1
|
Eichinger J, Reiche AM, Fuchsmann P, Eggerschwiler L, Münger A, Huber K, Dohme-Meier F. Pathway mapping of exhaled volatile organic compounds associated with blood and ruminal fluid metabolites to describe the nutritional and metabolic status of lactating dairy cows. J Dairy Sci 2025; 108:2947-2963. [PMID: 39710268 DOI: 10.3168/jds.2024-25390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024]
Abstract
Exhaled breath offers an interesting matrix for low invasive sampling of potentially relevant information about the organism's metabolism in the form of volatile organic compounds (VOC). The VOC can be exhaled by the ructus or pass the blood-lung barrier for expiration through the lungs. In this work, we consider exhaled breath as a mixture of VOC derived from the lungs and from the upper gastrointestinal tract. However, the informative value of exhaled breath in ruminants remains largely unstudied. The aim of this study was to identify exhaled VOC that could be used to assess the nutritional and metabolic status of dairy cows. To do so, we performed untargeted analysis of exhaled VOC from dairy cows, investigated their correlations with commonly analyzed blood and ruminal fluid metabolites and the calculated energy balance (EB), and explored the underlying pathways of correlated exhaled VOC. This was done as part of a feeding experiment in which 32 lactating Holstein dairy cows were assigned to 2 basal diets for 12 wk. Half of the cows were fed a hay-based diet, and the other half were fed a silage-based diet. During experimental wk 1 through 8, half of the cows in each basal diet group were supplemented with a control concentrate, and the other half received an experimental concentrate containing essential oils. During experimental wk 9 through 12, all cows received the control concentrate. Exhaled breath, blood, and ruminal fluid samples were collected every 4 experimental weeks (wk 4, 8, and 12) on 3 consecutive sampling days. Exhaled breath was analyzed for VOC, ruminal fluid for VFA and ammonia, and serum samples for albumin, total protein, urea, glucose, cholesterol, BHB, and nonesterified fatty acid (NEFA) concentrations. Pearson correlations were calculated to assess the associations between exhaled VOC and concentrations of blood and ruminal fluid metabolites and the calculated EB. Fifteen correlations were found between exhaled VOC (tetradecanal and γ-hydroxybutyrate [GHB], 3-penten-2-one, 4-hydroxy-4-methylpentan-2-one, 2-ethylhexanal, 2-ethylhexan-1-ol, p-cymene) and ruminal fluid (acetate, butyrate, valerate, and ammonia) and blood metabolite concentrations (BHB, NEFA, glucose, urea, and cholesterol) across the cow groups. The underlying pathways of 3-penten-2-one, GHB, and tetradecanal were mainly related to fat and protein catabolism and therefore to the actual animal metabolism. The correlations with the other 4 exhaled VOC, 4-hydroxy-4-methylpentan-2-one, p-cymene, 2-ethyl-hexan-1-ol, and 2-ethylhexanal, were diet- or time-related, specifically due to differences in feed ingredients. The results demonstrate the associations of single exhaled VOC with the nutritional and metabolic status of healthy dairy cows. Their potential as new biomarkers should be further investigated in cows in various nutritional and metabolic states.
Collapse
Affiliation(s)
- J Eichinger
- Ruminant Nutrition and Emissions, Agroscope, 1700 Posieux, Switzerland; University of Hohenheim, Institute of Animal Science, 70599 Stuttgart, Germany
| | - A-M Reiche
- Ruminant Nutrition and Emissions, Agroscope, 1700 Posieux, Switzerland
| | - P Fuchsmann
- Human Nutrition, Sensory Analysis and Flavour, Agroscope, 3097 Bern, Switzerland
| | - L Eggerschwiler
- Research Contracts Animals, Agroscope, 1700 Posieux, Switzerland
| | - A Münger
- Ruminant Nutrition and Emissions, Agroscope, 1700 Posieux, Switzerland
| | - K Huber
- University of Hohenheim, Institute of Animal Science, 70599 Stuttgart, Germany
| | - F Dohme-Meier
- Ruminant Nutrition and Emissions, Agroscope, 1700 Posieux, Switzerland.
| |
Collapse
|
2
|
Cesaro S, Orlando M, Bettin I, Longo C, Spagnoli G, de Laureto PP, Molla G, Bertoldi M. A crucial active site network of titratable residues guides catalysis and NAD + binding in human succinic semialdehyde dehydrogenase. Protein Sci 2025; 34:e70024. [PMID: 39731543 DOI: 10.1002/pro.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/30/2024]
Abstract
Human succinic semialdehyde dehydrogenase is a mitochondrial enzyme fundamental in the neurotransmitter γ-aminobutyric acid catabolism. It catalyzes the NAD+-dependent oxidative degradation of its derivative, succinic semialdehyde, to succinic acid. Mutations in its gene lead to an inherited neurometabolic rare disease, succinic semialdehyde dehydrogenase deficiency, characterized by mental and developmental delay. Due to the poor characterization of this enzyme, we carried out evolutionary and kinetic investigations to contribute to its functional behavior, a prerequisite to interpreting pathogenic variants. An in silico analysis shows that succinic semialdehyde dehydrogenases belong to two families, one human-like and the other of bacterial origin, differing in the oligomeric state and in a network of active site residues. This information is coupled to the biophysical-biochemical characterization of the human recombinant enzyme uncovering that (i) catalysis proceeds by an ordered bi-bi mechanism with NAD+ binding before the aldehyde that exerts a partial non-competitive inhibition; (ii) a stabilizing complex between the catalytic Cys340 and NAD+ is observed and interpreted as a protective mechanism; and (iii) a concerted non-covalent network assists the action of the catalytic residues Cys340 and Glu306. Through mutational analyses of Lys214, Glu306, Cys340, and Glu515 associated with pH studies, we showed that NAD+ binding is controlled by the dyad Lys214-Glu515. Moreover, catalysis is assured by proton transfer exerted by the same dyad networked with the catalytic Glu306, involved in catalytic Cys340 deprotonation/reprotonation. The identification of this weak bond network essential for cofactor binding and catalysis represents a first step to tackling the molecular basis for its deficiency.
Collapse
Affiliation(s)
- Samuele Cesaro
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Marco Orlando
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Department of Biotechnology e Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Ilaria Bettin
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
- Department of Biology, Friedrich-Alexander University, Erlangen-Nürnberg, Germany
| | - Carmen Longo
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Giulia Spagnoli
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | | | - Gianluca Molla
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Mariarita Bertoldi
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| |
Collapse
|
3
|
Didiasova M, Cesaro S, Feldhoff S, Bettin I, Tiegel N, Füssgen V, Bertoldi M, Tikkanen R. Functional Characterization of a Spectrum of Genetic Variants in a Family with Succinic Semialdehyde Dehydrogenase Deficiency. Int J Mol Sci 2024; 25:5237. [PMID: 38791277 PMCID: PMC11121183 DOI: 10.3390/ijms25105237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Succinic semialdehyde dehydrogenase (SSADH) is a mitochondrial enzyme involved in the catabolism of the neurotransmitter γ-amino butyric acid. Pathogenic variants in the gene encoding this enzyme cause SSADH deficiency, a developmental disease that manifests as hypotonia, autism, and epilepsy. SSADH deficiency patients usually have family-specific gene variants. Here, we describe a family exhibiting four different SSADH variants: Val90Ala, Cys93Phe, and His180Tyr/Asn255Asp (a double variant). We provide a structural and functional characterization of these variants and show that Cys93Phe and Asn255Asp are pathogenic variants that affect the stability of the SSADH protein. Due to the impairment of the cofactor NAD+ binding, these variants show a highly reduced enzyme activity. However, Val90Ala and His180Tyr exhibit normal activity and expression. The His180Tyr/Asn255Asp variant exhibits a highly reduced activity as a recombinant species, is inactive, and shows a very low expression in eukaryotic cells. A treatment with substances that support protein folding by either increasing chaperone protein expression or by chemical means did not increase the expression of the pathogenic variants of the SSADH deficiency patient. However, stabilization of the folding of pathogenic SSADH variants by other substances may provide a treatment option for this disease.
Collapse
Affiliation(s)
- Miroslava Didiasova
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, DE-35390 Giessen, Germany; (M.D.); (S.F.)
| | - Samuele Cesaro
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy; (S.C.); (I.B.); (M.B.)
| | - Simon Feldhoff
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, DE-35390 Giessen, Germany; (M.D.); (S.F.)
| | - Ilaria Bettin
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy; (S.C.); (I.B.); (M.B.)
| | - Nana Tiegel
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, DE-35390 Giessen, Germany; (M.D.); (S.F.)
| | - Vera Füssgen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, DE-35390 Giessen, Germany; (M.D.); (S.F.)
| | - Mariarita Bertoldi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy; (S.C.); (I.B.); (M.B.)
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, DE-35390 Giessen, Germany; (M.D.); (S.F.)
| |
Collapse
|
4
|
Tokatly Latzer I, Roullet JB, Cesaro S, DiBacco ML, Arning E, Rotenberg A, Lee HHC, Opladen T, Jeltsch K, García-Cazorla À, Juliá-Palacios N, Gibson KM, Bertoldi M, Pearl PL. Phenotypic correlates of structural and functional protein impairments resultant from ALDH5A1 variants. Hum Genet 2023; 142:1755-1776. [PMID: 37962671 DOI: 10.1007/s00439-023-02613-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023]
Abstract
To investigate the genotype-to-protein-to-phenotype correlations of succinic semialdehyde dehydrogenase deficiency (SSADHD), an inherited metabolic disorder of γ-aminobutyric acid catabolism. Bioinformatics and in silico mutagenesis analyses of ALDH5A1 variants were performed to evaluate their impact on protein stability, active site and co-factor binding domains, splicing, and homotetramer formation. Protein abnormalities were then correlated with a validated disease-specific clinical severity score and neurological, neuropsychological, biochemical, neuroimaging, and neurophysiological metrics. A total of 58 individuals (1:1 male/female ratio) were affected by 32 ALDH5A1 pathogenic variants, eight of which were novel. Compared to individuals with single homotetrameric or multiple homo and heterotetrameric proteins, those predicted not to synthesize any functional enzyme protein had significantly lower expression of ALDH5A1 (p = 0.001), worse overall clinical outcomes (p = 0.008) and specifically more severe cognitive deficits (p = 0.01), epilepsy (p = 0.04) and psychiatric morbidity (p = 0.04). Compared to individuals with predictions of having no protein or a protein impaired in catalytic functions, subjects whose proteins were predicted to be impaired in stability, folding, or oligomerization had a better overall clinical outcome (p = 0.02) and adaptive skills (p = 0.04). The quantity and type of enzyme proteins (no protein, single homotetramers, or multiple homo and heterotetramers), as well as their structural and functional impairments (catalytic or stability, folding, or oligomerization), contribute to phenotype severity in SSADHD. These findings are valuable for assessment of disease prognosis and management, including patient selection for gene replacement therapy. Furthermore, they provide a roadmap to determine genotype-to-protein-to-phenotype relationships in other autosomal recessive disorders.
Collapse
Affiliation(s)
- Itay Tokatly Latzer
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
- Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Jean-Baptiste Roullet
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Samuele Cesaro
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, VR, Italy
| | - Melissa L DiBacco
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Erland Arning
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Alexander Rotenberg
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Henry H C Lee
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Thomas Opladen
- Division of Neuropediatrics and Metabolic Medicine, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Kathrin Jeltsch
- Division of Neuropediatrics and Metabolic Medicine, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Àngels García-Cazorla
- Neurometabolic Unit, Neurology Department, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Natalia Juliá-Palacios
- Neurometabolic Unit, Neurology Department, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain
| | - K Michael Gibson
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Mariarita Bertoldi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, VR, Italy.
| | - Phillip L Pearl
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Nehela Y, Killiny N. Not Just a Cycle: Three gab Genes Enable the Non-Cyclic Flux Toward Succinate via GABA Shunt in ' Candidatus Liberibacter asiaticus'-Infected Citrus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:200-214. [PMID: 34775834 DOI: 10.1094/mpmi-09-21-0241-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although the mitochondria retain all required enzymes for an intact tricarboxylic acid (TCA) cycle, plants might shift the cyclic flux from the TCA cycle to an alternative noncyclic pathway via γ-aminobutyric acid (GABA) shunt under specific physiological conditions. We hypothesize that several genes may ease this noncyclic flux and contribute to the citrus response to the phytopathogenic bacterium 'Candidatus Liberibacter asiaticus', the causal agent of Huanglongbing in citrus. To test this hypothesis, we used multiomics techniques (metabolomics, fluxomics, and transcriptomics) to investigate the potential roles of putative gab homologies from Valencia sweet orange (Citrus sinensis). Our findings showed that 'Ca. L. asiaticus' significantly increased the endogenous GABA and succinate content but decreased ketoglutarate in infected citrus plants. Citrus genome harbors three putative gab genes, including amino-acid permease (also known as GABA permease; CsgabP), GABA transaminase (CsgabT), and succinate-semialdehyde dehydrogenase (also known as GABA dehydrogenase; CsgabD). The transcript levels of CsgabP, CsgabT, and CsgabD were upregulated in citrus leaves upon the infection with 'Ca. L. asiaticus' and after the exogenous application of GABA or deuterium-labeled GABA isotope (GABA-D6). Moreover, our finding showed that exogenously applied GABA is quickly converted to succinate and fed into the TCA cycle. Likewise, the fluxomics study showed that GABA-D6 is rapidly metabolized to succinate-D4. Our work proved that GABA shunt and three predicated gab genes from citrus, support the upstream noncyclic flux toward succinate rather than an intact TCA cycle and contribute to citrus defense responses to 'Ca. L. asiaticus'.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Yasser Nehela
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, U.S.A
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, U.S.A
| |
Collapse
|
6
|
Lee HHC, McGinty GE, Pearl PL, Rotenberg A. Understanding the Molecular Mechanisms of Succinic Semialdehyde Dehydrogenase Deficiency (SSADHD): Towards the Development of SSADH-Targeted Medicine. Int J Mol Sci 2022; 23:2606. [PMID: 35269750 PMCID: PMC8910003 DOI: 10.3390/ijms23052606] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/21/2022] Open
Abstract
Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare genetic disorder caused by inefficient metabolic breakdown of the major inhibitory neurotransmitter, γ-aminobutyric acid (GABA). Pathologic brain accumulation of GABA and γ-hydroxybutyrate (GHB), a neuroactive by-product of GABA catabolism, leads to a multitude of molecular abnormalities beginning in early life, culminating in multifaceted clinical presentations including delayed psychomotor development, intellectual disability, hypotonia, and ataxia. Paradoxically, over half of patients with SSADHD also develop epilepsy and face a significant risk of sudden unexpected death in epilepsy (SUDEP). Here, we review some of the relevant molecular mechanisms through which impaired synaptic inhibition, astrocytic malfunctions and myelin defects might contribute to the complex SSADHD phenotype. We also discuss the gaps in knowledge that need to be addressed for the implementation of successful gene and enzyme replacement SSADHD therapies. We conclude with a description of a novel SSADHD mouse model that enables 'on-demand' SSADH restoration, allowing proof-of-concept studies to fine-tune SSADH restoration in preparation for eventual human trials.
Collapse
Affiliation(s)
- Henry H. C. Lee
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA; (G.E.M.); (A.R.)
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Gabrielle E. McGinty
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA; (G.E.M.); (A.R.)
| | - Phillip L. Pearl
- Division of Epilepsy & Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA;
| | - Alexander Rotenberg
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA; (G.E.M.); (A.R.)
- Division of Epilepsy & Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA;
| |
Collapse
|
7
|
Uncovering global-scale risks from commercial chemicals in air. Nature 2021; 600:456-461. [PMID: 34912090 DOI: 10.1038/s41586-021-04134-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 10/13/2021] [Indexed: 12/20/2022]
Abstract
Commercial chemicals are used extensively across urban centres worldwide1, posing a potential exposure risk to 4.2 billion people2. Harmful chemicals are often assessed on the basis of their environmental persistence, accumulation in biological organisms and toxic properties, under international and national initiatives such as the Stockholm Convention3. However, existing regulatory frameworks rely largely upon knowledge of the properties of the parent chemicals, with minimal consideration given to the products of their transformation in the atmosphere. This is mainly due to a dearth of experimental data, as identifying transformation products in complex mixtures of airborne chemicals is an immense analytical challenge4. Here we develop a new framework-combining laboratory and field experiments, advanced techniques for screening suspect chemicals, and in silico modelling-to assess the risks of airborne chemicals, while accounting for atmospheric chemical reactions. By applying this framework to organophosphate flame retardants, as representative chemicals of emerging concern5, we find that their transformation products are globally distributed across 18 megacities, representing a previously unrecognized exposure risk for the world's urban populations. More importantly, individual transformation products can be more toxic and up to an order-of-magnitude more persistent than the parent chemicals, such that the overall risks associated with the mixture of transformation products are also higher than those of the parent flame retardants. Together our results highlight the need to consider atmospheric transformations when assessing the risks of commercial chemicals.
Collapse
|
8
|
Cerminara M, Spirito G, Pisciotta L, Squillario M, Servetti M, Divizia MT, Lerone M, Berloco B, Boeri S, Nobili L, Vozzi D, Sanges R, Gustincich S, Puliti A. Case Report: Whole Exome Sequencing Revealed Disease-Causing Variants in Two Genes in a Patient With Autism Spectrum Disorder, Intellectual Disability, Hyperactivity, Sleep and Gastrointestinal Disturbances. Front Genet 2021; 12:625564. [PMID: 33679889 PMCID: PMC7930735 DOI: 10.3389/fgene.2021.625564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/19/2021] [Indexed: 12/26/2022] Open
Abstract
Autism Spectrum Disorder (ASD) refers to a broad range of conditions characterized by difficulties in communication, social interaction and behavior, and may be accompanied by other medical or psychiatric conditions. Patients with ASD and comorbidities are often difficult to diagnose because of the tendency to consider the multiple symptoms as the presentation of a complicated syndromic form. This view influences variant filtering which might ignore causative variants for specific clinical features shown by the patient. Here we report on a male child diagnosed with ASD, showing cognitive and motor impairments, stereotypies, hyperactivity, sleep, and gastrointestinal disturbances. The analysis of whole exome sequencing (WES) data with bioinformatic tools for oligogenic diseases helped us to identify two major previously unreported pathogenetic variants: a maternally inherited missense variant (p.R4122H) in HUWE1, an ubiquitin protein ligase associated to X-linked intellectual disability and ASD; and a de novo stop variant (p.Q259X) in TPH2, encoding the tryptophan hydroxylase 2 enzyme involved in serotonin synthesis and associated with susceptibility to attention deficit-hyperactivity disorder (ADHD). TPH2, expressed in central and peripheral nervous tissues, modulates various physiological functions, including gut motility and sleep. To the best of our knowledge, this is the first case presenting with ASD, cognitive impairment, sleep, and gastrointestinal disturbances linked to both HUWE1 and TPH2 genes. Our findings could contribute to the existing knowledge on clinical and genetic diagnosis of patients with ASD presentation with comorbidities.
Collapse
Affiliation(s)
- Maria Cerminara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Giovanni Spirito
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Livia Pisciotta
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy.,Child Neuropsychiatry Unit, Azienda Socio Sanitaria Territoriale Fatebenefratelli Sacco (ASST Fbf Sacco), Milan, Italy
| | - Margherita Squillario
- Medical Genetics Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Martina Servetti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy.,Medical Genetics Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Maria Teresa Divizia
- Medical Genetics Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Margherita Lerone
- Medical Genetics Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Bianca Berloco
- Child Neuropsychiatry Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Silvia Boeri
- Child Neuropsychiatry Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Lino Nobili
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy.,Child Neuropsychiatry Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Diego Vozzi
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Remo Sanges
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy.,Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Stefano Gustincich
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Aldamaria Puliti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy.,Medical Genetics Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
9
|
Pearl PL, DiBacco ML, Papadelis C, Opladen T, Hanson E, Roullet JB, Gibson KM. Succinic Semialdehyde Dehydrogenase Deficiency: Review of the Natural History Study. J Child Neurol 2021; 36:1153-1161. [PMID: 33393837 PMCID: PMC8254814 DOI: 10.1177/0883073820981262] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The SSADHD Natural History Study was initiated in 2019 to define the natural course and identify biomarkers correlating with severity. METHODS The study is conducted by 4 institutions: BCH (US clinical), WSU (bioanalytical core), USF (biostatistical core), and Heidelberg (iNTD), with support from the family advocacy group (SSADH Association). Recruitment goals were to study 20 patients on-site at BCH, 10 with iNTD, and 25 as a standard-of care cohort. RESULTS At this half-way point of this longitudinal study, 28 subjects have been recruited (57% female, mean 9 years, range 18 months-40 years). Epilepsy is present in half and increases in incidence and severity, as do psychiatric symptoms, in adolescence and adulthood. The average Full Scale IQ (FSIQ) was 53 (Verbal score of 56, Non Verbal score of 49), and half scored as having ASD. Although there was no correlation between gene variant and phenotypic severity, there were extreme cases of lowest functioning in one individual and highest in another that may have genotype-phenotype correlation. The most common EEG finding was mild background slowing with rare epileptiform activity, whereas high-density EEG and magnetoencephalography showed reduction in the gamma frequency band consistent with GABAergic dysfunction. MR spectroscopy showed elevations in the GABA/NAA ratio in all regions studied with no crossover between subjects and controls. CONCLUSIONS The SSADH Natural History Study is providing a unique opportunity to study the complex pathophysiology longitudinally and derive electrophysiologic, neuroimaging, and laboratory data for correlation and to serve as biomarkers for clinical trials and prognostic assessments in this ultra-rare inherited disorder of GABA metabolism.
Collapse
Affiliation(s)
- Phillip L Pearl
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Melissa L DiBacco
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Christos Papadelis
- Jane and John Justin Neuroscience Center, Cook Children’s Health Care System, 1500 Cooper Street, Fort Worth, TX 76104, USA; Department of Pediatrics, TCU and UNTHSC School of Medicine, Fort Worth, TX, USA; Laboratory of Children’s Brain Dynamics, Division of Newborn Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas Opladen
- Department of Child Neurology and Metabolic Disorders, University Children’s Hospital, Heidelberg, Germany
| | - Ellen Hanson
- Neurodevelopmental Core, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Jean-Baptiste Roullet
- College of Pharmacy, Department of Pharmacotherapy, Washington State University, Spokane, WA
| | - K. Michael Gibson
- College of Pharmacy, Department of Pharmacotherapy, Washington State University, Spokane, WA
| | | |
Collapse
|
10
|
Etienne J, Joanne P, Catelain C, Riveron S, Bayer AC, Lafable J, Punzon I, Blot S, Agbulut O, Vilquin JT. Aldehyde dehydrogenases contribute to skeletal muscle homeostasis in healthy, aging, and Duchenne muscular dystrophy patients. J Cachexia Sarcopenia Muscle 2020; 11:1047-1069. [PMID: 32157826 PMCID: PMC7432589 DOI: 10.1002/jcsm.12557] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 12/12/2019] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Aldehyde dehydrogenases (ALDHs) are key players in cell survival, protection, and differentiation via the metabolism and detoxification of aldehydes. ALDH activity is also a marker of stem cells. The skeletal muscle contains populations of ALDH-positive cells amenable to use in cell therapy, whose distribution, persistence in aging, and modifications in myopathic context have not been investigated yet. METHODS The Aldefluor® (ALDEF) reagent was used to assess the ALDH activity of muscle cell populations, whose phenotypic characterizations were deepened by flow cytometry. The nature of ALDH isoenzymes expressed by the muscle cell populations was identified in complementary ways by flow cytometry, immunohistology, and real-time PCR ex vivo and in vitro. These populations were compared in healthy, aging, or Duchenne muscular dystrophy (DMD) patients, healthy non-human primates, and Golden Retriever dogs (healthy vs. muscular dystrophic model, Golden retriever muscular dystrophy [GRMD]). RESULTS ALDEF+ cells persisted through muscle aging in humans and were equally represented in several anatomical localizations in healthy non-human primates. ALDEF+ cells were increased in dystrophic individuals in humans (nine patients with DMD vs. five controls: 14.9 ± 1.63% vs. 3.6 ± 0.39%, P = 0.0002) and dogs (three GRMD dogs vs. three controls: 10.9 ± 2.54% vs. 3.7 ± 0.45%, P = 0.049). In DMD patients, such increase was due to the adipogenic ALDEF+ /CD34+ populations (11.74 ± 1.5 vs. 2.8 ± 0.4, P = 0.0003), while in GRMD dogs, it was due to the myogenic ALDEF+ /CD34- cells (3.6 ± 0.6% vs. 1.03 ± 0.23%, P = 0.0165). Phenotypic characterization associated the ALDEF+ /CD34- cells with CD9, CD36, CD49a, CD49c, CD49f, CD106, CD146, and CD184, some being associated with myogenic capacities. Cytological and histological analyses distinguished several ALDH isoenzymes (ALDH1A1, 1A2, 1A3, 1B1, 1L1, 2, 3A1, 3A2, 3B1, 3B2, 4A1, 7A1, 8A1, and 9A1) expressed by different cell populations in the skeletal muscle tissue belonging to multinucleated fibres, or myogenic, endothelial, interstitial, and neural lineages, designing them as potential new markers of cell type or of metabolic activity. Important modifications were noted in isoenzyme expression between healthy and DMD muscle tissues. The level of gene expression of some isoenzymes (ALDH1A1, 1A3, 1B1, 2, 3A2, 7A1, 8A1, and 9A1) suggested their specific involvement in muscle stability or regeneration in situ or in vitro. CONCLUSIONS This study unveils the importance of the ALDH family of isoenzymes in the skeletal muscle physiology and homeostasis, suggesting their roles in tissue remodelling in the context of muscular dystrophies.
Collapse
Affiliation(s)
- Jessy Etienne
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France.,Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, USA
| | - Pierre Joanne
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine, IBPS, UMR 8256 Biological Adaptation and Ageing, Paris, France
| | - Cyril Catelain
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Stéphanie Riveron
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Alexandra Clarissa Bayer
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Jérémy Lafable
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Isabel Punzon
- Université Paris-Est Créteil, INSERM, Institut Mondor de Recherche Biomédicale, IMRB, École Nationale Vétérinaire d'Alfort, ENVA, U955-E10, Maisons-Alfort, France
| | - Stéphane Blot
- Université Paris-Est Créteil, INSERM, Institut Mondor de Recherche Biomédicale, IMRB, École Nationale Vétérinaire d'Alfort, ENVA, U955-E10, Maisons-Alfort, France
| | - Onnik Agbulut
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine, IBPS, UMR 8256 Biological Adaptation and Ageing, Paris, France
| | - Jean-Thomas Vilquin
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| |
Collapse
|
11
|
Holmes RS. Polyploidy among salmonid aldehyde dehydrogenase genes and proteins. Chem Biol Interact 2019; 303:22-26. [PMID: 30776359 DOI: 10.1016/j.cbi.2019.01.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/17/2019] [Accepted: 01/25/2019] [Indexed: 01/22/2023]
Abstract
Bioinformatic analyses of salmon (Salmo salar) ALDH amino acid sequences supported the presence of at least 30 ALDH genes, which is more than for any other higher vertebrate and is greater than the 19 human ALDH genes currently reported. These included 8 polyploid ALDH genes and proteins: ALDH1A2 (chromosomes 11 and 26); ALDH1L2 (chromosomes 7 and 17); ALDH2, encoding mitochondrial ALDH2 (chromosomes 2 and 5); ALDH3A2 (chromosomes 4, 9 and 20), for which evidence for 5 genes was obtained; ALDH3B1 (chromosomes 3, 6 and 24); ALDH4A1 (chromosomes 12 and 22); ALDH6A1 (chromosomes 1, 6 and 15); and ALDH18A1 (chromosomes 19 and 28). In contrast, 7 salmon ALDH gene families (ALDH1A1, ALDH1A3, ALDH5, ALDH7, ALDH8, ALDH9 and ALDH16) possessed only one gene family member. Phylogenetic studies of salmon and rainbow trout ALDH3A2 genes and proteins suggested that salmonid gene tetraploidy has occurred in at least 2 distinct stages of ALDH3A2 gene evolution.
Collapse
Affiliation(s)
- Roger S Holmes
- Griffith Institute for Drug Discovery and School of Environment and Science, Griffith University, Nathan, 4111, QLD, Australia.
| |
Collapse
|
12
|
Nesterov SV, Skorobogatova YA, Panteleeva AA, Pavlik LL, Mikheeva IB, Yaguzhinsky LS, Nartsissov YR. NMDA and GABA receptor presence in rat heart mitochondria. Chem Biol Interact 2018; 291:40-46. [PMID: 29883723 DOI: 10.1016/j.cbi.2018.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/30/2018] [Accepted: 06/05/2018] [Indexed: 11/19/2022]
Abstract
The purpose of this study is to demonstrate the presence of three more receptors in mitochondria. Two N-methyl-d-aspartate receptor (NMDAR) subunits (NR1 and NR2B) are found by protein immunoblot and immunogold labeling in mitochondria fraction isolated from rat heart. These data allow supposing NMDAR presence and functioning in the inner mitochondrial membrane. There are no signs of receptor presence obtained in heart tissue lysate, that indicates the receptor localization exactly in mitochondria. The possible receptor functions discussed are its participation in calcium transport and in excitation-metabolism coupling. Besides, preliminary evidence is obtained of GABAA and GABAB receptors presence in heart mitochondria. One can surmise their role in metabolism regulation and their possible co-operation with NMDAR just as in the nervous system.
Collapse
Affiliation(s)
- Semen V Nesterov
- Moscow Institute of Physics and Technology, Institutskiy pereulok, 9, Dolgoprudny, 141700, Russia.
| | - Yulia A Skorobogatova
- Moscow Institute of Physics and Technology, Institutskiy pereulok, 9, Dolgoprudny, 141700, Russia.
| | - Alisa A Panteleeva
- Belozersky Research Institute for Physico Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - Lyubov L Pavlik
- Institute of Theoretical and Experimental Biophisics Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Irina B Mikheeva
- Institute of Theoretical and Experimental Biophisics Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Lev S Yaguzhinsky
- Institute of Cytochemistry and Molecular Pharmacology, 6-th Radialnaya str. 24-14, Moscow, 115404, Russia; Belozersky Research Institute for Physico Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - Yaroslav R Nartsissov
- Institute of Cytochemistry and Molecular Pharmacology, 6-th Radialnaya str. 24-14, Moscow, 115404, Russia.
| |
Collapse
|
13
|
Li X, Zhang J, Wu X, Yan H, Zhang Y, He RH, Tang YJ, He YJ, Tan D, Mao XY, Yin JY, Liu ZQ, Zhou HH, Liu J. Polymorphisms of ABAT, SCN2A and ALDH5A1 may affect valproic acid responses in the treatment of epilepsy in Chinese. Pharmacogenomics 2016; 17:2007-2014. [PMID: 27918244 DOI: 10.2217/pgs-2016-0093] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The clinical efficacy of valproic acid (VPA) varies greatly among epileptic patients. To find the potential genetic factors related to VPA responses, the pharmacogenetics study was conducted. Methods: Two hundred and one Chinese Han epileptic patients who were treated by VPA for at least 1 year were recruited. Up to 24 SNPs in 11 candidate genes that correlate with the metabolism, transport or target of VPA were genotyped. Results: Three SNPs, rs1731017 (ABAT), rs2304016 (SCN2A) and rs1054899 (ALDH5A1) were found associated with VPA responses with the p-values of 0.003, 0.007 and 0.048, respectively. Further interaction analysis showed that the interaction between rs17183814 (ABAT) and rs1641022 (SCN2A) was also correlated with the response of VPA (p = 0.006). Conclusion: This study found three SNPs and one interaction among ABAT, SCN2A and ALDH5A1 were significantly associated with VPA response, which indicated that these genes may play important roles in the pharmacological mechanism of VPA.
Collapse
Affiliation(s)
- Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People’s Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, People’s Republic of China
| | - Jun Zhang
- Department of nephrology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
| | - Xi Wu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People’s Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, People’s Republic of China
| | - Han Yan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People’s Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, People’s Republic of China
| | - Yin Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People’s Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, People’s Republic of China
| | - Ruo-Hui He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People’s Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, People’s Republic of China
| | - Yong-Jun Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People’s Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, People’s Republic of China
| | - Yi-Jing He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People’s Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, People’s Republic of China
| | - Dan Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People’s Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, People’s Republic of China
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People’s Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, People’s Republic of China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People’s Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, People’s Republic of China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People’s Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, People’s Republic of China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People’s Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, People’s Republic of China
| | - Jie Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People’s Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, People’s Republic of China
| |
Collapse
|
14
|
Konkit M, Choi WJ, Kim W. Aldehyde dehydrogenase activity in Lactococcus chungangensis: Application in cream cheese to reduce aldehyde in alcohol metabolism. J Dairy Sci 2016; 99:1755-1761. [DOI: 10.3168/jds.2015-10549] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 11/15/2015] [Indexed: 12/13/2022]
|
15
|
Salminen A, Jouhten P, Sarajärvi T, Haapasalo A, Hiltunen M. Hypoxia and GABA shunt activation in the pathogenesis of Alzheimer's disease. Neurochem Int 2015; 92:13-24. [PMID: 26617286 DOI: 10.1016/j.neuint.2015.11.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 12/21/2022]
Abstract
We have previously observed that the conversion of mild cognitive impairment to definitive Alzheimer's disease (AD) is associated with a significant increase in the serum level of 2,4-dihydroxybutyrate (2,4-DHBA). The metabolic generation of 2,4-DHBA is linked to the activation of the γ-aminobutyric acid (GABA) shunt, an alternative energy production pathway activated during cellular stress, when the function of Krebs cycle is compromised. The GABA shunt can be triggered by local hypoperfusion and subsequent hypoxia in AD brains caused by cerebral amyloid angiopathy. Succinic semialdehyde dehydrogenase (SSADH) is a key enzyme in the GABA shunt, converting succinic semialdehyde (SSA) into succinate, a Krebs cycle intermediate. A deficiency of SSADH activity stimulates the conversion of SSA into γ-hydroxybutyrate (GHB), an alternative route from the GABA shunt. GHB can exert not only acute neuroprotective activities but unfortunately also chronic detrimental effects which may lead to cognitive impairment. Subsequently, GHB can be metabolized to 2,4-DHBA and secreted from the brain. Thus, the activation of the GABA shunt and the generation of GHB and 2,4-DHBA can have an important role in the early phase of AD pathogenesis.
Collapse
Affiliation(s)
- Antero Salminen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| | - Paula Jouhten
- VTT Technical Research Centre of Finland, FIN-00014 Helsinki, Finland; EMBL European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Timo Sarajärvi
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | - Annakaisa Haapasalo
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, Neulaniementie 2, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland
| | - Mikko Hiltunen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland; Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| |
Collapse
|
16
|
Gurusamy R, Natarajan S. Current status on biochemistry and molecular biology of microbial degradation of nicotine. ScientificWorldJournal 2013; 2013:125385. [PMID: 24470788 PMCID: PMC3891541 DOI: 10.1155/2013/125385] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 10/14/2013] [Indexed: 11/30/2022] Open
Abstract
Bioremediation is one of the most promising methods to clean up polluted environments using highly efficient potent microbes. Microbes with specific enzymes and biochemical pathways are capable of degrading the tobacco alkaloids including highly toxic heterocyclic compound, nicotine. After the metabolic conversion, these nicotinophilic microbes use nicotine as the sole carbon, nitrogen, and energy source for their growth. Various nicotine degradation pathways such as demethylation pathway in fungi, pyridine pathway in Gram-positive bacteria, pyrrolidine pathway, and variant of pyridine and pyrrolidine pathways in Gram-negative bacteria have been reported. In this review, we discussed the nicotine-degrading pathways of microbes and their enzymes and biotechnological applications of nicotine intermediate metabolites.
Collapse
Affiliation(s)
- Raman Gurusamy
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Sakthivel Natarajan
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
17
|
Yuan Z, Yin B, Wei D, Yuan YRA. Structural basis for cofactor and substrate selection by cyanobacterium succinic semialdehyde dehydrogenase. J Struct Biol 2013; 182:125-35. [PMID: 23500184 DOI: 10.1016/j.jsb.2013.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/28/2013] [Accepted: 03/03/2013] [Indexed: 10/27/2022]
Abstract
Aldehyde dehydrogenase (ALDH) catalyzes the oxidation of aldehydes to carboxylic acids. Cyanobacterium Synechococcus contains one ALDH enzyme (Sp2771), together with a novel 2-oxoglutarate decarboxylase, to complete a non-canonical tricarboxylic acid cycle. However, the molecular mechanisms for substrate selection and cofactor preference by Sp2771 are largely unknown. Here, we report crystal structures of wild type Sp2771, Sp2771 S419A mutant and ternary structure of Sp2771 C262A mutant in complex with NADP(+) and SSA, as well as binary structure of Gluconobacter oxydans aldehyde dehydrogenase (Gox0499) in complex with PEG. Structural comparison of Sp2771 with Gox0499, coupled with mutational analysis, demonstrates that Ser157 residue in Sp2771 and corresponding Pro159 residue in Gox0499 play critical structural roles in determining NADP(+) and NAD(+) preference for Sp2771 and Gox0499, respectively, whereas size and distribution of hydrophobic residues along the substrate binding funnel determine substrate selection. Hence, our work has provided insightful structural information into cofactor and substrate selection by ALDH.
Collapse
Affiliation(s)
- Zuanning Yuan
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | | | | | | |
Collapse
|
18
|
Jang EH, Lim JE, Chi YM, Lee KS. Crystallization and preliminary X-ray crystallographic studies of succinic semialdehyde dehydrogenase from Streptococcus pyogenes. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:288-91. [PMID: 22442224 DOI: 10.1107/s1744309111052055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/02/2011] [Indexed: 12/27/2022]
Abstract
Succinic semialdehyde dehydrogenase (SSADH) plays a critical role in the metabolism of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) and catalyzes the NAD(P)(+)-coupled oxidation of succinic semialdehyde (SSA) to succinic acid (SA). SSADH from Streptococcus pyogenes has been purified and crystallized as the apoenzyme and in a complex with NAD(+). The crystals of native and NAD(+)-complexed SSADH diffracted to resolutions of 1.6 and 1.7 Å, respectively, using a synchrotron-radiation source. Both crystals belonged to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 93.3, b = 100.3, c = 105.1 Å for the native crystal and a = 93.3, b = 100.3, c = 105.0 Å for the complex crystal. Preliminary molecular replacement confirmed the presence of one dimer in both crystals, corresponding to a Matthews coefficient (V(M)) of 2.37 Å(3) Da(-1) and a solvent content of 48.0%.
Collapse
Affiliation(s)
- Eun Hyuk Jang
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | | | | | | |
Collapse
|
19
|
Xie W, Yang X, Wang SI, Wu QJ, Yang NN, Li RM, Jiao X, Pan HP, Liu BM, Feng YT, Xu BY, Zhou XG, Zhang YJ. Gene expression profiling in the thiamethoxam resistant and susceptible B-biotype sweetpotato whitefly, Bemisia tabaci. JOURNAL OF INSECT SCIENCE (ONLINE) 2012; 12:46. [PMID: 22957505 PMCID: PMC3476951 DOI: 10.1673/031.012.4601] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Thiamethoxam has been used as a major insecticide to control the B-biotype sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Due to its excessive use, a high level of resistance to thiamethoxam has developed worldwide over the past several years. To better understand the molecular mechanisms underlying this resistance in B. tabaci, gene profiles between the thiamethoxam-resistant and thiamethoxam-susceptible strains were investigated using the suppression subtractive hybridization (SSH) library approach. A total of 72 and 52 upand down-regulated genes were obtained from the forward and reverse SSH libraries, respectively. These expressed sequence tags (ESTs) belong to several functional categories based on their gene ontology annotation. Some categories such as cell communication, response to abiotic stimulus, lipid particle, and nuclear envelope were identified only in the forward library of thiamethoxam-resistant strains. In contrast, categories such as behavior, cell proliferation, nutrient reservoir activity, sequence-specific DNA binding transcription factor activity, and signal transducer activity were identified solely in the reverse library. To study the validity of the SSH method, 16 differentially expressed genes from both forward and reverse SSH libraries were selected randomly for further analyses using quantitative realtime PCR (qRT-PCR). The qRT-PCR results were fairly consistent with the SSH results; however, only 50% of the genes showed significantly different expression profiles between the thiamethoxam-resistant and thiamethoxam-susceptible whiteflies. Among these genes, a putative NAD-dependent methanol dehydrogenase was substantially over-expressed in the thiamethoxamresistant adults compared to their susceptible counterparts. The distributed profiles show that it was highly expressed during the egg stage, and was most abundant in the abdomen of adult females.
Collapse
Affiliation(s)
- Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xin Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shao-Ii Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qing-jun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ni-na Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ru-mei Li
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoguo Jiao
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hui-peng Pan
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bai-ming Liu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yun-tao Feng
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bao-yun Xu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xu-guo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA
| | - You-jun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
20
|
Kim KJ, Pearl PL, Jensen K, Snead OC, Malaspina P, Jakobs C, Gibson KM. Succinic semialdehyde dehydrogenase: biochemical-molecular-clinical disease mechanisms, redox regulation, and functional significance. Antioxid Redox Signal 2011; 15:691-718. [PMID: 20973619 PMCID: PMC3125545 DOI: 10.1089/ars.2010.3470] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Succinic semialdehyde dehydrogenase (SSADH; aldehyde dehydrogenase 5a1, ALDH5A1; E.C. 1.2.1.24; OMIM 610045, 271980) deficiency is a rare heritable disorder that disrupts the metabolism of the inhibitory neurotransmitter 4-aminobutyric acid (GABA). Identified in conjunction with increased urinary excretion of the GABA analog gamma-hydroxybutyric acid (GHB), numerous patients have been identified worldwide and the autosomal-recessive disorder has been modeled in mice. The phenotype is one of nonprogressive neurological dysfunction in which seizures may be prominently displayed. The murine model is a reasonable phenocopy of the human disorder, yet the severity of the seizure disorder in the mouse exceeds that observed in SSADH-deficient patients. Abnormalities in GABAergic and GHBergic neurotransmission, documented in patients and mice, form a component of disease pathophysiology, although numerous other disturbances (metabolite accumulations, myelin abnormalities, oxidant stress, neurosteroid depletion, altered bioenergetics, etc.) are also likely to be involved in developing the disease phenotype. Most recently, the demonstration of a redox control system in the SSADH protein active site has provided new insights into the regulation of SSADH by the cellular oxidation/reduction potential. The current review summarizes some 30 years of research on this protein and disease, addressing pathological mechanisms in human and mouse at the protein, metabolic, molecular, and whole-animal level.
Collapse
Affiliation(s)
- Kyung-Jin Kim
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Phillip L. Pearl
- Department of Neurology, Children's National Medical Center, Washington, District of Columbia
| | - Kimmo Jensen
- Synaptic Physiology Laboratory, Department of Physiology and Biophysics, Aarhus University, Aarhus, Denmark
- Center for Psychiatric Research, Aarhus University Hospital, Risskov, Denmark
| | - O. Carter Snead
- Department of Neurology, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | | | - Cornelis Jakobs
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - K. Michael Gibson
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan
| |
Collapse
|
21
|
Song BJ, Abdelmegeed MA, Yoo SH, Kim BJ, Jo SA, Jo I, Moon KH. Post-translational modifications of mitochondrial aldehyde dehydrogenase and biomedical implications. J Proteomics 2011; 74:2691-702. [PMID: 21609791 DOI: 10.1016/j.jprot.2011.05.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/27/2011] [Accepted: 05/06/2011] [Indexed: 12/20/2022]
Abstract
Aldehyde dehydrogenases (ALDHs) represent large family members of NAD(P)+-dependent dehydrogenases responsible for the irreversible metabolism of many endogenous and exogenous aldehydes to the corresponding acids. Among 19 ALDH isozymes, mitochondrial ALDH2 is a low Km enzyme responsible for the metabolism of acetaldehyde and lipid peroxides such as malondialdehyde and 4-hydroxynonenal, both of which are highly reactive and toxic. Consequently, inhibition of ALDH2 would lead to elevated levels of acetaldehyde and other reactive lipid peroxides following ethanol intake and/or exposure to toxic chemicals. In addition, many East Asian people with a dominant negative mutation in ALDH2 gene possess a decreased ALDH2 activity with increased risks for various types of cancer, myocardial infarct, alcoholic liver disease, and other pathological conditions. The aim of this review is to briefly describe the multiple post-translational modifications of mitochondrial ALDH2, as an example, after exposure to toxic chemicals or under different disease states and their pathophysiological roles in promoting alcohol/drug-mediated tissue damage. We also briefly mention exciting preclinical translational research opportunities to identify small molecule activators of ALDH2 and its isozymes as potentially therapeutic/preventive agents against various disease states where the expression or activity of ALDH enzymes is altered or inactivated.
Collapse
Affiliation(s)
- Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Acosta MT, Munasinghe J, Pearl PL, Gupta M, Finegersh A, Gibson KM, Theodore WH. Cerebellar atrophy in human and murine succinic semialdehyde dehydrogenase deficiency. J Child Neurol 2010; 25:1457-61. [PMID: 20445195 PMCID: PMC3155424 DOI: 10.1177/0883073810368137] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Human succinic semialdehyde dehydrogenase deficiency, an autosomal recessive disorder of γ-aminobutyric acid (GABA) catabolism, was modeled by a murine model sharing the phenotype of ataxia and seizures. Magnetic resonance imaging (MRI) with volumetry was obtained on 7 patients versus controls, and MRI with stereology was derived in 3 murine genotypes: null, wild-type, and heterozygous mutants. All patients had T1 hypointensity and T2 hyperintensity in globus pallidus, and 5 also had similar changes in subthalamic and cerebellar dentate nuclei. There was a trend for patients to have a smaller cerebellar vermis. Homozygous null mice had significantly lower total brain and cerebellar volumes than wild-types and heterozygotes. Stereology confirmed cerebellar atrophy and was otherwise normal in multiple regions. Cerebellar volume loss is present in the murine disorder with a trend for cerebellar atrophy in patients. Reduced cerebellar volume can reflect neurodegeneration and may be related to the clinical manifestations.
Collapse
Affiliation(s)
- Maria T. Acosta
- Clinical Epilepsy Section, National Institute of Neurological Disease and Stroke, National Institutes of Health, Bethesda, Maryland, Department of Neurology, Children's National Medical Center, Washington, DC
| | - Jeeva Munasinghe
- Mouse Imaging Facility, National Institute of Neurological Disease and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Phillip L. Pearl
- Clinical Epilepsy Section, National Institute of Neurological Disease and Stroke, National Institutes of Health, Bethesda, Maryland, Department of Neurology, Children's National Medical Center, Washington, DC
| | - Maneesh Gupta
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon
| | - Andrey Finegersh
- Clinical Epilepsy Section, National Institute of Neurological Disease and Stroke, National Institutes of Health, Bethesda, Maryland
| | - K. Michael Gibson
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan
| | - William H. Theodore
- Clinical Epilepsy Section, National Institute of Neurological Disease and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
23
|
Langendorf CG, Key TLG, Fenalti G, Kan WT, Buckle AM, Caradoc-Davies T, Tuck KL, Law RHP, Whisstock JC. The X-ray crystal structure of Escherichia coli succinic semialdehyde dehydrogenase; structural insights into NADP+/enzyme interactions. PLoS One 2010; 5:e9280. [PMID: 20174634 PMCID: PMC2823781 DOI: 10.1371/journal.pone.0009280] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 01/23/2010] [Indexed: 01/14/2023] Open
Abstract
Background In mammals succinic semialdehyde dehydrogenase (SSADH) plays an essential role in the metabolism of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) to succinic acid (SA). Deficiency of SSADH in humans results in elevated levels of GABA and γ-Hydroxybutyric acid (GHB), which leads to psychomotor retardation, muscular hypotonia, non-progressive ataxia and seizures. In Escherichia coli, two genetically distinct forms of SSADHs had been described that are essential for preventing accumulation of toxic levels of succinic semialdehyde (SSA) in cells. Methodology/Principal Findings Here we structurally characterise SSADH encoded by the E coli gabD gene by X-ray crystallographic studies and compare these data with the structure of human SSADH. In the E. coli SSADH structure, electron density for the complete NADP+ cofactor in the binding sites is clearly evident; these data in particular revealing how the nicotinamide ring of the cofactor is positioned in each active site. Conclusions/Significance Our structural data suggest that a deletion of three amino acids in E. coli SSADH permits this enzyme to use NADP+, whereas in contrast the human enzyme utilises NAD+. Furthermore, the structure of E. coli SSADH gives additional insight into human mutations that result in disease.
Collapse
Affiliation(s)
- Christopher G. Langendorf
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Trevor L. G. Key
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
- School of Chemistry, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Gustavo Fenalti
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Wan-Ting Kan
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
- ARC Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Ashley M. Buckle
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | | | - Kellie L. Tuck
- School of Chemistry, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Ruby H. P. Law
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
- ARC Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Melbourne, Victoria, Australia
- * E-mail: (RHPL); (JCW)
| | - James C. Whisstock
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
- ARC Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Melbourne, Victoria, Australia
- * E-mail: (RHPL); (JCW)
| |
Collapse
|
24
|
Swenby NP, Picklo MJ. The conserved R166 residue of ALDH5A (succinic semialdehyde dehydrogenase) has multiple functional roles. Chem Biol Interact 2009; 178:70-4. [DOI: 10.1016/j.cbi.2008.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 09/10/2008] [Accepted: 09/11/2008] [Indexed: 10/21/2022]
|
25
|
Human aldehyde dehydrogenase-catalyzed oxidation of ethylene glycol ether aldehydes. Chem Biol Interact 2009; 178:56-63. [DOI: 10.1016/j.cbi.2008.09.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 09/20/2008] [Accepted: 09/22/2008] [Indexed: 11/18/2022]
|
26
|
Succinic semialdehyde dehydrogenase from the parasitic cattle tick Rhipicephalus microplus: gene identification, biochemical characterization and comparison with the mouse ortholog. Mol Biochem Parasitol 2008; 161:32-43. [PMID: 18588919 DOI: 10.1016/j.molbiopara.2008.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 05/30/2008] [Accepted: 06/03/2008] [Indexed: 11/23/2022]
Abstract
The gamma-aminobutyric acid (GABA) degradation pathway consists of the enzymes GABA transaminase and succinic semialdehyde dehydrogenase (SSADH) and is essential for the development and functionality of the nervous system in mammals, while little is known on its role in invertebrates. In this study we report the gene identification, cDNA cloning and heterologous functional expression of a SSADH from the cattle tick Rhipicephalus (R.) microplus. In contrast to mammals and the insect model organism Drosophila melanogaster, which have one SSADH gene, R. microplus possesses several gene copies. One representative of these genes has been functionally expressed in Escherichia coli. This recombinant cattle tick protein has potent NAD(+)-dependent SSADH activity, but possesses also marked enzymatic activity on other aliphatic and aromatic aldehyde substrates. Comparison of R. microplus SSADH enzyme kinetic properties as well as substrate and inhibitor specificities with those of a recombinant mammalian SSADH reveals overall similarities, but also subtle differences, that may be exploited for the design of specific inhibitors with selective acaricidal activity.
Collapse
|
27
|
Rothacker B, Werr M, Ilg T. Molecular cloning, partial genomic structure and functional characterization of succinic semialdehyde dehydrogenase genes from the parasitic insects Lucilia cuprina and Ctenocephalides felis. INSECT MOLECULAR BIOLOGY 2008; 17:279-291. [PMID: 18477242 DOI: 10.1111/j.1365-2583.2008.00800.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The enzyme succinic semialdehyde dehydrogenase (SSADH; EC1.2.1.24) is a component of the gamma-aminobutyric acid degradation pathway in mammals and is essential for development and function of the nervous system. Here we report the identification, cDNA cloning and functional expression of SSADH from the parasitic insects Lucilia cuprina and Ctenocephalides felis. The recombinant proteins possess potent NAD+-dependent SSADH activity, while their catalytic efficiency for other aldehyde substrates is lower. A genomic copy of the L. cuprina SSADH gene contains two introns, while a genomic gene version of C. felis is devoid of introns. In contrast to the single copy SSADH genes in Drosophila melanogaster and mammals, in L. cuprina and C. felis, multiple SSADH gene copies are present in the genome.
Collapse
Affiliation(s)
- B Rothacker
- Intervet Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany
| | | | | |
Collapse
|
28
|
Schweiger P, Volland S, Deppenmeier U. Overproduction and characterization of two distinct aldehyde-oxidizing enzymes from Gluconobacter oxydans 621H. J Mol Microbiol Biotechnol 2007; 13:147-55. [PMID: 17693722 DOI: 10.1159/000103606] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Gluconobacter oxydans 621H genome contains two genes (gox1122 and gox0499) that encode putative cytosolic NAD(P)-dependent aldehyde dehydrogenases. Each gene was expressed in Escherichia coli, and the recombinant enzymes were purified and characterized. The native protein Gox1122 exhibited an apparent molecular mass of 50.1 kDa, and the subunit mass was 50.5 kDa, indicating a monomeric structure of the native enzyme. The preferred substrates were acetaldehyde and NADP. The enzyme also oxidized other short-chained aliphatic and aromatic aldehydes at lower rates. Recombinant protein Gox0499 was composed of a single subunit and had an apparent molecular mass of 49.5 kDa. The substrate spectrum of Gox0499 was broad with a preference for long-chained aliphatic and aromatic aldehydes. Highest activities were obtained using dodecanal and NAD as substrates. RT real-time PCR showed that genes gox0499 and gox1122 were expressed at an elevated level (about 3-fold) when the cells were exposed to ethanol and dodecanal in comparison to control cells.
Collapse
Affiliation(s)
- Paul Schweiger
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | | | | |
Collapse
|
29
|
Alnouti Y, Klaassen CD. Tissue distribution, ontogeny, and regulation of aldehyde dehydrogenase (Aldh) enzymes mRNA by prototypical microsomal enzyme inducers in mice. Toxicol Sci 2007; 101:51-64. [PMID: 17998271 DOI: 10.1093/toxsci/kfm280] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aldehyde dehydrogenases (Aldhs) are a group of nicotinamide adenine dinucleotide phosphate-dependent enzymes that catalyze the oxidation of a wide spectrum of aldehydes to carboxylic acids. Tissue distribution and developmental changes in the expression of the messenger RNA (mRNA) of 15 Aldh enzymes were quantified in male and female mice tissues using the branched DNA signal amplification assay. Furthermore, the regulation of the mRNA expression of Aldhs by 15 typical microsomal enzyme inducers (MEIs) was studied. Aldh1a1 mRNA expression was highest in ovary; 1a2 in testis; 1a3 in placenta; 1a7 in lung; 1b1 in small intestine; 2 in liver; 3a1 in stomach; 3a2 and 3b1 expression was ubiquitous; 4a1, 6a1, 7a1, and 8a1 in liver and kidney; 9a1 in liver, kidney, and small intestine; and 18a1 in ovary and small intestine. mRNAs of different Aldh enzymes were detected at lower levels in fetuses than adult mice and gradually increased after birth to reach adult levels between 15 and 45 days of age, when the gender difference began to appear. Aromatic hydrocarbon receptor (AhR) ligands induced the liver mRNA expression of Aldh1a7, 1b1, and 3a1, constitutive androstane receptor (CAR) activators induced Aldh1a1 and 1a7, whereas pregnane X receptor (PXR) ligands and NF-E2 related factor 2 (Nrf2) activators induced Aldh1a1, 1a7, and 1b1. Peroxisome proliferator activator receptor alpha (PPAR alpha) ligands induced the mRNA expression in liver of almost all Aldhs. The Aldh organ-specific distribution may be important in elucidating their role in metabolism, elimination, and organ-specific toxicity of xenobiotics. Finally, in contrast to other phase-I metabolic enzymes such as CYP450 enzymes, Aldh mRNA expression seems to be generally insensitive to typical microsomal inducers except PPAR alpha ligands.
Collapse
Affiliation(s)
- Yazen Alnouti
- Kansas Life Sciences Innovation Center, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | |
Collapse
|
30
|
Abstract
Azospirillum brasilense possesses an alternative pathway of l-arabinose metabolism, which is different from the known bacterial and fungal pathways. In a previous paper (Watanabe, S., Kodaki, T., and Makino, K. (2006) J. Biol. Chem. 281, 2612-2623), we identified and characterized l-arabinose 1-dehydrogenase, which catalyzes the first reaction step in this pathway, and we cloned the corresponding gene. Here we focused on the fifth enzyme, alpha-ketoglutaric semialdehyde (alphaKGSA) dehydrogenase, catalyzing the conversion of alphaKGSA to alpha-ketoglutarate. alphaKGSA dehydrogenase was purified tentatively as a NAD(+)-preferring aldehyde dehydrogenase (ALDH) with high activity for glutaraldehyde. The gene encoding this enzyme was cloned and shown to be located on the genome of A. brasilense separately from a gene cluster containing the l-arabinose 1-dehydrogenase gene, in contrast with Burkholderia thailandensis in which both genes are located in the same gene cluster. Higher catalytic efficiency of ALDH was found with alphaKGSA and succinic semialdehyde among the tested aldehyde substrates. In zymogram staining analysis with the cell-free extract, a single active band was found at the same position as the purified enzyme. Furthermore, a disruptant of the gene did not grow on l-arabinose. These results indicated that this ALDH gene was the only gene of the NAD(+)-preferring alphaKGSA dehydrogenase in A. brasilense. In the phylogenetic tree of the ALDH family, alphaKGSA dehydrogenase from A. brasilense falls into the succinic semialdehyde dehydrogenase (SSALDH) subfamily. Several putative alphaKGSA dehydrogenases from other bacteria belong to a different ALDH subfamily from SSALDH, suggesting strongly that their substrate specificities for alphaKGSA are acquired independently during the evolutionary stage. This is the first evidence of unique "convergent evolution" in the ALDH family.
Collapse
Affiliation(s)
- Seiya Watanabe
- Faculty of Engineering, Kyoto University, Kyotodaigakukatsura, Saikyo-ku, Kyoto, Japan
| | | | | |
Collapse
|
31
|
Abstract
New enzymes of nicotine catabolism instrumental in the detoxification of the tobacco alkaloid by Arthrobacter nicotinovorans pAO1 have been identified and characterized. Nicotine breakdown leads to the formation of nicotine blue from the hydroxylated pyridine ring and of gamma-N-methylaminobutyrate (CH(3)-4-aminobutyrate) from the pyrrolidine ring of the molecule. Surprisingly, two alternative pathways for the final steps in the catabolism of CH(3)-4-aminobutyrate could be identified. CH(3)-4-aminobutyrate may be demethylated to gamma-N-aminobutyrate by the recently identified gamma-N-methylaminobutyrate oxidase. In an alternative pathway, an amine oxidase with noncovalently bound FAD and of novel substrate specificity removed methylamine from CH(3)-4-aminobutyrate with the formation of succinic semialdehyde. Succinic semialdehyde was converted to succinate by a NADP(+)-dependent succinic semialdehyde dehydrogenase. Succinate may enter the citric acid cycle completing the catabolism of the pyrrolidine moiety of nicotine. Expression of the genes of these enzymes was dependent on the presence of nicotine in the growth medium. Thus, two enzymes of the nicotine regulon, gamma-N-methylaminobutyrate oxidase and amine oxidase share the same substrate. The K(m) of 2.5 mM and k(cat) of 1230 s(-1) for amine oxidase vs. K(m) of 140 microM and k(cat) of 800 s(-1) for gamma-N-methylaminobutyrate oxidase, determined in vitro with the purified recombinant enzymes, may suggest that demethylation predominates over deamination of CH(3)-4-aminobutyrate. However, bacteria grown on [(14)C]nicotine secreted [(14)C]methylamine into the medium, indicating that the pathway to succinate is active in vivo.
Collapse
Affiliation(s)
- Calin-Bogdan Chiribau
- Institute of Biochemistry and Molecular Biology, Alberts-Ludwig University of Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Tao YH, Yuan Z, Tang XQ, Xu HB, Yang XL. Inhibition of GABA shunt enzymes’ activity by 4-hydroxybenzaldehyde derivatives. Bioorg Med Chem Lett 2006; 16:592-5. [PMID: 16290145 DOI: 10.1016/j.bmcl.2005.10.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 09/27/2005] [Accepted: 10/15/2005] [Indexed: 11/18/2022]
Abstract
4-Hydroxybenzaldehyde (HBA) derivatives were examined as inhibitors for GABA transaminase (GABA-T) and succinic semialdehyde dehydrogenase (SSADH). Investigation of structure-activity relation revealed that a carbonyl group or an amino group as well as a hydroxy group at the para position of the benzene ring are important for both enzymes' inhibition. HBA was shown to give competitive inhibition of GABA-T with respect to alpha-ketoglutarate and competitive inhibition of SSADH. 4-Hydroxybenzylamine (HBM) also showed the competitive inhibition on GABA-T with respect to GABA. In conclusion, the inhibitory effects of HBA and HBM on both enzymes could result from the similarity between both molecules and the two enzymes' substrates in structure, as well as the conjugative effect of the benzene ring. This suggested that the presence of the benzene ring may be accepted by the active site of both enzymes, HBA and HBM may be considered as lead compounds to design novel GABA-T inhibitors.
Collapse
Affiliation(s)
- Yun-Hai Tao
- Institute of Materia Medica, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | | | | | | | | |
Collapse
|
33
|
Reher M, Schönheit P. Glyceraldehyde dehydrogenases from the thermoacidophilic euryarchaeota Picrophilus torridus and Thermoplasma acidophilum, key enzymes of the non-phosphorylative Entner-Doudoroff pathway, constitute a novel enzyme family within the aldehyde dehydrogenase superfamily. FEBS Lett 2006; 580:1198-204. [PMID: 16458304 DOI: 10.1016/j.febslet.2006.01.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 12/21/2005] [Accepted: 01/11/2006] [Indexed: 11/29/2022]
Abstract
Cells of Picrophilus torridus, grown on glucose, contained all enzyme activities of a non-phosphorylative Entner-Doudoroff pathway, including glucose dehydrogenase, gluconate dehydratase, 2-keto-3-deoxygluconate aldolase, glyceraldehyde dehydrogenase (GADH), glycerate kinase (2-phosphoglycerate forming), enolase and pyruvate kinase. GADH was purified to homogeneity. The 115-kDa homodimeric protein catalyzed the oxidation of glyceraldehyde with NADP+ at highest catalytic efficiency. NAD+ was not used. By MALDI-TOF analysis, open reading frame (ORF) Pto0332 was identified in the genome of P. torridus as the encoding gene, designated gadh, and the recombinant GADH was characterized. In Thermoplasma acidophilum ORF Ta0809 represents a gadh homolog with highest sequence identity; the gene was expressed and the recombinant protein was characterized as functional GADH with properties very similar to the P. torridus enzyme. Sequence comparison and phylogenetic analysis define both GADHs as members of novel enzyme family within the aldehyde dehydrogenase superfamily.
Collapse
Affiliation(s)
- Matthias Reher
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | | |
Collapse
|
34
|
Tian J, Bryk R, Itoh M, Suematsu M, Nathan C. Variant tricarboxylic acid cycle in Mycobacterium tuberculosis: identification of alpha-ketoglutarate decarboxylase. Proc Natl Acad Sci U S A 2005; 102:10670-5. [PMID: 16027371 PMCID: PMC1180764 DOI: 10.1073/pnas.0501605102] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) has adapted its metabolism for persistence in the human macrophage. The adaptations are likely to involve Mtb's core intermediary metabolism, whose enzymes have been little studied. The tricarboxylic acid cycle is expected to yield precursors for energy, lipids, amino acids, and heme. The genome sequence of Mtb H37Rv predicts the presence of a complete tricarboxylic acid cycle, but we recently found that alpha-ketoglutarate dehydrogenase (KDH) activity is lacking in Mtb lysates. Here we showed that citrate synthase, aconitase, isocitrate dehydrogenase, fumarase, malate dehydrogenase, and succinate dehydrogenase, but not KDH, are present, raising the possibility of separate oxidative and reductive half-cycles. As a potential link between the half-cycles, we found that Rv1248c, annotated as encoding SucA, the putative E1 component of KDH, instead encodes alpha-ketoglutarate decarboxylase (Kgd) and produces succinic semialdehyde. Succinic semialdehyde dehydrogenase activity was detected in Mtb lysates and recapitulated with recombinant proteins GabD1 (encoded by Rv0234c) and GabD2 (encoded by Rv1731). Kgd and GabD1 or GabD2 form an alternative pathway from alpha-ketoglutarate to succinate. Rv1248c, which is essential or required for normal growth of Mtb [Sassetti, C., Boyd, D. H. & Rubin, E. J. (2003) Mol. Microbiol 48, 77-84] is the first gene shown to encode a Kgd. Kgd is lacking in humans and may represent a potential target for chemotherapy of tuberculosis.
Collapse
Affiliation(s)
- Jing Tian
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
35
|
Kang JH, Park YB, Huh TL, Lee WH, Choi MS, Kwon OS. High-level expression and characterization of the recombinant enzyme, and tissue distribution of human succinic semialdehyde dehydrogenase. Protein Expr Purif 2005; 44:16-22. [PMID: 16199352 DOI: 10.1016/j.pep.2005.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 03/18/2005] [Accepted: 03/19/2005] [Indexed: 10/25/2022]
Abstract
The succinic semialdehyde dehydrogenase gene (SSADH; EC 1.2.1.24) from human brain was cloned and overexpressed in Escherichia coli. Based on SDS-PAGE, the apparent molecular mass of subunit was 54 kDa, in good agreement with the theoretical size. The purified SSADH appears to be a tetramer of identical subunits. The specific activity of the recombinant protein was 1.82 micromol NADH formedmin(-1)mg(-1) and the optimal pH was found to be 8.5. The Michaelis constants K(m) for succinic semialdehyde and NAD(+) were 6.3 and 125 microM, respectively. Initial velocity studies show NADH to be a competitive inhibitor with respect to NAD(+), but to be non-competitive inhibitor with respect to succinic semialdehyde. The overexpression of SSADH in E. coli and one-step purification of the highly active SSADH will facilitate further biochemical studies on this enzyme. In addition, an mRNA master dot-blot for multiple human tissues provided a complete map of the tissue distribution for SSADH. The major sites of SSADH expression are liver, skeletal muscle, kidney, and brain. The data indicate that mRNA expression of SSADH is ubiquitous, but highly regulated at the level of transcription in a tissue-specific manner.
Collapse
Affiliation(s)
- Jeong Han Kang
- Department of Biochemistry, Kyungpook National University, Daegu 702-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
36
|
Wong CGT, Chan KFY, Gibson KM, Snead OC. Gamma-hydroxybutyric acid: neurobiology and toxicology of a recreational drug. ACTA ACUST UNITED AC 2004; 23:3-20. [PMID: 15298489 DOI: 10.2165/00139709-200423010-00002] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
gamma-Hydroxybutyric acid (GHB) is a short-chain fatty acid that occurs naturally in mammalian brain where it is derived metabolically from gamma-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the brain. GHB was synthesised over 40 years ago and its presence in the brain and a number of aspects of its biological, pharmacological and toxicological properties have been elucidated over the last 20-30 years. However, widespread interest in this compound has arisen only in the past 5-10 years, primarily as a result of the emergence of GHB as a major recreational drug and public health problem in the US. There is considerable evidence that GHB may be a neuromodulator in the brain. GHB has multiple neuronal mechanisms including activation of both the gamma-aminobutyric acid type B (GABA(B)) receptor, and a separate GHB-specific receptor. This complex GHB-GABA(B) receptor interaction is probably responsible for the protean pharmacological, electroencephalographic, behavioural and toxicological effects of GHB, as well as the perturbations of learning and memory associated with supra-physiological concentrations of GHB in the brain that result from the exogenous administration of this drug in the clinical context of GHB abuse, addiction and withdrawal. Investigation of the inborn error of metabolism succinic semialdehyde deficiency (SSADH) and the murine model of this disorder (SSADH knockout mice), in which GHB plays a major role, may help dissect out GHB- and GABA(B) receptor-mediated mechanisms. In particular, the mechanisms that are operative in the molecular pathogenesis of GHB addiction and withdrawal as well as the absence seizures observed in the GHB-treated animals.
Collapse
Affiliation(s)
- C Guin Ting Wong
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
37
|
Lee BR, Kim DW, Hong JW, Eum WS, Choi HS, Choi SH, Kim SY, An JJ, Ahn JY, Kwon OS, Kang TC, Won MH, Cho SW, Lee KS, Park J, Choi SY. Brain succinic semialdehyde dehydrogenase. Reactions of sulfhydryl residues connected with catalytic activity. ACTA ACUST UNITED AC 2004; 271:4903-8. [PMID: 15606778 DOI: 10.1111/j.1432-1033.2004.04459.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Incubation of an NAD+-dependent succinic semialdehyde dehydrogenase from bovine brain with 4-dimethylaminoazobenzene-4-iodoacetamide (DABIA) resulted in a time-dependent loss of enzymatic activity. This inactivation followed pseudo first-order kinetics with a second-order rate constant of 168 m(-1).min(-1). The spectrum of DABIA-labeled enzyme showed a characteristic peak of the DABIA alkylated sulfhydryl group chromophore at 436 nm, which was absent from the spectrum of the native enzyme. A linear relationship was observed between DABIA binding and the loss of enzyme activity, which extrapolates to a stoichiometry of 8.0 mol DABIA derivatives per mol enzyme tetramer. This inactivation was prevented by preincubating the enzyme with substrate, succinic semialdehyde, but not by preincubating with coenzyme NAD+. After tryptic digestion of the enzyme modified with DABIA, two peptides absorbing at 436 nm were isolated by reverse-phase HPLC. The amino acid sequences of the DABIA-labeled peptides were VCSNQFLVQR and EVGEAICTDPLVSK, respectively. These sites are identical to the putative active site sequences of other brain succinic semialdehyde dehydrogenases. These results suggest that the catalytic function of succinic semialdehyde dehydrogenase is inhibited by the specific binding of DABIA to a cysteine residue at or near its active site.
Collapse
Affiliation(s)
- Byung Ryong Lee
- Department of Genetic Engineering and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bekri S, Fossoud C, Plaza G, Guenne A, Salomons GS, Jakobs C, Van Obberghen E. The molecular basis of succinic semialdehyde dehydrogenase deficiency in one family. Mol Genet Metab 2004; 81:347-51. [PMID: 15059623 DOI: 10.1016/j.ymgme.2004.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Revised: 01/20/2004] [Accepted: 01/20/2004] [Indexed: 10/26/2022]
Abstract
Succinic semialdehyde dehydrogenase (SSADH) deficiency has predominantly neurological consequences, affecting psychomotor, speech and language development. Recently, two clinical reviews summarized the features of this disease and their relative frequency [Neurology 60 (2003) 1413; Ann. Neurol. 54 (2003) S73]. The molecular genetics of SSADH deficiency is still being explored. We describe the molecular basis of this defect in a Tunisian female child presenting with a mild phenotype. A small scale deletion in exon 10 of the gene led to a frameshift that predicts premature termination of the resulting putative protein. The parents were shown to be heterozygotes for this deletion, supporting its causative role.
Collapse
Affiliation(s)
- S Bekri
- Department of Biochemistry, Centre Hospitalier Universitaire de Nice, France.
| | | | | | | | | | | | | |
Collapse
|
39
|
Akaboshi S, Hogema BM, Novelletto A, Malaspina P, Salomons GS, Maropoulos GD, Jakobs C, Grompe M, Gibson KM. Mutational spectrum of the succinate semialdehyde dehydrogenase (ALDH5A1) gene and functional analysis of 27 novel disease-causing mutations in patients with SSADH deficiency. Hum Mutat 2004; 22:442-50. [PMID: 14635103 DOI: 10.1002/humu.10288] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Succinate semialdehyde dehydrogenase (SSADH; ALDH5A1) deficiency, a rare metabolic disorder that disrupts the normal degradation of GABA, gives rise to a highly heterogeneous neurological phenotype ranging from mild to very severe. The nature of the mutation has so far been reported in patients from six families world wide and eight different mutations were described. Here we report the mutational spectrum in 48 additional unrelated families of different geographic origin. We detected 27 novel mutations at the cDNA level, of which 26 could be attributed to changes at the genomic level. Furthermore, six mutations were detected that did not strongly affect SSADH activity when expressed in HEK 293 cells and are considered nonpathogenic allelic variants. Twenty of the mutations were only found in one family. The spectrum of disease-causing mutations from all patients sequenced thus far consists of 25 point mutations, four small insertions, and five small deletions. Seven of these mutations affect splice junctions, seven are nonsense mutations, and 12 are missense mutations. Although there were no mutational hotspots or prevalent mutations responsible for a significant number of cases, 14 out of 37 (38%) of the missense alleles were present in exon 4 or 5. With one exception, the missense mutations we consider to be causative of SSADH deficiency reduced the SSADH activity to less than 5% of the normal activity in our in vitro expression system. This indicates that residual expression is not likely to be an important factor contributing to the large phenotypic differences observed among different families and even among siblings, suggesting that other modifying factors are of great importance in disease pathology.
Collapse
Affiliation(s)
- Shinjiro Akaboshi
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland 97201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sládek NE. Human aldehyde dehydrogenases: potential pathological, pharmacological, and toxicological impact. J Biochem Mol Toxicol 2003; 17:7-23. [PMID: 12616643 DOI: 10.1002/jbt.10057] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aldehyde dehydrogenases catalyze the pyridine nucleotide-dependent oxidation of aldehydes to acids. Seventeen enzymes are currently viewed as belonging to the human aldehyde dehydrogenase superfamily. Summarized herein, insofar as the information is available, are the structural composition, physical properties, tissue distribution, subcellular location, substrate specificity, and cofactor preference of each member of this superfamily. Also summarized are the chromosomal locations and organization of the genes that encode these enzymes and the biological consequences when enzyme activity is lost or substantially diminished. Broadly, aldehyde dehydrogenases can be categorized as critical for normal development and/or physiological homeostasis (1). even when the organism is in a friendly environment or (2). only when the organism finds itself in a hostile environment. The primary, if not sole, evolved raison d'être of first category aldehyde dehydrogenases appears to be to catalyze the biotransformation of a single endobiotic for which they are relatively specific and of which the resultant metabolite is essential to the organism. Most of the human aldehyde dehydrogenases for which the relevant information is available fall into this category. Second category aldehyde dehydrogenases are relatively substrate nonspecific and their evolved raison d'être seems to be to protect the organism from potentially harmful xenobiotics, specifically aldehydes or xenobiotics that give rise to aldehydes, by catalyzing their detoxification. Thus, the lack of a fully functional first category aldehyde dehydrogenase results in a gross pathological phenotype in the absence of any insult, whereas the lack of a functional second category aldehyde dehydrogenase is ordinarily of no consequence with respect to gross phenotype, but is of consequence in that regard when the organism is subjected to a relevant insult.
Collapse
Affiliation(s)
- Norman E Sládek
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
41
|
Murphy TC, Amarnath V, Gibson KM, Picklo MJ. Oxidation of 4-hydroxy-2-nonenal by succinic semialdehyde dehydrogenase (ALDH5A). J Neurochem 2003; 86:298-305. [PMID: 12871571 DOI: 10.1046/j.1471-4159.2003.01839.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Elevated levels of 4-hydroxy-trans-2-nonenal (HNE) are implicated in the pathogenesis of numerous neurodegenerative disorders. Although well-characterized in the periphery, the mechanisms of detoxification of HNE in the CNS are unclear. HNE is oxidized to a non-toxic metabolite in the rat cerebral cortex by mitochondrial aldehyde dehydrogenases (ALDHs). Two possible ALDH enzymes which might oxidize HNE in CNS mitochondria are ALDH2 and succinic semialdehyde dehydrogenase (SSADH/ALDH5A). It was previously established that hepatic ALDH2 can oxidize HNE. In this work, we tested the hypothesis that SSADH oxidizes HNE. SSADH is critical in the detoxification of the GABA metabolite, succinic semialdehyde (SSA). Recombinant rat SSADH oxidized HNE and other alpha,beta-unsaturated aldehydes. Inhibition and competition studies in rat brain mitochondria showed that SSADH was the predominant oxidizing enzyme for HNE but only contributed a portion of the total oxidizing activity in liver mitochondria. In vivo administration of diethyldithiocarbamate (DEDC) effectively inhibited (86%) ALDH2 activity but not HNE oxidation in liver mitochondria. The data suggest that a relationship between the detoxification of SSA and the neurotoxic aldehyde HNE exists in the CNS. Furthermore, these studies show that multiple hepatic aldehyde dehydrogenases are able to oxidize HNE.
Collapse
Affiliation(s)
- Tonya C Murphy
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203, USA
| | | | | | | |
Collapse
|
42
|
Thiemer B, Andreesen JR, Schräder T. Cloning and characterization of a gene cluster involved in tetrahydrofuran degradation in Pseudonocardia sp. strain K1. Arch Microbiol 2003; 179:266-77. [PMID: 12632259 DOI: 10.1007/s00203-003-0526-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2002] [Revised: 01/10/2003] [Accepted: 01/27/2003] [Indexed: 10/20/2022]
Abstract
A gene cluster involved in the utilization of tetrahydrofuran by Pseudonocardia sp. strain K1 was cloned and sequenced. Analysis of a 9.2-kb DNA fragment revealed eight ORFs. The genes designated as thmADBC encode the components of a putative monooxygenase exhibiting a high similarity to different binuclear-iron-containing multicomponent monooxygenases. thmA encodes the derived 545-amino-acid oxygenase alpha-subunit, thmD the 360-amino-acid reductase component, thmB the 346-amino-acid oxygenase beta-subunit, and thmC the 117-amino-acid coupling protein. Upstream of the thm genes, an additional ORF ( sad) was identified coding for a protein with high similarity to various aldehyde dehydrogenases. A succinate semialdehyde dehydrogenase activity was specifically expressed in tetrahydrofuran-grown cells. N-terminal sequence analysis of the purified protein revealed that it is encoded by sad. Northern blot analysis indicated that transcription of the thm genes and sad was specifically induced during growth on tetrahydrofuran. Mono-, di- and polycistronic transcripts of these genes were detected. Primer-extension analysis identified transcriptional start sites 37, 61, and 41 bp upstream of the translation start of sad, thmA, and thmB, respectively. Additional ORFs were identified upstream ( orfY) and downstream ( orfZ and aldH) of the thm genes. Furthermore, the data indicated that the analyzed gene cluster was present as a single copy and located on a plasmid.
Collapse
Affiliation(s)
- Barbara Thiemer
- Institut für Mikrobiologie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120, Halle, Germany
| | | | | |
Collapse
|
43
|
Nguyen E, Picklo MJ. Inhibition of succinic semialdehyde dehydrogenase activity by alkenal products of lipid peroxidation. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1637:107-12. [PMID: 12527414 DOI: 10.1016/s0925-4439(02)00220-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Lipid peroxidation causes the generation of the neurotoxic aldehydes acrolein and 4-hydroxy-trans-2-nonenal (HNE). These products are elevated in neurodegenerative diseases and acute CNS trauma. Previous studies demonstrate that mitochondrial class 2 aldehyde dehydrogenase (ALDH2) is susceptible to inactivation by these alkenals. In the liver and brain another mitochondrial aldehyde dehydrogenase, succinic semialdehyde dehydrogenase (SSADH/ALDH5A1), is present. In this study, we tested the hypothesis that aldehyde products of lipid peroxidation inhibit SSADH activity using the endogenous substrate, succinic semialdehyde (SSA, 50 microM). Acrolein potently inhibited SSADH activity (IC(50)=15 microM) in rat brain mitochondrial preparations. This inhibition was of an irreversible and noncompetitive nature. HNE inhibited activity with an IC(50) of 110 microM. Trans-2-hexenal (HEX) and crotonaldehyde (100 microM each) did not inhibit activity. These data suggest that acrolein and HNE disrupt SSA metabolism and may have subsequent effects on CNS neurochemistry.
Collapse
Affiliation(s)
- Ethan Nguyen
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota School of Medicine and Health Sciences, 501 North Columbia Road, Grand Forks, ND 58203, USA
| | | |
Collapse
|
44
|
Blasi P, Boyl PP, Ledda M, Novelletto A, Gibson KM, Jakobs C, Hogema B, Akaboshi S, Loreni F, Malaspina P. Structure of human succinic semialdehyde dehydrogenase gene: identification of promoter region and alternatively processed isoforms. Mol Genet Metab 2002; 76:348-62. [PMID: 12208142 DOI: 10.1016/s1096-7192(02)00105-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mitochondrial NAD(+)-dependent succinic semialdehyde dehydrogenase (ALDH5A1, SSADH) represents the last enzyme in the GABA catabolism and irreversibly oxidizes SSA to succinate. In human, SSADH deficiency results in 4-hydroxybutyric aciduria, an autosomal recessive disorder due to an accumulation of GABA and 4-hydroxybutyric acid in the CNS. We already identified SSADH gene on human chromosome 6p22 and characterized the coding region. Furthermore, we described the first two mutations causing the disease. We report here the complete cDNA and genomic structure of the gene. A single transcription start site was identified by RNase protection 122 bp upstream of the ATG. EST database search and reporter gene constructs of the 3(') genomic region showed that the two major SSADH mRNA isoforms are due to alternative polyadenylation sites. The two mRNAs of 1827 and 5225 nt were analyzed for differential stability and translation efficiency. The analysis of mRNA turnover showed that both SSADH transcripts are equally stable. Similarly, a measurement of polysomal association capability of the two GFP-SSADH reporter mRNAs (containing the 3' UTR regions of the two SSADH mRNAs) did not reveal any difference. However, we cannot exclude the fact that differential properties could be restricted to particular physiological conditions and/or specific tissues. We have also identified an alternatively spliced small exon, which may lead to a novel isoform of the enzyme. Furthermore, we report here on naturally occurring missense variants, which may significantly contribute to inter-individual variation of SSADH activity, possibly influencing GABA and GHB endogenous levels.
Collapse
Affiliation(s)
- Paola Blasi
- Department of Biology, Tor Vergata University, Via della Ricerca Scientifica s.n.c., Rome 00133, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Morse DP, Aruscavage PJ, Bass BL. RNA hairpins in noncoding regions of human brain and Caenorhabditis elegans mRNA are edited by adenosine deaminases that act on RNA. Proc Natl Acad Sci U S A 2002; 99:7906-11. [PMID: 12048240 PMCID: PMC122993 DOI: 10.1073/pnas.112704299] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2001] [Indexed: 11/18/2022] Open
Abstract
Adenosine deaminases that act on RNA (ADARs) constitute a family of RNA-editing enzymes that convert adenosine to inosine within double-stranded regions of RNA. We previously developed a method to identify inosine-containing RNAs and used it to identify five ADAR substrates in Caenorhabditis elegans. Here we use the same method to identify five additional C. elegans substrates, including three mRNAs that encode proteins known to affect neuronal functions. All 10 of the C. elegans substrates are edited in long stem-loop structures located in noncoding regions, and thus contrast with previously identified substrates of other organisms, in which ADARs target codons. To determine whether editing in noncoding regions was a conserved ADAR function, we applied our method to poly(A)+ RNA of human brain and identified 19 previously unknown ADAR substrates. The substrates were strikingly similar to those observed in C. elegans, since editing was confined to 3' untranslated regions, introns, and a noncoding RNA. Also similar to what was found in C. elegans, 15 of the 19 substrates were edited in repetitive elements. The identities of the newly identified ADAR substrates suggest that RNA editing may influence many biologically important processes, and that for many metazoa, A-to-I conversion in coding regions may be the exception rather than the rule.
Collapse
Affiliation(s)
- Daniel P Morse
- Department of Biochemistry and Howard Hughes Medical Institute, University of Utah, 20 North 1900 East, Salt Lake City, UT 84132-3201, USA
| | | | | |
Collapse
|
46
|
Ahn J, Won TW, Zia A, Reutter H, Kaplan DE, Sparks R, Gruen JR. Peaks of linkage are localized by a BAC/PAC contig of the 6p reading disability locus. Genomics 2001; 78:19-29. [PMID: 11707069 DOI: 10.1006/geno.2001.6645] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A gene for reading disability has been localized by nonparametric linkage to 6p21.3-p22 in several published reports. However, the lack of an uninterrupted genomic clone contig has made it difficult to determine accurate intermarker distances, precise marker order, and genetic boundaries and hinders direct comparisons of linkage. The search and discovery of the hemochromatosis gene (HFE) led to the creation of a bacterial artificial chromosome (BAC) and P-1 derived artificial chromosome (PAC) contig that extended physical maps 4 Mb from the MHC toward pter and localized new markers in that region [10-12]. Using this contig, we localized 124 sequence tagged sites, expressed sequence tags, and short tandem repeats including most of the markers in linkage with reading disability phenotypes, succinic semialdehyde dehydrogenase, GPLD1, prolactin, and 18 uncharacterized genes. This new contig joins and extends previously published physical maps to span the entire chromosome 6 reading disability genetic locus. Physical mapping data from the complete contig show overlap of the published linkage peaks for reading disability, provide accurate intermarker distances and order, and offer resources for generating additional markers and candidate genes for high resolution genetic studies in this region.
Collapse
Affiliation(s)
- J Ahn
- Department of Genome Research, DNA Research Institute, Bioneer Corporation, Cheongwon-Kun, Chungbuk, 363-813, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
47
|
Hogema BM, Akaboshi S, Taylor M, Salomons GS, Jakobs C, Schutgens RB, Wilcken B, Worthington S, Maropoulos G, Grompe M, Gibson KM. Prenatal diagnosis of succinic semialdehyde dehydrogenase deficiency: increased accuracy employing DNA, enzyme, and metabolite analyses. Mol Genet Metab 2001; 72:218-22. [PMID: 11243727 DOI: 10.1006/mgme.2000.3145] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inherited succinic semialdehyde dehydrogenase (SSADH; EC1.2.1.24; McKusick 271980) deficiency is a defect of GABA degradation which leads to accumulation of 4-hydroxybutyric acid (gamma-hydroxybutyric acid; GHB) in physiologic fluids of patients. Prenatal diagnosis (PND) was performed in three at-risk pregnancies employing combinations of: (1) reverse-transcription-polymerase chain reaction (RT-PCR) and genomic DNA amplification followed by sequencing using isolated leukocytes or cultured human lymphoblasts; (2) GHB quantitation in amniotic fluid; or (3) SSADH enzyme assay in chorionic villus (CV) and/or amniocytes. In two pregnancies, all analyses were concordant for prediction of disease status in the fetus. In the third case, enzyme activity in CV (deficient) and metabolite analysis in amniotic fluid (normal) were discordant. For clarification, mutation analysis was undertaken in CV, confirming heterozygosity for the mutation previously identified in the proband. We hypothesize that delayed transit time for shipment of CV between Greece and the United States (8 days) led to enhanced degradation of heterozygous SSADH enzyme activity. Our data demonstrate the importance of combined metabolite, enzyme, and DNA analysis for increased accuracy in the PND of SSADH deficiency.
Collapse
Affiliation(s)
- B M Hogema
- Department of Molecular and Medical Genetics, Oregon Health Sciences University, Portland, Oregon 97210, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Choi SY, Bahn JH, Lee BR, Jeon SG, Jang JS, Kim CK, Jin LH, Kim KH, Park JS, Park J, Cho SW. Brain succinic semialdehyde dehydrogenase: identification of reactive lysyl residues labeled with pyridoxal-5'-phosphate. J Neurochem 2001; 76:919-25. [PMID: 11158264 DOI: 10.1046/j.1471-4159.2001.00147.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An NAD+ dependent succinic semialdehyde dehydrogenase from bovine brain was inactivated by pyridoxal-5'- phosphate. Spectral evidence is presented to indicate that the inactivation proceeds through formation of a Schiff's base with amino groups of the enzyme. After NaBH(4) reduction of the pyridoxal-5'-phosphate inactivated enzyme, it was observed that 3.8 mol phosphopyridoxyl residues were incorporated/enzyme tetramer. The coenzyme, NAD+, protected the enzyme against inactivation by pyridoxal-5'-phosphate. The absorption spectrum of the reduced and dialyzed pyridoxal-5'-phosphate-inactivated enzyme showed a characteristic peak at 325 nm, which was absent in the spectrum of the native enzyme. The fluorescence spectrum of the pyridoxyl enzyme differs completely from that of the native enzyme. After tryptic digestion of the enzyme modified with pyridoxal-5'-phosphate followed by [3H]NaBH4 reduction, a radioactive peptide absorbing at 210 nm was isolated by reverse-phase HPLC. The sequences of the peptide containing the phosphopyridoxyllysine were clearly identical to sequences of other mammalian succinic semialdehyde dehydrogenase brain species including human. It is suggested that the catalytic function of succinic semialdehyde dehydrogenase is modulated by binding of pyridoxal-5'-phosphate to specific Lys(347) residue at or near the coenzyme-binding site of the protein.
Collapse
Affiliation(s)
- S Y Choi
- Department of Genetic Engineering, Division of Life Sciences, Hallym University, Chunchon, Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Jeon SG, Bahn JH, Jang JS, Park J, Kwon OS, Cho SW, Choi SY. Human brain GABA transaminase tissue distribution and molecular expression. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:5601-7. [PMID: 10951220 DOI: 10.1046/j.1432-1327.2000.01626.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human brain gamma-aminobutyrate transaminase is differentially expressed in a tissue-specific manner. mRNA master dot-blot analysis for 50 different human tissues, including different brain regions and fetal tissues, provided a complete map of the tissue distribution. Genomic Southern analysis revealed that the gamma-aminobutyrate transaminase gene is a single copy, at least 15 kb in size. In addition, human brain gamma-aminobutyrate transaminase cDNA was expressed in Escherichia coli using a pGEX expression vector system. Catalytically active gamma-aminobutyrate transaminase was expressed in large quantities and the purified recombinant enzyme had kinetic parameters that were indistinguishable from those isolated from other mammalian brains. The human enzyme was inactivated by a well-known antiepileptic drug vigabatrin. Values of Ki and kinact were 1 mM and 0.35 min-1, respectively. Results from inactivation kinetics suggested that human gamma-aminobutyrate transaminase is more sensitive to the vigabatrin drug than the enzyme isolated from bovine brain.
Collapse
Affiliation(s)
- S G Jeon
- Department of Genetic Engineering, Hallym University, Chunchon, Korea
| | | | | | | | | | | | | |
Collapse
|
50
|
Busch K, Piehler J, Fromm H. Plant succinic semialdehyde dehydrogenase: dissection of nucleotide binding by surface plasmon resonance and fluorescence spectroscopy. Biochemistry 2000; 39:10110-7. [PMID: 10955999 DOI: 10.1021/bi000589e] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent kinetic studies revealed distinct modes of inhibition of mitochondrial Arabidopsis thaliana succinic semialdehyde dehydrogenase (At-SSADH1) by AMP and ATP. Inhibition of SSADH by ATP may represent an important mechanism of feedback regulation of the GABA shunt by the respiratory chain. Here we used two approaches to investigate the interaction of ATP with At-SSADH1. Cofactor displacement studies based on the reduced fluorescence intensity of free NADH versus that of enzyme-bound NADH revealed that both AMP and ATP decreased NADH-At-SSADH1 complex formation. The competitive inhibitor AMP displaced all bound NADH, while ATP, a noncompetitive inhibitor, could not, even in great excess, release all NADH from its binding site. To assess the effect of ATP on NAD-At-SSADH, we employed surface plasmon resonance to monitor nucleotide binding to immobilized At-SSADH1. For this, we used a Strep-tag II modified derivative of At-SSADH1 (designated ST-At-SSADH1). The tagged enzyme was tightly and reversibly captured by StrepTactin, which was covalently immobilized on a CM5 chip. The binding constants for NAD(+) and ATP were determined from titration curves and were in good agreement with the constants obtained from enzyme kinetics. Surface plasmon resonance measurements confirmed that ATP binds to a site different from the binding site for NAD(+). GTP competed with ATP. However, only ATP increased the dissociation constant of NAD(+) from SSADH. This explains the reduced affinity of NAD(+)/NADH to At-SSADH1 in the presence of ATP, as revealed by enzymatic kinetics, and supports our model of feedback regulation of SSADH and the GABA shunt by ATP.
Collapse
Affiliation(s)
- K Busch
- Departments of Plant Sciences and Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel.
| | | | | |
Collapse
|