1
|
Salomon K, Abramyan AM, Plenge P, Wang L, Bundgaard C, Bang-Andersen B, Loland CJ, Shi L. Dynamic extracellular vestibule of human SERT: Unveiling druggable potential with high-affinity allosteric inhibitors. Proc Natl Acad Sci U S A 2023; 120:e2304089120. [PMID: 37792512 PMCID: PMC10576121 DOI: 10.1073/pnas.2304089120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/15/2023] [Indexed: 10/06/2023] Open
Abstract
The serotonin transporter (SERT) tightly regulates synaptic serotonin levels and has been the primary target of antidepressants. Binding of inhibitors to the allosteric site of human SERT (hSERT) impedes the dissociation of antidepressants bound at the central site and may enhance the efficacy of such antidepressants to potentially reduce their dosage and side effects. Here, we report the identification of a series of high-affinity allosteric inhibitors of hSERT in a unique scaffold, with the lead compound, Lu AF88273 (3-(1-(2-(1H-indol-3-yl)ethyl)piperidin-4-yl)-6-chloro-1H-indole), having 2.1 nM allosteric potency in inhibiting imipramine dissociation. In addition, we find that Lu AF88273 also inhibits serotonin transport in a noncompetitive manner. The binding pose of Lu AF88273 in the allosteric site of hSERT is determined with extensive molecular dynamics simulations and rigorous absolute binding free energy perturbation (FEP) calculations, which show that a part of the compound occupies a dynamically formed small cavity. The predicted binding location and pose are validated by site-directed mutagenesis and can explain much of the structure-activity relationship of these inhibitors using the relative binding FEP calculations. Together, our findings provide a promising lead compound and the structural basis for the development of allosteric drugs targeting hSERT. Further, they demonstrate that the divergent allosteric sites of neurotransmitter transporters can be selectively targeted.
Collapse
Affiliation(s)
- Kristine Salomon
- Laboratory for Membrane Protein Dynamics, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200Copenhagen N, Denmark
| | - Ara M. Abramyan
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, NIH, Baltimore, MD21224
- Schrödinger, Inc., San Diego, CA92121
| | - Per Plenge
- Laboratory for Membrane Protein Dynamics, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200Copenhagen N, Denmark
| | | | - Christoffer Bundgaard
- Medicinal Chemistry and Translational DMPK, H. Lundbeck A/S, DK-2500Copenhagen-Valby, Denmark
| | - Benny Bang-Andersen
- Medicinal Chemistry and Translational DMPK, H. Lundbeck A/S, DK-2500Copenhagen-Valby, Denmark
| | - Claus J. Loland
- Laboratory for Membrane Protein Dynamics, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200Copenhagen N, Denmark
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, NIH, Baltimore, MD21224
| |
Collapse
|
2
|
Anderson CMH, Edwards N, Watson AK, Althaus M, Thwaites DT. Reshaping the Binding Pocket of the Neurotransmitter:Solute Symporter (NSS) Family Transporter SLC6A14 (ATB 0,+) Selectively Reduces Access for Cationic Amino Acids and Derivatives. Biomolecules 2022; 12:biom12101404. [PMID: 36291613 PMCID: PMC9599917 DOI: 10.3390/biom12101404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
SLC6A14 (ATB0,+) is unique among SLC proteins in its ability to transport 18 of the 20 proteinogenic (dipolar and cationic) amino acids and naturally occurring and synthetic analogues (including anti-viral prodrugs and nitric oxide synthase (NOS) inhibitors). SLC6A14 mediates amino acid uptake in multiple cell types where increased expression is associated with pathophysiological conditions including some cancers. Here, we investigated how a key position within the core LeuT-fold structure of SLC6A14 influences substrate specificity. Homology modelling and sequence analysis identified the transmembrane domain 3 residue V128 as equivalent to a position known to influence substrate specificity in distantly related SLC36 and SLC38 amino acid transporters. SLC6A14, with and without V128 mutations, was heterologously expressed and function determined by radiotracer solute uptake and electrophysiological measurement of transporter-associated current. Substituting the amino acid residue occupying the SLC6A14 128 position modified the binding pocket environment and selectively disrupted transport of cationic (but not dipolar) amino acids and related NOS inhibitors. By understanding the molecular basis of amino acid transporter substrate specificity we can improve knowledge of how this multi-functional transporter can be targeted and how the LeuT-fold facilitates such diversity in function among the SLC6 family and other SLC amino acid transporters.
Collapse
Affiliation(s)
- Catriona M. H. Anderson
- School of Natural & Environmental Sciences, Faculty of Science, Engineering & Agriculture, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Correspondence: (C.M.H.A.); (D.T.T.)
| | - Noel Edwards
- Biosciences Institute, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Andrew K. Watson
- Biosciences Institute, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Mike Althaus
- School of Natural & Environmental Sciences, Faculty of Science, Engineering & Agriculture, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Department of Natural Sciences & Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, 53359 Rheinbach, Germany
| | - David T. Thwaites
- Biosciences Institute, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Correspondence: (C.M.H.A.); (D.T.T.)
| |
Collapse
|
3
|
Pappula AL, Gibson LN, Bouley RA, Petreaca RC. In silico analysis of a SLC6A4 G100V mutation in lung cancers. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000645. [PMID: 36247322 PMCID: PMC9554669 DOI: 10.17912/micropub.biology.000645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
Abstract
SLC6A4 is a serotonin re-uptake transporter which has been a target for anti-depressant therapies but recently some mutations have been described in cancer cells. Here, we characterize mutations in SLC6A4 that appear in cancer cells. We employed several validated computational and artificial intelligence algorithms to characterize the mutations. We identified a previously uncharacterized G100V mutation in lung cancers. In sillico structural analysis reveals that this mutation may affect SLC6A4 ligand binding and subsequently its function. We also identified several other mutations that may affect the structure of the protein. This preliminary analysis highlights the role of SLC6A4 in human cancers.
Collapse
Affiliation(s)
| | | | | | - Ruben C Petreaca
- The Ohio State University
,
Correspondence to: Ruben C Petreaca (
)
| |
Collapse
|
4
|
Determining Ligand and Ion-Induced Conformational Changes in Serotonin Transporter with Its Fluorescent Substrates. Int J Mol Sci 2022; 23:ijms231810919. [PMID: 36142837 PMCID: PMC9503009 DOI: 10.3390/ijms231810919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 01/22/2023] Open
Abstract
Conformational changes are fundamental events in the transport mechanism. The serotonin transporter (SERT) catalyzes reuptake of the neurotransmitter serotonin after its release by serotonergic neurons and is the molecular target for antidepressant drugs and psychostimulants. Despite significant progress in characterizing the structure-function relationship of SERT, its conformational mechanism has not been fully understood. We present here a cell-based method for determining conformational changes in SERT with its fluorescent substrates by fluorescence imaging analysis. This method fluorometrically measures accessibility of strategically positioned cysteine residues in the substrate permeation pathway to calculate the rate constants of reactivity with MTS reagents in live or permeabilized cells. We validated this method by investigating ligand and ion-induced conformational changes in both the extracellular and cytoplasmic pathways of SERT. Furthermore, we applied this method for examining the influence of Cl- binding and vilazodone inhibition on SERT conformation. Our results showed that Cl- ion, in the presence of Na+, facilitates the conformational conversion from outward to inward open states, and that vilazodone binding stabilizes SERT in an outward open and inward-closed conformation. The present work provided insights into the conformational mechanism of SERT and also indicated that the cell-based fluorometric method is robust, straightforward to perform, and potentially applicable to any monoamine transporters in exploring the transport mechanism and mechanism of action of therapeutic agents for the treatment of several psychiatric disorders.
Collapse
|
5
|
Huang B, Liu H, Wu Y, Li C, Tang Q, Zhang YW. Two Lignan Glycosides from Albizia julibrissin Durazz. Noncompetitively Inhibit Serotonin Transporter. Pharmaceuticals (Basel) 2022; 15:ph15030344. [PMID: 35337141 PMCID: PMC8954383 DOI: 10.3390/ph15030344] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 12/11/2022] Open
Abstract
Albizia julibrissin Durazz. is one of the most common herbs used for depression and anxiety treatment, but its molecular basis and mechanism of action as an antidepressant or anxiolytic drug are not understood. In this study, we separated and identified two lignan glycosides that inhibit serotonin transporter (SERT) noncompetitively by decreasing Vmax with little change in Km for its fluorescence substrate. In addition, treatment with lignan glycosides did not alter total and cell surface expression levels of the transporter protein. The two compounds decreased the accessibility of a cysteine residue placed in the extracellular substrate permeation pathway by inducing a conformational shift toward an outward-closed state of SERT. These results are consistent with molecular docking for the association of the lignan glycosides to the allosteric site in SERT. The present work supports the proposal that these compounds act on SERT by a novel underlying mechanism of action different from that of conventional antidepressant drugs.
Collapse
Affiliation(s)
- Bishan Huang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (B.H.); (H.L.); (Y.W.); (C.L.)
| | - Hanhe Liu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (B.H.); (H.L.); (Y.W.); (C.L.)
| | - Yingyao Wu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (B.H.); (H.L.); (Y.W.); (C.L.)
| | - Chan Li
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (B.H.); (H.L.); (Y.W.); (C.L.)
| | - Qingfa Tang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China;
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China
| | - Yuan-Wei Zhang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (B.H.); (H.L.); (Y.W.); (C.L.)
- Correspondence:
| |
Collapse
|
6
|
Chan MC, Selvam B, Young HJ, Procko E, Shukla D. The substrate import mechanism of the human serotonin transporter. Biophys J 2022; 121:715-730. [PMID: 35114149 PMCID: PMC8943754 DOI: 10.1016/j.bpj.2022.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/18/2021] [Accepted: 01/25/2022] [Indexed: 11/17/2022] Open
Abstract
The serotonin transporter (SERT) initiates the reuptake of extracellular serotonin in the synapse to terminate neurotransmission. The cryogenic electron microscopy structures of SERT bound to ibogaine and the physiological substrate serotonin resolved in different states have provided a glimpse of the functional conformations at atomistic resolution. However, the conformational dynamics and structural transitions to intermediate states are not fully understood. Furthermore, the molecular basis of how serotonin is recognized and transported remains unclear. In this study, we performed unbiased microsecond-long simulations of the human SERT to investigate the structural dynamics to various intermediate states and elucidated the complete substrate import pathway. Using Markov state models, we characterized a sequential order of conformational-driven ion-coupled substrate binding and transport events and calculated the free energy barriers of conformation transitions associated with the import mechanism. We find that the transition from the occluded to inward-facing state is the rate-limiting step for substrate import and that the substrate decreases the free energy barriers to achieve the inward-facing state. Our study provides insights on the molecular basis of dynamics-driven ion-substrate recognition and transport of SERT that can serve as a model for other closely related neurotransmitter transporters.
Collapse
Affiliation(s)
- Matthew C Chan
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Balaji Selvam
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Heather J Young
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Erik Procko
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois; National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois; NIH Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
7
|
Quinlan MA, Krout D, Katamish RM, Robson MJ, Nettesheim C, Gresch PJ, Mash DC, Keith Henry L, Blakely RD. Human Serotonin Transporter Coding Variation Establishes Conformational Bias with Functional Consequences. ACS Chem Neurosci 2019; 10:3249-3260. [PMID: 30668912 PMCID: PMC6640095 DOI: 10.1021/acschemneuro.8b00689] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The antidepressant-sensitive serotonin (5-HT) transporter (SERT) dictates rapid, high-affinity clearance of the neurotransmitter in both the brain and periphery. In a study of families with multiple individuals diagnosed with autism spectrum disorder (ASD), we previously identified several, rare, missense coding variants that impart elevated 5-HT transport activity, relative to wild-type SERT, upon heterologous expression as well as in ASD subject lymphoblasts. The most common of these variants, SERT Ala56, located in the transporter's cytosolic N-terminus, has been found to confer in transgenic mice hyperserotonemia, an ASD-associated biochemical trait, an elevated brain 5-HT clearance rate, and ASD-aligned behavioral changes. Hyperfunction of SERT Ala56 has been ascribed to a change in 5-HT KM, though the physical basis of this change has yet to be elucidated. Through assessments of fluorescence resonance energy transfer (FRET) between cytosolic N- and C-termini, sensitivity to methanethiosulfonates, and capacity for N-terminal tryptic digestion, we obtain evidence for mutation-induced conformational changes that support an open-outward 5-HT binding conformation in vitro and in vivo. Aspects of these findings were also evident with another naturally occurring C-terminal SERT coding variant identified in our ASD study, Asn605. We conclude that biased conformations of surface resident transporters that can impact transporter function and regulation are an unappreciated consequence of heritable and disease-associated SERT coding variation.
Collapse
Affiliation(s)
- Meagan A. Quinlan
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN
- Department of Biomedical Science, Charles E. Schmidt College of Medicine
| | - Danielle Krout
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND
| | - Rania M. Katamish
- Department of Biomedical Science, Charles E. Schmidt College of Medicine
| | - Matthew J. Robson
- Division of Pharmaceutical Sciences, University of Cincinnati, Cincinnati, OH
| | | | - Paul J. Gresch
- Department of Biomedical Science, Charles E. Schmidt College of Medicine
- Brain Institute, Florida Atlantic University, Jupiter, FL
| | - Deborah C. Mash
- Dr. Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL
| | - L. Keith Henry
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND
| | - Randy D. Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine
- Brain Institute, Florida Atlantic University, Jupiter, FL
| |
Collapse
|
8
|
Leone V, Waclawska I, Kossmann K, Koshy C, Sharma M, Prisner TF, Ziegler C, Endeward B, Forrest LR. Interpretation of spectroscopic data using molecular simulations for the secondary active transporter BetP. J Gen Physiol 2019; 151:381-394. [PMID: 30728216 PMCID: PMC6400524 DOI: 10.1085/jgp.201812111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 11/26/2018] [Accepted: 01/11/2019] [Indexed: 11/20/2022] Open
Abstract
Mechanistic understanding of dynamic membrane proteins such as transporters, receptors, and channels requires accurate depictions of conformational ensembles, and the manner in which they interchange as a function of environmental factors including substrates, lipids, and inhibitors. Spectroscopic techniques such as electron spin resonance (ESR) pulsed electron-electron double resonance (PELDOR), also known as double electron-electron resonance (DEER), provide a complement to atomistic structures obtained from x-ray crystallography or cryo-EM, since spectroscopic data reflect an ensemble and can be measured in more native solvents, unperturbed by a crystal lattice. However, attempts to interpret DEER data are frequently stymied by discrepancies with the structural data, which may arise due to differences in conditions, the dynamics of the protein, or the flexibility of the attached paramagnetic spin labels. Recently, molecular simulation techniques such as EBMetaD have been developed that create a conformational ensemble matching an experimental distance distribution while applying the minimal possible bias. Moreover, it has been proposed that the work required during an EBMetaD simulation to match an experimentally determined distribution could be used as a metric with which to assign conformational states to a given measurement. Here, we demonstrate the application of this concept for a sodium-coupled transport protein, BetP. Because the probe, protein, and lipid bilayer are all represented in atomic detail, the different contributions to the work, such as the extent of protein backbone movements, can be separated. This work therefore illustrates how ranking simulations based on EBMetaD can help to bridge the gap between structural and biophysical data and thereby enhance our understanding of membrane protein conformational mechanisms.
Collapse
Affiliation(s)
- Vanessa Leone
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | | | - Katharina Kossmann
- Institute of Biophysics and Biophysical Chemistry, University of Regensburg, Regensburg, Germany
| | - Caroline Koshy
- Max Planck Institute for Biophysics, Frankfurt am Main, Germany
| | - Monika Sharma
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Thomas F Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main, Germany
| | - Christine Ziegler
- Institute of Biophysics and Biophysical Chemistry, University of Regensburg, Regensburg, Germany
| | - Burkhard Endeward
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main, Germany
| | - Lucy R Forrest
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|
9
|
Herborg F, Andreassen TF, Berlin F, Loland CJ, Gether U. Neuropsychiatric disease-associated genetic variants of the dopamine transporter display heterogeneous molecular phenotypes. J Biol Chem 2018; 293:7250-7262. [PMID: 29559554 DOI: 10.1074/jbc.ra118.001753] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/15/2018] [Indexed: 12/14/2022] Open
Abstract
Genetic factors are known to significantly contribute to the etiology of psychiatric diseases such as attention deficit hyperactivity disorder (ADHD) and autism spectrum and bipolar disorders, but the underlying molecular processes remain largely elusive. The dopamine transporter (DAT) has received continuous attention as a potential risk factor for psychiatric disease, as it is critical for dopamine homeostasis and serves as principal target for ADHD medications. Constrain metrics for the DAT-encoding gene, solute carrier family 6 member 3 (SLC6A3), indicate that missense mutations are under strong negative selection, pointing to pathophysiological outcomes when DAT function is compromised. Here, we systematically characterized six rare genetic variants of DAT (I312F, T356M, D421N, A559V, E602G, and R615C) identified in patients with neuropsychiatric disorders. We evaluated dopamine uptake and ligand interactions, along with ion coordination and electrophysiological properties, to elucidate functional phenotypes, and applied Zn2+ exposure and a substituted cysteine-accessibility approach to identify shared structural changes. Three variants (I312F, T356M, and D421N) exhibited impaired dopamine uptake associated with changes in ligand binding, ion coordination, and distinct conformational disturbances. Remarkably, we found that all three variants displayed gain-of-function electrophysiological phenotypes. I312F mediated an increased uncoupled anion conductance previously suggested to modulate neuronal excitability. T356M and D421N both mediated a cocaine-sensitive leakage of cations, which for T356M was potentiated by Zn2+, concurrent with partial functional rescue. Collectively, our findings support that gain of disruptive functions due to missense mutations in SLC6A3 may be key to understanding how dopaminergic dyshomeostasis arises in heterozygous carriers.
Collapse
Affiliation(s)
- Freja Herborg
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, Panum Institute-Maersk Tower 07.05, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Thorvald F Andreassen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, Panum Institute-Maersk Tower 07.05, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Frida Berlin
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, Panum Institute-Maersk Tower 07.05, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Claus J Loland
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, Panum Institute-Maersk Tower 07.05, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Ulrik Gether
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, Panum Institute-Maersk Tower 07.05, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
10
|
Resculpting the binding pocket of APC superfamily LeuT-fold amino acid transporters. Cell Mol Life Sci 2017; 75:921-938. [PMID: 29058016 PMCID: PMC5809530 DOI: 10.1007/s00018-017-2677-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/14/2017] [Accepted: 10/02/2017] [Indexed: 12/03/2022]
Abstract
Amino acid transporters are essential components of prokaryote and eukaryote cells, possess distinct physiological functions, and differ markedly in substrate specificity. Amino acid transporters can be both drug targets and drug transporters (bioavailability, targeting) with many monogenic disorders resulting from dysfunctional membrane transport. The largest collection of amino acid transporters (including the mammalian SLC6, SLC7, SLC32, SLC36, and SLC38 families), across all kingdoms of life, is within the Amino acid-Polyamine-organoCation (APC) superfamily. The LeuT-fold is a paradigm structure for APC superfamily amino acid transporters and carriers of sugars, neurotransmitters, electrolytes, osmolytes, vitamins, micronutrients, signalling molecules, and organic and fatty acids. Each transporter is specific for a unique sub-set of solutes, specificity being determined by how well a substrate fits into each binding pocket. However, the molecular basis of substrate selectivity remains, by and large, elusive. Using an integrated computational and experimental approach, we demonstrate that a single position within the LeuT-fold can play a crucial role in determining substrate specificity in mammalian and arthropod amino acid transporters within the APC superfamily. Systematic mutation of the amino acid residue occupying the equivalent position to LeuT V104 titrates binding pocket space resulting in dramatic changes in substrate selectivity in exemplar APC amino acid transporters including PAT2 (SLC36A2) and SNAT5 (SLC38A5). Our work demonstrates how a single residue/site within an archetypal structural motif can alter substrate affinity and selectivity within this important superfamily of diverse membrane transporters.
Collapse
|
11
|
Theofilas P, Dunlop S, Heinsen H, Grinberg LT. Turning on the Light Within: Subcortical Nuclei of the Isodentritic Core and their Role in Alzheimer's Disease Pathogenesis. J Alzheimers Dis 2016; 46:17-34. [PMID: 25720408 DOI: 10.3233/jad-142682] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Pharmacological interventions in Alzheimer's disease (AD) are likely to be more efficacious if administered early in the course of the disease, foregoing the spread of irreversible changes in the brain. Research findings underline an early vulnerability of the isodendritic core (IC) network to AD neurofibrillary lesions. The IC constitutes a phylogenetically conserved subcortical system including the locus coeruleus in pons, dorsal raphe nucleus, and substantia nigra in the midbrain, and nucleus basalis of Meynert in basal forebrain. Through their ascending projections to the cortex, the IC neurons regulate homeostasis and behavior by synthesizing aminergic and cholinergic neurotransmitters. Here we reviewed the evidence demonstrating that neurons of the IC system show neurofibrillary tangles in the earliest stages of AD, prior to cortical pathology, and how this involvement may explain pre-amnestic symptoms, including depression, agitation, and sleep disturbances in AD patients. In fact, clinical and animal studies show a significant reduction of AD cognitive and behavioral symptoms following replenishment of neurotransmitters associated with the IC network. Therefore, the IC network represents a unique candidate for viable therapeutic intervention and should become a high priority for research in AD.
Collapse
Affiliation(s)
- Panos Theofilas
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Sara Dunlop
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Helmut Heinsen
- Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Department of Psychiatrics, University of Wuerzburg, Germany
| | - Lea Tenenholz Grinberg
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.,Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, Brazil
| |
Collapse
|
12
|
Synthesis and inhibitory evaluation of 3-linked imipramines for the exploration of the S2 site of the human serotonin transporter. Bioorg Med Chem 2016; 24:2725-38. [PMID: 27160055 DOI: 10.1016/j.bmc.2016.04.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 04/16/2016] [Accepted: 04/20/2016] [Indexed: 01/10/2023]
Abstract
The human serotonin transporter is the primary target of several antidepressant drugs, and the importance of a primary, high affinity binding site (S1) for antidepressant binding is well documented. The existence of a lower affinity, secondary binding site (S2) has, however, been debated. Herein we report the synthesis of 3-position coupled imipramine ligands from clomipramine using a copper free Sonogashira reaction. Ligand design was inspired by results from docking and steered molecular dynamics simulations, and the ligands were utilized in a structure-activity relationship study of the positional relationship between the S1 and S2 sites. The computer simulations suggested that the S2 site does indeed exist although with lower affinity for imipramine than observed within the S1 site. Additionally, it was possible to dock the 3-linked imipramine analogs into positions which occupy the S1 and the S2 site simultaneously. The structure activity relationship study showed that the shortest ligands were the most potent, and mutations enlarging the proposed S2 site were found to affect the larger ligands positively, while the smaller ligands were mostly unaffected.
Collapse
|
13
|
Sharma H, Santra S, Dutta A. Triple reuptake inhibitors as potential next-generation antidepressants: a new hope? Future Med Chem 2015; 7:2385-406. [PMID: 26619226 PMCID: PMC4976848 DOI: 10.4155/fmc.15.134] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The current therapy for depression is less than ideal with remission rates of only 25-35% and a slow onset of action with other associated side effects. The persistence of anhedonia originating from depressed dopaminergic activity is one of the most treatment-resistant symptoms of depression. Therefore, it has been hypothesized that triple reuptake inhibitors (TRIs) with potency to block dopamine reuptake in addition to serotonin and norepinephrine transporters should produce higher efficacy. The current review comprehensively describes the development of TRIs and discusses the importance of evaluation of in vivo transporter occupancy of TRIs, which should correlate with efficacy in humans.
Collapse
Affiliation(s)
- Horrick Sharma
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Soumava Santra
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Aloke Dutta
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
14
|
Pedersen AV, Andreassen TF, Loland CJ. A conserved salt bridge between transmembrane segments 1 and 10 constitutes an extracellular gate in the dopamine transporter. J Biol Chem 2014; 289:35003-14. [PMID: 25339174 DOI: 10.1074/jbc.m114.586982] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neurotransmitter transporters play an important role in termination of synaptic transmission by mediating reuptake of neurotransmitter, but the molecular processes behind translocation are still unclear. The crystal structures of the bacterial homologue, LeuT, provided valuable insight into the structural and dynamic requirements for substrate transport. These structures support the existence of gating domains controlling access to a central binding site. On the extracellular side, access is controlled by the "thin gate" formed by an interaction between Arg-30 and Asp-404. In the human dopamine transporter (DAT), the corresponding residues are Arg-85 and Asp-476. Here, we present results supporting the existence of a similar interaction in DAT. The DAT R85D mutant has a complete loss of function, but the additional insertion of an arginine in opposite position (R85D/D476R), causing a charge reversal, results in a rescue of binding sites for the cocaine analogue [(3)H]CFT. Also, the coordination of Zn(2+) between introduced histidines (R85H/D476H) caused a ∼ 2.5-fold increase in [(3)H]CFT binding (Bmax). Importantly, Zn(2+) also inhibited [(3)H]dopamine transport in R85H/D476H, suggesting that a dynamic interaction is required for the transport process. Furthermore, cysteine-reactive chemistry shows that mutation of the gating residues causes a higher proportion of transporters to reside in the outward facing conformation. Finally, we show that charge reversal of the corresponding residues (R104E/E493R) in the serotonin transporter also rescues [(3)H](S)-citalopram binding, suggesting a conserved feature. Taken together, these data suggest that the extracellular thin gate is present in monoamine transporters and that a dynamic interaction is required for substrate transport.
Collapse
Affiliation(s)
- Anders V Pedersen
- From the Department of Neuroscience and Pharmacology, Molecular Neuropharmacology Laboratory, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Thorvald F Andreassen
- From the Department of Neuroscience and Pharmacology, Molecular Neuropharmacology Laboratory, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Claus J Loland
- From the Department of Neuroscience and Pharmacology, Molecular Neuropharmacology Laboratory, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
15
|
Loland CJ. The use of LeuT as a model in elucidating binding sites for substrates and inhibitors in neurotransmitter transporters. Biochim Biophys Acta Gen Subj 2014; 1850:500-10. [PMID: 24769398 DOI: 10.1016/j.bbagen.2014.04.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 01/24/2023]
Abstract
BACKGROUND The mammalian neurotransmitter transporters are complex proteins playing a central role in synaptic transmission between neurons by rapid reuptake of neurotransmitters. The proteins which transport dopamine, noradrenaline and serotonin belong to the Neurotransmitter:Sodium Symporters (NSS). Due to their important role, dysfunctions are associated with several psychiatric and neurological diseases and they also serve as targets for a wide range of therapeutic and illicit drugs. Despite the central physiological and pharmacological importance, direct evidence on structure-function relationships on mammalian NSS proteins has so far been unsuccessful. The crystal structure of the bacterial NSS protein, LeuT, has been a turning point in structural investigations. SCOPE OF REVIEW To provide an update on what is known about the binding sites for substrates and inhibitors in the LeuT. The different binding modes and binding sites will be discussed with special emphasis on the possible existence of a second substrate binding site. It is the goal to give an insight into how investigations on ligand binding in LeuT have provided basic knowledge about transporter conformations and translocation mechanism which can pave the road for a deeper understanding of drug binding and function of the mammalian transporters. MAJOR CONCLUSIONS The LeuT is a suitable model for the structural investigation of NSS proteins including the possible location of drug binding sites. It is still debated whether the LeuT is a suitable model for the molecular mechanisms behind substrate translocation. GENERAL SIGNIFICANCE Structure and functional aspects of NSS proteins are central for understanding synaptic transmission. With the purification and crystallization of LeuT as well as the dopamine transporter from Drosophila melanogaster, the application of biophysical methods such as fluorescence spectroscopy, neutron- or x-ray scattering and NMR for understanding its function becomes increasingly available. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.
Collapse
Affiliation(s)
- Claus J Loland
- Molecular Neuropharmacology Laboratory, Department of Neuroscience and Pharmacology, The Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
16
|
Loland CJ, Mereu M, Okunola OM, Cao J, Prisinzano TE, Mazier S, Kopajtic T, Shi L, Katz JL, Tanda G, Newman AH. R-modafinil (armodafinil): a unique dopamine uptake inhibitor and potential medication for psychostimulant abuse. Biol Psychiatry 2012; 72:405-13. [PMID: 22537794 PMCID: PMC3413742 DOI: 10.1016/j.biopsych.2012.03.022] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/24/2012] [Accepted: 03/16/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND (±)-Modafinil has piqued interest as a treatment for attention-deficit/hyperactivity disorder and stimulant dependence. The R-enantiomer of modafinil might have unique pharmacological properties that should be further investigated. METHODS (±)-Modafinil and its R-(-)- and S-(+)-enantiomers were synthesized and tested for inhibition of [(3)H] dopamine (DA) uptake and [(3)H]WIN 35428 binding in human dopamine transporter (DAT) wild-type and mutants with altered conformational equilibria. Data were compared with cocaine and the atypical DA uptake inhibitor, JHW 007. R- and S-modafinil were also evaluated in microdialysis studies in the mouse nucleus accumbens shell and in a cocaine discrimination procedure. RESULTS (±)-, R-, and S-modafinil bind to the DAT and inhibit DA uptake less potently than cocaine, with R-modafinil having approximately threefold higher affinity than its S-enantiomer. Molecular docking studies revealed subtle differences in binding modes for the enantiomers. R-modafinil was significantly less potent in the DAT Y156F mutant compared with wild-type DAT, whereas S-modafinil was affected less. Studies with the Y335A DAT mutant showed that the R- and S-enantiomers tolerated the inward-facing conformation better than cocaine, which was further supported by [2-(trimethylammonium)ethyl]-methanethiosulfonate reactivity on the DAT E2C I159C. Microdialysis studies demonstrated that both R- and S-modafinil produced increases in extracellular DA concentrations in the nucleus accumbens shell less efficaciously than cocaine and with a longer duration of action. Both enantiomers fully substituted in mice trained to discriminate cocaine from saline. CONCLUSIONS R-modafinil displays an in vitro profile different from cocaine. Future trials with R-modafinil as a substitute therapy with the potential benefit of cognitive enhancement for psychostimulant addiction are warranted.
Collapse
|
17
|
Sghendo L, Mifsud J. Understanding the molecular pharmacology of the serotonergic system: using fluoxetine as a model. ACTA ACUST UNITED AC 2011; 64:317-25. [PMID: 22309263 DOI: 10.1111/j.2042-7158.2011.01384.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Serotonin is a monoamine neurotransmitter that is widely distributed in the body and plays an important role in a variety of psychological and other body functions such as mood, sexual desire and function, appetite, sleep, memory and learning, temperature regulation and social behaviour. This review will assess the use of fluoxetine, one of the most commonly used selective serotonin reuptake inhibitors, as a model for understanding the molecular pharmacology of the serotoninergic system. KEY FINDINGS Seven serotonin receptor families have been discovered to date. All serotonin receptors, except 5-HT(3), are G-protein coupled, seven transmembrane receptors that activate an intracellular second messenger cascade. The 5-HT(3) receptor is a ligand-gated ion channel. Furthermore, 5-HT(1A) receptors are known as autoreceptors since their stimulation inhibits the release serotonin in nerve terminals. A transporter protein found in the plasma membrane of serotonergic neurones is responsible for the reuptake of this neurotransmitter. Selective serotonin reuptake inhibitors, such as fluoxetine, act primarily at the serotonin transporter protein and have limited, if any, reaction with other neurotransmitter systems. Selective serotonin reuptake inhibitors appear to bind with the serotonin transporter with different rates of occupancy, duration and potency. SUMMARY The following review focuses on the interaction of serotonin with this membrane transporter in the body and assesses the use of fluoxetine as a reference drug in the understanding of this interaction.
Collapse
Affiliation(s)
- Lino Sghendo
- Department of Clinical Pharmacology and Therapeutics, University of Malta, Msida, Malta
| | | |
Collapse
|
18
|
Kristensen AS, Andersen J, Jørgensen TN, Sørensen L, Eriksen J, Loland CJ, Strømgaard K, Gether U. SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev 2011; 63:585-640. [PMID: 21752877 DOI: 10.1124/pr.108.000869] [Citation(s) in RCA: 625] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The neurotransmitter transporters (NTTs) belonging to the solute carrier 6 (SLC6) gene family (also referred to as the neurotransmitter-sodium-symporter family or Na(+)/Cl(-)-dependent transporters) comprise a group of nine sodium- and chloride-dependent plasma membrane transporters for the monoamine neurotransmitters serotonin (5-hydroxytryptamine), dopamine, and norepinephrine, and the amino acid neurotransmitters GABA and glycine. The SLC6 NTTs are widely expressed in the mammalian brain and play an essential role in regulating neurotransmitter signaling and homeostasis by mediating uptake of released neurotransmitters from the extracellular space into neurons and glial cells. The transporters are targets for a wide range of therapeutic drugs used in treatment of psychiatric diseases, including major depression, anxiety disorders, attention deficit hyperactivity disorder and epilepsy. Furthermore, psychostimulants such as cocaine and amphetamines have the SLC6 NTTs as primary targets. Beginning with the determination of a high-resolution structure of a prokaryotic homolog of the mammalian SLC6 transporters in 2005, the understanding of the molecular structure, function, and pharmacology of these proteins has advanced rapidly. Furthermore, intensive efforts have been directed toward understanding the molecular and cellular mechanisms involved in regulation of the activity of this important class of transporters, leading to new methodological developments and important insights. This review provides an update of these advances and their implications for the current understanding of the SLC6 NTTs.
Collapse
Affiliation(s)
- Anders S Kristensen
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Ion-coupled solute transporters are responsible for transporting nutrients, ions, and signaling molecules across a variety of biological membranes. Recent high-resolution crystal structures of several transporters from protein families that were previously thought to be unrelated show common structural features indicating a large structural family representing transporters from all kingdoms of life. This review describes studies that led to an understanding of the conformational changes required for solute transport in this family. The first structure in this family showed the bacterial amino acid transporter LeuT, which is homologous to neurotransmitter transporters, in an extracellularly oriented conformation with a molecule of leucine occluded at the substrate site. Studies with the mammalian serotonin transporter identified positions, buried in the LeuT structure, that defined a potential pathway leading from the cytoplasm to the substrate binding site. Modeling studies utilized an inverted structural repeat within the LeuT crystal structure to predict the conformation of LeuT in which the cytoplasmic permeation pathway, consisting of positions identified in SERT, was open for diffusion of the substrate to the cytoplasm. From the difference between the model and the crystal structures, a simple "rocking bundle" mechanism was proposed, in which a four-helix bundle changed its orientation with respect to the rest of the protein to close the extracellular pathway and open the cytoplasmic one. Subsequent crystal structures from structurally related proteins provide evidence supporting this model for transport.
Collapse
Affiliation(s)
- Gary Rudnick
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066, United States.
| |
Collapse
|
20
|
Sager JJ, Torres GE. Proteins interacting with monoamine transporters: current state and future challenges. Biochemistry 2011; 50:7295-310. [PMID: 21797260 DOI: 10.1021/bi200405c] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Plasma membrane and vesicular transporters for the biogenic amines, dopamine, norepinephrine, and serotonin, represent a group of proteins that play a crucial role in the regulation of neurotransmission. Clinically, mono amine transporters are the primary targets for the actions of many therapeutic agents used to treat mood disorders, as well as the site of action for highly addictive psychostimulants such as cocaine, amphetamine, methamphetamine, and 3,4-methylenedioxymethamphetamine. Over the past decade, the use of approaches such as yeast two-hybrid and proteomics has identified a multitude of transporter interacting proteins, suggesting that the function and regulation of these transporters are more complex than previously anticipated. With the increasing number of interacting proteins, the rules dictating transporter synthesis, assembly, targeting, trafficking, and function are beginning to be deciphered. Although many of these protein interactions have yet to be fully characterized, current knowledge is beginning to shed light on novel transporter mechanisms involved in monoamine homeostasis, the molecular actions of psychostimulants, and potential disease mechanisms. While future studies resolving the spatial and temporal resolution of these, and yet unknown, interactions will be needed, the realization that monoamine transporters do not work alone opens the path to a plethora of possible pharmacological interventions.
Collapse
Affiliation(s)
- Jonathan J Sager
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | | |
Collapse
|
21
|
Sarker S, Weissensteiner R, Steiner I, Sitte HH, Ecker GF, Freissmuth M, Sucic S. The high-affinity binding site for tricyclic antidepressants resides in the outer vestibule of the serotonin transporter. Mol Pharmacol 2010; 78:1026-35. [PMID: 20829432 PMCID: PMC4513247 DOI: 10.1124/mol.110.067538] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The structure of the bacterial leucine transporter from Aquifex aeolicus (LeuT(Aa)) has been used as a model for mammalian Na(+)/Cl(-)-dependent transporters, in particular the serotonin transporter (SERT). The crystal structure of LeuT(Aa) liganded to tricyclic antidepressants predicts simultaneous binding of inhibitor and substrate. This is incompatible with the mutually competitive inhibition of substrates and inhibitors of SERT. We explored the binding modes of tricyclic antidepressants by homology modeling and docking studies. Two approaches were used subsequently to differentiate between three clusters of potential docking poses: 1) a diagnostic SERT(Y95F) mutation, which greatly reduced the affinity for [(3)H]imipramine but did not affect substrate binding; 2) competition binding experiments in the presence and absence of carbamazepine (i.e., a tricyclic imipramine analog with a short side chain that competes with [(3)H]imipramine binding to SERT). Binding of releasers (para-chloroamphetamine, methylene-dioxy-methamphetamine/ecstasy) and of carbamazepine were mutually exclusive, but Dixon plots generated in the presence of carbamazepine yielded intersecting lines for serotonin, MPP(+), paroxetine, and ibogaine. These observations are consistent with a model, in which 1) the tricyclic ring is docked into the outer vestibule and the dimethyl-aminopropyl side chain points to the substrate binding site; 2) binding of amphetamines creates a structural change in the inner and outer vestibule that precludes docking of the tricyclic ring; 3) simultaneous binding of ibogaine (which binds to the inward-facing conformation) and of carbamazepine is indicative of a second binding site in the inner vestibule, consistent with the pseudosymmetric fold of monoamine transporters. This may be the second low-affinity binding site for antidepressants.
Collapse
Affiliation(s)
- Subhodeep Sarker
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
22
|
Shaikh SA, Tajkhorshid E. Modeling and dynamics of the inward-facing state of a Na+/Cl- dependent neurotransmitter transporter homologue. PLoS Comput Biol 2010; 6. [PMID: 20865057 PMCID: PMC2928745 DOI: 10.1371/journal.pcbi.1000905] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 07/26/2010] [Indexed: 10/30/2022] Open
Abstract
The leucine transporter (LeuT) has recently commanded exceptional attention due mainly to two distinctions; it provides the only crystal structures available for a protein homologous to the pharmacologically relevant neurotransmitter: sodium symporters (NSS), and, it exhibits a hallmark 5-TM inverted repeat ("LeuT-fold"), a fold recently discovered to also exist in several secondary transporter families, underscoring its general role in transporter function. Constructing the transport cycle of "LeuT-fold" transporters requires detailed structural and dynamic descriptions of the outward-facing (OF) and inward-facing (IF) states, as well as the intermediate states. To this end, we have modeled the structurally unknown IF state of LeuT, based on the known crystal structures of the OF state of LeuT and the IF state of vSGLT, a "LeuT-fold" transporter. The detailed methodology developed for the study combines structure-based alignment, threading, targeted MD and equilibrium MD, and can be applied to other proteins. The resulting IF-state models maintain the secondary structural features of LeuT. Water penetration and solvent accessibility calculations show that TM1, TM3, TM6 and TM8 line the substrate binding/unbinding pathway with TM10 and its pseudosymmetric partner, TM5, participating in the extracellular and intracellular halves of the lumen, respectively. We report conformational hotspots where notable changes in interactions occur between the IF and OF states. We observe Na2 exiting the LeuT-substrate- complex in the IF state, mainly due to TM1 bending. Inducing a transition in only one of the two pseudosymmetric domains, while allowing the second to respond dynamically, is found to be sufficient to induce the formation of the IF state. We also propose that TM2 and TM7 may be facilitators of TM1 and TM6 motion. Thus, this study not only presents a novel modeling methodology applied to obtain the IF state of LeuT, but also describes structural elements involved in a possibly general transport mechanism in transporters adopting the "LeuT-fold".
Collapse
Affiliation(s)
- Saher Afshan Shaikh
- Department of Biochemistry and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Emad Tajkhorshid
- Department of Biochemistry and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- College of Medicine and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
23
|
Field JR, Henry LK, Blakely RD. Transmembrane domain 6 of the human serotonin transporter contributes to an aqueously accessible binding pocket for serotonin and the psychostimulant 3,4-methylene dioxymethamphetamine. J Biol Chem 2010; 285:11270-80. [PMID: 20159976 PMCID: PMC2857005 DOI: 10.1074/jbc.m109.093658] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/04/2010] [Indexed: 01/07/2023] Open
Abstract
The plasma membrane serotonin (5-HT) transporter (SERT, SLC6A4) clears 5-HT after release at nerve termini and is targeted by both antidepressant medications and psychostimulants (e.g. MDMA, cocaine). Homology modeling of human SERT (hSERT), based on high resolution structures of the microbial SLC6 family member LeuT(Aa), along with biochemical studies of wild type and mutant transporters, predicts transmembrane (TM) domains 1, 3, 6, and 8 comprise the 5-HT-binding pocket. We utilized the substituted cysteine accessibility method along with surface and site-specific biotinylation to probe TM6 for aqueous accessibility and differential interactions with 5-HT and psychostimulants. Our results are consistent with TM6 being composed of an aqueous-accessible, alpha-helical extracellular domain (TM6a) that is separated by a central, unwound section from a cytoplasmically localized domain (TM6b) with limited aqueous accessibility. The substitution G338C appears to lock hSERT in an outward-facing conformation that, although accessible to aminoethylmethanethiosulfonate-biotin, 5-HT, and citalopram, is incapable of inward 5-HT transport. Transport of 5-HT by G338C can be partially restored by the TM1 mutation Y95F. With regard to methanethiosulfonate (MTS) inactivation of uptake, TM6a Cys mutants demonstrate Na(+)-dependent [2-(trimethylammonium)ethyl]-MTS sensitivity. Studies with the centrally located substitution S336C reveal features of a common binding pocket for 5-HT and 3,4-methylenedioxymethamphetamine (MDMA). Interestingly, the substitution I333C reveals an MDMA-induced conformation not observed with 5-HT. In the context of prior studies on TM1, our findings document shared and unique features of TM6 contributing to hSERT aqueous accessibility, ligand recognition, and conformational dynamics.
Collapse
Affiliation(s)
| | - L. Keith Henry
- the Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203
| | - Randy D. Blakely
- From the Departments of Pharmacology and
- Psychiatry and
- Center for Molecular Neuroscience, Vanderbilt University Medical Center, Nashville, Tennessee 37232-8548 and
| |
Collapse
|
24
|
Torres-Altoro MI, Kuntz CP, Nichols DE, Barker EL. Structural analysis of the extracellular entrance to the serotonin transporter permeation pathway. J Biol Chem 2010; 285:15369-15379. [PMID: 20304925 DOI: 10.1074/jbc.m109.088138] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurotransmitter transporters are responsible for removal of biogenic amine neurotransmitters after release into the synapse. These transporters are the targets for many clinically relevant drugs, such as antidepressants and psychostimulants. A high resolution crystal structure for the monoamine transporters has yet to be solved. We have developed a homology model for the serotonin transporter (SERT) based on the crystal structure of the leucine transporter (LeuT(Aa)) from Aquifex aeolicus. The objective of the present studies is to identify the structural determinants forming the entrance to the substrate permeation pathway based on predictions from the SERT homology model. Using the substituted cysteine accessibility method, we identified residues predicted to reside at the entrance to the substrate permeation pathway that were reactive with methanethiosulfonate (MTS) reagents. Of these residues, Gln(332) in transmembrane helix (TMH) VI was protected against MTS inactivation in the presence of serotonin. Surprisingly, the reactivity of Gln(332) to MTS reagents was enhanced in the presence of cocaine. Bifunctional MTS cross-linkers also were used to examine the distances between helices predicted to form the entrance into the substrate and ion permeation pathway. Our studies suggest that substrate and ligand binding may induce conformational shifts in TMH I and/or VI, providing new opportunities to refine existing homology models of SERT and related monoamine transporters.
Collapse
Affiliation(s)
- Melissa I Torres-Altoro
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University School of Pharmacy and Pharmaceutical Sciences, West Lafayette, Indiana 47907-2091
| | - Charles P Kuntz
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University School of Pharmacy and Pharmaceutical Sciences, West Lafayette, Indiana 47907-2091
| | - David E Nichols
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University School of Pharmacy and Pharmaceutical Sciences, West Lafayette, Indiana 47907-2091
| | - Eric L Barker
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University School of Pharmacy and Pharmaceutical Sciences, West Lafayette, Indiana 47907-2091.
| |
Collapse
|
25
|
Naftalin RJ. Reassessment of Models of Facilitated Transport and Cotransport. J Membr Biol 2010; 234:75-112. [DOI: 10.1007/s00232-010-9228-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 01/08/2010] [Indexed: 11/29/2022]
|
26
|
Andersen J, Olsen L, Hansen KB, Taboureau O, Jørgensen FS, Jørgensen AM, Bang-Andersen B, Egebjerg J, Strømgaard K, Kristensen AS. Mutational mapping and modeling of the binding site for (S)-citalopram in the human serotonin transporter. J Biol Chem 2009; 285:2051-63. [PMID: 19892699 DOI: 10.1074/jbc.m109.072587] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serotonin transporter (SERT) regulates extracellular levels of the neurotransmitter serotonin (5-hydroxytryptamine) in the brain by facilitating uptake of released 5-hydroxytryptamine into neuronal cells. SERT is the target for widely used antidepressant drugs, including imipramine, fluoxetine, and (S)-citalopram, which are competitive inhibitors of the transport function. Knowledge of the molecular details of the antidepressant binding sites in SERT has been limited due to lack of structural data on SERT. Here, we present a characterization of the (S)-citalopram binding pocket in human SERT (hSERT) using mutational and computational approaches. Comparative modeling and ligand docking reveal that (S)-citalopram fits into the hSERT substrate binding pocket, where (S)-citalopram can adopt a number of different binding orientations. We find, however, that only one of these binding modes is functionally relevant from studying the effects of 64 point mutations around the putative substrate binding site. The mutational mapping also identify novel hSERT residues that are crucial for (S)-citalopram binding. The model defines the molecular determinants for (S)-citalopram binding to hSERT and demonstrates that the antidepressant binding site overlaps with the substrate binding site.
Collapse
Affiliation(s)
- Jacob Andersen
- Department of Medicinal Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tao Z, Zhang YW, Agyiri A, Rudnick G. Ligand effects on cross-linking support a conformational mechanism for serotonin transport. J Biol Chem 2009; 284:33807-14. [PMID: 19837674 DOI: 10.1074/jbc.m109.071977] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serotonin transporter (SERT) is responsible for the re-uptake of 5-hydroxytryptamine (5-HT) from the synaptic cleft after release from serotonergic neurons. We show here that cysteine residues at positions in transmembranes 1 and 3 of SERT, like the corresponding positions in the gamma-aminobutyric acid transporter, can be cross-linked using copper(II)(1,10-phenanthroline)(3). The presence of a cross-link was detected by a novel methionine mutagenesis strategy. A change in mobility for an N-terminal cyanogen bromide fragment accompanied disulfide cross-linking of the two cysteine residues. Cross-linking also inhibited transport, and this process was blocked by cocaine, which is expected to stabilize SERT in conformations where the two positions are separated, but cocaine did not decrease accessibility of either of the two cysteines to modification by 2-aminoethyl methanethiosulfonate. Cysteine was required at both positions on the same molecule for efficient cross-linking, indicating that the reaction was intramolecular.
Collapse
Affiliation(s)
- Zhen Tao
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066, USA
| | | | | | | |
Collapse
|
28
|
Sundelacruz S, Levin M, Kaplan DL. Role of membrane potential in the regulation of cell proliferation and differentiation. Stem Cell Rev Rep 2009; 5:231-46. [PMID: 19562527 PMCID: PMC10467564 DOI: 10.1007/s12015-009-9080-2] [Citation(s) in RCA: 339] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 06/07/2009] [Indexed: 12/11/2022]
Abstract
Biophysical signaling, an integral regulator of long-term cell behavior in both excitable and non-excitable cell types, offers enormous potential for modulation of important cell functions. Of particular interest to current regenerative medicine efforts, we review several examples that support the functional role of transmembrane potential (V(mem)) in the regulation of proliferation and differentiation. Interestingly, distinct V(mem) controls are found in many cancer cell and precursor cell systems, which are known for their proliferative and differentiation capacities, respectively. Collectively, the data demonstrate that bioelectric properties can serve as markers for cell characterization and can control cell mitotic activity, cell cycle progression, and differentiation. The ability to control cell functions by modulating bioelectric properties such as V(mem) would be an invaluable tool for directing stem cell behavior toward therapeutic goals. Biophysical properties of stem cells have only recently begun to be studied and are thus in need of further characterization. Understanding the molecular and mechanistic basis of biophysical regulation will point the way toward novel ways to rationally direct cell functions, allowing us to capitalize upon the potential of biophysical signaling for regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Sarah Sundelacruz
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA 02155, USA
| | | | | |
Collapse
|
29
|
López-Corcuera B, Geerlings A, Aragón C. Glycine neurotransmitter transporters: an update. Mol Membr Biol 2009. [DOI: 10.1080/09687680010028762] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
30
|
Andersen J, Kristensen AS, Bang-Andersen B, Strømgaard K. Recent advances in the understanding of the interaction of antidepressant drugs with serotonin and norepinephrine transporters. Chem Commun (Camb) 2009:3677-92. [PMID: 19557250 DOI: 10.1039/b903035m] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The biogenic monoamine transporters are integral membrane proteins that perform active transport of extracellular dopamine, serotonin and norepinephrine into cells. These transporters are targets for therapeutic agents such as antidepressants, as well as addictive substances such as cocaine and amphetamine. Seminal advances in the understanding of the structure and function of this transporter family have recently been accomplished by structural studies of a bacterial transporter, as well as medicinal chemistry and pharmacological studies of mammalian transporters. This feature article focuses on antidepressant drugs that act on the serotonin and/or the norepinephrine transporters. Specifically, we focus on structure-activity relationships of these drugs with emphasis on relationships between their molecular properties and the current knowledge of transporter structure.
Collapse
Affiliation(s)
- Jacob Andersen
- Department of Medicinal Chemistry, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
31
|
Ben-Yona A, Kanner BI. Transmembrane domain 8 of the {gamma}-aminobutyric acid transporter GAT-1 lines a cytoplasmic accessibility pathway into its binding pocket. J Biol Chem 2009; 284:9727-32. [PMID: 19201752 DOI: 10.1074/jbc.m809423200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GAT-1 is a sodium- and chloride-coupled gamma-aminobutyric acid (GABA) transporter, which fulfills an essential role in the synaptic transmission by this neurotransmitter. Cysteine-399 is the major site of inhibition of GAT-1 by membrane-permeant sulfhydryl reagents. This cysteine residue was previously thought to reside on a cytoplasmic loop connecting transmembrane domains (TMs) 8 and 9. However, the crystal structure of LeuT, a bacterial homologue of the mammalian neurotransmitter:sodium symporters, revealed that the residue corresponding to Cys-399 is in fact located in the middle of TM 8. This residue is located to the cytoplasmic side of Asp-395 and Ser-396, whose side chains are thought to ligand one of the two cotransported sodium ions. To determine how the sulfhydryl reagents approach cysteine-399, a cysteine scan of all 35 residues of TM 8 was performed. Sulfhydryl reagents inhibited transport when a cysteine residue was present at either of the positions 399, 402, 406, and 410. SKF-89976A and other non-transportable analogues, which are expected to lock the transporter in a conformation facing the extracellular medium, protected against the sulfhydryl modification at positions 399, 402, and 406. Such a protection was not seen by GABA itself, which actually modestly potentiated the modification at positions 399 and 402. Our results point to an alpha-helical stripe on TM8 lining an aqueous access pathway from the cytoplasm into the binding pocket, which gets occluded in the conformation of the transporter where the binding pocket is exposed to the extracellular medium.
Collapse
Affiliation(s)
- Assaf Ben-Yona
- Department of Biochemistry, Hebrew University Hadassah Medical School, P. O. Box 12272, Jerusalem 91120, Israel
| | | |
Collapse
|
32
|
Apparsundaram S, Stockdale DJ, Henningsen RA, Milla ME, Martin RS. Antidepressants targeting the serotonin reuptake transporter act via a competitive mechanism. J Pharmacol Exp Ther 2008; 327:982-90. [PMID: 18801947 DOI: 10.1124/jpet.108.142315] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although several antidepressants (including fluoxetine, imipramine, citalopram, venlafaxine, and duloxetine) are known to inhibit the serotonin transporter (SERT), whether or not these molecules compete with 5-hydroxytryptamine (serotonin) (5-HT) for binding to SERT has remained controversial. We have performed radioligand competition binding experiments and found that all data can be fitted via a simple competitive interaction model, using Cheng-Prusoff analysis (Biochem Pharmacol 22:3099-3108, 1973). Two different SERT-selective radioligands, [(3)H]N,N-dimethyl-2-(2-amino-4-cyanophenyl thio)-benzylamine (DASB) and [(3)H]S-citalopram, were used to probe competitive binding to recombinantly expressed human SERT or native SERT in rat cortical membranes. All the SERT inhibitors that we tested were able to inhibit [(3)H]DASB and [(3)H]S-citalopram binding in a concentration-dependent manner, with unity Hill coefficient. In accordance with the Cheng-Prusoff relationship for a competitive interaction, we observed that test compound concentrations associated with 50% maximal inhibition of radiotracer binding (IC(50)) increased linearly with increasing radioligand concentration for all ligands: 5-HT, S-citalopram, R-citalopram, paroxetine, clomipramine, fluvoxamine, imipramine venlafaxine, duloxetine, indatraline, cocaine, and 2-beta-carboxy-3-beta-(4-iodophenyl)tropane. The equilibrium dissociation constant of 5-HT and SERT inhibitors were also derived using Scatchard analysis of the data set, and they were found to be comparable with the data obtained using the Cheng-Prusoff relationship. Our studies establish a reference framework that will contribute to ongoing efforts to understand ligand binding modes at SERT by demonstrating that 5-HT and the SERT inhibitors tested bind to the serotonin transporter in a competitive manner.
Collapse
Affiliation(s)
- Subbu Apparsundaram
- Department of Biochemical Pharmacology, Roche Pharmaceuticals, Palo Alto, CA 94304, USA.
| | | | | | | | | |
Collapse
|
33
|
Jørgensen AM, Tagmose L, Jørgensen AMM, Bøgesø KP, Peters GH. Molecular dynamics simulations of Na+/Cl(-)-dependent neurotransmitter transporters in a membrane-aqueous system. ChemMedChem 2008; 2:827-40. [PMID: 17436258 DOI: 10.1002/cmdc.200600243] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have performed molecular dynamics simulations of a homology model of the human serotonin transporter (hSERT) in a membrane environment and in complex with either the natural substrate 5-HT or the selective serotonin reuptake inhibitor escitalopram. We have also included a transporter homologue, the Aquifex aeolicus leucine transporter (LeuT), in our study to evaluate the applicability of a simple and computationally attractive membrane system. Fluctuations in LeuT extracted from simulations are in good agreement with crystallographic B factors. Furthermore, key interactions identified in the X-ray structure of LeuT are maintained throughout the simulations indicating that our simple membrane system is suitable for studying the transmembrane protein hSERT in complex with 5-HT or escitalopram. For these transporter complexes, only relatively small fluctuations are observed in the ligand-binding cleft. Specific interactions responsible for ligand recognition, are identified in the hSERT-5HT and hSERT-escitalopram complexes. Our findings are in good agreement with predictions from mutagenesis studies.
Collapse
Affiliation(s)
- Anne Marie Jørgensen
- MEMPHYS-Center for Biomembrane Physics, Department of Chemistry, Technical University of Denmark, Building 206, 2800 Kgs. Lyngby, Denmark
| | | | | | | | | |
Collapse
|
34
|
Shi L, Quick M, Zhao Y, Weinstein H, Javitch JA. The mechanism of a neurotransmitter:sodium symporter--inward release of Na+ and substrate is triggered by substrate in a second binding site. Mol Cell 2008; 30:667-77. [PMID: 18570870 DOI: 10.1016/j.molcel.2008.05.008] [Citation(s) in RCA: 310] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 01/17/2008] [Accepted: 05/13/2008] [Indexed: 01/24/2023]
Abstract
Eukaryotic neurotransmitter:sodium symporters (NSSs), targets for antidepressants and psychostimulants, terminate neurotransmission by sodium-driven reuptake. The crystal structure of LeuT(Aa), a prokaryotic NSS homolog, revealed an occluded state in which one leucine and two Na(+) ions are bound, but provided limited clues to the molecular mechanism of transport. Using steered molecular dynamics simulations, we explored the substrate translocation pathway of LeuT. We identified a second substrate binding site located in the extracellular vestibule comprised of residues shown recently to participate in binding tricyclic antidepressants. Binding and flux experiments showed that the two binding sites can be occupied simultaneously. The substrate in the secondary site allosterically triggers intracellular release of Na(+) and substrate from the primary site, thereby functioning as a "symport effector." Because tricyclic antidepressants bind differently to this secondary site, they do not promote substrate release from the primary site and thus act as symport uncouplers and inhibit transport.
Collapse
Affiliation(s)
- Lei Shi
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
35
|
Abstract
Crystal structures of LeuT, a bacterial homologue of mammalian neurotransmitter transporters, show a molecule of bound substrate that is essentially exposed to the extracellular space but occluded from the cytoplasm. Thus, there must exist an alternate conformation for LeuT in which the substrate is accessible to the cytoplasm and a corresponding mechanism that switches accessibility from one side of the membrane to the other. Here, we identify the cytoplasmic accessibility pathway of the alternate conformation in a mammalian serotonin transporter (SERT) (a member of the same transporter family as LeuT). We also propose a model for the cytoplasmic-facing state that exploits the internal pseudosymmetry observed in the crystal structure. LeuT contains two structurally similar repeats (TMs1-5 and TMs 6-10) that are inverted with respect to the plane of the membrane. The conformational differences between them result in the formation of the extracellular pathway. Our model for the cytoplasm-facing state exchanges the conformations of the two repeats and thus exposes the substrate and ion-binding sites to the cytoplasm. The conformational change that connects the two states primarily involves the tilting of a 4-helix bundle composed of transmembrane helices 1, 2, 6, and 7. Switching the tilt angle of this bundle is essentially equivalent to switching the conformation of the two repeats. Extensive mutagenesis of SERT and accessibility measurements, using cysteine reagents, are accommodated by our model. These observations may be of relevance to other transporter families, many of which contain internal inverted repeats.
Collapse
|
36
|
Rosenberg A, Kanner BI. The Substrates of the γ-Aminobutyric Acid Transporter GAT-1 Induce Structural Rearrangements around the Interface of Transmembrane Domains 1 and 6. J Biol Chem 2008; 283:14376-83. [DOI: 10.1074/jbc.m801093200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
37
|
Kniazeff J, Shi L, Loland CJ, Javitch JA, Weinstein H, Gether U. An intracellular interaction network regulates conformational transitions in the dopamine transporter. J Biol Chem 2008; 283:17691-701. [PMID: 18426798 DOI: 10.1074/jbc.m800475200] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurotransmitter:sodium symporters (NSS)(1) mediate sodium-dependent reuptake of neurotransmitters from the synaptic cleft and are targets for many psychoactive drugs. The crystal structure of the prokaryotic NSS protein, LeuT, was recently solved at high resolution; however, the mechanistic details of regulation of the permeation pathway in this class of proteins remain unknown. Here we combine computational modeling and experimental probing in the dopamine transporter (DAT) to demonstrate the functional importance of a conserved intracellular interaction network. Our data suggest that a salt bridge between Arg-60 in the N terminus close to the cytoplasmic end of transmembrane segment (TM) 1 and Asp-436 at the cytoplasmic end of TM8 is stabilized by a cation-pi interaction between Arg-60 and Tyr-335 at the cytoplasmic end of TM6. Computational probing illustrates how the interactions may determine the flexibility of the permeation pathway, and mutagenesis within the network and results from assays of transport, as well as the state-dependent accessibility of a substituted cysteine in TM3, support the role of this network in regulating access between the substrate binding site and the intracellular milieu. The mechanism that emerges from these findings may be unique to the NSS family, where the local disruption of ionic interactions modulates the transition of the transporter between the outward- and inward-facing conformations.
Collapse
Affiliation(s)
- Julie Kniazeff
- Molecular Neuropharmacology Group and Center for Pharmacogenomics, Department of Neuroscience and Pharmacology, The Panum Institute, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
38
|
Indarte M, Madura JD, Surratt CK. Dopamine transporter comparative molecular modeling and binding site prediction using the LeuT(Aa) leucine transporter as a template. Proteins 2008; 70:1033-46. [PMID: 17847094 DOI: 10.1002/prot.21598] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Pharmacological and behavioral studies indicate that binding of cocaine and the amphetamines by the dopamine transporter (DAT) protein is principally responsible for initiating the euphoria and addiction associated with these drugs. The lack of an X-ray crystal structure for the DAT or any other member of the neurotransmitter:sodium symporter (NSS) family has hindered understanding of psychostimulant recognition at the atomic level; structural information has been obtained largely from mutagenesis and biophysical studies. The recent publication of a crystal structure for the bacterial leucine transporter LeuT(Aa), a distantly related NSS family homolog, provides for the first time a template for three-dimensional comparative modeling of NSS proteins. A novel computational modeling approach using the capabilities of the Molecular Operating Environment program MOE 2005.06 in conjunction with other comparative modeling servers generated the LeuT(Aa)-directed DAT model. Probable dopamine and amphetamine binding sites were identified within the DAT model using multiple docking approaches. Binding sites for the substrate ligands (dopamine and amphetamine) overlapped substantially with the analogous region of the LeuT(Aa) crystal structure for the substrate leucine. The docking predictions implicated DAT side chains known to be critical for high affinity ligand binding and suggest novel mutagenesis targets in elucidating discrete substrate and inhibitor binding sites. The DAT model may guide DAT ligand QSAR studies, and rational design of novel DAT-binding therapeutics.
Collapse
Affiliation(s)
- Martín Indarte
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, USA.
| | | | | |
Collapse
|
39
|
Affiliation(s)
- Baruch I. Kanner
- Department of Biochemistry, Hebrew University, Hadassah Medical School, Post Office Box 12272, Jerusalem 91120, Israel
| | - Elia Zomot
- Department of Biochemistry, Hebrew University, Hadassah Medical School, Post Office Box 12272, Jerusalem 91120, Israel
| |
Collapse
|
40
|
Loland CJ, Desai RI, Zou MF, Cao J, Grundt P, Gerstbrein K, Sitte HH, Newman AH, Katz JL, Gether U. Relationship between conformational changes in the dopamine transporter and cocaine-like subjective effects of uptake inhibitors. Mol Pharmacol 2008; 73:813-23. [PMID: 17978168 DOI: 10.1124/mol.107.039800] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Cocaine exerts its stimulatory effect by inhibiting the dopamine transporter (DAT). However, novel benztropine- and rimcazole-based inhibitors show reduced stimulant effects compared with cocaine, despite higher affinity and selectivity for DAT. To investigate possible mechanisms, we compared the subjective effects of different inhibitors with their molecular mode of interaction at the DAT. We determined how different inhibitors affected accessibility of the sulfhydryl-reactive reagent [2-(trimethylammonium)ethyl]-methanethiosulfonate to an inserted cysteine (I159C), which is accessible when the extracellular transporter gate is open but inaccessible when it is closed. The data indicated that cocaine analogs bind an open conformation, whereas benztropine and rimcazole analogs bind a closed conformation. Next, we investigated the changes in inhibition potency of [(3)H]dopamine uptake of the compounds at a mutant DAT (Y335A) characterized by a global change in the conformational equilibrium. We observed a close relationship between the decrease in potencies of inhibitors at this mutant and cocaine-like responding in rats trained to discriminate cocaine from saline injections. Our data suggest that chemically different DAT inhibitors stabilize distinct transporter conformations and that this in turn affects the cocaine-like subjective effects of these compounds in vivo.
Collapse
Affiliation(s)
- Claus J Loland
- Molecular Neuropharmacology Group, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Henry LK, Blakely RD. Distinctions between dopamine transporter antagonists could be just around the bend. Mol Pharmacol 2008; 73:616-8. [PMID: 18156312 DOI: 10.1124/mol.107.044586] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abuse of psychostimulants such as cocaine and amphetamines has a tremendous social and economic impact. Although replacement therapies are offered for addiction to opioids, nicotine, and alcohol, there is no approved replacement treatment for psychostimulant addiction. Recent studies on an emerging group of benztropine- and rimcazole-based compounds provide hope that replacement therapies for cocaine and amphetamine addiction may come in the near future. A new study (p. 813) now investigates the molecular interaction of the benztropine and rimcazole compounds with their target, the dopamine transporter, and provides an intriguing explanation as to why use of these compounds, unlike cocaine, do not lead to locomotor stimulation and drug discrimination behaviors in animal models.
Collapse
Affiliation(s)
- L Keith Henry
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA.
| | | |
Collapse
|
42
|
Severinsen K, Sinning S, Müller HK, Wiborg O. Characterisation of the zebrafish serotonin transporter functionally links TM10 to the ligand binding site. J Neurochem 2008; 105:1794-805. [PMID: 18266934 DOI: 10.1111/j.1471-4159.2008.05285.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The selective serotonin reuptake inhibitors and tricyclic antidepressants act by inhibiting pre-synaptic reuptake of serotonin (5-HT) leading to elevated synaptic 5-HT concentrations. However, despite extensive efforts little is known about the protein-ligand interactions of serotonin transporter (SERT) and inhibitors. To identify domains and individual amino acids important for ligand binding, we cloned the serotonin transporter from zebrafish, Danio rerio, (drSERT) and compared its pharmacological profile to that of the human serotonin transporter (hSERT) with respect to inhibition of [3H]5-HT uptake and [3H]-escitalopram binding in transiently transfected human embryonic kidney cells; HEK293-MSR. Residues responsible for altered affinities inhibitors were pinpointed by generating cross-species chimeras and subsequent point mutations by site directed mutagenesis. drSERT has a higher affinity towards compounds of the imipramine class, desipramine in particular, exhibiting a 35-fold increased affinity compared to hSERT. drSERT has a 15-30-fold lower affinity towards cocaine and cocaine analogues. The differences in ligand recognition are shown to be primarily caused by interspecies differences in TM10 and were tracked down to three residues (Ala(505), Leu(506) and Ile(507)).
Collapse
Affiliation(s)
- Kasper Severinsen
- Centre for Psychiatric Research, Aarhus University Hospital, Risskov, Denmark
| | | | | | | |
Collapse
|
43
|
Abstract
Creatine and phosphocreatine provide an intracellular, high-energy phosphate buffering system, essential to maintain ATP levels in tissues with high energy demands. A specific plasma membrane creatine transporter (CRT) is required for the cellular uptake of creatine. This transporter is related to the gamma-aminobutyric acid (GAT) and norepinephrine (NET) transporters and is part of a large gene family of Na(+) - and Cl(-) -dependent neurotransmitter transporters, now known as solute carrier family 6 (SLC6). CRT is essential for normal brain function as mutations in the CRT gene (SLC6A8) result in X-linked mental retardation, associated with the almost complete lack of creatine in the brain, severe speech and language delay, epilepsy, and autistic behaviour. Insight into the structure and function of the CRT has come from studies of creatine transport by tissues and cells, in vitro studies of CRT mutations, identification of mutations associated with CRT deficiency, and from the recent high resolution structure of a prokaryotic homologue of the SLC6 transporters. CRT antibodies have been developed enabling the localization of creatine uptake sites in the brain, retina, muscle and other tissues. These tools in conjunction with the use of appropriate cell models should allow further progress in our knowledge on the regulation and cellular trafficking of the CRT. Development of suitable mouse models may allow improved understanding of the importance of the CRT for normal brain function and how the transporter is regulated in vivo.
Collapse
Affiliation(s)
- David L Christie
- Molecular, Cell and Developmental Biology Section, School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
44
|
Dodd JR, Christie DL. Selective Amino Acid Substitutions Convert the Creatine Transporter to a γ-Aminobutyric Acid Transporter. J Biol Chem 2007; 282:15528-33. [PMID: 17400549 DOI: 10.1074/jbc.m611705200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The creatine transporter (CRT) is a member of a large family of sodium-dependent neurotransmitter and amino acid transporters. The CRT is closely related to the gamma-aminobutyric acid (GABA) transporter, GAT-1, yet GABA is not an effective substrate for the CRT. The high resolution structure of a prokaryotic homologue, LeuT has revealed precise details of the substrate binding site for leucine (Yamashita, A., Singh, S. K., Kawate, T., Jin, Y., and Gouaux, E. (2005) Nature 437, 215-223). We have now designed mutations based on sequence comparisons of the CRT with GABA transporters and the LeuT structural template in an attempt to alter the substrate specificity of the CRT. Combinations of two or three amino acid substitutions at four selected positions resulted in the loss of creatine transport activity and gain of a specific GABA transport function. GABA transport by the "gain of function" mutants was sensitive to nipecotic acid, a competitive inhibitor of GABA transporters. Our results show LeuT to be a good structural model to identify amino acid residues involved in the substrate and inhibitor selectivity of eukaryotic sodium-dependent neurotransmitter and amino acid transporters. However, modification of the binding site alone appears to be insufficient for efficient substrate translocation. Additional residues must mediate the conformational changes required for the diffusion of substrate from the binding site to the cytoplasm.
Collapse
Affiliation(s)
- Joanna R Dodd
- Molecular, Cellular, and Developmental Biology Section, School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
| | | |
Collapse
|
45
|
Affiliation(s)
- Gary Rudnick
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8066, USA.
| |
Collapse
|
46
|
Hauser M, Kauffman S, Lee BK, Naider F, Becker JM. The first extracellular loop of the Saccharomyces cerevisiae G protein-coupled receptor Ste2p undergoes a conformational change upon ligand binding. J Biol Chem 2007; 282:10387-97. [PMID: 17293349 DOI: 10.1074/jbc.m608903200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In this study of the Saccharomyces cerevisiae G protein-coupled receptor Ste2p, we present data indicating that the first extracellular loop (EL1) of the alpha-factor receptor has tertiary structure that limits solvent accessibility and that its conformation changes in a ligand-dependent manner. The substituted cysteine accessibility method was used to probe the solvent exposure of single cysteine residues engineered to replace residues Tyr(101) through Gln(135) of EL1 in the presence and absence of the tridecapeptide alpha-factor and a receptor antagonist. Surprisingly, many residues, especially those at the N-terminal region, were not solvent-accessible, including residues of the binding-competent yet signal transduction-deficient mutants L102C, N105C, S108C, Y111C, and T114C. In striking contrast, two N-terminal residues, Y101C and Y106C, were readily solvent-accessible, but upon incubation with alpha-factor labeling was reduced, suggesting a pheromone-dependent conformational change limiting solvent accessibility had occurred. Labeling in the presence of the antagonist, which binds Ste2p but does not initiate signal transduction, did not significantly alter reactivity with the Y101C and Y106C receptors, suggesting that the alpha-factor-dependent decrease in solvent accessibility was not because of steric hindrance that prevented the labeling reagent access to these residues. Based on these and previous observations, we propose a model in which the N terminus of EL1 is structured such that parts of the loop are buried in a solvent-inaccessible environment interacting with the extracellular part of the transmembrane domain bundle. This study highlights the essential role of an extracellular loop in activation of a G protein-coupled receptor upon ligand binding.
Collapse
Affiliation(s)
- Melinda Hauser
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | | | |
Collapse
|
47
|
Sucic S, Bryan-Lluka LJ. Investigation of the functional roles of the MELAL and GQXXRXG motifs of the human noradrenaline transporter using cysteine mutants. Eur J Pharmacol 2007; 556:27-35. [PMID: 17141753 DOI: 10.1016/j.ejphar.2006.10.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Revised: 10/23/2006] [Accepted: 10/30/2006] [Indexed: 11/25/2022]
Abstract
The study examines the roles of the highly conserved MELAL and GQXXRXG motifs, located in the second transmembrane domain and the first intracellular loop of the human noradrenaline transporter (hNET). We have previously shown that this region does not directly participate in the NET substrate translocation pathway [Sucic, S., and Bryan-Lluka, L.J., 2005. Roles of transmembrane domain 2 and the first intracellular loop in human noradrenaline transporter function: pharmacological and SCAM analysis. J. Neurochem. 94, 1620-1630.], while the current report focuses on the importance of this region in determining other functional properties of the hNET. Mutation to cysteine of the wild-type residues was carried out by site-directed mutagenesis of hNET cDNA. The wild-type and mutant hNETs were expressed in transiently transfected COS-7 cells and the effects of these mutations were pharmacologically examined. The results indicate that the GQXXRXG motif is important for the binding of cocaine, but not antidepressants. The hN120C mutant caused an 11-fold increase in the binding affinity of cocaine, compared to the wild-type hNET, while hQ118C, hY119C, hR121C and hE122C showed smaller increases. Interestingly, the apparent affinities of cocaine for some of these mutants were either decreased or unchanged, contrasting with the effects observed from the binding studies. The hE113C mutant in the MELAL motif caused very marked (over 400-fold) reductions in the binding affinities of substrates, but had no effects on the binding affinities of cocaine or antidepressants. Overall, the MELAL and GQXXRXG motifs are important determinants of NET cell surface expression and substrate and inhibitor binding. The results further suggest that the binding sites for substrates, cocaine and antidepressants on the NET are distinct but overlapping.
Collapse
Affiliation(s)
- Sonja Sucic
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | |
Collapse
|
48
|
Choi Y, Konopka JB. Accessibility of cysteine residues substituted into the cytoplasmic regions of the alpha-factor receptor identifies the intracellular residues that are available for G protein interaction. Biochemistry 2006; 45:15310-7. [PMID: 17176053 PMCID: PMC2528548 DOI: 10.1021/bi0614939] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The yeast alpha-factor pheromone receptor (Ste2) belongs to the family of G protein-coupled receptors (GPCRs) that contain seven transmembrane domains. To define the residues that are accessible to the cytoplasmic G protein, Cys scanning mutagenesis was carried out in which each of the residues that span the intracellular loops and the cytoplasmic end of transmembrane domain 7 was substituted with Cys. The 90 different Cys-substituted residues were then assayed for reactivity with MTSEA-biotin [[2-[(biotinoyl)amino]ethyl]methanethiosulfonate], which reacts with solvent-accessible sulfhydryl groups. As part of these studies we show that adding free Cys to stop the MTSEA-biotin reactions has potential pitfalls in that Cys can rapidly undergo disulfide exchange with the biotinylated receptor proteins at pH >or=7. The central regions of the intracellular loops of Ste2 were all highly accessible to MTSEA-biotin. Residues near the ends of the loops typically exhibited a drop in the level of reactivity over a consecutive series of residues that was inferred to be the membrane boundary. Interestingly, these boundary residues were enriched in hydrophobic residues, suggesting that they may form a hydrophobic pocket for interaction with the G protein. Comparison with accessibility data from a previous study of the extracellular side of Ste2 indicates that the transmembrane domains vary in length, consistent with some transmembrane domains being tilted relative to the plane of the membrane as they are in rhodopsin. Altogether, these results define the residues that are accessible to the G protein and provide an important structural framework for the interpretation of the role of Ste2 residues that function in G protein activation.
Collapse
Affiliation(s)
- Yunsook Choi
- Graduate Program in Physiology and Biophysics, State University of New York, Stony Brook, NY 11794-5222
| | - James B. Konopka
- Department of Molecular Genetics and Microbiology, State University of New York, Stony Brook, NY 11794-5222
- Corresponding Author: James B. Konopka Phone: 631-632-8715 FAX: 631-632-9797
| |
Collapse
|
49
|
Ravna AW, Jaronczyk M, Sylte I. A homology model of SERT based on the LeuTAa template. Bioorg Med Chem Lett 2006; 16:5594-7. [PMID: 16919451 DOI: 10.1016/j.bmcl.2006.08.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 08/03/2006] [Accepted: 08/03/2006] [Indexed: 11/16/2022]
Abstract
A human serotonin transporter (SERT) model has been constructed based on the crystal structure of the bacterial homologue of Na(+)/Cl(-)-dependent neurotransmitter transporters from Aquifex aeolicus (LeuT(Aa)). Amino acids in the ligand binding area predicted by ICM pocket finder included Tyr95, Ala96, Asp98, Gly100 (transmembrane helix (TMH) 1), Ala169, Ile172, Ala173, Tyr176 (TMH3), Phe335, Ser336, Gly338, Phe341, Val343 (TMH6), Thr439, Ala441, and Gly442 (TMH8). The present model is an updated working tool for experimental studies on SERT.
Collapse
Affiliation(s)
- Aina Westrheim Ravna
- Department of Pharmacology, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| | | | | |
Collapse
|
50
|
Loland CJ, Grånäs C, Javitch JA, Gether U. Identification of intracellular residues in the dopamine transporter critical for regulation of transporter conformation and cocaine binding. VOLUME 279 (2004) PAGES 3228-3238. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)35299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|