049-3061. [PMID: 34647126 DOI: 10.1093/humrep/deab225] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 09/15/2021] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Is the protein l-arginine methyltransferase 3 (PRMT3)/asymmetrical dimethylarginine (ADMA)/nitric oxide (NO) pathway involved in the development of recurrent miscarriage (RM), and what is the potential mechanism? SUMMARY ANSWER Elevated levels of PRMT3 and ADMA inhibit NO formation in the decidua, thereby impairing the functions of trophoblast cells at the maternal-foetal interface. WHAT IS KNOWN ALREADY Decreased NO bioavailability is associated with RM. ADMA, an endogenous inhibitor of nitric oxide synthase (NOS), is derived from the methylation of protein arginine residues by PRMTs and serves as a predictor of mortality in critical illness. STUDY DESIGN, SIZE, DURATION A total of 145 women with RM and 149 healthy women undergoing elective termination of an early normal pregnancy were enrolled. Ninety-six female CBA/J, 24 male DBA/2 and 24 male BALB/c mice were included. CBA/J × DBA/2 matings represent the abortion group, while CBA/J × BALB/c matings represent the normal control group. The CBA/J pregnant mice were then categorised into four groups: (i) normal + vehicle group (n = 28), (ii) abortion + vehicle group (n = 28), (iii) normal + SGC707 (a PRMT3 inhibitor) group (n = 20) and (iv) abortion + SGC707 group (n = 20). All injections were made intraperitoneally on Days 0.5, 3.5 and 6.5 of pregnancy. Decidual tissues were collected on Days 8.5, 9.5 and 10.5 of gestation. The embryo resorption rates were calculated on Day 9.5 and Day 10.5 of gestation. PARTICIPANTS/MATERIALS, SETTING, METHODS NO concentration, ADMA content, NOS activity, expression levels of NOS and PRMTs in decidual tissues were determined using conventional assay kits or western blotting. PRMT3 expression was further analysed in decidual stromal cells, macrophages and natural killer cells. A co-culture system between decidual macrophages (DMs) and HTR-8/SVneo trophoblasts was constructed to study the roles of the PRMT3/ADMA/NO signalling pathway. Trophoblast apoptosis was analysed via Annexin V-fluorescein isothiocyanate/propidium iodide staining. CBA/J × DBA/2 mouse models were used to investigate the effects of SGC707 on embryo resorption rates. MAIN RESULTS AND THE ROLE OF CHANCE Our results show that NO concentration and NOS activity were decreased, but ADMA content and PRMT3 expression were increased in the decidua of RM patients. Moreover, compared with the normal control subjects, PRMT3 expression was significantly up-regulated in the macrophages but not in the natural killer cells or stromal cells of the decidua from RM patients. The inhibition of PRMT3 results in a significant decrease in ADMA accumulation and an increase in NO concentration in macrophages. When co-cultured with DMs, which were treated with SGC707 and ADMA, trophoblast apoptosis was suppressed and induced, respectively. In vivo experiments revealed that the administration of SGC707 reduced the embryo resorption rate of CBA/J × DBA/2 mice. LIMITATIONS, REASONS FOR CAUTION All sets of experiments were not performed with the same samples. The main reason is that each tissue needs to be reserved for clinical diagnosis and only a small piece of each tissue can be cut and collected for this study. WIDER IMPLICATIONS OF THE FINDINGS Our results indicate that the PRMT3/ADMA/NO pathway is a potential marker and target for the clinical diagnosis and therapy of RM. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the National Key Research and Development Program of China (2017YFC1001401), National Natural Science Foundation of China (81730039, 82071653, 81671460, 81971384 and 82171657) and Shanghai Municipal Medical and Health Discipline Construction Projects (2017ZZ02015). The authors have declared no conflict of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Fan Hao
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center, Department of Biobank, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lin-Chen Tang
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center, Department of Biobank, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jia-Xue Sun
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center, Department of Biobank, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wen-Xuan Li
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center, Department of Biobank, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yongbo Zhao
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center, Department of Biobank, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiang-Hong Xu
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center, Department of Biobank, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li-Ping Jin
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center, Department of Biobank, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
19
|
Chen Y, Ji P, Ma G, Song Z, Tang BQ, Li T. Simultaneous determination of cellular adenosine nucleotides, malondialdehyde, and uric acid using HPLC. Biomed Chromatogr 2021; 35:e5156. [PMID: 33955024 DOI: 10.1002/bmc.5156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/24/2021] [Accepted: 04/30/2021] [Indexed: 11/10/2022]
Abstract
Adenine nucleotides and malondialdehyde (MDA) are key components involved in energy metabolism and reactive oxygen species (ROS) production. Measuring the levels of these components at the same time would be critical in studying mitochondrial functions. We have established a HPLC method to simultaneously measure adenosine triphosphate, adenosine diphosphate, adenosine monophosphate, MDA, and uric acid (UA). The samples were treated with perchloric acid followed by centrifugation. After neutralization, the supernatant was subjected to HPLC determination. HPLC was performed using a C18 chromatographic column, isocratic elusion, and UV detection. The detection and quantification limits for these components were determined with standard solutions. The precision, repeatability, and 24-h stability were evaluated using cellular samples, and their relative standard deviations were all within 2%. The reproducibility and efficiency were confirmed with sample recovery tests and the observed oxidative effects of H2 O2 on Jurkat cells. With this method, we discovered the dependence of energy and oxidative states on the density of Jurkat cells cultured in suspension. We also found a significant correlation between UA in serum and that in saliva. These results indicate that this method has good accuracy and applicability. It can be used in biological, pharmacological, and clinical studies, especially those involving mitochondria, ROS, and purinergic signaling.
Collapse
Affiliation(s)
- Yanjie Chen
- Ennova Institute of Life Science and Technology, ENN Group, Langfang, China
| | - Peng Ji
- Ennova Institute of Life Science and Technology, ENN Group, Langfang, China
| | - Guangyin Ma
- Ennova Institute of Life Science and Technology, ENN Group, Langfang, China
| | - Zehua Song
- Ennova Institute of Life Science and Technology, ENN Group, Langfang, China
| | - Bruce Qing Tang
- Ennova Institute of Life Science and Technology, ENN Group, Langfang, China
| | - Tongju Li
- Ennova Institute of Life Science and Technology, ENN Group, Langfang, China
| |
Collapse
|
20
|
Park JH, Shim D, Kim KES, Lee W, Shin SJ. Understanding Metabolic Regulation Between Host and Pathogens: New Opportunities for the Development of Improved Therapeutic Strategies Against Mycobacterium tuberculosis Infection. Front Cell Infect Microbiol 2021; 11:635335. [PMID: 33796480 PMCID: PMC8007978 DOI: 10.3389/fcimb.2021.635335] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/01/2021] [Indexed: 12/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) causes chronic granulomatous lung disease in humans. Recently, novel strategies such as host-directed therapeutics and adjunctive therapies that enhance the effect of existing antibiotics have emerged to better control Mtb infection. Recent advances in understanding the metabolic interplay between host immune cells and pathogens have provided new insights into how their interactions ultimately influence disease outcomes and antibiotic-treatment efficacy. In this review, we describe how metabolic cascades in immune environments and relevant metabolites produced from immune cells during Mtb infection play critical roles in the progression of diseases and induction of anti-Mtb protective immunity. In addition, we introduce how metabolic alterations in Mtb itself can lead to the development of persister cells that are resistant to host immunity and can eventually evade antibiotic attacks. Further understanding of the metabolic link between host cells and Mtb may contribute to not only the prevention of Mtb persister development but also the optimization of host anti-Mtb immunity together with enhanced efficacy of existing antibiotics. Overall, this review highlights novel approaches to improve and develop host-mediated therapeutic strategies against Mtb infection by restoring and switching pathogen-favoring metabolic conditions with host-favoring conditions.
Collapse
Affiliation(s)
- Ji-Hae Park
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Dahee Shim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Keu Eun San Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
21
|
Patergnani S, Bouhamida E, Leo S, Pinton P, Rimessi A. Mitochondrial Oxidative Stress and "Mito-Inflammation": Actors in the Diseases. Biomedicines 2021; 9:biomedicines9020216. [PMID: 33672477 PMCID: PMC7923430 DOI: 10.3390/biomedicines9020216] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022] Open
Abstract
A decline in mitochondrial redox homeostasis has been associated with the development of a wide range of inflammatory-related diseases. Continue discoveries demonstrate that mitochondria are pivotal elements to trigger inflammation and stimulate innate immune signaling cascades to intensify the inflammatory response at front of different stimuli. Here, we review the evidence that an exacerbation in the levels of mitochondrial-derived reactive oxygen species (ROS) contribute to mito-inflammation, a new concept that identifies the compartmentalization of the inflammatory process, in which the mitochondrion acts as central regulator, checkpoint, and arbitrator. In particular, we discuss how ROS contribute to specific aspects of mito-inflammation in different inflammatory-related diseases, such as neurodegenerative disorders, cancer, pulmonary diseases, diabetes, and cardiovascular diseases. Taken together, these observations indicate that mitochondrial ROS influence and regulate a number of key aspects of mito-inflammation and that strategies directed to reduce or neutralize mitochondrial ROS levels might have broad beneficial effects on inflammatory-related diseases.
Collapse
Affiliation(s)
- Simone Patergnani
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (E.B.); (S.L.); (P.P.)
| | - Esmaa Bouhamida
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (E.B.); (S.L.); (P.P.)
| | - Sara Leo
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (E.B.); (S.L.); (P.P.)
| | - Paolo Pinton
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (E.B.); (S.L.); (P.P.)
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandro Rimessi
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (E.B.); (S.L.); (P.P.)
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
- Correspondence:
| |
Collapse
|
22
|
Palmieri EM, McGinity C, Wink DA, McVicar DW. Nitric Oxide in Macrophage Immunometabolism: Hiding in Plain Sight. Metabolites 2020; 10:metabo10110429. [PMID: 33114647 PMCID: PMC7693038 DOI: 10.3390/metabo10110429] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
Nitric Oxide (NO) is a soluble endogenous gas with various biological functions like signaling, and working as an effector molecule or metabolic regulator. In response to inflammatory signals, immune myeloid cells, like macrophages, increase production of cytokines and NO, which is important for pathogen killing. Under these proinflammatory circumstances, called “M1”, macrophages undergo a series of metabolic changes including rewiring of their tricarboxylic acid (TCA) cycle. Here, we review findings indicating that NO, through its interaction with heme and non-heme metal containing proteins, together with components of the electron transport chain, functions not only as a regulator of cell respiration, but also a modulator of intracellular cell metabolism. Moreover, diverse effects of NO and NO-derived reactive nitrogen species (RNS) involve precise interactions with different targets depending on concentration, temporal, and spatial restrictions. Although the role of NO in macrophage reprogramming has been in evidence for some time, current models have largely minimized its importance. It has, therefore, been hiding in plain sight. A review of the chemical properties of NO, past biochemical studies, and recent publications, necessitates that mechanisms of macrophage TCA reprogramming during stimulation must be re-imagined and re-interpreted as mechanistic results of NO exposure. The revised model of metabolic rewiring we describe here incorporates many early findings regarding NO biochemistry and brings NO out of hiding and to the forefront of macrophages immunometabolism.
Collapse
|
23
|
Evaluation of serum nitric oxide level and its relationship with disease activity parameters in patients with rheumatoid arthritis. JOURNAL OF CONTEMPORARY MEDICINE 2020. [DOI: 10.16899/jcm.769098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
Yang B, Shi J. Chemistry of Advanced Nanomedicines in Cancer Cell Metabolism Regulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001388. [PMID: 32999845 PMCID: PMC7509697 DOI: 10.1002/advs.202001388] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/06/2020] [Indexed: 05/04/2023]
Abstract
Tumors reprogram their metabolic pathways to meet the bioenergetic and biosynthetic demands of cancer cells. These reprogrammed activities are now recognized as the hallmarks of cancer, which not only provide cancer cells with unrestricted proliferative and metastatic potentials, but also strengthen their resistance against stress conditions and therapeutic challenges. Although recent progress in nanomedicine has largely promoted the developments of various therapeutic modalities, such as photodynamic therapy, photothermal therapy, nanocatalytic therapy, tumor-starving/suffocating therapy, etc., the therapeutic efficacies of nanomedicines are still not high enough to achieve satisfactory tumor-suppressing effects. Therefore, researchers are obliged to look back to the essence of cancer cell biology, such as metabolism, for tailoring a proper therapeutic regimen. In this work, the characteristic metabolic pathways of cancer cells, such as aerobic respiration, glycolysis, autophagy, glutaminolysis, etc. are reviewed, to summarize the very recent advances in the smart design of nanomedicines that can regulate tumor metabolism for enhancing conventional therapeutic modalities. The underlying chemistry of these nanomedicines by which tumor metabolism is harnessed, is also discussed in a comprehensive manner. It is expected that by harnessing tumor metabolism cancer nanotherapeutics will be substantially improved in the future.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| |
Collapse
|
25
|
Metabolic reprogramming as a key regulator in the pathogenesis of rheumatoid arthritis. Inflamm Res 2020; 69:1087-1101. [DOI: 10.1007/s00011-020-01391-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
|
26
|
Howard NC, Khader SA. Immunometabolism during Mycobacterium tuberculosis Infection. Trends Microbiol 2020; 28:832-850. [PMID: 32409147 DOI: 10.1016/j.tim.2020.04.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/26/2022]
Abstract
Over a quarter of the world's population is infected with Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB). Approximately 3.4% of new and 18% of recurrent cases of TB are multidrug-resistant (MDR) or rifampicin-resistant. Recent evidence has shown that certain drug-resistant strains of Mtb modulate host metabolic reprogramming, and therefore immune responses, during infection. However, it remains unclear how widespread these mechanisms are among circulating MDR Mtb strains and what impact drug-resistance-conferring mutations have on immunometabolism during TB. While few studies have directly addressed metabolic reprogramming in the context of drug-resistant Mtb infection, previous literature examining how drug-resistance mutations alter Mtb physiology and differences in the immune response to drug-resistant Mtb provides significant insights into how drug-resistant strains of Mtb differentially impact immunometabolism.
Collapse
Affiliation(s)
- Nicole C Howard
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
27
|
Kim S, Hwang JS, Lee DG. Lactoferricin B like peptide triggers mitochondrial disruption‐mediated apoptosis by inhibiting respiration under nitric oxide accumulation in
Candida albicans. IUBMB Life 2020; 72:1515-1527. [DOI: 10.1002/iub.2284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Suhyun Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch GroupKyungpook National University Daegu South Korea
| | - Jae Sam Hwang
- Department of Agricultural BiologyNational Academy of Agricultural Science, RDA Wanju Republic of Korea
| | - Dong Gun Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch GroupKyungpook National University Daegu South Korea
| |
Collapse
|
28
|
Gupta D, Silva M, Radziun K, Martinez DC, Hill CJ, Marshall J, Hearnden V, Puertas-Mejia MA, Reilly GC. Fucoidan Inhibition of Osteosarcoma Cells Is Species and Molecular Weight Dependent. Mar Drugs 2020; 18:E104. [PMID: 32046368 PMCID: PMC7074035 DOI: 10.3390/md18020104] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
Fucoidan is a brown algae-derived polysaccharide having several biomedical applications. This study simultaneously compares the anti-cancer activities of crude fucoidans from Fucus vesiculosus and Sargassum filipendula, and effects of low (LMW, 10-50 kDa), medium (MMW, 50-100 kDa) and high (HMW, >100 kDa) molecular weight fractions of S. filipendula fucoidan against osteosarcoma cells. Glucose, fucose and acid levels were lower and sulphation was higher in F. vesiculosus crude fucoidan compared to S. filipendula crude fucoidan. MMW had the highest levels of sugars, acids and sulphation among molecular weight fractions. There was a dose-dependent drop in focal adhesion formation and proliferation of cells for all fucoidan-types, but F. vesiculosus fucoidan and HMW had the strongest effects. G1-phase arrest was induced by F. vesiculosus fucoidan, MMW and HMW, however F. vesiculosus fucoidan treatment also caused accumulation in the sub-G1-phase. Mitochondrial damage occurred for all fucoidan-types, however F. vesiculosus fucoidan led to mitochondrial fragmentation. Annexin V/PI, TUNEL and cytochrome c staining confirmed stress-induced apoptosis-like cell death for F. vesiculosus fucoidan and features of stress-induced necrosis-like cell death for S. filipendula fucoidans. There was also variation in penetrability of different fucoidans inside the cell. These differences in anti-cancer activity of fucoidans are applicable for osteosarcoma treatment.
Collapse
Affiliation(s)
- Dhanak Gupta
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.G.); (K.R.); (D.C.M.); (V.H.)
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK;
| | - Melissa Silva
- Institute of Chemistry, University of Antioquia, Medellín A.A.1226, Colombia; (M.S.); (M.A.P.-M.)
| | - Karolina Radziun
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.G.); (K.R.); (D.C.M.); (V.H.)
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK;
- Cell Bank, Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Diana C. Martinez
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.G.); (K.R.); (D.C.M.); (V.H.)
| | - Christopher J. Hill
- Department of Molecular Biology and Biotechnology (MBB), University of Sheffield, Sheffield S10 2TN, UK;
| | - Julie Marshall
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK;
| | - Vanessa Hearnden
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.G.); (K.R.); (D.C.M.); (V.H.)
| | - Miguel A. Puertas-Mejia
- Institute of Chemistry, University of Antioquia, Medellín A.A.1226, Colombia; (M.S.); (M.A.P.-M.)
| | - Gwendolen C. Reilly
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.G.); (K.R.); (D.C.M.); (V.H.)
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK;
| |
Collapse
|
29
|
Intertwined ROS and Metabolic Signaling at the Neuron-Astrocyte Interface. Neurochem Res 2020; 46:23-33. [PMID: 31989468 DOI: 10.1007/s11064-020-02965-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/03/2020] [Accepted: 01/16/2020] [Indexed: 12/23/2022]
Abstract
Metabolism and redox signalling share critical nodes in the nervous system. In the last years, a series of major findings have challenged the current vision on how neural reactive oxygen species (ROS) are produced and handled in the nervous system. Once regarded as deleterious by-products, ROS are now shown to be essential for a metabolic and redox crosstalk. In turn, this coupling defines neural viability and function to control behaviour or leading to neurodegeneration when compromised. Findings like a different assembly of mitochondrial respiratory supercomplexes in neurons and astrocytes stands behind a divergent production of ROS in either cell type, more prominent in astrocytes. ROS levels are however tightly controlled by an antioxidant machinery in astrocytes, assumed as more efficient than that of neurons, to regulate redox signalling. By exerting this control in ROS abundance, metabolic functions are finely tuned in both neural cells. Further, a higher engagement of mitochondrial respiration and oxidative function in neurons, underpinned by redox equivalents supplied from the pentose phosphate pathway and from glia, differs from the otherwise strong glycolytic capacity of astrocytes. Here, we recapitulate major findings on how ROS and metabolism differ between neural cells but merge to define reciprocal signalling pathways, ultimately defining neural function and fate.
Collapse
|
30
|
Abstract
The microcirculation maintains tissue homeostasis through local regulation of blood flow and oxygen delivery. Perturbations in microvascular function are characteristic of several diseases and may be early indicators of pathological changes in the cardiovascular system and in parenchymal tissue function. These changes are often mediated by various reactive oxygen species and linked to disruptions in pathways such as vasodilation or angiogenesis. This overview compiles recent advances relating to redox regulation of the microcirculation by adopting both cellular and functional perspectives. Findings from a variety of vascular beds and models are integrated to describe common effects of different reactive species on microvascular function. Gaps in understanding and areas for further research are outlined. © 2020 American Physiological Society. Compr Physiol 10:229-260, 2020.
Collapse
Affiliation(s)
- Andrew O Kadlec
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - David D Gutterman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Medicine-Division of Cardiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
31
|
Shahrokh S, Razzaghi Z, Mansouri V, Ahmadi N. The Impact of Proteomic Investigations on the Development and Improvement of Skin Laser Therapy: A Review Article. J Lasers Med Sci 2019; 10:S90-S95. [PMID: 32021680 DOI: 10.15171/jlms.2019.s16] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Different molecular approaches have contributed to finding various responses of skin to external and internal tensions such as laser irradiation and many important mediators of skin disease have been identified through these approaches. However, different essential signals of skin biomarker pathways and proteins are partially detected or completely unknown. In the present study, the impact of proteomics on the evaluation of laser therapy for the treatment of skin diseases is investigated. Methods: The keywords of "Proteomics", "Laser therapy", "Skin", and "Skin disease" were searched in Google Scholar, Scopus and PubMed search engines. After screening, 53 documents were included in the study. Results: The global assessments revealed that different proteins in different signaling pathways of skin metabolism in terms of health or illness after laser therapy are expressed differentially. The results indicated that the application of proteomics is a useful method for promoting the results of laser interventions. Conclusion: This kind of research dealt with the practical proteomics of skin diseases and skin laser therapy.
Collapse
Affiliation(s)
- Shabnam Shahrokh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Mansouri
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nayebali Ahmadi
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Sarbach C, Dugas B, Postaire E. Evidence of variations of endogenous halogenated volatile organic compounds in alveolar breath after mental exercise-induced oxidative stress. ANNALES PHARMACEUTIQUES FRANÇAISES 2019; 78:34-41. [PMID: 31796267 DOI: 10.1016/j.pharma.2019.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/03/2019] [Accepted: 10/04/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND The effect of oxygen on markers of oxidative stress has not been totally elucidated because previous studies have yielded conflicting results. METHODS A method for the collection and gas chromatography-mass spectrometry of the halogenated volatile organic compounds in human alveolar breath is described. A transportable apparatus sampled specifically alveolar breath; the volatile organic compounds were captured in a thermal desorption tube, Carbotrap 200®. The sample was thermally desorbed from the trap in an automated gas chromatography with mass spectrometry detection and peak fragmentation. Compounds were identified by reference to a computer-based library of mass spectra. RESULTS Trichlorotrifluoroethane, tetrafluoroethane, dichlorodifluoromethane were identified in alveolar breath of healthy volunteers after mental exercise-induced oxidative stress. The effects of halogenated alkanes were investigated on electron transport chain activity. These agents impaired the NADH oxidation suggesting an inhibition of the complex I (NADH: ubiquinone oxidoreductase) of the electron transport chain. These inhibitory effects are suspected likely to fight against oxidative stress deleterious reactions. CONCLUSION Chemical inhibition of the oxidative burst in human body trough these halogenated inhibitors is a new concept of significant practical, medical, biological and scientific interest.
Collapse
Affiliation(s)
- C Sarbach
- Ar2i, 20/22 avenue Edouard Herriot, 92350, Le Plessis Robinson, France
| | - B Dugas
- Inserm, U 511, Hôpital Pitié-Salpétière, Boulevard de l'Hôpital, 75013, Paris, France
| | - E Postaire
- Académie des sciences, 23, quai Conti, 75006, Paris, France.
| |
Collapse
|
33
|
Sanmarco LM, Eberhardt N, Bergero G, Quebrada Palacio LP, Adami PM, Visconti LM, Minguez ÁR, Hernández-Vasquez Y, Carrera Silva EA, Morelli L, Postan M, Aoki MP. Monocyte glycolysis determines CD8+ T cell functionality in human Chagas disease. JCI Insight 2019; 4:123490. [PMID: 31479429 DOI: 10.1172/jci.insight.123490] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/21/2019] [Indexed: 12/21/2022] Open
Abstract
Chagas disease is a lifelong pathology resulting from Trypanosoma cruzi infection. It represents one of the most frequent causes of heart failure and sudden death in Latin America. Herein, we provide evidence that aerobic glycolytic pathway activation in monocytes drives nitric oxide (NO) production, triggering tyrosine nitration (TN) on CD8+ T cells and dysfunction in patients with chronic Chagas disease. Monocytes from patients exhibited a higher frequency of hypoxia-inducible factor 1α and increased expression of its target genes/proteins. Nonclassical monocytes are expanded in patients' peripheral blood and represent an important source of NO. Monocytes entail CD8+ T cell surface nitration because both the frequency of nonclassical monocytes and that of NO-producing monocytes positively correlated with the percentage of TN+ lymphocytes. Inhibition of glycolysis in in vitro-infected peripheral blood mononuclear cells decreased the inflammatory properties of monocytes/macrophages, diminishing the frequency of IL-1β- and NO-producing cells. In agreement, glycolysis inhibition reduced the percentage of TN+CD8+ T cells, improving their functionality. Altogether, these results clearly show that glycolysis governs oxidative stress on monocytes and modulates monocyte-T cell interplay in human chronic Chagas disease. Understanding the pathological immune mechanisms that sustain an inflammatory environment in human pathology is key to designing improved therapies.
Collapse
Affiliation(s)
- Liliana María Sanmarco
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - Natalia Eberhardt
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - Gastón Bergero
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | | | - Pamela Martino Adami
- Laboratorio de Amiloidosis y Neurodegeneración, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Laura Marina Visconti
- Hospital Nuestra Señora de la Misericordia, Córdoba, Argentina.,Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, II Cátedra de Infectología, Córdoba, Argentina
| | | | | | - Eugenio Antonio Carrera Silva
- Laboratorio de Trombosis Experimental, Instituto de Medicina Experimental, Academia Nacional de Medicina, CONICET, Buenos Aires, Argentina
| | - Laura Morelli
- Laboratorio de Amiloidosis y Neurodegeneración, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Miriam Postan
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chabén," Buenos Aires, Argentina
| | - Maria Pilar Aoki
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| |
Collapse
|
34
|
Kwak HJ, Um JY, Lee SS. Mild NO preconditioning protects H9c2 cells against NO-induced apoptosis through activation of PI3K/Akt and PKA-dependent pathways. Mol Cell Toxicol 2019. [DOI: 10.1007/s13273-019-0033-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Zaric M, Drakulic D, Dragic M, Gusevac Stojanovic I, Mitrovic N, Grkovic I, Martinovic J. Molecular Alterations and Effects of Acute Dehydroepiandrosterone Treatment Following Brief Bilateral Common Carotid Artery Occlusion: Relevance to Transient Ischemic Attack. Neuroscience 2019; 410:128-139. [PMID: 31095985 DOI: 10.1016/j.neuroscience.2019.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/01/2019] [Accepted: 05/05/2019] [Indexed: 10/26/2022]
Abstract
Transient ischemic attack (TIA) represents brief neurological dysfunction of vascular origin without detectable infarction. Despite major clinical relevance characterization of post-TIA molecular changes using appropriate experimental model is lacking and no therapeutic agent has been established yet. Neurosteroid dehydroepiandrosterone (DHEA) arose as one of the candidates for cerebral ischemia treatment but its effects on TIA-like condition remain unknown. Seeking an animal model applicable for investigation of molecular alterations in mild ischemic conditions such as TIA, 15-min bilateral common carotid artery occlusion with 24-h reperfusion was performed to induce ischemia/ reperfusion (I/R) injury in adult male Wistar rats. Additionally, effects of 4-h post-operative DHEA treatment (20 mg/kg) were investigated in physiological and I/R conditions in hippocampus (HIP) and prefrontal cortex (PFC). The study revealed absence of sensorimotor deficits, cerebral infarcts and neurodegeneration along with preserved HIP and PFC overall neuronal morphology and unaltered malondialdehyde and reduced glutathione level following I/R and/or DHEA treatment. I/R induced nitric oxide burst in HIP and PFC was accompanied with increased neuronal nitric oxide synthase protein level exclusively in HIP. DHEA had no effects in physiological conditions, while increase of Bax/Bcl2 ratio and dissipation of mitochondrial membrane potential in treated I/R group suggested DHEA-mediated exacerbation of post-ischemic changes that might lead to pro-apoptotic events in HIP. Interestingly, DHEA restored I/R-induced NO to the control level in PFC. Obtained results indicated that I/R may serve as an appropriate model for investigation of molecular changes and treatment outcome following mild ischemic conditions such as TIA.
Collapse
Affiliation(s)
- Marina Zaric
- Department of Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Petrovica Alasa 12-14, 11351 Belgrade, Republic of Serbia.
| | - Dunja Drakulic
- Department of Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Petrovica Alasa 12-14, 11351 Belgrade, Republic of Serbia
| | - Milorad Dragic
- Department of Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Petrovica Alasa 12-14, 11351 Belgrade, Republic of Serbia; Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Studentski trg 3, 11001 Belgrade, Republic of Serbia
| | - Ivana Gusevac Stojanovic
- Department of Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Petrovica Alasa 12-14, 11351 Belgrade, Republic of Serbia
| | - Natasa Mitrovic
- Department of Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Petrovica Alasa 12-14, 11351 Belgrade, Republic of Serbia
| | - Ivana Grkovic
- Department of Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Petrovica Alasa 12-14, 11351 Belgrade, Republic of Serbia
| | - Jelena Martinovic
- Department of Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Petrovica Alasa 12-14, 11351 Belgrade, Republic of Serbia
| |
Collapse
|
36
|
Abstract
Macrophages are the primary targets of Mycobacterium tuberculosis infection; the early events of macrophage interaction with M. tuberculosis define subsequent progression and outcome of infection. M. tuberculosis can alter the innate immunity of macrophages, resulting in suboptimal Th1 immunity, which contributes to the survival, persistence, and eventual dissemination of the pathogen. Macrophages are the primary targets of Mycobacterium tuberculosis infection; the early events of macrophage interaction with M. tuberculosis define subsequent progression and outcome of infection. M. tuberculosis can alter the innate immunity of macrophages, resulting in suboptimal Th1 immunity, which contributes to the survival, persistence, and eventual dissemination of the pathogen. Recent advances in immunometabolism illuminate the intimate link between the metabolic states of immune cells and their specific functions. In this review, we describe the little-studied biphasic metabolic dynamics of the macrophage response during progression of infection by M. tuberculosis and discuss their relevance to macrophage immunity and M. tuberculosis pathogenicity. The early phase of macrophage infection, which is marked by M1 polarization, is accompanied by a metabolic switch from mitochondrial oxidative phosphorylation to hypoxia-inducible factor 1 alpha (HIF-1α)-mediated aerobic glycolysis (also known as the Warburg effect in cancer cells), as well as by an upregulation of pathways involving oxidative and antioxidative defense responses, arginine metabolism, and synthesis of bioactive lipids. These early metabolic changes are followed by a late adaptation/resolution phase in which macrophages transition from glycolysis to mitochondrial oxidative metabolism, with a consequent dampening of macrophage proinflammatory and antimicrobial responses. Importantly, the identification of upregulated metabolic pathways and/or metabolic regulatory mechanisms with immunomodulatory functions during M1 polarization has revealed novel mechanisms of M. tuberculosis pathogenicity. These advances can lead to the development of novel host-directed therapies to facilitate bacterial clearance in tuberculosis by targeting the metabolic state of immune cells.
Collapse
|
37
|
Yu W, Liu T, Zhang M, Wang Z, Ye J, Li CX, Liu W, Li R, Feng J, Zhang XZ. O 2 Economizer for Inhibiting Cell Respiration To Combat the Hypoxia Obstacle in Tumor Treatments. ACS NANO 2019; 13:1784-1794. [PMID: 30698953 DOI: 10.1021/acsnano.8b07852] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hypoxia, a ubiquitously aberrant phenomenon implicated in tumor growth, causes severe tumor resistance to therapeutic interventions. Instead of the currently prevalent solution through intratumoral oxygen supply, we put forward an "O2-economizer" concept by inhibiting the O2 consumption of cell respiration to spare endogenous O2 and overcome the hypoxia barrier. A nitric oxide (NO) donor responsible for respiration inhibition and a photosensitizer for photodynamic therapy (PDT) are co-loaded into poly(d,l-lactide- co-glycolide) nanovesicles to provide a PDT-specific O2 economizer. Once accumulating in tumors and subsequently responding to the locally reductive environment, the carried NO donor undergoes breakdown to produce NO for inhibiting cellular respiration, allowing more O2 in tumor cells to support the profound enhancement of PDT. Depending on the biochemical reallocation of cellular oxygen resource, this O2-economizer concept offers a way to address the important issue of hypoxia-induced tumor resistance to therapeutic interventions, including but not limited to PDT.
Collapse
Affiliation(s)
- Wuyang Yu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , PR China
| | - Tao Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , PR China
| | - Mingkang Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , PR China
| | - Zixu Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , PR China
| | - Jingjie Ye
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , PR China
| | - Chu-Xin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , PR China
| | - Wenlong Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , PR China
| | - Runqing Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , PR China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , PR China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , PR China
| |
Collapse
|
38
|
Krzywon A, Widel M. Bystander Me45 Melanoma Cells Increase Damaging Effect in UVC-irradiated Cells. Photochem Photobiol 2019; 95:1019-1028. [PMID: 30613987 DOI: 10.1111/php.13080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/26/2018] [Indexed: 11/30/2022]
Abstract
The aim of our study was to investigate the possible mechanism(s) of the bystander effect induced by UVC light in malignant melanoma Me45 cells that were co-incubated with irradiated cells of the same line. We have found that the UVC band effectively generated apoptosis, premature senescence, single and double DNA strand breaks and reduced clonogenic survival of bystander cells. However, in the feedback response, the bystander cells intensified damage in directly irradiated cells, especially seen at the level of apoptosis and survival of clonogenic cells. Pretreatment of bystander cells with inhibitor of inducible nitric oxide synthase blocks this signaling. It seems that the mediators of this phenomenon produced and secreted by neighboring cells are superoxide, nitric oxide and TGF-β. The reverse deleterious effect caused by cells not exposed to UVC in directly exposed cells is opposed to the protective/rescue effect exerted by the bystander cells in the case of ionizing radiation known in the literature. Whether this opposite adverse effect is a feature of only Me45 melanoma cells or whether it is a general phenomenon occurring between cells of other types exposed to ultraviolet radiation requires further research.
Collapse
Affiliation(s)
- Aleksandra Krzywon
- Biosystems Group, Faculty of Automatics, Electronics and Informatics, Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Maria Widel
- Biosystems Group, Faculty of Automatics, Electronics and Informatics, Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
39
|
Basudhar D, Bharadwaj G, Somasundaram V, Cheng RYS, Ridnour LA, Fujita M, Lockett SJ, Anderson SK, McVicar DW, Wink DA. Understanding the tumour micro-environment communication network from an NOS2/COX2 perspective. Br J Pharmacol 2019; 176:155-176. [PMID: 30152521 PMCID: PMC6295414 DOI: 10.1111/bph.14488] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022] Open
Abstract
Recent findings suggest that co-expression of NOS2 and COX2 is a strong prognostic indicator in triple-negative breast cancer patients. These two key inflammation-associated enzymes are responsible for the biosynthesis of NO and PGE2 , respectively, and can exert their effect in both an autocrine and paracrine manner. Impairment of their physiological regulation leads to critical changes in both intra-tumoural and intercellular communication with the immune system and their adaptation to the hypoxic tumour micro-environment. Recent studies have also established a key role of NOS2-COX2 in causing metabolic shift. This review provides an extensive overview of the role of NO and PGE2 in shaping communication between the tumour micro-environment composed of tumour and immune cells that in turn favours tumour progression and metastasis. LINKED ARTICLES: This article is part of a themed section on Nitric Oxide 20 Years from the 1998 Nobel Prize. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.2/issuetoc.
Collapse
Affiliation(s)
- Debashree Basudhar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Gaurav Bharadwaj
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Veena Somasundaram
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Robert Y S Cheng
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Lisa A Ridnour
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Mayumi Fujita
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological SciencesNational Institutes for Quantum and Radiological Science and TechnologyChiba‐kenJapan
| | - Stephen J Lockett
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc. for the National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Stephen K Anderson
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Daniel W McVicar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - David A Wink
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| |
Collapse
|
40
|
Cheng Y, Lu Y, Zhang D, Lian S, Liang H, Ye Y, Xie R, Li S, Chen J, Xue X, Xie J, Jia L. Metastatic cancer cells compensate for low energy supplies in hostile microenvironments with bioenergetic adaptation and metabolic reprogramming. Int J Oncol 2018; 53:2590-2604. [PMID: 30280201 DOI: 10.3892/ijo.2018.4582] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/18/2018] [Indexed: 11/06/2022] Open
Abstract
Metastasis accounts for the majority of cancer-related mortalities, and the complex processes of metastasis remain the least understood aspect of cancer biology. Metabolic reprogramming is associated with cancer cell survival and metastasis in a hostile envi-ronment with a limited nutrient supply, such as solid tumors. Little is known regarding the differences of bioenergetic adaptation between primary tumor cells and metastatic tumor cells in unfavorable microenvironments; to clarify these differences, the present study aimed to compare metabolic reprogramming of primary tumor cells and metastatic tumor cells. SW620 metastatic tumor cells exhibited stronger bioenergetic adaptation in unfavorable conditions compared with SW480 primary tumor-derived cells, as determined by the sustained elevation of glycolysis and regulation of the cell cycle. This remarkable glycolytic ability of SW620 cells was associated with high expression levels of hexokinase (HK)1, HK2, glucose transporter type 1 and hypoxia-inducible factor 1α. Compared with SW480 cells, the expression of cell cycle regulatory proteins was effectively inhibited in SW620 cells to sustain cell survival when there was a lack of energy. Furthermore, SW620 cells exhibited a stronger mesenchymal phenotype and stem cell characteristics compared with SW480 cells; CD133 and CD166 were highly expressed in SW620 cells, whereas expression was not detected in SW480 cells. These data may explain why metastatic cancer cells exhibit greater microenvironmental adaptability and survivability; specifically, this may be achieved by upregulating glycolysis, optimizing the cell cycle and reprogramming cell metabolism. The present study may provide a target metabolic pathway for cancer metastasis therapy.
Collapse
Affiliation(s)
- Yunlong Cheng
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Yusheng Lu
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Doudou Zhang
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Shu Lian
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Haiyan Liang
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Yuying Ye
- Fujian Provincial People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, P.R. China
| | - Ruizhi Xie
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Shuhui Li
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Jiahang Chen
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Xuhui Xue
- Xi'an Children Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Jingjing Xie
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| |
Collapse
|
41
|
PIDD-dependent activation of caspase-2-mediated mitochondrial injury in E1A-induced cellular sensitivity to macrophage nitric oxide-induced apoptosis. Cell Death Discov 2018; 4:35. [PMID: 30245858 PMCID: PMC6135794 DOI: 10.1038/s41420-018-0100-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 08/21/2018] [Indexed: 01/11/2023] Open
Abstract
Expression of the adenovirus E1A oncogene sensitizes tumor cells to innate immune rejection by apoptosis induced by macrophage-produced tumor necrosis factor (TNF)-α and nitric oxide (NO). E1A sensitizes cells to TNF-α and NO through two distinct mechanisms, by repressing NF-κB-dependent antiapoptotic responses and enhancing caspase-2 activation and mitochondrial injury, respectively. The mechanisms through which E1A enhances caspase-2 activation in response to NO were unknown. Here, we report that E1A-induced sensitization to NO-induced apoptosis is dependent on expression of PIDD (p53-inducible protein with a death domain) and enhancement of primary immunodeficiency diseases (PIDD) processing for formation of the PIDDosome, the core component of the caspase-2 activation complex. NO-induced apoptosis in E1A-expressing cells did not require expression Bak or Bax, indicating that NO-induced caspase-2-mediated mitochondrial injury does not proceed through the activities of typical, proapoptotic Bcl-2 family members that induce mitochondrial cytochrome C release. These results define a PIDD-dependent pathway, through which E1A enhances casapse-2-mediated mitochondrial injury, resulting in increased sensitivity of mammalian cells to macrophage-induced, NO-mediated apoptosis.
Collapse
|
42
|
Lavrich KS, Speen AM, Ghio AJ, Bromberg PA, Samet JM, Alexis NE. Macrophages from the upper and lower human respiratory tract are metabolically distinct. Am J Physiol Lung Cell Mol Physiol 2018; 315:L752-L764. [PMID: 30091382 DOI: 10.1152/ajplung.00208.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The function and cell surface phenotype of lung macrophages vary within the respiratory tract. Alterations in the bioenergetic profile of macrophages may also be influenced by their location within the respiratory tract. This study sought to characterize the bioenergetic profile of macrophages sampled from different locations within the respiratory tract at baseline and in response to ex vivo xenobiotic challenge. Surface macrophages recovered from healthy volunteers by induced sputum and by bronchial and bronchoalveolar lavage were profiled using extracellular flux analyses. Oxygen consumption and extracellular acidification rates were measured at rest and after stimulation with lipopolysaccharide (LPS), phorbol 12-myristate 13-acetate (PMA), or 1,2-naphthoquinone (1,2-NQ). Oxygen consumption and extracellular acidification rates were highly correlated for all macrophage samples. Induced sputum macrophages had relatively higher oxygen consumption and extracellular acidification rates and were largely reliant on glycolysis. In contrast, bronchial fraction and bronchoalveolar macrophages depended more heavily on mitochondrial respiration. Bronchoalveolar macrophages showed elevated LPS-induced cytokine responses. Unlike their autologous peripheral blood monocytes, lung macrophages from any source did not display bioenergetic changes following LPS stimulation. The protein kinase C activator PMA did not affect mitochondrial respiration, whereas the air pollutant 1,2-NQ induced marked mitochondrial dysfunction in bronchoalveolar and bronchial fraction macrophages. The bioenergetic characteristics of macrophages from healthy individuals are dependent on their location within the respiratory tract. These findings establish a regional bioenergetic profile for macrophages from healthy human airways that serves as a reference for changes that occur in disease.
Collapse
Affiliation(s)
- Katelyn S Lavrich
- Curriculum in Toxicology, University of North Carolina Chapel Hill , Chapel Hill, North Carolina
| | - Adam M Speen
- Curriculum in Toxicology, University of North Carolina Chapel Hill , Chapel Hill, North Carolina
| | - Andrew J Ghio
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Philip A Bromberg
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina Chapel Hill , Chapel Hill, North Carolina
| | - James M Samet
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina Chapel Hill , Chapel Hill, North Carolina
| |
Collapse
|
43
|
The mitochondrial respiratory chain: A metabolic rheostat of innate immune cell-mediated antibacterial responses. Mitochondrion 2018; 41:28-36. [DOI: 10.1016/j.mito.2017.10.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 01/23/2023]
|
44
|
Boschetto F, Adachi T, Horiguchi S, Fainozzi D, Parmigiani F, Marin E, Zhu W, McEntire B, Yamamoto T, Kanamura N, Mazda O, Ohgitani E, Pezzotti G. Monitoring metabolic reactions in Staphylococcus epidermidis exposed to silicon nitride using in situ time-lapse Raman spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-10. [PMID: 29745132 DOI: 10.1117/1.jbo.23.5.056002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
Staphylococcus epidermidis (S. epidermidis) is one of the leading nosocomial pathogens, particularly associated with periprosthetic infections of biomedical implants. Silicon nitride (Si3N4), a nonoxide biomaterial widely used in spinal implants, has shown bacteriostatic effects against both gram-positive and gram-negative bacteria; however, the physicochemical interactions between Si3N4 and bacteria yet remain conspicuously unexplored. In situ time-lapse Raman spectroscopic experiments were conducted by exposing S. epidermidis for 12, 24, and 48 h to Si3N4 substrates to understand the evolution of bacterial metabolism and to elucidate the ceramics antimicrobial behavior. The Raman probe captured an initial metabolic response of the bacteria to the adverse chemistry of the Si3N4 surface, which included peroxidation of membrane phospholipids and protein structural modifications to adjust for survivorship. However, beyond 24 h of exposure, the Raman signals representing DNA, lipids, proteins, and carbohydrates showed clear fingerprints of bacterial lysis. Bands related to biofilm formation completely disappeared or underwent drastically reduced intensity. Bacterial lysis was confirmed by conventional fluorescence microscopy methods. Spectroscopic experiments suggested that a pH change at the Si3N4's surface induced variations in the membrane structure and D-alanylation of teichoic acids in its peptidoglycan layer. Concurrent stimulation of peptidoglycan hydrolase (i.e., an enzyme involved with autolysis) ultimately led to membrane degradation and cellular death. An additional finding was that modulating the Si3N4 surface by increasing the population of amine groups improved the efficiency of the substrate against S. epidermidis, thus suggesting that optimization of the near-surface (alkaline) conditions may be a viable approach to bacterial reduction.
Collapse
Affiliation(s)
- Francesco Boschetto
- Kyoto Institute of Technology, Japan
- Kyoto Prefectural Univ. of Medicine, Japan
| | | | | | | | | | - Elia Marin
- Kyoto Institute of Technology, Japan
- Kyoto Prefectural Univ. of Medicine, Japan
| | | | | | | | | | - Osam Mazda
- Kyoto Prefectural Univ. of Medicine, Japan
| | | | - Giuseppe Pezzotti
- Kyoto Institute of Technology, Japan
- Kyoto Prefectural Univ. of Medicine, Japan
- Tokyo Medical Univ., Japan
| |
Collapse
|
45
|
Abstract
Nitric oxide (NO) is a key messenger in the pathogenesis of inflammation, linking innate and adaptive immunity. By targeting signaling molecules, NO from inducible NO synthase (iNOS) and endothelial (e)NOS affects T helper cell differentiation and the effector functions of T lymphocytes, and is a potential target for therapeutic manipulation. In this review we discuss the regulatory actions exerted by NO on T cell functions, focusing on S-nitrosylation as an important post-translational modification by which NO acts as a signaling molecule during T cell-mediated immunity. We also present recent findings showing novel mechanisms through which NO regulates the activation of human T cells, and consider their potential in strategies to treat tumoral, allergic, and autoimmune diseases.
Collapse
|
46
|
Pezzotti G, Bock RM, McEntire BJ, Adachi T, Marin E, Boschetto F, Zhu W, Mazda O, Bal SB. In vitroantibacterial activity of oxide and non-oxide bioceramics for arthroplastic devices: I.In situtime-lapse Raman spectroscopy. Analyst 2018; 143:3708-3721. [DOI: 10.1039/c8an00233a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Raman spectroscopy proved why the antibacterial response of non-oxide Si3N4bioceramic is superior to those of alumina-based oxide bioceramics.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory
- Kyoto Institute of Technology
- Kyoto
- Japan
- Department of Orthopedic Surgery
| | | | | | - Tetsuya Adachi
- Department of Dental Medicine
- Graduate School of Medical Science
- Kyoto Prefectural University of Medicine
- Kyoto 602-8566
- Japan
| | - Elia Marin
- Ceramic Physics Laboratory
- Kyoto Institute of Technology
- Kyoto
- Japan
- Department of Dental Medicine
| | - Francesco Boschetto
- Ceramic Physics Laboratory
- Kyoto Institute of Technology
- Kyoto
- Japan
- Department of Immunology
| | - Wenliang Zhu
- Ceramic Physics Laboratory
- Kyoto Institute of Technology
- Kyoto
- Japan
| | - Osam Mazda
- Department of Immunology
- Kyoto Prefectural University of Medicine
- Kamigyo-ku
- Japan
| | - Sonny B. Bal
- Amedica Corporation
- Salt Lake City
- USA
- Department of Orthopaedic Surgery
- University of Missouri
| |
Collapse
|
47
|
Krzywon A, Widel M, Fujarewicz K, Skonieczna M, Rzeszowska-Wolny J. Modulation by neighboring cells of the responses and fate of melanoma cells irradiated with UVA. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 178:505-511. [PMID: 29241122 DOI: 10.1016/j.jphotobiol.2017.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 02/03/2023]
Abstract
UVA radiation, which accounts for about 95% of the solar spectrum, contributes to and may be the etiological factor of skin cancers of which malignant melanoma is the most aggressive. UVA causes oxidative stress in various types of cells in the skin, keratinocyte, melanocytes, and fibroblasts, which is responsible for its cytotoxic effect. Here we used a transwell system to explore how the responses of melanoma cells to a low dose of UVA (20kJ/m2, ~10% of the minimal erythema dose) are influenced by neighboring co-cultured melanoma cells or fibroblasts. This dose had a low toxicity for melanoma cells, but after irradiation, co-culture with non-irradiated melanoma cells caused a strong decline in their viability and an increased frequency of apoptosis, whereas co-culture with fibroblast exerted a protective effect on irradiated melanoma cells. At the same time, the presence of non-irradiated cells, especially fibroblasts, decreased the level of UVA-induced reactive oxygen and nitrogen species. Interleukins efficiently produced by fibroblasts seem to be main players in these effects. Our studies reveal that coexistence of fibroblasts with melanoma cells may strongly modulate the direct action and may change bystander effects exerted by UVA light. Similar modulation of the effect of UVA on melanoma cells in vivo by bystander-like signaling from neighboring cells would have consequences for the development of malignant melanoma.
Collapse
Affiliation(s)
- Aleksandra Krzywon
- Biosystems Group, Institute of Automatic Control, Faculty of Automatics, Electronics and Informatics, Silesian University of Technology, 16 Akademicka Street, 44-100 Gliwice, Poland
| | - Maria Widel
- Biosystems Group, Institute of Automatic Control, Faculty of Automatics, Electronics and Informatics, Silesian University of Technology, 16 Akademicka Street, 44-100 Gliwice, Poland.
| | - Krzysztof Fujarewicz
- Biosystems Group, Institute of Automatic Control, Faculty of Automatics, Electronics and Informatics, Silesian University of Technology, 16 Akademicka Street, 44-100 Gliwice, Poland
| | - Magdalena Skonieczna
- Biosystems Group, Institute of Automatic Control, Faculty of Automatics, Electronics and Informatics, Silesian University of Technology, 16 Akademicka Street, 44-100 Gliwice, Poland
| | - Joanna Rzeszowska-Wolny
- Biosystems Group, Institute of Automatic Control, Faculty of Automatics, Electronics and Informatics, Silesian University of Technology, 16 Akademicka Street, 44-100 Gliwice, Poland
| |
Collapse
|
48
|
Thwe PM, Amiel E. The role of nitric oxide in metabolic regulation of Dendritic cell immune function. Cancer Lett 2017; 412:236-242. [PMID: 29107106 DOI: 10.1016/j.canlet.2017.10.032] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/30/2017] [Accepted: 10/22/2017] [Indexed: 01/10/2023]
Abstract
Dendritic cells (DCs) are canonical antigen presenting cells of the immune system and serve as a bridge between innate and adaptive immune responses. When DCs are activated by a stimulus through toll-like receptors (TLRs), DCs undergo a process of maturation defined by cytokine & chemokine secretion, co-stimulatory molecule expression, antigen processing and presentation, and the ability to activate T cells. DC maturation is coupled with an increase in biosynthetic demand, which is fulfilled by a TLR-driven upregulation in glycolytic metabolism. Up-regulation of glycolysis in activated DCs provides these cells with molecular building blocks and cellular energy required for DC activation, and inhibition of glycolysis during initial activation impairs both the survival and effector function of activated DCs. Evidence shows that DC glycolytic upregulation is controlled by two distinct pathways, an early burst of glycolysis that is nitric oxide (NO) -independent, and a sustained commitment to glycolysis in NO-producing DC subsets. This review will address the complex role of NO in regulating DC metabolism and effector function.
Collapse
Affiliation(s)
- Phyu M Thwe
- Cell, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405, USA; Department of Medical Laboratory and Radiation Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Eyal Amiel
- Cell, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405, USA; Department of Medical Laboratory and Radiation Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
49
|
Protein kinase A activation by the anti-cancer drugs ABT-737 and thymoquinone is caspase-3-dependent and correlates with platelet inhibition and apoptosis. Cell Death Dis 2017; 8:e2898. [PMID: 28661475 PMCID: PMC5520940 DOI: 10.1038/cddis.2017.290] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 12/14/2022]
Abstract
Chemotherapy-induced thrombocytopenia is a common bleeding risk in cancer patients and limits chemotherapy dose and frequency. Recent data from mouse and human platelets revealed that activation of protein kinase A/G (PKA/PKG) not only inhibited thrombin/convulxin-induced platelet activation but also prevented the platelet pro-coagulant state. Here we investigated whether or not PKA/PKG activation could attenuate caspase-dependent apoptosis induced by the anti-cancer drugs ABT-737 (the precursor of navitoclax) and thymoquinone (TQ), thereby potentially limiting chemotherapy-induced thrombocytopenia. This is particularly relevant as activation of cyclic nucleotide signalling in combination chemotherapy is an emerging strategy in cancer treatment. However, PKA/PKG-activation, as monitored by phosphorylation of Vasodilator-stimulated phosphoprotein (VASP), did not block caspase-3-dependent platelet apoptosis induced by the compounds. In contrast, both substances induced PKA activation themselves and PKA activation correlated with platelet inhibition and apoptosis. Surprisingly, ABT-737- and TQ-induced VASP-phosphorylation was independent of cAMP levels and neither cyclases nor phosphatases were affected by the drugs. In contrast, however, ABT-737- and TQ-induced PKA activation was blocked by caspase-3 inhibitors. In conclusion, we show that ABT-737 and TQ activate PKA in a caspase-3-dependent manner, which correlates with platelet inhibition and apoptosis and therefore potentially contributes to the bleeding risk in chemotherapy patients.
Collapse
|
50
|
Hsiao IL, Hsieh YK, Chuang CY, Wang CF, Huang YJ. Effects of silver nanoparticles on the interactions of neuron- and glia-like cells: Toxicity, uptake mechanisms, and lysosomal tracking. ENVIRONMENTAL TOXICOLOGY 2017; 32:1742-1753. [PMID: 28181394 DOI: 10.1002/tox.22397] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 01/14/2017] [Accepted: 01/15/2017] [Indexed: 05/11/2023]
Abstract
Silver nanoparticles (AgNPs) are commonly used nanomaterials in consumer products. Previous studies focused on its effects on neurons; however, little is known about their effects and uptake mechanisms on glial cells under normal or activated states. Here, ALT astrocyte-like, BV-2 microglia and differentiated N2a neuroblastoma cells were directly or indirectly exposed to 10 nm AgNPs using mono- and co-culture system. A lipopolysaccharide (LPS) was pretreated to activate glial cells before AgNP treatment for mimicking NP exposure under brain inflammation. From mono-culture, ALT took up the most AgNPs and had the lowest cell viability within three cells. Moreover, AgNPs induced H2 O2 and NO from ALT/activated ALT and BV-2, respectively. However, AgNPs did not induce cytokines release (IL-6, TNF-α, MCP-1). LPS-activated BV-2 took up more AgNPs than normal BV-2, while the induction of ROS and cytokines from activated cells were diminished. Ca2+ -regulated clathrin- and caveolae-independent endocytosis and phagocytosis were involved in the AgNP uptake in ALT, which caused more rapid NP translocation to lysosome than in macropinocytosis and clathrin-dependent endocytosis-involved BV-2. AgNPs directly caused apoptosis and necrosis in N2a cells, while by indirect NP exposure to bottom chamber ALT or BV-2 in Transwell, more apoptotic upper chamber N2a cells were observed. Cell viability of BV-2 also decreased in an ALT-BV-2 co-culturing study. The damaged cells correlated to NP-mediated H2 O2 release from ALT or NO from BV-2, which indicates that toxic response of AgNPs to neurons is not direct, but indirectly arises from AgNP-induced soluble factors from other glial cells.
Collapse
Affiliation(s)
- I-Lun Hsiao
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yi-Kong Hsieh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chun-Yu Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chu-Fang Wang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yuh-Jeen Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|