1
|
Pessino G, Scotti C, Maggi M, Immuno-Hub Consortium. Hepatocellular Carcinoma: Old and Emerging Therapeutic Targets. Cancers (Basel) 2024; 16:901. [PMID: 38473265 DOI: 10.3390/cancers16050901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Liver cancer, predominantly hepatocellular carcinoma (HCC), globally ranks sixth in incidence and third in cancer-related deaths. HCC risk factors include non-viral hepatitis, alcohol abuse, environmental exposures, and genetic factors. No specific genetic alterations are unequivocally linked to HCC tumorigenesis. Current standard therapies include surgical options, systemic chemotherapy, and kinase inhibitors, like sorafenib and regorafenib. Immunotherapy, targeting immune checkpoints, represents a promising avenue. FDA-approved checkpoint inhibitors, such as atezolizumab and pembrolizumab, show efficacy, and combination therapies enhance clinical responses. Despite this, the treatment of hepatocellular carcinoma (HCC) remains a challenge, as the complex tumor ecosystem and the immunosuppressive microenvironment associated with it hamper the efficacy of the available therapeutic approaches. This review explores current and advanced approaches to treat HCC, considering both known and new potential targets, especially derived from proteomic analysis, which is today considered as the most promising approach. Exploring novel strategies, this review discusses antibody drug conjugates (ADCs), chimeric antigen receptor T-cell therapy (CAR-T), and engineered antibodies. It then reports a systematic analysis of the main ligand/receptor pairs and molecular pathways reported to be overexpressed in tumor cells, highlighting their potential and limitations. Finally, it discusses TGFβ, one of the most promising targets of the HCC microenvironment.
Collapse
Affiliation(s)
- Greta Pessino
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Claudia Scotti
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Maristella Maggi
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Immuno-Hub Consortium
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
2
|
Lens differentiation is controlled by the balance between PDGF and FGF signaling. PLoS Biol 2019; 17:e3000133. [PMID: 30716082 PMCID: PMC6375662 DOI: 10.1371/journal.pbio.3000133] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/14/2019] [Accepted: 01/17/2019] [Indexed: 12/15/2022] Open
Abstract
How multiple receptor tyrosine kinases coordinate cell fate determination is yet to be elucidated. We show here that the receptor for platelet-derived growth factor (PDGF) signaling recruits the p85 subunit of Phosphoinositide 3-kinase (PI3K) to regulate mammalian lens development. Activation of PI3K signaling not only prevents B-cell lymphoma 2 (BCL2)-Associated X (Bax)- and BCL2 Antagonist/Killer (Bak)-mediated apoptosis but also promotes Notch signaling to prevent premature cell differentiation. Reducing PI3K activity destabilizes the Notch intracellular domain, while the constitutive activation of Notch reverses the PI3K deficiency phenotype. In contrast, fibroblast growth factor receptors (FGFRs) recruit Fibroblast Growth Factor Receptor Substrate 2 (Frs2) and Rous sarcoma oncogene (Src) Homology Phosphatase 2 (Shp2) to activate Mitogen-Activated Protein Kinase (MAPK) signaling, which induces the Notch ligand Jagged 1 (Jag1) and promotes cell differentiation. Inactivation of Shp2 restored the proper timing of differentiation in the p85 mutant lens, demonstrating the antagonistic interaction between FGF-induced MAPK and PDGF-induced PI3K signaling. By selective activation of PI3K and MAPK, PDGF and FGF cooperate with and oppose each other to balance progenitor cell maintenance and differentiation. A central aim in understanding cell signaling is to decode the cellular logic that underlies the functional specificity of growth factors. Although these factors are known to activate a common set of intracellular pathways, they nevertheless play specific roles in development and physiology. Using lens development in mice as a model, we show that fibroblast growth factor (FGF) and platelet-derived growth factor (PDGF) antagonize each other through their intrinsic biases toward distinct downstream targets. While FGF primarily induces the Ras–Mitogen-Activated Protein Kinase (MAPK) axis to promote lens cell differentiation, PDGF preferentially stimulates Phosphoinositide 3-kinase (PI3K) to enhance Notch signaling, which is necessary for maintaining the lens progenitor cell pool. By revealing the intricate interactions between PDGF, FGF, and Notch, we present a paradigm for how signaling crosstalk enables balanced growth and differentiation in multicellular organisms.
Collapse
|
3
|
Microglial-mediated PDGF-CC activation increases cerebrovascular permeability during ischemic stroke. Acta Neuropathol 2017; 134:585-604. [PMID: 28725968 PMCID: PMC5587628 DOI: 10.1007/s00401-017-1749-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 12/25/2022]
Abstract
Treatment of acute ischemic stroke with the thrombolytic tissue plasminogen activator (tPA) can significantly improve neurological outcomes; however, thrombolytic therapy is associated with an increased risk of intra-cerebral hemorrhage (ICH). Previously, we demonstrated that during stroke tPA acting on the parenchymal side of the neurovascular unit (NVU) can increase blood–brain barrier (BBB) permeability and ICH through activation of latent platelet-derived growth factor-CC (PDGF-CC) and signaling by the PDGF receptor-α (PDGFRα). However, in vitro, activation of PDGF-CC by tPA is very inefficient and the mechanism of PDGF-CC activation in the NVU is not known. Here, we show that the integrin Mac-1, expressed on brain microglia/macrophages (denoted microglia throughout), acts together with the endocytic receptor LRP1 in the NVU to promote tPA-mediated activation of PDGF-CC. Mac-1-deficient mice (Mac-1−/−) are protected from tPA-induced BBB permeability but not from permeability induced by intracerebroventricular injection of active PDGF-CC. Immunofluorescence analysis demonstrates that Mac-1, LRP1, and the PDGFRα all localize to the NVU of arterioles, and following middle cerebral artery occlusion (MCAO) Mac-1−/− mice show significantly less PDGFRα phosphorylation, BBB permeability, and infarct volume compared to wild-type mice. Bone-marrow transplantation studies indicate that resident CD11b+ cells, but not bone-marrow-derived leukocytes, mediate the early activation of PDGF-CC by tPA after MCAO. Finally, using a model of thrombotic stroke with late thrombolysis, we show that wild-type mice have an increased incidence of spontaneous ICH following thrombolysis with tPA 5 h after MCAO, whereas Mac-1−/− mice are resistant to the development of ICH even with late tPA treatment. Together, these results indicate that Mac-1 and LRP1 act as co-factors for the activation of PDGF-CC by tPA in the NVU, and suggest a novel mechanism for tightly regulating PDGFRα signaling in the NVU and controlling BBB permeability.
Collapse
|
4
|
Nielsen BS, Malinda RR, Schmid FM, Pedersen SF, Christensen ST, Pedersen LB. PDGFRβ and oncogenic mutant PDGFRα D842V promote disassembly of primary cilia through a PLCγ- and AURKA-dependent mechanism. J Cell Sci 2015; 128:3543-9. [PMID: 26290382 DOI: 10.1242/jcs.173559] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/17/2015] [Indexed: 01/04/2023] Open
Abstract
Primary cilia are microtubule-based sensory organelles projecting from most quiescent mammalian cells, which disassemble in cells cultured in serum-deprived conditions upon re-addition of serum or growth factors. Platelet-derived growth factors (PDGF) are implicated in deciliation, but the specific receptor isoforms and mechanisms involved are unclear. We report that PDGFRβ promotes deciliation in cultured cells and provide evidence implicating PLCγ and intracellular Ca(2+) release in this process. Activation of wild-type PDGFRα alone did not elicit deciliation. However, expression of constitutively active PDGFRα D842V mutant receptor, which potently activates PLCγ (also known as PLCG1), caused significant deciliation, and this phenotype was rescued by inhibiting PDGFRα D842V kinase activity or AURKA. We propose that PDGFRβ and PDGFRα D842V promote deciliation through PLCγ-mediated Ca(2+) release from intracellular stores, causing activation of calmodulin and AURKA-triggered deciliation.
Collapse
Affiliation(s)
- Brian S Nielsen
- Department of Biology, Section of Cell and Developmental Biology, The August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen OE DK-2100, Denmark
| | - Raj R Malinda
- Department of Biology, Section of Cell and Developmental Biology, The August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen OE DK-2100, Denmark
| | - Fabian M Schmid
- Department of Biology, Section of Cell and Developmental Biology, The August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen OE DK-2100, Denmark
| | - Stine F Pedersen
- Department of Biology, Section of Cell and Developmental Biology, The August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen OE DK-2100, Denmark
| | - Søren T Christensen
- Department of Biology, Section of Cell and Developmental Biology, The August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen OE DK-2100, Denmark
| | - Lotte B Pedersen
- Department of Biology, Section of Cell and Developmental Biology, The August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen OE DK-2100, Denmark
| |
Collapse
|
5
|
Haan S, Bahlawane C, Wang J, Nazarov PV, Muller A, Eulenfeld R, Haan C, Rolvering C, Vallar L, Satagopam VP, Sauter T, Wiesinger MY. The oncogenic FIP1L1-PDGFRα fusion protein displays skewed signaling properties compared to its wild-type PDGFRα counterpart. JAKSTAT 2015; 4:e1062596. [PMID: 26413425 PMCID: PMC4583054 DOI: 10.1080/21623996.2015.1062596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/05/2015] [Accepted: 06/09/2015] [Indexed: 01/05/2023] Open
Abstract
Aberrant activation of oncogenic kinases is frequently observed in human cancers, but the underlying mechanism and resulting effects on global signaling are incompletely understood. Here, we demonstrate that the oncogenic FIP1L1-PDGFRα kinase exhibits a significantly different signaling pattern compared to its PDGFRα wild type counterpart. Interestingly, the activation of primarily membrane-based signal transduction processes (such as PI3-kinase- and MAP-kinase- pathways) is remarkably shifted toward a prominent activation of STAT factors. This diverging signaling pattern compared to classical PDGF-receptor signaling is partially coupled to the aberrant cytoplasmic localization of the oncogene, since membrane targeting of FIP1L1-PDGFRα restores activation of MAPK- and PI3K-pathways. In stark contrast to the classical cytokine-induced STAT activation process, STAT activation by FIP1L1-PDGFRα does neither require Janus kinase activity nor Src kinase activity. Furthermore, we investigated the mechanism of STAT5 activation via FIP1L1-PDGFRα in more detail and found that STAT5 activation does not involve an SH2-domain-mediated binding mechanism. We thus demonstrate that STAT5 activation occurs via a non-canonical activation mechanism in which STAT5 may be subject to a direct phosphorylation by FIP1L1-PDGFRα.
Collapse
Affiliation(s)
- Serge Haan
- Molecular Disease Mechanisms Group; Life Sciences Research Unit; University of Luxembourg; Luxembourg , Luxembourg
| | - Christelle Bahlawane
- Molecular Disease Mechanisms Group; Life Sciences Research Unit; University of Luxembourg; Luxembourg , Luxembourg
| | - Jiali Wang
- Molecular Disease Mechanisms Group; Life Sciences Research Unit; University of Luxembourg; Luxembourg , Luxembourg
| | - Petr V Nazarov
- Genomics Research Unit; Luxembourg Institute of Health; Luxembourg , Luxembourg
| | - Arnaud Muller
- Genomics Research Unit; Luxembourg Institute of Health; Luxembourg , Luxembourg
| | - René Eulenfeld
- Signal Transduction Group; Life Sciences Research Unit; University of Luxembourg; Luxembourg , Luxembourg
| | - Claude Haan
- Signal Transduction Group; Life Sciences Research Unit; University of Luxembourg; Luxembourg , Luxembourg
| | - Catherine Rolvering
- Signal Transduction Group; Life Sciences Research Unit; University of Luxembourg; Luxembourg , Luxembourg
| | - Laurent Vallar
- Genomics Research Unit; Luxembourg Institute of Health; Luxembourg , Luxembourg
| | - Venkata P Satagopam
- Luxembourg Center for Systems Biomedicine; University of Luxembourg ; Esch-sur-Alzette, Luxembourg
| | - Thomas Sauter
- Systems Biology Group; Life Sciences Research Unit; University of Luxembourg; Luxembourg , Luxembourg
| | - Monique Yvonne Wiesinger
- Systems Biology Group; Life Sciences Research Unit; University of Luxembourg; Luxembourg , Luxembourg
| |
Collapse
|
6
|
Kikuchi A, Monga SP. PDGFRα in liver pathophysiology: emerging roles in development, regeneration, fibrosis, and cancer. Gene Expr 2015; 16:109-27. [PMID: 25700367 PMCID: PMC4410163 DOI: 10.3727/105221615x14181438356210] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Platelet-derived growth factor receptor α (PDGFRα) is an isoform of the PDGFR family of tyrosine kinase receptors involved in cell proliferation, survival, differentiation, and growth. In this review, we highlight the role of PDGFRα and the current evidence of its expression and activities in liver development, regeneration, and pathology-including fibrosis, cirrhosis, and liver cancer. Studies elucidating PDGFRα signaling in processes ranging from profibrotic signaling, angiogenesis, and oxidative stress to epithelial-to-mesenchymal transition point toward PDGFRα as a potential therapeutic target in various hepatic pathologies, including hepatic fibrosis and liver cancer. Furthermore, PDGFRα localization and modulation during liver development and regeneration may lend insight into its potential roles in various pathologic states. We will also briefly discuss some of the current targeted treatments for PDGFRα, including multi receptor tyrosine kinase inhibitors and PDGFRα-specific inhibitors.
Collapse
Affiliation(s)
- Alexander Kikuchi
- Department of Pathology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | |
Collapse
|
7
|
Walls CD, Iliuk A, Bai Y, Wang M, Tao WA, Zhang ZY. Phosphatase of regenerating liver 3 (PRL3) provokes a tyrosine phosphoproteome to drive prometastatic signal transduction. Mol Cell Proteomics 2013; 12:3759-77. [PMID: 24030100 DOI: 10.1074/mcp.m113.028886] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phosphatase of regenerating liver 3 (PRL3) is suspected to be a causative factor toward cellular metastasis when in excess. To date, the molecular basis for PRL3 function remains an enigma, making efforts at distilling a concerted mechanism for PRL3-mediated metastatic dissemination very difficult. We previously discovered that PRL3 expressing cells exhibit a pronounced increase in protein tyrosine phosphorylation. Here we take an unbiased mass spectrometry-based approach toward identifying the phosphoproteins exhibiting enhanced levels of tyrosine phosphorylation with a goal to define the "PRL3-mediated signaling network." Phosphoproteomic data support intracellular activation of an extensive signaling network normally governed by extracellular ligand-activated transmembrane growth factor, cytokine, and integrin receptors in the PRL3 cells. Additionally, data implicate the Src tyrosine kinase as the major intracellular kinase responsible for "hijacking" this network and provide strong evidence that aberrant Src activation is a major consequence of PRL3 overexpression. Importantly, the data support a PDGF(α/β)-, Eph (A2/B3/B4)-, and Integrin (β1/β5)-receptor array as being the predominant network coordinator in the PRL3 cells, corroborating a PRL3-induced mesenchymal-state. Within this network, we find that tyrosine phosphorylation is increased on a multitude of signaling effectors responsible for Rho-family GTPase, PI3K-Akt, STAT, and ERK activation, linking observations made by the field as a whole under Src as a primary signal transducer. Our phosphoproteomic data paint the most comprehensive picture to date of how PRL3 drives prometastatic molecular events through Src activation.
Collapse
Affiliation(s)
- Chad D Walls
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202
| | | | | | | | | | | |
Collapse
|
8
|
Verstraelen S, Nelissen I, Hooyberghs J, Witters H, Schoeters G, Van Cauwenberge P, Van Den Heuvel R. Gene profiles of THP-1 macrophages after in vitro exposure to respiratory (non-)sensitizing chemicals: Identification of discriminating genetic markers and pathway analysis. Toxicol In Vitro 2009; 23:1151-62. [DOI: 10.1016/j.tiv.2009.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 05/04/2009] [Accepted: 06/09/2009] [Indexed: 11/30/2022]
|
9
|
Sustained platelet-derived growth factor receptor alpha signaling in osteoblasts results in craniosynostosis by overactivating the phospholipase C-gamma pathway. Mol Cell Biol 2008; 29:881-91. [PMID: 19047372 DOI: 10.1128/mcb.00885-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The development and growth of the skull is controlled by cranial sutures, which serve as growth centers for osteogenesis by providing a pool of osteoprogenitors. These osteoprogenitors undergo intramembranous ossification by direct differentiation into osteoblasts, which synthesize the components of the extracellular bone matrix. A dysregulation of osteoblast differentiation can lead to premature fusion of sutures, resulting in an abnormal skull shape, a disease called craniosynostosis. Although several genes could be linked to craniosynostosis, the mechanisms regulating cranial suture development remain largely elusive. We have established transgenic mice conditionally expressing an autoactivated platelet-derived growth factor receptor alpha (PDGFRalpha) in neural crest cells (NCCs) and their derivatives. In these mice, premature fusion of NCC-derived sutures occurred at early postnatal stages. In vivo and in vitro experiments demonstrated enhanced proliferation of osteoprogenitors and accelerated ossification of osteoblasts. Furthermore, in osteoblasts expressing the autoactivated receptor, we detected an upregulation of the phospholipase C-gamma (PLC-gamma) pathway. Treatment of differentiating osteoblasts with a PLC-gamma-specific inhibitor prevented the mineralization of synthesized bone matrix. Thus, we show for the first time that PDGFRalpha signaling stimulates osteogenesis of NCC-derived osteoblasts by activating the PLC-gamma pathway, suggesting an involvement of this pathway in the etiology of human craniosynostosis.
Collapse
|
10
|
Van Stry M, Kazlauskas A, Schreiber SL, Symes K. Distinct effectors of platelet-derived growth factor receptor-alpha signaling are required for cell survival during embryogenesis. Proc Natl Acad Sci U S A 2005; 102:8233-8. [PMID: 15919820 PMCID: PMC1149433 DOI: 10.1073/pnas.0502885102] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Platelet-derived growth factor receptor (PDGFR) signaling is essential for normal embryonic development in many organisms, including frog, mouse, zebrafish, and sea urchin. The mode of action of PDGFR signaling during early development is poorly understood, however, mostly because inhibition of signaling through either the PDGFRalpha or PDGFRbeta is embryonic lethal. In Xenopus embryos, disruption of PDGFRalpha signaling causes migrating anterior mesoderm cells to lose direction and undergo apoptosis through the mitochondrial pathway. To understand the mechanism of PDGFRalpha function in this process, we have analyzed all known effector-binding sites in vivo. By using a chemical inducer of dimerization to activate chimera PDGFRalphas, we have identified a role for phospholipase Cgamma (PLCgamma) in protecting cells from death. PDGFRalpha-mediated cell survival requires PLCgamma and phosphatidylinositol 3-kinase signaling, and that PDGFRalpha with binding sites for these two signaling factors is sufficient for this activity. Other effectors of PDGFRalpha signaling, Shf, SHP-2, and Crk, are not required for this process. Thus, our findings show that PDGFRalpha signaling through PLCgamma and phosphatidylinositol 3-kinase has a protective role in preventing apoptosis in early development. Furthermore, we demonstrate that small molecule inducers of dimerization provide a powerful system to manipulate receptor function in developing embryos.
Collapse
Affiliation(s)
- Melanie Van Stry
- Department of Biochemistry, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
11
|
McKinnon RD, Waldron S, Kiel ME. PDGF alpha-receptor signal strength controls an RTK rheostat that integrates phosphoinositol 3'-kinase and phospholipase Cgamma pathways during oligodendrocyte maturation. J Neurosci 2005; 25:3499-508. [PMID: 15814780 PMCID: PMC6725367 DOI: 10.1523/jneurosci.5049-04.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 02/16/2005] [Accepted: 02/18/2005] [Indexed: 11/21/2022] Open
Abstract
Receptors with tyrosine kinase activity (RTKs) control tissue growth and development in metazoans. How they generate cell-specific responses remains essentially unknown; one model proposes that distinct RTKs activate different second-messenger pathways, whereas a second proposes that all RTKs deliver a generic "go" signal to these pathways that is uniquely interpreted by downstream, cell-specific response competence factors. We examine pathway activation and pathway-specific responses downstream of PDGFalpha receptors, whose expression in the developing CNS identifies oligodendrocyte progenitor cells (OPCs) and whose activation controls OPC proliferation, migration, survival, and maturation. PDGFRalpha-null mice die in utero, and OPCs that emerge before their demise have migration and proliferation defects and rapidly differentiate into postmitotic oligodendrocytes in vitro. OPCs from hemizygous mice also undergo precocious differentiation, indicating a role for PDGFRalpha gene dosage in timing OPC maturation. The rescue of PDGFRalpha-null OPCs with PDGFRalpha transgenes revealed specific roles for the phosphatidylinositol 3-kinase (PI3K) and phospholipase Cgamma (PLCgamma) pathways and a distinct ligand concentration dependence. Activation of the PI3K pathway is required for PDGFRalpha-induced migration, whereas activation of both PI3K and PLCgamma are required for PDGFRalpha-induced proliferation. For proliferation, PI3K activation is required at low ligand concentration, whereas PLCgamma is required at high signal strength. Dose-response studies further demonstrate that PDGFRalpha activates PI3K at low ligand concentrations, whereas PLCgamma is activated at high signal strength. Thus, PDGFRalpha signaling acts like a rheostat rather than generic ON switch, with signal strength dictating pathway activation during OPC maturation.
Collapse
Affiliation(s)
- Randall D McKinnon
- Department of Surgery (Neurosurgery), University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.
| | | | | |
Collapse
|
12
|
Abstract
Since its discovery over three decades ago, platelet-derived growth factor (PDGF) has been a model system for learning how growth factors regulate biological processes. For the first several decades investigators used cells grown in tissue culture. More recently, PDGF signaling has also been investigated in mice. This review outlines the advances in these two systems, and highlights some of the directions for future investigation.
Collapse
Affiliation(s)
- Michelle Tallquist
- Deptartment of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | | |
Collapse
|
13
|
Luchtefeld M, Drexler H, Schieffer B. Role of G beta-subunit in angiotensin II-type 1 receptor signaling. Biochem Biophys Res Commun 2001; 280:756-60. [PMID: 11162585 DOI: 10.1006/bbrc.2000.4222] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The G-protein-coupled angiotensin II-type 1 (AT1) receptor activates the mitogen-activated protein (MAP) kinase cascade and the Janus kinase 2/signal transducers and activators of transcription (JAK2/STAT) cascade via tyrosine phosphorylation. Recent observations indicated that the G beta-subunit of heterotrimeric G-proteins interacts with tyrosine phosphorylated proteins. We investigated whether angiotensin II (ANG II) activates MAP-kinases and JAK/STAT cascades via the G beta-subunit. In rat aortic smooth muscle (RASM) cells we found phosphorylated proteins associated with the G beta-subunit SHC (Sequence Homology of Collagen) and JAK2. We demonstrate that JAK2 activity increased upon G beta-binding. The activity of pp60(c-src) kinase also increased, but upon activation pp60(c-src) dissociates from the G beta-complex. Immunoprecipitations revealed that SHC forms a complex with JAK2. Blockade of JAK2 with AG490 abolished this complex formation; therefore, JAK2 may be the kinase responsible for SHC phosphorylation. Thus, the G beta-subunit may play a pivotal role in AT1-receptor signaling by connecting signaling cascades leading to cell growth and differentiation.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Heterotrimeric GTP-Binding Proteins/chemistry
- Heterotrimeric GTP-Binding Proteins/metabolism
- Janus Kinase 2
- Macromolecular Substances
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Phosphorylation
- Protein Structure, Tertiary
- Protein-Tyrosine Kinases/chemistry
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins
- Proto-Oncogene Proteins pp60(c-src)/chemistry
- Proto-Oncogene Proteins pp60(c-src)/metabolism
- Rats
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- M Luchtefeld
- Abteilung Kardiologie und Angiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | | | | |
Collapse
|
14
|
Tallquist MD, Klinghoffer RA, Heuchel R, Mueting-Nelsen PF, Corrin PD, Heldin CH, Johnson RJ, Soriano P. Retention of PDGFR-beta function in mice in the absence of phosphatidylinositol 3'-kinase and phospholipase Cgamma signaling pathways. Genes Dev 2000; 14:3179-90. [PMID: 11124809 PMCID: PMC317125 DOI: 10.1101/gad.844700] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Signal transduction by the platelet-derived growth-factor receptor beta (PDGFR-beta) tyrosine kinase is required for proper formation of vascular smooth muscle cells (VSMC). However, the importance of individual PDGFR-beta signal transduction pathways in vivo is not known. To investigate the role of two of the pathways believed to be critical for PDGF signal transduction, we have generated mice that bear a PDGFR-beta that can no longer activate PI3kinase or PLCgamma. Although these mutant mice have normal vasculature, we provide multiple lines of evidence in vivo and from cells derived from the mutant mice that suggest that the mutant PDGFR-beta operates at suboptimal levels. Our observations indicate that although loss of these pathways can lead to attenuated PDGF-dependent cellular function, certain PDGFR-beta-induced signal cascades are not essential for survival in mice.
Collapse
MESH Headings
- Animals
- Cell Division/drug effects
- Cell Division/genetics
- Cell Movement/drug effects
- Cell Movement/genetics
- Cells, Cultured
- Enzyme Activation
- Glomerular Mesangium/drug effects
- Glomerular Mesangium/metabolism
- Glomerular Mesangium/pathology
- Glomerulonephritis/pathology
- Homozygote
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Mice
- Mice, Inbred Strains
- Mice, Mutant Strains
- Mice, Transgenic
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Phospholipase C gamma
- Platelet-Derived Growth Factor/metabolism
- Platelet-Derived Growth Factor/pharmacology
- Receptor, Platelet-Derived Growth Factor beta/drug effects
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Signal Transduction
- Type C Phospholipases/genetics
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- M D Tallquist
- Program in Developmental Biology and Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Binding of factor VIIa to tissue factor on human fibroblasts leads to activation of phospholipase C and enhanced PDGF-BB–stimulated chemotaxis. Blood 2000. [DOI: 10.1182/blood.v96.10.3452] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Tissue factor (TF) is the cellular receptor for factor FVIIa (FVIIa), and the complex is the principal initiator of blood coagulation. The effects of FVIIa binding to TF on cell migration and signal transduction of human fibroblasts, which express high amounts of TF, were studied. Fibroblasts incubated with FVIIa migrated toward a concentration gradient of PDGF-BB at approximately 100 times lower concentration than do fibroblasts not ligated with FVIIa. Anti-TF antibodies inhibited the increase in chemotaxis induced by FVIIa/TF. Moreover, a pronounced suppression of chemotaxis induced by PDGF-BB was observed with active site-inhibited FVIIa (FFR-FVIIa). The possibility that hyperchemotaxis was induced by a putative generation of FXa and thrombin activity was excluded. FVIIa/TF did not induce increased levels of PDGF β-receptors on the cell surface. Thus, the hyperchemotaxis was not a result of this mechanism. FVIIa induced the production of inositol-1,4,5-trisphosphate to the same extent as PDGF-BB; the effects of FVIIa and PDGF-BB were additive. FFR-FVIIa did not induce any release of inositol-1,4,5,-trisphosphate. Thus, binding of catalytically active FVIIa to TF can, independent of coagulation, modulate cellular responses, such as chemotaxis.
Collapse
|
16
|
Binding of factor VIIa to tissue factor on human fibroblasts leads to activation of phospholipase C and enhanced PDGF-BB–stimulated chemotaxis. Blood 2000. [DOI: 10.1182/blood.v96.10.3452.h8003452_3452_3458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tissue factor (TF) is the cellular receptor for factor FVIIa (FVIIa), and the complex is the principal initiator of blood coagulation. The effects of FVIIa binding to TF on cell migration and signal transduction of human fibroblasts, which express high amounts of TF, were studied. Fibroblasts incubated with FVIIa migrated toward a concentration gradient of PDGF-BB at approximately 100 times lower concentration than do fibroblasts not ligated with FVIIa. Anti-TF antibodies inhibited the increase in chemotaxis induced by FVIIa/TF. Moreover, a pronounced suppression of chemotaxis induced by PDGF-BB was observed with active site-inhibited FVIIa (FFR-FVIIa). The possibility that hyperchemotaxis was induced by a putative generation of FXa and thrombin activity was excluded. FVIIa/TF did not induce increased levels of PDGF β-receptors on the cell surface. Thus, the hyperchemotaxis was not a result of this mechanism. FVIIa induced the production of inositol-1,4,5-trisphosphate to the same extent as PDGF-BB; the effects of FVIIa and PDGF-BB were additive. FFR-FVIIa did not induce any release of inositol-1,4,5,-trisphosphate. Thus, binding of catalytically active FVIIa to TF can, independent of coagulation, modulate cellular responses, such as chemotaxis.
Collapse
|
17
|
Hooshmand-Rad R, Lu L, Heldin CH, Claesson-Welsh L, Welsh M. Platelet-derived growth factor-mediated signaling through the Shb adaptor protein: effects on cytoskeletal organization. Exp Cell Res 2000; 257:245-54. [PMID: 10837138 DOI: 10.1006/excr.2000.4896] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Src homology (SH) 2 domain adaptor protein Shb has previously been shown to interact with the platelet-derived growth factor (PDGF)-beta receptor. In this study we show an association between Shb and the PDGF-alpha receptor which is mediated by the SH2 domain of Shb and involves tyrosine residue 720 in the kinase insert domain of the receptor. To assess the role of Shb in PDGF-mediated signaling, we have overexpressed wild-type Shb or Shb carrying a mutation (R522K) which renders the SH2 domain inactive, in Patch mouse (PhB) fibroblasts expressing both PDGF receptors (PhB/Ralpha). Overexpression of wild-type Shb, but not the R522K Shb mutant, affected PDGF-mediated reorganization of the cytoskeleton by decreasing membrane ruffle formation and stimulating the generation of filopodia relative the parental control cells. In addition, the PDGF-induced receptor-associated phosphatidylinositol 3'-kinase activity and phosphorylation of Akt was similar in both PhB/Ralpha/Shb and PhB/Ralpha/ShbR522K cells compared with the parental control, whereas the activation of Rac in response to PDGF-BB was diminished only in the PhB/Ralpha/Shb cells. We conclude that Shb plays a role in PDGF-dependent regulation of certain cytoskeletal changes by modulating the ability of PDGF to activate Rac.
Collapse
Affiliation(s)
- R Hooshmand-Rad
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala, S-751 24, Sweden
| | | | | | | | | |
Collapse
|
18
|
Choudhury GG, Grandaliano G, Jin DC, Katz MS, Abboud HE. Activation of PLC and PI 3 kinase by PDGF receptor alpha is not sufficient for mitogenesis and migration in mesangial cells. Kidney Int 2000; 57:908-17. [PMID: 10720944 DOI: 10.1046/j.1523-1755.2000.00907.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Platelet-derived growth factor (PDGF) isoforms act through two distinct cell surface alpha and beta receptors. Glomerular mesangial cells express both receptors. PDGF BB and AB are potent mitogens for glomerular mesangial cells, and PDGF BB stimulates cell migration in a phosphatidylinositol 3 (PI 3) kinase-dependent manner. In this study, we investigated the effect of PDGF AA on cell migration, PI 3 kinase and phospholipase C (PLC) activation, and the role of these two enzymes in mediating biological responses in these cells in response to all three isoforms. METHODS 3H-thymidine incorporation and modified Boyden chamber assay were used to determine DNA synthesis and directed migration, respectively, in response to all three PDGF isoforms. Differential activation of alpha and beta receptors was studied by immunecomplex tyrosine kinase assay of corresponding receptor immunoprecipitates. PLC gamma 1 activity was determined by measuring total inositol phosphates in response to different PDGF isoforms. PI 3 kinase activity was determined in antiphosphotyrosine or PDGF receptor immunoprecipitates. RESULTS Both PDGF BB and AB resulted in stimulation of DNA synthesis and directed migration of mesangial cells. AA was neither chemotactic nor mitogenic. However, all three isoforms increased tyrosine phosphorylation of a 180 kD protein in antiphosphotyrosine immunoprecipitates, suggesting activation of respective receptors. Direct immunecomplex tyrosine kinase assay of alpha and beta receptors demonstrated significant activation of both of these receptors when cells are treated with PDGF BB or AB. PDGF AA increased tyrosine kinase activity of the alpha receptor but not the beta receptor. All three isoforms significantly stimulated the production of inositol phosphates with order of potency being BB > AB > AA. PDGF AA also dose dependently stimulated PI 3 kinase activity measured in antiphosphotyrosine immunoprecipitates of treated cells. A comparison of PI 3 kinase activity in antiphosphotyrosine immunoprecipitates from mesangial cells stimulated with three different PDGF isoforms showed significant activation of this enzyme with a decreasing order of activity: BB > AB > AA. CONCLUSION Taken together, these data demonstrate that all three isoforms of PDGF significantly stimulate PLC gamma 1 and PI 3 kinase, two enzymes necessary for both DNA synthesis and directed migration. However, activation of alpha receptor by PDGF AA with a subsequent increase in PLC and PI 3 kinase activities is not sufficient to induce these biological responses in mesangial cells. These data indicate that the extent of activation of signal transduction pathways may be a major determinant of the biological activity of different PDGF isoforms in mesangial cells.
Collapse
Affiliation(s)
- G G Choudhury
- Department of Medicine, University of Texas Health Science Center, San Antonio, USA.
| | | | | | | | | |
Collapse
|
19
|
Baron W, Metz B, Bansal R, Hoekstra D, de Vries H. PDGF and FGF-2 signaling in oligodendrocyte progenitor cells: regulation of proliferation and differentiation by multiple intracellular signaling pathways. Mol Cell Neurosci 2000; 15:314-29. [PMID: 10736207 DOI: 10.1006/mcne.1999.0827] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this paper we address the linking of platelet-derived growth factor (PDGF) and basic fibroblast growth factor (FGF-2) to intracellular signaling molecules in oligodendrocyte progenitors. It is demonstrated that both growth factors activate downstream targets similar to those shown for protein kinase C (PKC) activation. Yet, neither the arrest of terminal oligodendrocyte differentiation nor the proliferation induced by PDGF or FGF-2 can be antagonized by inhibition of PKC. Rather, p42/p44 mitogen-activated protein kinase (MAPK), p38 MAPK, and pp70 S6 kinase were found to be necessary for the mitogenic activity of PDGF and FGF-2. Paradoxically, these kinases were also necessary for the onset of oligodendrocyte differentiation in control cells. In addition, cAMP-dependent kinase A (PKA) activation inhibited the mitogenic response of oligodendrocyte progenitors to FGF-2. Taken together, the molecular mechanism that controls oligodendrocyte lineage progression is operated by at least two signal pathways, which interfere either with proliferation and/or differentiation of oligodendrocyte progenitors.
Collapse
Affiliation(s)
- W Baron
- Department of Physiological Chemistry, Faculty of Medical Sciences, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | | | | | | | | |
Collapse
|
20
|
Hess JA, Buchanan FG, Ryder S, Exton JH. Altered activation of phospholipase D by lysophosphatidic acid and endothelin-1 in mouse embryo fibroblasts lacking phospholipase C-gamma1. Cell Signal 2000; 12:37-45. [PMID: 10676846 DOI: 10.1016/s0898-6568(99)00075-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lysophosphatidic acid (LPA) and endothelin-1 (ET-1) activate phospholipase D (PLD) in many cell types. To see if phospholipase C-gamma1 plays a role, we used embryonic fibroblasts from mice in which the PLCgamma1 gene was disrupted. Surprisingly, the effect of LPA on inositol phosphate accumulation was increased in these PLCgamma1-/- cells, whereas that of ET-1 was completely abrogated. When PLD activity was measured, the response to LPA was also enhanced and the response to ET-1 lost in the PLCgamma1-/- cells. Treatment of these cells with ionomycin and oleoyl acetyl glycerol to mimic PLC stimulation restored PLD activity. Treatment of either PLCgamma1+/+ and PLCgamma1-/- cells with tyrosine kinase inhibitors did not inhibit LPA- or ET-1-induced PLD activity. Moreover, LPA and ET-1 treatment of PLCgamma1+/+ and PLCgamma1-/- cells did not cause tyrosine phosphorylation of PLC-gamma1 or PLC-gamma2. In summary, these results show that the altered PLD responses to LPA and ET-1 in PLCgamma1-/- are due to changes in PLC activity and do not involve tyrosine kinase activity.
Collapse
Affiliation(s)
- J A Hess
- Howard Hughes Medical Institute and Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
21
|
Rönnstrand L, Arvidsson AK, Kallin A, Rorsman C, Hellman U, Engström U, Wernstedt C, Heldin CH. SHP-2 binds to Tyr763 and Tyr1009 in the PDGF beta-receptor and mediates PDGF-induced activation of the Ras/MAP kinase pathway and chemotaxis. Oncogene 1999; 18:3696-702. [PMID: 10391677 DOI: 10.1038/sj.onc.1202705] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Activation of the beta-receptor for platelet-derived growth factor (PDGF) by its ligand leads to autophosphorylation on a number of tyrosine residues. Here we show that Tyr763 in the kinase insert region is a novel autophosphorylation site, which after phosphorylation binds the protein tyrosine phosphatase SHP-2. SHP-2 has also previously been shown to bind to phosphorylated Tyr1009 in the PDGF beta-receptor. Porcine aortic endothelial (PAE) cells transfected with a PDGF beta-receptor in which Tyr763 and Tyr1009 were mutated to phenylalanine residues failed to associate with SHP-2 after ligand stimulation. Moreover, PDGF-BB-induced Ras GTP-loading and Erk2 activation were severely compromised in the receptor mutant. Whereas the mitogenic response to PDGF-BB remained at the same level as in cells expressing wild-type PDGF beta-receptor, chemotaxis induced by PDGF-BB was significantly decreased in the case of the Y763F/Y1009F mutant cells, suggesting an important role for SHP-2 in chemotactic signaling.
Collapse
Affiliation(s)
- L Rönnstrand
- Ludwig Institute for Cancer Research, Biomedical Centre, Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Stålberg P, Wang S, Larsson C, Weber G, Oberg K, Gobl A, Skogseid B. Suppression of the neoplastic phenotype by transfection of phospholipase C beta 3 to neuroendocrine tumor cells. FEBS Lett 1999; 450:210-6. [PMID: 10359076 DOI: 10.1016/s0014-5793(99)00457-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The expression of phospholipase C beta 3 (PLCB3) is low or absent in several neuroendocrine neoplasias. To investigate the role of PLCB3 in the neuroendocrine tumorigenesis, we transfected a PLCB3 construct to three neuroendocrine tumor cell lines with a low PLCB3 expression. The growth rate and tumorigenicity were assessed in vitro by [3H]thymidine incorporation and cell counting, in vivo, by xenografting to nude mice. In vitro, PLCB3 expressing clones showed a significant growth inhibition. The tumor weight was reduced for one of the two xenografted PLCB3-transfected cell lines and in both, a reduced number of proliferating (Ki-67 positive) cells was observed. This study implies an essential role for PLCB3 in the neuroendocrine tumorigenesis.
Collapse
Affiliation(s)
- P Stålberg
- Department of Internal Medicine, University Hospital, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
23
|
Marrero MB, Venema VJ, Ju H, Eaton DC, Venema RC. Regulation of angiotensin II-induced JAK2 tyrosine phosphorylation: roles of SHP-1 and SHP-2. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C1216-23. [PMID: 9814969 DOI: 10.1152/ajpcell.1998.275.5.c1216] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiotensin II (ANG II) exerts its effects on vascular smooth muscle cells through G protein-coupled AT1 receptors. ANG II stimulation activates the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway by inducing tyrosine phosphorylation, activation, and association of JAK2 with the receptor. Association appears to be required for JAK2 phosphorylation. In the present study, electroporation experiments with neutralizing anti-Src homology phosphatase-1 (SHP-1) and anti-SHP-2 antibodies and time course determinations of SHP-1 and SHP-2 activation and complexation with JAK2 suggest that the tyrosine phosphatases, SHP-1 and SHP-2, have opposite roles in ANG II-induced JAK2 phosphorylation. SHP-1 appears responsible for JAK2 dephosphorylation and termination of the ANG II-induced JAK/STAT cascade. SHP-2 appears to have an essential role in JAK2 phosphorylation and initiation of the ANG II-induced JAK/STAT cascade leading to cell proliferation. The motif in the AT1 receptor that is required for association with JAK2 is also required for association with SHP-2. Furthermore, SHP-2 is required for JAK2-receptor association. SHP-2 may thus play a role as an adaptor protein for JAK2 association with the receptor, thereby facilitating JAK2 phosphorylation and activation.
Collapse
MESH Headings
- Amino Acid Substitution
- Angiotensin II/pharmacology
- Animals
- Antibodies/pharmacology
- Cells, Cultured
- Electroporation
- Heart/physiology
- Heart Ventricles
- Intracellular Signaling Peptides and Proteins
- Janus Kinase 2
- Male
- Myocardium/cytology
- Myocardium/enzymology
- Phosphorylation
- Phosphotyrosine/metabolism
- Point Mutation
- Protein Phosphatase 1
- Protein Tyrosine Phosphatase, Non-Receptor Type 1
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/metabolism
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/drug effects
- Receptors, Angiotensin/physiology
- Recombinant Proteins/metabolism
- SH2 Domain-Containing Protein Tyrosine Phosphatases
- Signal Transduction/drug effects
- Signal Transduction/physiology
- src Homology Domains
Collapse
Affiliation(s)
- M B Marrero
- Vascular Biology Center, Medical College of Georgia, Augusta 30912, Georgia, USA
| | | | | | | | | |
Collapse
|
24
|
Heldin CH, Ostman A, Rönnstrand L. Signal transduction via platelet-derived growth factor receptors. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1378:F79-113. [PMID: 9739761 DOI: 10.1016/s0304-419x(98)00015-8] [Citation(s) in RCA: 273] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Platelet-derived growth factor (PDGF) exerts its stimulatory effects on cell growth and motility by binding to two related protein tyrosine kinase receptors. Ligand binding induces receptor dimerization and autophosphorylation, allowing binding and activation of cytoplasmic SH2-domain containing signal transduction molecules. Thereby, a number of different signaling pathways are initiated leading to cell growth, actin reorganization migration and differentiation. Recent observations suggest that extensive cross-talk occurs between different signaling pathways, and that stimulatory signals are modulated by inhibitory signals arising in parallel.
Collapse
Affiliation(s)
- C H Heldin
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala, Sweden
| | | | | |
Collapse
|
25
|
Hooshmand-Rad R, Yokote K, Heldin CH, Claesson-Welsh L. PDGF alpha-receptor mediated cellular responses are not dependent on Src family kinases in endothelial cells. J Cell Sci 1998; 111 ( Pt 5):607-14. [PMID: 9454734 DOI: 10.1242/jcs.111.5.607] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two novel autophosphorylation sites in the juxtamembrane region of the PDGF alpha-receptor, Tyr-572 and Tyr-574, were identified. A Y572/574F mutant PDGF (alpha)-receptor was generated and stably expressed in porcine aortic endothelial cells. In contrast to the wild-type receptor, the mutant receptor was unable to associate with or activate Src family tyrosine kinases. Tyrosine phosphorylated synthetic peptides representing the juxtamembrane sequence of the receptor dose-dependently inhibited the binding of Src family tyrosine kinases to the autophosphorylated PDGF alpha-receptor. The mutant receptor showed similar PDGF-induced kinase activity and ability to mediate mitogenicity, actin reorganization and chemotaxis as the wild-type receptor. Thus activation of Src family kinases by the PDGF alpha-receptor is not essential for PDGF-induced mitogenicity or actin reorganization.
Collapse
Affiliation(s)
- R Hooshmand-Rad
- Ludwig Institute for Cancer Research, Box 595, Biomedical Center, S-751 24 Uppsala, Sweden
| | | | | | | |
Collapse
|
26
|
Regulation of amyloid precursor protein catabolism involves the mitogen-activated protein kinase signal transduction pathway. J Neurosci 1998. [PMID: 9390997 DOI: 10.1523/jneurosci.17-24-09415.1997] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Catabolic processing of the amyloid precursor protein (APP) is subject to regulatory control by protein kinases. We hypothesized that this regulation involves sequential activation of the enzymes mitogen-activated protein kinase kinase (MEK) and extracellular signal-regulated protein kinase (ERK). In the present investigation, we provide evidence that MEK is critically involved in regulating APP processing by both nerve growth factor and phorbol esters. Western blot analysis of the soluble N-terminal APP derivative APPs demonstrated that the synthetic MEK inhibitor PD 98059 antagonized nerve growth factor stimulation of both APPs production and ERK activation in PC12 cells. Moreover, PD 98059 inhibited phorbol ester stimulation of APPs production and activation of ERK in both human embryonic kidney cells and cortical neurons. Furthermore, overexpression of a kinase-inactive MEK mutant inhibited phorbol ester stimulation of APP secretion and activation of ERK in human embryonic kidney cell lines. Most important, PD 98059 antagonized phorbol ester-mediated inhibition of Abeta secretion from cells overexpressing human APP695 carrying the "Swedish mutation." Taken together, these data indicate that MEK and ERK may be critically involved in protein kinase C and nerve growth factor regulation of APP processing. The mitogen-activated protein kinase cascade may provide a novel target for altering catabolic processing of APP.
Collapse
|
27
|
Bazenet CE, Gelderloos JA, Kazlauskas A. Phosphorylation of tyrosine 720 in the platelet-derived growth factor alpha receptor is required for binding of Grb2 and SHP-2 but not for activation of Ras or cell proliferation. Mol Cell Biol 1996; 16:6926-36. [PMID: 8943348 PMCID: PMC231696 DOI: 10.1128/mcb.16.12.6926] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Following binding of platelet-derived growth factor (PDGF), the PDGF alpha receptor (alphaPDGFR) becomes tyrosine phosphorylated and associates with a number of signal transduction molecules, including phospholipase Cgamma-1 (PLCgamma-1), phosphatidylinositol 3-kinase (PI3K), the phosphotyrosine phosphatase SHP-2, Grb2, and Src. Here, we present data identifying a novel phosphorylation site in the kinase insert domain of the alphaPDGFR at tyrosine (Y) 720. We replaced this residue with phenylalanine and expressed the mutated receptor (F720) in Patch fibroblasts that do not express the alphaPDGFR. Characterization of the F720 mutant indicated that binding of two proteins, SHP-2 and Grb2, was severely impaired, whereas PLCgamma-1 and PI3K associated to wild-type levels. In addition, mutating Y720 to phenylalanine dramatically reduced PDGF-dependent tyrosine phosphorylation of SHP-2. Since Y720 was required for recruitment of two proteins, we investigated the mechanism by which these two proteins associated with the alphaPDGFR. SHP-2 bound the alphaPDGFR directly, whereas Grb2 associated indirectly, most probably via SHP-2, as Grb2 and SHP-2 coimmunoprecipitated when SHP-2 was tyrosine phosphorylated. We also compared the ability of the wild-type and F720 alphaPDGFRs to mediate a number of downstream events. Preventing the alphaPDGFR from recruiting SHP-2 and Grb2 did not compromise PDGF-AA-induced activation of Ras, initiation of DNA synthesis, or growth of cells in soft agar. We conclude that phosphorylation of the alphaPDGFR at Y720 is required for association of SHP-2 and Grb2 and tyrosine phosphorylation of SHP-2; however, these events are not required for the alphaPDGFR to activate Ras or initiate a proliferative response. In addition, these findings reveal that while SHP-2 binds to both of the receptors, it binds in different locations: to the carboxy terminus of the betaPDGFR but to the kinase insert of the alphaPDGFR.
Collapse
Affiliation(s)
- C E Bazenet
- Division of Basic Sciences, National Jewish Center for Immunology and Respiratory Medicine, Denver, Colorado 80206, USA
| | | | | |
Collapse
|
28
|
Bilder GE, Rojas CJ. Inhibitors of the Platelet-Derived Growth Factor Receptor Tyrosine Kinase. ACTA ACUST UNITED AC 1996. [DOI: 10.1111/j.1527-3466.1996.tb00320.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Hughes AD, Clunn GF, Refson J, Demoliou-Mason C. Platelet-derived growth factor (PDGF): actions and mechanisms in vascular smooth muscle. GENERAL PHARMACOLOGY 1996; 27:1079-89. [PMID: 8981052 DOI: 10.1016/s0306-3623(96)00060-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
1. PDGF is a highly hydrophilic cationic glycoprotein (M(r) 28-35kDa) produced by platelets, monocyte/macrophages, endothelial cells and vascular smooth muscle cells under some conditions. 2. Since its original description, PDGF has attracted much attention and it is currently believed to play a role in atherosclerosis and other vascular pathologies. 3. This review describes the vascular biology of PDGF. It particularly focuses on recent findings regarding the intracellular signals activated by PDGF in the context of vascular smooth muscle cell proliferation, migration and, contraction.
Collapse
Affiliation(s)
- A D Hughes
- Department of Clinical Pharmacology, St. Mary's Hospital Medical School, Imperial College of Science Technology and Medicine, London, UK.
| | | | | | | |
Collapse
|
30
|
Goppelt-Struebe M, Stroebel M, Hoppe J. Regulation of platelet-derived growth factor isoform-mediated expression of prostaglandin G/H synthase in mesangial cells. Kidney Int 1996; 50:71-8. [PMID: 8807574 DOI: 10.1038/ki.1996.288] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Incubation of rat renal mesangial cells with platelet-derived growth factor (PDGF) -AB or -BB led to a transient increase in prostaglandin G/H synthase-2 (PGHS-2) mRNA expression with a maximum after two hours. Expression of PGHS-1 mRNA remained unchanged during short term incubation, but was enhanced about twofold after 8 to 12 hours incubation with PDGF-AB or -BB. Enhanced PGHS activity was still observed after 24 hours. Nevertheless, PGE2 release from mesangial cells was not enhanced by PDGF, hinting to the availability of arachidonic acid as rate-limiting step. PDGF receptors are coupled to multiple signaling pathways, among them phospholipase C gamma PDGF-BB rapidly phoshorylated PLC gamma, while phosphorylation by PDGF-AB was barely detectable. The differential effect of PDGF-BB and PDGF-AB was also seen with respect to calcium signaling: PDGF-BB but not PDGF-AB induced release of Ca2+ from internal stores. Activation of PLC and the resulting transient release of Ca2+ were not considered to be essential for PGHS-2 mRNA induction as both PDGF isoforms were equally effective in mRNA induction. Both PDGF isoforms led to a Ca2+ influx resulting in a long lasting elevation of [Ca2+]i. Enhanced [Ca2+]i seemed to be related to PGHS-2 mRNA expression, because PDGF-induced PGHS-2 mRNA was significantly reduced under Ca2+ free conditions. Diacylglycerol, liberated by PLC, is an activator of protein kinase C (PKC). Down-regulation of PKC by overnight incubation with phorbol ester (0.1 microM) attenuated PGHS-2 mRNA induction by PDGF-AB and -BB. Involvement of PKC was substantiated by the PKC inhibitor H7, which interfered with PDGF-mediated PGHS-2 mRNA expression, while HA1004, a considerably specific inhibitor of protein kinases A and G, was without effect. Taken together, signaling pathways other than PLC gamma seem to be involved in activation of PKC and elevation of [Ca2+]i, which were shown to be essential elements of PDGF-mediated induction of PGHS-2 mRNA expression in mesangial cells.
Collapse
Affiliation(s)
- M Goppelt-Struebe
- Medizinische Klinik IV, Universität Erlangen-Nümberg, Erlangen, Germany
| | | | | |
Collapse
|
31
|
Hall H, Williams EJ, Moore SE, Walsh FS, Prochiantz A, Doherty P. Inhibition of FGF-stimulated phosphatidylinositol hydrolysis and neurite outgrowth by a cell-membrane permeable phosphopeptide. Curr Biol 1996; 6:580-7. [PMID: 8805278 DOI: 10.1016/s0960-9822(02)00544-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Activated receptor tyrosine kinases bind downstream effector molecules with high affinity. Provided that they can be introduced into cells, peptides corresponding to these high-affinity sites should be able to compete for the interaction and thereby inhibit specific signal transduction cascades. The high-affinity binding site for phospholipase C gamma (PLCgamma) on the activated fibroblast growth factor receptor (FGFR) is centred around the tyrosine at position 766 (766Tyr), and peptides corresponding to this site inhibit PLCgamma binding to the receptor in vitro. A 16 amino-acid peptide from the third helix of the Antennapedia homeodomain protein has recently been shown to be able to act as an internalization vector that can deliver other peptides into cells. Here, we have designed a peptide that contains both the internalization sequence and the FGFR high-affinity binding site for PLCgamma, and tested it in cultures of cerebellar neurons for its ability to inhibit the activation of PLCgamma by basic FGF. RESULTS The peptide containing the FGFR high-affinity binding site for PLCgamma inhibited phospholipid hydrolysis stimulated by basic FGF with a maximal effect at 1 microg ml-1. Phosphorylation of 766Tyr was required for this effect. The phosphorylated peptide had no effect on phospholipid hydrolysis stimulated by platelet-derived growth factor, neurotrophin-3 and bradykinin. The phosphorylated peptide also inhibited neurite outgrowth stimulated by FGF, but had no effect on neurite outgrowth stimulated by agents that activate the FGFR signal transduction cascade downstream from the activation of PLCgamma. CONCLUSIONS Cell-permeable peptides can be designed that inhibit the function of receptor tyrosine kinases. In this context we have developed a peptide that prevents the FGFR from activating PLCgamma, and have used this peptide to obtain the first direct evidence that activation of PLCgamma is required for the neurite outgrowth response stimulated by basic FGF.
Collapse
Affiliation(s)
- H Hall
- Department of Experimental Pathology, UMDS, Guy's Hospital, London Bridge, London SE1 9RT, UK
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
More than 20 years ago, platelet-derived growth factor (PDGF) was identified and later purified. Through recent years of intense research, a large body of information has been collected on how PDGF transduces its biological effects to responding cells. Two homologous receptors, the PDGF alpha- and beta-receptors, have been identified, which are receptor tyrosine kinases. Binding of PDGF leads to activation of the kinase and autophosphorylation. Particularly in the PDGF beta-receptor, a considerable number of autophosphorylation sites have been identified, which allow for physical interaction with signal transduction molecules. The signal transduction molecules are often enzymes, which undergo activity changes in conjunction with binding to the receptor. Other signal transduction molecules function as adaptors, which can couple to subunits equipped with catalytic activity. Through the activity changes of inherent or directly coupled catalytic activities, a signal is propagated, which ultimately results in a cellular response. PDGF is known to induce migration, proliferation and differentiation of different cells types. An array of signal transduction molecules has been shown to interact with the PDGF beta-receptor; several appear to contribute to the generation of the proliferative response, indicating the existence of parallel pathways for this response, which are utilized by many different growth factor receptors. Migration of cells towards PDGF appears to be more strictly dependent on activation of phosphatidylinositol 3' kinase. Interestingly, the PDGF alpha-receptor emits negative signals that inhibit simultaneous positive signals for migration induced by this receptor, or by other receptors, such as the PDGF beta-receptor. Virtually nothing is known about signal transduction initiated by PDGF, which generates differentiation responses. Since PDGF appears to play a role in different physiological and pathological processes, it is important to continue delineation of signal transduction pathways initiated through activation of the PDGF receptors.
Collapse
Affiliation(s)
- L Claesson-Welsh
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala, Sweden
| |
Collapse
|