1
|
Williams RTP, King DC, Mastroianni IR, Hill JL, Apenes NW, Ramirez G, Miner EC, Moore A, Coleman K, Nishimura EO. Transcriptome profiling of the Caenorhabditis elegans intestine reveals that ELT-2 negatively and positively regulates intestinal gene expression within the context of a gene regulatory network. Genetics 2023; 224:iyad088. [PMID: 37183501 PMCID: PMC10411582 DOI: 10.1093/genetics/iyad088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/16/2023] Open
Abstract
ELT-2 is the major transcription factor (TF) required for Caenorhabditis elegans intestinal development. ELT-2 expression initiates in embryos to promote development and then persists after hatching through the larval and adult stages. Though the sites of ELT-2 binding are characterized and the transcriptional changes that result from ELT-2 depletion are known, an intestine-specific transcriptome profile spanning developmental time has been missing. We generated this dataset by performing Fluorescence Activated Cell Sorting on intestine cells at distinct developmental stages. We analyzed this dataset in conjunction with previously conducted ELT-2 studies to evaluate the role of ELT-2 in directing the intestinal gene regulatory network through development. We found that only 33% of intestine-enriched genes in the embryo were direct targets of ELT-2 but that number increased to 75% by the L3 stage. This suggests additional TFs promote intestinal transcription especially in the embryo. Furthermore, only half of ELT-2's direct target genes were dependent on ELT-2 for their proper expression levels, and an equal proportion of those responded to elt-2 depletion with over-expression as with under-expression. That is, ELT-2 can either activate or repress direct target genes. Additionally, we observed that ELT-2 repressed its own promoter, implicating new models for its autoregulation. Together, our results illustrate that ELT-2 impacts roughly 20-50% of intestine-specific genes, that ELT-2 both positively and negatively controls its direct targets, and that the current model of the intestinal regulatory network is incomplete as the factors responsible for directing the expression of many intestinal genes remain unknown.
Collapse
Affiliation(s)
- Robert T P Williams
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - David C King
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Izabella R Mastroianni
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessica L Hill
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Nicolai W Apenes
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gabriela Ramirez
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
- Department of Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - E Catherine Miner
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Andrew Moore
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Karissa Coleman
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Erin Osborne Nishimura
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
2
|
Broitman-Maduro G, Maduro MF. Evolutionary Change in Gut Specification in Caenorhabditis Centers on the GATA Factor ELT-3 in an Example of Developmental System Drift. J Dev Biol 2023; 11:32. [PMID: 37489333 PMCID: PMC10366740 DOI: 10.3390/jdb11030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023] Open
Abstract
Cells in a developing animal embryo become specified by the activation of cell-type-specific gene regulatory networks. The network that specifies the gut in the nematode Caenorhabditis elegans has been the subject of study for more than two decades. In this network, the maternal factors SKN-1/Nrf and POP-1/TCF activate a zygotic GATA factor cascade consisting of the regulators MED-1,2 → END-1,3 → ELT-2,7, leading to the specification of the gut in early embryos. Paradoxically, the MED, END, and ELT-7 regulators are present only in species closely related to C. elegans, raising the question of how the gut can be specified without them. Recent work found that ELT-3, a GATA factor without an endodermal role in C. elegans, acts in a simpler ELT-3 → ELT-2 network to specify gut in more distant species. The simpler ELT-3 → ELT-2 network may thus represent an ancestral pathway. In this review, we describe the elucidation of the gut specification network in C. elegans and related species and propose a model by which the more complex network might have formed. Because the evolution of this network occurred without a change in phenotype, it is an example of the phenomenon of Developmental System Drift.
Collapse
Affiliation(s)
- Gina Broitman-Maduro
- Department of Molecular, Cell, and Systems Biology, University of California-Riverside, Riverside, CA 92521, USA
| | - Morris F Maduro
- Department of Molecular, Cell, and Systems Biology, University of California-Riverside, Riverside, CA 92521, USA
| |
Collapse
|
3
|
Liang M, Lu M, Aleem MT, Zhang Y, Wang M, Wen Z, Song X, Xu L, Li X, Yan R. Identification of excretory and secretory proteins from Haemonchus contortus inducing a Th9 immune response in goats. Vet Res 2022; 53:36. [PMID: 35597967 PMCID: PMC9123704 DOI: 10.1186/s13567-022-01055-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/03/2022] [Indexed: 11/21/2022] Open
Abstract
Th9 cells have been shown to play crucial roles in anti-parasite immunity, pathogenic microbe infection, and allergy. Previous studies have demonstrated that Haemonchus contortus excretory and secretory proteins (HcESPs) induce the proliferation of Th9 cells and alter the transcriptional level of IL-9 as well as its related pathways in the Th9 immune response after infection. However, the exact molecule(s) in HcESPs inducing the Th9 immune response is not yet known. In this study, flow cytometry, co-immunoprecipitation (Co-IP) and shotgun liquid chromatography tandem-mass spectrometry (LC–MS/MS) were used, and a total of 218 proteins from HcESPs that might interact with goat Th9 cells were identified. By in vitro culture of Th9 cells with HcESPs, 40 binding proteins were identified. In vivo, 38, 47, 42 and 142 binding proteins were identified at 7, 15, 35 and 50 days post-infection (dpi), respectively. Furthermore, 2 of the 218 HcESPs, named DNA/RNA helicase domain containing protein (HcDR) and GATA transcription factor (HcGATA), were confirmed to induce the proliferation of Th9 cells and promote the expression of IL-9 when incubated with goat peripheral blood mononuclear cells (PBMCs). This study represents a proteomics-guided investigation of the interactions between Th9 cells and HcESPs. It provides a new way to explore immunostimulatory antigens among HcESPs and identifies candidates for immune-mediated prevention of H. contortus infection.
Collapse
Affiliation(s)
- Meng Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Mingmin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Muhammad Tahir Aleem
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yang Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Mingyue Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhaohai Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
4
|
Lancaster BR, McGhee JD. How affinity of the ELT-2 GATA factor binding to cis-acting regulatory sites controls Caenorhabditis elegans intestinal gene transcription. Development 2020; 147:dev190330. [PMID: 32586978 PMCID: PMC7390640 DOI: 10.1242/dev.190330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/06/2020] [Indexed: 12/13/2022]
Abstract
We define a quantitative relationship between the affinity with which the intestine-specific GATA factor ELT-2 binds to cis-acting regulatory motifs and the resulting transcription of asp-1, a target gene representative of genes involved in Caenorhabditis elegans intestine differentiation. By establishing an experimental system that allows unknown parameters (e.g. the influence of chromatin) to effectively cancel out, we show that levels of asp-1 transcripts increase monotonically with increasing binding affinity of ELT-2 to variant promoter TGATAA sites. The shape of the response curve reveals that the product of the unbound ELT-2 concentration in vivo [i.e. (ELT-2free) or ELT-2 'activity'] and the largest ELT-XXTGATAAXX association constant (Kmax) lies between five and ten. We suggest that this (unitless) product [Kmax×(ELT-2free) or the equivalent product for any other transcription factor] provides an important quantitative descriptor of transcription-factor/regulatory-motif interaction in development, evolution and genetic disease. A more complicated model than simple binding affinity is necessary to explain the fact that ELT-2 appears to discriminate in vivo against equal-affinity binding sites that contain AGATAA instead of TGATAA.
Collapse
Affiliation(s)
- Brett R Lancaster
- Department of Biochemistry and Molecular Biology, University of Calgary, Cumming School of Medicine, Alberta Children's Hospital Research Institute, Calgary, Alberta T2N 4N1, Canada
| | - James D McGhee
- Department of Biochemistry and Molecular Biology, University of Calgary, Cumming School of Medicine, Alberta Children's Hospital Research Institute, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
5
|
O’Donnell MP, Chao PH, Kammenga JE, Sengupta P. Rictor/TORC2 mediates gut-to-brain signaling in the regulation of phenotypic plasticity in C. elegans. PLoS Genet 2018; 14:e1007213. [PMID: 29415022 PMCID: PMC5819832 DOI: 10.1371/journal.pgen.1007213] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/20/2018] [Accepted: 01/22/2018] [Indexed: 01/03/2023] Open
Abstract
Animals integrate external cues with information about internal conditions such as metabolic state to execute the appropriate behavioral and developmental decisions. Information about food quality and quantity is assessed by the intestine and transmitted to modulate neuronal functions via mechanisms that are not fully understood. The conserved Target of Rapamycin complex 2 (TORC2) controls multiple processes in response to cellular stressors and growth factors. Here we show that TORC2 coordinates larval development and adult behaviors in response to environmental cues and feeding state in the bacterivorous nematode C. elegans. During development, pheromone, bacterial food, and temperature regulate expression of the daf-7 TGF-β and daf-28 insulin-like peptide in sensory neurons to promote a binary decision between reproductive growth and entry into the alternate dauer larval stage. We find that TORC2 acts in the intestine to regulate neuronal expression of both daf-7 and daf-28, which together reflect bacterial-diet dependent feeding status, thus providing a mechanism for integration of food signals with external cues in the regulation of neuroendocrine gene expression. In the adult, TORC2 similarly acts in the intestine to modulate food-regulated foraging behaviors via a PDF-2/PDFR-1 neuropeptide signaling-dependent pathway. We also demonstrate that genetic variation affects food-dependent larval and adult phenotypes, and identify quantitative trait loci (QTL) associated with these traits. Together, these results suggest that TORC2 acts as a hub for communication of feeding state information from the gut to the brain, thereby contributing to modulation of neuronal function by internal state. Decision-making in all animals, including humans, involves weighing available information about the external environment as well as the animals’ internal conditions. Information about the environment is obtained via the sensory nervous system, whereas internal state can be assessed via cues such as levels of hormones or nutrients. How multiple external and internal inputs are processed in the nervous system to drive behavior or development is not fully understood. In this study, we examine how the nematode C. elegans integrates dietary information received by the gut with environmental signals to alter nervous system function. We have found that a signaling complex, called TORC2, acts in the gut to relay nutrition signals to alter hormonal signaling by the nervous system in C. elegans. Altered neuronal signaling in turn affects a food-dependent binary developmental decision in larvae, as well as food-dependent foraging behaviors in adults. Our results provide a mechanism by which animals prioritize specific signals such as feeding status to appropriately alter their development and/or behavior.
Collapse
Affiliation(s)
- Michael P. O’Donnell
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, United States of America
- * E-mail: (MPO); (PS)
| | - Pin-Hao Chao
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, United States of America
| | - Jan E. Kammenga
- Laboratory of Nematology, Wageningen University and Research, Wageningen, The Netherlands
| | - Piali Sengupta
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, United States of America
- * E-mail: (MPO); (PS)
| |
Collapse
|
6
|
Dietrich N, Schneider DL, Kornfeld K. A pathway for low zinc homeostasis that is conserved in animals and acts in parallel to the pathway for high zinc homeostasis. Nucleic Acids Res 2017; 45:11658-11672. [PMID: 28977437 PMCID: PMC5714235 DOI: 10.1093/nar/gkx762] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/22/2017] [Indexed: 12/20/2022] Open
Abstract
The essential element zinc plays critical roles in biology. High zinc homeostasis mechanisms are beginning to be defined in animals, but low zinc homeostasis is poorly characterized. We investigated low zinc homeostasis in Caenorhabditis elegans because the genome encodes 14 evolutionarily conserved Zrt, Irt-like protein (ZIP) zinc transporter family members. Three C. elegans zipt genes were regulated in zinc-deficient conditions; these promoters contained an evolutionarily conserved motif that we named the low zinc activation (LZA) element that was both necessary and sufficient for activation of transcription in response to zinc deficiency. These results demonstrated that the LZA element is a critical part of the low zinc homeostasis pathway. Transcriptional regulation of the LZA element required the transcription factor ELT-2 and mediator complex member MDT-15. We investigated conservation in mammals by analyzing LZA element function in human cultured cells; the LZA element-mediated transcriptional activation in response to zinc deficiency in cells, suggesting a conserved pathway of low zinc homeostasis. We propose that the pathway for low zinc homeostasis, which includes the LZA element and ZIP transporters, acts in parallel to the pathway for high zinc homeostasis, which includes the HZA element, HIZR-1 transcription factor and cation diffusion facilitator transporters.
Collapse
Affiliation(s)
- Nicholas Dietrich
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Daniel L Schneider
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
7
|
Franz A, Pirson PA, Pilger D, Halder S, Achuthankutty D, Kashkar H, Ramadan K, Hoppe T. Chromatin-associated degradation is defined by UBXN-3/FAF1 to safeguard DNA replication fork progression. Nat Commun 2016; 7:10612. [PMID: 26842564 PMCID: PMC4743000 DOI: 10.1038/ncomms10612] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/05/2016] [Indexed: 01/10/2023] Open
Abstract
The coordinated activity of DNA replication factors is a highly dynamic process that involves ubiquitin-dependent regulation. In this context, the ubiquitin-directed ATPase CDC-48/p97 recently emerged as a key regulator of chromatin-associated degradation in several of the DNA metabolic pathways that assure genome integrity. However, the spatiotemporal control of distinct CDC-48/p97 substrates in the chromatin environment remained unclear. Here, we report that progression of the DNA replication fork is coordinated by UBXN-3/FAF1. UBXN-3/FAF1 binds to the licensing factor CDT-1 and additional ubiquitylated proteins, thus promoting CDC-48/p97-dependent turnover and disassembly of DNA replication factor complexes. Consequently, inactivation of UBXN-3/FAF1 stabilizes CDT-1 and CDC-45/GINS on chromatin, causing severe defects in replication fork dynamics accompanied by pronounced replication stress and eventually resulting in genome instability. Our work identifies a critical substrate selection module of CDC-48/p97 required for chromatin-associated protein degradation in both Caenorhabditis elegans and humans, which is relevant to oncogenesis and aging. Cdc48/p97 is a key component of the ubiquitin-proteasome system, acting as a ubiquitin-directed segregase to regulate multiple cellular functions. Here the authors identify UBXN-3/FAF1 as a crucial regulator of chromatin-associated protein degradation that recruits Cdc48/p97 to DNA replication forks.
Collapse
Affiliation(s)
- André Franz
- Institute for Genetics and CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Paul A Pirson
- Institute for Genetics and CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Domenic Pilger
- Institute for Genetics and CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany.,Department of Oncology, University of Oxford, Cancer Research UK/Medical Research Council Oxford, Institute for Radiation Oncology, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Swagata Halder
- Department of Oncology, University of Oxford, Cancer Research UK/Medical Research Council Oxford, Institute for Radiation Oncology, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Divya Achuthankutty
- Department of Oncology, University of Oxford, Cancer Research UK/Medical Research Council Oxford, Institute for Radiation Oncology, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Hamid Kashkar
- Centre for Molecular Medicine Cologne and Institute for Medical Microbiology, Immunology and Hygiene at CECAD Research Center, University Hospital of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Kristijan Ramadan
- Department of Oncology, University of Oxford, Cancer Research UK/Medical Research Council Oxford, Institute for Radiation Oncology, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Thorsten Hoppe
- Institute for Genetics and CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| |
Collapse
|
8
|
Wiesenfahrt T, Berg JY, Osborne Nishimura E, Robinson AG, Goszczynski B, Lieb JD, McGhee JD. The function and regulation of the GATA factor ELT-2 in the C. elegans endoderm. Development 2015; 143:483-91. [PMID: 26700680 DOI: 10.1242/dev.130914] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/12/2015] [Indexed: 11/20/2022]
Abstract
ELT-2 is the major regulator of genes involved in differentiation, maintenance and function of C. elegans intestine from the early embryo to mature adult. elt-2 responds to overexpression of the GATA transcription factors END-1 and END-3, which specify the intestine, as well as to overexpression of the two GATA factors that are normally involved in intestinal differentiation, ELT-7 and ELT-2 itself. Little is known about the molecular mechanisms underlying these interactions, how ELT-2 levels are maintained throughout development or how such systems respond to developmental perturbations. Here, we analyse elt-2 gene regulation through transgenic reporter assays, ELT-2 ChIP and characterisation of in vitro DNA-protein interactions. Our results indicate that elt-2 is controlled by three discrete regulatory regions conserved between C. elegans and C. briggsae that span >4 kb of 5' flanking sequence. These regions are superficially interchangeable but have quantitatively different enhancer properties, and their combined activities indicate inter-region synergies. Their regulatory activity is mediated by a small number of conserved TGATAA sites that are largely interchangeable and interact with different endodermal GATA factors with only modest differences in affinity. The redundant molecular mechanism that forms the elt-2 regulatory network is robust and flexible, as loss of end-3 halves ELT-2 levels in the early embryo but levels fully recover by the time of hatching. When ELT-2 is expressed under the control of end-1 regulatory elements, in addition to its own endogenous promoter, it can replace the complete set of endoderm-specific GATA factors: END-1, END-3, ELT-7 and (the probably non-functional) ELT-4. Thus, in addition to controlling gene expression during differentiation, ELT-2 is capable of specifying the entire C. elegans endoderm.
Collapse
Affiliation(s)
- Tobias Wiesenfahrt
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Janette Y Berg
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Erin Osborne Nishimura
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Adam G Robinson
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Barbara Goszczynski
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Jason D Lieb
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - James D McGhee
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|
9
|
Maduro MF. Developmental robustness in the Caenorhabditis elegans embryo. Mol Reprod Dev 2015; 82:918-31. [PMID: 26382067 DOI: 10.1002/mrd.22582] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/03/2015] [Indexed: 12/25/2022]
Abstract
Developmental robustness is the ability of an embryo to develop normally despite many sources of variation, from differences in the environment to stochastic cell-to-cell differences in gene expression. The nematode Caenorhabditis elegans exhibits an additional level of robustness: Unlike most other animals, the embryonic pattern of cell divisions is nearly identical from animal to animal. The endoderm (gut) lineage is an ideal model for studying such robustness as the juvenile gut has a simple anatomy, consisting of 20 cells that are derived from a single cell, E, and the gene regulatory network that controls E specification shares features with developmental regulatory networks in many other systems, including genetic redundancy, parallel pathways, and feed-forward loops. Early studies were initially concerned with identifying the genes in the network, whereas recent work has focused on understanding how the endoderm produces a robust developmental output in the face of many sources of variation. Genetic control exists at three levels of endoderm development: Progenitor specification, cell divisions within the developing gut, and maintenance of gut differentiation. Recent findings show that specification genes regulate all three of these aspects of gut development, and that mutant embryos can experience a "partial" specification state in which some, but not all, E descendants adopt a gut fate. Ongoing studies using newer quantitative and genome-wide methods promise further insights into how developmental gene-regulatory networks buffer variation.
Collapse
Affiliation(s)
- Morris F Maduro
- Department of Biology, University of California, Riverside, California
| |
Collapse
|
10
|
Gordon KL, Arthur RK, Ruvinsky I. Phylum-Level Conservation of Regulatory Information in Nematodes despite Extensive Non-coding Sequence Divergence. PLoS Genet 2015; 11:e1005268. [PMID: 26020930 PMCID: PMC4447282 DOI: 10.1371/journal.pgen.1005268] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 05/09/2015] [Indexed: 11/28/2022] Open
Abstract
Gene regulatory information guides development and shapes the course of evolution. To test conservation of gene regulation within the phylum Nematoda, we compared the functions of putative cis-regulatory sequences of four sets of orthologs (unc-47, unc-25, mec-3 and elt-2) from distantly-related nematode species. These species, Caenorhabditis elegans, its congeneric C. briggsae, and three parasitic species Meloidogyne hapla, Brugia malayi, and Trichinella spiralis, represent four of the five major clades in the phylum Nematoda. Despite the great phylogenetic distances sampled and the extensive sequence divergence of nematode genomes, all but one of the regulatory elements we tested are able to drive at least a subset of the expected gene expression patterns. We show that functionally conserved cis-regulatory elements have no more extended sequence similarity to their C. elegans orthologs than would be expected by chance, but they do harbor motifs that are important for proper expression of the C. elegans genes. These motifs are too short to be distinguished from the background level of sequence similarity, and while identical in sequence they are not conserved in orientation or position. Functional tests reveal that some of these motifs contribute to proper expression. Our results suggest that conserved regulatory circuitry can persist despite considerable turnover within cis elements. To explore the phylogenetic limits of conservation of cis-regulatory elements, we used transgenesis to test the functions of enhancers of four genes from several species spanning the phylum Nematoda. While we found a striking degree of functional conservation among the examined cis elements, their DNA sequences lacked apparent conservation with the C. elegans orthologs. In fact, sequence similarity between C. elegans and the distantly related nematodes was no greater than would be expected by chance. Short motifs, similar to known regulatory sequences in C. elegans, can be detected in most of the cis elements. When tested, some of these sites appear to mediate regulatory function. However, they seem to have originated through motif turnover, rather than to have been preserved from a common ancestor. Our results suggest that gene regulatory networks are broadly conserved in the phylum Nematoda, but this conservation persists despite substantial reorganization of regulatory elements and could not be detected using naïve comparisons of sequence similarity.
Collapse
Affiliation(s)
- Kacy L. Gordon
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (KLG); (IR)
| | - Robert K. Arthur
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
| | - Ilya Ruvinsky
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, United States of America
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (KLG); (IR)
| |
Collapse
|
11
|
Lessons from bloodless worms: heme homeostasis in C. elegans. Biometals 2015; 28:481-9. [PMID: 25724951 DOI: 10.1007/s10534-015-9841-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/23/2015] [Indexed: 02/08/2023]
Abstract
Heme is an essential cofactor for proteins involved in diverse biological processes such as oxygen transport, electron transport, and microRNA processing. Free heme is hydrophobic and cytotoxic, implying that specific trafficking pathways must exist for the delivery of heme to target hemoproteins which reside in various subcellular locales. Although heme biosynthesis and catabolism have been well characterized, the pathways for trafficking heme within and between cells remain poorly understood. Caenorhabditis elegans serves as a unique animal model for uncovering these pathways because, unlike vertebrates, the worm lacks enzymes to synthesize heme and therefore is crucially dependent on dietary heme for sustenance. Using C. elegans as a genetic animal model, several novel heme trafficking molecules have been identified. Importantly, these proteins have corresponding homologs in vertebrates underscoring the power of using C. elegans, a bloodless worm, in elucidating pathways in heme homeostasis and hematology in humans. Since iron deficiency and anemia are often exacerbated by parasites such as helminths and protozoa which also rely on host heme for survival, C. elegans will be an ideal model to identify anti-parasitic drugs that target heme transport pathways unique to the parasite.
Collapse
|
12
|
Runkel ED, Liu S, Baumeister R, Schulze E. Surveillance-activated defenses block the ROS-induced mitochondrial unfolded protein response. PLoS Genet 2013; 9:e1003346. [PMID: 23516373 PMCID: PMC3597513 DOI: 10.1371/journal.pgen.1003346] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 01/11/2013] [Indexed: 01/01/2023] Open
Abstract
Disturbance of cellular functions results in the activation of stress-signaling pathways that aim at restoring homeostasis. We performed a genome-wide screen to identify components of the signal transduction of the mitochondrial unfolded protein response (UPR(mt)) to a nuclear chaperone promoter. We used the ROS generating complex I inhibitor paraquat to induce the UPR(mt), and we employed RNAi exposure post-embryonically to allow testing genes whose knockdown results in embryonic lethality. We identified 54 novel regulators of the ROS-induced UPR(mt). Activation of the UPR(mt), but not of other stress-signaling pathways, failed when homeostasis of basic cellular mechanisms such as translation and protein transport were impaired. These mechanisms are monitored by a recently discovered surveillance system that interprets interruption of these processes as pathogen attack and depends on signaling through the JNK-like MAP-kinase KGB-1. Mutation of kgb-1 abrogated the inhibition of ROS-induced UPR(mt), suggesting that surveillance-activated defenses specifically inhibit the UPR(mt) but do not compromise activation of the heat shock response, the UPR of the endoplasmic reticulum, or the SKN-1/Nrf2 mediated response to cytosolic stress. In addition, we identified PIFK-1, the orthologue of the Drosophila PI 4-kinase four wheel drive (FWD), and found that it is the only known factor so far that is essential for the unfolded protein responses of both mitochondria and endoplasmic reticulum. This suggests that both UPRs may share a common membrane associated mechanism.
Collapse
Affiliation(s)
- Eva D. Runkel
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Laboratory for Bioinformatics and Molecular Genetics, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Shu Liu
- Laboratory for Bioinformatics and Molecular Genetics, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Ralf Baumeister
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Laboratory for Bioinformatics and Molecular Genetics, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Center for Biochemistry and Molecular Cell Research, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Centre for Biological Signaling Studies (BIOSS), Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- * E-mail:
| | - Ekkehard Schulze
- Laboratory for Bioinformatics and Molecular Genetics, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Centre for Biological Signaling Studies (BIOSS), Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
McGhee JD. TheCaenorhabditis elegansintestine. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:347-67. [DOI: 10.1002/wdev.93] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Kumsta C, Hansen M. C. elegans rrf-1 mutations maintain RNAi efficiency in the soma in addition to the germline. PLoS One 2012; 7:e35428. [PMID: 22574120 PMCID: PMC3344830 DOI: 10.1371/journal.pone.0035428] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 03/16/2012] [Indexed: 12/01/2022] Open
Abstract
Gene inactivation through RNA interference (RNAi) has proven to be a valuable tool for studying gene function in C. elegans. When combined with tissue-specific gene inactivation methods, RNAi has the potential to shed light on the function of a gene in distinct tissues. In this study we characterized C. elegans rrf-1 mutants to determine their ability to process RNAi in various tissues. These mutants have been widely used in RNAi studies to assess the function of genes specifically in the C. elegans germline. Upon closer analysis, we found that two rrf-1 mutants carrying different loss-of-function alleles were capable of processing RNAi targeting several somatically expressed genes. Specifically, we observed that the intestine was able to process RNAi triggers efficiently, whereas cells in the hypodermis showed partial susceptibility to RNAi in rrf-1 mutants. Other somatic tissues in rrf-1 mutants, such as the muscles and the somatic gonad, appeared resistant to RNAi. In addition to these observations, we found that the rrf-1(pk1417) mutation induced the expression of several transgenic arrays, including the FOXO transcription factor DAF-16. Unexpectedly, rrf-1(pk1417) mutants showed increased endogenous expression of the DAF-16 target gene sod-3; however, the lifespan and thermo-tolerance of rrf-1(pk1417) mutants were similar to those of wild-type animals. In sum, these data show that rrf-1 mutants display several phenotypes not previously appreciated, including broader tissue-specific RNAi-processing capabilities, and our results underscore the need for careful characterization of tissue-specific RNAi tools.
Collapse
Affiliation(s)
- Caroline Kumsta
- Program of Development and Aging, Sanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, La Jolla, California, United States of America
| | - Malene Hansen
- Program of Development and Aging, Sanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
Korzelius J, The I, Ruijtenberg S, Portegijs V, Xu H, Horvitz HR, van den Heuvel S. C. elegans MCM-4 is a general DNA replication and checkpoint component with an epidermis-specific requirement for growth and viability. Dev Biol 2011; 350:358-69. [PMID: 21146520 PMCID: PMC3322639 DOI: 10.1016/j.ydbio.2010.12.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/29/2010] [Accepted: 12/01/2010] [Indexed: 11/22/2022]
Abstract
DNA replication and its connection to M phase restraint are studied extensively at the level of single cells but rarely in the context of a developing animal. C. elegans lin-6 mutants lack DNA synthesis in postembryonic somatic cell lineages, while entry into mitosis continues. These mutants grow slowly and either die during larval development or develop into sterile adults. We found that lin-6 corresponds to mcm-4 and encodes an evolutionarily conserved component of the MCM2-7 pre-RC and replicative helicase complex. The MCM-4 protein is expressed in all dividing cells during embryonic and postembryonic development and associates with chromatin in late anaphase. Induction of cell cycle entry and differentiation continues in developing mcm-4 larvae, even in cells that went through abortive division. In contrast to somatic cells in mcm-4 mutants, the gonad continues DNA replication and cell division until late larval development. Expression of MCM-4 in the epidermis (also known as hypodermis) is sufficient to rescue the growth retardation and lethality of mcm-4 mutants. While the somatic gonad and germline show substantial ability to cope with lack of zygotic mcm-4 function, mcm-4 is specifically required in the epidermis for growth and survival of the whole organism. Thus, C. elegans mcm-4 has conserved functions in DNA replication and replication checkpoint control but also shows unexpected tissue-specific requirements.
Collapse
Affiliation(s)
- Jerome Korzelius
- Developmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Inge The
- Developmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Suzan Ruijtenberg
- Developmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Vincent Portegijs
- Developmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Huihong Xu
- Department of Pathology and Laboratory Medicine. Boston University School of Medicine and Boston Medical Center. 670 Albany Street, Boston MA, USA
| | - H. Robert Horvitz
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge MA, United States of America
| | - Sander van den Heuvel
- Developmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
16
|
Sinclair J, Hamza I. A novel heme-responsive element mediates transcriptional regulation in Caenorhabditis elegans. J Biol Chem 2010; 285:39536-43. [PMID: 20938051 DOI: 10.1074/jbc.m110.167619] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hemes are prosthetic groups that participate in diverse biochemical pathways across phylogeny. Although heme can also regulate broad physiological processes by directly modulating gene expression in Metazoa, the regulatory pathways for sensing and responding to heme are not well defined. Caenorhabditis elegans is a heme auxotroph and relies solely on environmental heme for sustenance. Worms respond to heme availability by regulating heme-responsive genes such as hrg-1, an intestinal heme transporter that is up-regulated by >60-fold during heme depletion. To identify the mechanism for the heme-dependent regulation of hrg-1, we interrogated the hrg-1 promoter. Deletion and mutagenesis studies of the hrg-1 promoter revealed a 23-bp heme-responsive element that is both necessary and sufficient for heme-dependent regulation of hrg-1. Furthermore, our studies show that the heme regulation of hrg-1 is mediated by both activation and repression in conjunction with ELT-2 and ELT-4, transcription factors that specify intestinal expression.
Collapse
Affiliation(s)
- Jason Sinclair
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742, USA
| | | |
Collapse
|
17
|
Endoderm development in Caenorhabditis elegans: the synergistic action of ELT-2 and -7 mediates the specification→differentiation transition. Dev Biol 2010; 347:154-66. [PMID: 20807527 DOI: 10.1016/j.ydbio.2010.08.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/24/2010] [Accepted: 08/18/2010] [Indexed: 12/23/2022]
Abstract
The transition from specification of cell identity to the differentiation of cells into an appropriate and enduring state is critical to the development of embryos. Transcriptional profiling in Caenorhabditis elegans has revealed a large number of genes that are expressed in the fully differentiated intestine; however, no regulatory factor has been found to be essential to initiate their expression once the endoderm has been specified. These gut-expressed genes possess a preponderance of GATA factor binding sites and one GATA factor, ELT-2, fulfills the expected characteristics of a key regulator of these genes based on its persistent expression exclusively in the developing and differentiated intestine and its ability to bind these regulatory sites. However, a striking characteristic of elt-2(0) knockout mutants is that while they die shortly after hatching owing to an obstructed gut passage, they nevertheless contain a gut that has undergone complete morphological differentiation. We have discovered a second gut-specific GATA factor, ELT-7, that profoundly synergizes with ELT-2 to create a transcriptional switch essential for gut cell differentiation. ELT-7 is first expressed in the early endoderm lineage and, when expressed ectopically, is sufficient to activate gut differentiation in nonendodermal progenitors. elt-7 is transcriptionally activated by the redundant endoderm-specifying factors END-1 and -3, and its product in turn activates both its own expression and that of elt-2, constituting an apparent positive feedback system. While elt-7 loss-of-function mutants lack a discernible phenotype, simultaneous loss of both elt-7 and elt-2 results in a striking all-or-none block to morphological differentiation of groups of gut cells with a region-specific bias, as well as reduced or abolished gut-specific expression of a number of terminal differentiation genes. ELT-2 and -7 synergize not only in activation of gene expression but also in repression of a gene that is normally expressed in the valve cells, which immediately flank the termini of the gut tube. Our results point to a developmental strategy whereby positive feedback and cross-regulatory interactions between two synergistically acting regulatory factors promote a decisive and persistent transition of specified endoderm progenitors into the program of intestinal differentiation.
Collapse
|
18
|
Abstract
Cell specification requires that particular subsets of cells adopt unique expression patterns that ultimately define the fates of their descendants. In C. elegans, cell fate specification involves the combinatorial action of multiple signals that produce activation of a small number of "blastomere specification" factors. These initiate expression of gene regulatory networks that drive development forward, leading to activation of "tissue specification" factors. In this review, the C. elegans embryo is considered as a model system for studies of cell specification. The techniques used to study cell fate in this species, and the themes that have emerged, are described.
Collapse
Affiliation(s)
- Morris F Maduro
- Department of Biology, University of California, Riverside, Riverside, California 92521, USA.
| |
Collapse
|
19
|
Hoffmann M, Segbert C, Helbig G, Bossinger O. Intestinal tube formation in Caenorhabditis elegans requires vang-1 and egl-15 signaling. Dev Biol 2010; 339:268-79. [DOI: 10.1016/j.ydbio.2009.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 11/26/2009] [Accepted: 12/01/2009] [Indexed: 10/20/2022]
|
20
|
Structure and evolution of the C. elegans embryonic endomesoderm network. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1789:250-60. [PMID: 18778800 DOI: 10.1016/j.bbagrm.2008.07.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 07/29/2008] [Indexed: 12/19/2022]
Abstract
The specification of the Caenorhabditis elegans endomesoderm has been the subject of study for more than 15 years. Specification of the 4-cell stage endomesoderm precursor, EMS, occurs as a result of the activation of a transcription factor cascade that starts with SKN-1, coupled with input from the Wnt/beta-catenin asymmetry pathway through the nuclear effector POP-1. As development proceeds, transiently-expressed cell fate factors are succeeded by stable, tissue/organ-specific regulators. The pathway is complex and uses motifs found in all transcriptional networks. Here, the regulators that function in the C. elegans endomesoderm network are described. An examination of the motifs in the network suggests how they may have evolved from simpler gene interactions. Flexibility in the network is evident from the multitude of parallel functions that have been identified and from apparent changes in parts of the corresponding network in Caenorhabditis briggsae. Overall, the complexities of C. elegans endomesoderm specification build a picture of a network that is robust, complex, and still evolving.
Collapse
|
21
|
Dong J, Boyd WA, Freedman JH. Molecular characterization of two homologs of the Caenorhabditis elegans cadmium-responsive gene cdr-1: cdr-4 and cdr-6. J Mol Biol 2007; 376:621-33. [PMID: 18177893 DOI: 10.1016/j.jmb.2007.11.094] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 11/26/2007] [Accepted: 11/27/2007] [Indexed: 10/22/2022]
Abstract
A novel cadmium-inducible gene, cdr-1, was previously identified and characterized in the nematode Caenorhabditis elegans and found to mediate resistance to cadmium toxicity. Subsequently, six homologs of cdr-1 were identified in C. elegans. Here, we describe two homologs: cdr-4, which is metal inducible, and cdr-6, which is noninducible. Both cdr-4 and cdr-6 mRNAs contain open reading frames of 831 nt and encode predicted 32-kDa integral membrane proteins, which are similar to CDR-1. cdr-4 expression is induced by arsenic, cadmium, mercury, and zinc exposure as well as by hypotonic stress. In contrast, cdr-6 is constitutively expressed at a high level in C. elegans, and expression is not affected by these stressors. Both cdr-4 and cdr-6 are transcribed in postembryonic pharyngeal and intestinal cells in C. elegans. In addition, cdr-4 is transcribed in developing embryos. Like CDR-1, CDR-4 is targeted to intestinal cell lysosomes in vivo. Inhibition of CDR-4 and/or CDR-6 expression does not render C. elegans more susceptible to cadmium toxicity; however, there is a significant decrease in their lifespan in the absence of metal. Although nematodes in which CDR-4 and/or CDR-6 expression is knocked down accumulate fluid in the pseudocoelomic space, exposure to hypertonic conditions did not significantly affect growth or reproduction in these nematodes. These results suggest that CDR expression is required for optimal viability but does not function in osmoregulation.
Collapse
Affiliation(s)
- Jie Dong
- Nicholas School of the Environment and Earth Sciences, Duke University, Durham, NC 27708, USA
| | | | | |
Collapse
|
22
|
Romney SJ, Thacker C, Leibold EA. An iron enhancer element in the FTN-1 gene directs iron-dependent expression in Caenorhabditis elegans intestine. J Biol Chem 2007; 283:716-25. [PMID: 18024960 DOI: 10.1074/jbc.m707043200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ferritin is a ubiquitous protein that sequesters iron and protects cells from iron toxicity. Caenorhabditis elegans express two ferritins, FTN-1 and FTN-2, which are transcriptionally regulated by iron. To identify the cis-acting sequences and proteins required for iron-dependent regulation of ftn-1 and ftn-2 expression, we generated transcriptional GFP reporters corresponding to 5 '-upstream sequences of the ftn-1 and ftn-2 genes. We identified a conserved 63-bp sequence, the iron-dependent element (IDE), that is required for iron-dependent regulation of a ftn-1 GFP reporter in intestine. The IDE contains two GATA-binding motifs and three octameric direct repeats. Site-directed mutagenesis of the GATA sequences, singly or in combination, reduces ftn-1 GFP reporter expression in the intestine. In vitro DNA mobility shift assays show that the intestine-specific GATA protein ELT-2 binds to both GATA sequences. Inhibition of ELT-2 function by RNA interference blocks ftn-1 GFP reporter expression in vivo. Insertion of the IDE into the promoter region of a heterologous reporter activates iron-dependent transcription in intestine. These data demonstrate that the activation of ftn-1 and ftn-2 transcription by iron requires ELT-2 and that the IDE functions as an iron-dependent enhancer in intestine.
Collapse
Affiliation(s)
- S Joshua Romney
- Eccles Program in Human Molecular Biology and Genetics, University of Utah, Salt Lake City 84112, USA
| | | | | |
Collapse
|
23
|
Neves A, English K, Priess JR. Notch-GATA synergy promotes endoderm-specific expression of ref-1 in C. elegans. Development 2007; 134:4459-68. [PMID: 18003741 DOI: 10.1242/dev.008680] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Notch signaling pathway is involved in a wide variety of cell-fate decisions during development. The diverse behavior of Notch-activated cells is thought to depend on tissue- or cell-type-specific transcription factors, yet the identities of such factors and the mechanism of cooperation with the Notch pathway are largely unknown. We identify here an enhancer in the promoter of ref-1, a C. elegans Notch target, which promotes Notch-dependent expression in mesodermal and endodermal cells. The enhancer contains predicted binding sites for the Notch transcriptional effector LAG-1/CSL that are essential for expression, a non-CSL site required for mesodermal expression, and four predicted binding sites for GATA transcription factors that are required for endodermal expression. We show that endodermal expression involves the GATA transcription factor ELT-2, and that ELT-2 can bind LAG-1/CSL in vitro. In many types of Notch-activated embryonic cells, ectopic ELT-2 is sufficient to drive expression of reporters containing the enhancer.
Collapse
Affiliation(s)
- Alexandre Neves
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | |
Collapse
|
24
|
Takashima Y, Bando T, Kagawa H. A novel non-coding DNA family in Caenorhabditis elegans. Gene 2007; 388:61-73. [PMID: 17134856 DOI: 10.1016/j.gene.2006.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 09/30/2006] [Accepted: 10/04/2006] [Indexed: 11/28/2022]
Abstract
Many repetitive elements, for example, SINEs, LINEs, LTR-retrotransposons and other SSRs are dispersed throughout eukaryotic genomes. To understand the biological function of these repetitive elements is of great current research interest. In this study, we report on the identification of a novel non-coding DNA family, designated CE1 family, in the nematode C. elegans genome. Some CE1 elements constituted a large palindrome sequence. The CE1 elements were interspersed at 95 sites in the C. elegans genome. Most of the CE1 elements were associated with, or were within, protein-coding genes. The sequence of the CE1 elements indicated that some could form a hairpin structure. One of the CE1 family, CE1(bs258), is located in the first intron of a novel gene, C46H11.6 which encodes a PDZ/DHR/GLGF domain protein. In gfp and lacZ reporter gene assays the CE1(bs258) element appeared to behave as an enhancer element for the expression of C46H11.6 but no effect on the expression of the opposite direction gene, pat-10 which encodes the body-wall muscle troponin C. The CE1(bs258) RNA transcript was detected by RT-PCR even when CE1(bs258) was located in an intron. We conclude that CE1 elements are involved in the expression of adjacent genes and are therefore selectively retained in the C. elegans genome. We discussed a biological function of the CE1(bs258) having many transcription factor-binding sites.
Collapse
Affiliation(s)
- Yasuo Takashima
- Division of Biomolecular Science, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | | | | |
Collapse
|
25
|
Abstract
The endomesoderm gene regulatory network (GRN) of C. elegans is a rich resource for studying the properties of cell-fate-specification pathways. This GRN contains both cell-autonomous and cell non-autonomous mechanisms, includes network motifs found in other GRNs, and ties maternal factors to terminal differentiation genes through a regulatory cascade. In most cases, upstream regulators and their direct downstream targets are known. With the availability of resources to study close and distant relatives of C. elegans, the molecular evolution of this network can now be examined. Within Caenorhabditis, components of the endomesoderm GRN are well conserved. A cursory examination of the preliminary genome sequences of two parasitic nematodes, Haemonchus contortus and Brugia malayi, suggests that evolution in this GRN is occurring most rapidly for the zygotic genes that specify blastomere identity.
Collapse
Affiliation(s)
- Morris F Maduro
- Department of Biology, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
26
|
McGhee JD, Sleumer MC, Bilenky M, Wong K, McKay SJ, Goszczynski B, Tian H, Krich ND, Khattra J, Holt RA, Baillie DL, Kohara Y, Marra MA, Jones SJM, Moerman DG, Robertson AG. The ELT-2 GATA-factor and the global regulation of transcription in the C. elegans intestine. Dev Biol 2006; 302:627-45. [PMID: 17113066 DOI: 10.1016/j.ydbio.2006.10.024] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 10/08/2006] [Accepted: 10/14/2006] [Indexed: 12/18/2022]
Abstract
A SAGE library was prepared from hand-dissected intestines from adult Caenorhabditis elegans, allowing the identification of >4000 intestinally-expressed genes; this gene inventory provides fundamental information for understanding intestine function, structure and development. Intestinally-expressed genes fall into two broad classes: widely-expressed "housekeeping" genes and genes that are either intestine-specific or significantly intestine-enriched. Within this latter class of genes, we identified a subset of highly-expressed highly-validated genes that are expressed either exclusively or primarily in the intestine. Over half of the encoded proteins are candidates for secretion into the intestinal lumen to hydrolyze the bacterial food (e.g. lysozymes, amoebapores, lipases and especially proteases). The promoters of this subset of intestine-specific/intestine-enriched genes were analyzed computationally, using both a word-counting method (RSAT oligo-analysis) and a method based on Gibbs sampling (MotifSampler). Both methods returned the same over-represented site, namely an extended GATA-related sequence of the general form AHTGATAARR, which agrees with experimentally determined cis-acting control sequences found in intestine genes over the past 20 years. All promoters in the subset contain such a site, compared to <5% for control promoters; moreover, our analysis suggests that the majority (perhaps all) of genes expressed exclusively or primarily in the worm intestine are likely to contain such a site in their promoters. There are three zinc-finger GATA-type factors that are candidates to bind this extended GATA site in the differentiating C. elegans intestine: ELT-2, ELT-4 and ELT-7. All evidence points to ELT-2 being the most important of the three. We show that worms in which both the elt-4 and the elt-7 genes have been deleted from the genome are essentially wildtype, demonstrating that ELT-2 provides all essential GATA-factor functions in the intestine. The SAGE analysis also identifies more than a hundred other transcription factors in the adult intestine but few show an RNAi-induced loss-of-function phenotype and none (other than ELT-2) show a phenotype primarily in the intestine. We thus propose a simple model in which the ELT-2 GATA factor directly participates in the transcription of all intestine-specific/intestine-enriched genes, from the early embryo through to the dying adult. Other intestinal transcription factors would thus modulate the action of ELT-2, depending on the worm's nutritional and physiological needs.
Collapse
Affiliation(s)
- James D McGhee
- Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta, Canada T2N 4N1.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kormish JD, McGhee JD. The C. elegans lethal gut-obstructed gob-1 gene is trehalose-6-phosphate phosphatase. Dev Biol 2005; 287:35-47. [PMID: 16197937 DOI: 10.1016/j.ydbio.2005.08.027] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 08/18/2005] [Accepted: 08/18/2005] [Indexed: 11/25/2022]
Abstract
We identified the gob-1 (gut-obstructed) gene in a forward genetic screen for intestinal defects in the nematode Caenorhabditis elegans. gob-1 loss of function results in early larval lethality, at least in part because of a blocked intestinal lumen and consequent starvation. The gob-1 gene is first expressed in the 8E cell stage of the embryonic intestine, and the GATA factor ELT-2 is sufficient but not necessary for this early phase of gob-1 expression; gob-1 expression later becomes widespread in embryos, larvae, and adults. GOB-1 is a member of the HAD-like hydrolase superfamily and shows a robust and specific phosphatase activity for the substrate trehalose-6-phosphate. Trehalose is a glucose disaccharide found in bacteria, fungi, plants, insects, and nematodes but not in mammals. Trehalose plays a number of critical roles such as providing flexible energy reserves and contributing to thermal and osmotic stress resistance. In budding yeast and in plants, the intermediate in trehalose synthesis, trehalose-6-phosphate, has additional critical but less well-defined roles in controlling glycolysis and carbohydrate metabolism. Strong loss-of-function mutants in the C. elegans tps-1 and tps-2 genes (which encode the two trehalose phosphate synthases responsible for trehalose-6-phosphate synthesis) completely suppress the lethality associated with gob-1 loss of function. The suppression of gob-1 lethality by ablation of TPS-1 and TPS-2, the upstream enzymes in the trehalose synthesis pathway, suggests that gob-1 lethality results from a toxic build-up of the intermediate trehalose-6-phosphate, not from an absence of trehalose. GOB-1 is the first trehalose-6-phosphate phosphatase to be identified in nematodes and, because of its associated lethality and distinctive sequence properties, provides a new and attractive target for anti-parasitic drugs.
Collapse
Affiliation(s)
- Jay D Kormish
- Department of Biochemistry and Molecular Biology, Genes and Development Research Group, University of Calgary Faculty of Medicine, Health Sciences Centre, Calgary, Alberta, Canada T2N 4N1
| | | |
Collapse
|
28
|
Goszczynski B, McGhee JD. Reevaluation of the role of the med-1 and med-2 genes in specifying the Caenorhabditis elegans endoderm. Genetics 2005; 171:545-55. [PMID: 15998721 PMCID: PMC1456770 DOI: 10.1534/genetics.105.044909] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The med-1 and med-2 genes encode a pair of essentially identical GATA factor-related transcription factors that have been proposed to be necessary for specification of the C. elegans endoderm (intestine or E lineage) as well as part of the C. elegans mesoderm. med-1 and med-2 are proposed to be the direct downstream targets and the principal effectors of the maternally provided SKN-1 transcription factor; med-1 and med-2 would thus occupy the pivotal interface between maternal and zygotic control of gene expression. The conclusion that med-1 and med-2 are necessary for C. elegans endoderm specification was based on a partially penetrant (approximately 50%) loss of endoderm markers produced by RNA-mediated interference (RNAi). To determine whether this partial penetrance reflects: (i) inefficient RNAi against early zygotic transcripts, (ii) experimental uncertainty in the expected level of endoderm loss in skn-1 nulls, or (iii) additional redundancy in the pathway of endoderm specification, we constructed worm strains that segregate embryos lacking both the med-1 gene (because of a gene-specific deletion) and the med-2 gene (using either of two chromosomal deficiencies). Contrary to expectations, we observe that only approximately 3-20% of med-2(-); med-1(-) embryos do not express markers of endoderm differentiation. Furthermore, we found no evidence for a maternal contribution of the med genes to endoderm specification. We conclude that the major pathway(s) for endoderm specification in C. elegans must be independent of the med-1 and med-2 genes.
Collapse
Affiliation(s)
- Barbara Goszczynski
- Department of Biochemistry and Molecular Biology, Genes and Development Research Group, University of Calgary, Alberta, Canada
| | | |
Collapse
|
29
|
Fukushige T, Goszczynski B, Yan J, McGhee JD. Transcriptional control and patterning of the pho-1 gene, an essential acid phosphatase expressed in the C. elegans intestine. Dev Biol 2005; 279:446-61. [PMID: 15733671 DOI: 10.1016/j.ydbio.2004.12.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Accepted: 12/08/2004] [Indexed: 11/23/2022]
Abstract
We have previously described an acid phosphatase enzyme, PHO-1, present at the lumenal surface of all but the anterior six cells of the Caenorhabditis elegans intestine. In the present paper, we identify the pho-1 structural gene, which encodes a histidine acid phosphatase showing highest similarity to human prostatic acid phosphatase. The pho-1 5'-flanking DNA is capable of directing reporter gene expression that is both gut specific, correctly timed and correctly "patterned", that is, not expressed in the gut anterior. Furthermore, this anterior-posterior patterning of pho-1 expression responds to the C. elegans Wnt pathway as if pho-1 is repressed (directly or indirectly) by high levels of the HMG effector protein POP-1. Transgenic analysis of the pho-1 promoter shows that gut expression is critically dependent on a single WGATAR site. The gut-specific GATA factor ELT-2 binds to this site in vitro and removal of ELT-2 from the embryo destroys expression of the pho-1 reporter. Thus, all our results indicate that pho-1 is a direct downstream target of ELT-2. Finally, the pho-1 loss-of-function mutation shows an interesting and unexpected phenotype for a somatically-expressed hydrolytic enzyme: loss of pho-1 causes arrest of the majority of embryos but this lethality is a maternal effect. We suggest that pho-1 is required by the maternal intestine to assimilate some nutrient or cleavage product that is subsequently provided to the next generation of embryos.
Collapse
Affiliation(s)
- Tetsunari Fukushige
- Department of Biochemistry and Molecular Biology, Genes and Development Research Group, University of Calgary Faculty of Medicine, Room 2205 Health Sciences Centre, 3330 Hospital Drive, N.W., Calgary, Alberta, Canada T2N 4N1
| | | | | | | |
Collapse
|
30
|
Oskouian B, Mendel J, Shocron E, Lee MA, Fyrst H, Saba JD. Regulation of sphingosine-1-phosphate lyase gene expression by members of the GATA family of transcription factors. J Biol Chem 2005; 280:18403-10. [PMID: 15734735 DOI: 10.1074/jbc.m410928200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingosine-1-phosphate is a bioactive sphingolipid that regulates proliferation, differentiation, migration, and apoptosis. Sphingosine-1-phosphate is irreversibly degraded by the highly conserved enzyme sphingosine-1-phosphate lyase. Recent studies have suggested that sphingosine-1-phosphate lyase expression affects animal development and cell fate decisions. Despite its crucial role, mechanisms affecting expression of sphingosine-1-phosphate lyase remain poorly understood. In this study, regulation of sphingosine-1-phosphate lyase gene expression was investigated in Caenorhabditis elegans, where lyase expression is spatially restricted to cells of the developing and adult gut and is essential for normal development. Deletion analysis and generation of transgenic worms combined with fluorescence microscopy identified a 350-nucleotide sequence upstream of the ATG start site necessary for maximal lyase expression in adult worms. Site-specific mutagenesis of a GATA transcription factor-binding motif in the promoter led to loss of reporter expression. Knockdown of the gut-specific GATA transcription factor ELT-2 by RNA interference similarly led to loss of reporter expression. ELT-2 interacted with the GATA factor-binding motif in vitro and was also capable of driving expression of a Caenorhabditis elegans lyase promoter-beta-galactosidase reporter in a heterologous yeast system. These studies demonstrate that ELT-2 regulates sphingosine-1-phosphate lyase expression in vivo. Additionally, we demonstrate that the human sphingosine-1-phosphate lyase gene is regulated by a GATA transcription factor. Overexpression of GATA-4 led to both an increase in activity of a reporter gene as well as an increase in endogenous sphingosine-1-phosphate lyase protein.
Collapse
Affiliation(s)
- Babak Oskouian
- Children's Hospital Oakland Research Institute, Oakland, California 94609-1673 and California Institute of Technology, Division of Biology, Pasadena, California 91125, USA
| | | | | | | | | | | |
Collapse
|
31
|
Wenick AS, Hobert O. Genomic cis-regulatory architecture and trans-acting regulators of a single interneuron-specific gene battery in C. elegans. Dev Cell 2004; 6:757-70. [PMID: 15177025 DOI: 10.1016/j.devcel.2004.05.004] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Revised: 04/09/2004] [Accepted: 04/12/2004] [Indexed: 10/26/2022]
Abstract
Gene batteries are sets of coregulated genes with common cis-regulatory elements that define the differentiated state of a cell. The nature of gene batteries for individual neuronal cellular subtypes and their linked cis-regulatory elements is poorly defined. Through molecular dissection of the highly modular cis-regulatory architecture of individual neuronally expressed genes, we have defined a conserved 16 bp cis-regulatory motif that drives gene expression in a single interneuron subtype, termed AIY, in the nematode Caenorhabditis elegans. This motif is bound and activated by the Paired- and LIM-type homeodomain proteins CEH-10 and TTX-3. Using genome-wide phylogenetic footprinting, we delineated the location, distribution, and evolution of AIY-specific cis-regulatory elements throughout the genome and thereby defined a large battery of AIY-expressed genes, all of which represent direct Paired/LIM homeodomain target genes. The identity of these homeodomain targets provides novel insights into the biology of the AIY interneuron.
Collapse
Affiliation(s)
- Adam S Wenick
- Department of Biochemistry and Molecular Biophysics, Center for Neurobiology and Behavior, Columbia University Medical Center, 701 West 168th Street, New York, NY 10032, USA
| | | |
Collapse
|
32
|
Couthier A, Smith J, McGarr P, Craig B, Gilleard JS. Ectopic expression of a Haemonchus contortus GATA transcription factor in Caenorhabditis elegans reveals conserved function in spite of extensive sequence divergence. Mol Biochem Parasitol 2004; 133:241-53. [PMID: 14698436 DOI: 10.1016/j.molbiopara.2003.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Comparative analysis between Caenorhabditis elegans and other nematode species offers a powerful approach to study gene function. C. elegans also has great potential as a surrogate expression system to study the function of genes from parasitic nematode species where transgenic methodologies are unavailable. However there is little information on the extent to which the biology of C. elegans is conserved with other nematode species and very few parasitic nematode genes have yet been functionally expressed in C. elegans. We have identified and characterised a homologue of the C. elegans GATA transcription factor elt-2, a central regulator of endoderm development, from the parasitic nematode Haemonchus contortus. The H. contortus ELT-2 polypeptide is present in endoderm nuclei throughout embryonic and post-embryonic development, except for in the infective L3 stage, and our experiments reveal that the development of the H. contortus endodermal lineage is strikingly similar to that of C. elegans. Sequence conservation between the H. contortus and C. elegans ELT-2 polypeptides broadly reflects function since the major region of sequence identity corresponds to the DNA binding domain. However, the overall level of sequence identity is remarkably low with the only other major region of identity corresponding to an unusual zinc finger domain. In spite of this, ectopic expression of the H. contortus elt-2 gene in transgenic C. elegans is sufficient to activate a programme of endodermal differentiation demonstrating that function is highly conserved. This approach of ectopic expression using an inducible promoter provides an effective way in which to use C. elegans for the in vivo functional analysis of parasitic nematode genes.
Collapse
Affiliation(s)
- Annabelle Couthier
- Department of Veterinary Parasitology, Faculty of Veterinary Medicine, Institute of Comparative Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | | | | | | | | |
Collapse
|
33
|
Bossinger O, Fukushige T, Claeys M, Borgonie G, McGhee JD. The apical disposition of the Caenorhabditis elegans intestinal terminal web is maintained by LET-413. Dev Biol 2004; 268:448-56. [PMID: 15063180 DOI: 10.1016/j.ydbio.2004.01.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Revised: 01/08/2004] [Accepted: 01/08/2004] [Indexed: 10/26/2022]
Abstract
We wish to understand how organ-specific structures assemble during embryonic development. In the present paper, we consider what determines the subapical position of the terminal web in the intestinal cells of the nematode Caenorhabditis elegans. The terminal web refers to the organelle-depleted, intermediate filament-rich layer of cytoplasm that underlies the apical microvilli of polarized epithelial cells. It is generally regarded as the anchor for actin rootlets protruding from the microvillar cores. We demonstrate that: (i) the widely used monoclonal antibody MH33 reacts (only) with the gut-specific intermediate filament protein encoded by the ifb-2 gene; (ii) IFB-2 protein accumulates near the gut lumen beginning at the lima bean stage of embryogenesis and remains associated with the gut lumen into adulthood; and (iii) as revealed by immunoelectron microscopy, IFB-2 protein is confined to a discrete circumferential subapical layer within the intestinal terminal web (known in nematodes as the "endotube"); this layer joins directly to the apical junction complexes that connect adjacent gut cells. To investigate what determines the disposition of the IFB-2-containing structure as the terminal web assembles during development, RNAi was used to remove the functions of gene products previously shown to be involved in the overall apicobasal polarity of the developing gut cell. Removal of dlg-1, ajm-1, or hmp-1 function has little effect on the overall position or continuity of the terminal web IFB-2-containing layer. In contrast, removal of the function of the let-413 gene leads to a basolateral expansion of the terminal web, to the point where it can now extend around the entire circumference of the gut cell. The same treatment also leads to concordant basolateral expansion of both gut cell cortical actin and the actin-associated protein ERM-1. LET-413 has previously been shown to be basolaterally located and to prevent the basolateral expansion of several individual apical proteins. In the present context, we conclude that LET-413 is also necessary to maintain the entire terminal web or brush border assembly at the apical surface of C. elegans gut cells, a dramatic example of the so-called "fence" function ascribed to epithelial cell junctions. On the other hand, LET-413 is not necessary to establish this apical location during early development. Finally, the distance at which the terminal web intermediate filament layer lies beneath the gut cell surface (both apical and basolateral) must be determined independently of apical junction position.
Collapse
Affiliation(s)
- Olaf Bossinger
- Institut für Genetik, Heinrich-Heine-Universität Düsseldorf, D-40225 Duesseldorf, Germany.
| | | | | | | | | |
Collapse
|
34
|
Abstract
During embryonic development, polarized epithelial cells are either formed during cleavage or formed from mesenchymal cells. Because the formation of epithelia during embryogenesis has to occur with high fidelity to ensure proper development, embryos allow a functional approach to study epithelial cell polarization in vivo. In particular, genetic model organisms have greatly advanced our understanding of the generation and maintenance of epithelial cell polarity. Many novel and important polarity genes have been identified and characterized in invertebrate systems, like Drosophila melanogaster and Caenorhabditis elegans. With the rapid identification of mammalian homologues of these invertebrate polarity genes, it has become clear that many important protein domains, single proteins and even entire protein complexes are evolutionarily conserved. It is to be expected that the field of epithelial cell polarity is just experiencing the 'top of the iceberg' of a large protein network that is fundamental for the specific adhesive, cell signalling and transport functions of epithelial cells.
Collapse
Affiliation(s)
- H-Arno J Müller
- Institut für Genetik, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, Düsseldorf D-40225, Germany.
| | | |
Collapse
|
35
|
Fukushige T, Goszczynski B, Tian H, McGhee JD. The Evolutionary Duplication and Probable Demise of an Endodermal GATA Factor in Caenorhabditis elegans. Genetics 2003; 165:575-88. [PMID: 14573471 PMCID: PMC1462794 DOI: 10.1093/genetics/165.2.575] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
We describe the elt-4 gene from the nematode Caenorhabditis elegans. elt-4 is predicted to encode a very small (72 residues, 8.1 kD) GATA-type zinc finger transcription factor. The elt-4 gene is located ∼5 kb upstream of the C. elegans elt-2 gene, which also encodes a GATA-type transcription factor; the zinc finger DNA-binding domains are highly conserved (24/25 residues) between the two proteins. The elt-2 gene is expressed only in the intestine and is essential for normal intestinal development. This article explores whether elt-4 also has a role in intestinal development. Reporter fusions to the elt-4 promoter or reporter insertions into the elt-4 coding regions show that elt-4 is indeed expressed in the intestine, beginning at the 1.5-fold stage of embryogenesis and continuing into adulthood. elt-4 reporter fusions are also expressed in nine cells of the posterior pharynx. Ectopic expression of elt-4 cDNA within the embryo does not cause detectable ectopic expression of biochemical markers of gut differentiation; furthermore, ectopic elt-4 expression neither inhibits nor enhances the ectopic marker expression caused by ectopic elt-2 expression. A deletion allele of elt-4 was isolated but no obvious phenotype could be detected, either in the gut or elsewhere; brood sizes, hatching efficiencies, and growth rates were indistinguishable from wild type. We found no evidence that elt-4 provided backup functions for elt-2. We used microarray analysis to search for genes that might be differentially expressed between L1 larvae of the elt-4 deletion strain and wild-type worms. Paired hybridizations were repeated seven times, allowing us to conclude, with some confidence, that no candidate target transcript could be identified as significantly up- or downregulated by loss of elt-4 function. In vitro binding experiments could not detect specific binding of ELT-4 protein to candidate binding sites (double-stranded oligonucleotides containing single or multiple WGATAR sequences); ELT-4 protein neither enhanced nor inhibited the strong sequence-specific binding of the ELT-2 protein. Whereas ELT-2 protein is a strong transcriptional activator in yeast, ELT-4 protein has no such activity under similar conditions, nor does it influence the transcriptional activity of coexpressed ELT-2 protein. Although an elt-2 homolog was easily identified in the genomic sequence of the related nematode C. briggsae, no elt-4 homolog could be identified. Analysis of the changes in silent third codon positions within the DNA-binding domains indicates that elt-4 arose as a duplication of elt-2, some 25–55 MYA. Thus, elt-4 has survived far longer than the average duplicated gene in C. elegans, even though no obvious biological function could be detected. elt-4 provides an interesting example of a tandemly duplicated gene that may originally have been the same size as elt-2 but has gradually been whittled down to its present size of little more than a zinc finger. Although elt-4 must confer (or must have conferred) some selective advantage to C. elegans, we suggest that its ultimate evolutionary fate will be disappearance from the C. elegans genome.
Collapse
Affiliation(s)
- Tetsunari Fukushige
- Genes and Development Research Group, Department of Biochemistry and Molecular Biology, University of Calgary, Alberta T2N 4N1, Canada
| | | | | | | |
Collapse
|
36
|
D'Ambrosio P, Fanelli A, Pischetola M, Spagnuolo A. Ci-GATAa, a GATA-class gene from the ascidian Ciona intestinalis: isolation and developmental expression. Dev Dyn 2003; 226:145-8. [PMID: 12508236 DOI: 10.1002/dvdy.10216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Members of the GATA family of zinc finger transcription factors have been shown to play important roles in controlling gene expression in a variety of cell types in many metazoan. Here, we describe the identification of Ci-GATAa, a member of this gene family, in the ascidian Ciona intestinalis. Whole-mount in situ hybridization showed that Ci-GATAa was expressed in a highly dynamic manner. The maternal transcript was evenly distributed in the embryo during early stages of development; however, the signal gradually decreased until it disappeared at the 64-cell stage. A zygotic transcript was detected at the 110-cell stage in the blastomeres precursors of three different tissues (brain vesicle, mesenchyme, and trunk lateral cells) and the signal was conserved in these territories up to the larval stage, indicating an important role for Ci-GATAa during ascidian differentiation.
Collapse
Affiliation(s)
- Palmira D'Ambrosio
- Laboratory of Biochemistry and Molecular Biology, Stazione Zologica A. Dohrn, Villa Comunale, Naples, Italy
| | | | | | | |
Collapse
|
37
|
Liao VHC, Dong J, Freedman JH. Molecular characterization of a novel, cadmium-inducible gene from the nematode Caenorhabditis elegans. A new gene that contributes to the resistance to cadmium toxicity. J Biol Chem 2002; 277:42049-59. [PMID: 12189149 DOI: 10.1074/jbc.m206740200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cadmium is an environmental contaminant that is both a human toxicant and carcinogen. To inhibit cadmium-induced damage, cells respond by increasing the expression of genes that encode stress-response proteins. We previously reported the identification of 48 cadmium-inducible mRNAs in the nematode Caenorhabditis elegans. Here we describe a new cadmium-responsive gene, designated cdr-1, whose rate and level of inducible expression parallel those of the C. elegans metallothioneins. The CDR-1 mRNA contains an open reading frame of 831 bp and encodes a predicted 32-kDa, integral membrane protein. Following cadmium exposure, cdr-1 is transcribed exclusively in intestinal cells of post-embryonic C. elegans. In vivo, the CDR-1 protein is targeted specifically to the intestinal cell lysosomes. cdr-1 transcription is significantly induced by cadmium but not by other tested stressors. These results indicate that cdr-1 expression is regulated by cadmium and in a cell-specific fashion. Inhibition of CDR-1 expression renders C. elegans susceptible to cadmium toxicity. In conclusion, cdr-1 defines a new class of cadmium-inducible genes and encodes an integral membrane, lysosomal protein. This protein functions to protect against cadmium toxicity.
Collapse
Affiliation(s)
- Vivian Hsiu-Chuan Liao
- Nicholas School of the Environment and Earth Sciences, Duke University, Durham, North Carolina 27708, USA
| | | | | |
Collapse
|
38
|
Kalb JM, Beaster-Jones L, Fernandez AP, Okkema PG, Goszczynski B, McGhee JD. Interference between the PHA-4 and PEB-1 transcription factors in formation of the Caenorhabditis elegans pharynx. J Mol Biol 2002; 320:697-704. [PMID: 12095247 DOI: 10.1016/s0022-2836(02)00555-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PHA-4 is a forkhead/winged helix transcription factor that acts as an organ identity factor in the development of the Caenorhabditis elegans pharynx. PEB-1 is a novel DNA-binding protein also involved in pharyngeal morphogenesis. PHA-4 and PEB-1 bind at overlapping sites on the C183 sequence element that controls pharynx-specific expression of the C. elegans myo-2 gene. It has been suggested that PHA-4 and PEB-1 act cooperatively on the C183 sequence. In this study, we test this model and assess the C183-dependent transcriptional activity of PHA-4 and PEB-1, both individually and in combination. We show that PHA-4 and PEB-1 are both modest transcriptional activators in yeast but that co-expression of the two factors does not result in significantly increased expression of a C183-regulated reporter gene. Electrophoretic mobility-shift assays provide no evidence for the formation of a PHA-4/PEB-1 complex in vitro but rather show that PHA-4 and PEB-1 cannot bind C183 simultaneously. As we have reported previously, ectopic expression of PHA-4 in C. elegans causes ectopic expression of a C183-regulated reporter gene. We show that ectopic expression of PEB-1 cannot cause ectopic expression of the same reporter but rather ectopic PEB-1 inhibits reporter gene activation by PHA-4. Overall, our results do not support a model in which PHA-4 and PEB-1 synergize in vivo but rather support a model in which PEB-1 may negatively modulate PHA-4's ability to activate transcription through C183 during formation of the C. elegans pharynx.
Collapse
Affiliation(s)
- John M Kalb
- Department of Biochemistry and Molecular Biology, Genes and Development Research Group, Faculty of Medicine, Health Sciences Centre, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | | | |
Collapse
|
39
|
Maduzia LL, Gumienny TL, Zimmerman CM, Wang H, Shetgiri P, Krishna S, Roberts AF, Padgett RW. lon-1 regulates Caenorhabditis elegans body size downstream of the dbl-1 TGF beta signaling pathway. Dev Biol 2002; 246:418-28. [PMID: 12051826 DOI: 10.1006/dbio.2002.0662] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Caenorhabditis elegans, two well-characterized TGF beta signaling cascades have been identified: the Small/Male tail abnormal (Sma/Mab) and Dauer formation (Daf) pathways. The Sma/Mab pathway regulates body size morphogenesis and male tail development. The ligand of the pathway, dbl-1, transmits its signal through two receptor serine threonine kinases, daf-4 and sma-6, which in turn regulate the activity of the Smads, sma-2, sma-3, and sma-4. In general, Smads have been shown to both positively and negatively regulate the transcriptional activity of downstream target genes in various organisms. In C. elegans, however, target genes have remained elusive. We have cloned and characterized lon-1, a gene with homology to the cysteine-rich secretory protein (CRISP) family of proteins. lon-1 regulates body size morphogenesis, but does not affect male tail development. lon-1 is expressed in hypodermal tissues, which is the focus of body size determination, similar to sma-2, sma-4, and sma-6. Using genetic methods, we show that lon-1 lies downstream of the Sma/Mab signaling cascade and demonstrate that lon-1 mRNA levels are up-regulated in sma-6-null mutant animals. This provides evidence that lon-1 is negatively regulated by Sma/Mab pathway signaling. Taken together, these data identify lon-1 as a novel downstream target gene of the dbl-1 TGF beta-like signaling pathway.
Collapse
Affiliation(s)
- Lisa L Maduzia
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, New Jersey 08854-8020, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Yoshida S, Morita K, Mochii M, Ueno N. Hypodermal expression of Caenorhabditis elegans TGF-beta type I receptor SMA-6 is essential for the growth and maintenance of body length. Dev Biol 2001; 240:32-45. [PMID: 11784045 DOI: 10.1006/dbio.2001.0443] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There are several transforming growth factor-beta (TGF-beta) pathways in the nematode Caenorhabditis elegans. One of these pathways regulates body length and is composed of the ligand DBL-1, serine/threonine protein kinase receptors SMA-6 and DAF-4, and cytoplasmic signaling components SMA-2, SMA-3, and SMA-4. To further examine the molecular mechanisms of body-length regulation in the nematode by the TGF-beta pathway, we examined the regional requirement for the type-I receptor SMA-6. Using a SMA-6::GFP (green fluorescent protein) reporter gene, sma-6 was highly expressed in the hypodermis, unlike the type-II receptor DAF-4, which is reported to be ubiquitously expressed. We then examined the ability of SMA-6 expression in different regions of the C. elegans body to rescue the sma-6 phenotype (small) and found that hypodermal expression of SMA-6 is necessary and sufficient for the growth and maintenance of body length. We also demonstrate that GATA sequences in the sma-6 promoter contribute to the hypodermal expression of sma-6.
Collapse
Affiliation(s)
- S Yoshida
- Department of Developmental Biology, National Institute for Basic Biology, Nishigonaka Myodaijicho, Okazaki, 444-8585, Japan
| | | | | | | |
Collapse
|
41
|
Marshall SD, McGhee JD. Coordination of ges-1 expression between the Caenorhabditis pharynx and intestine. Dev Biol 2001; 239:350-63. [PMID: 11784040 DOI: 10.1006/dbio.2001.0442] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that the Caenorhabditis elegans gut-specific esterase gene (Ce-ges-1) has the unusual ability to be expressed in different modules of the embryonic digestive tract (anterior pharynx, posterior pharynx, and rectum) depending on sequence elements within the Ce-ges-1 promoter. In the present paper, we analyze the expression of the ges-1 homolog (Cb-ges-1) from the related nematode Caenorhabditis briggsae and show that Cb-ges-1 also has the ability to switch expression between gut and pharynx + rectum. The control of this expression switch centres on a tandem pair of WGATAR sites in the Cb-ges-1 5'-flanking region, just as it does in Ce-ges-1. We use sequence alignments and subsequent deletions to identify a region at the 3'-end of both Ce-ges-1 and Ce-ges-1 that acts as the ges-1 cryptic pharynx enhancer whose activity is revealed by removal of the 5' WGATAR sites. This region contains a conserved binding site for PHA-4 (the C. elegans ortholog of forkhead/HNF3 alpha, beta,gamma factors), which is expressed in all cells of the developing pharynx and a subset of cells of the developing rectum. We propose a model in which the normal expression of ges-1 is controlled by the gut-specific GATA factor ELT-2. We propose that, in the pharynx (and rectum), PHA-4 is normally bound to the ges-1 3'-enhancer sequence but that the activation function of PHA-4 is kept repressed by a (presently unknown) factor binding in the vicinity of the 5' WGATAR sites. We suggest that this control circuitry is maintained in Caenorhabditis because pharyngeal expression of ges-1 is advantageous only under certain developmental or environmental conditions.
Collapse
Affiliation(s)
- S D Marshall
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | |
Collapse
|
42
|
Anyanful A, Sakube Y, Takuwa K, Kagawa H. The third and fourth tropomyosin isoforms of Caenorhabditis elegans are expressed in the pharynx and intestines and are essential for development and morphology. J Mol Biol 2001; 313:525-37. [PMID: 11676537 DOI: 10.1006/jmbi.2001.5052] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The tropomyosin gene tmy-1/lev-11 of Caenorhabditis elegans spans 14.5 kb and encodes three isoforms by alternative splicing. To identify, characterize and compare the genome and tissue expression of a fourth isoform, the technique of rapid amplification of cDNA ends and microinjection with lacZ and gfp fusion plasmids were employed. We elucidated CeTMIV, a fourth isoform of tmy-1, which encoded a 256 residue polypeptide. CeTMIV isoform had a similar promoter region to CeTMIII isoform, but was alternatively spliced to generate a cDNA that differed in two exons. The tmy-1::lacZ and tmy-1::gfp fusion genes, with 3.2 kb promoter sequence and 1.1 kb of CeTMIV isoform specific exons, were expressed in the pharyngeal and intestinal cells. Further unidirectional deletion of the sequence located the primary promoter region 853 bp upstream from the initial codon. We show within the upstream region, the presence of B and C subelement-like sequences of myo-2, which may be used to stimulate pharyngeal expression. Despite the presence of a ges-1 like sequence, we were unable to locate the two GATA sites required for intestinal expression. Reassessing tissue expression for CeTMIII isoform with newly constructed fusion plasmids, we showed further expression in germ-line tissue and intestinal cells in addition to pharyngeal expression. Finally, to demonstrate that tropomyosin is essential for development, we inactivated the body wall and pharynx-specific isoforms by RNA-mediated interference. In addition to 50-75 % embryonic lethality in both cases, the worms that survived body wall interference had abnormal body morphology and uncoordinated movements, and those that survived pharynx interference had deformed pharynges and gut regions. These results show the function of tropomyosin in normal muscle filament assembly and embryonic development, and illustrate the different expression patterns characteristic of tropomyosin isoforms in C. elegans.
Collapse
Affiliation(s)
- A Anyanful
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | | | | | | |
Collapse
|
43
|
Abstract
Epithelial cells are essential and abundant in all multicellular animals where their dynamic cell shape changes orchestrate morphogenesis of the embryo and individual organs. Genetic analysis in the simple nematode Caenorhabditis elegans provides some clues to the mechanisms that are involved in specifying epithelial cell fates and in controlling specific epithelial processes such as junction assembly, trafficking or cell fusion and cell adhesion. Here we review recent findings concerning C. elegans epithelial cells, focusing in particular on epithelial polarity, and transcriptional control.
Collapse
Affiliation(s)
- G Michaux
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS /INSERM /ULP, BP. 163, F-67404 Illkirch Cedex, C.U. de Strasbourg, Strasbourg, France
| | | | | |
Collapse
|
44
|
Quintin S, Michaux G, McMahon L, Gansmuller A, Labouesse M. The Caenorhabditis elegans gene lin-26 can trigger epithelial differentiation without conferring tissue specificity. Dev Biol 2001; 235:410-21. [PMID: 11437447 DOI: 10.1006/dbio.2001.0294] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
How epithelial cell fates become specified is poorly understood. We have previously shown that the putative C2H2 zinc-finger transcription factor LIN-26 is required for the differentiation of ectodermal and mesodermal epithelial cells in Caenorhabditis elegans. Here, we report that ectopic LIN-26 expression during early gastrulation transforms most blastomeres into epithelial-like cells. Specifically, LIN-26 induced the expression of three epithelial markers: the adherens junction protein JAM-1; DLG-1, which is essential for the assembly of JAM-1 at junctions; and CHE-14, which is involved in apical trafficking. Furthermore, ultrastructural studies revealed that ectopic LIN-26 expression induced the formation of adherens-like junctions. However, ectopic lin-26 expression did not confer any tissue-specific cell fate, such as the epidermal cell fate, as evidenced from the observation that several epidermal-specific genes were not induced. Conversely, we show that epidermal cells displayed some polarity defects in lin-26 mutants. We conclude that lin-26 can induce epithelial differentiation and that epitheliogenesis is not a default pathway in C. elegans.
Collapse
Affiliation(s)
- S Quintin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, F-67404 Illkirch Cedex, C.U. de Strasbourg, France
| | | | | | | | | |
Collapse
|
45
|
Gilleard JS, McGhee JD. Activation of hypodermal differentiation in the Caenorhabditis elegans embryo by GATA transcription factors ELT-1 and ELT-3. Mol Cell Biol 2001; 21:2533-44. [PMID: 11259601 PMCID: PMC86885 DOI: 10.1128/mcb.21.7.2533-2544.2001] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2000] [Accepted: 12/18/2000] [Indexed: 11/20/2022] Open
Abstract
The Caenorhabditis elegans GATA transcription factor genes elt-1 and elt-3 are expressed in the embryonic hypodermis (also called the epidermis). elt-1 is expressed in precursor cells and is essential for the production of most hypodermal cells (22). elt-3 is expressed in all of the major hypodermal cells except the lateral seam cells, and expression is initiated immediately after the terminal division of precursor lineages (13). Although this expression pattern suggests a role for ELT-3 in hypodermal development, no functional studies have yet been performed. In the present paper, we show that either elt-3 or elt-1 is sufficient, when force expressed in early embryonic blastomeres, to activate a program of hypodermal differentiation even in blastomeres that are not hypodermal precursors in wild-type embryos. We have deleted the elt-3 gene and shown that ELT-3 is not essential for either hypodermal cell differentiation or the viability of the organism. We showed that ELT-3 can activate hypodermal gene expression in the absence of ELT-1 and that, conversely, ELT-1 can activate hypodermal gene expression in the absence of ELT-3. Overall, the combined results of the mutant phenotypes, initial expression times, and our forced-expression experiments suggest that ELT-3 acts downstream of ELT-1 in a redundant pathway controlling hypodermal cell differentiation.
Collapse
Affiliation(s)
- J S Gilleard
- Department of Veterinary Parasitology, Faculty of Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, United Kingdom.
| | | |
Collapse
|
46
|
Clements D, Rex M, Woodland HR. Initiation and early patterning of the endoderm. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 203:383-446. [PMID: 11131522 DOI: 10.1016/s0074-7696(01)03012-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We review the early stages of endoderm formation in the major animal models. In Amphibia maternal molecules are important in initiating endoderm formation. This is followed by successive signaling events that establish and then pattern the endoderm. In other organisms there are differences in endodermal development, particularly in the initial, prephylotypic stages. Later many of the same key families of transcription factors and signaling cassettes are used in all animals, but more work will be needed to establish exact evolutionary homologies.
Collapse
Affiliation(s)
- D Clements
- Department of Biological Sciences, University of Warwick, Coventry, United Kingdom
| | | | | |
Collapse
|
47
|
Gower NJ, Temple GR, Schein JE, Marra M, Walker DS, Baylis HA. Dissection of the promoter region of the inositol 1,4,5-trisphosphate receptor gene, itr-1, in C. elegans: a molecular basis for cell-specific expression of IP3R isoforms. J Mol Biol 2001; 306:145-57. [PMID: 11237590 DOI: 10.1006/jmbi.2000.4388] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inositol 1,4,5-trisphosphate receptors in Caenorhabditis elegans are encoded by a single gene, itr-1. This provides a powerful system in which to dissect the mechanisms that control the tissue-specific expression of molecules that determine the specificity of calcium signalling. We first identified the Caenorhabditis briggsae orthologue of itr-1, Cbitr-1. Comparison of the two itr-1 genes revealed that the chromosomal organisation, gene structure and predicted cDNA and protein sequences were all conserved. The conserved gene structure supports the hypothesis that the itr-1 gene has three promoters, each of which gives rise to an alternative mRNA and hence unique protein. To test this and to identify the roles of the three putative promoters (pA, pB and pC) in regulating itr-1 expression we fused each promoter to the green fluorescent protein gene and identified their expression patterns. Introduction of these transgenes into C. elegans identified unique and defined patterns of green fluorescent protein expression directed by each promoter: pA directs expression in the pharyngeal terminal bulb, the rectal epithelial cells and vulva; pB directs expression in the motor neurone PDA, the amphid socket cells and the spermatheca; pC directs expression in the spermathecal valve, uterine sheath cells, pharyngeal isthmus and intestine. Thus tissue-specific expression of itr-1 variants is directed by three promoters and this results in adjacent cells in the same tissue containing different inositol trisphosphate receptor isoforms. Within pA, four short regions (pA-A to pA-D) of sequence conservation between C. elegans and C. briggsae were identified. Deletion analysis demonstrated that the region containing pA-C is required for expression in the terminal bulb and rectal epithelial cells and the region containing pA-D is required for expression in the vulva. pA-C includes sequences similar to the binding sites for transcription factors that have been demonstrated to be important in pharyngeal development and gene expression.
Collapse
Affiliation(s)
- N J Gower
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | | | | | | | | | | |
Collapse
|
48
|
Morrisey EE, Musco S, Chen MY, Lu MM, Leiden JM, Parmacek MS. The gene encoding the mitogen-responsive phosphoprotein Dab2 is differentially regulated by GATA-6 and GATA-4 in the visceral endoderm. J Biol Chem 2000; 275:19949-54. [PMID: 10779506 DOI: 10.1074/jbc.m001331200] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gene targeting studies have demonstrated that the zinc finger transcription factor GATA-6 lies upstream in a transcriptional cascade that controls differentiation of the visceral endoderm. To understand the function of GATA-6 in the visceral endoderm and to identify genes regulated by GATA-6 in this tissue, subtractive hybridization was performed using template cDNAs derived from differentiated wild-type embryonic stem (ES) cells and GATA-6(-/-) ES cells, respectively. These analyses revealed that the gene encoding Dab2, a mitogen-responsive phosphoprotein, is differentially expressed in wild-type and GATA-6-deficient ES cells. Consistent with these findings, Dab2 is expressed in the visceral endoderm of wild-type embryos but not in the visceral endoderm of GATA-6-deficient embryos. Cotransfection experiments demonstrate that the human Dab2 promoter can be transactivated by forced expression of GATA-6 in NIH-3T3 cells. In contrast, forced expression of GATA-4 does not transactivate the human Dab2 promoter and Dab2 is expressed in the visceral endoderm of GATA-4 null embryos. Surprisingly, the specificity of GATA-6-induced transactivation of the Dab2 promoter is not mediated through its zinc finger DNA-binding domain. Taken together, these data demonstrate that the mitogen-responsive phosphoprotein Dab2 is a downstream target of GATA-6 in the visceral endoderm. Moreover, these data demonstrate that molecular mechanisms have evolved that direct, and distinguish, the functional specificity of GATA family members when they are developmentally coexpressed.
Collapse
Affiliation(s)
- E E Morrisey
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
49
|
Shoichet SA, Malik TH, Rothman JH, Shivdasani RA. Action of the Caenorhabditis elegans GATA factor END-1 in Xenopus suggests that similar mechanisms initiate endoderm development in ecdysozoa and vertebrates. Proc Natl Acad Sci U S A 2000; 97:4076-81. [PMID: 10760276 PMCID: PMC18153 DOI: 10.1073/pnas.97.8.4076] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In ecdysozoan protostomes, including arthropods and nematodes, transcription factors of the GATA family specify the endoderm: Drosophila dGATAb (ABF/Serpent) and Caenorhabditis elegans END-1 play important roles in generating this primary germ layer. end-1 is the earliest expressed endoderm-specific gene known in C. elegans and appears to initiate the program of gene expression required for endoderm differentiation, including a cascade of GATA factors required for development and maintenance of the intestine. Among vertebrate GATA proteins, the GATA-4/5/6 subfamily regulates aspects of late endoderm development, but a role for GATA factors in establishing the endoderm is unknown. We show here that END-1 binds to the canonical target DNA sequence WGATAR with specificity similar to that of vertebrate GATA-1 and GATA-4, and that it functions as a transcriptional activator. We exploited this activity of END-1 to demonstrate that establishment of the vertebrate endoderm, like that of invertebrate species, also appears to involve GATA transcriptional activity. Like the known vertebrate endoderm regulators Mixer and Sox17, END-1 is a potent activator of endoderm differentiation in isolated Xenopus ectoderm. Moreover, a dominant inhibitory GATA-binding fusion protein abrogates endoderm differentiation in intact embryos. By examining these effects in conjunction with those of Mixer- and Sox17beta-activating and dominant inhibitory constructs, we further establish the likely relationships between GATA activity and these regulators in early development of the vertebrate endoderm. These results suggest that GATA factors may function sequentially to regulate endoderm differentiation in both protostomes and deuterostomes.
Collapse
Affiliation(s)
- S A Shoichet
- Department of Adult Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
50
|
Abstract
Caenorhabditis elegans dauer formation is controlled by multiple environmental factors. The chemosensory neuron ASI regulates dauer formation by secretion of DAF-7/TGF-beta, but the molecular targets of the DAF-7 ligand are incompletely defined and the cellular targets are unknown. We genetically characterized and cloned a putative transducer of DAF-7 signaling called daf-14 and found that it encodes a Smad protein. DAF-14 Smad has a highly unusual structure completely lacking the N-terminal domain found in all other Smad proteins known to date. daf-14 genetically interacts with daf-8, which encodes another Smad, and the interaction suggests partial functional redundancy between these two Smad proteins. We also studied the cellular targets of DAF-7 signaling by studying the sites of action of daf-14 and daf-4, the putative receptor for DAF-7. daf-14::gfp is expressed in multiple tissues that are remodeled during dauer formation. However, analysis of mosaics generated by free duplication loss and tissue-specific expression constructs indicate cell-nonautonomous function of daf-4, arguing against direct DAF-7 signaling to tissues throughout the animal. Instead, these experiments suggest the nervous system as a target of DAF-7 signaling and that the nervous system in turn regulates dauer formation by other tissues.
Collapse
Affiliation(s)
- T Inoue
- Department of Genetics, University of Washington, Seattle, Washington, 98195, USA
| | | |
Collapse
|