1
|
Abstract
Signal peptidases are the membrane bound enzymes that cleave off the amino-terminal signal peptide from secretory preproteins . There are two types of bacterial signal peptidases . Type I signal peptidase utilizes a serine/lysine catalytic dyad mechanism and is the major signal peptidase in most bacteria. Type II signal peptidase is an aspartic protease specific for prolipoproteins. This chapter will review what is known about the structure, function and mechanism of these unique enzymes.
Collapse
Affiliation(s)
- Mark Paetzel
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Science Building 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
2
|
Signal Peptidase Is Necessary and Sufficient for Site 1 Cleavage of RsiV in Bacillus subtilis in Response to Lysozyme. J Bacteriol 2018; 200:JB.00663-17. [PMID: 29358498 DOI: 10.1128/jb.00663-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/18/2018] [Indexed: 01/09/2023] Open
Abstract
Extracytoplasmic function (ECF) σ factors are a diverse family of alternative σ factors that allow bacteria to sense and respond to changes in the environment. σV is an ECF σ factor found primarily in low-GC Gram-positive bacteria and is required for lysozyme resistance in several opportunistic pathogens. In the absence of lysozyme, σV is inhibited by the anti-σ factor RsiV. In response to lysozyme, RsiV is degraded via the process of regulated intramembrane proteolysis (RIP). RIP is initiated by cleavage of RsiV at site 1, which allows the intramembrane protease RasP to cleave RsiV within the transmembrane domain at site 2 and leads to activation of σV Previous work suggested that RsiV is cleaved by signal peptidase at site 1. Here we demonstrate in vitro that signal peptidase is sufficient for cleavage of RsiV only in the presence of lysozyme and provide evidence that multiple Bacillus subtilis signal peptidases can cleave RsiV in vitro This cleavage is dependent upon the concentration of lysozyme, consistent with previous work that showed that binding to RsiV was required for σV activation. We also show that signal peptidase activity is required for site 1 cleavage of RsiV in vivo Thus, we demonstrate that signal peptidase is the site 1 protease for RsiV.IMPORTANCE Extracytoplasmic function (ECF) σ factors are a diverse family of alternative σ factors that respond to extracellular signals. The ECF σ factor σV is present in many low-GC Gram-positive bacteria and induces resistance to lysozyme, a component of the innate immune system. The anti-σ factor RsiV inhibits σV activity in the absence of lysozyme. Lysozyme binds RsiV, which initiates a proteolytic cascade leading to destruction of RsiV and activation of σV This proteolytic cascade is initiated by signal peptidase, a component of the general secretory system. We show that signal peptidase is necessary and sufficient for cleavage of RsiV at site 1 in the presence of lysozyme. This report describes a role for signal peptidase in controlling gene expression.
Collapse
|
3
|
Abstract
Signal peptidases are membrane proteases that play crucial roles in the protein transport pathway of bacteria. They cleave off the signal peptide from precursor proteins that are membrane inserted by the SecYEG or Tat translocons. Signal peptide cleavage releases the translocated protein from the inner membrane allowing the protein to be exported to the periplasm, outer membrane, or secreted into the medium. Signal peptidases are very important proteins to study. They are unique serine proteases with a Ser-Lys dyad, catalyze cleavage at the membrane surface, and are promising potential antibacterial drug targets. This chapter will focus on the isolation of signal peptidases and the preprotein substrates, as well as describe a peptide library approach for characterizing the substrate specificity.
Collapse
Affiliation(s)
- R E Dalbey
- The Ohio State University, Columbus, OH, United States.
| | - D Pei
- The Ohio State University, Columbus, OH, United States
| | - Ö D Ekici
- The Ohio State University, Newark, OH, United States
| |
Collapse
|
4
|
Ting YT, Harris PWR, Batot G, Brimble MA, Baker EN, Young PG. Peptide binding to a bacterial signal peptidase visualized by peptide tethering and carrier-driven crystallization. IUCRJ 2016; 3:10-9. [PMID: 26870377 PMCID: PMC4704075 DOI: 10.1107/s2052252515019971] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/22/2015] [Indexed: 05/22/2023]
Abstract
Bacterial type I signal peptidases (SPases) are membrane-anchored serine proteases that process the signal peptides of proteins exported via the Sec and Tat secretion systems. Despite their crucial importance for bacterial virulence and their attractiveness as drug targets, only one such enzyme, LepB from Escherichia coli, has been structurally characterized, and the transient nature of peptide binding has stymied attempts to directly visualize SPase-substrate complexes. Here, the crystal structure of SpsB, the type I signal peptidase from the Gram-positive pathogen Staphylococcus aureus, is reported, and a peptide-tethering strategy that exploits the use of carrier-driven crystallization is described. This enabled the determination of the crystal structures of three SpsB-peptide complexes, both with cleavable substrates and with an inhibitory peptide. SpsB-peptide interactions in these complexes are almost exclusively limited to the canonical signal-peptide motif Ala-X-Ala, for which clear specificity pockets are found. Minimal contacts are made outside this core, with the variable side chains of the peptides accommodated in shallow grooves or exposed faces. These results illustrate how high fidelity is retained despite broad sequence diversity, in a process that is vital for cell survival.
Collapse
Affiliation(s)
- Yi Tian Ting
- School of Biological Sciences, The University of Auckland, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1142, New Zealand
| | - Paul W R Harris
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1142, New Zealand; School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Gaelle Batot
- School of Biological Sciences, The University of Auckland , Auckland 1142, New Zealand
| | - Margaret A Brimble
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1142, New Zealand; School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Edward N Baker
- School of Biological Sciences, The University of Auckland, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1142, New Zealand
| | - Paul G Young
- School of Biological Sciences, The University of Auckland, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
5
|
Zhang W, Xia Y. ER type I signal peptidase subunit (LmSPC1) is essential for the survival of Locusta migratoria manilensis and affects moulting, feeding, reproduction and embryonic development. INSECT MOLECULAR BIOLOGY 2014; 23:269-285. [PMID: 24467622 DOI: 10.1111/imb.12080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The endoplasmic reticulum type I signal peptidase complex (ER SPC) is a conserved enzyme that cleaves the signal peptides of secretory or membrane preproteins. The deletion of this enzyme leads to the accumulation of uncleaved proteins in biomembranes and cell death. However, the physiological functions of ER SPC in insects are not fully understood. Here, a catalytic subunit gene of ER SPC, LmSPC1, was cloned from Locusta migratoria manilensis and its physiological functions were analysed by RNA interference (RNAi). The LmSPC1 open reading frame encoded a protein of 178 amino acids with all five conserved regions of signal peptidases. RNAi-mediated knockdown of LmSPC1 resulted in high mortality. Sixty-nine per cent of dead nymphs died of abnormal moulting, corresponding to decreased activity of moulting fluid protease. Moreover, insects in the RNAi group experienced a decline in food intake, and a decrease in the secretion of total protein and digestive enzymes from midgut tissues to the midgut lumen. Furthermore, the females produced fewer eggs and eggs with disrupted embryogenesis. These results indicate that LmSPC1 is required for the secretion of secretory proteins, affects physiological functions, including moulting, feeding, reproduction and embryonic development, and is essential for survival. Therefore, LmSPC1 may be a potential target for locust control.
Collapse
Affiliation(s)
- W Zhang
- Genetic Engineering Research Center, School of Life Science, Chongqing Engineering Research Center for Fungal Insecticide, The Key Laboratory of Gene Function and Expression Regulation, Chongqing University, Chongqing, China
| | | |
Collapse
|
6
|
Membrane proteases in the bacterial protein secretion and quality control pathway. Microbiol Mol Biol Rev 2012; 76:311-30. [PMID: 22688815 DOI: 10.1128/mmbr.05019-11] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Proteolytic cleavage of proteins that are permanently or transiently associated with the cytoplasmic membrane is crucially important for a wide range of essential processes in bacteria. This applies in particular to the secretion of proteins and to membrane protein quality control. Major progress has been made in elucidating the structure-function relationships of many of the responsible membrane proteases, including signal peptidases, signal peptide hydrolases, FtsH, the rhomboid protease GlpG, and the site 1 protease DegS. These enzymes employ very different mechanisms to cleave substrates at the cytoplasmic and extracytoplasmic membrane surfaces or within the plane of the membrane. This review highlights the different ways that bacterial membrane proteases degrade their substrates, with special emphasis on catalytic mechanisms and substrate delivery to the respective active sites.
Collapse
|
7
|
Mellado RP. Summing up particular features of protein secretion in Streptomyces lividans. World J Microbiol Biotechnol 2011. [DOI: 10.1007/s11274-011-0709-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Engineering of Bacillus subtilis 168 for increased nisin resistance. Appl Environ Microbiol 2009; 75:6688-95. [PMID: 19749059 DOI: 10.1128/aem.00943-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nisin is a natural bacteriocin produced commercially by Lactococcus lactis and widely used in the food industry as a preservative because of its broad host spectrum. Despite the low productivity and troublesome fermentation of L. lactis, no alternative cost-effective host has yet been found. Bacillus subtilis had been suggested as a potential host for the biosynthesis of nisin but was discarded due to its sensitivity to the lethal action of nisin. In this study, we have reevaluated the potential of B. subtilis as a host organism for the heterologous production of nisin. We applied transcriptome and proteome analyses of B. subtilis and identified eight genes upregulated in the presence of nisin. We demonstrated that the overexpression of some of these genes boosts the natural defenses of B. subtilis, which allows it to sustain higher levels of nisin in the medium. We also attempted to overcome the nisin sensitivity of B. subtilis by introducing the nisin resistance genes nisFEG and nisI from L. lactis under the control of a synthetic promoter library.
Collapse
|
9
|
Effects of altered TatC proteins on protein secretion efficiency via the twin-arginine translocation pathway of Bacillus subtilis. Microbiology (Reading) 2009; 155:1776-1785. [DOI: 10.1099/mic.0.027987-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein translocation via the Tat machinery in thylakoids and bacteria occurs through a cooperation between the TatA, TatB and TatC subunits, of which the TatC protein forms the initial Tat substrate-binding site. The Bacillus subtilis Tat machinery lacks TatB and comprises two separate TatAC complexes with distinct substrate specificities: PhoD is secreted by the TatAdCd complex, whereas YwbN is secreted by the TatAyCy complex. To study the role of the Gram-positive TatC proteins in Tat-dependent protein secretion efficiency, we applied several genetic engineering approaches to modify and analyse the B. subtilis TatCd and TatCy proteins. Cytoplasmic and transmembrane domain exchange between TatCd and TatCy resulted in stable chimeric proteins that were unable to secrete both known substrates of the B. subtilis Tat system. Site-directed mutagenesis of conserved residues in the N-terminal part of both TatC proteins revealed significant differences in the degree of importance of these residues between TatCd, TatCy and Escherichia coli TatC. In addition, two small C-terminal deletions in TatCy completely abolished YwbN translocation, indicating that this terminus is essential for Tat translocation activity. Important differences from previous observations for E. coli TatC and implications for substrate binding and translocation are discussed.
Collapse
|
10
|
Relaxed specificity of the Bacillus subtilis TatAdCd translocase in Tat-dependent protein secretion. J Bacteriol 2008; 191:196-202. [PMID: 18978042 DOI: 10.1128/jb.01264-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein translocation via the twin arginine translocation (TAT) pathway is characterized by the translocation of prefolded proteins across the hydrophobic lipid bilayer of the membrane. In Bacillus subtilis, two different Tat translocases are involved in this process, and both display different substrate specificities: PhoD is secreted via TatAdCd, whereas YwbN is secreted via TatAyCy. It was previously assumed that both TatAy and TatCy are essential for the translocation of the YwbN precursor. Through complementation studies, we now show that TatAy can be functionally replaced by TatAd when the latter is offered to the cells in excess amounts. Moreover, under conditions of overproduction, TatAdCd, in contrast to TatAyCy, shows an increased tolerance toward the acceptance of various Tat-dependent proteins.
Collapse
|
11
|
Abstract
Pili are a major surface feature of the human pathogen Streptococcus pyogenes (group A streptococcus [GAS]). The T3 pilus is composed of a covalently linked polymer of protein T3 (formerly Orf100 or Fct3) with an ancillary protein, Cpa, attached. A putative signal peptidase, SipA (also called LepA), has been identified in several pilus gene clusters of GAS. We demonstrate that the SipA2 allele of a GAS serotype M3 strain is required for synthesis of T3 pili. Heterologous expression in Escherichia coli showed that SipA2, along with the pilus backbone protein T3 and the sortase SrtC2, is required for polymerization of the T3 protein. In addition, we found that SipA2 is also required for linkage of the ancillary pilin protein Cpa to polymerized T3. Despite partial conservation of motifs of the type I signal peptidase family proteins, SipA lacks the highly conserved and catalytically important serine and lysine residues of these enzymes. Substitution of alanine for either of the two serine residues closest to the expected location of an active site serine demonstrated that these serine residues are both dispensable for T3 polymerization. Therefore, it seems unlikely that SipA functions as a signal peptidase. However, a T3 protein mutated at the P-1 position of the signal peptide cleavage site (alanine to arginine) was unstable in the presence of SipA2, suggesting that there is an interaction between SipA and T3. A possible chaperone-like function of SipA2 in T3 pilus formation is discussed.
Collapse
|
12
|
Darmon E, Lopez-Vernaza MA, Helness AC, Borking A, Wilson E, Thacker Z, Wardrope L, Leach DRF. SbcCD regulation and localization in Escherichia coli. J Bacteriol 2007; 189:6686-94. [PMID: 17644583 PMCID: PMC2045166 DOI: 10.1128/jb.00489-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 07/10/2007] [Indexed: 11/20/2022] Open
Abstract
The SbcCD complex and its homologues play important roles in DNA repair and in the maintenance of genome stability. In Escherichia coli, the in vitro functions of SbcCD have been well characterized, but its exact cellular role remains elusive. This work investigates the regulation of the sbcDC operon and the cellular localization of the SbcC and SbcD proteins. Transcription of the sbcDC operon is shown to be dependent on starvation and RpoS protein. Overexpressed SbcC protein forms foci that colocalize with the replication factory, while overexpressed SbcD protein is distributed through the cytoplasm.
Collapse
Affiliation(s)
- Elise Darmon
- Institute of Cell and Molecular Biology, University of Edinburgh, Kings Buildings, Edinburgh EH9 3JR, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Darmon E, Dorenbos R, Meens J, Freudl R, Antelmann H, Hecker M, Kuipers OP, Bron S, Quax WJ, Dubois JYF, van Dijl JM. A disulfide bond-containing alkaline phosphatase triggers a BdbC-dependent secretion stress response in Bacillus subtilis. Appl Environ Microbiol 2007; 72:6876-85. [PMID: 17088376 PMCID: PMC1636209 DOI: 10.1128/aem.01176-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gram-positive bacterium Bacillus subtilis secretes high levels of proteins into its environment. Most of these secretory proteins are exported from the cytoplasm in an unfolded state and have to fold efficiently after membrane translocation. As previously shown for alpha-amylases of Bacillus species, inefficient posttranslocational protein folding is potentially detrimental and stressful. In B. subtilis, this so-called secretion stress is sensed and combated by the CssRS two-component system. Two known members of the CssRS regulon are the htrA and htrB genes, encoding potential extracytoplasmic chaperone proteases for protein quality control. In the present study, we investigated whether high-level production of a secretory protein with two disulfide bonds, PhoA of Escherichia coli, induces secretion stress in B. subtilis. Our results show that E. coli PhoA production triggers a relatively moderate CssRS-dependent secretion stress response in B. subtilis. The intensity of this response is significantly increased in the absence of BdbC, which is a major determinant for posttranslocational folding of disulfide bond-containing proteins in B. subtilis. Our findings show that BdbC is required to limit the PhoA-induced secretion stress. This conclusion focuses interest on the BdbC-dependent folding pathway for biotechnological production of proteins with disulfide bonds in B. subtilis and related bacilli.
Collapse
Affiliation(s)
- Elise Darmon
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sanjay A, Miyazaki T, Itzstein C, Purev E, Horne WC, Baron R. Identification and functional characterization of an Src homology domain 3 domain-binding site on Cbl. FEBS J 2006; 273:5442-56. [PMID: 17094785 DOI: 10.1111/j.1742-4658.2006.05535.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cbl is an adaptor protein and ubiquitin ligase that binds and is phosphorylated by the nonreceptor tyrosine kinase Src. We previously showed that the primary interaction between Src and Cbl is mediated by the Src homology domain 3 (SH3) of Src binding to proline-rich sequences of Cbl. The peptide Cbl RDLPPPPPPDRP(540-551), which corresponds to residues 540-551 of Cbl, inhibited the binding of a GST-Src SH3 fusion protein to Cbl, whereas RDLAPPAPPPDR(540-551) did not, suggesting that Src binds to this site on Cbl in a class I orientation. Mutating prolines 543-548 reduced Src binding to the Cbl 479-636 fragment significantly more than mutating the prolines in the PPVPPR(494-499) motif, which was previously reported to bind Src SH3. Mutating Cbl prolines 543-548 to alanines substantially reduced Src binding to Cbl, Src-induced phosphorylation of Cbl, and the inhibition of Src kinase activity by Cbl. Expressing the mutated Cbl in osteoclasts induced a moderate reduction in bone-resorbing activity and increased amounts of Src protein. In contrast, disabling the tyrosine kinase-binding domain of full-length Cbl by mutating glycine 306 to glutamic acid, and thereby preventing the previously described binding of the tyrosine kinase-binding domain to the Src phosphotyrosine 416, had no effect on Cbl phosphorylation, the inhibition of Src activity by full-length Cbl, or bone resorption. These data indicate that the Cbl RDLPPPP(540-546) sequence is a functionally important binding site for Src.
Collapse
Affiliation(s)
- Archana Sanjay
- Departments of Orthopedics & Rehabilitation and Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | |
Collapse
|
15
|
Ekici OD, Karla A, Paetzel M, Lively MO, Pei D, Dalbey RE. Altered -3 substrate specificity of Escherichia coli signal peptidase 1 mutants as revealed by screening a combinatorial peptide library. J Biol Chem 2006; 282:417-25. [PMID: 17077081 DOI: 10.1074/jbc.m608779200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signal peptidase functions to cleave signal peptides from preproteins at the cell membrane. It has a substrate specificity for small uncharged residues at -1 (P1) and aliphatic residues at the -3 (P3) position. Previously, we have reported that certain alterations of the Ile-144 and Ile-86 residues in Escherichia coli signal peptidase I (SPase) can change the specificity such that signal peptidase is able to cleave pro-OmpA nuclease A in vitro after phenylalanine or asparagine residues at the -1 position (Karla, A., Lively, M. O., Paetzel, M. and Dalbey, R. (2005) J. Biol. Chem. 280, 6731-6741). In this study, screening of a fluorescence resonance energy transfer-based peptide library revealed that the I144A, I144C, and I144C/I86T SPase mutants have a more relaxed substrate specificity at the -3 position, in comparison to the wild-type SPase. The double mutant tolerated arginine, glutamine, and tyrosine residues at the -3 position of the substrate. The altered specificity of the I144C/I86T mutant was confirmed by in vivo processing of pre-beta-lactamase containing non-canonical arginine and glutamine residues at the -3 position. This work establishes Ile-144 and Ile-86 as key P3 substrate specificity determinants for signal peptidase I and demonstrates the power of the fluorescence resonance energy transfer-based peptide library approach in defining the substrate specificity of proteases.
Collapse
Affiliation(s)
- Ozlem Dogan Ekici
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
16
|
Escutia MR, Val G, Palacín A, Geukens N, Anné J, Mellado RP. Compensatory effect of the minorStreptomyces lividans type I signal peptidases on the SipY major signal peptidase deficiency as determined by extracellular proteome analysis. Proteomics 2006; 6:4137-46. [PMID: 16786486 DOI: 10.1002/pmic.200500927] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The developmentally complex bacterium Streptomyces lividans has the ability to produce and secrete a significant amount of protein and possesses four different type I signal peptidase genes (sipW, sipX, sipY and sipZ) that are unusually clustered in its chromosome. 2-DE and subsequent MS of extracellular proteins showed that proteins with typical export signals for type I and type II signal peptidases are the main components of the S. lividans secretome. Secretion of extracellular proteins is severely reduced in a strain deficient in the major type I signal peptidase (SipY). This deficiency was efficiently compensated by complementation with any of the other three signal peptidases as deduced from a comparison of the corresponding 2-D PAGE patterns with that of the wild-type strain.
Collapse
Affiliation(s)
- Marta R Escutia
- Centro Nacional de Biotecnología, Campus de la Universidad Autónoma, Cantoblanco, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
17
|
Fine A, Irihimovitch V, Dahan I, Konrad Z, Eichler J. Cloning, expression, and purification of functional Sec11a and Sec11b, type I signal peptidases of the archaeon Haloferax volcanii. J Bacteriol 2006; 188:1911-9. [PMID: 16484202 PMCID: PMC1426568 DOI: 10.1128/jb.188.5.1911-1919.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Across evolution, type I signal peptidases are responsible for the cleavage of secretory signal peptides from proteins following their translocation across membranes. In Archaea, type I signal peptidases combine domain-specific features with traits found in either their eukaryal or bacterial counterparts. Eukaryal and bacterial type I signal peptidases differ in terms of catalytic mechanism, pharmacological profile, and oligomeric status. In this study, genes encoding Sec11a and Sec11b, two type I signal peptidases of the halophilic archaeon Haloferax volcanii, were cloned. Although both genes are expressed in cells grown in rich medium, gene deletion approaches suggest that Sec11b, but not Sec11a, is essential. For purification purposes, tagged versions of the protein products of both genes were expressed in transformed Haloferax volcanii, with Sec11a and Sec11b being fused to a cellulose-binding domain capable of interaction with cellulose in hypersaline surroundings. By employing an in vitro signal peptidase assay designed for use with high salt concentrations such as those encountered by halophilic archaea such as Haloferax volcanii, the signal peptide-cleaving activities of both isolated membranes and purified Sec11a and Sec11b were addressed. The results show that the two enzymes differentially cleave the assay substrate, raising the possibility that the Sec11a and Sec11b serve distinct physiological functions.
Collapse
Affiliation(s)
- Amir Fine
- Dept. of Life Sciences, Ben Gurion University, P.O. Box 653, Beersheva 84105, Israel
| | | | | | | | | |
Collapse
|
18
|
Horne WC, Sanjay A, Bruzzaniti A, Baron R. The role(s) of Src kinase and Cbl proteins in the regulation of osteoclast differentiation and function. Immunol Rev 2006; 208:106-25. [PMID: 16313344 DOI: 10.1111/j.0105-2896.2005.00335.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The osteoclast resorbs mineralized bone during bone development, homeostasis, and repair. The deletion of the gene encoding the nonreceptor tyrosine kinase c-Src produces an osteopetrotic skeletal phenotype that is the consequence of the inability of the mature osteoclast to efficiently resorb bone. Src-/- osteoclasts exhibit reduced motility and abnormal organization of the apical secretory domain (the ruffled border) and attachment-related cytoskeletal elements that are necessary for bone resorption. A key function of Src in osteoclasts is to promote the rapid assembly and disassembly of the podosomes, the specialized integrin-based attachment structures of osteoclasts and other highly motile cells. Once recruited to the activated integrins, especially alphavbeta3), by the adhesion tyrosine kinase Pyk2, Src binds and phosphorylates Cbl and Cbl-b, homologous multisite adapter proteins with ubiquitin ligase activity. The Cbl proteins in turn recruit and activate additional signaling effectors, including phosphatidylinositol 3-kinase and dynamin, which play key roles in the development of cell polarity and the regulation of cell attachment and motility. In addition, Src and the Cbl proteins contribute to signaling cascades that are activated by several important receptors, including receptor activator of nuclear factor kappaB and the macrophage colony-stimulating factor receptor, and also downregulate the signaling from many of these receptors.
Collapse
Affiliation(s)
- William C Horne
- Department of Orthopaedics and Rehabilitation and Cell Biology, Yale University School of Medicine, New Haven, CT 06520-8044, USA
| | | | | | | |
Collapse
|
19
|
Tuteja R. Type I signal peptidase: An overview. Arch Biochem Biophys 2005; 441:107-11. [PMID: 16126156 DOI: 10.1016/j.abb.2005.07.013] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 07/23/2005] [Indexed: 11/28/2022]
Abstract
The signal hypothesis suggests that proteins contain information within their amino acid sequences for protein targeting to the membrane. These distinct targeting sequences are cleaved by specific enzymes known as signal peptidases. There are various type of signal peptidases known such as type I, type II, and type IV. Type I signal peptidases are indispensable enzymes, which catalyze the cleavage of the amino-terminal signal-peptide sequences from preproteins, which are translocated across biological membranes. These enzymes belong to a novel group of serine proteases, which generally utilize a Ser-Lys or Ser-His catalytic dyad instead of the prototypical Ser-His-Asp triad. Despite having no distinct consensus sequence other than a commonly found 'Ala-X-Ala' motif preceding the cleavage site, signal sequences are recognized by type I signal peptidase with high fidelity. Type I signal peptidases have been found in bacteria, archaea, fungi, plants, and animals. In this review, I present an overview of bacterial type I signal peptidases and describe some of their properties in detail.
Collapse
Affiliation(s)
- Renu Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
20
|
Bardy SL, Ng SYM, Carnegie DS, Jarrell KF. Site-directed mutagenesis analysis of amino acids critical for activity of the type I signal peptidase of the archaeon Methanococcus voltae. J Bacteriol 2005; 187:1188-91. [PMID: 15659694 PMCID: PMC545723 DOI: 10.1128/jb.187.3.1188-1191.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Site-directed mutagenesis studies of the signal peptidase of the methanogenic archaeon Methanococcus voltae identified three conserved residues (Ser52, His122, and Asp148) critical for activity. The requirement for one conserved aspartic acid residue distinguishes the archaeal enzyme from both the Escherichia coli and yeast Sec11 enzymes.
Collapse
Affiliation(s)
- Sonia L Bardy
- Department of Microbiology and Immunology, Queen's University, Kingston, ON, Canada K7L 3N6
| | | | | | | |
Collapse
|
21
|
van Roosmalen ML, Geukens N, Jongbloed JDH, Tjalsma H, Dubois JYF, Bron S, van Dijl JM, Anné J. Type I signal peptidases of Gram-positive bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1694:279-97. [PMID: 15546672 DOI: 10.1016/j.bbamcr.2004.05.006] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Accepted: 05/12/2004] [Indexed: 11/21/2022]
Abstract
Proteins that are exported from the cytoplasm to the periplasm and outer membrane of Gram-negative bacteria, or the cell wall and growth medium of Gram-positive bacteria, are generally synthesized as precursors with a cleavable signal peptide. During or shortly after pre-protein translocation across the cytoplasmic membrane, the signal peptide is removed by signal peptidases. Importantly, pre-protein processing by signal peptidases is essential for bacterial growth and viability. This review is focused on the signal peptidases of Gram-positive bacteria, Bacillus and Streptomyces species in particular. Evolutionary concepts, current knowledge of the catalytic mechanism, substrate specificity requirements and structural aspects are addressed. As major insights in signal peptidase function and structure have been obtained from studies on the signal peptidase LepB of Escherichia coli, similarities and differences between this enzyme and known Gram-positive signal peptidases are highlighted. Notably, while the incentive for previous research on Gram-positive signal peptidases was largely based on their role in the biotechnologically important process of protein secretion, present-day interest in these essential enzymes is primarily derived from the idea that they may serve as targets for novel anti-microbials.
Collapse
Affiliation(s)
- Maarten L van Roosmalen
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Karla A, Lively MO, Paetzel M, Dalbey R. The Identification of Residues That Control Signal Peptidase Cleavage Fidelity and Substrate Specificity. J Biol Chem 2005; 280:6731-41. [PMID: 15598653 DOI: 10.1074/jbc.m413019200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signal peptidase, which removes signal peptides from preproteins, has a substrate specificity for small uncharged residues at -1 (P1) and small or larger aliphatic residues at the -3 (P3) position. Structures of the catalytic domain with a 5S-penem inhibitor and a lipopeptide inhibitor reveal candidate residues that make up the S1 and S3 pockets that bind the P1 and P3 specificity residues of the preprotein substrate. We have used site-directed mutagenesis, mass spectrometric analysis, and in vivo and in vitro activity assays as well as molecular modeling to examine the importance of the substrate pocket residues. Generally, we find that the S1 and S3 binding sites can tolerate changes that are expected to increase or decrease the size of the pocket without large effects on activity. One residue that contributes to the high fidelity of cleavage of signal peptidase is the Ile-144 residue. Changes of the Ile-144 residue to cysteine result in cleavage at multiple sites, as determined by mass spectrometry and Edman sequencing analysis. In addition, we find that signal peptidase is able to cleave after phenylalanine at the -1 residue in a double mutant in which both Ile-86 and Ile-144 were changed to an alanine. Also, alteration of the Ile-144 and Ile-86 residues to the corresponding residues found in the homologous Imp1 protease changes the specificity to promote cleavage following a -1 Asn residue. This work shows that Ile-144 and Ile-86 contribute to the signal peptidase substrate specificity and that Ile-144 is important for the accuracy of the cleavage reaction.
Collapse
Affiliation(s)
- Andrew Karla
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
23
|
Zanen G, Antelmann H, Westers H, Hecker M, van Dijl JM, Quax WJ. FlhF, the third signal recognition particle-GTPase of Bacillus subtilis, is dispensable for protein secretion. J Bacteriol 2004; 186:5956-60. [PMID: 15317803 PMCID: PMC516824 DOI: 10.1128/jb.186.17.5956-5960.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis contains three proteins of the signal recognition particle-GTPase family known as Ffh, FtsY, and FlhF. Here we show that FlhF is dispensable for protein secretion, unlike Ffh and FtsY. Although flhF is located in the fla/che operon, B. subtilis 168 flhF mutant cells assemble flagella and are motile.
Collapse
Affiliation(s)
- Geeske Zanen
- Department of Molecular Bacteriology, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
24
|
Bonnemain C, Raynaud C, Réglier-Poupet H, Dubail I, Frehel C, Lety MA, Berche P, Charbit A. Differential roles of multiple signal peptidases in the virulence of Listeria monocytogenes. Mol Microbiol 2004; 51:1251-66. [PMID: 14982622 DOI: 10.1111/j.1365-2958.2004.03916.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Most bacteria contain one type I signal peptidase (Spase I) for cleavage of signal peptides from exported and secreted proteins. Here, we identified a locus encoding three contiguous Spase I genes in the genome of Listeria monocytogenes. The deduced Sip proteins (denoted SipX, SipY and SipZ) are significantly similar to SipS and SipT, the major SPase I proteins of Bacillus subtilis (38% to 44% peptidic identity). We studied the role of these multiple signal peptidases in bacterial pathogenicity by constructing a series of single- and double-chromosomal knock-out mutants. Inactivation of sipX did not affect intracellular multiplication of L. monocytogenes but significantly reduced bacterial virulence (approximately 100-fold). Inactivation of sipZ impaired the secretion of phospholipase C (PC-PLC) and listeriolysin O (LLO), restricted intracellular multiplication and almost abolished virulence (LD(50) of 10(8.3)), inactivation of sipY had no detectable effects. Most importantly, a mutant expressing only SipX was impaired in intracellular survival and strongly attenuated in the mouse (LD(50) of 10(7.2)), whereas, a mutant expressing only SipZ behaved like wild-type EGD in all the assays performed. The data establish that SipX and SipZ perform distinct functions in bacterial pathogenicity and that SipZ is the major Spase I of L. monocytogenes. This work constitutes the first report on the differential role of multiple Spases I in a pathogenic bacterium and suggests a possible post-translational control mechanism of virulence factors expression.
Collapse
Affiliation(s)
- Claire Bonnemain
- INSERM U-570, CHU Necker-Enfants Malades, 156, rue de Vaugirard, 75730 Paris Cedex 15-France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The twenty-first century is beginning with a sharp turn in the field of cancer therapy. Molecular targeted therapies against specific oncogenic events are now possible. The BCR-ABL story represents a notable example of how research from the fields of cytogenetics, retroviral oncology, protein phosphorylation, and small molecule chemical inhibitors can lead to the development of a successful molecular targeted therapy. Imatinib mesylate (Gleevec, STI571, or CP57148B) is a direct inhibitor of ABL (ABL1), ARG (ABL2), KIT, and PDGFR tyrosine kinases. This drug has had a major impact on the treatment of chronic myelogenous leukemia (CML) as well as other blood neoplasias and solid tumors with etiologies based on activation of these tyrosine kinases. Analysis of CML patients resistant to BCR-ABL suppression by Imatinib mesylate coupled with the crystallographic structure of ABL complexed to this inhibitor have shown how structural mutations in ABL can circumvent an otherwise potent anticancer drug. The successes and limitations of Imatinib mesylate hold general lessons for the development of alternative molecular targeted therapies in oncology.
Collapse
Affiliation(s)
- Stephane Wong
- Molecular Biology Interdepartmental PhD Program/UCLA, Los Angeles, California 90095-1662, USA.
| | | |
Collapse
|
26
|
Lammertyn E, Van Mellaert L, Meyen E, Lebeau I, De Buck E, Anné J, Geukens N. Molecular and functional characterization of type I signal peptidase from Legionella pneumophila. MICROBIOLOGY-SGM 2004; 150:1475-1483. [PMID: 15133109 DOI: 10.1099/mic.0.26973-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Legionella pneumophila is a facultative intracellular Gram-negative rod-shaped bacterium that has become an important cause of both community-acquired and nosocomial pneumonia. Numerous studies concerning the unravelling of the virulence mechanism of this important pathogen have been initiated. As evidence is now accumulating for the involvement of protein secretion systems in bacterial virulence in general, the type I signal peptidase (LepB) of L. pneumophila was of particular interest. This endopeptidase plays an essential role in the processing of preproteins carrying a typical amino-terminal signal peptide, upon translocation across the cytoplasmic membrane. This paper reports the cloning and the transcriptional analysis of the L. pneumophila lepB gene encoding the type I signal peptidase (SPase). Reverse transcription PCR experiments showed clear lepB expression when L. pneumophila was grown both in culture medium, and also intracellularly in Acanthamoeba castellanii, a natural eukaryotic host of L. pneumophila. In addition, LepB was shown to be encoded by a polycistronic mRNA transcript together with two other proteins, i.e. a LepA homologue and a ribonuclease III homologue. SPase activity of the LepB protein was demonstrated by in vivo complementation analysis in a temperature-sensitive Escherichia coli lepB mutant. Protein sequence and predicted membrane topology were compared to those of leader peptidases of other Gram-negative human pathogens. Most strikingly, a strictly conserved methionine residue in the substrate binding pocket was replaced by a leucine residue, which might influence substrate recognition. Finally it was shown by in vivo experiments that L. pneumophila LepB is a target for (5S,6S)-6-[(R)-acetoxyethyl]-penem-3-carboxylate, a specific inhibitor of type I SPases.
Collapse
Affiliation(s)
- Elke Lammertyn
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Lieve Van Mellaert
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Eef Meyen
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Ilya Lebeau
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Emmy De Buck
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Jozef Anné
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Nick Geukens
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| |
Collapse
|
27
|
Kulanthaivel P, Kreuzman AJ, Strege MA, Belvo MD, Smitka TA, Clemens M, Swartling JR, Minton KL, Zheng F, Angleton EL, Mullen D, Jungheim LN, Klimkowski VJ, Nicas TI, Thompson RC, Peng SB. Novel lipoglycopeptides as inhibitors of bacterial signal peptidase I. J Biol Chem 2004; 279:36250-8. [PMID: 15173160 DOI: 10.1074/jbc.m405884200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signal peptidase (SPase) I is responsible for the cleavage of signal peptides of many secreted proteins in bacteria. Because of its unique physiological and biochemical properties, it serves as a potential target for development of novel antibacterial agents. In this study, we report the production, isolation, and structure determination of a family of structurally related novel lipoglycopeptides from a Streptomyces sp. as inhibitors of SPase I. Detailed spectroscopic analyses, including MS and NMR, revealed that these lipoglycopeptides share a common 14-membered cyclic peptide core, an acyclic tripeptide chain, and a deoxy-alpha-mannose sugar, but differ in the degree of oxidation of the N-methylphenylglycine residue and the length and branching of the fatty acyl chain. Biochemical analysis demonstrated that these peptides are potent and competitive inhibitors of SPase I with K(i) 50 to 158 nm. In addition, they showed modest antibacterial activity against a panel of pathogenic Gram-positive and Gram-negative bacteria with minimal inhibitory concentration of 8-64 microm against Streptococcus pneumonniae and 4-8 microm against Escherichia coli. Notably, they mechanistically blocked the protein secretion in whole cells as demonstrated by inhibiting beta-lactamase release from Staphylococcus aureus. Taken together, the present discovery of a family of novel lipoglycopeptides as potent inhibitors of bacterial SPase I may lead to the development of a novel class of broad-spectrum antibiotics.
Collapse
|
28
|
Esser K, Jan PS, Pratje E, Michaelis G. The mitochondrial IMP peptidase of yeast: functional analysis of domains and identification of Gut2 as a new natural substrate. Mol Genet Genomics 2004; 271:616-26. [PMID: 15118906 DOI: 10.1007/s00438-004-1011-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Accepted: 03/31/2004] [Indexed: 11/24/2022]
Abstract
The mitochondrial inner membrane peptidase IMP of Saccharomyces cerevisiae is required for proteolytic processing of certain mitochondrially and nucleus-encoded proteins during their export from the matrix into the inner membrane or the intermembrane space. The membrane-associated signal peptidase complex is composed of the two catalytic subunits, Imp1 and Imp2, and the Som1 protein. The IMP subunits are thought to function in membrane association, interaction and stabilisation of subunits, substrate specificity, and proteolysis. We have analysed inner membrane peptidase mutants and substrates to gain more insight into the functions of various domains and investigate the basis of substrate recognition. The results suggest that certain conserved glycine residues in the second and third conserved regions of Imp1 and Imp2 are important for stabilisation of the Imp complex and for the proteolytic activity of the subunits, respectively. The non-conserved C-terminal parts of the Imp subunits are important for their proteolytic activities. The C-terminal region of Imp2, comprising a predicted second transmembrane segment, is dispensable for the stability of Imp2 and Imp1, and cannot functionally substitute for the C-terminal segment of Imp1. Alteration of the Imp2 cleavage site in cytochrome c(1) (from A/M to N/D) reveals the specificity of the Imp2 peptidase. In addition, we have identified Gut2, the mitochondrial FAD-dependent glycerol-3-phosphate dehydrogenase, as a new substrate for Imp1. Failure to cleave the Gut2 precursor may contribute to the pet phenotype of certain imp mutants. Gut2 is associated with the inner membrane, and is essential for growth on glycerol-containing medium. Suggested functions of the analysed residues and domains of the IMP subunits, characteristics of the cleavage sites of substrates and implications for the phenotypes of imp mutants are discussed.
Collapse
Affiliation(s)
- K Esser
- Botanisches Institut, Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | | | | | | |
Collapse
|
29
|
Antelmann H, Darmon E, Noone D, Veening JW, Westers H, Bron S, Kuipers OP, Devine KM, Hecker M, van Dijl JM. The extracellular proteome of Bacillus subtilis under secretion stress conditions. Mol Microbiol 2003; 49:143-56. [PMID: 12823817 DOI: 10.1046/j.1365-2958.2003.03565.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The accumulation of malfolded proteins in the cell envelope of the Gram-positive eubacterium Bacillus subtilis was previously shown to provoke a so-called secretion stress response. In the present studies, proteomic approaches were employed to identify changes in the extracellular proteome of B. subtilis in response to secretion stress. The data shows that, irrespective of the way in which secretion stress is imposed on the cells, the levels of only two extracellular proteins, HtrA and YqxI, display major variations in a parallel manner. Whereas the extracellular level of the HtrA protease is determined through transcriptional regulation, the level of YqxI in the growth medium is determined post-transcriptionally in an HtrA-dependent manner. In the absence of secretion stress, the extracellular levels of HtrA and YqxI are low because of extracytoplasmic proteolysis. Finally, the protease active site of HtrA is dispensable for post-transcriptional YqxI regulation. It is known that Escherichia coli HtrA has combined protease and chaperone-like activities. As this protein shares a high degree of similarity with B. subtilis HtrA, it can be hypothesized that both activities are conserved in B. subtilis HtrA. Thus, a chaperone-like activity of B. subtilis HtrA could be involved in the appearance of YqxI on the extracellular proteome.
Collapse
Affiliation(s)
- Haike Antelmann
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität Greifswald, F. -L. -Jahn-Str. 15, D-17487 Greifswald, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tjalsma H, Bron S, van Dijl JM. Complementary impact of paralogous Oxa1-like proteins of Bacillus subtilis on post-translocational stages in protein secretion. J Biol Chem 2003; 278:15622-32. [PMID: 12586834 DOI: 10.1074/jbc.m301205200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mitochondria, chloroplasts, and Gram-negative eubacteria, Oxa1p(-like) proteins are critical for the biogenesis of membrane proteins. Here we show that the Gram-positive eubacterium Bacillus subtilis contains two functional Oxa1p orthologues, denoted SpoIIIJ and YqjG. The presence of either SpoIIIJ or YqjG is required for cell viability. Whereas SpoIIIJ is required for sporulation, YqjG is dispensable for this developmental process. The stability of two membrane proteins was found to be mildly affected upon SpoIIIJ limitation in the absence of YqjG. Surprisingly, the topology and stability of other membrane proteins remained unaffected under these conditions. In contrast, SpoIIIJ- and YqjG-limiting conditions resulted in a strong post-translocational defect in the stability of secretory proteins. Together, these data indicate that SpoIIIJ and YqjG of B. subtilis are involved in both membrane protein biogenesis and protein secretion. However, the reduced stability of secretory proteins seems to be the most prominent phenotype of SpoIIIJ/YqjG-depleted B. subtilis cells. In conclusion, our observations show that SpoIIIJ and YqjG have different, but overlapping functions in B. subtilis. Most importantly, it seems that different members of the Oxa1p protein family have acquired at least partly distinct, species-specific, functions that are essential for life.
Collapse
Affiliation(s)
- Harold Tjalsma
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, P. O. Box 14, 9750 AA Haren, The Netherlands
| | | | | |
Collapse
|
31
|
Venema R, Tjalsma H, van Dijl JM, de Jong A, Leenhouts K, Buist G, Venema G. Active lipoprotein precursors in the Gram-positive eubacterium Lactococcus lactis. J Biol Chem 2003; 278:14739-46. [PMID: 12584195 DOI: 10.1074/jbc.m209857200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipid-modified proteins play important roles at the interface between eubacterial cells and their environment. The importance of lipoprotein processing by signal peptidase II (SPase II) is underscored by the fact that this enzyme is essential for viability of the Gram-negative eubacterium Escherichia coli. In contrast, SPase II is not essential for growth and viability of the Gram-positive eubacterium Bacillus subtilis. This could be due to alternative amino-terminal lipoprotein processing, which was shown previously to occur in SPase II mutants of B. subtilis. Alternatively, uncleaved lipoprotein precursors might be functional. To explore further the importance of lipoprotein processing in Gram-positive eubacteria, an SPase II mutant strain of Lactococcus lactis was constructed. Although some of the 39 (predicted) lactococcal lipoproteins, such as PrtM and OppA, are essential for growth in milk, the growth of SPase II mutant L. lactis cells in this medium was not affected. Furthermore, the activity of the strictly PrtM-dependent extracellular protease PrtP, which is required for casein degradation, was not impaired in the absence of SPase II. Importantly, no alternative processing of pre-PrtM and pre-OppA was observed in cells lacking SPase II. Taken together, these findings show for the first time that authentic lipoprotein precursors retain biological activity.
Collapse
Affiliation(s)
- Roelke Venema
- Department of Genetics, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- Mark Paetzel
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
33
|
Jongbloed JDH, Antelmann H, Hecker M, Nijland R, Bron S, Airaksinen U, Pries F, Quax WJ, van Dijl JM, Braun PG. Selective contribution of the twin-arginine translocation pathway to protein secretion in Bacillus subtilis. J Biol Chem 2002; 277:44068-78. [PMID: 12218047 DOI: 10.1074/jbc.m203191200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The availability of the complete genome sequence of Bacillus subtilis has allowed the prediction of all exported proteins of this Gram-positive eubacterium. Recently, approximately 180 secretory and 114 lipoprotein signal peptides were predicted to direct protein export from the cytoplasm. Whereas most exported proteins appear to use the Sec pathway, 69 of these proteins could potentially use the Tat pathway, as their signal peptides contain RR- or KR-motifs. In the present studies, proteomic techniques were applied to verify how many extracellular B. subtilis proteins follow the Tat pathway. Strikingly, the extracellular accumulation of 13 proteins with potential RR/KR-signal peptides was Tat-independent, showing that their RR/KR-motifs are not recognized by the Tat machinery. In fact, only the phosphodiesterase PhoD was shown to be secreted in a strictly Tat-dependent manner. Sodium azide-inhibition of SecA strongly affected the extracellular appearance of de novo synthesized proteins, including the lipase LipA and two other proteins with predicted RR/KR-signal peptides. The SecA-dependent export of pre-LipA is particularly remarkable, because its RR-signal peptide conforms well to stringent criteria for the prediction of Tat-dependent export in Escherichia coli. Taken together, our observations show that the Tat pathway makes a highly selective contribution to the extracellular proteome of B. subtilis.
Collapse
Affiliation(s)
- Jan D H Jongbloed
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Darmon E, Noone D, Masson A, Bron S, Kuipers OP, Devine KM, van Dijl JM. A novel class of heat and secretion stress-responsive genes is controlled by the autoregulated CssRS two-component system of Bacillus subtilis. J Bacteriol 2002; 184:5661-71. [PMID: 12270824 PMCID: PMC139597 DOI: 10.1128/jb.184.20.5661-5671.2002] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria need dedicated systems that allow appropriate adaptation to the perpetual changes in their environments. In Bacillus subtilis, two HtrA-like proteases, HtrA and HtrB, play critical roles in the cellular response to secretion and heat stresses. Transcription of these genes is induced by the high-level production of a secreted protein or by a temperature upshift. The CssR-CssS two-component regulatory system plays an essential role in this transcriptional activation. Transcription of the cssRS operon is autoregulated and can be induced by secretion stress, by the absence of either HtrA or HtrB, and by heat stress in a HtrA null mutant strain. Two start sites are used for cssRS transcription, only one of which is responsive to heat and secretion stress. The divergently transcribed htrB and cssRS genes share a regulatory region through which their secretion and heat stress-induced expression is linked. This study shows that CssRS-regulated genes represent a novel class of heat-inducible genes, which is referred to as class V and currently includes two genes: htrA and htrB.
Collapse
Affiliation(s)
- Elise Darmon
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, 9751 NN Haren, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
35
|
Palacín A, Parro V, Geukens N, Anné J, Mellado RP. SipY Is the Streptomyces lividans type I signal peptidase exerting a major effect on protein secretion. J Bacteriol 2002; 184:4875-80. [PMID: 12169613 PMCID: PMC135301 DOI: 10.1128/jb.184.17.4875-4880.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2001] [Accepted: 06/10/2002] [Indexed: 11/20/2022] Open
Abstract
Most bacteria contain one type I signal peptidase (SPase) for cleavage of signal peptides from secreted proteins. The developmental complex bacterium Streptomyces lividans has the ability to produce and secrete a significant amount of proteins and has four different type I signal peptidases genes (sipW, sipX, sipY, and sipZ) unusually clustered in its chromosome. Functional analysis of the four SPases was carried out by phenotypical and molecular characterization of the different individual sip mutants. None of the sip genes seemed to be essential for bacterial growth. Analysis of total extracellular proteins indicated that SipY is likely to be the major S. lividans SPase, since the sipY mutant strain is highly deficient in overall protein secretion and extracellular protease production, showing a delayed sporulation phenotype when cultured in solid medium.
Collapse
Affiliation(s)
- Arantxa Palacín
- Centro Nacional de Biotecnología, Campus de la Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
36
|
Zheng F, Angleton EL, Lu J, Peng SB. In vitro and in vivo self-cleavage of Streptococcus pneumoniae signal peptidase I. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3969-77. [PMID: 12180973 DOI: 10.1046/j.1432-1033.2002.03083.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously demonstrated that Streptococcus pneumoniae signal peptidase (SPase) I catalyzes a self-cleavage to result in a truncated product, SPase37-204 [Peng, S.B., Wang, L., Moomaw, J., Peery, R.B., Sun, P.M., Johnson, R.B., Lu, J., Treadway, P., Skatrud, P.L. & Wang, Q.M. (2001) J. Bacteriol.183, 621-627]. In this study, we investigated the effect of phospholipid on invitro self-cleavage of S. pneumoniae SPase I. In the presence of phospholipid, the self-cleavage predominantly occurred at one cleavage site between Gly36-His37, whereas the self-cleavage occurred at multiple sites in the absence of phospholipid, and two additional self-cleavage sites, Ala65-His66 and Ala143-Phe144, were identified. All three self-cleavage sites strongly resemble the signal peptide cleavage site and follow the (-1, -3) rule for SPase I recognition. Kinetic analysis demonstrated that self-cleavage is a concentration dependent and intermolecular event, and the activity in the presence of phospholipid is 25-fold higher than that in the absence of phospholipid. Biochemical analysis demonstrated that SPase37-204, the major product of the self-cleavage totally lost activity to cleave its substrates, indicating that the self-cleavage resulted in the inactivation of the enzyme. More importantly, the self-cleavage was demonstrated to be happening in vivo in all the growth phases of S. pneumoniae cells. The bacterial cells keep the active SPase I at the highest level in exponential growth phase, suggesting that the self-cleavage may play an important role in regulating the activity of the enzyme under different conditions.
Collapse
Affiliation(s)
- Feng Zheng
- Infectious Diseases Research, Lilly Research Laboratories, Indianapolis, IN 46285, USA
| | | | | | | |
Collapse
|
37
|
Geukens N, Lammertyn E, Van Mellaert L, Engelborghs Y, Mellado RP, Anné J. Physical requirements for in vitro processing of the Streptomyces lividans signal peptidases. J Biotechnol 2002; 96:79-91. [PMID: 12142145 DOI: 10.1016/s0168-1656(02)00039-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Gram-positive eubacterium Streptomyces lividans contains four chromosomally encoded type I signal peptidases, SipW, SipX, SipY and SipZ, of which all but SipW have an unusual C-terminal membrane anchor. For in vitro characterisation of these signal peptidases, the S. lividans sip genes were expressed in Escherichia coli and the corresponding proteins were purified. The four enzymes had an optimum activity at an alkaline pH, notably pH 8-9 for SipW and SipY and pH 10-11 for SipX and SipZ. In contrast to SipW, the in vitro activities of SipX, SipY and SipZ significantly increased in the presence of detergent. Since none of the S. lividans Sip proteins contains the hydrophobic beta-barrel domain, which in E. coli LepB was proven to be requisite for detergent-dependent in vitro activity, we assume that for detergent dependence, the C-terminal transmembrane anchor can partly substitute for this domain. Finally, all Sip proteins were stimulated by added phospholipids, which strongly suggests that phospholipids play an important role in the catalytic mechanism.
Collapse
Affiliation(s)
- Nick Geukens
- Laboratory of Bacteriology, Rega Institute, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
38
|
Bacterial Type I Signal Peptidases. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1874-6047(02)80003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
39
|
Antelmann H, Tjalsma H, Voigt B, Ohlmeier S, Bron S, van Dijl JM, Hecker M. A proteomic view on genome-based signal peptide predictions. Genome Res 2001; 11:1484-502. [PMID: 11544192 DOI: 10.1101/gr.182801] [Citation(s) in RCA: 271] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The availability of complete genome sequences has allowed the prediction of all exported proteins of the corresponding organisms with dedicated algorithms. Even though numerous studies report on genome-based predictions of signal peptides and cell retention signals, they lack a proteomic verification. For example, 180 secretory and 114 lipoprotein signal peptides were predicted recently for the Gram-positive eubacterium Bacillus subtilis. In the present studies, proteomic approaches were used to define the extracellular complement of the B. subtilis secretome. Using different growth conditions and a hyper-secreting mutant, approximately 200 extracellular proteins were visualized by two-dimensional (2D) gel electrophoresis, of which 82 were identified by mass spectrometry. These include 41 proteins that have a potential signal peptide with a type I signal peptidase (SPase) cleavage site, and lack a retention signal. Strikingly, the remaining 41 proteins were predicted previously to be cell associated because of the apparent absence of a signal peptide (22), or the presence of specific cell retention signals in addition to an export signal (19). To test the importance of the five type I SPases and the unique lipoprotein-specific SPase of B. subtilis, the extracellular proteome of (multiple) SPase mutants was analyzed. Surprisingly, only the processing of the polytopic membrane protein YfnI was strongly inhibited in Spase I mutants, showing for the first time that a native eubacterial membrane protein is a genuine Spase I substrate. Furthermore, a mutation affecting lipoprotein modification and processing resulted in the shedding of at least 23 (lipo-)proteins into the medium. In conclusion, our observations show that genome-based predictions reflect the actual composition of the extracellular proteome for approximately 50%. Major problems are currently encountered with the prediction of extracellular proteins lacking signal peptides (including cytoplasmic proteins) and lipoproteins.
Collapse
Affiliation(s)
- H Antelmann
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universiät Greifswald, D-17487 Greifswald, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Hyyryläinen HL, Bolhuis A, Darmon E, Muukkonen L, Koski P, Vitikainen M, Sarvas M, Prágai Z, Bron S, van Dijl JM, Kontinen VP. A novel two-component regulatory system in Bacillus subtilis for the survival of severe secretion stress. Mol Microbiol 2001; 41:1159-72. [PMID: 11555295 DOI: 10.1046/j.1365-2958.2001.02576.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Gram-positive eubacterium Bacillus subtilis is well known for its high capacity to secrete proteins into the environment. Even though high-level secretion of proteins is an efficient process, it imposes stress on the cell. The present studies were aimed at the identification of systems required to combat this so-called secretion stress. A two-component regulatory system, named CssR-CssS, was identified, which bears resemblance to the CpxR-CpxA system of Escherichia coli. The results show that the CssR/S system is required for the cell to survive the severe secretion stress caused by a combination of high-level production of the alpha-amylase AmyQ and reduced levels of the extracytoplasmic folding factor PrsA. As shown with a prsA3 mutation, the Css system is required to degrade misfolded exported proteins at the membrane-cell wall interface. This view is supported by the observation that transcription of the htrA gene, encoding a predicted membrane-bound protease of B. subtilis, is strictly controlled by CssS. Notably, CssS represents the first identified sensor for extracytoplasmic protein misfolding in a Gram-positive eubacterium. In conclusion, the results show that quality control systems for extracytoplasmic protein folding are not exclusively present in the periplasm of Gram-negative eubacteria, but also in the Gram-positive cell envelope.
Collapse
Affiliation(s)
- H L Hyyryläinen
- Laboratory of Vaccine Development, National Public Health Institute, FIN-00300, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Geukens N, Lammertyn E, Van Mellaert L, Schacht S, Schaerlaekens K, Parro V, Bron S, Engelborghs Y, Mellado RP, Anné J. Membrane topology of the Streptomyces lividans type I signal peptidases. J Bacteriol 2001; 183:4752-60. [PMID: 11466278 PMCID: PMC99529 DOI: 10.1128/jb.183.16.4752-4760.2001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2000] [Accepted: 05/26/2001] [Indexed: 11/20/2022] Open
Abstract
Most bacterial membranes contain one or two type I signal peptidases (SPases) for the removal of signal peptides from export proteins. For Streptomyces lividans, four different type I SPases (denoted SipW, SipX, SipY, and SipZ) were previously described. In this communication, we report the experimental determination of the membrane topology of these SPases. A protease protection assay of SPase tendamistat fusions confirmed the presence of the N- as well as the C-terminal transmembrane anchor for SipY. SipX and SipZ have a predicted topology similar to that of SipY. These three S. lividans SPases are currently the only known prokaryotic-type type I SPases of gram-positive bacteria with a C-terminal transmembrane anchor, thereby establishing a new subclass of type I SPases. In contrast, S. lividans SipW contains only the N-terminal transmembrane segment, similar to most type I SPases of gram-positive bacteria. Functional analysis showed that the C-terminal transmembrane anchor of SipY is important to enhance the processing activity, both in vitro as well as in vivo. Moreover, for the S. lividans SPases, a relation seems to exist between the presence or absence of the C-terminal anchor and the relative contributions to the total SPase processing activity in the cell. SipY and SipZ, two SPases with a C-terminal anchor, were shown to be of major importance to the cell. Accordingly, for SipW, missing the C-terminal anchor, a minor role in preprotein processing was found.
Collapse
Affiliation(s)
- N Geukens
- Laboratory of Bacteriology, Rega Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
van Roosmalen ML, Jongbloed JD, Dubois JY, Venema G, Bron S, van Dijl JM. Distinction between major and minor Bacillus signal peptidases based on phylogenetic and structural criteria. J Biol Chem 2001; 276:25230-5. [PMID: 11309398 DOI: 10.1074/jbc.m102099200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The processing of secretory preproteins by signal peptidases (SPases) is essential for cell viability. As previously shown for Bacillus subtilis, only certain SPases of organisms containing multiple paralogous SPases are essential. This allows a distinction between SPases that are of major and minor importance for cell viability. Notably, the functional difference between major and minor SPases is not reflected clearly in sequence alignments. Here, we have successfully used molecular phylogeny to predict major and minor SPases. The results were verified with SPases from various bacilli. As predicted, the latter enzymes behaved as major or minor SPases when expressed in B. subtilis. Strikingly, molecular modeling indicated that the active site geometry is not a critical parameter for the classification of major and minor Bacillus SPases. Even though the substrate binding site of the minor SPase SipV is smaller than that of other known SPases, SipV could be converted into a major SPase without changing this site. Instead, replacement of amino-terminal residues of SipV with corresponding residues of the major SPase SipS was sufficient for conversion of SipV into a major SPase. This suggests that differences between major and minor SPases are based on activities other than substrate cleavage site selection.
Collapse
Affiliation(s)
- M L van Roosmalen
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | | | | | |
Collapse
|
43
|
van Roosmalen ML, Jongbloed JDH, Jong AD, van Eerden J, Venema G, Bron S, Maarten van Dijl J. Detergent-independent in vitro activity of a truncated Bacillus signal peptidase. MICROBIOLOGY (READING, ENGLAND) 2001; 147:909-917. [PMID: 11283286 DOI: 10.1099/00221287-147-4-909] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Gram-positive eubacterium Bacillus subtilis contains five chromosomally encoded type I signal peptidases (SPases) for the processing of secretory pre-proteins. Even though four of these SPases, denoted SipS, SipT, SipU and SipV, are homologous to the unique SPase I of Escherichia coli, they are structurally different from that enzyme, being almost half the size and containing one membrane anchor instead of two. To investigate whether the unique membrane anchor of Bacillus SPases is required for in vitro activity, soluble forms of SipS of B. subtilis, SipS of Bacillus amyloliquefaciens and SipC of the thermophile Bacillus caldolyticus were constructed. Of these three proteins, only a hexa-histidine-tagged soluble form of SipS of B. amyloliquefaciens could be isolated in significant quantities. This protein displayed optimal activity at pH 10, which is remarkable considering the fact that the catalytic domain of SPases is located in an acidic environment at the outer surface of the membrane of living cells. Strikingly, in contrast to what has been previously reported for the soluble form of the E. coli SPase, soluble SipS was active in the absence of added detergents. This observation can be explained by the fact that a highly hydrophobic surface domain of the E. coli SPase, implicated in detergent-binding, is absent from SipS.
Collapse
Affiliation(s)
- Maarten L van Roosmalen
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, PO Box 14, 9750 AA Haren, The Netherlands1
| | - Jan D H Jongbloed
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, PO Box 14, 9750 AA Haren, The Netherlands1
| | - Anne de Jong
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, PO Box 14, 9750 AA Haren, The Netherlands1
| | - Jaap van Eerden
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, PO Box 14, 9750 AA Haren, The Netherlands1
| | - Gerard Venema
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, PO Box 14, 9750 AA Haren, The Netherlands1
| | - Sierd Bron
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, PO Box 14, 9750 AA Haren, The Netherlands1
| | - Jan Maarten van Dijl
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, PO Box 14, 9750 AA Haren, The Netherlands1
| |
Collapse
|
44
|
Peng SB, Wang L, Moomaw J, Peery RB, Sun PM, Johnson RB, Lu J, Treadway P, Skatrud PL, Wang QM. Biochemical characterization of signal peptidase I from gram-positive Streptococcus pneumoniae. J Bacteriol 2001; 183:621-7. [PMID: 11133956 PMCID: PMC94918 DOI: 10.1128/jb.183.2.621-627.2001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2000] [Accepted: 10/25/2000] [Indexed: 11/20/2022] Open
Abstract
Bacterial signal peptidase I is responsible for proteolytic processing of the precursors of secreted proteins. The enzymes from gram-negative and -positive bacteria are different in structure and specificity. In this study, we have cloned, expressed, and purified the signal peptidase I of gram-positive Streptococcus pneumoniae. The precursor of streptokinase, an extracellular protein produced in pathogenic streptococci, was identified as a substrate of S. pneumoniae signal peptidase I. Phospholipids were found to stimulate the enzymatic activity. Mutagenetic analysis demonstrated that residues serine 38 and lysine 76 of S. pneumoniae signal peptidase I are critical for enzyme activity and involved in the active site to form a serine-lysine catalytic dyad, which is similar to LexA-like proteases and Escherichia coli signal peptidase I. Similar to LexA-like proteases, S. pneumoniae signal peptidase I catalyzes an intermolecular self-cleavage in vitro, and an internal cleavage site has been identified between glycine 36 and histidine 37. Sequence analysis revealed that the signal peptidase I and LexA-like proteases show sequence homology around the active sites and some common properties around the self-cleavage sites. All these data suggest that signal peptidase I and LexA-like proteases are closely related and belong to a novel class of serine proteases.
Collapse
Affiliation(s)
- S B Peng
- Infectious Diseases Research, Lilly Research Laboratories, Indianapolis, Indiana 46285, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Jongbloed JD, Martin U, Antelmann H, Hecker M, Tjalsma H, Venema G, Bron S, van Dijl JM, Müller J. TatC is a specificity determinant for protein secretion via the twin-arginine translocation pathway. J Biol Chem 2000; 275:41350-7. [PMID: 11007775 DOI: 10.1074/jbc.m004887200] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The recent discovery of a ubiquitous translocation pathway, specifically required for proteins with a twin-arginine motif in their signal peptide, has focused interest on its membrane-bound components, one of which is known as TatC. Unlike most organisms of which the genome has been sequenced completely, the Gram-positive eubacterium Bacillus subtilis contains two tatC-like genes denoted tatCd and tatCy. The corresponding TatCd and TatCy proteins have the potential to be involved in the translocation of 27 proteins with putative twin-arginine signal peptides of which approximately 6-14 are likely to be secreted into the growth medium. Using a proteomic approach, we show that PhoD of B. subtilis, a phosphodiesterase belonging to a novel protein family of which all known members are synthesized with typical twin-arginine signal peptides, is secreted via the twin-arginine translocation pathway. Strikingly, TatCd is of major importance for the secretion of PhoD, whereas TatCy is not required for this process. Thus, TatC appears to be a specificity determinant for protein secretion via the Tat pathway. Based on our observations, we hypothesize that the TatC-determined pathway specificity is based on specific interactions between TatC-like proteins and other pathway components, such as TatA, of which three paralogues are present in B. subtilis.
Collapse
Affiliation(s)
- J D Jongbloed
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Carlos JL, Paetzel M, Brubaker G, Karla A, Ashwell CM, Lively MO, Cao G, Bullinger P, Dalbey RE. The role of the membrane-spanning domain of type I signal peptidases in substrate cleavage site selection. J Biol Chem 2000; 275:38813-22. [PMID: 10982814 DOI: 10.1074/jbc.m007093200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type I signal peptidase (SPase I) catalyzes the cleavage of the amino-terminal signal sequences from preproteins destined for cell export. Preproteins contain a signal sequence with a positively charged n-region, a hydrophobic h-region, and a neutral but polar c-region. Despite having no distinct consensus sequence other than a commonly found c-region "Ala-X-Ala" motif preceding the cleavage site, signal sequences are recognized by SPase I with high fidelity. Remarkably, other potential Ala-X-Ala sites are not cleaved within the preprotein. One hypothesis is that the source of this fidelity is due to the anchoring of both the SPase I enzyme (by way of its transmembrane segment) and the preprotein substrate (by the h-region in the signal sequence) in the membrane. This limits the enzyme-substrate interactions such that cleavage occurs at only one site. In this work we have, for the first time, successfully isolated Bacillus subtilis type I signal peptidase (SipS) and a truncated version lacking the transmembrane domain (SipS-P2). With purified full-length as well as truncated constructs of both B. subtilis and Escherichia coli (Lep) SPase I, in vitro specificity studies indicate that the transmembrane domains of either enzyme are not important determinants of in vitro cleavage fidelity, since enzyme constructs lacking them reveal no alternate site processing of pro-OmpA nuclease A substrate. In addition, experiments with mutant pro-OmpA nuclease A substrate constructs indicate that the h-region of the signal peptide is also not critical for substrate specificity. In contrast, certain mutants in the c-region of the signal peptide result in alternate site cleavage by both Lep and SipS enzymes.
Collapse
Affiliation(s)
- J L Carlos
- Department of Chemistry, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Eisenbrandt R, Kalkum M, Lurz R, Lanka E. Maturation of IncP pilin precursors resembles the catalytic Dyad-like mechanism of leader peptidases. J Bacteriol 2000; 182:6751-61. [PMID: 11073921 PMCID: PMC111419 DOI: 10.1128/jb.182.23.6751-6761.2000] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pilus subunit, the pilin, of conjugative IncP pili is encoded by the trbC gene. IncP pilin is composed of 78 amino acids forming a ring structure (R. Eisenbrandt, M. Kalkum, E.-M. Lai, C. I. Kado, and E. Lanka, J. Biol. Chem. 274:22548-22555, 1999). Three enzymes are involved in maturation of the pilin: LepB of Escherichia coli for signal peptide removal and a yet-unidentified protease for removal of 27 C-terminal residues. Both enzymes are chromosome encoded. Finally, the inner membrane-associated IncP TraF replaces a four-amino-acid C-terminal peptide with the truncated N terminus, yielding the cyclic polypeptide. We refer to the latter process as "prepilin cyclization." We have used site-directed mutagenesis of trbC and traF to unravel the pilin maturation process. Each of the mutants was analyzed for its phenotypes of prepilin cyclization, pilus formation, donor-specific phage adsorption, and conjugative DNA transfer abilities. Effective prepilin cyclization was determined by matrix-assisted laser desorption-ionization-mass spectrometry using an optimized sample preparation technique of whole cells and trans-3-indolyl acrylic acid as a matrix. We found that several amino acid exchanges in the TrbC core sequence allow prepilin cyclization but disable the succeeding pilus assembly. We propose a mechanism explaining how the signal peptidase homologue TraF attacks a C-terminal section of the TrbC core sequence via an activated serine residue. Rather than cleaving and releasing hydrolyzed peptides, TraF presumably reacts as a peptidyl transferase, involving the N terminus of TrbC in the aminolysis of a postulated TraF-acetyl-TrbC intermediate. Under formal loss of a C-terminal tetrapeptide, a new peptide bond is formed in a concerted action, connecting serine 37 with glycine 114 of TrbC.
Collapse
Affiliation(s)
- R Eisenbrandt
- Max-Planck-Institut für Molekulare Genetik, Dahlem, D-14195 Berlin, Germany
| | | | | | | |
Collapse
|
48
|
van Roosmalen ML, Jongbloed JD, Kuipers A, Venema G, Bron S, van DijL JM. A truncated soluble Bacillus signal peptidase produced in Escherichia coli is subject to self-cleavage at its active site. J Bacteriol 2000; 182:5765-70. [PMID: 11004175 PMCID: PMC94698 DOI: 10.1128/jb.182.20.5765-5770.2000] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Soluble forms of Bacillus signal peptidases which lack their unique amino-terminal membrane anchor are prone to degradation, which precludes their high-level production in the cytoplasm of Escherichia coli. Here, we show that the degradation of soluble forms of the Bacillus signal peptidase SipS is largely due to self-cleavage. First, catalytically inactive soluble forms of this signal peptidase were not prone to degradation; in fact, these mutant proteins were produced at very high levels in E. coli. Second, the purified active soluble form of SipS displayed self-cleavage in vitro. Third, as determined by N-terminal sequencing, at least one of the sites of self-cleavage (between Ser15 and Met16 of the truncated enzyme) strongly resembles a typical signal peptidase cleavage site. Self-cleavage at the latter position results in complete inactivation of the enzyme, as Ser15 forms a catalytic dyad with Lys55. Ironically, self-cleavage between Ser15 and Met16 cannot be prevented by mutagenesis of Gly13 and Ser15, which conform to the -1, -3 rule for signal peptidase recognition, because these residues are critical for signal peptidase activity.
Collapse
Affiliation(s)
- M L van Roosmalen
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, 9750 AA Haren, The Netherlands
| | | | | | | | | | | |
Collapse
|
49
|
Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 2000; 64:515-47. [PMID: 10974125 PMCID: PMC99003 DOI: 10.1128/mmbr.64.3.515-547.2000] [Citation(s) in RCA: 602] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
One of the most salient features of Bacillus subtilis and related bacilli is their natural capacity to secrete a variety of proteins into their environment, frequently to high concentrations. This has led to the commercial exploitation of bacilli as major "cell factories" for secreted enzymes. The recent sequencing of the genome of B. subtilis has provided major new impulse for analysis of the molecular mechanisms underlying protein secretion by this organism. Most importantly, the genome sequence has allowed predictions about the composition of the secretome, which includes both the pathways for protein transport and the secreted proteins. The present survey of the secretome describes four distinct pathways for protein export from the cytoplasm and approximately 300 proteins with the potential to be exported. By far the largest number of exported proteins are predicted to follow the major "Sec" pathway for protein secretion. In contrast, the twin-arginine translocation "Tat" pathway, a type IV prepilin-like export pathway for competence development, and ATP-binding cassette transporters can be regarded as "special-purpose" pathways, through which only a few proteins are transported. The properties of distinct classes of amino-terminal signal peptides, directing proteins into the various protein transport pathways, as well as the major components of each pathway are discussed. The predictions and comparisons in this review pinpoint important differences as well as similarities between protein transport systems in B. subtilis and other well-studied organisms, such as Escherichia coli and the yeast Saccharomyces cerevisiae. Thus, they may serve as a lead for future research and applications.
Collapse
Affiliation(s)
- H Tjalsma
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, 9750 AA Haren, The Netherlands
| | | | | | | | | |
Collapse
|
50
|
Tjalsma H, Stover AG, Driks A, Venema G, Bron S, van Dijl JM. Conserved serine and histidine residues are critical for activity of the ER-type signal peptidase SipW of Bacillus subtilis. J Biol Chem 2000; 275:25102-8. [PMID: 10827084 DOI: 10.1074/jbc.m002676200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type I signal peptidases (SPases) are required for the removal of signal peptides from translocated proteins and, subsequently, release of the mature protein from the trans side of the membrane. Interestingly, prokaryotic (P-type) and endoplasmic reticular (ER-type) SPases are functionally equivalent, but structurally quite different, forming two distinct SPase families that share only few conserved residues. P-type SPases were, so far, exclusively identified in eubacteria and organelles, whereas ER-type SPases were found in the three kingdoms of life. Strikingly, the presence of ER-type SPases appears to be limited to sporulating Gram-positive eubacteria. The present studies were aimed at the identification of potential active site residues of the ER-type SPase SipW of Bacillus subtilis, which is required for processing of the spore-associated protein TasA. Conserved serine, histidine, and aspartic acid residues are critical for SipW activity, suggesting that the ER-type SPases employ a Ser-His-Asp catalytic triad or, alternatively, a Ser-His catalytic dyad. In contrast, the P-type SPases employ a Ser-Lys catalytic dyad (Paetzel, M., Dalbey, R. E., and Strynadka, N. C. J. (1998) Nature 396, 186-190). Notably, catalytic activity of SipW was not only essential for pre-TasA processing, but also for the incorporation of mature TasA into spores.
Collapse
Affiliation(s)
- H Tjalsma
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Haren, The Netherlands
| | | | | | | | | | | |
Collapse
|