1
|
Kim J, Lee J, Kang E, Lee K, Lee K, Cheon Y, Lee S, Kim B, Ko YH, Kim JH, In SI, Nam CH. Insights into an indolicidin-derived low-toxic anti-microbial peptide's efficacy against bacterial cells while preserving eukaryotic cell viability. Biofactors 2025; 51:e2145. [PMID: 39569798 DOI: 10.1002/biof.2145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024]
Abstract
Antimicrobial peptides (AMPs) are a current solution to combat antibiotic resistance, but they have limitations, including their expensive production process and the induction of cytotoxic effects. We have developed novel AMP candidate (peptide 3.1) based on indolicidin, among the shortest naturally occurring AMP. The antimicrobial activity of this peptide is demonstrated by the minimum inhibitory concentration, while the hemolysis tests and MTT assay indicate its low cytotoxicity. In optical diffraction tomography, red blood cells treated with peptide 3.1 showed no discernible effects, in contrast to indolicidin. However, peptide 3.1 did induce cell lysis in E. coli, leading to a reduced potential for the development of antibiotic resistance. To investigate the mechanism underlying membrane selectivity, the structure of peptide 3.1 was analyzed using nuclear magnetic resonance spectroscopy and molecular dynamics simulations. Peptide 3.1 is structured with an increased distinction between hydrophobic and charged residues and remained in close proximity to the eukaryotic membrane. On the other hand, peptide 3.1 exhibited a disordered conformation when approaching the prokaryotic membrane, similar to indolicidin, leading to its penetration into the membrane. Consequently, it appears that the amphipathicity and structural rigidity of peptide 3.1 contribute to its membrane selectivity. In conclusion, this study may lead to the development of Peptide 3.1, a promising commercial candidate based on its low cost to produce and low cytotoxicity. We have also shed light on the mechanism of action of AMP, which exhibits selective toxicity to bacteria while not damaging eukaryotic cells.
Collapse
Affiliation(s)
- Jihyun Kim
- Department of New Biology, DGIST, Daegu, Republic of Korea
- Repill Inc., Daegu, Republic of Korea
| | - Jieun Lee
- Department of New Biology, DGIST, Daegu, Republic of Korea
- Repill Inc., Daegu, Republic of Korea
| | - Eunho Kang
- Department of New Biology, DGIST, Daegu, Republic of Korea
- Repill Inc., Daegu, Republic of Korea
| | - Kyoungmin Lee
- Repill Inc., Daegu, Republic of Korea
- The Interdisciplinary Studies of Artificial Intelligence, DGIST, Daegu, Republic of Korea
| | - Kyungeun Lee
- Repill Inc., Daegu, Republic of Korea
- School of Undergraduate Studies, DGIST, Daegu, Republic of Korea
| | - Yeongmi Cheon
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, Republic of Korea
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, Republic of Korea
- Department of Systems Biotechnology, Chung-Ang University Anseong-si, Republic of Korea
| | - Bokyung Kim
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Young Ho Ko
- Center for Self-Assembly and Complexity, Institute for Basic Science, Pohang, Republic of Korea
| | - Jin Hae Kim
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Su Il In
- Department of Energy Science and Engineering, DGIST, Daegu, Republic of Korea
| | - Chang Hoon Nam
- Department of New Biology, DGIST, Daegu, Republic of Korea
| |
Collapse
|
2
|
Ouyang M, Wu F, Hu C. Efficacy of Short Novel Antimicrobial Peptides in a Mouse Model of Staphylococcus pseudintermedius Skin Infection. Antibiotics (Basel) 2024; 13:508. [PMID: 38927175 PMCID: PMC11200854 DOI: 10.3390/antibiotics13060508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
As the clinical application of antibiotics for bacterial skin infections in companion animals becomes increasingly prevalent, the issue of bacterial resistance has become more pronounced. Antimicrobial peptides, as a novel alternative to traditional antibiotics, have garnered widespread attention. In our study, synthetic peptides ADD-A and CBD3-ABU were tested against Staphylococcus pseudintermedius skin infections in KM mice. ADD-A was applied topically and through intraperitoneal injection, compared with control groups and treatments including CBD3-ABU, ampicillin sodium, and saline. Wound contraction, bacterial counts and histology were assessed on days 3 and 11 post-infection. ADD-A and ampicillin treatments significantly outperformed saline in wound healing (p < 0.0001 and p < 0.001, respectively). ADD-A also showed a markedly lower bacterial count than ampicillin (p < 0.0001). Histologically, ADD-A-applied wounds had better epidermal continuity and a thicker epidermis than normal, with restored follicles and sebaceous glands. ADD-A's effectiveness suggests it as a potential alternative to antibiotics for treating skin infections in animals.
Collapse
Affiliation(s)
| | | | - Changmin Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (M.O.); (F.W.)
| |
Collapse
|
3
|
Manjunatha L, Rajashekara H, Uppala LS, Ambika DS, Patil B, Shankarappa KS, Nath VS, Kavitha TR, Mishra AK. Mechanisms of Microbial Plant Protection and Control of Plant Viruses. PLANTS (BASEL, SWITZERLAND) 2022; 11:3449. [PMID: 36559558 PMCID: PMC9785281 DOI: 10.3390/plants11243449] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/10/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Plant viral diseases are major constraints causing significant yield losses worldwide in agricultural and horticultural crops. The commonly used methods cannot eliminate viral load in infected plants. Many unconventional methods are presently being employed to prevent viral infection; however, every time, these methods are not found promising. As a result, it is critical to identify the most promising and sustainable management strategies for economically important plant viral diseases. The genetic makeup of 90 percent of viral diseases constitutes a single-stranded RNA; the most promising way for management of any RNA viruses is through use ribonucleases. The scope of involving beneficial microbial organisms in the integrated management of viral diseases is of the utmost importance and is highly imperative. This review highlights the importance of prokaryotic plant growth-promoting rhizobacteria/endophytic bacteria, actinomycetes, and fungal organisms, as well as their possible mechanisms for suppressing viral infection in plants via cross-protection, ISR, and the accumulation of defensive enzymes, phenolic compounds, lipopeptides, protease, and RNase activity against plant virus infection.
Collapse
Affiliation(s)
- Lakshmaiah Manjunatha
- Division of Crop Protection, ICAR-Indian Institute of Horticultural Research (IIHR), Bengaluru 560089, Karnataka, India
| | - Hosahatti Rajashekara
- Division of Crop Protection, ICAR-Directorate of Cashew Research (DCR), Dakshina Kannada 574202, Karnataka, India
| | - Leela Saisree Uppala
- Cranberry Station, East Wareham, University of Massachusetts, Amherst, MA 02538, USA
| | - Dasannanamalige Siddesh Ambika
- Department of Plant Pathology, College of Horticulture, University of Horticultural Sciences (Bagalkot), Bengaluru 560065, Karnataka, India
| | - Balanagouda Patil
- Department of Plant Pathology, University of Agricultural and Horticultural Sciences, Shivamogga 577255, Karnataka, India
| | - Kodegandlu Subbanna Shankarappa
- Department of Plant Pathology, College of Horticulture, University of Horticultural Sciences (Bagalkot), Bengaluru 560065, Karnataka, India
| | | | - Tiptur Rooplanaik Kavitha
- Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bengaluru 560065, Karnataka, India
| | - Ajay Kumar Mishra
- Khalifa Centre for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
4
|
Jaswandkar SV, Katti KS, Katti DR. Molecular and structural basis of actin filament severing by ADF/cofilin. Comput Struct Biotechnol J 2022; 20:4157-4171. [PMID: 36016710 PMCID: PMC9379983 DOI: 10.1016/j.csbj.2022.07.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 12/04/2022] Open
Abstract
ADF/cofilin’s cooperative binding to actin filament modifies the conformation and alignment of G-actin subunits locally, causing the filament to sever at “boundaries” formed among bare and ADF/cofilin-occupied regions. Analysis of the impact of the ADF/cofilin cluster boundary on the deformation behavior of actin filaments in a mechanically strained environment is critical for understanding the biophysics of their severing. The present investigation uses molecular dynamics simulations to generate atomic resolution models of bare, partially, and fully cofilin decorated actin filaments. Steered molecular dynamics simulations are utilized to determine the mechanical properties of three filament models when subjected to axial stretching, axial compression, and bending forces. We highlight differences in strain distribution, failure mechanisms in the three filament models, and biomechanical effects of cofilin cluster boundaries in overall filament rupture. Based on the influence of ADF/cofilin binding on intrastrand and interstrand G-actin interfaces, the cofilin-mediated actin filament severing model proposed here can help understand cofilin mediated actin dynamics.
Collapse
|
5
|
Jaramillo-Martinez V, Urbatsch IL, Ganapathy V. Functional Distinction between Human and Mouse Sodium-Coupled Citrate Transporters and Its Biologic Significance: An Attempt for Structural Basis Using a Homology Modeling Approach. Chem Rev 2020; 121:5359-5377. [PMID: 33040525 DOI: 10.1021/acs.chemrev.0c00529] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
NaCT (SLC13A5; mINDY), a sodium-coupled citrate transporter, is the mammalian ortholog of Drosophila INDY. Loss-of-function mutations in human NaCT cause severe complications with neonatal epilepsy and encephalopathy (EIEE25). Surprisingly, mice lacking this transporter do not have this detrimental brain phenotype. The marked differences in transport kinetics between mouse and human NaCTs provide at least a partial explanation for this conundrum, but a structural basis for the differences is lacking. Neither human nor mouse NaCT has been crystallized, and any information known on their structures is based entirely on what was inferred from the structure of VcINDY, a related transporter in bacteria. Here, we highlight the functional features of human and mouse NaCTs and provide a plausible molecular basis for the differences based on a full-length homology modeling approach. The transport characteristics of human NaCT markedly differ from those of VcINDY. Therefore, the modeling with VcINDY as the template is flawed, but this is the best available option at this time. With the newly deduced model, we determined the likely locations of the disease-causing mutations and propose a new classification for the mutations based on their location and potential impact on transport function. This new information should pave the way for future design and development of novel therapeutics to restore the lost function of the mutant transporters as a treatment strategy for patients with EIEE25.
Collapse
Affiliation(s)
- Valeria Jaramillo-Martinez
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Ina L Urbatsch
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States.,Center for Membrane Protein Research and Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States.,Center for Membrane Protein Research and Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| |
Collapse
|
6
|
Jiang Y, Mei C, Huang X, Gu Q, Song D. Antibacterial Activity and Mechanism of a Bacteriocin Derived from the Valine-Cecropin A(1–8)-Plantaricin ZJ5(1–18) Hybrid Peptide Against Escherichia coli O104. FOOD BIOPHYS 2020. [DOI: 10.1007/s11483-020-09636-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Comparative mode of action of the antimicrobial peptide melimine and its derivative Mel4 against Pseudomonas aeruginosa. Sci Rep 2019; 9:7063. [PMID: 31068610 PMCID: PMC6506473 DOI: 10.1038/s41598-019-42440-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/18/2019] [Indexed: 12/16/2022] Open
Abstract
Melimine and Mel4 are chimeric cationic peptides with broad-spectrum antimicrobial activity. They have been shown to be highly biocompatible in animal models and human clinical trials. The current study examined the mechanism of action of these two antimicrobial peptides against P. aeruginosa. The effect of the peptides of endotoxin neutralization, and their interactions with cytoplasmic membranes using DiSC(3)-5 and Sytox green, Syto-9 and PI dyes were analysed. Release of ATP and DNA/RNA were determined using ATP luminescence and increase in OD260 nm. The bacteriolytic ability of the peptides was determined by measuring decreases in OD620 nm. Both the peptides neutralized LPS suggesting their interaction with lipid A. Cytoplasmic membrane was disrupted within 30 seconds, which correlated with reductions in cellular viability. At 2 minutes melimine or Mel4, released 75% and 36% cellular ATP respectively (P < 0.001). Membrane permeabilization started 5 minutes with simultaneous release of DNA/RNA. Flow cytometry demonstrated 52% and 18% bacteria were stained with PI after 30 minutes. Overall, melimine showed higher capacity for membrane disruption compared to Mel4 (P < 0.001). The findings of this study have been summarized as a timeline of bactericidal activity, suggesting that the peptides permeabilized P. aeruginosa within 5 minutes, started lysis within 2 hours of exposure.
Collapse
|
8
|
Ultrastructural damage in Streptococcus mutans incubated with saliva and histatin 5. Arch Oral Biol 2018; 87:226-234. [PMID: 29328950 DOI: 10.1016/j.archoralbio.2018.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 12/15/2017] [Accepted: 01/07/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To study the ultrastructural alterations induced in Streptococcus mutans (ATCC 25175) incubated with saliva, saliva plus histatin 5 and histatin 5. METHODS S. mutans incubated with saliva histatin 5 or a combination of both were morphologically analyzed and counted. The results were expressed as (CFU)ml-1. Ultrastructural damage was evaluated by transmission electron microscopy. Ultrastructural localization of histatin 5 was examined using immunogold labeling. Apoptotic cell death was determined by flow cytometry (TUNEL). RESULTS A decrease in the bacteria numbers was observed after incubation with saliva, saliva with histatin 5 or histatin 5 compared to the control group (p<0.0001). Ultrastructural damage in S. mutans incubated with saliva was found in the cell wall. Saliva plus histatin 5 induced a cytoplasmic granular pattern and decreased the distance between the plasma membrane bilayers, also found after incubation with histatin 5, together with pyknotic nucleoids. Histatin 5 was localized on the bacterial cell walls, plasma membranes, cytoplasm and nucleoids. Apoptosis was found in the bacteria incubated with saliva (63.9%), saliva plus histatin 5 (71.4%) and histatin 5 (29.3%). Apoptosis in the control bacteria was 0.2%. CONCLUSIONS Antibacterial activity against S. mutans and the morphological description of damage induced by saliva and histatin 5 was demonstrated. Pyknotic nucleoids observed in S. mutans exposed to saliva, saliva plus histatin 5 and histatin 5 could be an apoptosis-like death mechanism. The knowledge of the damage generated by histatin 5 and its intracellular localization could favor the design of an ideal peptide as a therapeutic agent.
Collapse
|
9
|
Lee EY, Lee MW, Fulan BM, Ferguson AL, Wong GCL. What can machine learning do for antimicrobial peptides, and what can antimicrobial peptides do for machine learning? Interface Focus 2017; 7:20160153. [PMID: 29147555 DOI: 10.1098/rsfs.2016.0153] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Antimicrobial peptides (AMPs) are a diverse class of well-studied membrane-permeating peptides with important functions in innate host defense. In this short review, we provide a historical overview of AMPs, summarize previous applications of machine learning to AMPs, and discuss the results of our studies in the context of the latest AMP literature. Much work has been recently done in leveraging computational tools to design new AMP candidates with high therapeutic efficacies for drug-resistant infections. We show that machine learning on AMPs can be used to identify essential physico-chemical determinants of AMP functionality, and identify and design peptide sequences to generate membrane curvature. In a broader scope, we discuss the implications of our findings for the discovery of membrane-active peptides in general, and uncovering membrane activity in new and existing peptide taxonomies.
Collapse
Affiliation(s)
- Ernest Y Lee
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Michelle W Lee
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Benjamin M Fulan
- Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrew L Ferguson
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Zhao L, Feng C, Wu K, Chen W, Chen Y, Hao X, Wu Y. Advances and prospects in biogenic substances against plant virus: A review. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 135:15-26. [PMID: 28043326 DOI: 10.1016/j.pestbp.2016.07.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 07/13/2016] [Accepted: 07/18/2016] [Indexed: 05/26/2023]
Abstract
Plant virus diseases, known as 'plant cancer', are the second largest plant diseases after plant fungal diseases, which have caused great damage to agricultural industry. Since now, the most direct and effective method for controlling viruses is chemotherapeutics, except for screening of anti-disease species. As the occurrence and harm of plant diseases intensify, production and consumption of pesticides have increased year by year, and greatly contributed to the fertility of agriculture, but also brought a series of problems, such as the increase of drug resistance of plant pathogens and the excessive pesticide residues. In recent years, biopesticide, as characterized by environmentally safe due to low residual, safe to non-target organism due to better specificity and not as susceptible to produce drug resistance due to diverse work ways, has gained more attention than ever before and exhibited great development potential. Now much progress has been made about researches on new biogenic anti-plant-virus substances. The types of active components include proteins, polysaccharides and small molecules (alkaloids, flavonoids, phenols, essential oils) from plants, proteins and polysaccharides from microorganisms, polysaccharides from algae and oligochitosan from animals. This study summarized the research advance of biogenic anti-plant-virus substances in recent years and put forward their further development in the future.
Collapse
Affiliation(s)
- Lei Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Crop Pest Integrated Pest Management on Crop in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chaohong Feng
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, No. 116 Huayuan Road, Jinshui District, Zhengzhou, Henan Province 450002, China
| | - Kuan Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Crop Pest Integrated Pest Management on Crop in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenbao Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Crop Pest Integrated Pest Management on Crop in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yujia Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Crop Pest Integrated Pest Management on Crop in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xingan Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Crop Pest Integrated Pest Management on Crop in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yunfeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Crop Pest Integrated Pest Management on Crop in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
11
|
An HJ, Kim JY, Kim WH, Han SM, Park KK. The Protective Effect of Melittin on Renal Fibrosis in an Animal Model of Unilateral Ureteral Obstruction. Molecules 2016; 21:1137. [PMID: 27618890 PMCID: PMC6274242 DOI: 10.3390/molecules21091137] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 01/06/2023] Open
Abstract
Renal fibrosis is the principal pathological process underlying the progression of chronic kidney disease that leads to end-stage renal disease. Melittin is a major component of bee venom, and it has anti-bacterial, anti-viral, and anti-inflammatory properties in various cell types. Thus, this study examined the therapeutic effects of melittin on the progression of renal fibrosis using the unilateral ureteral obstruction (UUO) model. In addition, the effects of melittin on inflammation and fibrosis in renal fibroblast cells were explored using transforming growth factor-β1 (TGF-β1). Histological observation revealed that UUO induced a considerable increase in the number of infiltrated inflammatory cells. However, melittin treatment markedly reduced these reactions compared with untreated UUO mice. The expression levels of inflammatory cytokines and pro-fibrotic genes were significantly reduced in melittin-treated mice compared with UUO mice. Melittin also effectively inhibited fibrosis-related gene expression in renal fibroblasts NRK-49F cells. These findings suggest that melittin attenuates renal fibrosis and reduces inflammatory responses by the suppression of multiple growth factor-mediated pro-fibrotic genes. In conclusion, melittin may be a useful therapeutic agent for the prevention of fibrosis that characterizes the progression of chronic kidney disease.
Collapse
Affiliation(s)
- Hyun-Jin An
- Department of Pathology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Korea.
| | - Jung-Yeon Kim
- Department of Pathology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Korea.
| | - Woon-Hae Kim
- Department of Pathology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Korea.
| | - Sang-Mi Han
- Deparment of Agricultural Biology, National Academy of Agricultural Science, RDA, 300, Nongsaengmyeong-ro, Wansan-gu, Jeonju 54875, Korea.
| | - Kwan-Kyu Park
- Department of Pathology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Korea.
| |
Collapse
|
12
|
Qin C, Bu X, Zhong X, Ng NLJ, Guo Z. Optimization of antibacterial cyclic decapeptides. ACTA ACUST UNITED AC 2016; 6:398-406. [PMID: 15132600 DOI: 10.1021/cc030117u] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A previously developed method for cyclic peptide synthesis was demonstrated to be able to provide convenient access to large combinatorial libraries of analogues, and this methodology was applied to the optimization of natural product cyclic decapeptides. Using this method, a 192-member library was designed and successfully constructed on the basis of the natural products tyrocidines, streptocidins, and loloatins to increase the therapeutic indices of these antibiotics. Library screening identified nine analogues whose therapeutic indices were increased by up to 90-fold in comparison to the natural products. Three of these analogues showed significant increase in antibacterial potency and concurrent drastic decrease in hemolytic activity. Since the natural products target the bacterial cell wall, the newly discovered analogues are promising leads for drug development against drug-resistant bacteria.
Collapse
Affiliation(s)
- Chuanguang Qin
- Department of Chemistry and Biotechnology Research Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
13
|
Wang C, Chen YW, Zhang L, Gong XG, Zhou Y, Shang DJ. Melanoma cell surface-expressed phosphatidylserine as a therapeutic target for cationic anticancer peptide, temporin-1CEa. J Drug Target 2015; 24:548-56. [PMID: 26596643 DOI: 10.3109/1061186x.2015.1113539] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We have previously reported that temporin-1CEa, a cationic antimicrobial peptide, exerts preferential cytotoxicity toward cancer cells. However, the exact molecular mechanism for this cancer-selectivity is still largely unknown. Here, we found that the negatively charged phosphatidylserine (PS) expressed on cancer cell surface serves as a target for temporin-1CEa. Our results indicate that human A375 melanoma cells express 50-fold more PS than non-cancerous HaCaT cells. The expression of cell surface PS in various cancer cell lines closely correlated with their ability to be recognized, bound and killed by temporin-1CEa. Additionally, the cytotoxicity of temporin-1CEa against A375 cells can be ameliorated by annexin V, which binds to cell surface PS with high affinity. Moreover, the data of isothermal titration calorimetry assay further confirmed a direct binding of temporin-1CEa to PS, at a ratio of 1:5 (temporin-1CEa:PS). Interestingly, the circular dichroism spectra analysis using artificial biomembrane revealed that PS not only provides electrostatic attractive sites for temporin-1CEa but also confers the membrane-bound temporin-1CEa to form α-helical structure, therefore, enhances the affinity and membrane disrupting ability of temporin-1CEa. In summary, these findings suggested that the melanoma cells expressed PS may serve as a promising target for temporin-1CEa or other cationic anticancer peptides.
Collapse
Affiliation(s)
- Che Wang
- a Department of Pharmacy , School of Chemistry and Chemical Engineering, Liaoning Normal University , Dalian , China and.,b Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery , School of Life Science, Liaoning Normal University , Dalian , China
| | - Yin-Wang Chen
- a Department of Pharmacy , School of Chemistry and Chemical Engineering, Liaoning Normal University , Dalian , China and
| | - Liang Zhang
- a Department of Pharmacy , School of Chemistry and Chemical Engineering, Liaoning Normal University , Dalian , China and
| | - Xian-Ge Gong
- b Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery , School of Life Science, Liaoning Normal University , Dalian , China
| | - Yang Zhou
- a Department of Pharmacy , School of Chemistry and Chemical Engineering, Liaoning Normal University , Dalian , China and
| | - De-Jing Shang
- b Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery , School of Life Science, Liaoning Normal University , Dalian , China
| |
Collapse
|
14
|
An HJ, Lee WR, Kim KH, Kim JY, Lee SJ, Han SM, Lee KG, Lee CK, Park KK. Inhibitory effects of bee venom on Propionibacterium acnes-induced inflammatory skin disease in an animal model. Int J Mol Med 2014; 34:1341-1348. [PMID: 25215662 DOI: 10.3892/ijmm.2014.1933] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 09/01/2014] [Indexed: 11/06/2022] Open
Abstract
Propionibacterium acnes (P. acnes) is a major contributing factor to the inflammatory component of acne. The many prescription medications for acne allow for a large number of potential combination treatments. However, several antibiotics, apart from their antibacterial effects, exert side‑effects, such as the suppression of host inflammatory responses. Purified bee venom (BV) is a natural toxin produced by honeybees (Apis mellifera L.). BV has been widely used as a traditional medicine for various diseases. In the present study, to investigate the therapeutic effects of BV against P. acnes-induced inflammatory skin disease, P. acnes was intradermally injected into the ears of mice. After the injection, BV was applied to the skin surface of the right ear. Histological observation revealed that P. acnes induced a considerable increase in the number of infiltrated inflammatory cells. However, treatment with BV markedly reduced these reactions compared with the P. acnes-injected mice not treated with BV. Moreover, the expression levels of tumor necrosis factor (TNF)-α, and interleukin (IL)-1β were significantly reduced in the BV-treated mice compared with the untreated P. acnes-injected mice. In addition, treatment with BV significantly inhibited Toll-like receptor (TLR)2 and CD14 expression in P. acnes-injected tissue. The binding activity of nuclear factor-κB (NF-κB) and activator protein (AP)-1 was markedly suppressed following treatment with BV. The results from our study, using an animal model, indicate that BV exerts an inhibitory effect on inflammatory skin diseases. In conclusion, our data indicate that BV has potential for use as an anti-acne agent and may be useful in the pharmaceutical and cosmetics industries.
Collapse
Affiliation(s)
- Hyun-Jin An
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Woo-Ram Lee
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Kyung-Hyun Kim
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Jung-Yeon Kim
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Sun-Jae Lee
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Sang-Mi Han
- Department of Agricultural Biology, National Institute of Agricultural Science and Technology, Wanju, Republic of Korea
| | - Kwang-Gill Lee
- Department of Agricultural Biology, National Institute of Agricultural Science and Technology, Wanju, Republic of Korea
| | - Chong-Kee Lee
- Department of Immunology, College of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Kwan-Kyu Park
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| |
Collapse
|
15
|
Hyun S, Lee S, Kim S, Jang S, Yu J, Lee Y. Apoptosis inducing, conformationally constrained, dimeric peptide analogs of KLA with submicromolar cell penetrating abilities. Biomacromolecules 2014; 15:3746-52. [PMID: 25188534 DOI: 10.1021/bm501026e] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The apoptosis inducing KLA peptide, (KLAKLAK)2, possesses an ability to disrupt mitochondrial membranes. However, this peptide has a poor eukaryotic cell penetrating potential and, as a result, it requires the assistance of other cell penetrating peptides for effective translocation in micromolar concentrations. In an effort to improve the cell penetrating potential of KLA, we have created a library in which pairs of residues on its hydrophobic face are replaced by Cys. The double Cys mutants were then transformed to bundle dimers by oxidatively generating two intermolecular disulfide bonds. We envisioned that once transported into cells, the disulfide bonds would undergo reductive cleavage to generate the monomeric peptides. The results of these studies showed that one of the mutant peptides, dimer B, has a high cell penetrating ability that corresponds to 100% of fluorescence positive cells at 250 nM. Even though dimer B induces disruption of the mitochondrial potential and cytochrome c release followed by caspase activation at submicromolar concentrations, it displays an LD50 of 1.6 μM under serum conditions using HeLa cells. Taken together, the results demonstrate that the strategy involving formation of bundle dimeric peptides is viable for the design of apoptosis inducing KLA peptide that translocate into cells at submicromolar concentrations.
Collapse
Affiliation(s)
- Soonsil Hyun
- Department of Chemistry and Education and ‡Department of Chemistry, Seoul National University , Seoul 151-742, Korea
| | | | | | | | | | | |
Collapse
|
16
|
Laabei M, Jamieson WD, Yang Y, van den Elsen J, Jenkins ATA. Investigating the lytic activity and structural properties of Staphylococcus aureus phenol soluble modulin (PSM) peptide toxins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:3153-61. [PMID: 25194683 DOI: 10.1016/j.bbamem.2014.08.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/18/2014] [Accepted: 08/25/2014] [Indexed: 11/25/2022]
Abstract
The ubiquitous bacterial pathogen, Staphylococcus aureus, expresses a large arsenal of virulence factors essential for pathogenesis. The phenol-soluble modulins (PSMs) are a family of cytolytic peptide toxins which have multiple roles in staphylococcal virulence. To gain an insight into which specific factors are important in PSM-mediated cell membrane disruption, the lytic activity of individual PSM peptides against phospholipid vesicles and T cells was investigated. Vesicles were most susceptible to lysis by the PSMα subclass of peptides (α1-3 in particular), when containing between 10 and 30mol% cholesterol, which for these vesicles is the mixed solid ordered (so)-liquid ordered (lo) phase. Our results show that the PSMβ class of peptides has little effect on vesicles at concentrations comparable to that of the PSMα class and exhibited no cytotoxicity. Furthermore, within the PSMα class, differences emerged with PSMα4 showing decreased vesicle and cytotoxic activity in comparison to its counterparts, in contrast to previous studies. In order to understand this, peptides were studied using helical wheel projections and circular dichroism measurements. The degree of amphipathicity, alpha-helicity and properties such as charge and hydrophobicity were calculated, allowing a structure-function relationship to be inferred. The degree of alpha-helicity of the peptides was the single most important property of the seven peptides studied in predicting their lytic activity. These results help to redefine this class of peptide toxins and also highlight certain membrane parameters required for efficient lysis.
Collapse
Affiliation(s)
- Maisem Laabei
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK; Department of Biology and Biochemistry, Claverton Down, Bath BA2 7AY, UK
| | - W David Jamieson
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Yi Yang
- Department of Biology and Biochemistry, Claverton Down, Bath BA2 7AY, UK
| | - Jean van den Elsen
- Department of Biology and Biochemistry, Claverton Down, Bath BA2 7AY, UK
| | - A Toby A Jenkins
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
17
|
Kuznetsov AS, Dubovskii PV, Vorontsova OV, Feofanov AV, Efremov RG. Interaction of linear cationic peptides with phospholipid membranes and polymers of sialic acid. BIOCHEMISTRY (MOSCOW) 2014; 79:459-68. [DOI: 10.1134/s0006297914050101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Saravanan R, Li X, Lim K, Mohanram H, Peng L, Mishra B, Basu A, Lee JM, Bhattacharjya S, Leong SSJ. Design of short membrane selective antimicrobial peptides containing tryptophan and arginine residues for improved activity, salt-resistance, and biocompatibility. Biotechnol Bioeng 2013; 111:37-49. [PMID: 23860860 DOI: 10.1002/bit.25003] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/30/2013] [Accepted: 07/08/2013] [Indexed: 12/27/2022]
Abstract
Antimicrobial peptides (AMPs) kill microbes by non-specific membrane permeabilization, making them ideal templates for designing novel peptide-based antibiotics that can combat multi-drug resistant pathogens. For maximum efficacy in vivo and in vitro, AMPs must be biocompatible, salt-tolerant and possess broad-spectrum antimicrobial activity. These attributes can be obtained by rational design of peptides guided by good understanding of peptide structure-function. Toward this end, this study investigates the influence of charge and hydrophobicity on the activity of tryptophan and arginine rich decamer peptides engineered from a salt resistant human β-defensin-28 variant. Mechanistic investigations of the decamers with detergents mimicking the composition of bacterial and mammalian membrane, reveal a correlation between improved antibacterial activity and the increase in tryptophan and positive residue content, while keeping hemolysis low. The potent antimicrobial activity and high cell membrane selective behavior of the two most active decamers, D5 and D6, are attributed to an optimum peptide charge to hydrophobic ratio bestowed by systematic arginine and tryptophan substitution. D5 and D6 show surface localization behavior with binding constants of 1.86 × 10(8) and 2.6 × 10(8) M(-1) , respectively, as determined by isothermal calorimetry measurements. NMR derived structures of D5 and D6 in SDS detergent micelles revealed proximity of Trp and Arg residues in an extended structural scaffold. Such potential cation-π interactions may be critical in cell permeabilization of the AMPs. The fundamental characterization of the engineered decamers provided in this study improves the understanding of structure-activity relationship of short arginine tryptophan rich AMPs, which will pave the way for future de novo design of potent AMPs for therapeutic and biomedical applications.
Collapse
Affiliation(s)
- Rathi Saravanan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore; School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore, 637553, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Cho HJ, Kang JH, Park KK, Choe JY, Park YY, Moon YS, Chung IK, Chang HW, Kim CH, Choi YH, Kim WJ, Moon SK, Chang YC. Comparative proteome analysis of Tumor necrosis factor α-stimulated human Vascular Smooth Muscle Cells in response to melittin. Proteome Sci 2013; 11:20. [PMID: 23651618 PMCID: PMC3655938 DOI: 10.1186/1477-5956-11-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 05/01/2013] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Bee venom has been used to relieve pain and to treat inflammatory diseases, including rheumatoid arthritis, in humans. To better understand the mechanisms of the anti-inflammatory and anti-atherosclerosis effect of bee venom, gel electrophoresis and mass spectrometry were used to identify proteins whose expression was altered in human Vascular Smooth Muscle Cells (hVSMCs) stimulated by tumor necrosis factor alpha after 12 h in the presence of melittin. RESULTS To obtain valuable insights into the anti-inflammatory and anti-atherosclerosis mechanisms of melittin, two-dimensional (2-D) gel electrophoresis and MALDI-TOF/TOF were used. The proteome study, we showed 33 significant proteins that were differentially expressed in the cells treated with tumor necrosis factor alpha and melittin. Thirteen proteins were significantly increased in the cells treated with tumor necrosis factor alpha, and those proteins were reduced in the cells treated with melittin. Five of the proteins that showed increased expression in the cells treated with tumor necrosis factor alpha are involved in cell migration, including calreticulin, an essential factor of development that plays a role in transcription regulation. The proteins involved in cell migration were reduced in the melittin treated cells. The observed changes in the expression of GRP75, prohibitin, and a select group of other proteins were validated with reverse transcribed-PCR. It was confirmed that the observed change in the protein levels reflected a change in the genes level. In addition, the phosphorylation of EGFR and ERK was validated by analyzing the protein pathway. CONCLUSION Taken together, these data established that the expression of some proteins was significantly changed by melittin treatment in tumor necrosis factor alpha stimulated the cells and provided insights into the mechanism of the melittin function for its potential use as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Hyun-Ji Cho
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, 705-718, Republic of Korea
| | - Jeong-Han Kang
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kwan-Kyu Park
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, 705-718, Republic of Korea
| | - Jung-Yoon Choe
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, 705-718, Republic of Korea
| | - Yoon-Yub Park
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, 705-718, Republic of Korea
| | - Yong-Suk Moon
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, 705-718, Republic of Korea
| | - Il-Kyung Chung
- Department of Biotechnology, Catholic University of Daegu, Gyeongsan, 712-702, Republic of Korea
| | - Hyeun-Wook Chang
- College of Pharmacy, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | - Cheorl-Ho Kim
- Department of Biological Science, Sungkyunkwan University, Sungkyunkwan, Kyunggi-Do, 440-746, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan, 614-052, Republic of Korea
| | - Wun-Jae Kim
- Personalized Tumor Engineering Research Center, Department of Urology, Chungbuk National University, Chungbuk, Cheongju, 361-763, Republic of Korea
| | - Sung-Kwon Moon
- Department of Food Science and Technology, Chung-Ang University, Ansung, 456-756, Republic of Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, 705-718, Republic of Korea
| |
Collapse
|
20
|
Kim SJ, Park JH, Kim KH, Lee WR, Kim KS, Park KK. Melittin inhibits atherosclerosis in LPS/high-fat treated mice through atheroprotective actions. J Atheroscler Thromb 2011; 18:1117-1126. [PMID: 22008474 DOI: 10.5551/jat.8474] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIM Atherosclerosis is influenced by multiple environmental factors that involve a complex interaction between blood components and the arterial wall and is characterized by inflammatory reactions. Melittin has been used in treatment of various chronic inflammatory diseases. We investigated the effects of melittin regulated atherosclerotic changes in an animal model of atherosclerosis. METHODS Atherosclerotic mice were induced by intraperitoneal (i.p) injection of lipopolysaccharide (LPS, 2 mg/kg) three times a week and an atherogenic diet for 12 weeks. RESULTS Melittin (0.1 mg/kg) treatment was administered with i.p injection. Melittin treatment showed that total cholesterol and triglyceride levels decreased in atherosclerotic mice however, high-density lipoprotein cholesterol (HDL-C) levels were higher in atherosclerotic mice treated with melittin than in atherosclerotic mice. H&E staining showed that heart and descending aorta were significantly recovered by melittin, compared to atherosclerotic mice. In addition, melittin decreased the expression levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, vascular cell adhesion molecule (VCAM)-1, intercellular adhesion molecule (ICAM)-1, fibronectin and transforming growth factor (TGF)-β1 in atherosclerotic mice. In vitro, melittin decreased LPS-induced THP-1 cells-derived macrophages TNF-α and IL-1β expression levels and nuclear factor (NF)-κB signal pathway. CONCLUSIONS These results demonstrate that melittin has an anti-atherogenic effect by suppression of pro-inflammatory cytokines and adhesion molecules.
Collapse
Affiliation(s)
- Soo-Jung Kim
- Department of Pathology, School of Medicine, Catholic University of Daegu, Daegu, South Korea
| | | | | | | | | | | |
Collapse
|
21
|
Hein-Kristensen L, Knapp KM, Franzyk H, Gram L. Bacterial membrane activity of α-peptide/β-peptoid chimeras: influence of amino acid composition and chain length on the activity against different bacterial strains. BMC Microbiol 2011; 11:144. [PMID: 21693068 PMCID: PMC3224213 DOI: 10.1186/1471-2180-11-144] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 06/22/2011] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Characterization and use of antimicrobial peptides (AMPs) requires that their mode of action is determined. The interaction of membrane-active peptides with their target is often established using model membranes, however, the actual permeabilization of live bacterial cells and subsequent killing is usually not tested. In this report, six α-peptide/β-peptoid chimeras were examined for the effect of amino acid/peptoid substitutions and chain length on the membrane perturbation and subsequent killing of food-borne and clinical bacterial isolates. RESULTS All six AMP analogues inhibited growth of twelve food-borne and clinical bacterial strains including Extended Spectrum Beta-Lactamase-producing Escherichia coli. In general, the Minimum Inhibitory Concentrations (MIC) against Gram-positive and -negative bacteria were similar, ranging from 1 to 5 μM. The type of cationic amino acid only had a minor effect on MIC values, whereas chain length had a profound influence on activity. All chimeras were less active against Serratia marcescens (MICs above 46 μM). The chimeras were bactericidal and induced leakage of ATP from Staphylococcus aureus and S. marcescens with similar time of onset and reduction in the number of viable cells. EDTA pre-treatment of S. marcescens and E. coli followed by treatment with chimeras resulted in pronounced killing indicating that disintegration of the Gram-negative outer membrane eliminated innate differences in susceptibility. Chimera chain length did not influence the degree of ATP leakage, but the amount of intracellular ATP remaining in the cell after treatment was influenced by chimera length with the longest analogue causing complete depletion of intracellular ATP. Hence some chimeras caused a complete disruption of the membrane, and this was parallel by the largest reduction in number of viable bacteria. CONCLUSION We found that chain length but not type of cationic amino acid influenced the antibacterial activity of a series of synthetic α-peptide/β-peptoid chimeras. The synthetic chimeras exert their killing effect by permeabilization of the bacterial cell envelope, and the outer membrane may act as a barrier in Gram-negative bacteria. The tolerance of S. marcescens to chimeras may be due to differences in the composition of the lipopolysaccharide layer also responsible for its resistance to polymyxin B.
Collapse
Affiliation(s)
- Line Hein-Kristensen
- Division of Industrial Food Research, National Food Institute, Technical University of Denmark, Søltofts Plads, Lyngby, DK-Denmark.
| | | | | | | |
Collapse
|
22
|
Jain VP, Tu RS. Coupled folding and specific binding: fishing for amphiphilicity. Int J Mol Sci 2011; 12:1431-50. [PMID: 21673899 PMCID: PMC3111610 DOI: 10.3390/ijms12031431] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 02/10/2011] [Accepted: 02/17/2011] [Indexed: 11/16/2022] Open
Abstract
Proteins are uniquely capable of identifying targets with unparalleled selectivity, but, in addition to the precision of the binding phenomenon, nature has the ability to find its targets exceptionally quickly. Transcription factors for instance can bind to a specific sequence of nucleic acids from a soup of similar, but not identical DNA strands, on a timescale of seconds. This is only possible with the enhanced kinetics provided for by a natively disordered structure, where protein folding and binding are cooperative processes. The secondary structures of many proteins are disordered under physiological conditions. Subsequently, the disordered structures fold into ordered structures only when they bind to their specific targets. Induced folding of the protein has two key biological advantages. First, flexible unstructured domains can result in an intrinsic plasticity that allows them to accommodate targets of various size and shape. And, second, the dynamics of this folding process can result in enhanced binding kinetics. Several groups have hypothesized the acceleration of binding kinetics is due to induced folding where a "fly-casting" effect has been shown to break the diffusion-limited rate of binding. This review describes experimental results in rationally designed peptide systems where the folding is coupled to amphiphilicity and biomolecular activity.
Collapse
Affiliation(s)
- Vikas P. Jain
- Department of Chemical Engineering, The City College of City University of New York, 140th Street and Convent Avenue, Steinman Hall T313, New York, NY 10031, USA; E-Mail:
| | - Raymond S. Tu
- Department of Chemical Engineering, The City College of City University of New York, 140th Street and Convent Avenue, Steinman Hall T313, New York, NY 10031, USA; E-Mail:
| |
Collapse
|
23
|
Smith VJ, Desbois AP, Dyrynda EA. Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Mar Drugs 2010; 8:1213-62. [PMID: 20479976 PMCID: PMC2866484 DOI: 10.3390/md8041213] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 04/02/2010] [Accepted: 04/12/2010] [Indexed: 12/31/2022] Open
Abstract
All eukaryotic organisms, single-celled or multi-cellular, produce a diverse array of natural anti-infective agents that, in addition to conventional antimicrobial peptides, also include proteins and other molecules often not regarded as part of the innate defences. Examples range from histones, fatty acids, and other structural components of cells to pigments and regulatory proteins. These probably represent very ancient defence factors that have been re-used in new ways during evolution. This review discusses the nature, biological role in host protection and potential biotechnological uses of some of these compounds, focusing on those from fish, marine invertebrates and marine micro-algae.
Collapse
Affiliation(s)
- Valerie J Smith
- Scottish Oceans Institute, University of St Andrews, St Andrews, KY16 8LB, Scotland, UK.
| | | | | |
Collapse
|
24
|
Park JH, Kim KH, Kim SJ, Lee WR, Lee KG, Park KK. Bee venom protects hepatocytes from tumor necrosis factor-alpha and actinomycin D. Arch Pharm Res 2010; 33:215-223. [PMID: 20195821 DOI: 10.1007/s12272-010-0205-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 11/17/2009] [Accepted: 12/08/2009] [Indexed: 02/04/2023]
Abstract
Honeybee (Apis mellifera) venom (BV) has a broad array of therapeutic applications in traditional medicine to treat variety of diseases. It is also known that BV possesses anti-inflammatory and anticancer effect and that it can inhibit proliferation and induces apoptosis in cancer cells, but there is no evidence of information regarding anti-apoptosis of BV on hepatocytes. In the present study, we investigated the anti-apoptotic effect of BV on tumor necrosis factor (TNF)-alpha with actinomycin (Act) D induces apoptosis in hepatocytes. TNF-alpha/Act D-treated hepatocytes were exposed to different low concentration (1, 10 and 100 ng/mL) of BV. Our results showed statistically significant inhibition in DNA damage caused by BV treatment compared to corresponding TNF-alpha/Act D-treated hepatocytes. BV suppressed TNF-alpha/Act Dtreated activation of bcl-2 family and caspase family, which resulted in inhibition of cytochrome c release and PARP cleavage. These results demonstrate that low concentration BV possess a potent suppressive effect on anti-apoptotic responses of TNF-alpha/Act D-treated hepatocytes and suggest that these compounds may contribute substantial therapeutic potential for the treatment of liver diseases.
Collapse
Affiliation(s)
- Ji-Hyun Park
- Department of Pathology, Catholic University of Daegu, College of Medicine, Daegu 705-718, Korea
| | | | | | | | | | | |
Collapse
|
25
|
Li Y, Li HW, Ma LJ, Dang YQ, Wu Y. A unique protein labeling system based on melittin and the non-covalent binding-induced pyrene excimer. Chem Commun (Camb) 2010; 46:3768-70. [DOI: 10.1039/b925401c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Park HJ, Lee HJ, Choi MS, Son DJ, Song HS, Song MJ, Lee JM, Han SB, Kim Y, Hong JT. JNK pathway is involved in the inhibition of inflammatory target gene expression and NF-kappaB activation by melittin. JOURNAL OF INFLAMMATION-LONDON 2008; 5:7. [PMID: 18507870 PMCID: PMC2442592 DOI: 10.1186/1476-9255-5-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Accepted: 05/29/2008] [Indexed: 12/24/2022]
Abstract
Background Bee venom therapy has been used to treat inflammatory diseases including rheumatoid arthritis in humans and in experimental animals. We previously found that bee venom and melittin (a major component of bee venom) have anti-inflammatory effect by reacting with the sulfhydryl group of p50 of nuclear factor-kappa B (NF-κB) and IκB kinases (IKKs). Since mitogen activated protein (MAP) kinase family is implicated in the NF-κB activation and inflammatory reaction, we further investigated whether activation of MAP kinase may be also involved in the anti-inflammatory effect of melittin and bee venom. Methods The anti-inflammatory effects of melittin and bee venom were investigated in cultured Raw 264.7 cells, THP-1 human monocytic cells and Synoviocytes. The activation of NF-κB was investigated by electrophoretic mobility shift assay. Nitric oxide (NO) and prostaglandin E2 (PGE2) were determined either by Enzyme Linked Immuno Sorbent Assay or by biochemical assay. Expression of IκB, p50, p65, inducible nitric oxide synthetase (iNOS), cyclooxygenase-2 (COX-2) as well as phosphorylation of MAP kinase family was determined by Western blot. Results Melittin (0.5–5 μg/ml) and bee venom (5 and 10 μg/ml) inhibited lipopolysaccharide (LPS, 1 μg/ml) and sodium nitroprusside (SNP, 200 μM)-induced activation of c-Jun NH2-terminal kinase (JNK) in RAW 264.7 cells in a dose dependent manner. However, JNK inhibitor, anthra [1,9-cd]pyrazole-6 (2H)-one (SP600215, 10–50 μM) dose dependently suppressed the inhibitory effects of melittin and bee venom on NF-κB dependent luciferase and DNA binding activity via suppression of the inhibitory effect of melittin and bee venom on the LPS and SNP-induced translocation of p65 and p50 into nucleus as well as cytosolic release of IκB. Moreover, JNK inhibitor suppressed the inhibitory effects of melittin and bee venom on iNOS and COX-2 expression, and on NO and PGE2 generation. Conclusion These data show that melittin and bee venom prevent LPS and SNP-induced NO and PGE2 production via JNK pathway dependent inactivation of NF-κB, and suggest that inactivation of JNK pathways may also contribute to the anti-inflammatory and anti-arthritis effects of melittin and bee venom.
Collapse
Affiliation(s)
- Hye Ji Park
- College of Pharmacy, Chungbuk National University, 12 Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk 361-763, Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Brouwer CPJM, Wulferink M, Welling MM. The pharmacology of radiolabeled cationic antimicrobial peptides. J Pharm Sci 2008; 97:1633-1651. [PMID: 17786940 DOI: 10.1002/jps.21034] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cationic antimicrobial peptides are good candidates for new diagnostics and antimicrobial agents. They can rapidly kill a broad range of microbes and have additional activities that have impact on the quality and effectiveness of innate responses and inflammation. Furthermore, the challenge of bacterial resistance to conventional antibiotics and the unique mode of action of antimicrobial peptides have made such peptides promising candidates for the development of a new class of antibiotics. This review focuses on antimicrobial peptides as a topic for molecular imaging, infection detection, treatment monitoring and additionally, displaying microbicidal activities. A scintigraphic approach to studying the pharmacokinetics of antimicrobial peptides in laboratory animals has been developed. The peptides were labeled with technetium-99m and, after intravenous injection into laboratory animals, scintigraphy allowed real-time, whole body imaging and quantitative biodistribution studies of delivery of the peptides to the various body compartments. Antimicrobial peptides rapidly accumulated at sites of infection but not at sites of sterile inflammation, indicating that radiolabeled cationic antimicrobial peptides could be used for the detection of infected sites. As the number of viable micro-organisms determines the rate of accumulation of these peptides, radiolabeled antimicrobial peptides enabled to determine the efficacy of antibacterial therapy in animals to be monitored as well to quantify the delivery of antimicrobial peptides to the site of infection. The scintigraphic approach provides to be a reliable method for investigating the pharmacokinetics of small cationic antimicrobial peptides in animals and offers perspective for diagnosis of infections, monitoring antimicrobial therapy, and most important, alternative antimicrobial treatment infections with multi-drug resistant micro-organisms in humans.
Collapse
|
28
|
Abstract
Melittin is the principal toxic component in the venom of the European honey bee Apis mellifera and is a cationic, hemolytic peptide. It is a small linear peptide composed of 26 amino acid residues in which the amino-terminal region is predominantly hydrophobic whereas the carboxy-terminal region is hydrophilic due to the presence of a stretch of positively charged amino acids. This amphiphilic property of melittin has resulted in melittin being used as a suitable model peptide for monitoring lipid-protein interactions in membranes. In this review, the solution and membrane properties of melittin are highlighted, with an emphasis on melittin-membrane interaction using biophysical approaches. The recent applications of melittin in various cellular processes are discussed.
Collapse
Affiliation(s)
- H Raghuraman
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | |
Collapse
|
29
|
Biggs JS, Rosenfeld Y, Shai Y, Olivera BM. Conolysin-Mt: a conus peptide that disrupts cellular membranes. Biochemistry 2007; 46:12586-93. [PMID: 17927208 DOI: 10.1021/bi700775p] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conus venoms are estimated to comprise over 100,000 distinct pharmacologically active peptides, the majority probably targeting ion channels. Through the characterization of a cytolytic peptide from the venom of Conus mustelinus, conolysin-Mt, we expand the known conopeptide mechanisms to include association with and destruction of cellular membranes. A new 23AA conopeptide, conolysin-Mt has potent hemolytic activity when tested on human erythrocytes. At a concentration of 0.25 microM, the peptide permeabilized both negatively charged prokaryotic (PE:PG) and zwitterionic eukaryotic (PC:cholesterol) model membranes. The affinity constants (KA) of conolysin-Mt for PE:PG and PC:cholesterol model membranes were 0.9 +/- 0.3 x 10(7) and 3 +/- 1 x 10(7) M-1, respectively. In contrast, conolysin-Mt exhibited low antimicrobial activity (MIC > 50 microM) against two Escherichia coli strains, with an MIC for the Gram-positive S. aureus of 25-50 microM. The specificity of conolysin-Mt for native eukaryotic membranes is a novel feature of the peptide compared to other well-characterized cytolytic peptides such as melittin.
Collapse
Affiliation(s)
- Jason S Biggs
- Department of Biology, University of Utah, Salt Lake City, Utah 84108, USA
| | | | | | | |
Collapse
|
30
|
Silva LP, Leite JRSA, Brand GD, Regis WB, Tedesco AC, Azevedo RB, Freitas SM, Bloch C. Dermaseptins from Phyllomedusa oreades and Phyllomedusa distincta: liposomes fusion and/or lysis investigated by fluorescence and atomic force microscopy. Comp Biochem Physiol A Mol Integr Physiol 2007; 151:329-335. [PMID: 17409003 DOI: 10.1016/j.cbpa.2007.02.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 01/22/2007] [Accepted: 02/26/2007] [Indexed: 11/17/2022]
Abstract
Three dermaseptins, DS 01, DD K, and DD L, were compared with respect to their structural features and interactions with liposomes. Circular dichroic spectra at alcohols of different chain lengths revealed that DS 01 has the higher helicogenic potential in hydrophobic media. Binding of DS 01, DD K, and DD L to liposomes induced significant blue shifts of the emission spectra of the single tryptophan located at position 3 of all sequences indicating association of the peptides with bilayers. Kinetics evaluation of atomic force microscopy images evidenced the strong fusogenic activity of DS 01 whereas DD K and DD L showed increased lytic activities.
Collapse
Affiliation(s)
- Luciano P Silva
- Laboratório de Morfologia e Morfogênese, Departamento de Genética e Morfologia, Instituto de Biologia, Universidade de Brasília, Brasília, DF, 70910-900, Brazil; Laboratório de Espectrometria de Massa, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA)-Recursos Genéticos e Biotecnologia, Estação Parque Biológico, Final W5, Asa Norte, Brasília, DF, 70770-900, Brazil.
| | - José Roberto S A Leite
- Laboratório de Espectrometria de Massa, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA)-Recursos Genéticos e Biotecnologia, Estação Parque Biológico, Final W5, Asa Norte, Brasília, DF, 70770-900, Brazil; Campus Ministro Reis Velloso, Universidade Federal do Piauí-UFPI, Parnaíba, Piauí, 64202-020, PI, Brazil
| | - Guilherme D Brand
- Laboratório de Espectrometria de Massa, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA)-Recursos Genéticos e Biotecnologia, Estação Parque Biológico, Final W5, Asa Norte, Brasília, DF, 70770-900, Brazil
| | - Willian B Regis
- Grupo de Biofísica Molecular-Centro de Biologia Molecular Estrutural, Laboratório Nacional de Luz Síncrotron (LNLS), Campinas, SP, Brazil
| | - Antonio C Tedesco
- FFCLRP-USP, Universidade de São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | - Ricardo B Azevedo
- Laboratório de Morfologia e Morfogênese, Departamento de Genética e Morfologia, Instituto de Biologia, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Sonia M Freitas
- Laboratório de Biofísica, Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, 70910-900 Brazil
| | - Carlos Bloch
- Laboratório de Espectrometria de Massa, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA)-Recursos Genéticos e Biotecnologia, Estação Parque Biológico, Final W5, Asa Norte, Brasília, DF, 70770-900, Brazil.
| |
Collapse
|
31
|
Park HJ, Son DJ, Lee CW, Choi MS, Lee US, Song HS, Lee JM, Hong JT. Melittin inhibits inflammatory target gene expression and mediator generation via interaction with IkappaB kinase. Biochem Pharmacol 2006; 73:237-47. [PMID: 17067557 DOI: 10.1016/j.bcp.2006.09.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2006] [Revised: 09/21/2006] [Accepted: 09/22/2006] [Indexed: 12/25/2022]
Abstract
We previously found that bee venom (BV) and melittin (a major component of BV) has anti-inflammatory effect by reacting with the sulfhydryl group of p50 of NF-kappaB. Since the sulfhydryl group is present in IkappaB kinase (IKKalpha and IKKbeta), anti-inflammatory effect of melittin via interaction with IKKs was investigated. We first examined binding of melittin to IKKs using surface plasmon resonance analyzer. Melittin binds to IKKalpha (K(d) = 1.34 x 10(-9) M) and IKKbeta (K(d) = 1.01 x 10(-9) M). Consistent with the high binding affinity, melittin (5 and 10 microg/ml) and BV (0.5, 1 and 5 microg/ml) suppressed sodium nitroprusside, TNF-alpha and LPS induced-IKKbeta and IKKbeta activities, IkappaB release, and NF-kappaB activity as well as the expressions of iNOS and COX-2, and the generation of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) in Raw 264.7 mouse macrophages and synoviocytes obtained from rheumatoid arthritis patients. The binding affinities of melittin to mutant IKKs, was reduced, and the inhibitory effect of melittin on IKK and NF-kappaB activities, and NO and PGE(2) generation were abrogated by the reducing agents or in Raw 264.7 transfected with mutant plasmid IKKalpha (C178A) or IKKbeta (C179A). These results suggest that melittin binding to the sulfhydryl group of IKKs resulted in reduced IKK activities, IkappaB release, NF-kappaB activity and generation of inflammatory mediators, indicating that IKKs may be also anti-inflammatory targets of BV.
Collapse
Affiliation(s)
- Hye Ji Park
- College of Pharmacy, Chungbuk National University, 12 Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk 361-763, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ahmad A, Yadav SP, Asthana N, Mitra K, Srivastava SP, Ghosh JK. Utilization of an Amphipathic Leucine Zipper Sequence to Design Antibacterial Peptides with Simultaneous Modulation of Toxic Activity against Human Red Blood Cells. J Biol Chem 2006; 281:22029-22038. [PMID: 16717087 DOI: 10.1074/jbc.m602378200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The toxicity of naturally occurring or designed antimicrobial peptides is a major barrier for converting them into drugs. To synthesize antimicrobial peptides with reduced toxicity, several amphipathic peptides were designed based on the leucine zipper sequence. The first one was a leucine zipper peptide (LZP); in others, leucine residues at the a- and/or d-position were substituted with single or double alanine residues. The results showed that LZP and its analogs exhibited appreciable and similar antibacterial activity against the tested gram-positive and gram-negative bacteria. However, the substitution of alanine progressively lowered the toxicity of LZP against human red blood cells (hRBCs). The substitution of leucine with alanine impaired the binding and localization of LZP to hRBCs, but had little effect on the peptide-induced damage of Escherichia coli cells. Although LZP and its analogs exhibited similar permeability, secondary structures, and localization in negatively charged membranes, significant differences were observed among these peptides in zwitterionic membranes. The results suggest a novel approach for designing antibacterial peptides with modulation of toxicity against hRBCs by employing the leucine zipper sequence. Also, to the best of our knowledge, the results demonstrate that this sequence could be utilized to design novel cell-selective molecules for the first time.
Collapse
Affiliation(s)
- Aqeel Ahmad
- Molecular and Structural Biology Division, University of Oxford, Oxford OX3 7LD, United Kingdom
| | - Sharada Prasad Yadav
- Molecular and Structural Biology Division, University of Oxford, Oxford OX3 7LD, United Kingdom
| | - Neeta Asthana
- Molecular and Structural Biology Division, University of Oxford, Oxford OX3 7LD, United Kingdom
| | - Kalyan Mitra
- Electron Microscopy Unit, Central Drug Research Institute, Lucknow 226 001, India
| | | | - Jimut Kanti Ghosh
- Molecular and Structural Biology Division, University of Oxford, Oxford OX3 7LD, United Kingdom.
| |
Collapse
|
33
|
Bryksa BC, MacDonald LD, Patrzykat A, Douglas SE, Mattatall NR. A C-terminal glycine suppresses production of pleurocidin as a fusion peptide in Escherichia coli. Protein Expr Purif 2006; 45:88-98. [PMID: 15935695 DOI: 10.1016/j.pep.2005.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Accepted: 04/19/2005] [Indexed: 11/25/2022]
Abstract
The winter flounder (Pseudopleuronectes americanus) antimicrobial peptide pleurocidin was produced in Escherichia coli using a synthetic gene constructed by PCR. The gene expresses pleurocidin from pET21a fused to the C-terminus of an insoluble carrier peptide. Once expressed, the fusion peptide formed inclusion bodies in the cytoplasm that were collected, solubilized in guanidine-HCl, and chemically cleaved using hydroxylamine at a unique asparaginyl-glycyl dipeptide. This released recombinant pleurocidin (r-pleurocidin), which was purified using ultrafiltration followed by reverse phase chromatography. The r-pleurocidin peptide resolved as a single band (2.7 kDa) when analyzed by Tris-Tricine buffered SDS-PAGE, and its amino acid sequence was confirmed using tandem mass spectrometry. Extending the pleurocidin sequence with a C-terminal glycine (r-pleurocidin-G) suppressed production of the fusion peptide 15-fold. When pleurocidin was extended further to include aspartate (r-pleurocidin-GD), the same effect was observed, and when pleurocidin was extended with aspartate alone, no effect was observed. Expression of fusion peptide containing either r-pleurocidin-G or r-pleurocidin-GD with low concentrations of inductant caused E. coli to enter stationary phase prematurely, but did not affect overall growth rates. A partial production recovery of r-pleurocidin-G was achieved by inducing expression in stationary phase cells. We observed r-pleurocidin-G to have enhanced antimicrobial activity compared with r-pleurocidin, and we propose that this activity interferes with E. coli metabolism during expression. This antimicrobial effect is probably facilitated by residual solubility of the fusion peptide and by a C-terminal cap structure, which stabilizes the r-pleurocidin-G alpha-helix that is thought to be important for activity.
Collapse
Affiliation(s)
- Brian C Bryksa
- NRC Institute for Marine Biosciences, National Research Council Canada, Halifax, NS, Canada B3H 3Z1
| | | | | | | | | |
Collapse
|
34
|
Yenugu S, Hamil KG, French FS, Hall SH. Antimicrobial Actions of Human and Macaque Sperm Associated Antigen (SPAG) 11 Isoforms: influence of the N-terminal peptide. Mol Cell Biochem 2006; 284:25-37. [PMID: 16411022 DOI: 10.1007/s11010-005-9009-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Accepted: 09/15/2005] [Indexed: 11/30/2022]
Abstract
In addition to their role in sperm maturation, recent evidence has indicated that epididymal proteins have a role in male reproductive tract innate immunity. Herein we demonstrate that human and macaque epididymal protein isoforms in the SPAG (sperm associated antigen) 11 family, full length SPAG11C, K and L exhibit potent antibacterial activity against E. coli. Analysis of activities of the N- and C-terminal domains revealed that the human N-terminal peptide is bactericidal, while the C-terminal domains that contain the defensin-like 6 cysteine array in SPAG11C and partial arrays in SPAG11K and SPAG11L, lack antibacterial activity. The N-terminal peptide does not appear to contain all the determinants of activity since full-length human SPAG11C is more active than the isolated N-terminal peptide and since sulfhydryl reduction and alkylation, which would affect primarily the C-terminal peptides, completely abolished activities of the whole proteins. These results suggest that the structure conferred by the disulfide bonds in human SPAG11C contributes to the antibacterial activity of the whole molecule. The activities of the N-terminal peptide and of full length human SPAG11C were somewhat reduced in increasing NaCl concentrations. In contrast, the antibacterial activities of full length macaque SPAG11C, K and L were unaffected by the presence of NaCl suggesting a mechanism in the macaque that is less dependent upon electrostatic interactions. SPAG11C, K and L disrupted E. coli membranes but had no effect on erythrocyte membranes. Inhibition of E. coli RNA, DNA and protein synthesis by nonlethal concentrations of SPAG11 isoforms indicated an additional mechanism of bacterial killing.
Collapse
Affiliation(s)
- Suresh Yenugu
- Laboratories for Reproductive Biology, Department of Pediatrics, University of North Carolina, Chapel Hill, 27599-7500, USA
| | | | | | | |
Collapse
|
35
|
Chapter 7: Cell-Mimicking Supramolecular Assemblies Based on Polydiacetylene Lipids: Recent Development as “Smart” Materials for Colorimetric and Electrochemical Biosensing Devices. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1554-4516(06)04007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
36
|
Zelezetsky I, Pacor S, Pag U, Papo N, Shai Y, Sahl HG, Tossi A. Controlled alteration of the shape and conformational stability of alpha-helical cell-lytic peptides: effect on mode of action and cell specificity. Biochem J 2005; 390:177-88. [PMID: 15836439 PMCID: PMC1184573 DOI: 10.1042/bj20042138] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 04/05/2005] [Accepted: 04/19/2005] [Indexed: 11/17/2022]
Abstract
A novel method, based on the rational and systematic modulation of macroscopic structural characteristics on a template originating from a large number of natural, cell-lytic, amphipathic alpha-helical peptides, was used to probe how the depths and shapes of hydrophobic and polar faces and the conformational stability affect antimicrobial activity and selectivity with respect to eukaryotic cells. A plausible mode of action explaining the peptides' behaviour in model membranes, bacteria and host cells is proposed. Cytotoxic activity, in general, correlated strongly with the hydrophobic sector depth, and required a majority of aliphatic residue side chains having more than two carbon atoms. It also correlated significantly with the size of polar sector residues, which determines the penetration depth of the peptide via the so-called snorkel effect. Both an oblique gradient of long to short aliphatic residues along the hydrophobic face and a stabilized helical structure increased activity against host cells but not against bacteria, as revealed by haemolysis, flow cytofluorimetric studies on lymphocytes and surface plasmon resonance studies with model phosphatidylcholine/cholesterol membranes. The mode of interaction changes radically for a peptide with a stable, preformed helical conformation compared with others that form a structure only on membrane binding. The close correlation between effects observed in biological and model systems suggests that the 'carpet model' correctly represents the type of peptides that are bacteria-selective, whereas the behaviour of those that lyse host cells is more complex.
Collapse
Key Words
- amphipathic helix
- antimicrobial peptide
- cell specificity
- cell-lytic peptide
- mode of action
- surface plasmon resonance
- abu, 2-aminobutyric acid
- acp, aminocylcopentanecarboxylic acid
- aib, 2-aminoisobutyric acid
- amp, antimicrobial peptide
- dab, 2,4-diaminobutyric acid
- dap, 2,3-diaminopropionic acid
- deg, diethylglycine
- dpg, dipropylglycine
- fs, forward scattering
- hse, homoserine
- mh, mueller–hinton
- mic, minimum inhibitory concentration
- nle, norleucine
- nva, norvaline
- onpg, o-nitrophenyl β-d-galactopyranoside
- pc, phosphatidylcholine
- pe, phosphatidylethanolamine
- pg, phosphatidylglycerol
- pi, propidium iodide
- sem, scanning electron microscopy
- spr, surface plasmon resonance
- ss, side scattering
- tfe, trifluoroethanol
Collapse
Affiliation(s)
- Igor Zelezetsky
- *Department of Biochemistry, Biophysics and Macromolecular Chemistry, University of Trieste, I-34127 Trieste, Italy
| | - Sabrina Pacor
- †Department of Biomedical Sciences, University of Trieste, I-34127 Trieste, Italy
| | - Ulrike Pag
- ‡Institute for Medical Microbiology and Immunology, University of Bonn, 53105 Bonn, Germany
| | - Niv Papo
- §Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yechiel Shai
- §Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hans-Georg Sahl
- ‡Institute for Medical Microbiology and Immunology, University of Bonn, 53105 Bonn, Germany
| | - Alessandro Tossi
- *Department of Biochemistry, Biophysics and Macromolecular Chemistry, University of Trieste, I-34127 Trieste, Italy
| |
Collapse
|
37
|
Sun X, Chen S, Li S, Yan H, Fan Y, Mi H. Deletion of two C-terminal Gln residues of 12-26-residue fragment of melittin improves its antimicrobial activity. Peptides 2005; 26:369-75. [PMID: 15652642 DOI: 10.1016/j.peptides.2004.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Revised: 10/04/2004] [Accepted: 10/06/2004] [Indexed: 11/26/2022]
Abstract
In our previous paper it was shown that the two C-terminal Gln residues of a C-terminal 15-residue fragment, Mel(12-26) (GLPALISWIKRKRQQ-NH2), of melittin and a series of individual substituted analogues might not involved in the interaction with bacterial membranes. In this paper, peptides with one and two Gln residues deletion, respectively, Mel(12-25) and Mel(12-24), were synthesized and characterized. Both of the deletion peptides showed higher antimicrobial activities than the parent peptide, Mel(12-26). If both of the Gln residues of Mel(12-26) were respectively replaced by a hydrophilic amino acid Gly, the antimicrobial activity increased slightly. If the Gln residue of Mel(12-25) was replaced by a hydrophobic amino acid Leu, the antimicrobial activity changed little, although the substituted peptide possessed much higher hydrophobicity and higher alpha-helical conformation percentage in 1,1,1,3,3,3-hexafluoro-2-propanol/water determined by circular dichroism spectroscopy (CD) than the parent peptide. These results indicated that the two C-terminal residues might be indeed not involved in the binding to bacterial membranes. The antimicrobial activity increasing with the residue deletion may be caused by the decrease of the translational and rotational entropic cost of the binding of the peptides to bacterial membranes because of the lower molecular weights of the deletion peptides.
Collapse
Affiliation(s)
- Xuejun Sun
- Institute of Polymer Chemistry, State Key Laboratory of Function Polymer Materials for Adsorption and Separation, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | | | | | | | | | | |
Collapse
|
38
|
Dhople VM, Nagaraj R. Conformation and activity of delta-lysin and its analogs. Peptides 2005; 26:217-25. [PMID: 15629533 DOI: 10.1016/j.peptides.2004.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Revised: 09/16/2004] [Accepted: 09/21/2004] [Indexed: 10/26/2022]
Abstract
Delta-Lysin is a 26-residue hemolytic peptide secreted by Staphylococcus aureus. Unlike the bee venom peptide melittin, delta-lysin does not exhibit antibacterial activity. We have synthesized delta-lysin and several analogs wherein the N-terminal residues of the toxin were sequentially deleted. The toxin has three aspartic acids, four lysines and no prolines. Analogs were also generated in which all the aspartic acids were replaced with lysines. A proline residue was introduced in the native sequences as well as in the analogs where aspartic acids were replaced with lysines. We observed that 20- and 22-residue peptides corresponding to residues 7-26 and 5-26 of delta-lysin, respectively, had greater hemolytic activity than the parent peptide. These shorter peptides, unlike delta-lysin, did not self-associate to adopt alpha-helical conformation in water, at lytic concentrations. Introduction of proline or substitution of aspartic acids by lysines resulted in loss in propensity to adopt helical conformation in water. When proline was introduced in the peptides corresponding to the native toxin sequence, loss of hemolytic activity was observed. Substitution of all the aspartic acids with lysines resulted in enhanced hemolytic activity in all the analogs. However, when both proline and aspartic acid to lysine changes were made, only antibacterial activity was observed in the shorter peptides. Our investigations on delta-lysin and its analogs provide insights into the positioning of anionic, cationic residues and proline in determining hemolytic and antibacterial activities.
Collapse
Affiliation(s)
- Vishnu M Dhople
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | | |
Collapse
|
39
|
Asthana N, Yadav SP, Ghosh JK. Dissection of Antibacterial and Toxic Activity of Melittin. J Biol Chem 2004; 279:55042-50. [PMID: 15475354 DOI: 10.1074/jbc.m408881200] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Melittin, a naturally occurring antimicrobial peptide, exhibits strong lytic activity against both eukaryotic and prokaryotic cells. Despite a tremendous amount of work done, very little is known about the amino acid sequence, which regulates its toxic activity. With the goal of understanding the basis of toxic activity and poor cell selectivity in melittin, a leucine zipper motif has been identified. To evaluate the possible structural and functional roles of this motif, melittin and its two analogs, after substituting the heptadic leucine by alanine, were synthesized and characterized. Functional studies indicated that alanine substitution in the leucine zipper motif resulted in a drastic reduction of the hemolytic activity of melittin. However, interestingly, both the designed analogs exhibited antibacterial activity comparable to melittin. Mutations caused a significant decrease in the membrane permeability of melittin in zwitterionic but not in negatively charged lipid vesicles. Although both the analogs exhibited similar secondary structures in the presence of negatively charged lipid vesicles as melittin, they failed to adopt a significant helical structure in the presence of zwitterionic lipid vesicles. Results suggest that the substitution of heptadic leucine by alanine impaired the assembly of melittin in an aqueous environment and its localization only in zwitterionic but not in negatively charged membrane. Altogether, the results suggest the identification of a structural element in melittin, which probably plays a prominent role in regulating its toxicity but not antibacterial activity. The results indicate that cell selectivity in some antimicrobial peptides can probably be introduced by modulating their assembly in an aqueous environment.
Collapse
Affiliation(s)
- Neeta Asthana
- Molecular and Structural Biology Division, Central Drug Research Institute, Lucknow 226 001, India
| | | | | |
Collapse
|
40
|
Szabó Z, Budai M, Blaskó K, Gróf P. Molecular dynamics of the cyclic lipodepsipeptides' action on model membranes: effects of syringopeptin22A, syringomycin E, and syringotoxin studied by EPR technique. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1660:118-30. [PMID: 14757227 DOI: 10.1016/j.bbamem.2003.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Interaction of pore-forming toxins, syringopeptin22A (SP22A), syringomycin E (SRE) and syringotoxin (ST), with model membranes were investigated. Liposomes were prepared from saturated phospholipids (DPPC or DMPC) or from binary mixtures of DPPC with varying amount of DOPC or cholesterol. The effects of the three toxins on the molecular order and dynamics of the lipids were studied using electron paramagnetic resonance (EPR) techniques. SP22A was the most-, SRE less-, and ST the least effective to increase the ordering and to decrease the rotational correlation time of the lipid molecules. The effects were more pronounced: (a) on small unilamellar vesicles (SUVs) than on multilamellar vesicles (MUVs); (b) on pure DPPC than on DPPC-cholesterol or DPPC-DOPC mixtures. Fluidity changes, determined from EPR spectra at different concentrations of the toxin, suggested the shell structure of the lipid molecules in pore formation. EPR spectra observed at different depth of the hydrocarbon chain of the lipid molecules implied an active role of the lipid molecules in the architecture of the pores created in the presence of the three toxins. Temperature dependence of the fluidity of the SUVs treated with toxins has shown an abrupt and irreversible change in the molecular dynamics of the lipid molecules at a temperature close to the pretransition, depending on the toxin species and the lipid composition. Coalescence and aggregation of the SUVs were proposed as the origin of this irreversible change.
Collapse
Affiliation(s)
- Zsófia Szabó
- Faculty of Medicine, Institute of Biophysics and Radiation Biology, Semmelweis University, VIII Puskin u 9, POB 263, Budapest H-1444, Hungary
| | | | | | | |
Collapse
|
41
|
Petruzzelli R, Clementi ME, Marini S, Coletta M, Di Stasio E, Giardina B, Misiti F. Respiratory inhibition of isolated mammalian mitochondria by salivary antifungal peptide histatin-5. Biochem Biophys Res Commun 2003; 311:1034-40. [PMID: 14623286 DOI: 10.1016/j.bbrc.2003.10.104] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Histatin-5 is a peptide secreted in the human saliva, which possesses powerful antifungal activity. Previous studies have shown that this peptide exerts its candidacidal activity, through the inhibition of both mitochondrial respiration and the formation of reactive oxygen species. The purpose of the present study was to investigate the biological consequences of histatin-5 action on mammalian mitochondria to verify if the toxic mechanism exerted on mitochondria from Candida albicans is an exclusive for fungal cells. Moreover, hypothesising that the damage exerted on mitochondria may induce programmed cellular death pathways, we evaluated two main markers of apoptosis: the mitochondrial membrane potential (DeltaPsi) and the release of cytochrome c. The results obtained show that exposure of isolated mammalian mitochondria to histatin-5 determines: (i) a large inhibition of the respiratory chain at the level of complex I, (ii) a slight decrease in the mitochondrial membrane potential, and (iii) no release of cytochrome c.
Collapse
Affiliation(s)
- R Petruzzelli
- Department of Biomedical Sciences, University G. D'Annunzio Via dei Vestini, 31, 66100, Chieti Scalo (CH), Italy.
| | | | | | | | | | | | | |
Collapse
|
42
|
Qin C, Zhong X, Bu X, Ng NLJ, Guo Z. Dissociation of Antibacterial and Hemolytic Activities of an Amphipathic Peptide Antibiotic. J Med Chem 2003; 46:4830-3. [PMID: 14584933 DOI: 10.1021/jm0341352] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using an alanine-scanning method, we have found that the antibacterial and hemolytic activities of the amphipathic cyclic decapeptide antibiotic tyrocidine A depend on different structural components. Single substitution of glutamine-6 of the natural product with a cationic amino acid results in a therapeutic index enhancement of up to 140-fold. Successful dissociation of the two intimately associated properties should enable discovery of novel analogues with both high bacterial selectivity and antibacterial potency to counter microbial resistance.
Collapse
Affiliation(s)
- Chuanguang Qin
- Department of Chemistry and Biotechnology Research Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| | | | | | | | | |
Collapse
|
43
|
Ruissen ALA, Groenink J, Lommerse CH, Van 't Hof W, Veerman ECI, Nieuw Amerongen AV. Effects of carbohydrate polymers applicable in saliva substitutes on the anti-Candida activity of a histatin-derived peptide. Arch Oral Biol 2002; 47:749-56. [PMID: 12446181 DOI: 10.1016/s0003-9969(02)00063-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The effects of polymers applicable in saliva substitutes on the anti-Candida activity of the cationic antimicrobial peptide dhvar1 were investigated. Dhvar1 is a derivative of the 14 C-terminal amino acids of histatin 5. The effects of the following polymers were tested: uncharged hydroxyethylcellulose (HEC), negatively charged xanthan (XG) and three types of negatively charged carboxymethylcellulose (CMC) of identical mass but different degrees of carboxylic acid-group substitution (DS). The effects were tested at pH 4.0, 7.0 and 8.5 in a killing assay. HEC had no effect at any pH tested; XG and the three types of CMC caused a decrease in activity at increasing concentrations. Within the CMC group, inhibition increased slightly with increasing DS. These results suggest that the reduction in activity associated with these polymers is the result of electrostatic interaction between the positively charged peptides and the negatively charged polymers. In the absence of polymers, no effect of pH was found on the activity of dhvar1. In the presence of the charged polymers XG and CMC, lowering the pH from 7.0 to 4.0 resulted in a decrease of dhvar1 activity. It was concluded that, with respect to the retention of activity, HEC is the most appropriate polymer for use in combination with dhvar1. However, for use in saliva substitutes XG seems more suitable because of its rheological properties. If XG or CMC are to be used, their reductive effect on the anti-Candida activity of dhvar1 should be compensated for by increasing the peptide dose.
Collapse
Affiliation(s)
- Anita L A Ruissen
- Section of Oral Biochemistry, Department of Dental Basic Sciences, Academic Centre for Dentistry Amsterdam (ACTA), Van der Boechorststraat 7, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
44
|
Ruissen ALA, Groenink J, Van't Hof W, Walgreen-Weterings E, van Marle J, van Veen HA, Voorhout WF, Veerman ECI, Nieuw Amerongen AV. Histatin 5 and derivatives. Their localization and effects on the ultra-structural level. Peptides 2002; 23:1391-9. [PMID: 12182939 DOI: 10.1016/s0196-9781(02)00076-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Histatins, a family of cationic peptides present in saliva, are active against the opportunistic yeast Candida albicans. The mechanism of action is still unclear. Histatin 5 and more potent synthetic variants, dhvar4 and dhvar5, were used to study localization and effects on morphology on the ultra-structural level. Although all peptides induced leakage, no association with the plasma membrane, indicative for permanent pores, was observed with immuno-gold-labeling. Freeze-fracturing showed severe changes of the plasma membrane. Together with, for the dhvars, the loss of intracellular integrity, this suggests that leakage may be a secondary effect rather than an effect of formation of permanent pores.
Collapse
Affiliation(s)
- A L A Ruissen
- Department of Dental Basic Sciences, Section of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Patrzykat A, Friedrich CL, Zhang L, Mendoza V, Hancock REW. Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob Agents Chemother 2002; 46:605-14. [PMID: 11850238 PMCID: PMC127508 DOI: 10.1128/aac.46.3.605-614.2002] [Citation(s) in RCA: 243] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2001] [Revised: 10/19/2001] [Accepted: 11/21/2001] [Indexed: 11/20/2022] Open
Abstract
Cationic bactericidal peptides are components of natural host defenses against infections. While the mode of antibacterial action of cationic peptides remains controversial, several targets, including the cytoplasmic membrane and macromolecular synthesis, have been identified for peptides acting at high concentrations. The present study identified peptide effects at lower, near-lethal inhibitory concentrations. An amidated hybrid of the flounder pleurocidin and the frog dermaseptin (P-Der), two other pleurocidin derivatives, and pleurocidin itself were studied. At 2 microg/ml, the MIC, P-Der inhibited Escherichia coli growth in a broth dilution assay but did not cause bacterial death within 30 min, as estimated by viable count analysis. Consistent with this, P-Der demonstrated a weak ability to permeabilize membranes but was able to translocate across the lipid bilayer of unilamellar liposomes. Doses of 20 microg/ml or more reduced bacterial viable counts by about 2 log orders of magnitude within 5 min after peptide treatment. Abrupt loss of cell membrane potential, observed with a fluorescent dye, dipropylthiacarbocyanine, paralleled bacterial death but did not occur at the sublethal, inhibitory concentrations. Both lethal and sublethal concentrations of P-Der affected macromolecular synthesis within 5 min, as demonstrated by incorporation of [3H]thymidine, [3H]uridine, and [3H]histidine, but the effects were qualitatively distinct at the two concentrations. Variations of the inhibition pattern described above were observed for pleurocidin and two other derivatives. Our results indicate that peptides at their lowest inhibitory concentrations may be less capable of damaging cell membranes, while they maintain their ability to inhibit macromolecular synthesis. Better understanding of the effects of peptides acting at their MICs will contribute to the design of new peptides effective at lower, less toxic concentrations.
Collapse
Affiliation(s)
- Aleksander Patrzykat
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | | | | | |
Collapse
|
46
|
Esteve V, Blondelle S, Celda B, Pérez-Payá E. Stabilization of an alpha-helical conformation in an isolated hexapeptide inhibitor of calmodulin. Biopolymers 2001; 59:467-76. [PMID: 11745113 DOI: 10.1002/1097-0282(200112)59:7<467::aid-bip1052>3.0.co;2-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The conformational properties of two hexapeptides, Ac-LWRILW-NH(2) and its D-amino acid counterpart Ac-lwrilw-NH(2), identified as calmodulin inhibitors using mixture-based synthetic combinatorial library approaches, have been characterised by NMR and CD spectroscopy. The peptides fold into an alpha-helical conformation in aqueous solution. The observed short- and medium-range nuclear Overhauser effects were consistent with the formation of an alpha-helical structure and a reasonably well-defined set of structures was obtained by using restraints from the NMR data in simulated annealing calculations. Analysis of glycine-substitution analogues demonstrated that all the amino acids that make up the peptide sequence are important for the stabilization of the alpha-helical conformation. The results suggest that a well-defined set of interactions is indispensable to allow alpha-helix formation in this short hexapeptide.
Collapse
Affiliation(s)
- V Esteve
- Departament de Bioquímica i Biologia Molecular, Universitat de València, E-46100 Burjassot, València, Spain
| | | | | | | |
Collapse
|
47
|
Ruissen AL, Groenink J, Helmerhorst EJ, Walgreen-Weterings E, Van't Hof W, Veerman EC, Nieuw Amerongen AV. Effects of histatin 5 and derived peptides on Candida albicans. Biochem J 2001; 356:361-8. [PMID: 11368762 PMCID: PMC1221846 DOI: 10.1042/0264-6021:3560361] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Three anti-microbial peptides were compared with respect to their killing activity against Candida albicans and their ability to disturb its cellular and internal membranes. Histatin 5 is an anti-fungal peptide occurring naturally in human saliva, while dhvar4 and dhvar5 are variants of its active domain, with increased anti-microbial activity. dhvar4 has increased amphipathicity compared with histatin 5, whereas dhvar5 has amphipathicity comparable with that of histatin 5. All three peptides caused depolarization of the cytoplasmic and/or mitochondrial membrane, indicating membranolytic activity. For the variant peptides both depolarization and killing occurred at a faster rate. With FITC-labelled peptides, no association with the cytoplasmic membrane was observed, contradicting the formation of permanent transmembrane multimeric peptide pores. Instead, the peptides were internalized and act on internal membranes, as demonstrated with mitochondrion- and vacuole-specific markers. In comparison with histatin 5, the variant peptides showed a more destructive effect on mitochondria. Entry of the peptides and subsequent killing were dependent on the metabolic state of the cells. Blocking of the mitochondrial activity led to complete protection against histatin 5 activity, whereas that of dhvar4 was hardly affected and that of dhvar5 was affected only intermediately.
Collapse
Affiliation(s)
- A L Ruissen
- Academic Centre for Dentistry Amsterdam (ACTA), Department of Dental Basic Sciences, Section of Oral Biochemistry, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
48
|
Vilar M, Esteve V, Pallas V, Marcos JF, Perez-Paya E. Structural properties of carnation mottle virus p7 movement protein and its RNA-binding domain. J Biol Chem 2001; 276:18122-9. [PMID: 11279121 DOI: 10.1074/jbc.m100706200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Plant viral movement proteins (MPs) participate actively in the intra- and intercellular movement of RNA plant viruses to such an extent that MP dysfunction impairs viral infection. However, the molecular mechanism(s) of their interaction with cognate nucleic acids are not well understood, partly due to the lack of structural information. In this work, a protein dissection approach was used to gain information on the structural and RNA-binding properties of this class of proteins, as exemplified by the 61-amino acid residue p7 MP from carnation mottle virus (CarMV). Circular dichroism spectroscopy showed that CarMV p7 is an alpha/beta RNA-binding soluble protein. Using synthetic peptides derived from the p7 sequence, we have identified three distinct putative domains within the protein. EMSA showed that the central region, from residue 17 to 35 (represented by peptide p7(17-35)), is responsible for the RNA binding properties of CarMV p7. This binding peptide populates a nascent alpha-helix in water solution that is further stabilized in the presence of either secondary structure inducers, such as trifluoroethanol and monomeric SDS, or RNA (which also changes its conformation upon binding to the peptide). Thus, the RNA recognition appears to occur via an "adaptive binding" mechanism. Interestingly, the amino acid sequence and structural properties of the RNA-binding domain of p7 seem to be conserved among carmoviruses and some other RNA-binding proteins and peptides. The low conserved N terminus of p7 (peptide p7(1-16)) is unstructured in solution. In contrast, the highly conserved C terminus motif (peptide p7(40-61)) adopts a beta-sheet conformation in aqueous solution. Alanine scanning mutagenesis of the RNA-binding motif showed how selected positive charged amino acids are more relevant than others in the RNA binding process and how hydrophobic amino acid side chains would participate in the stabilization of the protein-RNA complex.
Collapse
Affiliation(s)
- M Vilar
- Departament de Bioquimica i Biologia Molecular, Universitat de València, E-46100 Burjassot, València, Spain
| | | | | | | | | |
Collapse
|
49
|
Mozsolits H, Wirth HJ, Werkmeister J, Aguilar MI. Analysis of antimicrobial peptide interactions with hybrid bilayer membrane systems using surface plasmon resonance. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1512:64-76. [PMID: 11334625 DOI: 10.1016/s0005-2736(01)00303-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The lipid binding behaviour of the antimicrobial peptides magainin 1, melittin and the C-terminally truncated analogue of melittin (21Q) was studied with a hybrid bilayer membrane system using surface plasmon resonance. In particular, the hydrophobic association chip was used which is composed of long chain alkanethiol molecules upon which liposomes adsorb spontaneously to create a hybrid bilayer membrane surface. Multiple sets of sensorgrams with different peptide concentrations were generated. Linearisation analysis and curve fitting using numerical integration analysis were performed to derive estimates for the association (k(a)) and dissociation (k(d)) rate constants. The results demonstrated that magainin 1 preferentially interacted with negatively charged dimyristoyl-L-alpha-phosphatidyl-DL-glycerol (DMPG), while melittin interacted with both zwitterionic dimyristoyl-L-alpha-phosphatidylcholine and anionic DMPG. In contrast, the C-terminally truncated melittin analogue, 21Q, exhibited lower binding affinity for both lipids, showing that the positively charged C-terminus of melittin greatly influences its membrane binding properties. Furthermore the results also demonstrated that these antimicrobial peptides bind to the lipids initially via electrostatic interactions which then enhances the subsequent hydrophobic binding. The biosensor results were correlated with the conformation of the peptides determined by circular dichroism analysis, which indicated that high alpha-helicity was associated with high binding affinity. Overall, the results demonstrated that biosensor technology provides a new experimental approach to the study of peptide-membrane interactions through the rapid determination of the binding affinity of bioactive peptides for phospholipids.
Collapse
Affiliation(s)
- H Mozsolits
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
50
|
Jelinek R, Kolusheva S. Polymerized lipid vesicles as colorimetric biosensors for biotechnological applications. Biotechnol Adv 2001; 19:109-18. [PMID: 14538086 DOI: 10.1016/s0734-9750(00)00064-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Supramolecular chemical assemblies composed of polydiacetylene (PDA) exhibit rapid colorimetric transitions upon specific interactions with a variety of biological analytes in aqueous solutions. Among the analytes that give rise to the unique blue-red color changes are lipophilic enzymes, antibacterial peptides, ions, antibodies, and membrane penetration enhancers. The chemical assemblies include conjugated PDA, responsible for the chromatic transitions, and the molecular recognition elements, which are either chemically or physically associated with the PDA. Thus, by incorporation of specific recognition elements, the system can be designed in ways allowing for highly selective identification of analytes. In particular, receptors and epitopes can be incorporated within the sensor assembly, which then determine the specificity of the colorimetric transitions. The PDA-based molecular assemblies are robust and can be readily applied to diagnosis of physiological molecules and for rapid screening of chemical and biological libraries, for example, in 96 well-plate platforms.
Collapse
Affiliation(s)
- R Jelinek
- Department of Chemistry, Stadler Minerva Center for Mesoscopic Macromolecular Engineering, Ben Gurion University of the Negev, Beersheba, Israel.
| | | |
Collapse
|