1
|
Rodriguez A, Yu M, Phoo MT, Holinstat M, Schwendeman A. Antiplatelet Effects of DMPC-Based Synthetic High-Density Lipoproteins: Exploring Particle Structure and Noncholesterol Efflux Mechanisms. Mol Pharm 2025; 22:1305-1317. [PMID: 39888835 DOI: 10.1021/acs.molpharmaceut.4c01000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Platelet activation is a key factor in the development of cardiovascular diseases. High-density lipoprotein (HDL) is known for its cardioprotective activities including antithrombotic actions. While HDL mimetics have been explored for their potential to regulate thrombosis, their influence on platelet activity remains unclear. This study explores the capacity of synthetic HDL (sHDL) to modulate platelet function and investigates the underlying mechanisms. We examined the effects of sHDL, formulated with various ApoA1 mimetic peptides (18A, 5A, and 22A) and full-length ApoA1 protein, all complexed with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), on platelet function. DMPC-based sHDL demonstrated pronounced antiplatelet effects across all formulations. Comparison with DMPC micelles showed that all sHDL molecules were more effective, highlighting the crucial role of the protein-phospholipid complex in reducing platelet reactivity. Further analysis revealed that DMPC sHDL dose-dependently inhibited various platelet functions, including aggregation, integrin activation, α-granule secretion, protein kinase C (PKC) activation, and platelet spreading. Mechanistic studies demonstrated that DMPC sHDL's antiplatelet effects are not entirely dependent on cholesterol efflux, despite effectively reducing total platelet cholesterol. Furthermore, sHDL's activity was found to be independent of scavenger receptor BI (SR-BI). Notably, inhibition of the CD36 receptor markedly attenuated sHDL's antiplatelet activity and uptake, suggesting a novel mechanism distinct from that of native HDL. In summary, DMPC sHDL modulates platelet function through a synergistic action between protein and phospholipid components, primarily via CD36 receptor engagement. These insights pave the way for novel antiplatelet therapies utilizing sHDL's distinct properties.
Collapse
Affiliation(s)
- Antonela Rodriguez
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, NCRC, 2800 Plymouth Rd., Ann Arbor, Michigan 48109, United States
| | - Minzhi Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, NCRC, 2800 Plymouth Rd., Ann Arbor, Michigan 48109, United States
| | - May Thazin Phoo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, NCRC, 2800 Plymouth Rd., Ann Arbor, Michigan 48109, United States
| | - Michael Holinstat
- Department of Pharmacology, University of Michigan Medical School, 1150 W. Medical Center Dr., Room 2220D, Medical Sciences Research Building III, Ann Arbor, Michigan 48109, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, 1150 W. Medical Center Dr., Room 2220D, Medical Sciences Research Building III, Ann Arbor, Michigan 48109, United States
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, NCRC, 2800 Plymouth Rd., Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Zahid S, Schlamp F, Gildea MA, Lin BX, Chaloemtoem A, Falis M, Parikh M, Fisher EA, Hornemann T, Vaisar T, Heffron SP. High-Density Lipoprotein Lipid and Protein Cargo and Cholesterol Efflux Capacity Before and After Bariatric Surgery. Arterioscler Thromb Vasc Biol 2025; 45:e48-e62. [PMID: 39744840 PMCID: PMC11808664 DOI: 10.1161/atvbaha.124.321686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/02/2024] [Indexed: 01/24/2025]
Abstract
BACKGROUND Cholesterol efflux capacity (CEC) of HDL (high-density lipoprotein) is inversely associated with incident cardiovascular events, independent of HDL cholesterol. Obesity is characterized by low HDL cholesterol and impaired HDL function, such as CEC. Bariatric surgery, including Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG), broadly leads to improved cardiovascular outcomes, but impacts on risk factors differ by procedure, with greater improvements in weight loss, blood pressure, and glycemic control after RYGB, but greater improvements in HDL cholesterol and CEC levels after SG. This study sought to determine effects of RYGB and SG on HDL protein and lipid cargo and investigate associations with CEC changes. METHODS We prospectively studied nondiabetic, premenopausal Hispanic women with severe obesity not using lipid medications undergoing RYGB (n=31) or SG (n=36). Anthropometric measurements and blood sampling were obtained before and at 6 and 12 months after surgery. HDL was isolated from plasma, and quantitative proteomic and lipidomic assessments were performed with LC-MS/MS (liquid chromatography with tandem mass spectrometry). CEC was assessed ex vivo using apoB-depleted serum. RESULTS Participants experienced similar, significant weight loss over 12 months following bariatric surgery (38.0±10.4 kg) regardless of the procedure. Relative quantities of 47 proteins (34 increased, 13 decreased) and 150 lipids (71 increased, 79 decreased) carried on HDL were significantly altered following either surgical procedure. Proteins with similar aggregate response patterns were clustered into 15 groups (5 increased, 5 decreased, 5 minimal change) and lipids with similar aggregate responses into 25 groups (7 increased, 11 decreased, 7 minimal change). Network mediation analyses suggested that changes in 4 protein and 2 lipid clusters mediated changes in ABCA1 (ATP-binding cassette transporter A1) CEC and that 1 lipid cluster mediated changes in non-ABCA1 CEC. The protein and lipid clusters that mediated changes in CEC were distinct between SG and RYGB. CONCLUSIONS Bariatric surgery produces substantial changes in HDL lipid and protein cargo, and specific changes may mediate changes in HDL function in CEC. Further study of these mechanisms may lead to improved interventions to reduce cardiovascular risk in patients with obesity.
Collapse
Affiliation(s)
- Sohail Zahid
- Department of Medicine, Leon H. Charney Division of Cardiology (S.Z., B.-X.L., A.C., M.F., E.A.F., S.P.H.), New York University Langone Medical Center
| | - Florencia Schlamp
- NYU Cardiovascular Research Center (F.S., M.A.G., E.A.F., S.P.H.), New York University Langone Medical Center
| | - Michael A Gildea
- NYU Cardiovascular Research Center (F.S., M.A.G., E.A.F., S.P.H.), New York University Langone Medical Center
| | - Bing-Xue Lin
- Department of Medicine, Leon H. Charney Division of Cardiology (S.Z., B.-X.L., A.C., M.F., E.A.F., S.P.H.), New York University Langone Medical Center
| | - Ariya Chaloemtoem
- Department of Medicine, Leon H. Charney Division of Cardiology (S.Z., B.-X.L., A.C., M.F., E.A.F., S.P.H.), New York University Langone Medical Center
| | - Marcin Falis
- Department of Medicine, Leon H. Charney Division of Cardiology (S.Z., B.-X.L., A.C., M.F., E.A.F., S.P.H.), New York University Langone Medical Center
| | - Manish Parikh
- Department of Surgery, New York University Langone Medical Center (M.P.)
| | - Edward A Fisher
- Department of Medicine, Leon H. Charney Division of Cardiology (S.Z., B.-X.L., A.C., M.F., E.A.F., S.P.H.), New York University Langone Medical Center
- NYU Cardiovascular Research Center (F.S., M.A.G., E.A.F., S.P.H.), New York University Langone Medical Center
- NYU Center for the Prevention of Cardiovascular Disease (E.A.F., S.P.H.), New York University Langone Medical Center
| | | | - Tomas Vaisar
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine, Seattle (T.V.)
| | - Sean P Heffron
- Department of Medicine, Leon H. Charney Division of Cardiology (S.Z., B.-X.L., A.C., M.F., E.A.F., S.P.H.), New York University Langone Medical Center
- NYU Cardiovascular Research Center (F.S., M.A.G., E.A.F., S.P.H.), New York University Langone Medical Center
- NYU Center for the Prevention of Cardiovascular Disease (E.A.F., S.P.H.), New York University Langone Medical Center
| |
Collapse
|
3
|
Lui DTW, Tan KCB. High-density lipoprotein in diabetes: Structural and functional relevance. J Diabetes Investig 2024; 15:805-816. [PMID: 38416054 PMCID: PMC11215696 DOI: 10.1111/jdi.14172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
Low levels of high-density lipoprotein-cholesterol (HDL-C) is considered a major cardiovascular risk factor. However, recent studies have suggested a more U-shaped association between HDL-C and cardiovascular disease. It has been shown that the cardioprotective effect of HDL is related to the functions of HDL particles rather than their cholesterol content. HDL particles are highly heterogeneous and have multiple functions relevant to cardiometabolic conditions including cholesterol efflux capacity, anti-oxidative, anti-inflammatory, and vasoactive properties. There are quantitative and qualitative changes in HDL as well as functional abnormalities in both type 1 and type 2 diabetes. Non-enzymatic glycation, carbamylation, oxidative stress, and systemic inflammation can modify the HDL composition and therefore the functions, especially in situations of poor glycemic control. Studies of HDL proteomics and lipidomics have provided further insights into the structure-function relationship of HDL in diabetes. Interestingly, HDL also has a pleiotropic anti-diabetic effect, improving glycemic control through improvement in insulin sensitivity and β-cell function. Given the important role of HDL in cardiometabolic health, HDL-based therapeutics are being developed to enhance HDL functions rather than to increase HDL-C levels. Among these, recombinant HDL and small synthetic apolipoprotein A-I mimetic peptides may hold promise for preventing and treating diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- David Tak Wai Lui
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Kathryn Choon Beng Tan
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| |
Collapse
|
4
|
Caron NS, Aly AEE, Findlay Black H, Martin DDO, Schmidt ME, Ko S, Anderson C, Harvey EM, Casal LL, Anderson LM, Rahavi SMR, Reid GSD, Oda MN, Stanimirovic D, Abulrob A, McBride JL, Leavitt BR, Hayden MR. Systemic delivery of mutant huntingtin lowering antisense oligonucleotides to the brain using apolipoprotein A-I nanodisks for Huntington disease. J Control Release 2024; 367:27-44. [PMID: 38215984 DOI: 10.1016/j.jconrel.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/09/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Efficient delivery of therapeutics to the central nervous system (CNS) remains a major challenge for the treatment of neurological diseases. Huntington disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG trinucleotide expansion mutation in the HTT gene which codes for a toxic mutant huntingtin (mHTT) protein. Pharmacological reduction of mHTT in the CNS using antisense oligonucleotides (ASO) ameliorates HD-like phenotypes in rodent models of HD, with such therapies being investigated in clinical trials for HD. In this study, we report the optimization of apolipoprotein A-I nanodisks (apoA-I NDs) as vehicles for delivery of a HTT-targeted ASO (HTT ASO) to the brain and peripheral organs for HD. We demonstrate that apoA-I wild type (WT) and the apoA-I K133C mutant incubated with a synthetic lipid, 1,2-dimyristoyl-sn-glycero-3-phosphocholine, can self-assemble into monodisperse discoidal particles with diameters <20 nm that transmigrate across an in vitro blood-brain barrier model of HD. We demonstrate that apoA-I NDs are well tolerated in vivo, and that apoA-I K133C NDs show enhanced distribution to the CNS and peripheral organs compared to apoA-I WT NDs following systemic administration. ApoA-I K133C conjugated with HTT ASO forms NDs (HTT ASO NDs) that induce significant mHTT lowering in the liver, skeletal muscle and heart as well as in the brain when delivered intravenously in the BACHD mouse model of HD. Furthermore, HTT ASO NDs increase the magnitude of mHTT lowering in the striatum and cortex compared to HTT ASO alone following intracerebroventricular administration. These findings demonstrate the potential utility of apoA-I NDs as biocompatible vehicles for enhancing delivery of mutant HTT lowering ASOs to the CNS and peripheral organs for HD.
Collapse
Affiliation(s)
- Nicholas S Caron
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amirah E-E Aly
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hailey Findlay Black
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dale D O Martin
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biology, University of Waterloo, Ontario, Canada
| | - Mandi E Schmidt
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
| | - Seunghyun Ko
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Christine Anderson
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Emily M Harvey
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Lorenzo L Casal
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Lisa M Anderson
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Seyed M R Rahavi
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gregor S D Reid
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Danica Stanimirovic
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Abedelnasser Abulrob
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Jodi L McBride
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA; Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
5
|
Borja MS, Hammerson B, Tang C, Juarez-Serrano L, Savinova OV, Harris WS, Oda MN, Shearer GC. Effects of niacin and omega-3 fatty acids on HDL-apolipoprotein A-I exchange in subjects with metabolic syndrome. PLoS One 2024; 19:e0296052. [PMID: 38408107 PMCID: PMC10896500 DOI: 10.1371/journal.pone.0296052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/29/2023] [Indexed: 02/28/2024] Open
Abstract
HDL-apolipoprotein A-I exchange (HAE) measures a functional property associated with HDL's ability to mediate reverse cholesterol transport. HAE has been used to examine HDL function in case-control studies but not in studies of therapeutics that alter HDL particle composition. This study investigates whether niacin and omega-3 fatty acids induce measurable changes in HAE using a cohort of fifty-six subjects with metabolic syndrome (MetS) who were previously recruited to a double-blind trial where they were randomized to 16 weeks of treatment with dual placebo, extended-release niacin (ERN, 2g/day), prescription omega-3 ethyl esters (P-OM3, 4g/day), or the combination. HAE was assessed at the beginning and end of the study. Compared to placebo, ERN and P-OM3 alone significantly increased HAE by 15.1% [8.2, 22.0] (P<0.0001) and 11.1% [4.5, 17.7] (P<0.0005), respectively, while in combination they increased HAE by 10.0% [2.5, 15.8] (P = 0.005). When HAE was evaluated per unit mass of apoA-I ERN increased apoA-I specific exchange activity by 20% (2, 41 CI, P = 0.02) and P-OM3 by 28% (9.6, 48 CI, P<0.0006). However the combination had no statistically significant effect, 10% (-9, 31 CI, P = 0.39). With regard to P-OM3 therapy in particular, the HAE assay detected an increase in this property in the absence of a concomitant rise in HDL-C and apoA-I levels, suggesting that the assay can detect functional changes in HDL that occur in the absence of traditional biomarkers.
Collapse
Affiliation(s)
- Mark S. Borja
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
- Department of Chemistry and Biochemistry, California State University East Bay, Hayward, California, United States of America
| | - Bradley Hammerson
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Chongren Tang
- University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Litzy Juarez-Serrano
- Department of Chemistry and Biochemistry, California State University East Bay, Hayward, California, United States of America
| | - Olga V. Savinova
- Cardiovascular Research Center, Sanford Research, University of South Dakota, Sioux Falls, South Dakota, United States of America
| | - William S. Harris
- Cardiovascular Research Center, Sanford Research, University of South Dakota, Sioux Falls, South Dakota, United States of America
- OmegaQuant, Sioux Falls, South Dakota, United States of America
| | - Michael N. Oda
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Gregory C. Shearer
- Cardiovascular Research Center, Sanford Research, University of South Dakota, Sioux Falls, South Dakota, United States of America
| |
Collapse
|
6
|
Knetsch TGJ, Ubbink M. The effect of lipid composition on the thermal stability of nanodiscs. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184239. [PMID: 37866687 DOI: 10.1016/j.bbamem.2023.184239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Discoidal lipid nanoparticles (LNPs) called Nanodiscs (NDs) are derived from human high-density lipoprotein (HDL). Such biomimetics are ideally suited for the stabilization and delivery of pharmaceuticals, including chemicals, bio-active proteins and vaccines. The stability and circulation lifetimes of reconstituted HDL nanoparticles, including NDs, are variable. Lipids found in thermophilic archaea and bacteria are prime candidates for the stabilization of LNPs. We report the thermal stability of NDs prepared with lipids that differ in saturation, have either ether- or ester linkages between the fatty acid and glycerol backbone or contain isoprenoid fatty acid tails (phytanyl lipids). NDs with two saturated fatty acids show a much greater long-term thermostability than NDs with an unsaturated fatty acid. Ether fatty acid linkages, commonly found in thermophiles, did not improve stability of NDs compared to ester fatty acid linkages when using saturated lipids. NDs containing phytanyl and saturated alkyl fatty acids show similar stability at 37 °C. NDs assembled with phytanyl lipids contain three copies of the membrane scaffolding protein as opposed to the canonical dimer found in conventional NDs. The findings present a strong basis for the production of thermostable NDs through the selection of appropriate lipids and are likely broadly applicable to LNP development.
Collapse
Affiliation(s)
- Tim G J Knetsch
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands.
| |
Collapse
|
7
|
Kim SY, Kang J, Fawaz MV, Yu M, Xia Z, Morin EE, Mei L, Olsen K, Li XA, Schwendeman A. Phospholipids impact the protective effects of HDL-mimetic nanodiscs against lipopolysaccharide-induced inflammation. Nanomedicine (Lond) 2023; 18:2127-2142. [PMID: 38197376 PMCID: PMC10918510 DOI: 10.2217/nnm-2023-0222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/01/2023] [Indexed: 01/11/2024] Open
Abstract
Aim: The impacts of synthetic high-density lipoprotein (sHDL) phospholipid components on anti-sepsis effects were investigated. Methods: sHDL composed with ApoA-I mimetic peptide (22A) and different phosphatidylcholines were prepared and characterized. Anti-inflammatory effects were investigated in vitro and in vivo on lipopolysaccharide (LPS)-induced inflammation models. Results: sHDLs composed with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (22A-DMPC) most effectively neutralizes LPS, inhibits toll-like receptor 4 recruitment into lipid rafts, suppresses nuclear factor κB signaling and promotes activating transcription factor 3 activating. The lethal endotoxemia animal model showed the protective effects of 22A-DMPC. Conclusion: Phospholipid components affect the stability and fluidity of nanodiscs, impacting the anti-septic efficacy of sHDLs. 22A-DMPC presents the strongest LPS binding and anti-inflammatory effects in vitro and in vivo, suggesting a potential sepsis treatment.
Collapse
Affiliation(s)
- Sang Yeop Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48105, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48105, USA
| | - Jukyung Kang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48105, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48105, USA
| | - Maria V Fawaz
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48105, USA
| | - Minzhi Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48105, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48105, USA
| | - Ziyun Xia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48105, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48105, USA
| | - Emily E Morin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48105, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48105, USA
| | - Ling Mei
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48105, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48105, USA
| | - Karl Olsen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48105, USA
| | - Xiang-An Li
- Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48105, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
8
|
Kostara CE, Bairaktari ET, Tsimihodimos V. Effect of Clinical and Laboratory Parameters on HDL Particle Composition. Int J Mol Sci 2023; 24:ijms24031995. [PMID: 36768319 PMCID: PMC9916693 DOI: 10.3390/ijms24031995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
The functional status of High-Density Lipoprotein (HDLs) is not dependent on the cholesterol content but is closely related to structural and compositional characteristics. We reported the analysis of HDL lipidome in the healthy population and the influence of serum lipids, age, gender and menopausal status on its composition. Our sample comprised 90 healthy subjects aged between 30 and 77 years. HDL lipidome was investigated by Nuclear Magnetic Resonance (NMR) spectroscopy. Among serum lipids, triglycerides, apoAI, apoB and the ratio HDL-C/apoAI had a significant influence on HDL lipid composition. Aging was associated with significant aberrations, including an increase in triglyceride content, lysophosphatidylcholine, free cholesterol, and a decrease in esterified cholesterol, phospholipids, and sphingomyelin that may contribute to increased cardiovascular risk. Aging was also associated with an atherogenic fatty acid pattern. Changes occurring in the HDL lipidome between the two genders were more pronounced in the decade from 30 to 39 years of age and over 60 years. The postmenopausal group displayed significant pro-atherogenic changes in HDLs compared to the premenopausal group. The influence of serum lipids and intrinsic factors on HDL lipidome could improve our understanding of the remodeling capacity of HDLs directly related to its functionality and antiatherogenic properties, and also in appropriate clinical research study protocol design. These data demonstrate that NMR analysis can easily follow the subtle alterations of lipoprotein composition due to serum lipid parameters.
Collapse
Affiliation(s)
- Christina E. Kostara
- Laboratory of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Eleni T. Bairaktari
- Laboratory of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Vasilis Tsimihodimos
- Department of Internal Medicine, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
- Correspondence: ; Tel.: +30-2651007362
| |
Collapse
|
9
|
HDL Functions-Current Status and Future Perspectives. Biomolecules 2023; 13:biom13010105. [PMID: 36671490 PMCID: PMC9855960 DOI: 10.3390/biom13010105] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in Western countries. A low HDL-C is associated with the development of CVD. However, recent epidemiology studies have shown U-shaped curves between HDL-C and CVD mortality, with paradoxically increased CVD mortality in patients with extremely high HDL-C levels. Furthermore, HDL-C raising therapy using nicotinic acids or CETP inhibitors mostly failed to reduce CVD events. Based on this background, HDL functions rather than HDL-C could be a novel biomarker; research on the clinical utility of HDL functionality is ongoing. In this review, we summarize the current status of HDL functions and their future perspectives from the findings of basic research and clinical trials.
Collapse
|
10
|
Leal DP, Gonçalinho GHF, Tavoni TM, Kuwabara KL, Paccanaro AP, Freitas FR, Strunz CMC, César LAM, Maranhão RC, Mansur ADP. The Interplay of Sirtuin-1, LDL-Cholesterol, and HDL Function: A Randomized Controlled Trial Comparing the Effects of Energy Restriction and Atorvastatin on Women with Premature Coronary Artery Disease. Antioxidants (Basel) 2022; 11:2363. [PMID: 36552571 PMCID: PMC9774144 DOI: 10.3390/antiox11122363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
INTRODUCTION HDL function has gained prominence in the literature as there is a greater predictive capacity for risk in early coronary artery disease when compared to the traditional parameters. However, it is unclear how dietary energy restriction and atorvastatin influence HDL function. METHODS A randomized controlled trial with 39 women with early CAD divided into three groups (n = 13): energy restriction (30% of VET), atorvastatin (80 mg), and control. Analyses of traditional biochemical markers (lipid and glucose profile), circulating Sirt-1, and HDL function (lipid composition, lipid transfer, and antioxidant capacity). RESULTS Participants' mean age was 50.5 ± 3.8 years. Energy restriction increased Sirt-1 by 63.6 pg/mL (95%CI: 1.5-125.7; p = 0.045) and reduced BMI by 0.8 kg/m2 (95%CI: -1.349--0.273; p = 0.004) in a manner independent of other cardiometabolic factors. Atorvastatin reduced LDL-c by 40.0 mg/dL (95%CI: -69.910--10.1; p = 0.010). Increased Sirt-1 and reduced BMI were independently associated with reduced phospholipid composition of HDL (respectively, β = -0.071; CI95%:-0.136--0.006; p = 0.033; β = 7.486; CI95%:0.350-14.622; p = 0.040). Reduction in BMI was associated with lower HDL-free cholesterol (β = 0.818; CI95%:0.044-1.593; p = 0.039). LDL-c reduction by statins was associated with reduced maximal lipid peroxide production rate of HDL (β = 0.002; CI95%:0.000-0.003; p = 0.022) and total conjugated diene generation (β = 0.001; CI95%:0.000-0.001; p = 0.029). CONCLUSION This study showed that energy restriction and atorvastatin administration were associated with changes in lipid profile, serum Sirt-1 concentrations, and HDL function.
Collapse
Affiliation(s)
- Dalila Pinheiro Leal
- Faculdade de Medicina da Universidade de São Paulo, University of São Paulo, Sao Paulo 05508-060, Brazil
- Servico de Prevencao, Cardiopatia da Mulher e Reabilitacao Cardiovascular, Instituto do Coracao do Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (InCor-HCFMUSP), Sao Paulo 05403-900, Brazil
- Laboratorio de Metabolismo de Lipides, Instituto do Coracao do Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (InCor-HCFMUSP), Sao Paulo 05403-900, Brazil
| | - Gustavo Henrique Ferreira Gonçalinho
- Faculdade de Medicina da Universidade de São Paulo, University of São Paulo, Sao Paulo 05508-060, Brazil
- Servico de Prevencao, Cardiopatia da Mulher e Reabilitacao Cardiovascular, Instituto do Coracao do Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (InCor-HCFMUSP), Sao Paulo 05403-900, Brazil
| | - Thauany Martins Tavoni
- Laboratorio de Metabolismo de Lipides, Instituto do Coracao do Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (InCor-HCFMUSP), Sao Paulo 05403-900, Brazil
| | - Karen Lika Kuwabara
- Faculdade de Medicina da Universidade de São Paulo, University of São Paulo, Sao Paulo 05508-060, Brazil
- Servico de Prevencao, Cardiopatia da Mulher e Reabilitacao Cardiovascular, Instituto do Coracao do Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (InCor-HCFMUSP), Sao Paulo 05403-900, Brazil
| | - Ana Paula Paccanaro
- Laboratorio de Metabolismo de Lipides, Instituto do Coracao do Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (InCor-HCFMUSP), Sao Paulo 05403-900, Brazil
| | - Fatima Rodrigues Freitas
- Laboratorio de Metabolismo de Lipides, Instituto do Coracao do Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (InCor-HCFMUSP), Sao Paulo 05403-900, Brazil
| | - Célia Maria Cassaro Strunz
- Laboratorio de Analises Clinicas, Instituto do Coracao do Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (InCor-HCFMUSP), Sao Paulo 05403-900, Brazil
| | - Luiz Antonio Machado César
- Faculdade de Medicina da Universidade de São Paulo, University of São Paulo, Sao Paulo 05508-060, Brazil
- Unidade Clinica de Coronariopatias Cronicas, Instituto do Coracao do Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (InCor-HCFMUSP), Sao Paulo 05403-900, Brazil
| | - Raul Cavalcante Maranhão
- Laboratorio de Metabolismo de Lipides, Instituto do Coracao do Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (InCor-HCFMUSP), Sao Paulo 05403-900, Brazil
- Faculdade de Ciencias Farmaceuticas da Universidade de Sao Paulo, University of São Paulo, Sao Paulo 05508-060, Brazil
| | - Antonio de Padua Mansur
- Faculdade de Medicina da Universidade de São Paulo, University of São Paulo, Sao Paulo 05508-060, Brazil
- Servico de Prevencao, Cardiopatia da Mulher e Reabilitacao Cardiovascular, Instituto do Coracao do Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (InCor-HCFMUSP), Sao Paulo 05403-900, Brazil
| |
Collapse
|
11
|
Kostara CE, Karakitsou KS, Florentin M, Bairaktari ET, Tsimihodimos V. Progressive, Qualitative, and Quantitative Alterations in HDL Lipidome from Healthy Subjects to Patients with Prediabetes and Type 2 Diabetes. Metabolites 2022; 12:metabo12080683. [PMID: 35893251 PMCID: PMC9331261 DOI: 10.3390/metabo12080683] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 12/16/2022] Open
Abstract
Prediabetes is a clinically silent, insulin-resistant state with increased risk for the development of type 2 diabetes (T2D) and cardiovascular disease (CVD). Since glucose homeostasis and lipid metabolism are highly intersected and interrelated, an in-depth characterization of qualitative and quantitative abnormalities in lipoproteins could unravel the metabolic pathways underlying the progression of prediabetes to T2D and also the proneness of these patients to developing premature atherosclerosis. We investigated the HDL lipidome in 40 patients with prediabetes and compared it to that of 40 normoglycemic individuals and 40 patients with established T2D using Nuclear Magnetic Resonance (NMR) spectroscopy. Patients with prediabetes presented significant qualitative and quantitative alterations, potentially atherogenic, in HDL lipidome compared to normoglycemic characterized by higher percentages of free cholesterol and triglycerides, whereas phospholipids were lower. Glycerophospholipids and ether glycerolipids were significantly lower in prediabetic compared to normoglycemic individuals, whereas sphingolipids were significantly higher. In prediabetes, lipids were esterified with saturated rather than unsaturated fatty acids. These changes are qualitatively similar, but quantitatively milder, than those found in patients with T2D. We conclude that the detailed characterization of the HDL lipid profile bears a potential to identify patients with subtle (but still proatherogenic) abnormalities who are at high risk for development of T2D and CVD.
Collapse
Affiliation(s)
- Christina E. Kostara
- Laboratory of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45500 Ioannina, Greece; (C.E.K.); (K.S.K.); (E.T.B.)
| | - Kiriaki S. Karakitsou
- Laboratory of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45500 Ioannina, Greece; (C.E.K.); (K.S.K.); (E.T.B.)
| | - Matilda Florentin
- Department of Internal Medicine, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece;
| | - Eleni T. Bairaktari
- Laboratory of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45500 Ioannina, Greece; (C.E.K.); (K.S.K.); (E.T.B.)
| | - Vasilis Tsimihodimos
- Department of Internal Medicine, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece;
- Correspondence: ; Tel.: +30-2651007362
| |
Collapse
|
12
|
Monitoring the Anisotropy and Fluidity of the HDL Monolayer as Surrogates of HDL Functionality. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2419:275-282. [PMID: 35237970 DOI: 10.1007/978-1-0716-1924-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The fluidity of the biological lipid layers modulates processes involved in cardiovascular disease. High-density lipoprotein (HDL) monolayer fluidity is considered as a surrogate of HDL functionality. In particular, the more fluid the HDL monolayer is, the greater the cholesterol efflux (ChE) is observed. Fluidity depends on cholesterol and on the saturation and length of the fatty acids present in lipid layers. Specifically, low cholesterol and short-chain and/or low-saturated fatty acids content in the lipid layers increases fluidity. Lipid peroxidation is also involved in regulating the monolayers' fluidity. HDL oxidation decreases its fluidity and ChE capacity. Accordingly, the presence of antioxidants in biological membranes and in HDL increases fluidity. The fluidity is assessed in polarization studies that measures the steady-state anisotropy (r) using fluorescent probes (such as 1,6-diphenyl-1,3,5-hexatriene; DPH) that mimic the molecular movements of the sample analyzed. Since r refers to the rigidity and fluidity refers to the viscosity of lipid layers, the fluidity index is the inverse value of r (i.e., 1/r). This chapter describes a method for measuring HDL monolayer fluidity and r. The reproducibility of this method was excellent as the intra-assay coefficients of variation (CV) were <2.5 (20 replicates on the same day) and the interassay CV were <5% (60 replicates measured on 3 different days; 20 replicates/day). The method therefore represents a reproducible and useful tool to evaluate HDL functionality as an emerging cardiovascular risk factor.
Collapse
|
13
|
Effects of Elaidic Acid on HDL Cholesterol Uptake Capacity. Nutrients 2021; 13:nu13093112. [PMID: 34578988 PMCID: PMC8464738 DOI: 10.3390/nu13093112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
Recently we established a cell-free assay to evaluate “cholesterol uptake capacity (CUC)” as a novel concept for high-density lipoprotein (HDL) functionality and demonstrated the feasibility of CUC for coronary risk stratification, although its regulatory mechanism remains unclear. HDL fluidity affects cholesterol efflux, and trans fatty acids (TFA) reduce lipid membrane fluidity when incorporated into phospholipids (PL). This study aimed to clarify the effect of TFA in HDL-PL on CUC. Serum was collected from 264 patients after coronary angiography or percutaneous coronary intervention to measure CUC and elaidic acid levels in HDL-PL, and in vitro analysis using reconstituted HDL (rHDL) was used to determine the HDL-PL mechanism affecting CUC. CUC was positively associated with HDL-PL levels but negatively associated with the proportion of elaidic acid in HDL-PL (elaidic acid in HDL-PL/HDL-PL ratio). Increased elaidic acid-phosphatidylcholine (PC) content in rHDL exhibited no change in particle size or CUC compared to rHDL containing oleic acid in PC. Recombinant human lecithin-cholesterol acyltransferase (LCAT) enhanced CUC, and LCAT-dependent enhancement of CUC and LCAT-dependent cholesterol esterification were suppressed in rHDL containing elaidic acid in PC. Therefore, CUC is affected by HDL-PL concentration, HDL-PL acyl group composition, and LCAT-dependent cholesterol esterification. Elaidic acid precipitated an inhibition of cholesterol uptake and maturation of HDL; therefore, modulation of HDL-PL acyl groups could improve CUC.
Collapse
|
14
|
Associations of HDL metrics with coronary artery calcium score and density among women traversing menopause. J Lipid Res 2021; 62:100098. [PMID: 34303684 PMCID: PMC8385165 DOI: 10.1016/j.jlr.2021.100098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 11/25/2022] Open
Abstract
The cardioprotective association of high-density lipoprotein cholesterol (HDL-C) may vary by menopause stage or estradiol level. We tested whether associations of comprehensive HDL metrics (HDL subclasses, phospholipid and triglyceride content, and HDL cholesterol efflux capacity [HDL-CEC]) with coronary artery calcium (CAC) score and density vary by menopause stage or estradiol level in women transitioning through menopause. Participants (N = 294; mean age [SD]: 51.3 [2.9]) had data on HDL metrics and CAC measures at one or two time points during the menopause transition. Generalized estimating equations were used for analyses. Effect modifications by menopause stage or estradiol level were tested in multivariable models. In adjusted models, menopause stage modified the associations of specific HDL metrics with CAC measures. Higher small HDL particles (HDL-P) concentrations (p-interaction = 0.008) and smaller HDL size (p-interaction = 0.02) were associated with greater odds of CAC presence in late perimenopause than in pre/early perimenopause stage. Women in the highest estradiol tertile, but not the lower tertiles, showed a protective association of small HDL-P with CAC presence (p-interaction = 0.007). Lower large HDL-P concentrations (p-interaction = 0.03) and smaller HDL size (p-interaction = 0.03) were associated with lower CAC density in late perimenopause than in postmenopause stage. Associations of HDL phospholipid and triglyceride content and HDL-CEC with CAC measures did not vary by menopause stage or estradiol level. We concluded that HDL subclasses may impact the likelihood of CAC presence and the stability of coronary plaque differently over the menopause transition. Endogenous estradiol levels may contribute to this observation.
Collapse
|
15
|
Bonizzi A, Piuri G, Corsi F, Cazzola R, Mazzucchelli S. HDL Dysfunctionality: Clinical Relevance of Quality Rather Than Quantity. Biomedicines 2021; 9:729. [PMID: 34202201 PMCID: PMC8301425 DOI: 10.3390/biomedicines9070729] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 11/28/2022] Open
Abstract
High-density lipoproteins (HDLs) represent a class of lipoproteins very heterogeneous in structure, composition, and biological functions, which carry out reverse cholesterol transport, antioxidant, anti-inflammatory, antithrombotic, and vasodilator actions. Despite the evidence suggesting a clear inverse relationship between HDL cholesterol (HDL-c) concentration and the risk for cardiovascular disease, plasma HDL cholesterol levels do not predict the functionality and composition of HDLs. The importance of defining both the amount of cholesterol transported and lipoprotein functionality has recently been highlighted. Indeed, different clinical conditions such as obesity, diabetes mellitus type 2 (T2DM), and cardiovascular disease (CVD) can alter the HDL functionality, converting normal HDLs into dysfunctional ones, undergoing structural changes, and exhibiting proinflammatory, pro-oxidant, prothrombotic, and proapoptotic properties. The aim of the current review is to summarize the actual knowledge concerning the physical-chemical alteration of HDLs related to their functions, which have been found to be relevant in several pathological conditions associated with systemic inflammation and oxidative stress.
Collapse
Affiliation(s)
- Arianna Bonizzi
- Department of Biomedical and Clinical Sciences "L. Sacco", Università di Milano, 20157 Milan, Italy
| | - Gabriele Piuri
- Department of Biomedical and Clinical Sciences "L. Sacco", Università di Milano, 20157 Milan, Italy
| | - Fabio Corsi
- Department of Biomedical and Clinical Sciences "L. Sacco", Università di Milano, 20157 Milan, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Roberta Cazzola
- Department of Biomedical and Clinical Sciences "L. Sacco", Università di Milano, 20157 Milan, Italy
| | - Serena Mazzucchelli
- Department of Biomedical and Clinical Sciences "L. Sacco", Università di Milano, 20157 Milan, Italy
| |
Collapse
|
16
|
Syed S, Nissilä E, Ruhanen H, Fudo S, Gaytán MO, Sihvo SP, Lorey MB, Metso J, Öörni K, King SJ, Oommen OP, Jauhiainen M, Meri S, Käkelä R, Haapasalo K. Streptococcus pneumoniae pneumolysin and neuraminidase A convert high-density lipoproteins into pro-atherogenic particles. iScience 2021; 24:102535. [PMID: 34124613 PMCID: PMC8175417 DOI: 10.1016/j.isci.2021.102535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 11/19/2022] Open
Abstract
High-density lipoproteins (HDLs) are a group of different subpopulations of sialylated particles that have an essential role in the reverse cholesterol transport (RCT) pathway. Importantly, changes in the protein and lipid composition of HDLs may lead to the formation of particles with reduced atheroprotective properties. Here, we show that Streptococcus pneumoniae pneumolysin (PLY) and neuraminidase A (NanA) impair HDL function by causing chemical and structural modifications of HDLs. The proteomic, lipidomic, cellular, and biochemical analysis revealed that PLY and NanA induce significant changes in sialic acid, protein, and lipid compositions of HDL. The modified HDL particles have reduced cholesterol acceptor potential from activated macrophages, elevated levels of malondialdehyde adducts, and show significantly increased complement activating capacity. These results suggest that accumulation of these modified HDL particles in the arterial intima may present a trigger for complement activation, inflammatory response, and thereby promote atherogenic disease progression. S. pneumoniae molecules PLY and NanA target human high-density lipoprotein (HDL). These interactions result in major modifications in the HDL proteome and lipidome. Microbially modified HDL activates humoral and cell-mediated innate immune responses. The activated immune response mediates formation of pro-atherogenic epitopes on HDL.
Collapse
Affiliation(s)
- Shahan Syed
- Department of Bacteriology and Immunology, University of Helsinki, 00014 Helsinki, Finland
| | - Eija Nissilä
- Department of Bacteriology and Immunology, University of Helsinki, 00014 Helsinki, Finland
| | - Hanna Ruhanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Science (HiLIFE) and Biocenter Finland, Helsinki 00014, Finland
| | - Satoshi Fudo
- Department of Bacteriology and Immunology, University of Helsinki, 00014 Helsinki, Finland
| | - Meztlli O. Gaytán
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Sanna P. Sihvo
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Science (HiLIFE) and Biocenter Finland, Helsinki 00014, Finland
| | | | - Jari Metso
- Minerva Foundation Institute for Medical Research, Biomedicum, 00290 Helsinki, Finland
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki, Finland
| | | | - Samantha J. King
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Oommen P. Oommen
- Bioengineering and Nanomedicine Lab, Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, 33720 Tampere, Finland
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, Biomedicum, 00290 Helsinki, Finland
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Seppo Meri
- Department of Bacteriology and Immunology, University of Helsinki, 00014 Helsinki, Finland
| | - Reijo Käkelä
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Science (HiLIFE) and Biocenter Finland, Helsinki 00014, Finland
| | - Karita Haapasalo
- Department of Bacteriology and Immunology, University of Helsinki, 00014 Helsinki, Finland
- Corresponding author
| |
Collapse
|
17
|
Paavola T, Bergmann U, Kuusisto S, Kakko S, Savolainen MJ, Salonurmi T. Distinct Fatty Acid Compositions of HDL Phospholipids Are Characteristic of Metabolic Syndrome and Premature Coronary Heart Disease-Family Study. Int J Mol Sci 2021; 22:ijms22094908. [PMID: 34066314 PMCID: PMC8124224 DOI: 10.3390/ijms22094908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 02/07/2023] Open
Abstract
HDL particles can be structurally modified in atherosclerotic disorders associated with low HDL cholesterol level (HDL-C). We studied whether the lipidome of the main phosphatidylcholine (PC), lysophosphatidylcholine (LPC) and sphingomyelin (SM) species of HDL2 and HDL3 subfractions is associated with premature coronary heart disease (CHD) or metabolic syndrome (MetS) in families where common low HDL-C predisposes to premature CHD. The lipidome was analyzed by LC-MS. Lysophosphatidylcholines were depleted of linoleic acid relative to more saturated and shorter-chained acids containing species in MetS compared with non-affected subjects: the ratio of palmitic to linoleic acid was elevated by more than 30%. A minor PC (16:0/16:1) was elevated (28–40%) in MetS. The contents of oleic acid containing PCs were elevated relative to linoleic acid containing PCs in MetS; the ratio of PC (16:0/18:1) to PC (16:0/18:2) was elevated by 11–16%. Certain PC and SM ratios, e.g., PC (18:0/20:3) to PC (16:0/18:2) and a minor SM 36:2 to an abundant SM 34:1, were higher (11–36%) in MetS and CHD. The fatty acid composition of certain LPCs and PCs displayed a characteristic pattern in MetS, enriched with palmitic, palmitoleic or oleic acids relative to linoleic acid. Certain PC and SM ratios related consistently to CHD and MetS.
Collapse
Affiliation(s)
- Timo Paavola
- Research Center for Internal Medicine, Department of Internal Medicine, Oulu University Hospital and University of Oulu, 90200 Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, 90200 Oulu, Finland
| | - Ulrich Bergmann
- Protein Analysis Core Facility, Biocenter Oulu, University of Oulu, 90570 Oulu, Finland
| | - Sanna Kuusisto
- Computational Medicine, Faculty of Medicine, Biocenter Oulu, University of Oulu, 90570 Oulu, Finland
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland
| | - Sakari Kakko
- Research Center for Internal Medicine, Department of Internal Medicine, Oulu University Hospital and University of Oulu, 90200 Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, 90200 Oulu, Finland
| | - Markku J Savolainen
- Research Center for Internal Medicine, Department of Internal Medicine, Oulu University Hospital and University of Oulu, 90200 Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, 90200 Oulu, Finland
| | - Tuire Salonurmi
- Research Center for Internal Medicine, Department of Internal Medicine, Oulu University Hospital and University of Oulu, 90200 Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, 90200 Oulu, Finland
| |
Collapse
|
18
|
Morin EE, Guo Y, He H, Yuan W, Souery WN, Fawaz MV, Chen YE, Schwendeman A. Synergetic Effect of rHDL and LXR Agonist on Reduction of Atherosclerosis in Mice. Front Pharmacol 2021; 11:513031. [PMID: 33390931 PMCID: PMC7772318 DOI: 10.3389/fphar.2020.513031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
High-density lipoproteins (HDLs) are unique in that they play an important role in the reverse cholesterol transport process. However, reconstituted HDL (rHDL) infusions have demonstrated limited beneficial effect in clinical practice. This is perhaps a consequence of the limited cholesterol efflux abilities of atheroma macrophages due to decreased expression of cholesterol transporters in advanced atheromas and following rHDL infusion treatment. Thus, we propose that a combination therapy of rHDL and a liver X receptor (LXR) agonist could maximize the therapeutic benefit of rHDL by upregulating ATP-binding cassette transporters A-1 (ABCA1) and ATP-binding cassette transporter G-1 (ABCG1), and enhancing cholesterol efflux to rHDL. In macrophages, rHDL downregulated the expression of ABCA1/G1 in a dose- and rHDL composition-dependent manner. Although LXR agonist, T0901317 (T1317), upregulated the expression of ABCA1 and ABCG1, the drug itself did not have any effect on cholesterol efflux (6.6 ± 0.5%) while the combination of rHDL and T1317 exhibited enhanced cholesterol efflux from [3H]-cholesterol loaded J774A.1 macrophages (23.3 ± 1.3%). Treatment with rHDL + T1317 significantly reduced the area of aortic plaque in ApoE-/- mice compared to PBS treated control animals (24.16 ± 1.42% vs. 31.59 ± 1.93%, p < 0.001), while neither rHDL nor T1317 treatment alone had a significant effect. Together, we show that rHDL paired with an LXR agonist can induce a synergetic effect in reducing atheroma burden. This synergy could lead to lower overall effective dose for both drugs, potentially overcoming the existing barriers in clinical development and renewing pharmaceutical interest in these two drug classes.
Collapse
Affiliation(s)
- Emily E Morin
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Yanhong Guo
- Department of Internal Medicine, University of Michigan, NCRC, Ann Arbor, MI, United States
| | - Hongliang He
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Wenmin Yuan
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Whitney N Souery
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Maria V Fawaz
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, United States
| | - Yuqing Eugene Chen
- Department of Internal Medicine, University of Michigan, NCRC, Ann Arbor, MI, United States
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
19
|
Kostara CE, Ferrannini E, Bairaktari ET, Papathanasiou A, Elisaf M, Tsimihodimos V. Early Signs of Atherogenic Features in the HDL Lipidomes of Normolipidemic Patients Newly Diagnosed with Type 2 Diabetes. Int J Mol Sci 2020; 21:ijms21228835. [PMID: 33266469 PMCID: PMC7700318 DOI: 10.3390/ijms21228835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease (CVD) is the major cause of death in patients with type-2 diabetes mellitus (T2DM), although the factors that accelerate atherosclerosis in these patients are poorly understood. The identification of the altered quantity and quality of lipoproteins, closely related to atherogenesis, is limited in routine to a pattern of high triglycerides and low HDL-cholesterol (HDL-C) and in research as dysfunctional HDLs. We used the emerging NMR-based lipidomic technology to investigate compositional features of the HDLs of healthy individuals with normal coronary arteries, drug-naïve; recently diagnosed T2DM patients with normal coronary arteries; and patients with recent acute coronary syndrome. Patients with T2DM and normal serum lipid profiles even at diagnosis presented significant lipid alterations in HDL, characterized by higher triglycerides, lysophosphatidylcholine and saturated fatty acids; and lower cholesterol, phosphatidylcholine, phosphatidylethanolamine, sphingomyelin, plasmalogens and polyunsaturated fatty acids, an atherogenic pattern that may be involved in the pathogenesis of atherosclerosis. These changes are qualitatively similar to those found, more profoundly, in normolipidemic patients with established Coronary Heart Disease (CHD). We also conclude that NMR-based lipidomics offer a novel holistic exploratory approach for identifying and quantifying lipid species in biological matrixes in physiological processes and disease states or in disease biomarker discovery.
Collapse
Affiliation(s)
- Christina E. Kostara
- Laboratory of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece; (C.E.K.); (E.T.B.)
| | | | - Eleni T. Bairaktari
- Laboratory of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece; (C.E.K.); (E.T.B.)
| | - Athanasios Papathanasiou
- Department of Internal Medicine, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (M.E.)
| | - Moses Elisaf
- Department of Internal Medicine, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (M.E.)
| | - Vasilis Tsimihodimos
- Department of Internal Medicine, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (M.E.)
- Correspondence: ; Tel.: +30-2651007362
| |
Collapse
|
20
|
Microencapsulated Pomegranate Modifies the Composition and Function of High-Density Lipoproteins (HDL) in New Zealand Rabbits. Molecules 2020; 25:molecules25143297. [PMID: 32708063 PMCID: PMC7397439 DOI: 10.3390/molecules25143297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022] Open
Abstract
Previous studies demonstrated that pomegranate, which is a source of several bioactive molecules, induces modifications of high-density lipoproteins (HDL) lipid composition and functionality. However, it remains unclear whether the beneficial effects of pomegranate are related to improvement in the lipid components of HDL. Therefore, in this placebo-controlled study, we characterized the size and lipid composition of HDL subclasses and assessed the functionality of these lipoproteins after 30 days of supplementation with a pomegranate microencapsulated (MiPo) in New Zealand white rabbits. We observed a significant decrease in plasma cholesterol, triglycerides, and non-HDL sphingomyelin, as well as increases in HDL cholesterol and HDL phospholipids after supplementation with MiPo. Concomitantly, the triglycerides of the five HDL subclasses isolated by electrophoresis significantly decreased, whereas phospholipids, cholesterol, and sphingomyelin of HDL subclasses, as well as the HDL size distribution remained unchanged. Of particular interest, the triglycerides content of HDL, estimated by the triglycerides-to-phospholipids ratio, decreased significantly after MiPo supplementation. The modification on the lipid content after the supplementation was associated with an increased resistance of HDL to oxidation as determined by the conjugated dienes formation catalyzed by Cu2+. Accordingly, paraoxonase-1 (PON1) activity determined with phenylacetate as substrate increased after MiPo. The effect of HDL on endothelial function was analyzed by the response to increasing doses of acetylcholine of aorta rings co-incubated with the lipoproteins in an isolated organ bath. The HDL from rabbits that received placebo partially inhibited the endothelium-dependent vasodilation. In contrast, the negative effect of HDL on endothelial function was reverted by MiPo supplementation. These results show that the beneficial effects of pomegranate are mediated at least in part by improving the functionality of HDL, probably via the reduction of the content of triglycerides in these lipoproteins.
Collapse
|
21
|
Rosales C, Gillard BK, Gotto AM, Pownall HJ. The Alcohol-High-Density Lipoprotein Athero-Protective Axis. Biomolecules 2020; 10:E987. [PMID: 32630283 PMCID: PMC7408510 DOI: 10.3390/biom10070987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 01/22/2023] Open
Abstract
Ingestion of alcohol is associated with numerous changes in human energy metabolism, especially that of plasma lipids and lipoproteins. Regular moderate alcohol consumption is associated with reduced atherosclerotic cardiovascular disease (ASCVD), an effect that has been attributed to the concurrent elevations of plasma high-density lipoprotein-cholesterol (HDL-C) concentrations. More recent evidence has accrued against the hypothesis that raising plasma HDL concentrations prevents ASCVD so that other metabolic processes associated with alcohol consumption have been considered. This review explored the roles of other metabolites induced by alcohol consumption-triglyceride-rich lipoproteins, non-esterified free fatty acids, and acetate, the terminal alcohol metabolite in athero-protection: Current evidence suggests that acetate has a key role in athero-protection but additional studies are needed.
Collapse
Affiliation(s)
| | | | | | - Henry J. Pownall
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; (C.R.); (B.K.G.); (A.M.G.J.)
| |
Collapse
|
22
|
Fawaz MV, Kim SY, Li D, Ming R, Xia Z, Olsen K, Pogozheva ID, Tesmer JJG, Schwendeman A. Phospholipid Component Defines Pharmacokinetic and Pharmacodynamic Properties of Synthetic High-Density Lipoproteins. J Pharmacol Exp Ther 2020; 372:193-204. [PMID: 31776208 PMCID: PMC6978696 DOI: 10.1124/jpet.119.257568] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
Synthetic high-density lipoprotein (sHDL) nanoparticles composed of apolipoprotein A-I mimetic peptide and phospholipids have been shown to reduce atherosclerosis in animal models. Cholesterol is mobilized from atheroma macrophages by sHDL into the blood compartment and delivered to the liver for elimination. Historically, sHDL drug discovery efforts were focused on optimizing peptide sequences for interaction with cholesterol cellular transporters rather than understanding how both sHDL components, peptide and lipid, influence its pharmacokinetic and pharmacodynamic profiles. We designed two sets of sHDL having either identical phospholipid but variable peptide sequences with different plasma stability or identical peptide and phospholipids with variable fatty acid chain length and saturation. We found that sHDL prepared with proteolytically stable 22A-P peptide had 2-fold longer circulation half-time relative to the less stable 22A peptide. Yet, longer half-life did not translate into any improvement in cholesterol mobilization. In contrast, sHDL with variable phospholipid compositions showed significant differences in phospholipid PK, with distearoyl phosphatidylcholine-based sHDL demonstrating the longest half-life of 6.0 hours relative to 1.0 hour for palmitoyl-oleoyl phosphatidylcholine-based sHDL. This increase in half-life corresponded to an approx. 6.5-fold increase in the area under the curve for the mobilized cholesterol. Therefore, the phospholipid component in sHDL plays a major role in cholesterol mobilization in vivo and should not be overlooked in the design of future sHDL. SIGNIFICANCE STATEMENT: The phospholipid composition in sHDL plays a critical role in determining half-life and cholesterol mobilization in vivo.
Collapse
Affiliation(s)
- Maria V Fawaz
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Sang Yeop Kim
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Dan Li
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Ran Ming
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Ziyun Xia
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Karl Olsen
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Irina D Pogozheva
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - John J G Tesmer
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Anna Schwendeman
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| |
Collapse
|
23
|
Sun Y, Saito K, Saito Y. Lipid Profile Characterization and Lipoprotein Comparison of Extracellular Vesicles from Human Plasma and Serum. Metabolites 2019; 9:metabo9110259. [PMID: 31683897 PMCID: PMC6918450 DOI: 10.3390/metabo9110259] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles (EVs) consist of lipid bilayers, occur in various biofluids, and are invaluable in biomarker screening. Liquid chromatography coupled with high-resolution mass spectrometry (LC-MS) was recently used to study comprehensive EV lipid profiles in vitro. The aim of this study was to establish a lipidomics platform for human plasma and serum EVs for comprehensive characterization of their lipid profiles, and to compare them with those of other lipid-containing particles, such as high-density lipoproteins (HDL), and low/very low-density lipoproteins (LDL/VLDL). Isolation was validated by specific protein markers; CD9 and MHC class for EVs, apoA-I for HDL, and apoB-100 for LDL/VLDL. Lipidomics identified 264 lipids from isolated plasma EVs, HDL, and LDL/VLDL. The absolute lipid levels per unit protein content in the EVs were more than eight times lower than those of the lipoproteins. Moreover, the EVs had higher lysoglycerophospholipid levels than HDL or LDL/VLDL. Similar profiles were also determined for human serum. The present study found that the lipid profiles of EVs are unique and distinctly different from those of lipoproteins. The lipidomics platform applied to human plasma and serum EVs could generate important information for the exploration and qualification of biomarkers in disease diagnosis.
Collapse
Affiliation(s)
- Yuchen Sun
- Division of Medical Safety Science, National Institute of Health Sciences, Kanagawa 210-9501, Japan.
| | - Kosuke Saito
- Division of Medical Safety Science, National Institute of Health Sciences, Kanagawa 210-9501, Japan.
| | - Yoshiro Saito
- Division of Medical Safety Science, National Institute of Health Sciences, Kanagawa 210-9501, Japan.
| |
Collapse
|
24
|
Atorvastatin and Fenofibrate Increase the Content of Unsaturated Acyl Chains in HDL and Modify In Vivo Kinetics of HDL-Cholesteryl Esters in New Zealand White Rabbits. Int J Mol Sci 2019; 20:ijms20102521. [PMID: 31121898 PMCID: PMC6566639 DOI: 10.3390/ijms20102521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 02/07/2023] Open
Abstract
Previous studies demonstrated modifications of high-density lipoproteins (HDL) structure and apolipoprotein (apo) A-I catabolism induced by the atorvastatin and fenofibrate combination. However, it remains unknown whether such structural and metabolic changes of HDL were related to an improvement of the HDL-cholesteryl esters (HDL-CE) metabolism. Therefore, we determined the structure of HDL and performed kinetic studies of HDL-CE radiolabeled with tritium in rabbits treated with atorvastatin, fenofibrate, and a combination of both drugs. The atorvastatin and fenofibrate combination increased the HDL size and the cholesterol and phospholipid plasma concentrations of the largest HDL subclasses. Moreover, the relative amount of unsaturated fatty acids contained in HDL increased, in detriment of saturated fatty acids as determined by gas chromatography-mass spectrometry. The transfers of cholesteryl esters (CE) from HDL to very low-density lipoproteins/low-density lipoproteins (VLDL/LDL) and vice versa were enhanced with atorvastatin, alone or in combination. Moreover, the direct elimination of CE from plasma via VLDL/LDL decreased with fenofibrate, whereas the direct elimination of CE via HDL augmented with the combination treatment. Taken together, the rise of unsaturated fatty acid content and the size increase of HDL, suggest that atorvastatin and fenofibrate induce more fluid HDL particles, which in turn favor an enhanced CE exchange between HDL and VLDL/LDL. Our results contribute to a better understanding of the relationship between the structure and function of HDL during the use of anti-dyslipidemic drugs.
Collapse
|
25
|
Torkhovskaya TI, Kudinov VA, Zakharova TS, Ipatova OM, Markin SS. High Density Lipoproteins Phosphatidylcholine as a Regulator of Reverse Cholesterol Transport. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162018060092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Toh R. Assessment of HDL Cholesterol Removal Capacity: Toward Clinical Application. J Atheroscler Thromb 2019; 26:111-120. [PMID: 30542002 PMCID: PMC6365149 DOI: 10.5551/jat.rv17028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/11/2018] [Indexed: 12/15/2022] Open
Abstract
While there is a controversy regarding the causal relationship between high-density lipoprotein cholesterol (HDL-C) and cardiovascular disease (CVD), recent studies have demonstrated that the cholesterol efflux capacity (CEC) of HDL is associated with the incidence of CVD. However, there are several limitations to current assays of CEC. First, CEC measurements are not instantly applicable in clinical settings, because CEC assay methods require radiolabeled cholesterol and cultured cells, and these procedures are time consuming. Second, techniques to measure CEC are not standardized. Third, the condition of endogenous cholesterol donors would not be accounted for in the CEC assays. Recently, we established a simple, high-throughput, cell-free assay system to evaluate the capacity of HDL to accept additional cholesterol, which is herein referred to as "cholesterol uptake capacity (CUC)". We demonstrated that CUC represents a residual cardiovascular risk in patients with optimal low-density lipoprotein cholesterol control independently of traditional risk factors, including HDL-C. Establishing reproducible approaches for the cholesterol removal capacity of HDL is required to validate the impact of dysfunctional HDL on cardiovascular risk stratification in the "real world".
Collapse
Affiliation(s)
- Ryuji Toh
- Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
27
|
Rauschert S, Gázquez A, Uhl O, Kirchberg FF, Demmelmair H, Ruíz-Palacios M, Prieto-Sánchez MT, Blanco-Carnero JE, Nieto A, Larqué E, Koletzko B. Phospholipids in lipoproteins: compositional differences across VLDL, LDL, and HDL in pregnant women. Lipids Health Dis 2019; 18:20. [PMID: 30670033 PMCID: PMC6343318 DOI: 10.1186/s12944-019-0957-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 01/01/2019] [Indexed: 12/11/2022] Open
Abstract
Objective The aim of this study was to analyse the differences in the phospholipid composition of very low density (VLDL), low density (LDL) and high density lipoprotein (HDL) monolayers in pregnant lean and obese women. Methods LDL, HDL, and VLDL were isolated from plasma samples of 10 lean and 10 obese pregnant women, and their species composition of phosphatidylcholines (PC) and sphingomyelins (SM) was analysed by liquid-chromatography tandem mass-spectrometry. Wilcoxon-Mann-Whitney U test and principal component analysis (PCA) were used to investigate if metabolite profiles differed between the lean/obese group and between lipoprotein species. Results No significant differences have been found in the metabolite levels between obese and non-obese pregnant women. The PCA components 1 and 2 separated between LDL, HDL, and VLDL but not between normal weight and obese women. Twelve SM and one PCae were more abundant in LDL than in VLDL. In contrast, four acyl-alkyl-PC and two diacyl-PC were significantly higher in HDL compared to LDL. VLDL and HDL differed in three SM, seven acyl-alkyl-PC and one diacyl-PC (higher values in HDL) and 13 SM (higher in VLDL). We also found associations of some phospholipid species with HDL and LDL cholesterol. Conclusion In pregnant women phospholipid composition differs significantly in HDL, LDL and VLDL, similar to previous findings in men and non-pregnant women. Obese and lean pregnant women showed no significant differences in their lipoprotein associated metabolite profile. Electronic supplementary material The online version of this article (10.1186/s12944-019-0957-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sebastian Rauschert
- LMU - Ludwig-Maximilians-Universität Munich, Div. Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, 80337, Munich, Germany
| | - Antonio Gázquez
- LMU - Ludwig-Maximilians-Universität Munich, Div. Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, 80337, Munich, Germany.,Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Olaf Uhl
- LMU - Ludwig-Maximilians-Universität Munich, Div. Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, 80337, Munich, Germany
| | - Franca F Kirchberg
- LMU - Ludwig-Maximilians-Universität Munich, Div. Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, 80337, Munich, Germany
| | - Hans Demmelmair
- LMU - Ludwig-Maximilians-Universität Munich, Div. Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, 80337, Munich, Germany
| | - María Ruíz-Palacios
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - María T Prieto-Sánchez
- Obstetrics and Gynecology Service, Virgen de la Arrixaca Clinical Hospital, University of Murcia, Murcia, Murcia, Spain
| | - José E Blanco-Carnero
- Obstetrics and Gynecology Service, Virgen de la Arrixaca Clinical Hospital, University of Murcia, Murcia, Murcia, Spain
| | - Anibal Nieto
- Obstetrics and Gynecology Service, Virgen de la Arrixaca Clinical Hospital, University of Murcia, Murcia, Murcia, Spain
| | - Elvira Larqué
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Berthold Koletzko
- LMU - Ludwig-Maximilians-Universität Munich, Div. Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, 80337, Munich, Germany.
| |
Collapse
|
28
|
Liu X, Garban J, Jones PJ, Vanden Heuvel J, Lamarche B, Jenkins DJ, Connelly PW, Couture P, Pu S, Fleming JA, West SG, Kris-Etherton PM. Diets Low in Saturated Fat with Different Unsaturated Fatty Acid Profiles Similarly Increase Serum-Mediated Cholesterol Efflux from THP-1 Macrophages in a Population with or at Risk for Metabolic Syndrome: The Canola Oil Multicenter Intervention Trial. J Nutr 2018; 148:721-728. [PMID: 30053283 PMCID: PMC6669947 DOI: 10.1093/jn/nxy040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/09/2017] [Accepted: 02/12/2018] [Indexed: 01/02/2023] Open
Abstract
Background Cholesterol efflux plays an important role in preventing atherosclerosis progression. Vegetable oils with varying unsaturated fatty acid profiles favorably affect multiple cardiovascular disease risk factors; however, their effects on cholesterol efflux remain unclear. Objective The objectives of this study were to examine the effects of diets low in saturated fatty acids (SFAs) with varying unsaturated fatty acid profiles on serum-mediated cholesterol efflux and its association with the plasma lipophilic index and central obesity. Methods The present study is a randomized, crossover, controlled-feeding study. Participants [men: n = 50; women: n = 51; mean ± SE age: 49.5 ± 1.2 y; body mass index (in kg/m2): 29.4 ± 0.4] at risk for or with metabolic syndrome (MetS) were randomly assigned to 5 isocaloric diets containing the treatment oils: canola oil, high oleic acid-canola oil, DHA-enriched high oleic acid-canola oil, corn oil and safflower oil blend, and flax oil and safflower oil blend. These treatment oils were incorporated into smoothies that participants consumed 2 times/d. For a 3000-kcal diet, 60 g of treatment oil was required to provide 18% of total energy per day. Each diet period was 4 wk followed by a 2- to 4-wk washout period. We quantified cholesterol efflux capacity with a validated ex vivo high-throughput cholesterol efflux assay. Statistical analyses were performed with the use of the SAS mixed-model procedure. Results The 5 diets increased serum-mediated cholesterol efflux capacity from THP-1 macrophages similarly by 39%, 34%, 55%, 49% and 51%, respectively, compared with baseline (P < 0.05 for all). Waist circumference and abdominal adiposity were negatively correlated with serum-mediated cholesterol efflux capacity (r = -0.25, P = 0.01, r = -0.33, P = 0.02, respectively). Conclusion Diets low in SFAs with different monounsaturated fatty acid and polyunsaturated fatty acid profiles improved serum-mediated cholesterol efflux capacity in individuals with or at risk for MetS. This mechanism may account, in part, for the cardiovascular disease benefits of diets low in SFAs and high in unsaturated fatty acids. Importantly, central obesity is inversely associated with cholesterol efflux capacity. This trial was registered at www.clinicaltrials.gov as NCT01351012.
Collapse
Affiliation(s)
- Xiaoran Liu
- Departments of Nutritional Sciences, Veterinary and Biomedical Sciences, and Biobehavioral Health, The Pennsylvania State University, University Park, PA
| | - Josephine Garban
- Departments of Veterinary and Biomedical Sciences, and Biobehavioral Health, The Pennsylvania State University, University Park, PA
| | - Peter J Jones
- Richardson Center for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Canada
| | - Jack Vanden Heuvel
- Departments of Veterinary and Biomedical Sciences, and Biobehavioral Health, The Pennsylvania State University, University Park, PA
| | - Benoît Lamarche
- Institute of Nutrition and Functional Foods, Laval University, Québec, Canada
| | - David J Jenkins
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Philip W Connelly
- Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, Canada
| | - Patrick Couture
- Institute of Nutrition and Functional Foods, Laval University, Québec, Canada
| | - Shuaihua Pu
- Departments of Veterinary and Biomedical Sciences, and Biobehavioral Health, The Pennsylvania State University, University Park, PA
| | - Jennifer A Fleming
- Departments of Nutritional Sciences, Veterinary and Biomedical Sciences, and Biobehavioral Health, The Pennsylvania State University, University Park, PA
| | - Sheila G West
- Departments of Nutritional Sciences, Veterinary and Biomedical Sciences, and Biobehavioral Health, The Pennsylvania State University, University Park, PA
| | - Penny M Kris-Etherton
- Departments of Nutritional Sciences, Veterinary and Biomedical Sciences, and Biobehavioral Health, The Pennsylvania State University, University Park, PA
| |
Collapse
|
29
|
Fernández-Castillejo S, Rubió L, Hernáez Á, Catalán Ú, Pedret A, Valls RM, Mosele JI, Covas MI, Remaley AT, Castañer O, Motilva MJ, Solá R. Determinants of HDL Cholesterol Efflux Capacity after Virgin Olive Oil Ingestion: Interrelationships with Fluidity of HDL Monolayer. Mol Nutr Food Res 2017; 61. [PMID: 28887843 DOI: 10.1002/mnfr.201700445] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/27/2017] [Indexed: 12/26/2022]
Abstract
SCOPE Cholesterol efflux capacity of HDL (CEC) is inversely associated with cardiovascular risk. HDL composition, fluidity, oxidation, and size are related with CEC. We aimed to assess which HDL parameters were CEC determinants after virgin olive oil (VOO) ingestion. METHODS AND RESULTS Post-hoc analyses from the VOHF study, a crossover intervention with three types of VOO. We assessed the relationship of 3-week changes in HDL-related variables after intervention periods with independence of the type of VOO. After univariate analyses, mixed linear models were fitted with variables related with CEC and fluidity. Fluidity and Apolipoprotein (Apo)A-I content in HDL was directly associated, and HDL oxidative status inversely, with CEC. A reduction in free cholesterol, an increase in triglycerides in HDL, and a decrease in small HDL particle number or an increase in HDL mean size, were associated to HDL fluidity. CONCLUSIONS HDL fluidity, ApoA-I concentration, and oxidative status are major determinants for CEC after VOO. The impact on CEC of changes in free cholesterol and triglycerides in HDL, and those of small HDL or HDL mean size, could be mechanistically linked through HDL fluidity. Our work points out novel therapeutic targets to improve HDL functionality in humans through nutritional or pharmacological interventions.
Collapse
Affiliation(s)
- Sara Fernández-Castillejo
- Research Unit on Lipids and Atherosclerosis, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili (IISPV), Functional Nutrition, Oxidation, and Cardiovascular Disease (NFOC-SALUT) group, Universitat Rovira i Virgili, Reus, Spain
| | - Laura Rubió
- Research Unit on Lipids and Atherosclerosis, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili (IISPV), Functional Nutrition, Oxidation, and Cardiovascular Disease (NFOC-SALUT) group, Universitat Rovira i Virgili, Reus, Spain
- Food Technology Department, Agrotecnio Center, University of Lleida, Lleida, Spain
| | - Álvaro Hernáez
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute (IMIM), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Barcelona, Spain
| | - Úrsula Catalán
- Research Unit on Lipids and Atherosclerosis, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili (IISPV), Functional Nutrition, Oxidation, and Cardiovascular Disease (NFOC-SALUT) group, Universitat Rovira i Virgili, Reus, Spain
| | - Anna Pedret
- Research Unit on Lipids and Atherosclerosis, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili (IISPV), Functional Nutrition, Oxidation, and Cardiovascular Disease (NFOC-SALUT) group, Universitat Rovira i Virgili, Reus, Spain
- Eurecat-Centre Tecnològic de Nutrició i Salut (Eurecat-CTNS), Reus, Spain
| | - Rosa-M Valls
- Research Unit on Lipids and Atherosclerosis, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili (IISPV), Functional Nutrition, Oxidation, and Cardiovascular Disease (NFOC-SALUT) group, Universitat Rovira i Virgili, Reus, Spain
| | - Juana I Mosele
- Food Technology Department, Agrotecnio Center, University of Lleida, Lleida, Spain
| | - Maria-Isabel Covas
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute (IMIM), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Barcelona, Spain
- NUPROAS Handelsbolag, Nackă, Sweden
| | - Alan T Remaley
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Olga Castañer
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute (IMIM), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Barcelona, Spain
| | - Maria-José Motilva
- Food Technology Department, Agrotecnio Center, University of Lleida, Lleida, Spain
| | - Rosa Solá
- Research Unit on Lipids and Atherosclerosis, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili (IISPV), Functional Nutrition, Oxidation, and Cardiovascular Disease (NFOC-SALUT) group, Universitat Rovira i Virgili, Reus, Spain
| |
Collapse
|
30
|
Effects of the dietary carbohydrate-fat ratio on plasma phosphatidylcholine profiles in human and mouse. J Nutr Biochem 2017; 50:83-94. [PMID: 29040839 DOI: 10.1016/j.jnutbio.2017.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/25/2017] [Accepted: 08/30/2017] [Indexed: 11/23/2022]
Abstract
Phosphatidylcholines (PCs), a major class of human plasma phospholipids, are composed of highly diverse fatty acids. Because the dietary carbohydrate-fat ratio alters the hepatic fatty acid metabolism, plasma fatty acids that bind PCs, which are secreted as lipoproteins from the liver, may be affected by long-term consumption of a high-carbohydrate diet or a high-fat diet. Therefore, in this study, we profiled the plasma PC species comprehensively in formulated dieting conditions to identify those phospholipid molecules that reflect the dietary carbohydrate-fat ratio. C57BL6J mice were fed diets containing different amounts of fat for 8 weeks, and plasma PC species were analyzed under fasting conditions using liquid chromatography-mass spectrometry. In addition, a cross-sectional study of 78 middle-aged Japanese men, who participated in health checkups, was conducted. Nutrient intakes were estimated by a brief self-administered diet-history questionnaire. The plasma PC profiles changed depending on the dietary carbohydrate-fat ratio. Especially, PC (16:0/16:1) and PC (16:0/18:1) levels increased as the dietary carbohydrate-fat ratio increased in human and mouse, suggesting that these PC species reflected the increase in de novo lipogenesis and might become useful biomarkers of the dietary carbohydrate-fat ratio. Since these PCs act as ligands for peroxisome proliferator-activated receptor α, PC species reflecting the dietary carbohydrate-fat ratio may influence metabolism of glucose and lipids.
Collapse
|
31
|
Hancock-Cerutti W, Lhomme M, Dauteuille C, Lecocq S, Chapman MJ, Rader DJ, Kontush A, Cuchel M. Paradoxical coronary artery disease in humans with hyperalphalipoproteinemia is associated with distinct differences in the high-density lipoprotein phosphosphingolipidome. J Clin Lipidol 2017; 11:1192-1200.e3. [PMID: 28826666 PMCID: PMC10455038 DOI: 10.1016/j.jacl.2017.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 06/16/2017] [Accepted: 06/25/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Plasma high-density lipoprotein cholesterol (HDL-C) levels are inversely associated with risk of coronary artery disease (CAD) in epidemiologic studies. Despite this, the directionality of this relationship and the underlying biology behind it remain to be firmly established, especially at the extremes of HDL-C levels. OBJECTIVE We investigated differences in the HDL phosphosphingolipidome in a rare population of subjects with premature CAD despite high HDL-C levels to gain insight into the association between the HDL lipidome and CAD disease status in this unusual phenotype. We sought to assess differences in HDL composition that are associated with CAD in subjects with HDL-C >90th percentile. We predicted that quantitative lipidomic analysis of HDL particles would reveal novel differences between CAD patients and healthy subjects with matched HDL-C levels. METHODS We collected plasma samples from 25 subjects with HDL-C >90th percentile and clinically manifest CAD and healthy controls with HDL-C >90th percentile and without self-reported CAD. More than 140 individual HDL phospholipid and sphingolipid species were analyzed by LC/MS/MS. RESULTS Significant reductions in HDL phosphatidylcholine (-2.41%, Q value = 0.025) and phosphatidylinositol (-10.7%, Q value = 0.047) content, as well as elevated sphingomyelin (+10.0%, Q value = 0.025) content, and sphingomyelin/phosphatidylcholine ratio (+12.8%, P value = .005) were associated with CAD status in subjects with high HDL-C. CONCLUSIONS These differences may lay the groundwork for further analysis of the relationship between the HDL lipidome and disease states, as well as for the development of biomarkers of CAD status and HDL function.
Collapse
Affiliation(s)
- William Hancock-Cerutti
- National Institute for Health and Medical Reserch (INSERM), Research Unit 1166 ICAN, Paris, France; University of Pierre and Marie Curie - Paris 6, Paris, France; AP-HP, Groupe Hospitalier Pitié Salpétrière, Paris, France; ICAN Analytics, ICAN Institute, Paris, France; Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marie Lhomme
- ICANalytics, Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital, Paris, France
| | - Carolane Dauteuille
- National Institute for Health and Medical Reserch (INSERM), Research Unit 1166 ICAN, Paris, France; University of Pierre and Marie Curie - Paris 6, Paris, France; AP-HP, Groupe Hospitalier Pitié Salpétrière, Paris, France; ICAN Analytics, ICAN Institute, Paris, France
| | - Sora Lecocq
- National Institute for Health and Medical Reserch (INSERM), Research Unit 1166 ICAN, Paris, France; University of Pierre and Marie Curie - Paris 6, Paris, France; AP-HP, Groupe Hospitalier Pitié Salpétrière, Paris, France; ICAN Analytics, ICAN Institute, Paris, France
| | - M John Chapman
- National Institute for Health and Medical Reserch (INSERM), Research Unit 1166 ICAN, Paris, France; University of Pierre and Marie Curie - Paris 6, Paris, France; AP-HP, Groupe Hospitalier Pitié Salpétrière, Paris, France; ICAN Analytics, ICAN Institute, Paris, France
| | - Daniel J Rader
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anatol Kontush
- National Institute for Health and Medical Reserch (INSERM), Research Unit 1166 ICAN, Paris, France; University of Pierre and Marie Curie - Paris 6, Paris, France; AP-HP, Groupe Hospitalier Pitié Salpétrière, Paris, France; ICAN Analytics, ICAN Institute, Paris, France.
| | - Marina Cuchel
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
32
|
Padró T, Cubedo J, Camino S, Béjar MT, Ben-Aicha S, Mendieta G, Escolà-Gil JC, Escate R, Gutiérrez M, Casani L, Badimon L, Vilahur G. Detrimental Effect of Hypercholesterolemia on High-Density Lipoprotein Particle Remodeling in Pigs. J Am Coll Cardiol 2017; 70:165-178. [PMID: 28683964 DOI: 10.1016/j.jacc.2017.05.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/21/2017] [Accepted: 05/03/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Beneficial effects of high-density lipoproteins (HDL) seem altered in patients with symptomatic cardiovascular disease. We recently demonstrated in a swine model of ischemia-reperfusion (IR) that hypercholesterolemia abolishes HDL-related cardioprotection. OBJECTIVES This study sought to investigate, using the same animal model, whether the reported impairment of HDL cardioprotective function was associated with alterations in HDL remodeling and functionality. METHODS Pigs were fed a normocholesterolemic (NC) or hypercholesterolemic (HL) diet for 10 days, reaching non-HDL cholesterol concentrations of 38.2 ± 3.5 mg/dl and 218.6 ± 27.6 mg/dl, respectively (p < 0.0001). HDLs were isolated, and lipidomics and differential proteomics tests were performed to determine HDL molecular changes. HDL functionality and particle size were determined. RESULTS Using principal component analysis, we identified 255 molecular lipid species differentially clustered in NC-HDL and HL-HDL. Ninety lipid metabolites were differentially expressed, and 50 showed at least 1.5-fold variation (false discovery rate adjustment q value <0.05). HL-HDLs presented a core enriched in cholesteryl esters and a surface depleted of phosphatidylcholine species containing polyunsaturated and long-chain fatty acids, indicating the presence of mature HDL particles with low surface fluidity. Hypercholesterolemia induced an important change in HDL-transported proteins (576 spots in HL-HDL vs. 621 spots in NC-HDL). HL-HDLs showed a reduced content of lipocalin retinol binding protein 4 and apolipoprotein M and in the retinoic acid-transporter cellular retinoic acid binding protein 1 (p < 0.05 vs. NC-HDL). No changes were observed in apolipoprotein A-I content and profile. Functionally, HL-HDL showed lower antioxidant activity (-35%) and a reduced capacity to efflux cholesterol (-60%) compared to NC-HDL (p < 0.05). Hypercholesterolemia induced larger HDL particles. CONCLUSIONS We demonstrate that hypercholesterolemia induces HDL lipidomic changes, losing phosphatidylcholine-lipid species and gaining cholesteryl esters, and proteomic changes, with losses in cardioprotective proteins. These remodeling changes shifted HDL particles toward a dysfunctional state.
Collapse
Affiliation(s)
- Teresa Padró
- Cardiovascular Science Institute - ICCC, Barcelona, Spain; Institut d'Investigacions Biomèdiques, IIB-Sant Pau, Barcelona, Spain; Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV) Instituto de Salud Carlos III, Barcelona, Spain
| | - Judit Cubedo
- Cardiovascular Science Institute - ICCC, Barcelona, Spain; Institut d'Investigacions Biomèdiques, IIB-Sant Pau, Barcelona, Spain; Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV) Instituto de Salud Carlos III, Barcelona, Spain
| | - Sandra Camino
- Cardiovascular Science Institute - ICCC, Barcelona, Spain; Institut d'Investigacions Biomèdiques, IIB-Sant Pau, Barcelona, Spain
| | - Maria Teresa Béjar
- Cardiovascular Science Institute - ICCC, Barcelona, Spain; Institut d'Investigacions Biomèdiques, IIB-Sant Pau, Barcelona, Spain
| | - Soumaya Ben-Aicha
- Cardiovascular Science Institute - ICCC, Barcelona, Spain; Institut d'Investigacions Biomèdiques, IIB-Sant Pau, Barcelona, Spain
| | - Guiomar Mendieta
- Cardiovascular Science Institute - ICCC, Barcelona, Spain; Department of Cardiology, Hospital Clinic, Barcelona, Spain
| | - Joan Carles Escolà-Gil
- Institut d'Investigacions Biomèdiques, IIB-Sant Pau, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Hospitalet de Llobregat, Barcelona, Spain
| | - Rafael Escate
- Cardiovascular Science Institute - ICCC, Barcelona, Spain; Institut d'Investigacions Biomèdiques, IIB-Sant Pau, Barcelona, Spain
| | - Manuel Gutiérrez
- Cardiovascular Science Institute - ICCC, Barcelona, Spain; Institut d'Investigacions Biomèdiques, IIB-Sant Pau, Barcelona, Spain
| | - Laura Casani
- Cardiovascular Science Institute - ICCC, Barcelona, Spain; Institut d'Investigacions Biomèdiques, IIB-Sant Pau, Barcelona, Spain
| | - Lina Badimon
- Cardiovascular Science Institute - ICCC, Barcelona, Spain; Institut d'Investigacions Biomèdiques, IIB-Sant Pau, Barcelona, Spain; Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV) Instituto de Salud Carlos III, Barcelona, Spain; Cardiovascular Research Chair, Universidad Autónoma Barcelona (UAB), Barcelona, Spain
| | - Gemma Vilahur
- Cardiovascular Science Institute - ICCC, Barcelona, Spain; Institut d'Investigacions Biomèdiques, IIB-Sant Pau, Barcelona, Spain; Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV) Instituto de Salud Carlos III, Barcelona, Spain.
| |
Collapse
|
33
|
Swertfeger DK, Li H, Rebholz S, Zhu X, Shah AS, Davidson WS, Lu LJ. Mapping Atheroprotective Functions and Related Proteins/Lipoproteins in Size Fractionated Human Plasma. Mol Cell Proteomics 2017; 16:680-693. [PMID: 28223350 DOI: 10.1074/mcp.m116.066290] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/13/2017] [Indexed: 11/06/2022] Open
Abstract
HDL has been shown to possess a variety of cardio-protective functions, including removal of excess cholesterol from the periphery, and inhibition of lipoprotein oxidation. It has been proposed that various HDL subparticles exist, each with distinct protein and lipid compositions, which may be responsible for HDL's many functions. We hypothesized that HDL functions will co-migrate with the operational lipoprotein subspecies when separated by gel filtration chromatography. Plasma from 10 healthy male donors was fractionated and the protein composition of the phospholipid containing fractions was analyzed by mass spectrometry (MS). Each fraction was evaluated for its proteomic content as well as its ability to promote cholesterol efflux and protect low density lipoprotein (LDL) from free radical oxidation. For each function, several peaks of activity were identified across the plasma size gradient. Neither cholesterol efflux or LDL antioxidation activity correlated strongly with any single protein across the fractions. However, we identified multiple proteins that had strong correlations (r values >0.7, p < 0.01) with individual peaks of activity. These proteins fell into diverse functional categories, including those traditionally associated with lipid metabolism, as well as alternative complement cascade, innate immunity and clotting cascades and immunoglobulins. Additionally, the phospholipid and cholesterol concentration of the fractions correlated strongly with cholesterol efflux (r = 0.95 and 0.82 respectively), whereas the total protein content of the fractions correlated best with antioxidant activity across all fractions (r = 0.746). Furthermore, two previously postulated subspecies (apoA-I, apoA-II and apoC-1; as well as apoA-I, apoC-I and apoJ) were found to have strong correlations with both cholesterol efflux and antioxidation activity. Up till now, very little has been known about how lipoprotein composition mediates functions like cholesterol efflux and antioxidation.
Collapse
Affiliation(s)
- Debi K Swertfeger
- §Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039
| | - Hailong Li
- §Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039
| | - Sandra Rebholz
- §Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039.,¶Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, 2120 East Galbraith Road, Cincinnati, Ohio 45237-0507
| | - Xiaoting Zhu
- §Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039
| | - Amy S Shah
- ‖Division of Endocrinology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039
| | - W Sean Davidson
- ¶Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, 2120 East Galbraith Road, Cincinnati, Ohio 45237-0507
| | - Long J Lu
- From the ‡School of Information Management, Wuhan University, Wuhan 430072, China; .,§Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039
| |
Collapse
|
34
|
Low- ω3 Fatty Acid and Soy Protein Attenuate Alcohol-Induced Fatty Liver and Injury by Regulating the Opposing Lipid Oxidation and Lipogenic Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1840513. [PMID: 28074114 PMCID: PMC5203909 DOI: 10.1155/2016/1840513] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/14/2016] [Accepted: 11/15/2016] [Indexed: 12/20/2022]
Abstract
Chronic ethanol-induced downregulation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) and upregulation of peroxisome proliferator-activated receptor gamma coactivator 1-beta (PGC1β) affect hepatic lipid oxidation and lipogenesis, respectively, leading to fatty liver injury. Low-ω3 fatty acid (Low-ω3FA) that primarily regulates PGC1α and soy protein (SP) that seems to have its major regulatory effect on PGC1β were evaluated for their protective effects against ethanol-induced hepatosteatosis in rats fed with Lieber-deCarli control or ethanol liquid diets with high or low ω3FA fish oil and soy protein. Low-ω3FA and SP opposed the actions of chronic ethanol by reducing serum and liver lipids with concomitant decreased fatty liver. They also prevented the downregulation of hepatic Sirtuin 1 (SIRT1) and PGC1α and their target fatty acid oxidation pathway genes and attenuated the upregulation of hepatic PGC1β and sterol regulatory element-binding protein 1c (SREBP1c) and their target lipogenic pathway genes via the phosphorylation of 5' adenosine monophosphate-activated protein kinase (AMPK). Thus, these two novel modulators attenuate ethanol-induced hepatosteatosis and consequent liver injury potentially by regulating the two opposing lipid oxidation and lipogenic pathways.
Collapse
|
35
|
Annema W, von Eckardstein A. Dysfunctional high-density lipoproteins in coronary heart disease: implications for diagnostics and therapy. Transl Res 2016; 173:30-57. [PMID: 26972566 DOI: 10.1016/j.trsl.2016.02.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 12/18/2022]
Abstract
Low plasma levels of high-density lipoprotein (HDL) cholesterol are associated with increased risks of coronary heart disease. HDL mediates cholesterol efflux from macrophages for reverse transport to the liver and elicits many anti-inflammatory and anti-oxidative activities which are potentially anti-atherogenic. Nevertheless, HDL has not been successfully targeted by drugs for prevention or treatment of cardiovascular diseases. One potential reason is the targeting of HDL cholesterol which does not capture the structural and functional complexity of HDL particles. Hundreds of lipid species and dozens of proteins as well as several microRNAs have been identified in HDL. This physiological heterogeneity is further increased in pathologic conditions due to additional quantitative and qualitative molecular changes of HDL components which have been associated with both loss of physiological function and gain of pathologic dysfunction. This structural and functional complexity of HDL has prevented clear assignments of molecules to the functions of normal HDL and dysfunctions of pathologic HDL. Systematic analyses of structure-function relationships of HDL-associated molecules and their modifications are needed to test the different components and functions of HDL for their relative contribution in the pathogenesis of atherosclerosis. The derived biomarkers and targets may eventually help to exploit HDL for treatment and diagnostics of cardiovascular diseases.
Collapse
Affiliation(s)
- Wijtske Annema
- Institute of Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
36
|
Abstract
Elevated levels of cholesteryl ester (CE)-enriched apoB containing plasma lipoproteins lead to increased foam cell formation, the first step in the development of atherosclerosis. Unregulated uptake of low-density lipoprotein cholesterol by circulating monocytes and other peripheral blood cells takes place through scavenger receptors and over time causes disruption in cellular cholesterol homeostasis. As lipoproteins are taken up, their CE core is hydrolyzed by liposomal lipases to generate free cholesterol (FC). FC can be either re-esterified and stored as CE droplets or shuttled to the plasma membrane for ATP-binding cassette transporter A1-mediated efflux. Because cholesterol is an essential component of all cellular membranes, some FC may be incorporated into microdomains or lipid rafts. These platforms are essential for receptor signaling and transduction, requiring rapid assembly and disassembly. ATP-binding cassette transporter A1 plays a major role in regulating microdomain cholesterol and is most efficient when lipid-poor apolipoprotein AI (apoAI) packages raft cholesterol into soluble particles that are eventually catabolized by the liver. If FC is not effluxed from the cell, it becomes esterified, CE droplets accumulate and microdomain cholesterol content becomes poorly regulated. This dysregulation leads to prolonged activation of immune cell signaling pathways, resulting in receptor oversensitization. The availability of apoAI or other amphipathic α-helix-rich apoproteins relieves the burden of excess microdomain cholesterol in immune cells allowing a reduction in immune cell proliferation and infiltration, thereby stimulating regression of foam cells in the artery. Therefore, cellular balance between FC and CE is essential for proper immune cell function and prevents chronic immune cell overstimulation and proliferation.
Collapse
Affiliation(s)
- Mary G Sorci-Thomas
- From the Division of Endocrinology, Metabolism and Clinical Nutrition, Department of Medicine and Senior Investigator, Blood Research Institute, BloodCenter of Wisconsin (M.G.S.-T.) and Department of Pharmacology and Toxicology (M.J.T.), Medical College of Wisconsin, Milwaukee, WI.
| | - Michael J Thomas
- From the Division of Endocrinology, Metabolism and Clinical Nutrition, Department of Medicine and Senior Investigator, Blood Research Institute, BloodCenter of Wisconsin (M.G.S.-T.) and Department of Pharmacology and Toxicology (M.J.T.), Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
37
|
Arora S, Patra SK, Saini R. HDL—A molecule with a multi-faceted role in coronary artery disease. Clin Chim Acta 2016; 452:66-81. [DOI: 10.1016/j.cca.2015.10.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 10/13/2015] [Accepted: 10/22/2015] [Indexed: 01/18/2023]
|
38
|
Pownall HJ, Gotto AM. New Insights into the High-Density Lipoprotein Dilemma. Trends Endocrinol Metab 2016; 27:44-53. [PMID: 26673122 PMCID: PMC4707953 DOI: 10.1016/j.tem.2015.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/07/2015] [Accepted: 11/09/2015] [Indexed: 12/21/2022]
Abstract
Although high-density lipoprotein-cholesterol (HDL-C) concentration is a negative risk factor for atherosclerotic cardiovascular disease (CVD), efforts to reduce CVD risk by raising HDL-C have not been uniformly successful. Many studies have shown that alcohol consumption, that increases plasma HDL-C concentration, reduces CVD incidence. However, recent genetic studies in large populations have not only removed HDL-C from the causal link between plasma HDL-C concentration and reduced CVD risk, but also suggest that the association is weak. We propose here that the cardioprotective effects of alcohol are mediated by the interaction of its terminal metabolite, acetate, with the adipocyte free fatty acid receptor 2 (FFAR2), which elicits a profound antilipolytic effect that may increase insulin sensitivity without necessarily raising plasma HDL-C concentration.
Collapse
Affiliation(s)
- Henry J. Pownall
- Houston Methodist Research Institute and Weill Cornell Medical College, 6670 Bertner Avenue, Houston TX 77030
| | - Antonio M. Gotto
- Houston Methodist Research Institute and Weill Cornell Medical College, 1305 York Avenue, New York, NY, USA
| |
Collapse
|
39
|
Lipidomic Profiling of Liver Tissue from Obesity-Prone and Obesity-Resistant Mice Fed a High Fat Diet. Sci Rep 2015; 5:16984. [PMID: 26592433 PMCID: PMC4655311 DOI: 10.1038/srep16984] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/22/2015] [Indexed: 01/22/2023] Open
Abstract
Obesity is a multifactorial health problem resulting from genetic, environmental, and behavioral factors. A particularly interesting aspect of obesity is the differences observed in response to the same high-fat diet (HFD). In this study, we performed lipidomic profiling on livers from HFD-fed C57BL/6J mice using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Mice were divided into three groups: normal diet (ND), HFD-obesity prone (HFD-OP), and HFD-obesity resistant (HFD-OR). Principal components analyses showed a difference between the HFD-OP and HFD-OR groups. Individuals in the HFD-OR group were closer to those in the ND group compared with those in the HFD-OP group. In particular, phosphocholine (PC) and triglyceride (TG) levels differed significantly depending on the length of the acyl chain and degree of unsaturation, respectively. PC species were either positively or negatively correlated with concentrations of glucose, insulin, leptin, and hepatic cholesterol according to the length of the acyl chain. Decreased expression of the scavenger receptor B1 and ATP-binding cassette A1 in HFD-OP mice indicated that the acyl chain length of PC species may be related to high-density lipoprotein cholesterol metabolism. This study demonstrates that lipidomic profiling is an effective approach to analyzing global lipid alterations as they pertain to obesity.
Collapse
|
40
|
Darabi M, Guillas-Baudouin I, Le Goff W, Chapman MJ, Kontush A. Therapeutic applications of reconstituted HDL: When structure meets function. Pharmacol Ther 2015; 157:28-42. [PMID: 26546991 DOI: 10.1016/j.pharmthera.2015.10.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Reconstituted forms of HDL (rHDL) are under development for infusion as a therapeutic approach to attenuate atherosclerotic vascular disease and to reduce cardiovascular risk following acute coronary syndrome and ischemic stroke. Currently available rHDL formulations developed for clinical use contain apolipoprotein A-I (apoA-I) and one of the major lipid components of HDL, either phosphatidylcholine or sphingomyelin. Recent data have established that quantitatively minor molecular constituents of HDL particles can strongly influence their anti-atherogenic functionality. Novel rHDL formulations displaying enhanced biological activities, including cellular cholesterol efflux, may therefore offer promising prospects for the development of HDL-based, anti-atherosclerotic therapies. Indeed, recent structural and functional data identify phosphatidylserine as a bioactive component of HDL; the content of phosphatidylserine in HDL particles displays positive correlations with all metrics of their functionality. This review summarizes current knowledge of structure-function relationships in rHDL formulations, with a focus on phosphatidylserine and other negatively-charged phospholipids. Mechanisms potentially underlying the atheroprotective role of these lipids are discussed and their potential for the development of HDL-based therapies highlighted.
Collapse
Affiliation(s)
- Maryam Darabi
- UMR INSERM-UPMC 1166 ICAN, Pavillon Benjamin Delessert, Hôpital de la Pitié, 83 boulevard de l'Hôpital, 75651 Paris Cedex 13, France.
| | - Isabelle Guillas-Baudouin
- UMR INSERM-UPMC 1166 ICAN, Pavillon Benjamin Delessert, Hôpital de la Pitié, 83 boulevard de l'Hôpital, 75651 Paris Cedex 13, France.
| | - Wilfried Le Goff
- UMR INSERM-UPMC 1166 ICAN, Pavillon Benjamin Delessert, Hôpital de la Pitié, 83 boulevard de l'Hôpital, 75651 Paris Cedex 13, France.
| | - M John Chapman
- UMR INSERM-UPMC 1166 ICAN, Pavillon Benjamin Delessert, Hôpital de la Pitié, 83 boulevard de l'Hôpital, 75651 Paris Cedex 13, France.
| | - Anatol Kontush
- UMR INSERM-UPMC 1166 ICAN, Pavillon Benjamin Delessert, Hôpital de la Pitié, 83 boulevard de l'Hôpital, 75651 Paris Cedex 13, France.
| |
Collapse
|
41
|
Schwendeman A, Sviridov DO, Yuan W, Guo Y, Morin EE, Yuan Y, Stonik J, Freeman L, Ossoli A, Thacker S, Killion S, Pryor M, Chen YE, Turner S, Remaley AT. The effect of phospholipid composition of reconstituted HDL on its cholesterol efflux and anti-inflammatory properties. J Lipid Res 2015; 56:1727-37. [PMID: 26117661 PMCID: PMC4548777 DOI: 10.1194/jlr.m060285] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/25/2015] [Indexed: 01/23/2023] Open
Abstract
The goal of this study was to understand how the reconstituted HDL (rHDL) phospholipid (PL) composition affects its cholesterol efflux and anti-inflammatory properties. An ApoA-I mimetic peptide, 5A, was combined with either SM or POPC. Both lipid formulations exhibited similar in vitro cholesterol efflux by ABCA1, but 5A-SM exhibited higher ABCG1- and SR-BI-mediated efflux relative to 5A-POPC (P < 0.05). Injection of both rHDLs in rats resulted in mobilization of plasma cholesterol, although the relative potency was 3-fold higher for the same doses of 5A-SM than for 5A-POPC. Formation of preβ HDL was observed following incubation of rHDLs with both human and rat plasma in vitro, with 5A-SM inducing a higher extent of preβ formation relative to 5A-POPC. Both rHDLs exhibited anti-inflammatory properties, but 5A-SM showed higher inhibition of TNF-α, IL-6, and IL-1β release than did 5A-POPC (P < 0.05). Both 5A-SM and 5A-POPC showed reduction in total plaque area in ApoE(-/-) mice, but only 5A-SM showed a statistically significant reduction over placebo control and baseline (P < 0.01). The type of PL used to reconstitute peptide has significant influence on rHDL's anti-inflammatory and anti-atherosclerosis properties.
Collapse
Affiliation(s)
- Anna Schwendeman
- Department of Medicinal Chemistry and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
| | - Denis O. Sviridov
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Wenmin Yuan
- Department of Medicinal Chemistry and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
| | - Yanhong Guo
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109
| | - Emily E. Morin
- Department of Medicinal Chemistry and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
| | - Yue Yuan
- Department of Medicinal Chemistry and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People’s Republic of China
| | - John Stonik
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Lita Freeman
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Alice Ossoli
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Seth Thacker
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | | | - Milton Pryor
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Y. Eugene Chen
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109
| | | | - Alan T. Remaley
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
42
|
Sutter I, Velagapudi S, Othman A, Riwanto M, Manz J, Rohrer L, Rentsch K, Hornemann T, Landmesser U, von Eckardstein A. Plasmalogens of high-density lipoproteins (HDL) are associated with coronary artery disease and anti-apoptotic activity of HDL. Atherosclerosis 2015; 241:539-46. [DOI: 10.1016/j.atherosclerosis.2015.05.037] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/09/2015] [Accepted: 05/31/2015] [Indexed: 12/27/2022]
|
43
|
Vaisar T, Tang C, Babenko I, Hutchins P, Wimberger J, Suffredini AF, Heinecke JW. Inflammatory remodeling of the HDL proteome impairs cholesterol efflux capacity. J Lipid Res 2015; 56:1519-30. [PMID: 25995210 DOI: 10.1194/jlr.m059089] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Indexed: 12/17/2022] Open
Abstract
Recent studies demonstrate that HDL's ability to promote cholesterol efflux from macrophages associates strongly with cardioprotection in humans independently of HDL-cholesterol (HDL-C) and apoA-I, HDL's major protein. However, the mechanisms that impair cholesterol efflux capacity during vascular disease are unclear. Inflammation, a well-established risk factor for cardiovascular disease, has been shown to impair HDL's cholesterol efflux capacity. We therefore tested the hypothesis that HDL's impaired efflux capacity is mediated by specific changes of its protein cargo. Humans with acute inflammation induced by low-level endotoxin had unchanged HDL-C levels, but their HDL-C efflux capacity was significantly impaired. Proteomic analyses demonstrated that HDL's cholesterol efflux capacity correlated inversely with HDL content of serum amyloid A (SAA)1 and SAA2. In mice, acute inflammation caused a marked impairment of HDL-C efflux capacity that correlated with a large increase in HDL SAA. In striking contrast, the efflux capacity of mouse inflammatory HDL was preserved with genetic ablation of SAA1 and SAA2. Our observations indicate that the inflammatory impairment of HDL-C efflux capacity is due in part to SAA-mediated remodeling of HDL's protein cargo.
Collapse
Affiliation(s)
- Tomáš Vaisar
- Department of Medicine, University of Washington, Seattle, WA 98105
| | - Chongren Tang
- Department of Medicine, University of Washington, Seattle, WA 98105
| | - Ilona Babenko
- Department of Medicine, University of Washington, Seattle, WA 98105
| | - Patrick Hutchins
- Department of Medicine, University of Washington, Seattle, WA 98105
| | - Jake Wimberger
- Department of Medicine, University of Washington, Seattle, WA 98105
| | - Anthony F Suffredini
- Critical Care Medicine Department, National Institutes of Health, Bethesda, MD 20892
| | - Jay W Heinecke
- Department of Medicine, University of Washington, Seattle, WA 98105
| |
Collapse
|
44
|
Structural stability and functional remodeling of high-density lipoproteins. FEBS Lett 2015; 589:2627-39. [PMID: 25749369 DOI: 10.1016/j.febslet.2015.02.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 02/16/2015] [Accepted: 02/23/2015] [Indexed: 12/28/2022]
Abstract
Lipoproteins are protein-lipid nanoparticles that transport lipids in circulation and are central in atherosclerosis and other disorders of lipid metabolism. Apolipoproteins form flexible structural scaffolds and important functional ligands on the particle surface and direct lipoprotein metabolism. Lipoproteins undergo multiple rounds of metabolic remodeling that is crucial to lipid transport. Important aspects of this remodeling, including apolipoprotein dissociation and particle fusion, are mimicked in thermal or chemical denaturation and are modulated by free energy barriers. Here we review the biophysical studies that revealed the kinetic mechanism of lipoprotein stabilization and unraveled its structural basis. The main focus is on high-density lipoprotein (HDL). An inverse correlation between stability and functions of various HDLs in cholesterol transport suggests the functional role of structural disorder. A mechanism for the conformational adaptation of the major HDL proteins, apoA-I and apoA-II, to the increasing lipid load is proposed. Together, these studies help understand why HDL forms discrete subclasses separated by kinetic barriers, which have distinct composition, conformation and functional properties. Understanding these properties may help improve HDL quality and develop novel therapies for cardiovascular disease.
Collapse
|
45
|
Rached FH, Chapman MJ, Kontush A. HDL particle subpopulations: Focus on biological function. Biofactors 2015; 41:67-77. [PMID: 25809447 DOI: 10.1002/biof.1202] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/04/2015] [Accepted: 02/07/2015] [Indexed: 12/12/2022]
Abstract
Low levels of high-density lipoprotein-cholesterol (HDL-C) constitute an independent biomarker of cardiovascular morbi-mortality. However, recent advances have drastically modified the classical and limited view of HDL as a carrier of 'good cholesterol', and have revealed unexpected levels of complexity in the circulating HDL particle pool. HDL particles are indeed highly heterogeneous in structure, intravascular metabolism and biological activity. This review describes recent progress in our understanding of HDL subpopulations and their biological activities, and focuses on relationships between the structural, compositional and functional heterogeneity of HDL particles.
Collapse
Affiliation(s)
- Fabiana H Rached
- National Institute for Health and Medical Research (INSERM), UMR-ICAN 1166, Université Pierre et Marie Curie-Paris 6, AP-HP, Pitié-Salpétrière University Hospital, ICAN, Paris, France; Heart Institute-InCor, University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil; Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | | | | |
Collapse
|
46
|
Omura R, Nagao K, Kobayashi N, Ueda K, Saito H. Direct detection of ABCA1-dependent HDL formation based on lipidation-induced hydrophobicity change in apoA-I. J Lipid Res 2014; 55:2423-31. [PMID: 25214539 DOI: 10.1194/jlr.d049445] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
ABCA1 mediates the efflux of cholesterol and phospholipids into apoA-I to form HDL, which is important in the prevention of atherosclerosis. To develop a novel method for the evaluation of HDL formation, we prepared an apoA-I-POLARIC by labeling the specific residue of an apoA-I variant with a hydrophobicity-sensitive fluorescence probe that detects the environmental change around apoA-I during HDL formation. apoA-I-POLARIC possesses the intact ABCA1-dependent HDL formation activity and shows 4.0-fold higher fluorescence intensity in HDL particles than in the lipid-free state. Incubation of apoA-I-POLARIC with ABCA1-expressing cells, but not ABCA1-non-expressing cells, caused a 1.7-fold increase in fluorescence intensity. Gel filtration analysis demonstrated that the increase in fluorescence intensity of apoA-I-POLARIC represents the amount of apoA-I incorporated into the discoidal HDL particles rather than the amount of secreted cholesterol. THP-1 macrophage-mediated HDL formation and inhibition of HDL formation by cyclosporine A could also be measured using apoA-I-POLARIC. Furthermore, HDL formation-independent lipid release induced by microparticle formation or cell death was not detected by apoA-I-POLARIC. These results demonstrate that HDL formation by ABCA1-expressing cells can be specifically detected by sensing hydrophobicity change in apoA-I, thus providing a novel method for assessing HDL formation and screening of the HDL formation modulator.
Collapse
Affiliation(s)
- Risa Omura
- Institute of Health Biosciences and Graduate School of Pharmaceutical Sciences, The University of Tokushima, Tokushima 770-8505, Japan
| | - Kohjiro Nagao
- Institute of Health Biosciences and Graduate School of Pharmaceutical Sciences, The University of Tokushima, Tokushima 770-8505, Japan
| | | | - Kazumitsu Ueda
- Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto 606-8502, Japan Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto 606-8502, Japan
| | - Hiroyuki Saito
- Institute of Health Biosciences and Graduate School of Pharmaceutical Sciences, The University of Tokushima, Tokushima 770-8505, Japan
| |
Collapse
|
47
|
Marsche G, Holzer M, Wolf P. Antipsoriatic treatment extends beyond the skin: recovering of high-density lipoprotein function. Exp Dermatol 2014; 23:701-4. [PMID: 24980461 DOI: 10.1111/exd.12483] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2014] [Indexed: 12/17/2022]
Abstract
Epidemiological and clinical studies have shown a consistent association of psoriasis with systemic metabolic disorders including an increased prevalence of diabetes, obesity and cardiovascular disease. Psoriasis is accompanied by systemic inflammation and low levels of high-density lipoprotein (HDL) cholesterol. Recent studies provided clear evidence that psoriasis affects HDL composition and function. HDL isolated from patients with psoriasis showed a significantly impaired capability to mobilize cholesterol from macrophages, a crucial step in reverse cholesterol transport and markedly lower paraoxonase activity, a protein that co-transports with HDL in serum with well-known anti-atherogenic properties. Of particular interest, successful antipsoriatic therapy significantly improved HDL composition and function independently of serum HDL cholesterol levels. These novel findings suggest that the conventional approaches of evaluating cardiovascular risk in psoriasis may be in need of refinement. As these data argue for a loss of beneficial activities of HDL in patients with psoriasis, altered HDL functionality should be considered when evaluating the lipid status of patients.
Collapse
Affiliation(s)
- Gunther Marsche
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | | | | |
Collapse
|
48
|
Abstract
Most types of cells in the body do not express the capability of catabolizing cholesterol, so cholesterol efflux is essential for homeostasis. For instance, macrophages possess four pathways for exporting free (unesterified) cholesterol to extracellular high density lipoprotein (HDL). The passive processes include simple diffusion via the aqueous phase and facilitated diffusion mediated by scavenger receptor class B, type 1 (SR-BI). Active pathways are mediated by the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1, which are membrane lipid translocases. The efflux of cellular phospholipid and free cholesterol to apolipoprotein A-I promoted by ABCA1 is essential for HDL biogenesis. Current understanding of the molecular mechanisms involved in these four efflux pathways is presented in this minireview.
Collapse
Affiliation(s)
- Michael C Phillips
- From the Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104-5158
| |
Collapse
|
49
|
Harrington JM, Nishanova T, Pena SR, Hess M, Scelsi CL, Widener J, Hajduk SL. A retained secretory signal peptide mediates high density lipoprotein (HDL) assembly and function of haptoglobin-related protein. J Biol Chem 2014; 289:24811-20. [PMID: 25037218 DOI: 10.1074/jbc.m114.567578] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Haptoglobin-related protein (Hpr) is a component of a minor subspecies of high density lipoproteins (HDL) that function in innate immunity. Here we show that assembly of Hpr into HDL is mediated by its retained N-terminal signal peptide, an unusual feature for a secreted protein and the major difference between Hpr and the soluble acute phase protein haptoglobin (Hp). The 18-amino acid signal peptide is necessary for binding to HDL and interacts directly with the hydrocarbon region of lipids. Utilizing model liposomes, we show that the rate of assembly and steady-state distribution of Hpr in lipid particles is mediated by the physical property of lipid fluidity. Dye release assays reveal that Hpr interacts more rapidly with fluid liposomes. Conversely, steady-state binding assays indicate that more rigid lipid compositions stabilize Hpr association. Lipid association also plays a role in facilitating hemoglobin binding by Hpr. Our data may offer an explanation for the distinct distribution of Hpr among HDL subspecies. Rather than protein-protein interactions mediating localization, direct interaction with phospholipids and sensitivity to lipid fluidity may be sufficient for localization of Hpr and may represent a mechanism of HDL subspeciation.
Collapse
Affiliation(s)
- John M Harrington
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Tuiumkan Nishanova
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Savannah Rose Pena
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Matthew Hess
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Chris L Scelsi
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Justin Widener
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Stephen L Hajduk
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
50
|
Camont L, Lhomme M, Rached F, Le Goff W, Nègre-Salvayre A, Salvayre R, Calzada C, Lagarde M, Chapman MJ, Kontush A. Small, dense high-density lipoprotein-3 particles are enriched in negatively charged phospholipids: relevance to cellular cholesterol efflux, antioxidative, antithrombotic, anti-inflammatory, and antiapoptotic functionalities. Arterioscler Thromb Vasc Biol 2013; 33:2715-23. [PMID: 24092747 DOI: 10.1161/atvbaha.113.301468] [Citation(s) in RCA: 260] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE High-density lipoprotein (HDL) displays multiple atheroprotective activities and is highly heterogeneous in structure, composition, and function; the molecular determinants of atheroprotective functions of HDL are incompletely understood. Because phospholipids represent a major bioactive lipid component of HDL, we characterized the phosphosphingolipidome of major normolipidemic HDL subpopulations and related it to HDL functionality. APPROACH AND RESULTS Using an original liquid chromatography-mass spectrometry/mass spectrometry methodology for phospholipid and sphingolipid profiling, 162 individual molecular lipid species were quantified across the 9 lipid subclasses, in the order of decreasing abundance, phosphatidylcholine>sphingomyelin>lysophosphatidylcholine>phosphatidylethanolamine>phosphatidylinositol>ceramide>phosphatidylserine>phosphatidylglycerol>phosphatidic acid. When data were expressed relative to total lipid, the contents of lysophosphatidylcholine and of negatively charged phosphatidylserine and phosphatidic acid increased progressively with increase in hydrated density of HDL, whereas the proportions of sphingomyelin and ceramide decreased. Key biological activities of HDL subpopulations, notably cholesterol efflux capacity from human THP-1 macrophages, antioxidative activity toward low-density lipoprotein oxidation, antithrombotic activity in human platelets, cell-free anti-inflammatory activity, and antiapoptotic activity in endothelial cells, were predominantly associated with small, dense, protein-rich HDL3. The biological activities of HDL particles were strongly intercorrelated, exhibiting significant correlations with multiple components of the HDL phosphosphingolipidome. Specifically, the content of phosphatidylserine revealed positive correlations with all metrics of HDL functionality, reflecting enrichment of phosphatidylserine in small, dense HDL3. CONCLUSIONS Our structure-function analysis thereby reveals that the HDL lipidome may strongly affect atheroprotective functionality.
Collapse
Affiliation(s)
- Laurent Camont
- From the National Institute for Health and Medical Research (INSERM), Dyslipidemia, Inflammation and Atherosclerosis Research Unit (UMR 939), Paris, France (L.C., M.L., F.R., W.L.G., M.J.C., A.K.); Université Pierre et Marie Curie - Paris 6, Paris, France (L.C., M.L., F.R., W.L.G., M.J.C., A.K.); AP-HP, Groupe Hospitalier Pitié Salpétrière, Paris, France (L.C., M.L., F.R., W.L.G., M.J.C., A.K.); ICAN, Paris, France (L.C., M.L., F.R., W.L.G., M.J.C., A.K.); Heart Institute-InCor, University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil (F.R.); INSERM UMR- 1048, Toulouse, France (A.N.-S., R.S.); Faculty of Medicine, Department of Biochemistry, University of Toulouse, Toulouse, France (A.N.-S., R.S.); and INSERM UMR- 1060, Université de Lyon, Cardiovasculaire, Métabolisme, Diabétologie, et Nutrition (CarMeN), INSA-Lyon, IMBL, Lyon, France (C.C., M.L.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|