1
|
Lv P, Lv J, Zhan Y, Wang N, Zhao X, Sha Q, Zhou W, Gong Y, Yang J, Zhou H, Chu P, Sun Y. Genome-wide analysis of the KCS gene family in Medicago truncatula and their expression profile under various abiotic stress. Sci Rep 2025; 15:15938. [PMID: 40335581 PMCID: PMC12059053 DOI: 10.1038/s41598-025-00809-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/30/2025] [Indexed: 05/09/2025] Open
Abstract
Very long-chain fatty acids (VLCFAs) are indispensable constituents of cuticular wax and exert pivotal functions in regulating plant growth, development and response to stress. β-Ketoacyl-CoA synthase (KCS) represents the rate-limiting enzyme for the biosynthesis of VLCFAs. In this study, 25 KCS genes were identified in the M. truncatula genome and were unevenly distributed across seven of the eight chromosomes. The 25 MtKCS genes were clustered into seven groups, each exhibiting conserved gene structure and motif distribution. MtKCS gene promoters contained multiple hormone signaling and stress-responsive elements, indicating that the expression of these genes may be modulated by a range of developmental and environmental stimuli. The expression profiles revealed that the MtKCS genes exhibit diverse expression patterns across various organs/tissues and are differentially expressed under abiotic stress. It is noteworthy that several genes, such as MtKCS2, 10, and 13, exhibited significantly increased expression in leaves under cold, heat, salt, and drought stress. This suggests that MtKCS genes may play an integral role in the abiotic stress resistance of M. truncatula. These findings establish a foundation for understanding the evolution of KCS genes in higher plants and facilitated further functional exploration of MtKCS genes.
Collapse
Affiliation(s)
- Peng Lv
- College of Agriculture and Biology, Liaocheng University, Liaocheng, 252000, China
| | - Jiaqi Lv
- College of Agriculture and Biology, Liaocheng University, Liaocheng, 252000, China
| | - Yawen Zhan
- College of Agriculture and Biology, Liaocheng University, Liaocheng, 252000, China
| | - Ning Wang
- Rural Economic Development Center of Dong'e County, Liaocheng, 252000, China
| | - Xinyan Zhao
- College of Agriculture and Biology, Liaocheng University, Liaocheng, 252000, China
| | - Qi Sha
- College of Agriculture and Biology, Liaocheng University, Liaocheng, 252000, China
| | - Wen Zhou
- College of Agriculture and Biology, Liaocheng University, Liaocheng, 252000, China
| | - Yujie Gong
- College of Agriculture and Biology, Liaocheng University, Liaocheng, 252000, China
| | - Jing Yang
- College of Agriculture and Biology, Liaocheng University, Liaocheng, 252000, China
| | - Hang Zhou
- Shennong Zhiyi Intelligent Technology Co., Ltd, Liaocheng, 252000, China
| | - Pengfei Chu
- College of Agriculture and Biology, Liaocheng University, Liaocheng, 252000, China.
| | - Yongwang Sun
- College of Agriculture and Biology, Liaocheng University, Liaocheng, 252000, China.
| |
Collapse
|
2
|
Mo F, Xue X, Wang J, Wang J, Cheng M, Liu S, Liu Z, Chen X, Wang A. Genome-wide analysis of KCS genes in tomato and functional characterization of SlKCS8 and SlKCS10 in drought tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109783. [PMID: 40088582 DOI: 10.1016/j.plaphy.2025.109783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/21/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
KCS, an endogenous cellular enzyme, catalyzes the elongation of fatty acid chains and plays a crucial role in the biosynthesis of plant epidermal wax. Through processes such as transfer, decarboxylation, and fixation, it contributes to plant growth and adaptation to abiotic and biotic stresses. However, the mechanism by which KCS genes participate in the response of tomato plants to driught remains unclear. In this study, 15 SlKCS gene family members were identified in tomato using bioinformatics methods. Comprehensive analyses were conducted on their amino acid sequences, conserved motifs, cis-elements, phylogenetic relationships, duplication events, and collinearity. Transcriptome and qRT-PCR analysis revealed diverse expression patterns of SlKCS genes under abiotic stresses, with SlKCS8 and SlKCS10 displaying significant upregulation during drought conditions. The two genes were localized to the plasma membrane and exhibit tissue-specific expression. Functional studies demonstrated that silencing SlKCS8 and SlKCS10 reduced drought tolerance in tomato by disrupting stomatal closure. Further analysis revealed that the silencing of KCS compromised the drought tolerance of tomato by reducing its capacity to scavenge reactive oxygen species. These findings provide critical insights into the regulatory functions of SlKCS genes, particularly SlKCS8 and SlKCS10, in drought resistance. Additionally, this research offers important genetic resources for developing drought-tolerant tomato cultivars.
Collapse
Affiliation(s)
- Fulei Mo
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Xiaopeng Xue
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Jialu Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Jie Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Mozhen Cheng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, PR China.
| | - Shusen Liu
- Shandong Shouguang Sanmu Seedling Co., Ltd., Weifang, 250013, PR China.
| | - Zhao Liu
- Shandong Shouguang Sanmu Seedling Co., Ltd., Weifang, 250013, PR China.
| | - Xiuling Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, PR China.
| | - Aoxue Wang
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, PR China.
| |
Collapse
|
3
|
Zhang J, Chen R, Dai F, Tian Y, Shi Y, He Y, Hu Y, Zhang T. Spatial transcriptome and single-cell RNA sequencing reveal the molecular basis of cotton fiber initiation development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70064. [PMID: 40084712 DOI: 10.1111/tpj.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/22/2025] [Accepted: 02/10/2025] [Indexed: 03/16/2025]
Abstract
Recent advances in single-cell transcriptomics have greatly expanded our knowledge of plant development and cellular responses. However, analyzing fiber cell differentiation in plants, particularly in cotton, remains a complex challenge. A spatial transcriptomic map of ovule from -1 DPA, 0 DPA, and 1 DPA in cotton was successfully constructed, which helps to explain the important role of sucrose synthesis and lipid metabolism during early fiber development. Additionally, single-cell RNA sequencing (scRNA-seq) further highlighted the cellular heterogeneity and identified clusters of fiber developmental marker genes. Integration of spatial and scRNA-seq data unveiled key genes SVB and SVBL involved in fiber initiation, suggesting functional redundancy between them. These findings provide a detailed molecular landscape of cotton fiber development, offering valuable insights for enhancing lint yield.
Collapse
Affiliation(s)
- Jun Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Rui Chen
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Fan Dai
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yue Tian
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yue Shi
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ying He
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Zhao D, Zhou B, Hong B, Mao J, Chen H, Wu J, Liao L, Guan C, Guan M. The Function of Two Brassica napus β-Ketoacyl-CoA Synthases on the Fatty Acid Composition. PLANTS (BASEL, SWITZERLAND) 2025; 14:202. [PMID: 39861556 PMCID: PMC11769367 DOI: 10.3390/plants14020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Rapeseed (Brassica napus L.) is one of the four major oilseed crops in the world and is rich in fatty acids. Changes in the fatty acid composition affect the quality of rapeseed. Fatty acids play various roles in plants, but the functions of the genes involved in the fatty acid composition during plant development remain unclear. β-Ketoacyl-CoA synthase (KCS) is a key enzyme involved in the elongation of fatty acids. Various types of fatty acid products are used to build lipid molecules, such as oils, suberin, wax, and membrane lipids. In B. napus, BnaKCSA8 and BnaKCSC3 belong to the KCS family, but their specific functions remain unclear. This study cloned BnaKCSA8 and BnaKCSC3 from Brassica napus L. and analyzed their functions. The gene structures of BnaKCSA8 and BnaKCSC3 were similar and they were localized to the endoplasmic reticulum (ER). In yeast, overexpression of BnaKCSA8 increased the ratios of palmitoleic acid and oleic acid, while BnaKCSC3 decreased the ratios of oleic acid. In Arabidopsis, overexpression of BnaKCSA8 and BnaKCSC3 lead to an increase in the proportion of linoleic acid and a decrease in the erucic acid. In summary, BnaKCSA8 and BnaKCSC3 altered the composition ratios of fatty acids. These findings lay the foundation for an understanding of the role of KCS in the fatty acids in rapeseed, potentially improving its health and nutritional qualities.
Collapse
Affiliation(s)
- Dongfang Zhao
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China; (D.Z.); (B.Z.); (B.H.); (J.M.); (H.C.); (J.W.); (L.L.); (C.G.)
| | - Bingqian Zhou
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China; (D.Z.); (B.Z.); (B.H.); (J.M.); (H.C.); (J.W.); (L.L.); (C.G.)
| | - Bo Hong
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China; (D.Z.); (B.Z.); (B.H.); (J.M.); (H.C.); (J.W.); (L.L.); (C.G.)
| | - Jiajun Mao
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China; (D.Z.); (B.Z.); (B.H.); (J.M.); (H.C.); (J.W.); (L.L.); (C.G.)
| | - Hu Chen
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China; (D.Z.); (B.Z.); (B.H.); (J.M.); (H.C.); (J.W.); (L.L.); (C.G.)
| | - Junjie Wu
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China; (D.Z.); (B.Z.); (B.H.); (J.M.); (H.C.); (J.W.); (L.L.); (C.G.)
| | - Li Liao
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China; (D.Z.); (B.Z.); (B.H.); (J.M.); (H.C.); (J.W.); (L.L.); (C.G.)
| | - Chunyun Guan
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China; (D.Z.); (B.Z.); (B.H.); (J.M.); (H.C.); (J.W.); (L.L.); (C.G.)
- Hunan Branch of National Oilseed Crops Improvement Center, Changsha 410128, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410128, China
| | - Mei Guan
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China; (D.Z.); (B.Z.); (B.H.); (J.M.); (H.C.); (J.W.); (L.L.); (C.G.)
- Hunan Branch of National Oilseed Crops Improvement Center, Changsha 410128, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410128, China
| |
Collapse
|
5
|
Wang S, Zhang C, Li Y, Li R, Du K, Sun C, Shen X, Guo B. ScRNA-seq reveals the spatiotemporal distribution of camptothecin pathway and transposon activity in Camptotheca acuminata shoot apexes and leaves. PHYSIOLOGIA PLANTARUM 2024; 176:e14508. [PMID: 39295090 DOI: 10.1111/ppl.14508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 09/21/2024]
Abstract
Camptotheca acuminata Decne., a significant natural source of the anticancer drug camptothecin (CPT), synthesizes CPT through the monoterpene indole alkaloid (MIA) pathway. In this study, we used single-cell RNA sequencing (scRNA-seq) to generate datasets encompassing over 60,000 cells from C. acuminata shoot apexes and leaves. After cell clustering and annotation, we identified five major cell types in shoot apexes and four in leaves. Analysis of MIA pathway gene expression revealed that most of them exhibited heightened expression in proliferating cells (PCs) and vascular cells (VCs). In contrast to MIA biosynthesis in Catharanthus roseus, CPT biosynthesis in C. acuminata did not exhibit multicellular compartmentalization. Some putative genes encoding enzymes and transcription factors (TFs) related to the biosynthesis of CPT and its derivatives were identified through co-expression analysis. These include 19 cytochrome P450 genes, 8 O-methyltransferase (OMT) genes, and 62 TFs. Additionally, these pathway genes exhibited dynamic expression patterns during VC and EC development. Furthermore, by integrating gene and transposable element (TE) expression data, we constructed novel single-cell transcriptome atlases for C. acuminata. This approach significantly facilitated the identification of rare cell types, including peripheral zone cells (PZs). Some TE families displayed cell type specific, tissue specific, or developmental stage-specific expression patterns, suggesting crucial roles for these TEs in cell differentiation and development. Overall, this study not only provides novel insights into CPT biosynthesis and spatial-temporal TE expression characteristics in C. acuminata, but also serves as a valuable resource for further comprehensive investigations into the development and physiology of this species.
Collapse
Affiliation(s)
- Shu Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuyi Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rucan Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ke Du
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chao Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaofeng Shen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baolin Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Straube J, Hurtado G, Zeisler-Diehl V, Schreiber L, Knoche M. Cuticle deposition ceases during strawberry fruit development. BMC PLANT BIOLOGY 2024; 24:623. [PMID: 38951751 PMCID: PMC11218262 DOI: 10.1186/s12870-024-05327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Ideally, the barrier properties of a fruit's cuticle persist throughout its development. This presents a challenge for strawberry fruit, with their rapid development and thin cuticles. The objective was to establish the developmental time course of cuticle deposition in strawberry fruit. RESULTS Fruit mass and surface area increase rapidly, with peak growth rate coinciding with the onset of ripening. On a whole-fruit basis, the masses of cutin and wax increase but on a unit surface-area basis, they decrease. The decrease is associated with marked increases in elastic strain. The expressions of cuticle-associated genes involved in transcriptional regulation (FaSHN1, FaSHN2, FaSHN3), synthesis of cutin (FaLACS2, FaGPAT3) and wax (FaCER1, FaKCS10, FaKCR1), and those involved in transport of cutin monomers and wax constituents (FaABCG11, FaABCG32) decreased until maturity. The only exceptions were FaLACS6 and FaGPAT6 that are presumably involved in cutin synthesis, and FaCER1 involved in wax synthesis. This result was consistent across five strawberry cultivars. Strawberry cutin consists mainly of C16 and C18 monomers, plus minor amounts of C19, C20, C22 and C24 monomers, ω-hydroxy acids, dihydroxy acids, epoxy acids, primary alcohols, carboxylic acids and dicarboxylic acids. The most abundant monomer is 10,16-dihydroxyhexadecanoic acid. Waxes comprise mainly long-chain fatty acids C29 to C46, with smaller amounts of C16 to C28. Wax constituents are carboxylic acids, primary alcohols, alkanes, aldehydes, sterols and esters. CONCLUSION The downregulation of cuticle deposition during development accounts for the marked cuticular strain, for the associated microcracking, and for their high susceptibility to the disorders of water soaking and cracking.
Collapse
Affiliation(s)
- Jannis Straube
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, Hannover, 30419, Germany
| | - Grecia Hurtado
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, Hannover, 30419, Germany
| | - Viktoria Zeisler-Diehl
- Department of Ecophysiology, Institute of Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, Bonn, 53115, Germany
| | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, Bonn, 53115, Germany
| | - Moritz Knoche
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, Hannover, 30419, Germany.
| |
Collapse
|
7
|
Kim RJ, Han S, Kim HJ, Hur JH, Suh MC. Tetracosanoic acids produced by 3-ketoacyl-CoA synthase 17 are required for synthesizing seed coat suberin in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1767-1780. [PMID: 37769208 DOI: 10.1093/jxb/erad381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023]
Abstract
Very long-chain fatty acids (VLCFAs) are precursors for the synthesis of membrane lipids, cuticular waxes, suberins, and storage oils in plants. 3-Ketoacyl CoA synthase (KCS) catalyzes the condensation of C2 units from malonyl-CoA to acyl-CoA, the first rate-limiting step in VLCFA synthesis. In this study, we revealed that Arabidopsis KCS17 catalyzes the elongation of C22-C24 VLCFAs required for synthesizing seed coat suberin. Histochemical analysis of Arabidopsis plants expressing GUS (β-glucuronidase) under the control of the KCS17 promoter revealed predominant GUS expression in seed coats, petals, stigma, and developing pollen. The expression of KCS17:eYFP (enhanced yellow fluorescent protein) driven by the KCS17 promoter was observed in the outer integument1 of Arabidopsis seed coats. The KCS17:eYFP signal was detected in the endoplasmic reticulum of tobacco epidermal cells. The levels of C22 VLCFAs and their derivatives, primary alcohols, α,ω-alkane diols, ω-hydroxy fatty acids, and α,ω-dicarboxylic acids increased by ~2-fold, but those of C24 VLCFAs, ω-hydroxy fatty acids, and α,ω-dicarboxylic acids were reduced by half in kcs17-1 and kcs17-2 seed coats relative to the wild type (WT). The seed coat of kcs17 displayed decreased autofluorescence under UV and increased permeability to tetrazolium salt compared with the WT. Seed germination and seedling establishment of kcs17 were more delayed by salt and osmotic stress treatments than the WT. KCS17 formed homo- and hetero-interactions with KCR1, PAS2, and ECR, but not with PAS1. Therefore, KCS17-mediated VLCFA synthesis is required for suberin layer formation in Arabidopsis seed coats.
Collapse
Affiliation(s)
- Ryeo Jin Kim
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Sol Han
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Hyeon Jun Kim
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Ji Hyun Hur
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Mi Chung Suh
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
8
|
Yang Y, Li X, Li C, Zhang H, Tuerxun Z, Hui F, Li J, Liu Z, Chen G, Cai D, Chen X, Li B. Isolation and Functional Characterization of a Constitutive Promoter in Upland Cotton ( Gossypium hirsutum L.). Int J Mol Sci 2024; 25:1917. [PMID: 38339199 PMCID: PMC10855717 DOI: 10.3390/ijms25031917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Multiple cis-acting elements are present in promoter sequences that play critical regulatory roles in gene transcription and expression. In this study, we isolated the cotton FDH (Fiddlehead) gene promoter (pGhFDH) using a real-time reverse transcription-PCR (qRT-PCR) expression analysis and performed a cis-acting elements prediction analysis. The plant expression vector pGhFDH::GUS was constructed using the Gateway approach and was used for the genetic transformation of Arabidopsis and upland cotton plants to obtain transgenic lines. Histochemical staining and a β-glucuronidase (GUS) activity assay showed that the GUS protein was detected in the roots, stems, leaves, inflorescences, and pods of transgenic Arabidopsis thaliana lines. Notably, high GUS activity was observed in different tissues. In the transgenic lines, high GUS activity was detected in different tissues such as leaves, stalks, buds, petals, androecium, endosperm, and fibers, where the pGhFDH-driven GUS expression levels were 3-10-fold higher compared to those under the CaMV 35S promoter at 10-30 days post-anthesis (DPA) during fiber development. The results indicate that pGhFDH can be used as an endogenous constitutive promoter to drive the expression of target genes in various cotton tissues to facilitate functional genomic studies and accelerate cotton molecular breeding.
Collapse
Affiliation(s)
- Yang Yang
- Xinjiang Key Laboratory of Crop Biotechnology, The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Y.Y.); (X.L.); (C.L.); (H.Z.); (Z.T.); (J.L.); (Z.L.); (G.C.); (D.C.)
| | - Xiaorong Li
- Xinjiang Key Laboratory of Crop Biotechnology, The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Y.Y.); (X.L.); (C.L.); (H.Z.); (Z.T.); (J.L.); (Z.L.); (G.C.); (D.C.)
| | - Chenyu Li
- Xinjiang Key Laboratory of Crop Biotechnology, The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Y.Y.); (X.L.); (C.L.); (H.Z.); (Z.T.); (J.L.); (Z.L.); (G.C.); (D.C.)
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Hui Zhang
- Xinjiang Key Laboratory of Crop Biotechnology, The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Y.Y.); (X.L.); (C.L.); (H.Z.); (Z.T.); (J.L.); (Z.L.); (G.C.); (D.C.)
| | - Zumuremu Tuerxun
- Xinjiang Key Laboratory of Crop Biotechnology, The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Y.Y.); (X.L.); (C.L.); (H.Z.); (Z.T.); (J.L.); (Z.L.); (G.C.); (D.C.)
| | - Fengjiao Hui
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China;
| | - Juan Li
- Xinjiang Key Laboratory of Crop Biotechnology, The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Y.Y.); (X.L.); (C.L.); (H.Z.); (Z.T.); (J.L.); (Z.L.); (G.C.); (D.C.)
| | - Zhigang Liu
- Xinjiang Key Laboratory of Crop Biotechnology, The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Y.Y.); (X.L.); (C.L.); (H.Z.); (Z.T.); (J.L.); (Z.L.); (G.C.); (D.C.)
| | - Guo Chen
- Xinjiang Key Laboratory of Crop Biotechnology, The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Y.Y.); (X.L.); (C.L.); (H.Z.); (Z.T.); (J.L.); (Z.L.); (G.C.); (D.C.)
| | - Darun Cai
- Xinjiang Key Laboratory of Crop Biotechnology, The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Y.Y.); (X.L.); (C.L.); (H.Z.); (Z.T.); (J.L.); (Z.L.); (G.C.); (D.C.)
| | - Xunji Chen
- Xinjiang Key Laboratory of Crop Biotechnology, The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Y.Y.); (X.L.); (C.L.); (H.Z.); (Z.T.); (J.L.); (Z.L.); (G.C.); (D.C.)
| | - Bo Li
- Xinjiang Key Laboratory of Crop Biotechnology, The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Y.Y.); (X.L.); (C.L.); (H.Z.); (Z.T.); (J.L.); (Z.L.); (G.C.); (D.C.)
| |
Collapse
|
9
|
Gong Y, Wang D, Xie H, Zhao Z, Chen Y, Zhang D, Jiao Y, Shi M, Lv P, Sha Q, Yang J, Chu P, Sun Y. Genome-wide identification and expression analysis of the KCS gene family in soybean ( Glycine max) reveal their potential roles in response to abiotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1291731. [PMID: 38116151 PMCID: PMC10728876 DOI: 10.3389/fpls.2023.1291731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/01/2023] [Indexed: 12/21/2023]
Abstract
Very long chain fatty acids (VLCFAs) are fatty acids with chain lengths of 20 or more carbon atoms, which are the building blocks of various lipids that regulate developmental processes and plant stress responses. 3-ketoacyl-CoA synthase encoded by the KCS gene is the key rate-limiting enzyme in VLCFA biosynthesis, but the KCS gene family in soybean (Glycine max) has not been adequately studied thus far. In this study, 31 KCS genes (namely GmKCS1 - GmKCS31) were identified in the soybean genome, which are unevenly distributed on 14 chromosomes. These GmKCS genes could be phylogenetically classified into seven groups. A total of 27 paralogous GmKCS gene pairs were identified with their Ka/Ks ratios indicating that they had undergone purifying selection during soybean genome expansion. Cis-acting element analysis revealed that GmKCS promoters contained multiple hormone- and stress-responsive elements, indicating that GmKCS gene expression levels may be regulated by various developmental and environmental stimuli. Expression profiles derived from RNA-seq data and qRT-PCR experiments indicated that GmKCS genes were diversely expressed in different organs/tissues, and many GmKCS genes were found to be differentially expressed in the leaves under cold, heat, salt, and drought stresses, suggesting their critical role in soybean resistance to abiotic stress. These results provide fundamental information about the soybean KCS genes and will aid in their further functional elucidation and exploitation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Pengfei Chu
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| | - Yongwang Sun
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| |
Collapse
|
10
|
Wang Y, Liu Y, Pan X, Wan Y, Li Z, Xie Z, Hu T, Yang P. A 3-Ketoacyl-CoA Synthase 10 ( KCS10) Homologue from Alfalfa Enhances Drought Tolerance by Regulating Cuticular Wax Biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14493-14504. [PMID: 37682587 DOI: 10.1021/acs.jafc.3c03881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Cuticular wax, forming the first line of defense against adverse environmental stresses, comprises very long-chain fatty acids (VLCFAs) and their derivatives. 3-Ketoacyl-CoA synthase (KCS) is a rate-limiting enzyme for VLCFA biosynthesis. In this study, we isolated KCS10, a KCS gene from alfalfa, and analyzed the effect of gene expression on wax production and drought stress in transgenic plants. MsKCS10 overexpression increased compact platelet-like crystal deposition and promoted primary alcohol biosynthesis through acyl reduction pathways in alfalfa leaves. Overexpression of MsKCS10 induced the formation of coiled-rodlet-like crystals and increased n-alkane content through decarbonylation pathways in tobacco and tomato fruits. Overexpression of MsKCS10 enhanced drought tolerance by limiting nonstomatal water loss, improving photosynthesis, and maintaining osmotic potential under drought stress in transgenic tobacco. In summary, MsKCS10 plays an important role in wax biosynthesis, wax crystal morphology, and drought tolerance, although the mechanisms are different among the plant species. MsKCS10 can be targeted in future breeding programs to improve drought tolerance in plants.
Collapse
Affiliation(s)
- Yafang Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Yushi Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Xinya Pan
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Yiqi Wan
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Ziyan Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zhiguo Xie
- Shaanxi Academy of Forestry Xi'an, 710082, China
| | - Tianming Hu
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Peizhi Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
11
|
Zhang J, Zhang C, Li X, Liu ZY, Liu X, Wang CL. Comprehensive analysis of KCS gene family in pear reveals the involvement of PbrKCSs in cuticular wax and suberin synthesis and pear fruit skin formation. PLANT MOLECULAR BIOLOGY 2023:10.1007/s11103-023-01371-3. [PMID: 37523053 DOI: 10.1007/s11103-023-01371-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023]
Abstract
Cuticular wax, cutin and suberin polyesters covering the surface of some fleshy fruit are tightly associated with skin color and appearance. β-Ketoacyl-CoA synthase (KCS) is a rate-limiting enzyme participating in the synthesis of very-long-chain fatty acids (VLCFAs), the essential precursors of cuticular waxes and aliphatic monomers of suberin. However, information on the KCS gene family in pear genome and the specific members involved in pear fruit skin formation remain unclear. In the present study, we performed an investigation of the composition and amount of cuticular waxes, cutin and aliphatic suberin in skins of four sand pear varieties with distinct colors (russet, semi-russet, and green) and demonstrated that the metabolic shifts of cuticular waxes and suberin leading to the significant differences of sand pear skin color. A genome-wide identification of KCS genes from the pear genome was conducted and 35 KCS coding genes were characterized and analyzed. Expression profile analysis revealed that the KCS genes had diverse expression patterns among different pear skins and the transcript abundance of PbrKCS15, PbrKCS19, PbrKCS24, and PbrKCS28 were consistent with the accumulation of cuticular waxes and suberin in fruit skin respectively. Subcellular localization analysis demonstrated that PbrKCS15, PbrKCS19, PbrKCS24 and PbrKCS28 located on the endoplasmic reticulum (ER). Further, transient over-expression of PbrKCS15, PbrKCS19, and PbrKCS24 in pear fruit skins significantly increased cuticular wax accumulation, whereas PbrKCS28 notably induced suberin deposition. In conclusion, pear fruit skin color and appearance are controlled in a coordinated way by the deposition of the cuticular waxes and suberin. PbrKCS15, PbrKCS19, and PbrKCS24 are involved in cuticular wax biosynthesis, and PbrKCS28 is involved in suberin biosynthesis, which play essential roles in pear fruit skin formation. Moreover, this work provides a foundation for further understanding the functions of KCS genes in pear.
Collapse
Affiliation(s)
- Jing Zhang
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China
| | - Chen Zhang
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China
| | - Xi Li
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China
| | - Zi-Yu Liu
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China
| | - Xiao Liu
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China
| | - Chun-Lei Wang
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
12
|
Hasegawa K, Ichikawa A, Takeuchi H, Nakamura A, Iwai H. Maintenance of Methyl-Esterified Pectin Level in Pollen Mother-Cell Stages Is Required for Microspore Development. PLANTS (BASEL, SWITZERLAND) 2023; 12:1717. [PMID: 37111940 PMCID: PMC10142773 DOI: 10.3390/plants12081717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/30/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
Pectin modification and degradation are vital for plant development, although the underlying mechanisms are still not well understood. Furthermore, reports on the function of pectin in early pollen development are limited. We generated OsPME-FOX rice lines with little methyl-esterified pectin even in the early-pollen mother-cell stage due to overexpression of the gene encoding pectin-methylesterase. Overexpression of OsPME1 in rice increased the activity of PME, which decreased the degree of pectin methyl esterification in the cell wall. OsPME1-FOX grew normally and showed abnormal phenotypes in anther and pollen development, especially in terms of the pollen mother-cell stage. In addition, we examined modifications of cell-wall polysaccharides at the cellular level using antibodies against polysaccharides. Immunohistochemical staining using LM19 and LM20 showed that methyl-esterified pectin distribution and the pectin contents in pollen mother-cell wall decreased in OsPME1-FOX compared with the wild type. Thus, the maintenance of methyl-esterified pectin plays a role in degrading and maintaining the pollen mother-cell wall during microspore development.
Collapse
Affiliation(s)
- Kazuya Hasegawa
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
- Shizuoka Prefectural Research Institute of Agriculture and Forestry, Tea Research Center, Kikugawa 439-0003, Japan
| | - Ai Ichikawa
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Haruki Takeuchi
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Atsuko Nakamura
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Hiroaki Iwai
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| |
Collapse
|
13
|
Wang X, Zhao D, Li X, Zhou B, Chang T, Hong B, Guan C, Guan M. Integrated Analysis of lncRNA–mRNA Regulatory Networks Related to Lipid Metabolism in High-Oleic-Acid Rapeseed. Int J Mol Sci 2023; 24:ijms24076277. [PMID: 37047249 PMCID: PMC10093948 DOI: 10.3390/ijms24076277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
A high oleic acid content is considered an essential characteristic in the breeding of high-quality rapeseed in China. Long-chain non-coding RNA (lncRNA) molecules play an important role in the plant’s growth and its response to stress. To better understand the role of lncRNAs in regulating plant reproductive development, we analyzed whole-transcriptome and physiological data to characterize the dynamic changes in lncRNA expression during the four representative times of seed development of high- and low-oleic-acid rapeseed in three regions. We identified 21 and 14 lncRNA and mRNA modules, respectively. These modules were divided into three types related to region, development stages, and material. Next, we analyzed the key modules related to the oil content and the oleic acid, linoleic acid, and linolenic acid contents with physiological data and constructed the key functional network analysis on this basis. Genes related to lipid metabolism, such as 3-ketoacyl-CoA synthase 16 (KCS16) and acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1), were present in the co-expression network, suggesting that the effect of these genes on lipid metabolism might be embodied by the expression of these lncRNAs. Our results provide a fresh insight into region-, development-stage-, and material-biased changes in lncRNA expression in the seeds of Brassica napus. Some of these lncRNAs may participate in the regulatory network of lipid accumulation and metabolism, together with regulated genes. These results may help elucidate the regulatory system of lncRNAs in the lipid metabolism of high-oleic-acid rapeseed seeds.
Collapse
|
14
|
Wang H, Lu Z, Xu Y, Zhang J, Han L, Chai M, Wang ZY, Yang X, Lu S, Tong J, Xiao L, Wen J, Mysore KS, Zhou C. Roles of very long-chain fatty acids in compound leaf patterning in Medicago truncatula. PLANT PHYSIOLOGY 2023; 191:1751-1770. [PMID: 36617225 PMCID: PMC10022625 DOI: 10.1093/plphys/kiad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Plant cuticles are composed of hydrophobic cuticular waxes and cutin. Very long-chain fatty acids (VLCFAs) are components of epidermal waxes and the plasma membrane and are involved in organ morphogenesis. By screening a barrelclover (Medicago truncatula) mutant population tagged by the transposable element of tobacco (Nicotiana tabacum) cell type1 (Tnt1), we identified two types of mutants with unopened flower phenotypes, named unopened flower1 (uof1) and uof2. Both UOF1 and UOF2 encode enzymes that are involved in the biosynthesis of VLCFAs and cuticular wax. Comparative analysis of the mutants indicated that the mutation in UOF1, but not UOF2, leads to the increased number of leaflets in M. truncatula. UOF1 was specifically expressed in the outermost cell layer (L1) of the shoot apical meristem (SAM) and leaf primordia. The uof1 mutants displayed defects in VLCFA-mediated plasma membrane integrity, resulting in the disordered localization of the PIN-FORMED1 (PIN1) ortholog SMOOTH LEAF MARGIN1 (SLM1) in M. truncatula. Our work demonstrates that the UOF1-mediated biosynthesis of VLCFAs in L1 is critical for compound leaf patterning, which is associated with the polarization of the auxin efflux carrier in M. truncatula.
Collapse
Affiliation(s)
- Hongfeng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266101, China
| | - Zhichao Lu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266101, China
| | - Yiteng Xu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266101, China
| | - Jing Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266101, China
| | - Lu Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266101, China
| | - Maofeng Chai
- Grassland Agri-Husbandry Research Center, Qingdao Agricultural University, Qingdao 266109, China
| | - Zeng-Yu Wang
- Grassland Agri-Husbandry Research Center, Qingdao Agricultural University, Qingdao 266109, China
| | - Xianpeng Yang
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Shiyou Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jianhua Tong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Jiangqi Wen
- Institute of Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, Oklahoma 73401, USA
| | - Kirankumar S Mysore
- Institute of Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, Oklahoma 73401, USA
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266101, China
| |
Collapse
|
15
|
Khan UM, Rana IA, Shaheen N, Raza Q, Rehman HM, Maqbool R, Khan IA, Atif RM. Comparative phylogenomic insights of KCS and ELO gene families in Brassica species indicate their role in seed development and stress responsiveness. Sci Rep 2023; 13:3577. [PMID: 36864046 PMCID: PMC9981734 DOI: 10.1038/s41598-023-28665-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/23/2023] [Indexed: 03/04/2023] Open
Abstract
Very long-chain fatty acids (VLCFAs) possess more than twenty carbon atoms and are the major components of seed storage oil, wax, and lipids. FAE (Fatty Acid Elongation) like genes take part in the biosynthesis of VLCFAs, growth regulation, and stress responses, and are further comprised of KCS (Ketoacyl-CoA synthase) and ELO (Elongation Defective Elongase) sub-gene families. The comparative genome-wide analysis and mode of evolution of KCS and ELO gene families have not been investigated in tetraploid Brassica carinata and its diploid progenitors. In this study, 53 KCS genes were identified in B. carinata compared to 32 and 33 KCS genes in B. nigra and B. oleracea respectively, which suggests that polyploidization might has impacted the fatty acid elongation process during Brassica evolution. Polyploidization has also increased the number of ELO genes in B. carinata (17) over its progenitors B. nigra (7) and B. oleracea (6). Based on comparative phylogenetics, KCS, and ELO proteins can be classified into eight and four major groups, respectively. The approximate date of divergence for duplicated KCS and ELO genes varied from 0.03 to 3.20 million years ago (MYA). Gene structure analysis indicated that the maximum number of genes were intron-less and remained conserved during evolution. The neutral type of selection seemed to be predominant in both KCS and ELO genes evolution. String-based protein-protein interaction analysis suggested that bZIP53, a transcription factor might be involved in the activation of transcription of ELO/KCS genes. The presence of biotic and abiotic stress-related cis-regulatory elements in the promoter region suggests that both KCS and ELO genes might also play their role in stress tolerance. The expression analysis of both gene family members reflect their preferential seed-specific expression, especially during the mature embryo development stage. Furthermore, some KCS and ELO genes were found to be specifically expressed under heat stress, phosphorus starvation, and Xanthomonas campestris infection. The current study provides a basis to understand the evolution of both KCS and ELO genes in fatty acid elongation and their role in stress tolerance.
Collapse
Affiliation(s)
- Uzair Muhammad Khan
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Iqrar Ahmad Rana
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
- Center of Agricultural Biotechnology and Biochemistry, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Nabeel Shaheen
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Qasim Raza
- Precision Agriculture and Analytics Lab, National Centre in Big Data and Cloud Computing, Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Hafiz Mamoon Rehman
- Center of Agricultural Biotechnology and Biochemistry, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Rizwana Maqbool
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Iqrar Ahmad Khan
- Precision Agriculture and Analytics Lab, National Centre in Big Data and Cloud Computing, Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan.
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan.
- Precision Agriculture and Analytics Lab, National Centre in Big Data and Cloud Computing, Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan.
| |
Collapse
|
16
|
Batsale M, Alonso M, Pascal S, Thoraval D, Haslam RP, Beaudoin F, Domergue F, Joubès J. Tackling functional redundancy of Arabidopsis fatty acid elongase complexes. FRONTIERS IN PLANT SCIENCE 2023; 14:1107333. [PMID: 36798704 PMCID: PMC9928185 DOI: 10.3389/fpls.2023.1107333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Very-long-chain fatty acids (VLCFA) are precursors for various lipids playing important physiological and structural roles in plants. Throughout plant tissues, VLCFA are present in multiple lipid classes essential for membrane homeostasis, and also stored in triacylglycerols. VLCFA and their derivatives are also highly abundant in lipid barriers, such as cuticular waxes in aerial epidermal cells and suberin monomers in roots. VLCFA are produced by the fatty acid elongase (FAE), which is an integral endoplasmic reticulum membrane multi-enzymatic complex consisting of four core enzymes. The 3-ketoacyl-CoA synthase (KCS) catalyzes the first reaction of the elongation and determines the chain-length substrate specificity of each elongation cycle, whereas the other three enzymes have broad substrate specificities and are shared by all FAE complexes. Consistent with the co-existence of multiple FAE complexes, performing sequential and/or parallel reactions to produce the broad chain-length-range of VLCFA found in plants, twenty-one KCS genes have been identified in the genome of Arabidopsis thaliana. Using CRISPR-Cas9 technology, we established an expression platform to reconstitute the different Arabidopsis FAE complexes in yeast. The VLCFA produced in these yeast strains were analyzed in detail to characterize the substrate specificity of all KCS candidates. Additionally, Arabidopsis candidate proteins were transiently expressed in Nicotiana benthamiana leaves to explore their activity and localization in planta. This work sheds light on the genetic and biochemical redundancy of fatty acid elongation in plants.
Collapse
Affiliation(s)
| | - Marie Alonso
- Univesity of Bordeaux, CNRS, LBM, UMR 5200, Villenave d’Ornon, France
- University of Bordeaux, INRAE, BFP, UMR 1332, Villenave d’Ornon, France
| | - Stéphanie Pascal
- Univesity of Bordeaux, CNRS, LBM, UMR 5200, Villenave d’Ornon, France
| | - Didier Thoraval
- Univesity of Bordeaux, CNRS, LBM, UMR 5200, Villenave d’Ornon, France
| | | | | | - Frédéric Domergue
- Univesity of Bordeaux, CNRS, LBM, UMR 5200, Villenave d’Ornon, France
| | - Jérôme Joubès
- Univesity of Bordeaux, CNRS, LBM, UMR 5200, Villenave d’Ornon, France
| |
Collapse
|
17
|
Zhang A, Xu J, Xu X, Wu J, Li P, Wang B, Fang H. Genome-wide identification and characterization of the KCS gene family in sorghum ( Sorghum bicolor (L.) Moench). PeerJ 2022; 10:e14156. [PMID: 36225907 PMCID: PMC9549899 DOI: 10.7717/peerj.14156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/08/2022] [Indexed: 01/21/2023] Open
Abstract
The aboveground parts of plants are covered with cuticle, a hydrophobic layer composed of cutin polyester and cuticular wax that can protect plants from various environmental stresses. β-Ketoacyl-CoA synthase (KCS) is the key rate-limiting enzyme in plant wax synthesis. Although the properties of KCS family genes have been investigated in many plant species, the understanding of this gene family in sorghum is still limited. Here, a total of 25 SbKCS genes were identified in the sorghum genome, which were named from SbKCS1 to SbKCS25. Evolutionary analysis among different species divided the KCS family into five subfamilies and the SbKCSs were more closely related to maize, implying a closer evolutionary relationship between sorghum and maize. All SbKCS genes were located on chromosomes 1, 2, 3, 4, 5, 6, 9 and 10, respectively, while Chr 1 and Chr 10 contained more KCS genes than other chromosomes. The prediction results of subcellular localization showed that SbKCSs were mainly expressed in the plasma membrane and mitochondria. Gene structure analysis revealed that there was 0-1 intron in the sorghum KCS family and SbKCSs within the same subgroup were similar. Multiple cis-acting elements related to abiotic stress, light and hormone response were enriched in the promoters of SbKCS genes, which indicated the functional diversity among these genes. The three-dimensional structure analysis showed that a compact spherical space structure was formed by various secondary bonds to maintain the stability of SbKCS proteins, which was necessary for their biological activity. qRT-PCR results revealed that nine randomly selected SbKCS genes expressed differently under drought and salt treatments, among which SbKCS8 showed the greatest fold of expression difference at 12 h after drought and salt stresses, which suggested that the SbKCS genes played a potential role in abiotic stress responses. Taken together, these results provided an insight into investigating the functions of KCS family in sorghum and in response to abiotic stress.
Collapse
Affiliation(s)
- Aixia Zhang
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Jingjing Xu
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Xin Xu
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Junping Wu
- Nantong Changjiang Seed Co., Ltd, Nantong, Jiangsu, China
| | - Ping Li
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Baohua Wang
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Hui Fang
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
18
|
Zhang A, Huang Q, Li J, Zhu W, Liu X, Wu X, Zha D. Comparative Transcriptome Analysis Reveals Gene Expression Differences in Eggplant ( Solanum melongena L.) Fruits with Different Brightness. Foods 2022; 11:foods11162506. [PMID: 36010506 PMCID: PMC9407171 DOI: 10.3390/foods11162506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Fruit brightness is an important quality trait that affects the market value of eggplant. However, few studies have been conducted on eggplant brightness. In this study, we aimed to identify genes related to this trait in three varieties of eggplant with different fruit brightness between 14 and 22 days after pollination. Using RNA-Seq Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses, we found that wax- and cutin-related pathways and differentially expressed genes displayed significant differences among different development stages and varieties. Scanning electron microscopy revealed that the wax layer was thinner in '30-1' and 'QPCQ' than in '22-1'. Gas chromatography-mass spectrometry analysis revealed that wax content was significantly lower in '30-1' than in '22-1', which indicated that wax may be an important factor determining fruit brightness. We further identified and analyzed the KCS gene family, which encodes the rate-limiting enzyme of FA elongation in wax synthesis. The results provide an insight into the molecular mechanisms of fruit brightness in eggplants and further eggplant breeding programs.
Collapse
Affiliation(s)
- Aidong Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Qianru Huang
- College of Life Science, Shanghai Normal University, Shanghai 201418, China
| | - Jianyong Li
- Shanghai Agricultural Technology Extension Service Center, Shanghai 201103, China
| | - Weimin Zhu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xiaohui Liu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Xuexia Wu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Correspondence:
| | - Dingshi Zha
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| |
Collapse
|
19
|
Yang F, Han Y, Zhu QH, Zhang X, Xue F, Li Y, Luo H, Qin J, Sun J, Liu F. Impact of water deficiency on leaf cuticle lipids and gene expression networks in cotton (Gossypium hirsutum L.). BMC PLANT BIOLOGY 2022; 22:404. [PMID: 35978290 PMCID: PMC9382817 DOI: 10.1186/s12870-022-03788-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Water deficit (WD) has serious effect on the productivity of crops. Formation of cuticular layer with increased content of wax and cutin on leaf surfaces is closely related to drought tolerance. Identification of drought tolerance associated wax components and cutin monomers and the genes responsible for their biosynthesis is essential for understanding the physiological and genetic mechanisms underlying drought tolerance and improving crop drought resistance. RESULT In this study, we conducted comparative phenotypic and transcriptomic analyses of two Gossypium hirsutum varieties that are tolerant (XL22) or sensitive (XL17) to drought stress. XL17 consumed more water than XL22, particularly under the WD conditions. WD significantly induced accumulation of most major wax components (C29 and C31 alkanes) and cutin monomers (palmitic acid and stearic acid) in leaves of both XL22 and XL17, although accumulation of the major cutin monomers, i.e., polyunsaturated linolenic acid (C18:3n-3) and linoleic acid (C18:2n-6), were significantly repressed by WD in both XL22 and XL17. According to the results of transcriptome analysis, although many genes and their related pathways were commonly induced or repressed by WD in both XL22 and XL17, WD-induced differentially expressed genes specific to XL22 or XL17 were also evident. Among the genes that were commonly induced by WD were the GhCER1 genes involved in biosynthesis of alkanes, consistent with the observation of enhanced accumulation of alkanes in cotton leaves under the WD conditions. Interestingly, under the WD conditions, several GhCYP86 genes, which encode enzymes catalyzing the omega-hydroxylation of fatty acids and were identified to be the hub genes of one of the co-expression gene modules, showed a different expression pattern between XL22 and XL17 that was in agreement with the WD-induced changes of the content of hydroxyacids or fatty alcohols in these two varieties. CONCLUSION The results contribute to our comprehending the physiological and genetic mechanisms underlying drought tolerance and provide possible solutions for the difference of drought resistance of different cotton varieties.
Collapse
Affiliation(s)
- Fan Yang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Yongchao Han
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, 2601, Australia
| | - Xinyu Zhang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Fei Xue
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Yanjun Li
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Honghai Luo
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Jianghong Qin
- Shihezi Academy of Agricultural Sciences, Shihezi, 832000, China
| | - Jie Sun
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China.
| | - Feng Liu
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
20
|
Yang Y, Shi J, Chen L, Xiao W, Yu J. ZmEREB46, a maize ortholog of Arabidopsis WAX INDUCER1/SHINE1, is involved in the biosynthesis of leaf epicuticular very-long-chain waxes and drought tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111256. [PMID: 35696901 DOI: 10.1016/j.plantsci.2022.111256] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/05/2022] [Accepted: 03/12/2022] [Indexed: 06/15/2023]
Abstract
The aerial surfaces of plants are covered by a layer of cuticular wax that is composed of long-chain hydrocarbon compounds for protection against adverse environmental conditions. The current study identified a maize (Zea mays L.) APETALA2/ethylene-responsive element-binding protein (AP2/EREBP)-type transcription factor, ZmEREB46. Ectopic expression of ZmEREB46 in Arabidopsis increased the accumulation of epicuticular wax on the leaves and enhanced the drought tolerance of plants. The amounts of C24/C32 fatty acids, C32/C34 aldehydes, C32/C34 1-alcohols and C31 alkanes in zmereb46 (ZmEREB46 knockout mutant) leaves were reduced. The amount of leaf total epicuticular wax decreased approximately 50% in zmereb46. Compared to wild-type LH244 leaves, the cuticle permeability of zmereb46 leaves was increased, which resulted from decreased epicuticular wax load and a thinner cuticle layer. ZmEREB46 had transcriptional activation activity and directly bound to promoter regions of ZmCER2, ZmCER3.2 and ZmKCS1. The zmereb46 seedlings also exhibited reduced drought tolerance. These results, and the observations in ZmEREB46-overexpressing lines, suggest that ZmEREB46 is involved in cuticular metabolism by influencing the biosynthesis of very-long-chain waxes and participates in the cutin biosynthesis pathway. These results are helpful to further analyze the regulatory network of wax accumulation in maize.
Collapse
Affiliation(s)
- Yue Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, Agricultural University, Beijing 100193, China; China Tobacco Jiangsu Industry CO., Ltd, Jiangsu 210011, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Limei Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenhan Xiao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, Agricultural University, Beijing 100193, China; Chengdu Shishi High School, Sichuan 610052, China
| | - Jingjuan Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, Agricultural University, Beijing 100193, China.
| |
Collapse
|
21
|
Kim J, Kim RJ, Lee SB, Suh MC. Protein-protein interactions in fatty acid elongase complexes are important for very-long-chain fatty acid synthesis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3004-3017. [PMID: 35560210 DOI: 10.1093/jxb/erab543] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 12/10/2021] [Indexed: 06/15/2023]
Abstract
Fatty acid elongase (FAE), which catalyzes the synthesis of very-long-chain fatty acids (VLCFAs), is a multiprotein complex; however, little is known about its quaternary structure. In this study, bimolecular fluorescence complementation and/or yeast two-hybrid assays showed that homo-interactions were observed in β-ketoacyl-CoA synthases (KCS2, KCS9, and KCS6), Eceriferum2-like proteins [CER2 and CER2-Like2 (C2L2)], and FAE complex proteins (KCR1, PAS2, ECR, and PAS1), except for CER2-Like1 (C2L1). Hetero-interactions were observed between KCSs (KCS2, KCS9, and KCS6), between CER2-LIKEs (CER2, C2L2, and C2L1), and between FAE complex proteins (KCR1, PAS2, ECR, and PAS1). PAS1 interacts with FAE complex proteins (KCR1, PAS2, and ECR), but not with KCSs (KCS2, KCS9, and KCS6) and CER2-LIKEs (CER2, C2L2, and C2L1). Asp308 and Arg309-Arg311 of KCS9 were essential for the homo-interactions of KCS9 and hetero-interactions between KCS9 and PAS2 or ECR. Asp339 of KCS9 is involved in its homo- and hetero-interactions with ECR. Complementation analysis of the Arabidopsis kcs9 mutant by the expression of amino acid-substituted KCS9 mutant genes showed that Asp308 and Asp339 of KCS9 are involved in the synthesis of C24 VLCFAs from C22. This study suggests that protein-protein interaction in FAE complexes is important for VLCFA synthesis and provides insight into the quaternary structure of FAE complexes for efficient synthesis of VLCFAs.
Collapse
Affiliation(s)
- Juyoung Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ryeo Jin Kim
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea
| | - Saet Buyl Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Mi Chung Suh
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
22
|
Hormonal Signaling in the Progamic Phase of Fertilization in Plants. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pollen–pistil interaction is a basic process in the reproductive biology of flowering plants and has been the subject of intense fundamental research that has a pronounced practical value. The phytohormones ethylene (ET) and cytokinin (CK) together with other hormones such as auxin, gibberellin (GA), jasmonic acid (JA), abscisic acid (ABA), and brassinosteroids (BRs) influence different stages of plant development and growth. Here, we mainly focus on the information about the ET and CK signaling in the progamic phase of fertilization. This signaling occurs during male gametophyte development, including tapetum (TAP) cell death, and pollen tube growth, including synergid programmed cell death (PCD) and self-incompatibility (SI)-induced PCD. ET joins the coordination of successive events in the developing anther, including the TAP development and cell death, anther dehiscence, microspore development, pollen grain maturation, and dehydration. Both ET and CK take part in the regulation of E. ET signaling accompanies adhesion, hydration, and germination of pollen grains in the stigma and growth of pollen tubes in style tissues. Thus, ET production may be implicated in the pollination signaling between organs accumulated in the stigma and transmitted to the style and ovary to ensure successful pollination. Some data suggest that ET and CK signaling are involved in S-RNase-based SI.
Collapse
|
23
|
Stocky1, a Novel Gene Involved in Maize Seedling Development and Cuticle Integrity. PLANTS 2022; 11:plants11070847. [PMID: 35406827 PMCID: PMC9003528 DOI: 10.3390/plants11070847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 11/20/2022]
Abstract
The cuticle is the plant’s outermost layer that covers the surfaces of aerial parts. This structure is composed of a variety of aliphatic molecules and is well-known for its protective role against biotic and abiotic stresses in plants. Mutants with a permeable cuticle show developmental defects such as organ fusions and altered seed germination and viability. In this study, we identified a novel maize mutant, stocky1, with unique features: lethal at the seedling stage, and showing a severely dwarfed phenotype, due to a defective cuticle. For the first time, the mutant was tentatively mapped to chromosome 5, bin 5.04. The mutant phenotype investigated in this work has the potential to contribute to the elucidation of the role of the cuticle during plant development. The possibility of controlling this trait is of relevance in the context of climate change, as it may contribute to tolerance to abiotic stresses.
Collapse
|
24
|
Lian XY, Gao HN, Jiang H, Liu C, Li YY. MdKCS2 increased plant drought resistance by regulating wax biosynthesis. PLANT CELL REPORTS 2021; 40:2357-2368. [PMID: 34468851 DOI: 10.1007/s00299-021-02776-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/17/2021] [Indexed: 05/05/2023]
Abstract
We found that the apple wax related gene played a role in changing plant epidermal permeability and enhancing plant resistance to drought stress by increasing wax accumulation. The content and composition of epidermal wax in plants are affected by genetic and environmental factors. The KCS gene encodes the β-ketoalionyl-CoA synthetase, which is a rate-limiting enzyme in the synthesis of very-long-chain fatty acids (VLCFAs). In this study, we identified the MdKCS2 gene from apple as a homolog of Arabidopsis AtKCS2. The KCS protein is localized on the endoplasmic reticulum membrane. MdKCS2 exhibited the highest expression in apple pericarp, and was induced by abiotic stresses, such as drought and salt. Transgenic analysis indicated that the MdKCS2 improved the resistance to abiotic stress in apple calli. Ectopic expression of MdKCS2 in Arabidopsis increased the content of wax in leaves and stems, changed the permeability of cuticle of leaves, and enhanced plant drought resistance.
Collapse
Affiliation(s)
- Xin-Yu Lian
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Huai-Na Gao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Han Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Chang Liu
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Dr, Gainesville, FL, 32601, USA
| | - Yuan-Yuan Li
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
25
|
Nagata K, Abe M. The lipid-binding START domain regulates the dimerization of ATML1 via modulating the ZIP motif activity in Arabidopsis thaliana. Dev Growth Differ 2021; 63:448-454. [PMID: 34543439 DOI: 10.1111/dgd.12753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 11/28/2022]
Abstract
In Arabidopsis thaliana, the epidermis is the outermost cell layer composed of many specialized types of epidermal cells, such as pavement cells, trichomes, and guard cells. The homeodomain-leucine zipper (HD-ZIP) class Ⅳ transcription factors (TFs), which are unique to the plant kingdom, have been recognized as key regulators of epidermis development. Unlike animal HD proteins, which can bind to DNA as monomers, plant HD-ZIP class Ⅳ TFs bind to DNA as dimers, although little is known about the regulation of their dimerization process. Here, we show that the homodimerization of ARABIDOPSIS THALIANA MERISTEM LAYER 1 (ATML1) - HD-ZIP class Ⅳ TF that is required for protoderm development - is regulated by the lipid-binding steroidogenic acute regulatory protein-related lipid transfer (START) domain. We found that ATML1 forms homodimer through interaction via its ZIP motif in yeast and plant cells, although the interaction is abolished by generating a mutation into the lipid-binding START domain to disrupt the lipid-binding ability. These results suggest that lipidic ligands function as key regulators of protoderm development via modulating the dimerization of ATML1.
Collapse
Affiliation(s)
- Kenji Nagata
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Mitsutomo Abe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
26
|
Yang H, Mei W, Wan H, Xu R, Cheng Y. Comprehensive analysis of KCS gene family in Citrinae reveals the involvement of CsKCS2 and CsKCS11 in fruit cuticular wax synthesis at ripening. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110972. [PMID: 34315590 DOI: 10.1016/j.plantsci.2021.110972] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/17/2021] [Accepted: 06/08/2021] [Indexed: 05/18/2023]
Abstract
Cuticular wax covers the surface of fleshy fruit and plays a protective role in fruit development and postharvest storage, including reducing fruit water loss, resisting biotic and abiotic stress and affecting fruit glossiness. The β-ketoacyl-CoA synthase (KCS) is the rate-limiting enzyme of very long chain fatty acids (VLCFAs) synthesis, which provides precursors for the synthesis of cuticular wax. In this study, a total of 96 KCS genes were identified in six Citrinae species, including 13, 16, 21, 14, 16 and 16 KCS genes in the primitive species (Atalantia buxifolia), the wild species (Citrus ichangensis), and four cultivated species (Citrus medica, Citrus grandis, Citrus sinensis and Citrus clementina), respectively. Compared with primitive species, wild and cultivated species showed expansion of KCS gene family. Evolutionary analysis of KCS gene family indicated that uneven gain and loss of genes resulted in variable numbers of KCS genes in Citrinae, and KCS genes have undergone purifying selection. Expression profiles in C. sinensis revealed that the KCS genes had diverse expression patterns among various tissues. Furthermore, CsKCS2 and CsKCS11 were predominantly expressed in the flavedo and their expression increased sharply with ripening. Subcellular localization analysis indicated that CsKCS2 and CsKCS11 were located in the endoplasmic reticulum. Further, heterologous expression of CsKCS2 and CsKCS11 in Arabidopsis significantly increased the content of cuticular wax in leaves. Thus, CsKCS2 and CsKCS11 are involved in the accumulation of fruit cuticular wax at ripening. This work will facilitate further functional verification and understanding of the evolution of KCS genes in Citrinae.
Collapse
Affiliation(s)
- Hongbin Yang
- National R&D Center for Citrus Postharvest Technology, Wuhan, 430070, China; Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, China; College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wanjun Mei
- National R&D Center for Citrus Postharvest Technology, Wuhan, 430070, China; Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, China; College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haoliang Wan
- National R&D Center for Citrus Postharvest Technology, Wuhan, 430070, China; Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, China; College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rangwei Xu
- National R&D Center for Citrus Postharvest Technology, Wuhan, 430070, China; Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, China; College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunjiang Cheng
- National R&D Center for Citrus Postharvest Technology, Wuhan, 430070, China; Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, China; College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
27
|
Chai M, Queralta Castillo I, Sonntag A, Wang S, Zhao Z, Liu W, Du J, Xie H, Liao F, Yun J, Jiang Q, Sun J, Molina I, Wang ZY. A seed coat-specific β-ketoacyl-CoA synthase, KCS12, is critical for preserving seed physical dormancy. PLANT PHYSIOLOGY 2021; 186:1606-1615. [PMID: 33779764 PMCID: PMC8260136 DOI: 10.1093/plphys/kiab152] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/08/2021] [Indexed: 05/21/2023]
Abstract
Physical dormancy in seeds exists widely in seed plants and plays a vital role in maintaining natural seed banks. The outermost cuticle of the seed coat forms a water-impermeable layer, which is critical for establishing seed physical dormancy. We previously set up the legume plant Medicago truncatula as an excellent model for studying seed physical dormancy, and our studies revealed that a class II KNOTTED-like homeobox, KNOX4, is a transcription factor critical for controlling hardseededness. Here we report the function of a seed coat β-ketoacyl-CoA synthase, KCS12. The expression level of KCS12 is significantly downregulated in the knox4 mutant. The KCS12 gene is predominantly expressed in the seed coat, and seed development in the M. truncatula kcs12 mutant is altered. Further investigation demonstrated that kcs12 mutant seeds lost physical dormancy and were able to absorb water without scarification treatment. Chemical analysis revealed that concentrations of C24:0 lipid polyester monomers are significantly decreased in mutant seeds, indicating that KCS12 is an enzyme that controls the production of very long chain lipid species in the seed coat. A chromatin immunoprecipitation assay demonstrated that the expression of KCS12 in the seed coat is directly regulated by the KNOX4 transcription factor. These findings define a molecular mechanism by which KNOX4 and KCS12 control formation of the seed coat and seed physical dormancy.
Collapse
Affiliation(s)
- Maofeng Chai
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
- Noble Research Institute, Ardmore, OK 73401, USA
| | | | - Annika Sonntag
- Department of Biology, Algoma University, Sault Ste. Marie, ON, Canada, P6A 2G4
| | - Shixing Wang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhili Zhao
- Noble Research Institute, Ardmore, OK 73401, USA
| | - Wei Liu
- Noble Research Institute, Ardmore, OK 73401, USA
| | - Juan Du
- Noble Research Institute, Ardmore, OK 73401, USA
| | - Hongli Xie
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Fuqi Liao
- Noble Research Institute, Ardmore, OK 73401, USA
| | - Jianfei Yun
- Noble Research Institute, Ardmore, OK 73401, USA
| | | | - Juan Sun
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Isabel Molina
- Department of Biology, Algoma University, Sault Ste. Marie, ON, Canada, P6A 2G4
| | - Zeng-Yu Wang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
- Noble Research Institute, Ardmore, OK 73401, USA
| |
Collapse
|
28
|
Arya GC, Sarkar S, Manasherova E, Aharoni A, Cohen H. The Plant Cuticle: An Ancient Guardian Barrier Set Against Long-Standing Rivals. FRONTIERS IN PLANT SCIENCE 2021; 12:663165. [PMID: 34249035 PMCID: PMC8267416 DOI: 10.3389/fpls.2021.663165] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/31/2021] [Indexed: 05/18/2023]
Abstract
The aerial surfaces of plants are covered by a protective barrier formed by the cutin polyester and waxes, collectively referred to as the cuticle. Plant cuticles prevent the loss of water, regulate transpiration, and facilitate the transport of gases and solutes. As the cuticle covers the outermost epidermal cell layer, it also acts as the first line of defense against environmental cues and biotic stresses triggered by a large array of pathogens and pests, such as fungi, bacteria, and insects. Numerous studies highlight the cuticle interface as the site of complex molecular interactions between plants and pathogens. Here, we outline the multidimensional roles of cuticle-derived components, namely, epicuticular waxes and cutin monomers, during plant interactions with pathogenic fungi. We describe how certain wax components affect various pre-penetration and infection processes of fungi with different lifestyles, and then shift our focus to the roles played by the cutin monomers that are released from the cuticle owing to the activity of fungal cutinases during the early stages of infection. We discuss how cutin monomers can activate fungal cutinases and initiate the formation of infection organs, the significant impacts of cuticle defects on the nature of plant-fungal interactions, along with the possible mechanisms raised thus far in the debate on how host plants perceive cutin monomers and/or cuticle defects to elicit defense responses.
Collapse
Affiliation(s)
- Gulab Chand Arya
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion, Israel
| | - Sutanni Sarkar
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion, Israel
- Plant Pathology and Microbiology Department, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ekaterina Manasherova
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Hagai Cohen
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
29
|
Zhang X, Ni Y, Xu D, Busta L, Xiao Y, Jetter R, Guo Y. Integrative analysis of the cuticular lipidome and transcriptome of Sorghum bicolor reveals cultivar differences in drought tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:285-295. [PMID: 33887646 DOI: 10.1016/j.plaphy.2021.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Cuticular wax and cutin are directly involved in the mechanisms by which plants acclimate to water-limited environments. However, how the two lipid forms balance their contributions to plant drought-tolerance is still not clear. The present study examined the responses of cutin monomers and cuticular waxes to drought stress in two sorghum (Sorghum bicolor (L.) Moench) cultivars, drought-tolerant cv. Kangsi and drought-sensitive cv. Hongyingzi, by combining lipidomic and transcriptomic analysis. Drought increased total cutin contents by 41.3%, the contents of alkanoic acids by 72.6% and 2-hydroxyacids by 117.8% in Kangsi but unchanged those in Hongyingzi. The abundance of cutin monomers were relatively stable for cv Hongyingzi, excepting for a decrease of ω-hydroxyacids from 35.0% to 27.4% in drought-stressed plants. However, for cv Kangsi, the abundance of ω-hydroxyacids decreased from 36.8% to 21.0% and that of alkanoic acids increased from 30.5% to 37.1% in drought-stressed plants. Drought increased total wax coverage in Hongyingzi but reduced it in Kangsi. However, the abundance of aldehydes decreased from 51.2% to 39.3% in drought-stressed cv Kangsi, but increased from 25.2% to 36.1% in drought-stressed cv Hongyingzi. A decrease of sterols (by 76%) and an increase of primary alcohol (by 443%) was also observed in drought-stressed cv Hongyingzi. Transcriptome analysis also revealed that many genes implicated by homology in cutin monomer and cuticular wax biosynthesis also differed in their responses to drought stress between the two sorghum cultivars. Therefore, sorghum cultivars differed in their mechanisms in adjusting chemical profiles of both cutin and cuticular wax under water deficit condition.
Collapse
Affiliation(s)
- Xuefeng Zhang
- College of Animal Science and Technology, Southwest University, Chongqing, 400716, China; College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Yu Ni
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Daixiang Xu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Luke Busta
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska Lincoln, Lincoln, NE, 68588, USA
| | - Yu Xiao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Reinhard Jetter
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada; Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Yanjun Guo
- College of Animal Science and Technology, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
30
|
Wang X, Miao Y, Cai Y, Sun G, Jia Y, Song S, Pan Z, Zhang Y, Wang L, Fu G, Gao Q, Ji G, Wang P, Chen B, Peng Z, Zhang X, Wang X, Ding Y, Hu D, Geng X, Wang L, Pang B, Gong W, He S, Du X. Large-fragment insertion activates gene GaFZ (Ga08G0121) and is associated with the fuzz and trichome reduction in cotton (Gossypium arboreum). PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1110-1124. [PMID: 33369825 PMCID: PMC8196653 DOI: 10.1111/pbi.13532] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 05/04/2023]
Abstract
Cotton seeds are typically covered by lint and fuzz fibres. Natural 'fuzzless' mutants are an ideal model system for identifying genes that regulate cell initiation and elongation. Here, using a genome-wide association study (GWAS), we identified a ~ 6.2 kb insertion, larINDELFZ , located at the end of chromosome 8, composed of a ~ 5.0 kb repetitive sequence and a ~ 1.2 kb fragment translocated from chromosome 12 in fuzzless Gossypium arboreum. The presence of larINDELFZ was associated with a fuzzless seed and reduced trichome phenotypes in G. arboreum. This distant insertion was predicted to be an enhancer, located ~ 18 kb upstream of the dominant-repressor GaFZ (Ga08G0121). Ectopic overexpression of GaFZ in Arabidopsis thaliana and G. hirsutum suggested that GaFZ negatively modulates fuzz and trichome development. Co-expression and interaction analyses demonstrated that GaFZ might impact fuzz fibre/trichome development by repressing the expression of genes in the very-long-chain fatty acid elongation pathway. Thus, we identified a novel regulator of fibre/trichome development while providing insights into the importance of noncoding sequences in cotton.
Collapse
Affiliation(s)
- Xiaoyang Wang
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
- Crop Information CenterCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yuchen Miao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesHenan UniversityKaifengChina
| | - Yingfan Cai
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesHenan UniversityKaifengChina
| | - Gaofei Sun
- College of Computer Science and Information EngineeringAnyang Institute of TechnologyAnyangChina
| | - Yinhua Jia
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Song Song
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Zhaoe Pan
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Yuanming Zhang
- Crop Information CenterCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Liyuan Wang
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Guoyong Fu
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Qiong Gao
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Gaoxiang Ji
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Pengpeng Wang
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Baojun Chen
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Zhen Peng
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Xiaomeng Zhang
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Xiao Wang
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Yi Ding
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Daowu Hu
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Xiaoli Geng
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Liru Wang
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Baoyin Pang
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Wenfang Gong
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
- Key Laboratory of Cultivation and Protection for Non‐Wood Forest TreesMinistry of EducationCentral South University of Forestry and Technology, Ministry of EducationChangshaChina
| | - Shoupu He
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Xiongming Du
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| |
Collapse
|
31
|
Tian H, Li Y, Wang C, Xu X, Zhang Y, Zeb Q, Zicola J, Fu Y, Turck F, Li L, Lu Z, Liu L. Photoperiod-responsive changes in chromatin accessibility in phloem companion and epidermis cells of Arabidopsis leaves. THE PLANT CELL 2021; 33:475-491. [PMID: 33955490 PMCID: PMC8136901 DOI: 10.1093/plcell/koaa043] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/29/2020] [Indexed: 05/04/2023]
Abstract
Photoperiod plays a key role in controlling the phase transition from vegetative to reproductive growth in flowering plants. Leaves are the major organs perceiving day-length signals, but how specific leaf cell types respond to photoperiod remains unknown. We integrated photoperiod-responsive chromatin accessibility and transcriptome data in leaf epidermis and vascular companion cells of Arabidopsis thaliana by combining isolation of nuclei tagged in specific cell/tissue types with assay for transposase-accessible chromatin using sequencing and RNA-sequencing. Despite a large overlap, vasculature and epidermis cells responded differently. Long-day predominantly induced accessible chromatin regions (ACRs); in the vasculature, more ACRs were induced and these were located at more distal gene regions, compared with the epidermis. Vascular ACRs induced by long days were highly enriched in binding sites for flowering-related transcription factors. Among the highly ranked genes (based on chromatin and expression signatures in the vasculature), we identified TREHALOSE-PHOSPHATASE/SYNTHASE 9 (TPS9) as a flowering activator, as shown by the late flowering phenotypes of T-DNA insertion mutants and transgenic lines with phloem-specific knockdown of TPS9. Our cell-type-specific analysis sheds light on how the long-day photoperiod stimulus impacts chromatin accessibility in a tissue-specific manner to regulate plant development.
Collapse
Affiliation(s)
| | | | | | | | - Yajie Zhang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Qudsia Zeb
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Johan Zicola
- Max Planck Institute for Plant Breeding Research, Cologne, D-50829, Germany
| | - Yongfu Fu
- National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Franziska Turck
- Max Planck Institute for Plant Breeding Research, Cologne, D-50829, Germany
| | - Legong Li
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zefu Lu
- Author for correspondence: (L.L) and (Z.L.)
| | | |
Collapse
|
32
|
Shi D, Jouannet V, Agustí J, Kaul V, Levitsky V, Sanchez P, Mironova VV, Greb T. Tissue-specific transcriptome profiling of the Arabidopsis inflorescence stem reveals local cellular signatures. THE PLANT CELL 2021; 33:200-223. [PMID: 33582756 PMCID: PMC8136906 DOI: 10.1093/plcell/koaa019] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/02/2020] [Indexed: 05/06/2023]
Abstract
Genome-wide gene expression maps with a high spatial resolution have substantially accelerated plant molecular science. However, the number of characterized tissues and growth stages is still small due to the limited accessibility of most tissues for protoplast isolation. Here, we provide gene expression profiles of the mature inflorescence stem of Arabidopsis thaliana covering a comprehensive set of distinct tissues. By combining fluorescence-activated nucleus sorting and laser-capture microdissection with next-generation RNA sequencing, we characterized the transcriptomes of xylem vessels, fibers, the proximal and distal cambium, phloem, phloem cap, pith, starch sheath, and epidermis cells. Our analyses classified more than 15,000 genes as being differentially expressed among different stem tissues and revealed known and novel tissue-specific cellular signatures. By determining overrepresented transcription factor binding regions in the promoters of differentially expressed genes, we identified candidate tissue-specific transcriptional regulators. Our datasets predict the expression profiles of an exceptional number of genes and allow hypotheses to be generated about the spatial organization of physiological processes. Moreover, we demonstrate that information about gene expression in a broad range of mature plant tissues can be established at high spatial resolution by nuclear mRNA profiling. Tissue-specific gene expression values can be accessed online at https://arabidopsis-stem.cos.uni-heidelberg.de/.
Collapse
Affiliation(s)
- Dongbo Shi
- Department of Developmental Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
- Japan Science and Technology Agency (JST), Saitama, Kawaguchi, Japan
| | - Virginie Jouannet
- Department of Developmental Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Javier Agustí
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), C/Enginyer Fausto Elio S/N. 46011 Valencia, Spain
| | - Verena Kaul
- Department of Developmental Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Victor Levitsky
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
- Department of Systems Biology, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Pablo Sanchez
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Victoria V Mironova
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
- Department of Systems Biology, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Department of Plant Systems Physiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Thomas Greb
- Department of Developmental Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
- Author for correspondence:
| |
Collapse
|
33
|
Lopez-Anido CB, Vatén A, Smoot NK, Sharma N, Guo V, Gong Y, Anleu Gil MX, Weimer AK, Bergmann DC. Single-cell resolution of lineage trajectories in the Arabidopsis stomatal lineage and developing leaf. Dev Cell 2021; 56:1043-1055.e4. [PMID: 33823130 DOI: 10.1101/2020.09.08.288498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/19/2021] [Accepted: 03/09/2021] [Indexed: 05/22/2023]
Abstract
Dynamic cell identities underlie flexible developmental programs. The stomatal lineage in the Arabidopsis leaf epidermis features asynchronous and indeterminate divisions that can be modulated by environmental cues. The products of the lineage, stomatal guard cells and pavement cells, regulate plant-atmosphere exchanges, and the epidermis as a whole influences overall leaf growth. How flexibility is encoded in development of the stomatal lineage and how cell fates are coordinated in the leaf are open questions. Here, by leveraging single-cell transcriptomics and molecular genetics, we uncovered models of cell differentiation within Arabidopsis leaf tissue. Profiles across leaf tissues identified points of regulatory congruence. In the stomatal lineage, single-cell resolution resolved underlying cell heterogeneity within early stages and provided a fine-grained profile of guard cell differentiation. Through integration of genome-scale datasets and spatiotemporally precise functional manipulations, we also identified an extended role for the transcriptional regulator SPEECHLESS in reinforcing cell fate commitment.
Collapse
Affiliation(s)
- Camila B Lopez-Anido
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305-5020, USA
| | - Anne Vatén
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA
| | - Nicole K Smoot
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305-5020, USA
| | - Nidhi Sharma
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305-5020, USA
| | - Victoria Guo
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305-5020, USA
| | - Yan Gong
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA
| | - M Ximena Anleu Gil
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305-5020, USA
| | - Annika K Weimer
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA
| | - Dominique C Bergmann
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305-5020, USA.
| |
Collapse
|
34
|
A single-cell analysis of the Arabidopsis vegetative shoot apex. Dev Cell 2021; 56:1056-1074.e8. [PMID: 33725481 DOI: 10.1016/j.devcel.2021.02.021] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/06/2020] [Accepted: 02/19/2021] [Indexed: 01/13/2023]
Abstract
The shoot apical meristem allows for reiterative formation of new aerial structures throughout the life cycle of a plant. We use single-cell RNA sequencing to define the cellular taxonomy of the Arabidopsis vegetative shoot apex at the transcriptome level. We find that the shoot apex is composed of highly heterogeneous cells, which can be partitioned into 7 broad populations with 23 transcriptionally distinct cell clusters. We delineate cell-cycle continuums and developmental trajectories of epidermal cells, vascular tissue, and leaf mesophyll cells and infer transcription factors and gene expression signatures associated with cell fate decisions. Integrative analysis of shoot and root apical cell populations further reveals common and distinct features of epidermal and vascular tissues. Our results, thus, offer a valuable resource for investigating the basic principles underlying cell division and differentiation in plants at single-cell resolution.
Collapse
|
35
|
Yang T, Li Y, Liu Y, He L, Liu A, Wen J, Mysore KS, Tadege M, Chen J. The 3-ketoacyl-CoA synthase WFL is involved in lateral organ development and cuticular wax synthesis in Medicago truncatula. PLANT MOLECULAR BIOLOGY 2021; 105:193-204. [PMID: 33037987 DOI: 10.1007/s11103-020-01080-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/02/2020] [Indexed: 05/05/2023]
Abstract
A 3-ketoacyl-CoA synthase involved in biosynthesis of very long chain fatty acids and cuticular wax plays a vital role in aerial organ development in M. truncatula. Cuticular wax is composed of very long chain fatty acids and their derivatives. Defects in cuticular wax often result in organ fusion, but little is known about the role of cuticular wax in compound leaf and flower development in Medicago truncatula. In this study, through an extensive screen of a Tnt1 retrotransposon insertion population in M. truncatula, we identified four mutant lines, named wrinkled flower and leaf (wfl) for their phenotype. The phenotype of the wfl mutants is caused by a Tnt1 insertion in Medtr3g105550, encoding 3-ketoacyl-CoA synthase (KCS), which functions as a rate-limiting enzyme in very long chain fatty acid elongation. Reverse transcription-quantitative PCR showed that WFL was broadly expressed in aerial organs of the wild type, such as leaves, floral organs, and the shoot apical meristem, but was expressed at lower levels in roots. In situ hybridization showed a similar expression pattern, mainly detecting the WFL transcript in epidermal cells of the shoot apical meristem, leaf primordia, and floral organs. The wfl mutant leaves showed sparser epicuticular wax crystals on the surface and increased water permeability compared with wild type. Further analysis showed that in wfl leaves, the percentage of C20:0, C22:0, and C24:0 fatty acids was significantly increased, the amount of cuticular wax was markedly reduced, and wax constituents were altered compared to the wild type. The reduced formation of cuticular wax and wax composition changes on the leaf surface might lead to the developmental defects observed in the wfl mutants. These findings suggest that WFL plays a key role in cuticular wax formation and in the late stage of leaf and flower development in M. truncatula.
Collapse
Affiliation(s)
- Tianquan Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
| | - Youhan Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yu Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
| | - Liangliang He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
| | - Aizhong Liu
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Jiangqi Wen
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Kirankumar S Mysore
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Jianghua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
36
|
Liu X, Bourgault R, Galli M, Strable J, Chen Z, Feng F, Dong J, Molina I, Gallavotti A. The FUSED LEAVES1-ADHERENT1 regulatory module is required for maize cuticle development and organ separation. THE NEW PHYTOLOGIST 2021; 229:388-402. [PMID: 32738820 PMCID: PMC7754373 DOI: 10.1111/nph.16837] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/22/2020] [Indexed: 05/03/2023]
Abstract
All aerial epidermal cells in land plants are covered by the cuticle, an extracellular hydrophobic layer that provides protection against abiotic and biotic stresses and prevents organ fusion during development. Genetic and morphological analysis of the classic maize adherent1 (ad1) mutant was combined with genome-wide binding analysis of the maize MYB transcription factor FUSED LEAVES1 (FDL1), coupled with transcriptional profiling of fdl1 mutants. We show that AD1 encodes an epidermally-expressed 3-KETOACYL-CoA SYNTHASE (KCS) belonging to a functionally uncharacterized clade of KCS enzymes involved in cuticular wax biosynthesis. Wax analysis in ad1 mutants indicates that AD1 functions in the formation of very-long-chain wax components. We demonstrate that FDL1 directly binds to CCAACC core motifs present in AD1 regulatory regions to activate its expression. Over 2000 additional target genes of FDL1, including many involved in cuticle formation, drought response and cell wall organization, were also identified. Our results identify a regulatory module of cuticle biosynthesis in maize that is conserved across monocots and eudicots, and highlight previously undescribed factors in lipid metabolism, transport and signaling that coordinate organ development and cuticle formation.
Collapse
Affiliation(s)
- Xue Liu
- Waksman Institute of MicrobiologyRutgers UniversityPiscatawayNJ08854‐8020USA
| | - Richard Bourgault
- Department of BiologyAlgoma UniversitySault Ste. MarieONP6A 2G4Canada
| | - Mary Galli
- Waksman Institute of MicrobiologyRutgers UniversityPiscatawayNJ08854‐8020USA
| | - Josh Strable
- School of Integrative Plant SciencePlant Biology SectionCornell UniversityIthacaNY14853USA
| | - Zongliang Chen
- Waksman Institute of MicrobiologyRutgers UniversityPiscatawayNJ08854‐8020USA
| | - Fan Feng
- Waksman Institute of MicrobiologyRutgers UniversityPiscatawayNJ08854‐8020USA
| | - Jiaqiang Dong
- Waksman Institute of MicrobiologyRutgers UniversityPiscatawayNJ08854‐8020USA
| | - Isabel Molina
- Department of BiologyAlgoma UniversitySault Ste. MarieONP6A 2G4Canada
| | - Andrea Gallavotti
- Waksman Institute of MicrobiologyRutgers UniversityPiscatawayNJ08854‐8020USA
- Department of Plant BiologyRutgers UniversityNew BrunswickNJ08901USA
| |
Collapse
|
37
|
Liu X, Bourgault R, Galli M, Strable J, Chen Z, Feng F, Dong J, Molina I, Gallavotti A. The FUSED LEAVES1-ADHERENT1 regulatory module is required for maize cuticle development and organ separation. THE NEW PHYTOLOGIST 2021; 229:388-402. [PMID: 32738820 DOI: 10.1101/2020.02.11.943787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/22/2020] [Indexed: 05/27/2023]
Abstract
All aerial epidermal cells in land plants are covered by the cuticle, an extracellular hydrophobic layer that provides protection against abiotic and biotic stresses and prevents organ fusion during development. Genetic and morphological analysis of the classic maize adherent1 (ad1) mutant was combined with genome-wide binding analysis of the maize MYB transcription factor FUSED LEAVES1 (FDL1), coupled with transcriptional profiling of fdl1 mutants. We show that AD1 encodes an epidermally-expressed 3-KETOACYL-CoA SYNTHASE (KCS) belonging to a functionally uncharacterized clade of KCS enzymes involved in cuticular wax biosynthesis. Wax analysis in ad1 mutants indicates that AD1 functions in the formation of very-long-chain wax components. We demonstrate that FDL1 directly binds to CCAACC core motifs present in AD1 regulatory regions to activate its expression. Over 2000 additional target genes of FDL1, including many involved in cuticle formation, drought response and cell wall organization, were also identified. Our results identify a regulatory module of cuticle biosynthesis in maize that is conserved across monocots and eudicots, and highlight previously undescribed factors in lipid metabolism, transport and signaling that coordinate organ development and cuticle formation.
Collapse
Affiliation(s)
- Xue Liu
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Richard Bourgault
- Department of Biology, Algoma University, Sault Ste. Marie, ON, P6A 2G4, Canada
| | - Mary Galli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Josh Strable
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
| | - Zongliang Chen
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Fan Feng
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Jiaqiang Dong
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Isabel Molina
- Department of Biology, Algoma University, Sault Ste. Marie, ON, P6A 2G4, Canada
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| |
Collapse
|
38
|
Straube J, Chen YH, Khanal BP, Shumbusho A, Zeisler-Diehl V, Suresh K, Schreiber L, Knoche M, Debener T. Russeting in Apple is Initiated after Exposure to Moisture Ends: Molecular and Biochemical Evidence. PLANTS (BASEL, SWITZERLAND) 2020; 10:plants10010065. [PMID: 33396789 PMCID: PMC7824318 DOI: 10.3390/plants10010065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 06/01/2023]
Abstract
Exposure of the fruit surface to moisture during early development is causal in russeting of apple (Malus × domestica Borkh.). Moisture exposure results in formation of microcracks and decreased cuticle thickness. Periderm differentiation begins in the hypodermis, but only after discontinuation of moisture exposure. Expressions of selected genes involved in cutin, wax and suberin synthesis were quantified, as were the wax, cutin and suberin compositions. Experiments were conducted in two phases. In Phase I (31 days after full bloom) the fruit surface was exposed to moisture for 6 or 12 d. Phase II was after moisture exposure had been discontinued. Unexposed areas on the same fruit served as unexposed controls. During Phase I, cutin and wax synthesis genes were down-regulated only in the moisture-exposed patches. During Phase II, suberin synthesis genes were up-regulated only in the moisture-exposed patches. The expressions of cutin and wax genes in the moisture-exposed patches increased slightly during Phase II, but the levels of expression were much lower than in the control patches. Amounts and compositions of cutin, wax and suberin were consistent with the gene expressions. Thus, moisture-induced russet is a two-step process: moisture exposure reduces cutin and wax synthesis, moisture removal triggers suberin synthesis.
Collapse
Affiliation(s)
- Jannis Straube
- Institute of Plant Genetics, Molecular Plant Breeding Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany;
| | - Yun-Hao Chen
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany; (Y.-H.C.); (B.P.K.); (A.S.); (M.K.)
| | - Bishnu P. Khanal
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany; (Y.-H.C.); (B.P.K.); (A.S.); (M.K.)
| | - Alain Shumbusho
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany; (Y.-H.C.); (B.P.K.); (A.S.); (M.K.)
| | - Viktoria Zeisler-Diehl
- Institute of Cellular and Molecular Botany (IZMB), Department of Ecophysiology, University of Bonn, Kirschallee 1, 53115 Bonn, Germany; (V.Z.-D.); (K.S.); (L.S.)
| | - Kiran Suresh
- Institute of Cellular and Molecular Botany (IZMB), Department of Ecophysiology, University of Bonn, Kirschallee 1, 53115 Bonn, Germany; (V.Z.-D.); (K.S.); (L.S.)
| | - Lukas Schreiber
- Institute of Cellular and Molecular Botany (IZMB), Department of Ecophysiology, University of Bonn, Kirschallee 1, 53115 Bonn, Germany; (V.Z.-D.); (K.S.); (L.S.)
| | - Moritz Knoche
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany; (Y.-H.C.); (B.P.K.); (A.S.); (M.K.)
| | - Thomas Debener
- Institute of Plant Genetics, Molecular Plant Breeding Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany;
| |
Collapse
|
39
|
Wan X, Wu S, Li Z, An X, Tian Y. Lipid Metabolism: Critical Roles in Male Fertility and Other Aspects of Reproductive Development in Plants. MOLECULAR PLANT 2020; 13:955-983. [PMID: 32434071 DOI: 10.1016/j.molp.2020.05.009] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/20/2020] [Accepted: 05/14/2020] [Indexed: 05/18/2023]
Abstract
Fatty acids and their derivatives are essential building blocks for anther cuticle and pollen wall formation. Disruption of lipid metabolism during anther and pollen development often leads to genic male sterility (GMS). To date, many lipid metabolism-related GMS genes that are involved in the formation of anther cuticle, pollen wall, and subcellular organelle membranes in anther wall layers have been identified and characterized. In this review, we summarize recent progress on characterizing lipid metabolism-related genes and their roles in male fertility and other aspects of reproductive development in plants. On the basis of cloned GMS genes controlling biosynthesis and transport of anther cutin, wax, sporopollenin, and tryphine in Arabidopsis, rice, and maize as well as other plant species, updated lipid metabolic networks underlying anther cuticle development and pollen wall formation were proposed. Through bioinformatics analysis of anther RNA-sequencing datasets from three maize inbred lines (Oh43, W23, and B73), a total of 125 novel lipid metabolism-related genes putatively involved in male fertility in maize were deduced. More, we discuss the pathways regulating lipid metabolism-related GMS genes at the transcriptional and post-transcriptional levels. Finally, we highlight recent findings on lipid metabolism-related genes and their roles in other aspects of plant reproductive development. A comprehensive understanding of lipid metabolism, genes involved, and their roles in plant reproductive development will facilitate the application of lipid metabolism-related genes in gene editing, haploid and callus induction, molecular breeding and hybrid seed production in crops.
Collapse
Affiliation(s)
- Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China.
| | - Suowei Wu
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Ziwen Li
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Xueli An
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Youhui Tian
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| |
Collapse
|
40
|
Xiong C, Xie Q, Yang Q, Sun P, Gao S, Li H, Zhang J, Wang T, Ye Z, Yang C. WOOLLY, interacting with MYB transcription factor MYB31, regulates cuticular wax biosynthesis by modulating CER6 expression in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:323-337. [PMID: 32129912 DOI: 10.1111/tpj.14733] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 02/07/2020] [Accepted: 02/24/2020] [Indexed: 05/24/2023]
Abstract
Cuticular waxes play a crucial role not only in plant defense against biotic and abiotic stresses, but also in the quality and storability of fruits, such as the tomato (Solanum lycopersicum). Although the biosynthetic pathways of waxes have been extensively characterized, the regulatory mechanisms underlying wax biosynthesis in tomato remain largely unclear. Here, we show that Woolly (Wo), a multicellular trichome regulator, is involved in modulating wax biosynthesis in tomato. Wo enhances the expression of the wax biosynthetic genes SlCER6, SlKCR1, and SlPAS2, and the wax transporter gene SlLTP, and thereby promotes wax accumulation. Furthermore, Wo directly binds to the L1-box in the promoter of SlCER6, an essential element of the very-long-chain fatty acid elongase complex. Intriguingly, overexpression (OE) or knock-down of SlMYB31, an MYB transcription factor that physically interacts with Wo in vivo and in vitro, produces marked changes in wax composition, and whereas Wo knock-down inhibits wax accumulation in SlMYB31-OE lines, SlMYB31 knock-down inhibits wax accumulation in Wo-OE lines, implying that these two genes function in the same pathway. Lastly, SlCER6 expression is induced by abscisic acid in a manner that is partially dependent on Wo. These results demonstrate that Wo and SlMYB31 cooperatively control tomato cuticular wax biosynthesis by regulating the expression of SlCER6.
Collapse
Affiliation(s)
- Cheng Xiong
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingmin Xie
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qihong Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pengya Sun
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shenghua Gao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Taotao Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changxian Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
41
|
Lian XY, Wang X, Gao HN, Jiang H, Mao K, You CX, Li YY, Hao YJ. Genome wide analysis and functional identification of MdKCS genes in apple. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:299-312. [PMID: 32251955 DOI: 10.1016/j.plaphy.2020.03.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 05/05/2023]
Abstract
Apple fruit is covered by cuticle wax, which plays important roles protecting fruits from adverse environmental conditions. β-Ketoacyl-CoA synthase (KCS) is the key rate-limiting enzyme in plant wax synthesis. In this study, we identified 28 KCS gene family members from apple (Malus × domestica Borkh.) by homology analysis. Multi-sequence alignment and phylogenetic analyses revealed that the 28 MdKCS genes were divided into four subgroups, including KCS1-like, FAE1-like, FDH-like, and CER6. A chromosomal localization analysis revealed that 27 apple KCS genes were located on 11 chromosomes, while MdKCS28 was localized to the unassembled genomic scaffold. Most of the MdKCS proteins were hydrophilic proteins and they had similar secondary and tertiary structures. The prediction of cis-acting elements of the MdKCS gene promoters suggested that the MdKCS genes may be widely involved in hormone signaling and the stress response. Furthermore, the quantitative real-time polymerase chain reaction results showed that eight MdKCS genes were highly expressed in the apple pericarp, and were significantly induced by drought, abscisic acid (ABA), and NaCl treatments. We transformed the MdKCS21 gene into apple calli, and found the MdKCS21 overexpressing transgenic apple calli exhibited higher tolerance to ABA treatment. Finally, the MdKCS proteins were localized to the endoplasmic reticulum and vacuolar membrane by confocal laser microscopy. This study established a foundation to further analyze the function of KCS genes and provided candidate genes for molecular improvement of wax content in apple.
Collapse
Affiliation(s)
- Xin-Yu Lian
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xun Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Huai-Na Gao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Han Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yuan-Yuan Li
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China.
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
42
|
Guo W, Wu Q, Yang L, Hu W, Liu D, Liu Y. Ectopic Expression of CsKCS6 From Navel Orange Promotes the Production of Very-Long-Chain Fatty Acids (VLCFAs) and Increases the Abiotic Stress Tolerance of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:564656. [PMID: 33123179 PMCID: PMC7573159 DOI: 10.3389/fpls.2020.564656] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/14/2020] [Indexed: 05/04/2023]
Abstract
Cuticular wax is closely related to plant resistance to abiotic stress. 3-Ketoacyl-CoA synthase (KCS) catalyzes the biosynthesis of very-long-chain fatty acid (VLCFA) wax precursors. In this study, a novel KCS family gene was isolated from Newhall navel orange and subsequently named CsKCS6. The CsKCS6 protein has two main domains that belong to the thiolase-like superfamily, the FAE1-CUT1-RppA and ACP_syn_III_C domains, which exist at amino acid positions 80-368 and 384-466, respectively. CsKCS6 was expressed in all tissues, with the highest expression detected in the stigma; in addition, the transcription of CsKCS6 was changed in response to drought stress, salt stress and abscisic acid (ABA) treatment. Heterologous expression of CsKCS6 in Arabidopsis significantly increased the amount of VLCFAs in the cuticular wax on the stems and leaves, but there were no significant changes in total wax content. Compared with that of the wild-type (WT) plants, the leaf permeability of the transgenic plants was lower. Further research showed that, compared with the WT plants, the transgenic lines experienced less water loss and ion leakage after dehydration stress, displayed increased survival under drought stress treatment and presented significantly longer root lengths and survival under salt stress treatment. Our results indicate that CsKCS6 not only plays an important role in the synthesis of fatty acid precursors involved in wax synthesis but also enhances the tolerance of transgenic Arabidopsis plants to abiotic stress. Thus, the identification of CsKSC6 could help to increase the abiotic stress tolerance of Citrus in future breeding programs.
Collapse
|
43
|
Huai D, Xue X, Li Y, Wang P, Li J, Yan L, Chen Y, Wang X, Liu N, Kang Y, Wang Z, Huang Y, Jiang H, Lei Y, Liao B. Genome-Wide Identification of Peanut KCS Genes Reveals That AhKCS1 and AhKCS28 Are Involved in Regulating VLCFA Contents in Seeds. FRONTIERS IN PLANT SCIENCE 2020; 11:406. [PMID: 32457765 PMCID: PMC7221192 DOI: 10.3389/fpls.2020.00406] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/20/2020] [Indexed: 05/05/2023]
Abstract
The peanut (Arachis hypogaea L.) is an important oilseed crop worldwide. Compared to other common edible vegetable oils, peanut oil contains a higher content of saturated fatty acids (SFAs), approximately 20-40% of which are very long chain fatty acids (VLCFAs). To understand the basis for this oil profile, we interrogated genes for peanut β-ketoacyl-CoA synthase (KCS), which is known to be a key enzyme in VLCFA biosynthesis. A total of 30 AhKCS genes were identified in the assembled genome of the peanut. Based on transcriptome data, nine AhKCS genes with high expression levels in developing seeds were cloned and expressed in yeast. All these AhKCSs could produce VLCFAs but result in different profiles, indicating that the AhKCSs catalyzed fatty acid elongation with different substrate specificities. Expression level analysis of these nine AhKCS genes was performed in developing seeds from six peanut germplasm lines with different VLCFA contents. Among these genes, the expression levels of AhKCS1 or AhKCS28 were, 4-10-fold higher than that of any other AhKCS. However, only the expression levels of AhKCS1 and AhKCS28 were significantly and positively correlated with the VLCFA content, suggesting that AhKCS1 and AhKCS28 were involved in the regulation of VLCFA content in the peanut seed. Further subcellular localization analysis indicated that AhKCS1 and AhKCS28 were located at the endoplasmic reticulum (ER). Overexpression of AhKCS1 or AhKCS28 in Arabidopsis increased the contents of VLCFAs in the seed, especially for very long chain saturated fatty acids (VLCSFAs). Taken together, this study suggests that AhKCS1 and AhKCS28 could be key genes in regulating VLCFA biosynthesis in the seed, which could be applied to improve the health-promoting and nutritional qualities of the peanut.
Collapse
Affiliation(s)
- Dongxin Huai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaomeng Xue
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yang Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Peng Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Danzhou, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Jianguo Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Liying Yan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yuning Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xin Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Nian Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yanping Kang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Zhihui Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yi Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Huifang Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yong Lei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
- *Correspondence: Yong Lei,
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
- Boshou Liao,
| |
Collapse
|
44
|
Guo J, Hu Y, Zhou Y, Zhu Z, Sun Y, Li J, Wu R, Miao Y, Sun X. Profiling of the Receptor for Activated C Kinase 1a (RACK1a) interaction network in Arabidopsis thaliana. Biochem Biophys Res Commun 2019; 520:366-372. [PMID: 31606202 DOI: 10.1016/j.bbrc.2019.09.142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 12/27/2022]
Abstract
As a scaffold protein, Receptor for Activated C Kinase 1a (RACK1) interacts with many proteins and is involved in multiple biological processes in Arabidopsis. However, the global RACK1 protein interaction network in higher plants remains poorly understood. Here, we generated a yeast two-hybrid library using mixed samples from different developmental stages of Arabidopsis thaliana. Using RACK1a as bait, we performed a comprehensive screening of the resulting library to identify RACK1a interactors at the whole-transcriptome level. We selected 1065 independent positive clones that led to the identification of 215 RACK1a interactors. We classified these interactors into six groups according to their potential functions. Several interactors were selected for bimolecular fluorescence complementation (BiFC) analysis and their interaction with RACK1a was confirmed in vivo. Our results provide further insight into the molecular mechanisms through which RACK1a regulates various growth and development processes in higher plants.
Collapse
Affiliation(s)
- Jinggong Guo
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Yunhe Hu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China; College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Yaping Zhou
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Zhinan Zhu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Yijing Sun
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China; College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Jiaoai Li
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China; College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Rui Wu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Yuchen Miao
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China; College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China.
| |
Collapse
|
45
|
Brennan M, Hedley PE, Topp CFE, Morris J, Ramsay L, Mitchell S, Shepherd T, Thomas WTB, Hoad SP. Development and Quality of Barley Husk Adhesion Correlates With Changes in Caryopsis Cuticle Biosynthesis and Composition. FRONTIERS IN PLANT SCIENCE 2019; 10:672. [PMID: 31178883 PMCID: PMC6543523 DOI: 10.3389/fpls.2019.00672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
The caryopses of barley become firmly adhered to the husk during grain development through a cuticular cementing layer on the caryopsis surface. The degree of this attachment varies among cultivars, with poor quality adhesion causing "skinning", an economically significant grain quality defect for the malting industry. Malting cultivars encompassing a range of husk adhesion qualities were grown under a misting treatment known to induce skinning. Development of the cementing layer was examined by electron microscopy and compositional changes of the cementing layer were investigated with gas-chromatography followed by mass spectroscopy. Changes in gene expression during adhesion development were examined with a custom barley microarray. The abundance of transcripts involved early in cuticular lipid biosynthesis, including those encoding acetyl-CoA carboxylase, and all four members of the fatty acid elongase complex of enzymes, was significantly higher earlier in caryopsis development than later. Genes associated with subsequent cuticular lipid biosynthetic pathways were also expressed higher early in development, including the decarbonylation and reductive pathways, and sterol biosynthesis. Changes in cuticular composition indicate that lowered proportions of alkanes and higher proportions of fatty acids are associated with development of good quality husk adhesion, in addition to higher proportions of sterols.
Collapse
Affiliation(s)
| | | | | | | | - Luke Ramsay
- James Hutton Institute, Dundee, United Kingdom
| | - Steve Mitchell
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | |
Collapse
|
46
|
Creff A, Brocard L, Joubès J, Taconnat L, Doll NM, Marsollier AC, Pascal S, Galletti R, Boeuf S, Moussu S, Widiez T, Domergue F, Ingram G. A stress-response-related inter-compartmental signalling pathway regulates embryonic cuticle integrity in Arabidopsis. PLoS Genet 2019; 15:e1007847. [PMID: 30998684 PMCID: PMC6490923 DOI: 10.1371/journal.pgen.1007847] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/30/2019] [Accepted: 03/07/2019] [Indexed: 11/25/2022] Open
Abstract
The embryonic cuticle is necessary for normal seed development and seedling establishment in Arabidopsis. Although mutants with defective embryonic cuticles have been identified, neither the deposition of cuticle material, nor its regulation, has been described during embryogenesis. Here we use electron microscopy, cuticle staining and permeability assays to show that cuticle deposition initiates de novo in patches on globular embryos. By combining these techniques with genetics and gene expression analysis, we show that successful patch coalescence to form a continuous cuticle requires a signalling involving the endosperm-specific subtilisin protease ALE1 and the receptor kinases GSO1 and GSO2, which are expressed in the developing embryonic epidermis. Transcriptome analysis shows that this pathway regulates stress-related gene expression in seeds. Consistent with these findings we show genetically, and through activity analysis, that the stress-associated MPK6 protein acts downstream of GSO1 and GSO2 in the developing embryo. We propose that a stress-related signalling pathway has been hijacked in some angiosperm seeds through the recruitment of endosperm-specific components. Our work reveals the presence of an inter-compartmental dialogue between the endosperm and embryo that ensures the formation of an intact and functional cuticle around the developing embryo through an “auto-immune” type interaction. Plant embryogenesis occurs deep within the tissues of the developing seed, and leads to the production of the mature embryo. In Arabidopsis and many other plant species embryo-derive structure (such as the cotyledons) are suddenly exposed to environmental stresses such as low humidity. In these species the embryonic cuticle provides a primary defence against environmental stress, and particularly dehydration, at germination. The formation of an intact and functional cuticle during embryogenesis is thus of key importance for seedling survival. Our work shows that a signalling pathway involving receptor-kinases expressed in the embryo epidermis, and a protease expressed in the endosperm tissue surrounding the embryo, is critical for ensuring the production of an intact cuticle. Furthermore, we show that a component of stress-related MAP-Kinase signalling in plants acts downstream in this pathway, possibly to mediate transcriptional responses characteristic of responses to stress. We propose that plants have redeployed a signalling pathway associated with stress resistance to ensure the formation of an intact embryonic cuticle prior to germination, and thus ensure seedling survival at germination.
Collapse
Affiliation(s)
- Audrey Creff
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRA, Lyon, France
| | - Lysiane Brocard
- Pôle d'Imagerie du Végétal, UMS3420-Université de Bordeaux, CNRS, INSERM, Domaine de la Grande Ferrade, Villenave d'Ornon, France
| | - Jérôme Joubès
- Laboratoire de Biogenèse Membranaire, UMR 5200 Université de Bordeaux, Villenave d'Ornon, France
| | - Ludivine Taconnat
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 0rsay, France
| | - Nicolas M. Doll
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRA, Lyon, France
| | - Anne-Charlotte Marsollier
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRA, Lyon, France
| | - Stéphanie Pascal
- Laboratoire de Biogenèse Membranaire, UMR 5200 CNRS, Villenave d'Ornon, France
| | - Roberta Galletti
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRA, Lyon, France
| | - Sophy Boeuf
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRA, Lyon, France
| | - Steven Moussu
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRA, Lyon, France
| | - Thomas Widiez
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRA, Lyon, France
| | - Frédéric Domergue
- Laboratoire de Biogenèse Membranaire, UMR 5200 CNRS, Villenave d'Ornon, France
- * E-mail: (FD); (GI)
| | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRA, Lyon, France
- * E-mail: (FD); (GI)
| |
Collapse
|
47
|
Lokesh U, Venkatesh B, Kiranmai K, Nareshkumar A, Amarnathareddy V, Rao GL, Anthony Johnson AM, Pandurangaiah M, Sudhakar C. Overexpression of ß-Ketoacyl Co-A Synthase1 Gene Improves Tolerance of Drought Susceptible Groundnut ( Arachis hypogaea L.) Cultivar K-6 by Increased Leaf Epicuticular Wax Accumulation. FRONTIERS IN PLANT SCIENCE 2019; 9:1869. [PMID: 30687340 PMCID: PMC6336926 DOI: 10.3389/fpls.2018.01869] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 12/04/2018] [Indexed: 05/18/2023]
Abstract
Drought is one of the major environmental constraints affecting the crop productivity worldwide. One of the agricultural challenges today is to develop plants with minimized water utilization and reduced water loss in adverse environmental conditions. Epicuticular waxes play a major role in minimizing water loss. Epicuticular wax covers aerial plant parts and also prevents non-stomatal water loss by forming the outermost barrier from the surfaces. Epicuticular wax content (EWC) variation was found to be affiliated with drought tolerance of groundnut cultivars. In the current study, a fatty acid elongase gene, KCS1, which catalyzes a rate limiting step in the epicuticular wax biosynthesis was isolated from drought tolerant cultivar K-9 and overexpressed in drought sensitive groundnut cultivar (K-6) under the control of CaMV35S constitutive promoter. Transgenic groundnut plants overexpressing AhKCS1 exhibited normal growth and displaying greenish dark shiny appearance. Environmental scanning electron microscopy (ESEM) revealed the excess of epicuticular wax crystal depositions on the transgenic plant leaves compared to non-transgenic wild type plants. The findings were further supported by gas chromotography-mass spectroscopic analysis (GC-MS) that revealed enhanced levels of fatty acids, secondary alcohols, primary alcohols, aldehydes, alkanes, and ketones in transgenics compared to wild types. The AhKCS1 overexpressing transgenic groundnut plants exhibited increase in the cuticular wax content, reduction of water loss, lower membrane damage, decreased MDA content, and high proline content compared to that of non-transgenic groundnut plants. Our findings suggest that the AhKCS1 gene plays a major role in combating drought stress by preventing non-stomatal water loss in drought sensitive groundnut cultivar (K-6).
Collapse
Affiliation(s)
- Uppala Lokesh
- Plant Molecular Biology Laboratory, Department of Botany, Sri Krishnadevaraya University, Anantapur, India
| | - Boya Venkatesh
- Plant Molecular Biology Laboratory, Department of Botany, Sri Krishnadevaraya University, Anantapur, India
| | - Kurnool Kiranmai
- Plant Molecular Biology Laboratory, Department of Botany, Sri Krishnadevaraya University, Anantapur, India
| | - Ambekar Nareshkumar
- Plant Molecular Biology Laboratory, Department of Botany, Sri Krishnadevaraya University, Anantapur, India
| | - Vennapusa Amarnathareddy
- Plant Molecular Biology Laboratory, Department of Botany, Sri Krishnadevaraya University, Anantapur, India
| | - Gunupuru Lokanadha Rao
- Department of Plant, Food, and Environmental Sciences, Dalhousie University, Truro, NS, Canada
| | | | - Merum Pandurangaiah
- Plant Molecular Biology Laboratory, Department of Botany, Sri Krishnadevaraya University, Anantapur, India
| | - Chinta Sudhakar
- Plant Molecular Biology Laboratory, Department of Botany, Sri Krishnadevaraya University, Anantapur, India
| |
Collapse
|
48
|
Herrera-Ubaldo H, Lozano-Sotomayor P, Ezquer I, Di Marzo M, Chávez Montes RA, Gómez-Felipe A, Pablo-Villa J, Diaz-Ramirez D, Ballester P, Ferrándiz C, Sagasser M, Colombo L, Marsch-Martínez N, de Folter S. New roles of NO TRANSMITTING TRACT and SEEDSTICK during medial domain development in Arabidopsis fruits. Development 2019; 146:dev.172395. [PMID: 30538100 DOI: 10.1242/dev.172395] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/03/2018] [Indexed: 01/11/2023]
Abstract
The gynoecium, the female reproductive part of the flower, is key for plant sexual reproduction. During its development, inner tissues such as the septum and the transmitting tract tissue, important for pollen germination and guidance, are formed. In Arabidopsis, several transcription factors are known to be involved in the development of these tissues. One of them is NO TRANSMITTING TRACT (NTT), essential for transmitting tract formation. We found that the NTT protein can interact with several gynoecium-related transcription factors, including several MADS-box proteins, such as SEEDSTICK (STK), known to specify ovule identity. Evidence suggests that NTT and STK control enzyme and transporter-encoding genes involved in cell wall polysaccharide and lipid distribution in gynoecial medial domain cells. The results indicate that the simultaneous loss of NTT and STK activity affects polysaccharide and lipid deposition and septum fusion, and delays entry of septum cells to their normal degradation program. Furthermore, we identified KAWAK, a direct target of NTT and STK, which is required for the correct formation of fruits in Arabidopsis These findings position NTT and STK as important factors in determining reproductive competence.
Collapse
Affiliation(s)
- Humberto Herrera-Ubaldo
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato 36824, Guanajuato, México
| | - Paulina Lozano-Sotomayor
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato 36824, Guanajuato, México
| | - Ignacio Ezquer
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan 20133, Italy
| | - Maurizio Di Marzo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan 20133, Italy
| | - Ricardo Aarón Chávez Montes
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato 36824, Guanajuato, México
| | - Andrea Gómez-Felipe
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato 36824, Guanajuato, México
| | - Jeanneth Pablo-Villa
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato 36824, Guanajuato, México
| | - David Diaz-Ramirez
- Departamento de Biotecnología y Bioquímica, Unidad Irapuato, CINVESTAV-IPN, Irapuato 36824, Guanajuato, México
| | - Patricia Ballester
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV Universidad Politécnica de Valencia, 46022, Spain
| | - Cristina Ferrándiz
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV Universidad Politécnica de Valencia, 46022, Spain
| | - Martin Sagasser
- Bielefeld University, Faculty of Biology, Chair of Genetics and Genomics of Plants, Bielefeld 33615, Germany
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan 20133, Italy
| | - Nayelli Marsch-Martínez
- Departamento de Biotecnología y Bioquímica, Unidad Irapuato, CINVESTAV-IPN, Irapuato 36824, Guanajuato, México
| | - Stefan de Folter
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato 36824, Guanajuato, México
| |
Collapse
|
49
|
Joshi M, Baghel RS, Fogelman E, Stern RA, Ginzberg I. Identification of candidate genes mediating apple fruit-cracking resistance following the application of gibberellic acids 4 + 7 and the cytokinin 6-benzyladenine. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:436-445. [PMID: 29684828 DOI: 10.1016/j.plaphy.2018.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 05/09/2023]
Abstract
Calyx-end cracking in 'Pink Lady' apple is treated by a solution of gibberellic acids 4 and 7 (GA4+7) and the cytokinin 6-benzyladenine (BA). Although the GA4+7 and BA mixture is applied early in apple fruit development, it mitigates cracking that becomes evident in the mature fruit, implying a long-term treatment effect. The reduced incidence of peel cracking is associated with increased epidermal cell density, which is maintained until fruit maturation. Presently, the expression of genes that have been previously reported to be associated with epidermal cell patterning and cuticle formation, or cracking resistance, was monitored in the peel during fruit development and following GA4+7 and BA treatment. For most of the genes whose expression is naturally upregulated during fruit development, the early GA4+7 and BA treatment maintained or further increased the high expression level in the mature peel. Where the expression of a gene was downregulated during development, no change was detected in the treated mature peel. Gene-networking analysis supported the interaction between gene clusters of cell-wall synthesis, cuticle formation and GA signaling. Overall, the data suggested that the GA4+7 and BA treatment did not modify developmental cues, but promoted or enhanced the innate developmental program.
Collapse
Affiliation(s)
- Mukul Joshi
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel
| | - Ravi Singh Baghel
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel
| | - Edna Fogelman
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel
| | - Raphael A Stern
- MIGAL, Galilee Technology Center, P.O. Box 831, Kiryat Shmona 11016, Israel; Department of Biotechnology, Faculty of Life Sciences, Tel-Hai College, Upper Galilee 1220800, Israel
| | - Idit Ginzberg
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel.
| |
Collapse
|
50
|
Liu D, Dong X, Liu Z, Tang J, Zhuang M, Zhang Y, Lv H, Liu Y, Li Z, Fang Z, Yang L. Fine Mapping and Candidate Gene Identification for Wax Biosynthesis Locus, BoWax1 in Brassica oleracea L. var. capitata. FRONTIERS IN PLANT SCIENCE 2018; 9:309. [PMID: 29760714 PMCID: PMC5937124 DOI: 10.3389/fpls.2018.00309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 02/22/2018] [Indexed: 06/08/2023]
Abstract
Cuticular waxes play important roles in plant protection against various biotic and abiotic environmental stresses. The cuticular wax covering gives normal cabbage a glaucous appearance, but the appearance of waxless mutant is glossy green. Based on the present study, inheritance of the glossy green character of mutant HUAYOU2 follows a simple recessive pattern. Genetic analysis of an F2 population comprising 808 recessive individuals derived from HUAYOU2 (P1, maternal parent) and M36 (P2, paternal parent) revealed that a single recessive locus, BoWax1 (Brassica oleracea Wax 1), controls glossy green trait in B. oleracea. This locus was mapped to a region of 158.5 kb on chromosome C01. Based on nucleotide sequence analysis, Bol013612 was identified as the candidate gene for BoWax1. Sequencing results demonstrated that there is a deletion mutation of two nucleotides in the cDNA of Bol013612 of HUAYOU2, which may account for its glossy green trait. These results lay the foundation for functional analysis of BoWax1 and may accelerate research on wax metabolism in cabbage.
Collapse
Affiliation(s)
- Dongming Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Open Key Laboratory of Horticultural Plant Physiology and Genetic Improvement, High School of Henan Province, College of Horticulture, Henan Agricultural University, Zhengzhou, China
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xin Dong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zezhou Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Tang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mu Zhuang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yangyong Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Honghao Lv
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yumei Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhansheng Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiyuan Fang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Limei Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|