1
|
Kang X, Li C, Liu S, Baldwin RL, Liu GE, Li CJ. Genome-Wide Acetylation Modification of H3K27ac in Bovine Rumen Cell Following Butyrate Exposure. Biomolecules 2023; 13:1137. [PMID: 37509173 PMCID: PMC10377523 DOI: 10.3390/biom13071137] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Butyrate contributes epigenetically to the changes in cellular function and tissue development of the rumen in ruminant animals, which might be achieved by its genetic or epigenetic regulation of gene expression. To explore the role of butyrate on bovine rumen epithelial function and development, this study characterized genome-wide H3K27ac modification changes and super-enhancer profiles in rumen epithelial primary cells (REPC) induced with butyrate by ChIP-seq, and analyzed its effects on gene expression and functional pathways by integrating RNA-seq data. The results showed that genome-wide acetylation modification was observed in the REPC with 94,675 and 48,688 peaks in the butyrate treatment and control group, respectively. A total of 9750 and 5020 genes with increased modification (H3K27ac-gain) and decreased modification (H3K27ac-loss) were detected in the treatment group. The super-enhancer associated genes in the butyrate-induction group were involved in the AMPK signaling pathway, MAPK signaling pathway, and ECM-receptor interaction. Finally, the up-regulated genes (PLCG1, CLEC3B, IGSF23, OTOP3, ADTRP) with H3K27ac gain modification by butyrate were involved in cholesterol metabolism, lysosome, cell adhesion molecules, and the PI3K-Akt signaling pathway. Butyrate treatment has the role of genome-wide H3K27ac acetylation on bovine REPC, and affects the changes in gene expression. The effect of butyrate on gene expression correlates with the acetylation of the H3K27ac level. Identifying genome-wide acetylation modifications and expressed genes of butyrate in bovine REPC cells will expand the understanding of the biological role of butyrate and its acetylation.
Collapse
Affiliation(s)
- Xiaolong Kang
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Chenglong Li
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Shuli Liu
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Ransom L Baldwin
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| |
Collapse
|
2
|
Zhang J, Li R, Zhang B, Cui X. TAF1 promotes NSCLC cell epithelial-mesenchymal transition by transcriptionally activating TGFβ1. Biochem Biophys Res Commun 2022; 636:113-118. [DOI: 10.1016/j.bbrc.2022.10.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022]
|
3
|
Zhou L, Yao Q, Ma L, Li H, Chen J. TAF1 inhibitor Bay-299 induces cell death in acute myeloid leukemia. Transl Cancer Res 2021; 10:5307-5318. [PMID: 35116379 PMCID: PMC8798726 DOI: 10.21037/tcr-21-2295] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/23/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is one of the most common hematopoietic malignancies. The cure rate of currently intensive chemotherapy in AML was only 40% or less, and there is an urgent need to develop novel effective therapeutic targets or drugs. The TATA-box binding protein associated factor 1 (TAF1) plays important roles in transcriptional regulation and leukemogenesis. However, the potential of TAF1 as a therapeutic target for AML remains unclear. The present study examined the effects of the TAF1 inhibitor Bay-299 on AML cells and the underlying molecular mechanisms. METHODS The expression of TAF1 in various types of tumors was analyzed using The Cancer Genome Atlas (TCGA) and the UALCAN database. The effects of Bay-299 on cell proliferation were evaluated using the Cell Counting Kit-8 (CCK-8) assay. Cell death, EdU incorporation, and cell differentiation were detected using flow cytometry. Western blot analysis was utilized to confirm the activation of the apoptotic pathway. Expression of cell cycle and cell death-related genes was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS Analysis of the public databases showed that TAF1 expression was elevated in multiple types of tumors. Treatment of AML cells with the TAF1 inhibitor Bay-299 resulted in a remarkable inhibition of cell growth, increased cell death, reduced Edu incorporation, and increased cell differentiation. The apoptosis inhibitor Z-VAD and the receptor-interacting protein kinase 1 (RIPK1) inhibitor Nec-2 could rescue cell death induced by Bay-299. Bay-299 treatment increased the cleavage of key pro-apoptotic proteins, and this effect was ameliorated by administration of Z-VAD and Nec-2. Moreover, Bay-299 treatment was associated with increased expression of cell cycle inhibitor genes and multiple pyroptosis-promoting genes, contributing to the phenotypes observed in AML cell lines. CONCLUSIONS The TAF1 inhibitor Bay-299 induced AML cell death through multiple mechanisms and may be a promising candidate for the treatment of patients with AML.
Collapse
Affiliation(s)
- Lixin Zhou
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qi Yao
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Le Ma
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hui Li
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jieping Chen
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
4
|
Bacheva AV, Gotmanova NN, Belogurov AA, Kudriaeva AA. Control of Genome through Variative Nature of Histone-Modifying Ubiquitin Ligases. BIOCHEMISTRY (MOSCOW) 2021; 86:S71-S95. [PMID: 33827401 DOI: 10.1134/s0006297921140066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Covalent attachment of ubiquitin residue is not only the proteasomal degradation signal, but also a widespread posttranslational modification of cellular proteins in eukaryotes. One of the most important targets of the regulatory ubiquitination are histones. Localization of ubiquitin residue in different regions of the nucleosome attracts a strictly determined set of cellular factors with varied functionality. Depending on the type of histone and the particular lysine residue undergoing modification, histone ubiquitination can lead both to transcription activation and to gene repression, as well as contribute to DNA repair via different mechanisms. An extremely interesting feature of the family of RING E3 ubiquitin ligases catalyzing histone ubiquitination is the striking structural diversity of the domains providing high specificity of modification very similar initial targets. It is obvious that further elucidation of peculiarities of the ubiquitination system involved in histone modification, as well as understanding of physiological role of this process in the maintenance of homeostasis of both single cells and the entire organism, will substantially expand the possibilities of treating a number of socially significant diseases.
Collapse
Affiliation(s)
- Anna V Bacheva
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | | - Alexey A Belogurov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Anna A Kudriaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| |
Collapse
|
5
|
Xu Y, Man N, Karl D, Martinez C, Liu F, Sun J, Martinez CJ, Martin GM, Beckedorff F, Lai F, Yue J, Roisman A, Greenblatt S, Duffort S, Wang L, Sun X, Figueroa M, Shiekhattar R, Nimer S. TAF1 plays a critical role in AML1-ETO driven leukemogenesis. Nat Commun 2019. [PMID: 31664040 DOI: 10.1038/s41467-019-12735-z.pmid:31664040;pmcid:pmc6820555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
AML1-ETO (AE) is a fusion transcription factor, generated by the t(8;21) translocation, that functions as a leukemia promoting oncogene. Here, we demonstrate that TATA-Box Binding Protein Associated Factor 1 (TAF1) associates with K43 acetylated AE and this association plays a pivotal role in the proliferation of AE-expressing acute myeloid leukemia (AML) cells. ChIP-sequencing indicates significant overlap of the TAF1 and AE binding sites. Knockdown of TAF1 alters the association of AE with chromatin, affecting of the expression of genes that are activated or repressed by AE. Furthermore, TAF1 is required for leukemic cell self-renewal and its reduction promotes the differentiation and apoptosis of AE+ AML cells, thereby impairing AE driven leukemogenesis. Together, our findings reveal a role of TAF1 in leukemogenesis and identify TAF1 as a potential therapeutic target for AE-expressing leukemia.
Collapse
Affiliation(s)
- Ye Xu
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Medicine, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Na Man
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Daniel Karl
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Concepcion Martinez
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Fan Liu
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Jun Sun
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Camilo Jose Martinez
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Gloria Mas Martin
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Felipe Beckedorff
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Human Genetics, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Fan Lai
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Human Genetics, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Jingyin Yue
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Human Genetics, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Alejandro Roisman
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Human Genetics, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Sarah Greenblatt
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Stephanie Duffort
- Department of Medicine, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Lan Wang
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA.,Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojian Sun
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA.,State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Maria Figueroa
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Human Genetics, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Ramin Shiekhattar
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Human Genetics, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Stephen Nimer
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA. .,Department of Medicine, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA. .,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA.
| |
Collapse
|
6
|
Xu Y, Man N, Karl D, Martinez C, Liu F, Sun J, Martinez CJ, Martin GM, Beckedorff F, Lai F, Yue J, Roisman A, Greenblatt S, Duffort S, Wang L, Sun X, Figueroa M, Shiekhattar R, Nimer S. TAF1 plays a critical role in AML1-ETO driven leukemogenesis. Nat Commun 2019; 10:4925. [PMID: 31664040 PMCID: PMC6820555 DOI: 10.1038/s41467-019-12735-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 09/26/2019] [Indexed: 12/11/2022] Open
Abstract
AML1-ETO (AE) is a fusion transcription factor, generated by the t(8;21) translocation, that functions as a leukemia promoting oncogene. Here, we demonstrate that TATA-Box Binding Protein Associated Factor 1 (TAF1) associates with K43 acetylated AE and this association plays a pivotal role in the proliferation of AE-expressing acute myeloid leukemia (AML) cells. ChIP-sequencing indicates significant overlap of the TAF1 and AE binding sites. Knockdown of TAF1 alters the association of AE with chromatin, affecting of the expression of genes that are activated or repressed by AE. Furthermore, TAF1 is required for leukemic cell self-renewal and its reduction promotes the differentiation and apoptosis of AE+ AML cells, thereby impairing AE driven leukemogenesis. Together, our findings reveal a role of TAF1 in leukemogenesis and identify TAF1 as a potential therapeutic target for AE-expressing leukemia. AML1-ETO is a fusion protein in which acetylation of lysine-43 is critical to leukemogenesis. Here, they show that TAF1 is required for AML1-ETO mediated gene expression such that it binds to acetylated AML1-ETO to facilitate the association of AML1-ETO with chromatin, and consequently, promotes leukemic self-renewal.
Collapse
Affiliation(s)
- Ye Xu
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Medicine, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Na Man
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Daniel Karl
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Concepcion Martinez
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Fan Liu
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Jun Sun
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Camilo Jose Martinez
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Gloria Mas Martin
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Felipe Beckedorff
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Human Genetics, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Fan Lai
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Human Genetics, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Jingyin Yue
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Human Genetics, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Alejandro Roisman
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Human Genetics, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Sarah Greenblatt
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Stephanie Duffort
- Department of Medicine, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Lan Wang
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA.,Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojian Sun
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA.,State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Maria Figueroa
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Human Genetics, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Ramin Shiekhattar
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Human Genetics, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Stephen Nimer
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA. .,Department of Medicine, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA. .,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA.
| |
Collapse
|
7
|
Pratx L, Rancurel C, Da Rocha M, Danchin EGJ, Castagnone-Sereno P, Abad P, Perfus-Barbeoch L. Genome-wide expert annotation of the epigenetic machinery of the plant-parasitic nematodes Meloidogyne spp., with a focus on the asexually reproducing species. BMC Genomics 2018; 19:321. [PMID: 29724186 PMCID: PMC5934874 DOI: 10.1186/s12864-018-4686-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 04/16/2018] [Indexed: 01/10/2023] Open
Abstract
Background The renewed interest in epigenetics has led to the understanding that both the environment and individual lifestyle can directly interact with the epigenome to influence its dynamics. Epigenetic phenomena are mediated by DNA methylation, stable chromatin modifications and non-coding RNA-associated gene silencing involving specific proteins called epigenetic factors. Multiple organisms, ranging from plants to yeast and mammals, have been used as model systems to study epigenetics. The interactions between parasites and their hosts are models of choice to study these mechanisms because the selective pressures are strong and the evolution is fast. The asexually reproducing root-knot nematodes (RKN) offer different advantages to study the processes and mechanisms involved in epigenetic regulation. RKN genomes sequencing and annotation have identified numerous genes, however, which of those are involved in the adaption to an environment and potentially relevant to the evolution of plant-parasitism is yet to be discovered. Results Here, we used a functional comparative annotation strategy combining orthology data, mining of curated genomics as well as protein domain databases and phylogenetic reconstructions. Overall, we show that (i) neither RKN, nor the model nematode Caenorhabditis elegans possess any DNA methyltransferases (DNMT) (ii) RKN do not possess the complete machinery for DNA methylation on the 6th position of adenine (6mA) (iii) histone (de)acetylation and (de)methylation pathways are conserved between C. elegans and RKN, and the corresponding genes are amplified in asexually reproducing RKN (iv) some specific non-coding RNA families found in plant-parasitic nematodes are dissimilar from those in C. elegans. In the asexually reproducing RKN Meloidogyne incognita, expression data from various developmental stages supported the putative role of these proteins in epigenetic regulations. Conclusions Our results refine previous predictions on the epigenetic machinery of model species and constitute the most comprehensive description of epigenetic factors relevant to the plant-parasitic lifestyle and/or asexual mode of reproduction of RKN. Providing an atlas of epigenetic factors in RKN is an informative resource that will enable researchers to explore their potential role in adaptation of these parasites to their environment. Electronic supplementary material The online version of this article (10.1186/s12864-018-4686-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Loris Pratx
- Université Côte d'Azur, INRA, ISA, Sophia Antipolis, France.,Institut Sophia Agrobiotech, 400, route des chappes, BP 167 - 06903, Sophia Antipolis Cedex, France
| | - Corinne Rancurel
- Université Côte d'Azur, INRA, ISA, Sophia Antipolis, France.,Institut Sophia Agrobiotech, 400, route des chappes, BP 167 - 06903, Sophia Antipolis Cedex, France
| | - Martine Da Rocha
- Université Côte d'Azur, INRA, ISA, Sophia Antipolis, France.,Institut Sophia Agrobiotech, 400, route des chappes, BP 167 - 06903, Sophia Antipolis Cedex, France
| | - Etienne G J Danchin
- Université Côte d'Azur, INRA, ISA, Sophia Antipolis, France.,Institut Sophia Agrobiotech, 400, route des chappes, BP 167 - 06903, Sophia Antipolis Cedex, France
| | - Philippe Castagnone-Sereno
- Université Côte d'Azur, INRA, ISA, Sophia Antipolis, France.,Institut Sophia Agrobiotech, 400, route des chappes, BP 167 - 06903, Sophia Antipolis Cedex, France
| | - Pierre Abad
- Université Côte d'Azur, INRA, ISA, Sophia Antipolis, France.,Institut Sophia Agrobiotech, 400, route des chappes, BP 167 - 06903, Sophia Antipolis Cedex, France
| | - Laetitia Perfus-Barbeoch
- Université Côte d'Azur, INRA, ISA, Sophia Antipolis, France. .,Institut Sophia Agrobiotech, 400, route des chappes, BP 167 - 06903, Sophia Antipolis Cedex, France.
| |
Collapse
|
8
|
Danino YM, Even D, Ideses D, Juven-Gershon T. The core promoter: At the heart of gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1116-31. [PMID: 25934543 DOI: 10.1016/j.bbagrm.2015.04.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/19/2015] [Accepted: 04/23/2015] [Indexed: 12/17/2022]
Abstract
The identities of different cells and tissues in multicellular organisms are determined by tightly controlled transcriptional programs that enable accurate gene expression. The mechanisms that regulate gene expression comprise diverse multiplayer molecular circuits of multiple dedicated components. The RNA polymerase II (Pol II) core promoter establishes the center of this spatiotemporally orchestrated molecular machine. Here, we discuss transcription initiation, diversity in core promoter composition, interactions of the basal transcription machinery with the core promoter, enhancer-promoter specificity, core promoter-preferential activation, enhancer RNAs, Pol II pausing, transcription termination, Pol II recycling and translation. We further discuss recent findings indicating that promoters and enhancers share similar features and may not substantially differ from each other, as previously assumed. Taken together, we review a broad spectrum of studies that highlight the importance of the core promoter and its pivotal role in the regulation of metazoan gene expression and suggest future research directions and challenges.
Collapse
Affiliation(s)
- Yehuda M Danino
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Dan Even
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Diana Ideses
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Tamar Juven-Gershon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel.
| |
Collapse
|
9
|
Phosphorylation-dependent regulation of cyclin D1 and cyclin A gene transcription by TFIID subunits TAF1 and TAF7. Mol Cell Biol 2012; 32:3358-69. [PMID: 22711989 DOI: 10.1128/mcb.00416-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The largest transcription factor IID (TFIID) subunit, TBP-associated factor 1 (TAF1), possesses protein kinase and histone acetyltransferase (HAT) activities. Both enzymatic activities are essential for transcription from a subset of genes and G(1) progression in mammalian cells. TAF7, another TFIID subunit, binds TAF1 and inhibits TAF1 HAT activity. Here we present data demonstrating that disruption of the TAF1/TAF7 interaction within TFIID by protein phosphorylation leads to activation of TAF1 HAT activity and stimulation of cyclin D1 and cyclin A gene transcription. Overexpression and small interfering RNA knockdown experiments confirmed that TAF7 functions as a transcriptional repressor at these promoters. Release of TAF7 from TFIID by TAF1 phosphorylation of TAF7 increased TAF1 HAT activity and elevated histone H3 acetylation levels at the cyclin D1 and cyclin A promoters. Serine-264 of TAF7 was identified as a substrate for TAF1 kinase activity. Using TAF7 S264A and S264D phosphomutants, we determined that the phosphorylation state of TAF7 at S264 influences the levels of cyclin D1 and cyclin A gene transcription and promoter histone H3 acetylation. Our studies have uncovered a novel function for the TFIID subunit TAF7 as a phosphorylation-dependent regulator of TAF1-catalyzed histone H3 acetylation at the cyclin D1 and cyclin A promoters.
Collapse
|
10
|
Tavassoli P, Wafa LA, Cheng H, Zoubeidi A, Fazli L, Gleave M, Snoek R, Rennie PS. TAF1 differentially enhances androgen receptor transcriptional activity via its N-terminal kinase and ubiquitin-activating and -conjugating domains. Mol Endocrinol 2010; 24:696-708. [PMID: 20181722 DOI: 10.1210/me.2009-0229] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Aberrant expression of androgen receptor (AR) coregulators has been linked to progression of prostate cancers to castration resistance. Using the repressed transactivator yeast two-hybrid system, we found that TATA binding protein-associated factor 1 (TAF1) interacted with the AR. In tissue microarrays, TAF1 was shown to steadily increase with duration of neoadjuvant androgen withdrawal and with progression to castration resistance. Glutathione S-transferase pulldown assays established that TAF1 bound through its acetylation and ubiquitin-activating/conjugating domains (E1/E2) directly to the AR N terminus. Coimmunoprecipitation and ChIP assays revealed colocalization of TAF1 and AR on the prostate-specific antigen promoter/enhancer in prostate cancer cells. With respect to modulation of AR activity, overexpression of TAF1 enhanced AR activity severalfold, whereas small interfering RNA knockdown of TAF1 significantly decreased AR transactivation. Although full-length TAF1 showed enhancement of both AR and some generic gene transcriptional activity, selective AR coactivator activity by TAF1 was demonstrated in transactivation experiments using cloned N-terminal kinase and E1/E2 functional domains. In keeping with AR coactivation by the ubiquitin-activating and -conjugating domain, TAF1 was found to greatly increase the cellular amount of polyubiquitinated AR. In conclusion, our results indicate that increased TAF1 expression is associated with progression of human prostate cancers to the lethal castration-resistant state. Because TAF1 is a coactivator of AR that binds and enhances AR transcriptional activity, its overexpression could be part of a compensatory mechanism adapted by cancer cells to overcome reduced levels of circulating androgens.
Collapse
Affiliation(s)
- Peyman Tavassoli
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Dominant and Redundant Functions of TFIID Involved in the Regulation of Hepatic Genes. Mol Cell 2008; 31:531-543. [DOI: 10.1016/j.molcel.2008.07.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 04/18/2008] [Accepted: 07/25/2008] [Indexed: 12/17/2022]
|
12
|
Different functional modes of p300 in activation of RNA polymerase III transcription from chromatin templates. Mol Cell Biol 2008; 28:5764-76. [PMID: 18644873 DOI: 10.1128/mcb.01262-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional coactivators that regulate the activity of human RNA polymerase III (Pol III) in the context of chromatin have not been reported. Here, we describe a completely defined in vitro system for transcription of a human tRNA gene assembled into a chromatin template. Transcriptional activation and histone acetylation in this system depend on recruitment of p300 by general initiation factor TFIIIC, thus providing a new paradigm for recruitment of histone-modifying coactivators. Beyond its role as a chromatin-modifying factor, p300 displays an acetyltransferase-independent function at the level of preinitiation complex assembly. Thus, direct interaction of p300 with TFIIIC stabilizes binding of TFIIIC to core promoter elements and results in enhanced transcriptional activity on histone-free templates. Additional studies show that p300 is recruited to the promoters of actively transcribed tRNA and U6 snRNA genes in vivo. These studies identify TFIIIC as a recruitment factor for p300 and thus may have important implications for the emerging concept that tRNA genes or TFIIIC binding sites act as chromatin barriers to prohibit spreading of silenced heterochromatin domains.
Collapse
|
13
|
Rada-Iglesias A, Enroth S, Ameur A, Koch CM, Clelland GK, Respuela-Alonso P, Wilcox S, Dovey OM, Ellis PD, Langford CF, Dunham I, Komorowski J, Wadelius C. Butyrate mediates decrease of histone acetylation centered on transcription start sites and down-regulation of associated genes. Genome Res 2007; 17:708-19. [PMID: 17567991 PMCID: PMC1891332 DOI: 10.1101/gr.5540007] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Butyrate is a histone deacetylase inhibitor (HDACi) with anti-neoplastic properties, which theoretically reactivates epigenetically silenced genes by increasing global histone acetylation. However, recent studies indicate that a similar number or even more genes are down-regulated than up-regulated by this drug. We treated hepatocarcinoma HepG2 cells with butyrate and characterized the levels of acetylation at DNA-bound histones H3 and H4 by ChIP-chip along the ENCODE regions. In contrast to the global increases of histone acetylation, many genomic regions close to transcription start sites were deacetylated after butyrate exposure. In order to validate these findings, we found that both butyrate and trichostatin A treatment resulted in histone deacetylation at selected regions, while nucleosome loss or changes in histone H3 lysine 4 trimethylation (H3K4me3) did not occur in such locations. Furthermore, similar histone deacetylation events were observed when colon adenocarcinoma HT-29 cells were treated with butyrate. In addition, genes with deacetylated promoters were down-regulated by butyrate, and this was mediated at the transcriptional level by affecting RNA polymerase II (POLR2A) initiation/elongation. Finally, the global increase in acetylated histones was preferentially localized to the nuclear periphery, indicating that it might not be associated to euchromatin. Our results are significant for the evaluation of HDACi as anti-tumourogenic drugs, suggesting that previous models of action might need to be revised, and provides an explanation for the frequently observed repression of many genes during HDACi treatment.
Collapse
Affiliation(s)
- Alvaro Rada-Iglesias
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 05 Sweden
- Corresponding authors.E-mail ; fax 46-18-471-4808
| | - Stefan Enroth
- Linnaeus Centre for Bioinformatics, Uppsala University, Uppsala, SE-751 05 Sweden
| | - Adam Ameur
- Linnaeus Centre for Bioinformatics, Uppsala University, Uppsala, SE-751 05 Sweden
| | | | | | - Patricia Respuela-Alonso
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 05 Sweden
| | - Sarah Wilcox
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | | | - Peter D. Ellis
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | | | - Ian Dunham
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Jan Komorowski
- Linnaeus Centre for Bioinformatics, Uppsala University, Uppsala, SE-751 05 Sweden
| | - Claes Wadelius
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 05 Sweden
- Corresponding authors.E-mail ; fax 46-18-471-4808
| |
Collapse
|
14
|
Xu W, Kasper LH, Lerach S, Jeevan T, Brindle PK. Individual CREB-target genes dictate usage of distinct cAMP-responsive coactivation mechanisms. EMBO J 2007; 26:2890-903. [PMID: 17525731 PMCID: PMC1894772 DOI: 10.1038/sj.emboj.7601734] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 05/03/2007] [Indexed: 11/09/2022] Open
Abstract
CREB is a key mediator of cAMP- and calcium-inducible transcription, where phosphorylation of serine 133 in its Kinase-Inducible Domain (KID) is often equated with transactivation. Phospho-Ser133 is required for CREB to bind the KIX domain of the coactivators CBP and p300 (CBP/p300) in vitro, although the importance of this archetype coactivator interaction for endogenous gene expression is unclear. Here, we show that the CREB interaction with KIX is necessary for only a part of cAMP-inducible transcription and CBP/p300 recruitment. Surprisingly, individual cAMP-inducible genes with CREB bound at their promoters differed in their reliance on KIX and none examined showed complete dependence. Alternatively, we found that arginine 314 (Arg314) in the CREB basic-leucine zipper (bZIP) domain contributed to CBP/p300 recruitment and KIX-independent CREB transactivation function. This implicates Transducer Of Regulated CREB (TORC), an unrelated cAMP-responsive coactivator that binds via Arg314, and which can bind CBP/p300, in these functions. Interestingly, KIX was also required for the full cAMP induction of a gene that did not require CREB. Thus, individual CREB-target gene context dictates the relative contribution of at least two different cAMP-responsive coactivation mechanisms.
Collapse
Affiliation(s)
- Wu Xu
- Department of Biochemistry, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lawryn H Kasper
- Department of Biochemistry, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephanie Lerach
- Department of Biochemistry, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Trushar Jeevan
- Department of Biochemistry, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul K Brindle
- Department of Biochemistry, St Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
15
|
Müller F, Demény MA, Tora L. New problems in RNA polymerase II transcription initiation: matching the diversity of core promoters with a variety of promoter recognition factors. J Biol Chem 2007; 282:14685-9. [PMID: 17395580 DOI: 10.1074/jbc.r700012200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Ferenc Müller
- Institute of Toxicology and Genetics, Forschungszentrum, Karlsruhe, D-76021 Germany.
| | | | | |
Collapse
|
16
|
Allende-Vega N, Saville MK, Meek DW. Transcription factor TAFII250 promotes Mdm2-dependent turnover of p53. Oncogene 2007; 26:4234-42. [PMID: 17237821 PMCID: PMC2695134 DOI: 10.1038/sj.onc.1210209] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The p53 tumour suppressor is regulated mainly by Mdm2, an E3 ubiquitin ligase that promotes the ubiquitylation and proteasome-mediated degradation of p53. Many agents that induce p53 are inhibitors of transcription, suggesting that the p53 pathway can detect a signal(s) arising from transcriptional malfunction. Mdm2 associates with TAFII250, a component of the general transcription factor TFIID. Inactivation of TAFII250 in ts13 cells, which express a temperature-sensitive mutant of TAFII250, leads to the induction of p53 and cell cycle arrest. In the present study, we show that TAFII250 stimulates the ubiquitylation and degradation of p53 in a manner that is dependent upon Mdm2 and requires its acidic domain. Mechanistically, TAFII250 downregulates Mdm2 auto-ubiquitylation, leading to Mdm2 stabilization, and promotes p53-Mdm2 association through a recently defined second binding site in the acidic domain of Mdm2. These data provide a novel route through which TAFII250 can directly influence p53 levels and are consistent with the idea that the maintenance of p53 turnover is coupled to the integrity of RNA polymerase II transcription.
Collapse
Affiliation(s)
- N Allende-Vega
- Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - MK Saville
- Division of Surgery and Molecular Oncology, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - DW Meek
- Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
17
|
Osley MA, Fleming AB, Kao CF. Histone Ubiquitylation and the Regulation of Transcription. Results Probl Cell Differ 2006; 41:47-75. [PMID: 16909890 DOI: 10.1007/400_006] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
The small (76 amino acids) and highly conserved ubiquitin protein plays key roles in the physiology of eukaryotic cells. Protein ubiquitylation has emerged as one of the most important intracellular signaling mechanisms, and in 2004 the Nobel Prize was awarded to Aaron Ciechanower, Avram Hersko, and Irwin Rose for their pioneering studies of the enzymology of ubiquitin attachment. One of the most common features of protein ubiquitylation is the attachment of polyubiquitin chains (four or more ubiquitin moieties attached to each other), which is a widely used mechanism to target proteins for degradation via the 26S proteosome. However, it is noteworthy that the first ubiquitylated protein to be identified was histone H2A, to which a single ubiquitin moiety is most commonly attached. Following this discovery, other histones (H2B, H3, H1, H2A.Z, macroH2A), as well as many nonhistone proteins, have been found to be monoubiquitylated. The role of monoubiquitylation is still elusive because a single ubiquitin moiety is not sufficient to target proteins for turnover, and has been hypothesized to control the assembly or disassembly of multiprotein complexes by providing a protein-binding site. Indeed, a number of ubiquitin-binding domains have now been identified in both polyubiquitylated and monoubiquitylated proteins. Despite the early discovery of ubiquitylated histones, it has only been in the last five or so years that we have begun to understand how histone ubiquitylation is regulated and what roles it plays in the cell. This review will discuss current research on the factors that regulate the attachment and removal of ubiquitin from histones, describe the relationship of histone ubiquitylation to histone methylation, and focus on the roles of ubiquitylated histones in gene expression.
Collapse
Affiliation(s)
- Mary Ann Osley
- Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA.
| | | | | |
Collapse
|
18
|
Gegonne A, Weissman JD, Zhou M, Brady JN, Singer DS. TAF7: a possible transcription initiation check-point regulator. Proc Natl Acad Sci U S A 2006; 103:602-7. [PMID: 16407123 PMCID: PMC1325967 DOI: 10.1073/pnas.0510031103] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription consists of a series of highly regulated steps: assembly of a preinitiation complex (PIC) at the promoter nucleated by TFIID, followed by initiation, elongation, and termination. The present study has focused on the role of the TFIID component, TAF7, in regulating transcription initiation. In TFIID, TAF7 binds to TAF1 and inhibits its intrinsic acetyl transferase activity. We now report that although TAF7 remains bound to TAF1 and associated with TFIID during the formation of the PIC, TAF7 dissociates from the PIC upon transcription initiation. Entry of polymerase II into the assembling PIC is associated with TAF1 and TAF7 phosphorylation, coincident with TAF7 release. We propose that the TFIID composition is dynamic and that TAF7 functions as a check-point regulator suppressing premature transcription initiation until PIC assembly is complete.
Collapse
Affiliation(s)
- Anne Gegonne
- Experimental Immunology Branch, Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
19
|
Frontini M, Soutoglou E, Argentini M, Bole-Feysot C, Jost B, Scheer E, Tora L. TAF9b (formerly TAF9L) is a bona fide TAF that has unique and overlapping roles with TAF9. Mol Cell Biol 2005; 25:4638-49. [PMID: 15899866 PMCID: PMC1140618 DOI: 10.1128/mcb.25.11.4638-4649.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
TFIID plays a key role in transcription initiation of RNA polymerase II preinitiation complex assembly. TFIID is comprised of the TATA box binding protein (TBP) and 14 TBP-associated factors (TAFs). A second set of transcriptional regulatory multiprotein complexes containing TAFs has been described (called SAGA, TFTC, STAGA, and PCAF/GCN5). Using matrix-assisted laser desorption ionization mass spectrometry, we identified a novel TFTC subunit, human TAF9Like, encoded by a TAF9 paralogue gene. We show that TAF9Like is a subunit of TFIID, and thus, it will be called TAF9b. TFIID and TFTC complexes in which both TAF9 and TAF9b are present exist. In vitro and in vivo experiments indicate that the interactions between TAF9b and TAF6 or TAF9 and TAF6 histone fold pairs are similar. We observed a differential induction of TAF9 and TAF9b during apoptosis that, together with their different ability to stabilize p53, points to distinct requirements for the two proteins in gene regulation. Small interfering RNA (siRNA) knockdown of TAF9 and TAF9b revealed that both genes are essential for cell viability. Gene expression analysis of cells treated with either TAF9 or TAF9b siRNAs indicates that the two proteins regulate different sets of genes with only a small overlap. Taken together, these data demonstrate that TAF9 and TAF9b share some of their functions, but more importantly, they have distinct roles in the transcriptional regulatory process.
Collapse
Affiliation(s)
- Mattia Frontini
- Department of Transcription, Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, BP 10142, 67404 Illkirch Cedex, CU de Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Lewis BA, Sims RJ, Lane WS, Reinberg D. Functional characterization of core promoter elements: DPE-specific transcription requires the protein kinase CK2 and the PC4 coactivator. Mol Cell 2005; 18:471-81. [PMID: 15893730 DOI: 10.1016/j.molcel.2005.04.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 04/05/2005] [Accepted: 04/13/2005] [Indexed: 11/22/2022]
Abstract
Downstream core promoter elements are an expanding class of regulatory sequences that add considerable diversity to the promoter architecture of RNA polymerase II-transcribed genes. We set out to determine the factors necessary for downstream promoter element (DPE)-dependent transcription and find that, against expectations, TFIID and the GTFs are not sufficient. Instead, the protein kinase CK2 and the coactivator PC4 establish DPE-specific transcription in an in vitro transcription system containing TFIID, Mediator, and the GTFs. Chromatin immunoprecipitation analyses using the DPE-dependent IRF-1 and TAF7 promoters demonstrated that CK2, and PC4 are present on these promoters in vivo. In contrast, neither PC4 nor CK2 were detected on the TAF1-dependent cyclin D promoter, which contains a DCE type of downstream element. Our findings also demonstrate that CK2 activity alters TFIID-dependent recognition of DCE sequences. These data establish that CK2 acts as a switch, converting the transcriptional machinery from functioning on one type of downstream element to another.
Collapse
Affiliation(s)
- Brian A Lewis
- Division of Nucleic Acids Enzymology, Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
21
|
Hilton TL, Li Y, Dunphy EL, Wang EH. TAF1 histone acetyltransferase activity in Sp1 activation of the cyclin D1 promoter. Mol Cell Biol 2005; 25:4321-32. [PMID: 15870300 PMCID: PMC1087727 DOI: 10.1128/mcb.25.10.4321-4332.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A missense mutation within the histone acetyltransferase (HAT) domain of the TATA binding protein-associated factor TAF1 induces ts13 cells to undergo a late G(1) arrest and decreases cyclin D1 transcription. We have found that TAF1 mutants (Delta844-850 and Delta848-850, from which amino acids 844 through 850 and 848 through 850 have been deleted, respectively) deficient in HAT activity are unable to complement the ts13 defect in cell proliferation and cyclin D1 transcription. Chromatin immunoprecipitation assays revealed that histone H3 acetylation was reduced at the cyclin D1 promoter but not the c-fos promoter upon inactivation of TAF1 in ts13 cells. The hypoacetylation of H3 at the cyclin D1 promoter was reversed by treatment with trichostatin A (TSA), a histone deacetylase inhibitor, or by expression of TAF1 proteins that retain HAT activity. Transcription of a chimeric promoter containing the Sp1 sites of cyclin D1 and c-fos core remained TAF1 dependent in ts13 cells. Treatment with TSA restored full activity to the cyclin D1-c-fos chimera at 39.5 degrees C. In vivo genomic footprinting experiments indicate that protein-DNA interactions at the Sp1 sites of the cyclin D1 promoter were compromised at 39.5 degrees C in ts13 cells. These data have led us to hypothesize that TAF1-dependent histone acetylation facilitates transcription factor binding to the Sp1 sites, thereby activating cyclin D1 transcription and ultimately G(1)-to-S-phase progression.
Collapse
Affiliation(s)
- Traci L Hilton
- University of Washington, School of Medicine, Department of Pharmacology, 1959 NE Pacific Street, Health Sciences Center, Box 357280, Seattle, WA 98195-7280, USA
| | | | | | | |
Collapse
|
22
|
Bertrand C, Benhamed M, Li YF, Ayadi M, Lemonnier G, Renou JP, Delarue M, Zhou DX. Arabidopsis HAF2 Gene Encoding TATA-binding Protein (TBP)-associated Factor TAF1, Is Required to Integrate Light Signals to Regulate Gene Expression and Growth. J Biol Chem 2005; 280:1465-73. [PMID: 15525647 DOI: 10.1074/jbc.m409000200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Plant growth and development are sensitive to light. Light-responsive DNA-binding transcription factors have been functionally identified. However, how transcription initiation complex integrates light signals from enhancer-bound transcription factors remains unknown. In this work, we characterized mutations within the Arabidopsis HAF2 gene encoding TATA-binding protein-associated factor TAF1 (or TAF(II)250). The mutation of HAF2 induced decreases on chlorophyll accumulation, light-induced mRNA levels, and promoter activity. Genetic analysis indicated that HAF2 is involved in the pathways of both red/far-red and blue light signals. Double mutants between haf2-1 and hy5-1, a mutation of a light signaling positive DNA-binding transcription factor gene, had a synergistic effect on photomorphogenic traits and light-activated gene expression under different light wavelengths, suggesting that HAF2 is required for interaction with additional light-responsive DNA-binding transcription factors to fully respond to light induction. Chromatin immunoprecipitation assays showed that the mutation of HAF2 reduced acetylation of histone H3 in light-responsive promoters. In addition, transcriptome analysis showed that the mutation altered the expression of about 9% of genes in young leaves. These data indicate that TAF1 encoded by the Arabidopsis HAF2 gene functions as a coactivator capable of integrating light signals and acetylating histones to activate light-induced gene transcription.
Collapse
Affiliation(s)
- Claire Bertrand
- Institut de Biotechnologie des Plantes, UMR8618, Université Paris-sud XI, 91405 Orsay, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Maiorana A, Tu X, Cheng G, Baserga R. Role of pescadillo in the transformation and immortalization of mammalian cells. Oncogene 2004; 23:7116-24. [PMID: 15273728 DOI: 10.1038/sj.onc.1207916] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The murine and human homologs of the zebrafish pescadillo protein (Pes1 and PES1, respectively) play important roles in ribosome biogenesis and DNA replication. We investigated the effect of Pes1 on the growth of mouse embryo (3T3-like) fibroblasts and conditionally immortalized human fibroblasts expressing the SV40 T antigen (AR5 cells). Increased expression of Pes1 causes transformation of mouse and human fibroblasts in culture (colony formation in soft agar). Although Pes1 can replace the SV40 T antigen in inducing colony formation in soft agar, it cannot substitute the T antigen in the immortalization of human fibroblasts, indicating that it distinguishes between the two functions. As the biological effects of Pes1 are similar to those of the insulin receptor substrate-1 (IRS-1), we investigated the interactions of Pes1 with IRS-1 itself and with the SV40 T antigen. The Pes1 protein (which localizes to the nuclei and nucleoli of cells) interacts with both IRS-1 and the SV40 T antigen, and markedly decreases the interaction of T antigen with p53. Taken together, these results suggest mechanisms for the ability of Pes1 to transform cells, and its failure to immortalize them.
Collapse
Affiliation(s)
- Arianna Maiorana
- Kimmel Cancer Center, Thomas Jefferson University, 233 S. 10th Street, 624 BLSB, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
24
|
Buchmann AM, Skaar JR, DeCaprio JA. Activation of a DNA damage checkpoint response in a TAF1-defective cell line. Mol Cell Biol 2004; 24:5332-9. [PMID: 15169897 PMCID: PMC419897 DOI: 10.1128/mcb.24.12.5332-5339.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Although the link between transcription and DNA repair is well established, defects in the core transcriptional complex itself have not been shown to elicit a DNA damage response. Here we show that a cell line with a temperature-sensitive defect in TBP-associated factor 1 (TAF1), a component of the TFIID general transcription complex, exhibits hallmarks of an ATR-mediated DNA damage response. Upon inactivation of TAF1, ATR rapidly localized to subnuclear foci and contributed to the phosphorylation of several downstream targets, including p53 and Chk1, resulting in cell cycle arrest. The increase in p53 expression and the G(1) phase arrest could be blocked by caffeine, an inhibitor of ATR. In addition, dominant negative forms of ATR but not ATM were able to override the arrest in G(1). These results suggest that a defect in TAF1 can elicit a DNA damage response.
Collapse
Affiliation(s)
- Ann M Buchmann
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
25
|
Prisco M, Maiorana A, Guerzoni C, Calin G, Calabretta B, Voit R, Grummt I, Baserga R. Role of pescadillo and upstream binding factor in the proliferation and differentiation of murine myeloid cells. Mol Cell Biol 2004; 24:5421-33. [PMID: 15169904 PMCID: PMC419857 DOI: 10.1128/mcb.24.12.5421-5433.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Revised: 02/04/2004] [Accepted: 03/24/2004] [Indexed: 12/13/2022] Open
Abstract
Pescadillo (PES1) and the upstream binding factor (UBF1) play a role in ribosome biogenesis, which regulates cell size, an important component of cell proliferation. We have investigated the effects of PES1 and UBF1 on the growth and differentiation of cell lines derived from 32D cells, an interleukin-3 (IL-3)-dependent murine myeloid cell line. Parental 32D cells and 32D IGF-IR cells (expressing increased levels of the type 1 insulin-like growth factor I [IGF-I] receptor [IGF-IR]) do not express insulin receptor substrate 1 (IRS-1) or IRS-2. 32D IGF-IR cells differentiate when the cells are shifted from IL-3 to IGF-I. Ectopic expression of IRS-1 inhibits differentiation and transforms 32D IGF-IR cells into a tumor-forming cell line. We found that PES1 and UBF1 increased cell size and/or altered the cell cycle distribution of 32D-derived cells but failed to make them IL-3 independent. PES1 and UBF1 also failed to inhibit the differentiation program initiated by the activation of the IGF-IR, which is blocked by IRS-1. 32D IGF-IR cells expressing PES1 or UBF1 differentiate into granulocytes like their parental cells. In contrast, PES1 and UBF1 can transform mouse embryo fibroblasts that have high levels of endogenous IRS-1 and are not prone to differentiation. Our results provide a model for one of the theories of myeloid leukemia, in which both a stimulus of proliferation and a block of differentiation are required for leukemia development.
Collapse
Affiliation(s)
- Marco Prisco
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Li HH, Li AG, Sheppard HM, Liu X. Phosphorylation on Thr-55 by TAF1 mediates degradation of p53: a role for TAF1 in cell G1 progression. Mol Cell 2004; 13:867-78. [PMID: 15053879 DOI: 10.1016/s1097-2765(04)00123-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Revised: 01/30/2004] [Accepted: 02/02/2004] [Indexed: 11/25/2022]
Abstract
The largest subunit of TFIID, TAF1, possesses an intrinsic protein kinase activity and is important for cell G1 progression and apoptosis. Since p53 functions by inducing cell G1 arrest and apoptosis, we investigated the link between TAF1 and p53. We found that TAF1 induces G1 progression in a p53-dependent manner. TAF1 interacts with and phosphorylates p53 at Thr-55 in vivo. Substitution of Thr-55 with an alanine residue (T55A) stabilizes p53 and impairs the ability of TAF1 to induce G1 progression. Furthermore, both RNAi-mediated TAF1 ablation and apigenin-mediated inhibition of the kinase activity of TAF1 markedly reduced Thr-55 phosphorylation. Thus, phosphorylation and the resultant degradation of p53 provide a mechanism for regulation of the cell cycle by TAF1. Significantly, the Thr-55 phosphorylation was reduced following DNA damage, suggesting that this phosphorylation contributes to the stabilization of p53 in response to DNA damage.
Collapse
Affiliation(s)
- Heng-Hong Li
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
27
|
Dehm SM, Hilton TL, Wang EH, Bonham K. SRC proximal and core promoter elements dictate TAF1 dependence and transcriptional repression by histone deacetylase inhibitors. Mol Cell Biol 2004; 24:2296-307. [PMID: 14993269 PMCID: PMC355838 DOI: 10.1128/mcb.24.6.2296-2307.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Histone deacetylase inhibitors (HDIs) induce cell cycle arrest, differentiation, or apoptosis in numerous cancer cell types both in vivo and in vitro. These dramatic effects are the result of a specific reprogramming of gene expression. However, the mechanism by which these agents activate the transcription of some genes, such as p21(WAF1), but repress others, such as cyclin D1, is currently unknown. We have been studying the human SRC gene as a model for HDI-mediated transcriptional repression. We found previously that both the tissue-specific and housekeeping SRC promoters were equally repressed by HDIs. Here we show that, despite an overt dissimilarity, both SRC promoters do share similar core promoter elements and transcription is TAF1 dependent. Detailed analysis of the SRC promoters suggested that both core and proximal promoter elements were responsible for HDI-mediated repression. This was confirmed in a series of promoter-swapping experiments with the HDI-inducible, TAF1-independent p21(WAF1) promoter. Remarkably, all the SRC-p21(WAF1) chimeric promoter constructs were not only repressed by HDIs but also dependent on TAF1. Together these experiments suggest that the overall promoter architecture, rather than discrete response elements, is responsible for HDI-mediated repression, and they implicate core promoter elements in particular as potential mediators of this response.
Collapse
Affiliation(s)
- Scott M Dehm
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | | | | |
Collapse
|
28
|
Fukuchi J, Hiipakka RA, Kokontis JM, Nishimura K, Igarashi K, Liao S. TATA-binding protein-associated factor 7 regulates polyamine transport activity and polyamine analog-induced apoptosis. J Biol Chem 2004; 279:29921-9. [PMID: 15078871 DOI: 10.1074/jbc.m401078200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Identification of the polyamine transporter gene will be useful for modulating polyamine accumulation in cells and should be a good target for controlling cell proliferation. Polyamine transport activity in mammalian cells is critical for accumulation of the polyamine analog methylglyoxal bis(guanylhydrazone) (MGBG) that induces apoptosis, although a gene responsible for transport activity has not been identified. Using a retroviral gene trap screen, we generated MGBG-resistant Chinese hamster ovary (CHO) cells to identify genes involved in polyamine transport activity. One gene identified by the method encodes TATA-binding protein-associated factor 7 (TAF7), which functions not only as one of the TAFs, but also a coactivator for c-Jun. TAF7-deficient cells had decreased capacity for polyamine uptake (20% of CHO cells), decreased AP-1 activation, as well as resistance to MGBG-induced apoptosis. Stable expression of TAF7 in TAF7-deficient cells restored transport activity (55% of CHO cells), AP-1 gene transactivation (100% of CHO cells), and sensitivity to MGBG-induced apoptosis. Overexpression of TAF7 in CHO cells did not increase transport activity, suggesting that TAF7 may be involved in the maintenance of basal activity. c-Jun NH2-terminal kinase inhibitors blocked MGBG-induced apoptosis without alteration of polyamine transport. Decreased TAF7 expression, by RNA interference, in androgen-independent human prostate cancer LN-CaP104-R1 cells resulted in lower polyamine transport activity (25% of control) and resistance to MGBG-induced growth arrest. Taken together, these results reveal a physiological function of TAF7 as a basal regulator for mammalian polyamine transport activity and MGBG-induced apoptosis.
Collapse
Affiliation(s)
- Junichi Fukuchi
- Ben May Institute for Cancer Research and the Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
29
|
Walker AK, Shi Y, Blackwell TK. An extensive requirement for transcription factor IID-specific TAF-1 in Caenorhabditis elegans embryonic transcription. J Biol Chem 2004; 279:15339-47. [PMID: 14726532 DOI: 10.1074/jbc.m310731200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The general transcription factor TFIID sets the mRNA start site and consists of TATA-binding protein and associated factors (TAF(II)s), some of which are also present in SPT-ADA-GCN5 (SAGA)-related complexes. In yeast, results of multiple studies indicate that TFIID-specific TAF(II)s are not required for the transcription of most genes, implying that intact TFIID may have a surprisingly specialized role in transcription. Relatively little is known about how TAF(II)s contribute to metazoan transcription in vivo, especially at developmental and tissue-specific genes. Previously, we investigated functions of four shared TFIID/SAGA TAF(II)s in Caenorhabditis elegans. Whereas TAF-4 was required for essentially all embryonic transcription, TAF-5, TAF-9, and TAF-10 were dispensable at multiple developmental and other metazoan-specific promoters. Here we show evidence that in C. elegans embryos transcription of most genes requires TFIID-specific TAF-1. TAF-1 is not as universally required as TAF-4, but it is essential for a greater proportion of transcription than TAF-5, -9, or -10 and is important for transcription of many developmental and other metazoan-specific genes. TAF-2, which binds core promoters with TAF-1, appears to be required for a similarly substantial proportion of transcription. C. elegans TAF-1 overlaps functionally with the coactivator p300/CBP (CBP-1), and at some genes it is required along with the TBP-like protein TLF(TRF2). We conclude that during C. elegans embryogenesis TAF-1 and TFIID have broad roles in transcription and development and that TFIID and TLF may act together at certain promoters. Our findings imply that in metazoans TFIID may be of widespread importance for transcription and for expression of tissue-specific genes.
Collapse
Affiliation(s)
- Amy K Walker
- Section of Developmental and Stem Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
30
|
Abstract
The type 1 insulin-like growth factor receptor (IGF-1R) plays an important role in the establishment and maintenance of the transformed phenotype. It also has a strong antiapoptotic activity and has a significant influence on the control of cell and body size. Downregulation of the IGF-1R leads to massive apoptosis of cancer cells. These characteristics make it an attractive target for anticancer therapy.
Collapse
Affiliation(s)
- Renato Baserga
- Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th Street, 624 BLSB, Philadelphia, PA 19107, USA.
| | | | | |
Collapse
|
31
|
Matangkasombut O, Auty R, Buratowski S. Structure and Function of the TFIID Complex. ADVANCES IN PROTEIN CHEMISTRY 2004; 67:67-92. [PMID: 14969724 DOI: 10.1016/s0065-3233(04)67003-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Oranart Matangkasombut
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | | | | |
Collapse
|
32
|
Hochheimer A, Tjian R. Diversified transcription initiation complexes expand promoter selectivity and tissue-specific gene expression. Genes Dev 2003; 17:1309-20. [PMID: 12782648 DOI: 10.1101/gad.1099903] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Andreas Hochheimer
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, California 94720-3204, USA
| | | |
Collapse
|
33
|
Abstract
B-Myb is a highly conserved member of the Myb family of transcription factors, which has been implicated in cell cycle regulation. B-Myb is expressed in most proliferating cells and its activity is highly regulated around the G1/S-phase border of the cell cycle. It is generally assumed that B-Myb regulates the expression of genes that are crucial for cell proliferation; however, the identity of these genes, the molecular mechanisms by which B-Myb stimulates their expression and the involvement of other proteins have not been sufficiently clarified. We have employed the hamster cell line ts13 as a tool to demonstrate a functional link between B-Myb and the coactivator TAF(II)250, a key component of the transcriptional machinery which itself is essential for cell proliferation. ts13 cells express a point-mutated version of TAF(II)250 whose intrinsic histone acetyl transferase activity is temperature sensitive. Transactivation of Myb-responsive reporter genes by B-Myb is temperature-dependent in ts13 cells but not in ts13 cells, which have been rescued by transfection with an expression vector for wild-type TAF(II)250. Furthermore, B-Myb and TAF(II)250 can be coprecipitated, suggesting that both proteins are present in a complex. The formation of this complex is dependent on the DNA-binding domain of B-Myb and not on its transactivation domain. Taken together, these observations provide the first evidence that the coactivator TAF(II)250 is involved in the activation of Myb responsive promoters by B-Myb. The finding that B-Myb transactivation is dependent on a key coactivator involved in cell cycle control is consistent with and strengthens the idea that B-Myb plays a crucial role as a transcription factor in proliferating cells.
Collapse
Affiliation(s)
- Thorsten Bartusel
- Institut für Biochemie, Westfälische-Wilhelms-Universität Münster, Wilhelm-Klemm-Str 2, D-48149 Münster, Germany
| | | |
Collapse
|
34
|
Hilton TL, Wang EH. Transcription factor IID recruitment and Sp1 activation. Dual function of TAF1 in cyclin D1 transcription. J Biol Chem 2003; 278:12992-3002. [PMID: 12569092 DOI: 10.1074/jbc.m300412200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclin D1 is an oncogene that regulates progression through the G(1) phase of the cell cycle. A temperature-sensitive missense mutation in the transcription factor TAF1/TAF(II)250 induces the mutant ts13 cells to arrest in late G(1) by decreasing transcription of cell cycle regulators, including cyclin D1. Here we provide evidence that TAF1 serves two independent functions, one at the core promoter and one at the upstream activating Sp1 sites of the cyclin D1 gene. Using in vivo genomic footprinting, we have identified protein-DNA interactions within the cyclin D1 core promoter that are disrupted upon inactivation of TAF1 in ts13 cells. This 33-bp segment, which we termed the TAF1-dependent element 1 (TDE1), contains an initiation site that displays homology to the consensus motif and is sufficient to confer a requirement for TAF1 function. Electrophoretic mobility shift assays reveal that binding of ts13-TAF1-containing TFIID complexes to the cyclin D1 TDE1 occurs at 25 degrees C but not at 37 degrees C in vitro and involves the initiator element. Temperature-dependent DNA binding activity is also observed for TAF1-TAF2 heterodimers assembled with the ts13 mutant but not the wild-type TAF1 protein. These data suggest that a function of TAF is required for the interaction of TFIID with the cyclin D1 initiator. Our finding that recruitment of TFIID, by insertion of a TBP binding site upstream of the TDE1, restores basal but not activated transcription supports the model that TAF1 carries out two independent functions at the cyclin D1 promoter.
Collapse
Affiliation(s)
- Traci L Hilton
- University of Washington, Department of Pharmacology, School of Medicine, Health Sciences Center, Box 357280, Seattle, Washington 98195-7280, USA
| | | |
Collapse
|
35
|
Lin CY, Tuan J, Scalia P, Bui T, Comai L. The cell cycle regulatory factor TAF1 stimulates ribosomal DNA transcription by binding to the activator UBF. Curr Biol 2002; 12:2142-6. [PMID: 12498690 DOI: 10.1016/s0960-9822(02)01389-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Control of ribosome biogenesis is a potential mechanism for the regulation of cell size during growth, and a key step in regulating ribosome production is ribosomal RNA synthesis by RNA polymerase I (Pol I). In humans, Pol I transcription requires the upstream binding factor UBF and the selectivity factor SL1 to assemble coordinately on the promoter. UBF is an HMG box-containing factor that binds to the rDNA promoter and activates Pol I transcription through its acidic carboxy-terminal tail. Using UBF (284-670) as bait in a yeast two-hybrid screen, we have identified an interaction between UBF and TAF1, a factor involved in the transcription of cell cycle and growth regulatory genes. Coimmunoprecipitation and protein-protein interaction assays confirmed that TAF1 binds to UBF. Confocal microscopy showed that TAF1 colocalizes with UBF in Hela cells, and cell fractionation experiments provided further evidence that a portion of TAF1 is localized in the nucleolus, the organelle devoted to ribosomal DNA transcription. Cotransfection and in vitro transcription assays showed that TAF1 stimulates Pol I transcription in a dosage-dependent manner. Thus, TAF1 may be involved in the coordinate expression of Pol I- and Pol II-transcribed genes required for protein biosynthesis and cell cycle progression.
Collapse
Affiliation(s)
- Chih-Yin Lin
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | |
Collapse
|
36
|
Martinez E. Multi-protein complexes in eukaryotic gene transcription. PLANT MOLECULAR BIOLOGY 2002; 50:925-47. [PMID: 12516863 DOI: 10.1023/a:1021258713850] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Specific transcription initiation by RNA polymerase II at eukaryotic protein-coding genes involves the cooperative assembly at the core promoter of more than 40 distinct proteins--with a total mass of over 2 MDa--including RNA polymerase II itself and general/basal transcription initiation factors, to form a stable pre-initiation complex (PIC). In vivo, PIC assembly is a major point of regulation by sequence-specific transcription regulators (activators and repressors) and is hindered by the packaging of promoter DNA into nucleosomes and higher order chromatin structures. Genetic and biochemical studies have recently identified a variety of transcription cofactors/co-regulators (coactivators and corepressors) that interact with sequence-specific regulators and/or various components of the general/basal transcription machinery and are essential for regulated transcription. An emerging view from these studies is that regulators must target two types of transcription cofactors: chromatin-modifying/remodeling cofactors and general cofactors that associate with and/or influence the activities of components of the general/basal transcription machinery. The recent biochemical identification and characterization of many different chromatin-modifying and general transcription cofactors has revealed their often complex multi-subunit nature and a previously unsuspected level of structural and functional redundancy. Another emerging theme is the multi-functional nature of chromatin-modifying cofactor complexes that appear to couple gene-specific transcription to other cellular processes.
Collapse
Affiliation(s)
- Ernest Martinez
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
37
|
Mencía M, Moqtaderi Z, Geisberg JV, Kuras L, Struhl K. Activator-specific recruitment of TFIID and regulation of ribosomal protein genes in yeast. Mol Cell 2002; 9:823-33. [PMID: 11983173 DOI: 10.1016/s1097-2765(02)00490-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In yeast, TFIID strongly associates with nearly all ribosomal protein (RP) promoters, but a TAF-independent form of TBP preferentially associates with other active promoters. RP promoters are regulated in response to growth stimuli, in most cases by a Rap1-containing activator. This Rap1-dependent activator is necessary and sufficient for TFIID recruitment, whereas other activators do not efficiently recruit TFIID. TAFs are recruited to RP promoters even when TBP and other general transcription factors are not associated, suggesting that TFIID recruitment involves a direct activator-TAF interaction. Most RP promoters lack canonical TATA elements, and they are preferentially activated by the Rap1-containing activator. These results demonstrate activator-specific recruitment of TFIID in vivo, and they suggest that TFIID recruitment is important for coordinate expression of RP genes.
Collapse
Affiliation(s)
- Mario Mencía
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
38
|
Hsiang CH, Straus DS. Cyclopentenone causes cell cycle arrest and represses cyclin D1 promoter activity in MCF-7 breast cancer cells. Oncogene 2002; 21:2212-26. [PMID: 11948404 DOI: 10.1038/sj.onc.1205293] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2001] [Revised: 01/03/2002] [Accepted: 01/08/2002] [Indexed: 11/09/2022]
Abstract
Evidence indicates that overexpression of cyclin D1 is an important event in malignant transformation of breast cancer cells. Therefore, cyclin D1 is a potential target for mechanistically-based chemoprevention/treatment of breast cancer. Treatment of serum-stimulated quiescent MCF-7 breast cancer cells with cyclopentenone (2-cyclopenten-1-one) blocked progression through G1 and into S phase. Growth arrest of the cyclopentenone-treated cells in G1 was associated with changes in the levels of several proteins that control the cell cycle, including a dramatic decrease in cyclin D1 protein expression. Cyclopentenone also decreased the abundance of cyclin D1 mRNA and nuclear transcripts, indicating that it regulated cyclin D1 expression at the transcriptional level. Cyclopentenone selectively inhibited the activity of the cyclin D1 and cyclin A promoters but not the activity of several other control promoters. Deletion analysis indicated that the cyclopentenone response element was located in the cyclin D1 core promoter. Additional functional studies showed that a sequence within the core promoter (CycY, located downstream from the initiator element) played an important role in activation of the cyclin D1 promoter in MCF-7 cells. Electrophoretic mobility shift assays demonstrated specific binding of the transcription factor BTEB to the CycY site. The cyclopentenone response element did not correspond to the CycY site but rather mapped to the initiator element itself. The overall results suggest that cyclopentenone interferes with the transcription initiation complex that assembles over the cyclin D1 initiator element, leading to selective inhibition of cyclin D1 gene transcription.
Collapse
Affiliation(s)
- Chin-Hui Hsiang
- Biomedical Sciences Division and Biology Department, University of California, Riverside, California, CA 92521-0121, USA
| | | |
Collapse
|
39
|
Banik U, Beechem JM, Klebanow E, Schroeder S, Weil PA. Fluorescence-based analyses of the effects of full-length recombinant TAF130p on the interaction of TATA box-binding protein with TATA box DNA. J Biol Chem 2001; 276:49100-9. [PMID: 11677244 DOI: 10.1074/jbc.m109246200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have used a combination of fluorescence anisotropy spectroscopy and fluorescence-based native gel electrophoresis methods to examine the effects of the transcription factor IID-specific subunit TAF130p (TAF145p) upon the TATA box DNA binding properties of TATA box-binding protein (TBP). Purified full-length recombinant TAF130p decreases TBP-TATA DNA complex formation at equilibrium by competing directly with DNA for binding to TBP. Interestingly, we have found that full-length TAF130p is capable of binding multiple molecules of TBP with nanomolar binding affinity. The biological implications of these findings are discussed.
Collapse
Affiliation(s)
- U Banik
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232-0615, USA
| | | | | | | | | |
Collapse
|
40
|
Rashevsky-Finkel A, Silkov A, Dikstein R. A composite nuclear export signal in the TBP-associated factor TAFII105. J Biol Chem 2001; 276:44963-9. [PMID: 11567023 DOI: 10.1074/jbc.m106112200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TAF(II)105 is a sub-stoichiometric subunit of TFIID important for activation of anti-apoptotic genes and B cell specific genes by the transcription factors NF-kappaB and OCA-B. This subunit is highly enriched in B and T lymphocytes, and its expression is regulated at a posttranscriptional level. In the present study we investigated the subcellular localization of TAF(II)105. In normal B cells, a significant portion of native TAF(II)105 protein is found in the cytoplasm. Treatment of these cells with B cell-specific stimuli decreased the level of cytoplasmic TAF(II)105. In adherent cultured cells, TAF(II)105 is predominantly nuclear; however, a small fraction of the cells showed either cytoplasmic or homogenous distribution of TAF(II)105. Analysis of different TAF(II)105 mutants and green fluorescence protein fusion proteins identified a region composed of two adjacent sequences displaying nuclear export activity, suggesting that nuclear export of TAF(II)105 is mediated by a composite nuclear export signal. TAF(II)105 nuclear export signal is leptomycin B-resistant indicating that it belongs to a CRM1-independent nuclear export pathway. These results reveal a novel mode of regulation of a specialized component of the general transcription apparatus that may affect the transcription of its target genes.
Collapse
Affiliation(s)
- A Rashevsky-Finkel
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
41
|
Kirchner J, Sanders SL, Klebanow E, Weil PA. Molecular genetic dissection of TAF25, an essential yeast gene encoding a subunit shared by TFIID and SAGA multiprotein transcription factors. Mol Cell Biol 2001; 21:6668-80. [PMID: 11533254 PMCID: PMC99812 DOI: 10.1128/mcb.21.19.6668-6680.2001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have performed a systematic structure-function analysis of Saccharomyces cerevisiae TAF25, an evolutionarily conserved, single-copy essential gene which encodes the 206-amino-acid TAF25p protein. TAF25p is an integral subunit of both the 15-subunit general transcription factor TFIID and the multisubunit, chromatin-acetylating transcriptional coactivator SAGA. We used hydroxylamine mutagenesis, targeted deletion, alanine-scanning mutagenesis, high-copy suppression methods, and two-hybrid screening to dissect TAF25. Temperature-sensitive mutant strains generated were used for coimmunoprecipitation and transcription analyses to define the in vivo functions of TAF25p. The results of these analyses show that TAF25p is comprised of multiple mutable elements which contribute importantly to RNA polymerase II-mediated mRNA gene transcription.
Collapse
Affiliation(s)
- J Kirchner
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA
| | | | | | | |
Collapse
|
42
|
Lobenhofer EK, Bushel PR, Afshari CA, Hamadeh HK. Progress in the application of DNA microarrays. ENVIRONMENTAL HEALTH PERSPECTIVES 2001; 109:881-91. [PMID: 11673116 PMCID: PMC1240437 DOI: 10.1289/ehp.01109881] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Microarray technology has been applied to a variety of different fields to address fundamental research questions. The use of microarrays, or DNA chips, to study the gene expression profiles of biologic samples began in 1995. Since that time, the fundamental concepts behind the chip, the technology required for making and using these chips, and the multitude of statistical tools for analyzing the data have been extensively reviewed. For this reason, the focus of this review will be not on the technology itself but on the application of microarrays as a research tool and the future challenges of the field.
Collapse
Affiliation(s)
- E K Lobenhofer
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
43
|
Tsukihashi Y, Kawaichi M, Kokubo T. Requirement for yeast TAF145 function in transcriptional activation of the RPS5 promoter that depends on both core promoter structure and upstream activating sequences. J Biol Chem 2001; 276:25715-26. [PMID: 11337503 DOI: 10.1074/jbc.m102416200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The general transcription factor TFIID has been shown to be involved in both core promoter recognition and the transcriptional activation of eukaryotic genes. We recently isolated TAF145 (one of TFIID subunits) temperature-sensitive mutants in yeast, in which transcription of the TUB2 gene is impaired at restrictive temperatures due to a defect in core promoter recognition. Here, we show in these mutants that the transcription of the RPS5 gene is impaired, mostly due to a defect in transcriptional activation rather than to a defect in core promoter recognition, although the latter is slightly affected as well. Surprisingly, the RPS5 core promoter can be activated by various activation domains fused to a GAL4 DNA binding domain, but not by the original upstream activating sequence (UAS) of the RPS5 gene. In addition, a heterologous CYC1 core promoter can be activated by RPS5-UAS at normal levels even in these mutants. These observations indicate that a distinct combination of core promoters and activators may exploit alternative activation pathways that vary in their requirement for TAF145 function. In addition, a particular function of TAF145 that is deleted in our mutants appears to be involved in both core promoter recognition and transcriptional activation.
Collapse
Affiliation(s)
- Y Tsukihashi
- Division of Gene Function in Animals, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | |
Collapse
|
44
|
Gangloff YG, Romier C, Thuault S, Werten S, Davidson I. The histone fold is a key structural motif of transcription factor TFIID. Trends Biochem Sci 2001; 26:250-7. [PMID: 11295558 DOI: 10.1016/s0968-0004(00)01741-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Transcription factor TFIID is a multiprotein complex composed of the TATA binding protein and its associated factors, and is required for accurate and regulated initiation of transcription by RNA polymerase II. The subunit composition of this factor is highly conserved from yeast to mammals. X-ray crystallography and biochemical experiments have shown that the histone fold motif mediates many of the subunit interactions within this complex. These results, together with electron microscopy and yeast genetics, provide insights into the overall organization of this complex.
Collapse
Affiliation(s)
- Y G Gangloff
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 163 67404, Illkirch Cédex, C.U. de, Strasbourg, France
| | | | | | | | | |
Collapse
|
45
|
Abstract
The role of histone acetylation as a key mechanism of transcriptional regulation has been well established. Recent advances suggest that histone acetyltransferases also play important roles in histone-modulated processes such as DNA replication, recombination and repair. In addition, acetylation of transcriptional cofactors and other proteins is an efficient means of regulating a diverse range of molecular interactions. As new histone acetyltransferases and substrates are rapidly emerging, it is becoming apparent that protein acetylation may rival phosphorylation as a mechanism to transduce cellular regulatory signals.
Collapse
Affiliation(s)
- H Chen
- Department of Biological Chemistry, UC Davis Cancer Center/Basic Science Program, University of California at Davis, Sacramento, California 95817, USA.
| | | | | |
Collapse
|
46
|
Perletti L, Kopf E, Carré L, Davidson I. Coordinate regulation of RARgamma2, TBP, and TAFII135 by targeted proteolysis during retinoic acid-induced differentiation of F9 embryonal carcinoma cells. BMC Mol Biol 2001; 2:4. [PMID: 11285139 PMCID: PMC31370 DOI: 10.1186/1471-2199-2-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2001] [Accepted: 03/22/2001] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Treatment of mouse F9 embryonal carcinoma cells with all-trans retinoic acid (T-RA) induces differentiation into primitive endodermal type cells. Differentiation requires the action of the receptors for all trans, and 9cis-retinoic acid (RAR and RXR, respectively) and is accompanied by growth inhibition, changes in cell morphology, increased apoptosis, proteolytic degradation of the RARgamma2 receptor, and induction of target genes. RESULTS We show that the RNA polymerase II transcription factor TFIID subunits TBP and TAFII135 are selectively depleted in extracts from differentiated F9 cells. In contrast, TBP and TAFII135 are readily detected in extracts from differentiated F9 cells treated with proteasome inhibitors showing that their disappearance is due to targeted proteolysis. This regulatory pathway is not limited to F9 cells as it is also seen when C2C12 myoblasts differentiate into myotubes. Targeting of TBP and TAFII135 for proteolysis in F9 cells takes place coordinately with that previously reported for the RARgamma2 receptor and is delayed or does not take place in RAR mutant F9 cells where differentiation is known to be impaired or abolished. Moreover, ectopic expression of TAFII135 delays proteolysis of the RARgamma2 receptor and impairs primitive endoderm differentiation at an early stage as evidenced by cell morphology, induction of marker genes and apoptotic response. In addition, enhanced TAFII135 expression induces a novel differentiation pathway characterised by the appearance of cells with an atypical elongated morphology which are cAMP resistant. CONCLUSIONS These observations indicate that appropriately timed proteolysis of TBP and TAFII135 is required for normal F9 cell differentiation. Hence, in addition to transactivators, targeted proteolysis of basal transcription factors also plays an important role in gene regulation in response to physiological stimuli.
Collapse
Affiliation(s)
- Lucia Perletti
- Institut de Génétique et de Biologie Moléculaire et Cellulaire. CNRS/INSERM/ULP. B.P. 163-67404 Illkirch Cédex. C.U. de Strasbourg France
| | - Eliezer Kopf
- Institut de Génétique et de Biologie Moléculaire et Cellulaire. CNRS/INSERM/ULP. B.P. 163-67404 Illkirch Cédex. C.U. de Strasbourg France
| | - Lucie Carré
- Institut de Génétique et de Biologie Moléculaire et Cellulaire. CNRS/INSERM/ULP. B.P. 163-67404 Illkirch Cédex. C.U. de Strasbourg France
| | - Irwin Davidson
- Institut de Génétique et de Biologie Moléculaire et Cellulaire. CNRS/INSERM/ULP. B.P. 163-67404 Illkirch Cédex. C.U. de Strasbourg France
| |
Collapse
|
47
|
Abstract
TFIID, a multiprotein complex comprising the TATA-binding protein (TBP) and TBP-associated factors (TAFs), associates specifically with core promoters and nucleates the assembly the RNA polymerase II transcription machinery. In yeast cells, TFIID is not generally required for transcription, although it plays an important role at many promoters. Understanding of the specific functions and physiological roles of individual TAFs within TFIID has been hampered by the fact that depletion or thermal inactivation of individual TAFs generally results in dissociation of the TFIID complex. We describe here C-terminally deleted derivatives of yeast TAF130 that assemble into normal TFIID complexes but are transcriptionally inactive in vivo. In vivo, these mutant TFIID complexes are dramatically reduced in their ability to associate with all promoters tested. In vitro, a TFIID complex containing a deleted form of TAF130 associates poorly with DNA, but it is unaffected for interacting with transcriptional activation domains. These results suggest that the C-terminal region of TAF130 is required for TFIID to associate with promoters.
Collapse
Affiliation(s)
- M Mencía
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
48
|
Raval A, Howcroft TK, Weissman JD, Kirshner S, Zhu XS, Yokoyama K, Ting J, Singer DS. Transcriptional coactivator, CIITA, is an acetyltransferase that bypasses a promoter requirement for TAF(II)250. Mol Cell 2001; 7:105-15. [PMID: 11172716 DOI: 10.1016/s1097-2765(01)00159-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The CIITA coactivator is essential for transcriptional activation of MHC class II genes and mediates enhanced MHC class I transcription. We now report that CIITA contains an intrinsic acetyltransferase (AT) activity that maps to a region within the N-terminal segment of CIITA, between amino acids 94 and 132. The AT activity is regulated by the C-terminal GTP-binding domain and is stimulated by GTP. CIITA-mediated transactivation depends on the AT activity. Further, we report that, although constitutive MHC class I transcription depends on TAF(II)250, CIITA activates the promoter in the absence of functional TAF(II)250.
Collapse
Affiliation(s)
- A Raval
- Experimental Immunology Branch, National Cancer Institute, Building 10, Room 4B-36, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Siegert JL, Rushton JJ, Sellers WR, Kaelin WG, Robbins PD. Cyclin D1 suppresses retinoblastoma protein-mediated inhibition of TAFII250 kinase activity. Oncogene 2000; 19:5703-11. [PMID: 11126356 DOI: 10.1038/sj.onc.1203966] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The retinoblastoma tumor suppressor protein has been shown to bind directly and inhibit a transcriptionally-important amino-terminal kinase domain of TATA-binding protein-associated factor TAFII250. Cyclin D1 also is able to associate with the amino terminus of TAFII250 in a region very similar to or overlapping the Rb-binding site. In this study, we have examined whether cyclin D1 affects the functional interaction between Rb and TAFII250. We observed that when cyclin D1 is coincubated with Rb and TAFII250, the ability of Rb to inhibit TAFII250 kinase activity is effectively blocked. However, cyclin D1 by itself has no apparent effect on TAFII250 kinase activity. We further found that the Rb-related protein p107 can inhibit TAFII250 kinase activity, and this inhibition is likewise alleviated by cyclin D1. Cyclin D1 prevents the kinase-inhibitory effect of an Rb mutant unable to bind to D-type cyclins, indicating that it is acting through its association with TAFII250 and not with Rb. However, we found no evidence of TAFII250-binding competition between Rb and cyclin D1 in vitro. The adenovirus E1A protein, which also binds to both Rb and TAFII250, exhibited a suppressive effect on Rb-mediated kinase inhibition similar to that seen with cyclin D1. Our results suggest a novel means by which cyclin D1 may be able to independently regulate the activity of Rb.
Collapse
Affiliation(s)
- J L Siegert
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
50
|
Furukawa T, Tanese N. Assembly of partial TFIID complexes in mammalian cells reveals distinct activities associated with individual TATA box-binding protein-associated factors. J Biol Chem 2000; 275:29847-56. [PMID: 10896937 DOI: 10.1074/jbc.m002989200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The TATA box-binding protein (TBP) and TBP-associated factors (TAF(II)s) compose the general transcription factor TFIID. The TAF(II) subunits mediate activated transcription by RNA polymerase II by interacting directly with site-specific transcriptional regulators. TAF(II)s also participate in promoter recognition by contacting core promoter elements in the context of TFIID. To further dissect the contribution of individual TAF(II) subunits to mammalian TFIID function, we employed a vaccinia virus-based protein expression system to study protein-protein interactions and complex assembly. We identified the domains of human (h) TAF(II)130 required for TAF(II)-TAF(II) interactions and formation of a complex with hTBP, hTAF(II)100, and hTAF(II)250. Functional analysis of partial TFIID complexes formed in vivo indicated that hTAF(II)130 was required for transcriptional activation by Sp1 in vitro. DNase I footprinting experiments demonstrated that purified hTBP/hTAF(II)250 complex reconstituted with or without additional TAF(II)s was significantly reduced for TATA box binding (as much as 9-fold) compared with free hTBP. By contrast, hTAF(II)130 stabilized binding of hTBP to the TATA box, whereas hTAF(II)100 had little effect. Thus, our biochemical analysis supports the notion that TAF(II)s possess distinct functions to regulate the activity of TFIID.
Collapse
Affiliation(s)
- T Furukawa
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|