1
|
Ding X, Neumann DM, Zhu L. Host factors associated with either VP16 or VP16-induced complex differentially affect HSV-1 lytic infection. Rev Med Virol 2022; 32:e2394. [PMID: 36069169 PMCID: PMC9786836 DOI: 10.1002/rmv.2394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/15/2022] [Accepted: 08/25/2022] [Indexed: 12/30/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) is an important human pathogen with neurotropism. Following lytic infection in mucosal or skin epithelium, life-long latency is established mainly in sensory neurons, which can periodically reactivate by stress, leading to recurrent disease and virus transmission. During the virus's productive infection, the tegument protein VP16, a component of HSV-1 virion, is physically associated with two cellular factors, host cell factor-1 (HCF-1), and POU domain protein Oct-1, to construct the VP16-induced complex, which is essential to stimulate immediate early (IE)-gene transcription as well as initiate the lytic programme. Apart from HCF-1 and Oct-1, VP16 also associates with a series of other host factors, making a VP16-induced regulatory switch to either activate or inactivate virus gene transcription. In addition, VP16 has effects on distinct signalling pathways via binding to various host molecules that are essentially related to innate immune responses, RNA polymerases, molecular chaperones, and virus infection-induced host shutoff. VP16 also functionally compensates for given host factors, such as PPAR-γ and ß-catenin. In this review, we provide an overview of the updated insights on the interplay between VP16 and the host factors that coordinate virus infection.
Collapse
Affiliation(s)
- Xiuyan Ding
- Institute of Life Science and Green DevelopmentSchool of Life ScienceHebei UniversityBaodingChina
| | - Donna M. Neumann
- Department of Ophthalmology and Visual SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Liqian Zhu
- Institute of Life Science and Green DevelopmentSchool of Life ScienceHebei UniversityBaodingChina,College of Veterinary MedicineYangzhou UniversityYangzhouChina,Key Laboratory of Microbial Diversity Research and Application of Hebei ProvinceCollege of Life ScienceHebei UniversityBaodingChina
| |
Collapse
|
2
|
Xiang P, Li F, Ma Z, Yue J, Lu C, You Y, Hou L, Yin B, Qiang B, Shu P, Peng X. HCF-1 promotes cell cycle progression by regulating the expression of CDC42. Cell Death Dis 2020; 11:907. [PMID: 33097698 PMCID: PMC7584624 DOI: 10.1038/s41419-020-03094-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 08/09/2020] [Accepted: 09/09/2020] [Indexed: 11/16/2022]
Abstract
The eukaryotic cell cycle involves a highly orchestrated series of events in which the cellular genome is replicated during a synthesis (S) phase and each of the two resulting copies are segregated properly during mitosis (M). Host cell factor-1 (HCF-1) is a transcriptional co-regulator that is essential for and has been implicated in basic cellular processes, such as transcriptional regulation and cell cycle progression. Although a series of HCF-1 transcriptional targets have been identified, few functional clues have been provided, especially for chromosome segregation. Our results showed that HCF-1 activated CDC42 expression by binding to the −881 to −575 region upstream of the CDC42 transcription start site, and the regulation of CDC42 expression by HCF-1 was correlated with cell cycle progression. The overexpression of a spontaneously cycling and constitutively active CDC42 mutant (CDC42F28L) rescued G1 phase delay and multinucleate defects in mitosis upon the loss of HCF-1. Therefore, these results establish that HCF-1 ensures proper cell cycle progression by regulating the expression of CDC42, which indicates a possible mechanism of cell cycle coordination and the regulation mode of typical Rho GTPases.
Collapse
Affiliation(s)
- Pan Xiang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Fei Li
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Zhihua Ma
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jiping Yue
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Cailing Lu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yuangang You
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Lin Hou
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Bin Yin
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Boqin Qiang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Pengcheng Shu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| | - Xiaozhong Peng
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China. .,Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China.
| |
Collapse
|
3
|
Dehaene H, Praz V, Lhôte P, Lopes M, Herr W. THAP11F80L cobalamin disorder-associated mutation reveals normal and pathogenic THAP11 functions in gene expression and cell proliferation. PLoS One 2020; 15:e0224646. [PMID: 31905202 PMCID: PMC6944463 DOI: 10.1371/journal.pone.0224646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022] Open
Abstract
Twelve human THAP proteins share the THAP domain, an evolutionary conserved zinc-finger DNA-binding domain. Studies of different THAP proteins have indicated roles in gene transcription, cell proliferation and development. We have analyzed this protein family, focusing on THAP7 and THAP11. We show that human THAP proteins possess differing homo- and heterodimer formation properties and interaction abilities with the transcriptional co-regulator HCF-1. HEK-293 cells lacking THAP7 were viable but proliferated more slowly. In contrast, HEK-293 cells were very sensitive to THAP11 alteration. Nevertheless, HEK-293 cells bearing a THAP11 mutation identified in a patient suffering from cobalamin disorder (THAP11F80L) were viable although proliferated more slowly. Cobalamin disorder is an inborn vitamin deficiency characterized by neurodevelopmental abnormalities, most often owing to biallelic mutations in the MMACHC gene, whose gene product MMACHC is a key enzyme in the cobalamin (vitamin B12) metabolic pathway. We show that THAP11F80L selectively affected promoter binding by THAP11, having more deleterious effects on a subset of THAP11 targets, and resulting in altered patterns of gene expression. In particular, THAP11F80L exhibited a strong effect on association with the MMACHC promoter and led to a decrease in MMACHC gene transcription, suggesting that the THAP11F80L mutation is directly responsible for the observed cobalamin disorder.
Collapse
Affiliation(s)
- Harmonie Dehaene
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Viviane Praz
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Vital-IT, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Philippe Lhôte
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Maykel Lopes
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Winship Herr
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
4
|
Gudkova D, Dergai O, Praz V, Herr W. HCF-2 inhibits cell proliferation and activates differentiation-gene expression programs. Nucleic Acids Res 2019; 47:5792-5808. [PMID: 31049581 PMCID: PMC6582346 DOI: 10.1093/nar/gkz307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/04/2019] [Accepted: 04/17/2019] [Indexed: 12/20/2022] Open
Abstract
HCF-2 is a member of the host-cell-factor protein family, which arose in early vertebrate evolution as a result of gene duplication. Whereas its paralog, HCF-1, is known to act as a versatile chromatin-associated protein required for cell proliferation and differentiation, much less is known about HCF-2. Here, we show that HCF-2 is broadly present in human and mouse cells, and possesses activities distinct from HCF-1. Unlike HCF-1, which is excluded from nucleoli, HCF-2 is nucleolar—an activity conferred by one and a half C-terminal Fibronectin type 3 repeats and inhibited by the HCF-1 nuclear localization signal. Elevated HCF-2 synthesis in HEK-293 cells results in phenotypes reminiscent of HCF-1-depleted cells, including inhibition of cell proliferation and mitotic defects. Furthermore, increased HCF-2 levels in HEK-293 cells lead to inhibition of cell proliferation and metabolism gene-expression programs with parallel activation of differentiation and morphogenesis gene-expression programs. Thus, the HCF ancestor appears to have evolved into a small two-member protein family possessing contrasting nuclear versus nucleolar localization, and cell proliferation and differentiation functions.
Collapse
Affiliation(s)
- Daria Gudkova
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Oleksandr Dergai
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Viviane Praz
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics, University of Lausanne,1015 Lausanne, Switzerland
| | - Winship Herr
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Rafie K, Raimi O, Ferenbach AT, Borodkin VS, Kapuria V, van Aalten DMF. Recognition of a glycosylation substrate by the O-GlcNAc transferase TPR repeats. Open Biol 2018; 7:rsob.170078. [PMID: 28659383 PMCID: PMC5493779 DOI: 10.1098/rsob.170078] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/02/2017] [Indexed: 12/23/2022] Open
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) is an essential and dynamic post-translational modification found on hundreds of nucleocytoplasmic proteins in metazoa. Although a single enzyme, O-GlcNAc transferase (OGT), generates the entire cytosolic O-GlcNAc proteome, it is not understood how it recognizes its protein substrates, targeting only a fraction of serines/threonines in the metazoan proteome for glycosylation. We describe a trapped complex of human OGT with the C-terminal domain of TAB1, a key innate immunity-signalling O-GlcNAc protein, revealing extensive interactions with the tetratricopeptide repeats of OGT. Confirmed by mutagenesis, this interaction suggests that glycosylation substrate specificity is achieved by recognition of a degenerate sequon in the active site combined with an extended conformation C-terminal of the O-GlcNAc target site.
Collapse
Affiliation(s)
- Karim Rafie
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Olawale Raimi
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Andrew T Ferenbach
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Vladimir S Borodkin
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Vaibhav Kapuria
- Center for Integrative Genomics, University of Lausanne 1015, Switzerland
| | - Daan M F van Aalten
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
6
|
Kapuria V, Röhrig UF, Waridel P, Lammers F, Borodkin VS, van Aalten DMF, Zoete V, Herr W. The conserved threonine-rich region of the HCF-1 PRO repeat activates promiscuous OGT:UDP-GlcNAc glycosylation and proteolysis activities. J Biol Chem 2018; 293:17754-17768. [PMID: 30224358 PMCID: PMC6240873 DOI: 10.1074/jbc.ra118.004185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/05/2018] [Indexed: 12/28/2022] Open
Abstract
O-Linked GlcNAc transferase (OGT) possesses dual glycosyltransferase–protease activities. OGT thereby stably glycosylates serines and threonines of numerous proteins and, via a transient glutamate glycosylation, cleaves a single known substrate—the so-called HCF-1PRO repeat of the transcriptional co-regulator host-cell factor 1 (HCF-1). Here, we probed the relationship between these distinct glycosylation and proteolytic activities. For proteolysis, the HCF-1PRO repeat possesses an important extended threonine-rich region that is tightly bound by the OGT tetratricopeptide-repeat (TPR) region. We report that linkage of this HCF-1PRO-repeat, threonine-rich region to heterologous substrate sequences also potentiates robust serine glycosylation with the otherwise poor Rp-αS-UDP-GlcNAc diastereomer phosphorothioate and UDP-5S-GlcNAc OGT co-substrates. Furthermore, it potentiated proteolysis of a non-HCF-1PRO-repeat cleavage sequence, provided it contained an appropriately positioned glutamate residue. Using serine- or glutamate-containing HCF-1PRO-repeat sequences, we show that proposed OGT-based or UDP-GlcNAc–based serine-acceptor residue activation mechanisms can be circumvented independently, but not when disrupted together. In contrast, disruption of both proposed activation mechanisms even in combination did not inhibit OGT-mediated proteolysis. These results reveal a multiplicity of OGT glycosylation strategies, some leading to proteolysis, which could be targets of alternative molecular regulatory strategies.
Collapse
Affiliation(s)
- Vaibhav Kapuria
- From the Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Ute F Röhrig
- Molecular Modelling Group, SIB Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Patrice Waridel
- Protein Analysis Facility, Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Fabienne Lammers
- From the Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Vladimir S Borodkin
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Daan M F van Aalten
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Vincent Zoete
- Molecular Modelling Group, SIB Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; Department of Fundamental Oncology, Ludwig Lausanne Branch, Faculty of Biology and Medicine, University of Lausanne, 1066 Epalinges, Switzerland
| | - Winship Herr
- From the Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
7
|
Zhu L, Jones C. The canonical Wnt/β-catenin signaling pathway stimulates herpes simplex virus 1 productive infection. Virus Res 2018; 256:29-37. [PMID: 30077727 PMCID: PMC6261341 DOI: 10.1016/j.virusres.2018.07.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/28/2018] [Accepted: 07/30/2018] [Indexed: 01/29/2023]
Abstract
The ability of herpes simplex virus 1 (HSV-1) to replicate efficiently in differentiated cells is regulated by cellular factors that stimulate viral gene expression, cell survival, and viral morphogenesis. Activation of the canonical Wnt signaling pathway generally increases β-catenin protein levels, cell survival, and growth in dividing cells suggesting this important signaling pathway regulates productive infection. In this study, we demonstrated that a β-catenin specific small molecule inhibitor (iCRT14) reduced HSV-1 titers approximately 10-fold in primary human lung fibroblasts and Vero cells. Furthermore, β-catenin dependent transcription was increased at late times after infection and as expected iCRT14 reduced β-catenin dependent transcription. Although HSV-1 infection increased β-catenin steady state protein levels approximately 4-fold in Vero cells, there was only a nominal increase in human lung fibroblasts. We hypothesized that VP16 regulates β-catenin dependent transcription because VP16 is a viral regulatory protein expressed at late times after infection. In the absence of other viral proteins, VP16 increased β-catenin dependent transcription and β-catenin steady state protein levels. Collectively, these studies suggested the cellular transcription factor β-catenin stimulates productive infection, in part because VP16 enhances β-catenin dependent transcription.
Collapse
Affiliation(s)
- Liqian Zhu
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, OK, 74078, United States; Yangzhou University, College of Veterinary Medicine and Jiangsu Co-innovation, Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, 48 Wenhui East Road, Yangzhou, 225009, China
| | - Clinton Jones
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, OK, 74078, United States.
| |
Collapse
|
8
|
Sun L, Jiang Z, Acosta-Rodriguez VA, Berger M, Du X, Choi JH, Wang J, Wang KW, Kilaru GK, Mohawk JA, Quan J, Scott L, Hildebrand S, Li X, Tang M, Zhan X, Murray AR, La Vine D, Moresco EMY, Takahashi JS, Beutler B. HCFC2 is needed for IRF1- and IRF2-dependent Tlr3 transcription and for survival during viral infections. J Exp Med 2017; 214:3263-3277. [PMID: 28970238 PMCID: PMC5679162 DOI: 10.1084/jem.20161630] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 07/13/2017] [Accepted: 08/16/2017] [Indexed: 01/08/2023] Open
Abstract
Sun et al. show that host cell factor C2 (HCFC2) is necessary for basal and induced Tlr3 transcription; deficiency of HCFC2 compromises survival during influenza virus and herpes simplex virus 1 infections in mice. Transcriptional regulation of numerous interferon-regulated genes, including Toll-like receptor 3 (Tlr3), which encodes an innate immune sensor of viral double-stranded RNA, depends on the interferon regulatory factor 1 (IRF1) and IRF2 transcription factors. We detected specific abrogation of macrophage responses to polyinosinic-polycytidylic acid (poly(I:C)) resulting from three independent N-ethyl-N-nitrosourea–induced mutations in host cell factor C2 (Hcfc2). Hcfc2 mutations compromised survival during influenza virus and herpes simplex virus 1 infections. HCFC2 promoted the binding of IRF1 and IRF2 to the Tlr3 promoter, without which inflammatory cytokine and type I IFN responses to the double-stranded RNA analogue poly(I:C) are reduced in mouse macrophages. HCFC2 was also necessary for the transcription of a large subset of other IRF2-dependent interferon-regulated genes. Deleterious mutations of Hcfc2 may therefore increase susceptibility to diverse infectious diseases.
Collapse
Affiliation(s)
- Lei Sun
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - Zhengfan Jiang
- Department of Genetics, The Scripps Research Institute, La Jolla, CA
| | - Victoria A Acosta-Rodriguez
- Department of Neuroscience, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Michael Berger
- Department of Genetics, The Scripps Research Institute, La Jolla, CA
| | - Xin Du
- Department of Genetics, The Scripps Research Institute, La Jolla, CA
| | - Jin Huk Choi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jianhui Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - Kuan-Wen Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - Gokhul K Kilaru
- Department of Neuroscience, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jennifer A Mohawk
- Department of Neuroscience, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jiexia Quan
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - Lindsay Scott
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - Sara Hildebrand
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - Xiaohong Li
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - Miao Tang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - Xiaoming Zhan
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - Anne R Murray
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - Diantha La Vine
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - Eva Marie Y Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - Joseph S Takahashi
- Department of Neuroscience, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
9
|
Levine ZG, Walker S. The Biochemistry of O-GlcNAc Transferase: Which Functions Make It Essential in Mammalian Cells? Annu Rev Biochem 2017; 85:631-57. [PMID: 27294441 DOI: 10.1146/annurev-biochem-060713-035344] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
O-linked N-acetylglucosamine transferase (OGT) is found in all metazoans and plays an important role in development but at the single-cell level is only essential in dividing mammalian cells. Postmitotic mammalian cells and cells of invertebrates such as Caenorhabditis elegans and Drosophila can survive without copies of OGT. Why OGT is required in dividing mammalian cells but not in other cells remains unknown. OGT has multiple biochemical activities. Beyond its well-known role in adding β-O-GlcNAc to serine and threonine residues of nuclear and cytoplasmic proteins, OGT also acts as a protease in the maturation of the cell cycle regulator host cell factor 1 (HCF-1) and serves as an integral member of several protein complexes, many of them linked to gene expression. In this review, we summarize current understanding of the mechanisms underlying OGT's biochemical activities and address whether known functions of OGT could be related to its essential role in dividing mammalian cells.
Collapse
Affiliation(s)
- Zebulon G Levine
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115; ,
| | - Suzanne Walker
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115; ,
| |
Collapse
|
10
|
Kapuria V, Röhrig UF, Bhuiyan T, Borodkin VS, van Aalten DMF, Zoete V, Herr W. Proteolysis of HCF-1 by Ser/Thr glycosylation-incompetent O-GlcNAc transferase:UDP-GlcNAc complexes. Genes Dev 2016; 30:960-72. [PMID: 27056667 PMCID: PMC4840301 DOI: 10.1101/gad.275925.115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/10/2016] [Indexed: 12/12/2022]
Abstract
In this study, Kapuria et al. investigate the dual glycosyltransferase–protease activity (which occurs in the same active site) of OGT. They show that glycosylation and proteolysis occur through separable mechanisms and present a model for the evolution of HCF-1 proteolysis by OGT. In complex with the cosubstrate UDP-N-acetylglucosamine (UDP-GlcNAc), O-linked-GlcNAc transferase (OGT) catalyzes Ser/Thr O-GlcNAcylation of many cellular proteins and proteolysis of the transcriptional coregulator HCF-1. Such a dual glycosyltransferase–protease activity, which occurs in the same active site, is unprecedented and integrates both reversible and irreversible forms of protein post-translational modification within one enzyme. Although occurring within the same active site, we show here that glycosylation and proteolysis occur through separable mechanisms. OGT consists of tetratricopeptide repeat (TPR) and catalytic domains, which, together with UDP-GlcNAc, are required for both glycosylation and proteolysis. Nevertheless, a specific TPR domain contact with the HCF-1 substrate is critical for proteolysis but not Ser/Thr glycosylation. In contrast, key catalytic domain residues and even a UDP-GlcNAc oxygen important for Ser/Thr glycosylation are irrelevant for proteolysis. Thus, from a dual glycosyltransferase–protease, essentially single-activity enzymes can be engineered both in vitro and in vivo. Curiously, whereas OGT-mediated HCF-1 proteolysis is limited to vertebrate species, invertebrate OGTs can cleave human HCF-1. We present a model for the evolution of HCF-1 proteolysis by OGT.
Collapse
Affiliation(s)
- Vaibhav Kapuria
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland
| | - Ute F Röhrig
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Tanja Bhuiyan
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland
| | - Vladimir S Borodkin
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Daan M F van Aalten
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Vincent Zoete
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Winship Herr
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
11
|
Bhuiyan T, Waridel P, Kapuria V, Zoete V, Herr W. Distinct OGT-Binding Sites Promote HCF-1 Cleavage. PLoS One 2015; 10:e0136636. [PMID: 26305326 PMCID: PMC4549301 DOI: 10.1371/journal.pone.0136636] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/06/2015] [Indexed: 01/17/2023] Open
Abstract
Human HCF-1 (also referred to as HCFC-1) is a transcriptional co-regulator that undergoes a complex maturation process involving extensive O-GlcNAcylation and site-specific proteolysis. HCF-1 proteolysis results in two active, noncovalently associated HCF-1N and HCF-1C subunits that regulate distinct phases of the cell-division cycle. HCF-1 O-GlcNAcylation and site-specific proteolysis are both catalyzed by O-GlcNAc transferase (OGT), which thus displays an unusual dual enzymatic activity. OGT cleaves HCF-1 at six highly conserved 26 amino acid repeat sequences called HCF-1PRO repeats. Here we characterize the substrate requirements for OGT cleavage of HCF-1. We show that the HCF-1PRO-repeat cleavage signal possesses particular OGT-binding properties. The glutamate residue at the cleavage site that is intimately involved in the cleavage reaction specifically inhibits association with OGT and its bound cofactor UDP-GlcNAc. Further, we identify a novel OGT-binding sequence nearby the first HCF-1PRO-repeat cleavage signal that enhances cleavage. These results demonstrate that distinct OGT-binding sites in HCF-1 promote proteolysis, and provide novel insights into the mechanism of this unusual protease activity.
Collapse
Affiliation(s)
- Tanja Bhuiyan
- Center for Integrative Genomics, University of Lausanne, Génopode, Lausanne, Switzerland
| | - Patrice Waridel
- Protein Analysis Facility, Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Génopode, Lausanne, Switzerland
| | - Vaibhav Kapuria
- Center for Integrative Genomics, University of Lausanne, Génopode, Lausanne, Switzerland
| | - Vincent Zoete
- Molecular Modeling Group, Swiss Institute of Bioinformatics, Génopode, Lausanne, Switzerland
| | - Winship Herr
- Center for Integrative Genomics, University of Lausanne, Génopode, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
12
|
Inhibition of O-Linked N-Acetylglucosamine Transferase Reduces Replication of Herpes Simplex Virus and Human Cytomegalovirus. J Virol 2015; 89:8474-83. [PMID: 26041297 DOI: 10.1128/jvi.01002-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/27/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) is an essential cellular enzyme that posttranslationally modifies nuclear and cytoplasmic proteins via O-linked addition of a single N-acetylglucosamine (GlcNAc) moiety. Among the many targets of OGT is host cell factor 1 (HCF-1), a transcriptional regulator that is required for transactivation of the immediate-early genes of herpes simplex virus (HSV). HCF-1 is synthesized as a large precursor that is proteolytically cleaved by OGT, which may regulate its biological function. In this study, we tested whether inhibition of the enzymatic activity of OGT with a small molecule inhibitor, OSMI-1, affects initiation of HSV immediate-early gene expression and viral replication. We found that inhibiting OGT's enzymatic activity significantly decreased HSV replication. The major effect of the inhibitor occurred late in the viral replication cycle, when it reduced the levels of late proteins and inhibited capsid formation. However, depleting OGT levels with small interfering RNA (siRNA) reduced the expression of HSV immediate-early genes, in addition to reducing viral yields. In this study, we identified OGT as a novel cellular factor involved in HSV replication. Our results obtained using a small molecule inhibitor and siRNA depletion suggest that OGT's glycosylation and scaffolding functions play distinct roles in the replication cycle of HSV. IMPORTANCE Antiviral agents can target viral or host gene products essential for viral replication. O-GlcNAc transferase (OGT) is an important cellular enzyme that catalyzes the posttranslational addition of GlcNAc sugar residues to hundreds of nuclear and cytoplasmic proteins, and this modification regulates their activity and function. Some of the known OGT targets are cellular proteins that are critical for the expression of herpes simplex virus (HSV) genes, suggesting a role for OGT in the replication cycle of HSV. In this study, we found that OGT is required for efficient expression of viral genes and for assembly of new virions. Thus, we identify OGT as a novel host factor involved in the replication of HSV and a potential target for antiviral therapy.
Collapse
|
13
|
Janetzko J, Walker S. The making of a sweet modification: structure and function of O-GlcNAc transferase. J Biol Chem 2014; 289:34424-32. [PMID: 25336649 DOI: 10.1074/jbc.r114.604405] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
O-GlcNAc transferase is an essential mammalian enzyme responsible for transferring a single GlcNAc moiety from UDP-GlcNAc to specific serine/threonine residues of hundreds of nuclear and cytoplasmic proteins. This modification is dynamic and has been implicated in numerous signaling pathways. An unexpected second function for O-GlcNAc transferase as a protease involved in cleaving the epigenetic regulator HCF-1 has also been reported. Recent structural and biochemical studies that provide insight into the mechanism of glycosylation and HCF-1 cleavage will be described, with outstanding questions highlighted.
Collapse
Affiliation(s)
- John Janetzko
- the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Suzanne Walker
- From the Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115 and
| |
Collapse
|
14
|
Lazarus MB, Jiang J, Kapuria V, Bhuiyan T, Janetzko J, Zandberg WF, Vocadlo DJ, Herr W, Walker S. HCF-1 is cleaved in the active site of O-GlcNAc transferase. Science 2013; 342:1235-9. [PMID: 24311690 DOI: 10.1126/science.1243990] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Host cell factor-1 (HCF-1), a transcriptional co-regulator of human cell-cycle progression, undergoes proteolytic maturation in which any of six repeated sequences is cleaved by the nutrient-responsive glycosyltransferase, O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT). We report that the tetratricopeptide-repeat domain of O-GlcNAc transferase binds the carboxyl-terminal portion of an HCF-1 proteolytic repeat such that the cleavage region lies in the glycosyltransferase active site above uridine diphosphate-GlcNAc. The conformation is similar to that of a glycosylation-competent peptide substrate. Cleavage occurs between cysteine and glutamate residues and results in a pyroglutamate product. Conversion of the cleavage site glutamate into serine converts an HCF-1 proteolytic repeat into a glycosylation substrate. Thus, protein glycosylation and HCF-1 cleavage occur in the same active site.
Collapse
Affiliation(s)
- Michael B Lazarus
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
The dynamics of HCF-1 modulation of herpes simplex virus chromatin during initiation of infection. Viruses 2013; 5:1272-91. [PMID: 23698399 PMCID: PMC3712308 DOI: 10.3390/v5051272] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/14/2013] [Accepted: 05/14/2013] [Indexed: 12/30/2022] Open
Abstract
Successful infection of herpes simplex virus is dependent upon chromatin modulation by the cellular coactivator host cell factor-1 (HCF-1). This review focuses on the multiple chromatin modulation components associated with HCF-1 and the chromatin-related dynamics mediated by this coactivator that lead to the initiation of herpes simplex virus (HSV) immediate early gene expression.
Collapse
|
16
|
Zhou P, Wang Z, Yuan X, Zhou C, Liu L, Wan X, Zhang F, Ding X, Wang C, Xiong S, Wang Z, Yuan J, Li Q, Zhang Y. Mixed lineage leukemia 5 (MLL5) protein regulates cell cycle progression and E2F1-responsive gene expression via association with host cell factor-1 (HCF-1). J Biol Chem 2013; 288:17532-43. [PMID: 23629655 DOI: 10.1074/jbc.m112.439729] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trithorax group proteins methylate lysine 4 of histone 3 (H3K4) at active gene promoters. MLL5 protein, a member of the Trithorax protein family, has been implicated in the control of the cell cycle progression; however, the underlying molecular mechanism(s) have not been fully determined. In this study, we found that the MLL5 protein can associate with the cell cycle regulator "host cell factor" (HCF-1). The interaction between MLL5 and HCF-1 is mediated by the "HCF-1 binding motif" (HBM) of the MLL5 protein and the Kelch domain of the HCF-1 protein. Confocal microscopy showed that the MLL5 protein largely colocalized with HCF-1 in the nucleus. Knockdown of MLL5 resulted in reduced cell proliferation and cell cycle arrest in the G1 phase. Moreover, down-regulation of E2F1 target gene expression and decreased H3K4me3 levels at E2F1-responsive promoters were observed in MLL5 knockdown cells. Additionally, the core subunits, including ASH2L, RBBP5, and WDR5, that are necessary for effective H3K4 methyltransferase activities of the Trithorax protein complexes, were absent in the MLL5 complex, suggesting that a distinct mechanism may be used by MLL5 for exerting its H3K4 methyltransferase activity. Together, our findings demonstrate that MLL5 could associate with HCF-1 and then be recruited to E2F1-responsive promoters to stimulate H3K4 trimethylation and transcriptional activation, thereby facilitating the cell cycle G1 to S phase transition.
Collapse
Affiliation(s)
- Peipei Zhou
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Capotosti F, Guernier S, Lammers F, Waridel P, Cai Y, Jin J, Conaway JW, Conaway RC, Herr W. O-GlcNAc transferase catalyzes site-specific proteolysis of HCF-1. Cell 2011; 144:376-88. [PMID: 21295698 DOI: 10.1016/j.cell.2010.12.030] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 11/22/2010] [Accepted: 12/16/2010] [Indexed: 10/18/2022]
Abstract
The human epigenetic cell-cycle regulator HCF-1 undergoes an unusual proteolytic maturation process resulting in stably associated HCF-1(N) and HCF-1(C) subunits that regulate different aspects of the cell cycle. Proteolysis occurs at six centrally located HCF-1(PRO)-repeat sequences and is important for activation of HCF-1(C)-subunit functions in M phase progression. We show here that the HCF-1(PRO) repeat is recognized by O-linked β-N-acetylglucosamine transferase (OGT), which both O-GlcNAcylates the HCF-1(N) subunit and directly cleaves the HCF-1(PRO) repeat. Replacement of the HCF-1(PRO) repeats by a heterologous proteolytic cleavage signal promotes HCF-1 proteolysis but fails to activate HCF-1(C)-subunit M phase functions. These results reveal an unexpected role of OGT in HCF-1 proteolytic maturation and an unforeseen nexus between OGT-directed O-GlcNAcylation and proteolytic maturation in HCF-1 cell-cycle regulation.
Collapse
|
18
|
Towards an understanding of the herpes simplex virus type 1 latency-reactivation cycle. Interdiscip Perspect Infect Dis 2010; 2010:262415. [PMID: 20169002 PMCID: PMC2822239 DOI: 10.1155/2010/262415] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Accepted: 11/30/2009] [Indexed: 12/17/2022] Open
Abstract
Infection by herpes simplex virus type 1 (HSV-1) can cause clinical symptoms in the peripheral and central nervous system. Recurrent ocular shedding can lead to corneal scarring and vision loss making HSV-1 a leading cause of corneal blindness due to an infectious agent. The primary site of HSV-1 latency is sensory neurons within trigeminal ganglia. Periodically, reactivation from latency occurs resulting in virus transmission and recurrent disease. During latency, the latency-associated transcript (LAT) is abundantly expressed. LAT expression is important for the latency-reactivation cycle in animal models, in part, because it inhibits apoptosis, viral gene expression, and productive infection. A novel transcript within LAT coding sequences (AL3) and small nonprotein coding RNAs are also expressed in trigeminal ganglia of latently infected mice. In this review, an update of viral factors that are expressed during latency and their potential roles in regulating the latency-reactivation cycle is discussed.
Collapse
|
19
|
Mangone M, Myers MP, Herr W. Role of the HCF-1 basic region in sustaining cell proliferation. PLoS One 2010; 5:e9020. [PMID: 20126307 PMCID: PMC2814863 DOI: 10.1371/journal.pone.0009020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Accepted: 01/06/2010] [Indexed: 01/15/2023] Open
Abstract
Background The human herpes simplex virus-associated host cell factor 1 (HCF-1) is a conserved human transcriptional co-regulator that links positive and negative histone modifying activities with sequence-specific DNA-binding transcription factors. It is synthesized as a 2035 amino acid precursor that is cleaved to generate an amino- (HCF-1N) terminal subunit, which promotes G1-to-S phase progression, and a carboxy- (HCF-1C) terminal subunit, which controls multiple aspects of cell division during M phase. The HCF-1N subunit contains a Kelch domain that tethers HCF-1 to sequence-specific DNA-binding transcription factors, and a poorly characterized so called “Basic” region (owing to a high ratio of basic vs. acidic amino acids) that is required for cell proliferation and has been shown to associate with the Sin3 histone deacetylase (HDAC) component. Here we studied the role of the Basic region in cell proliferation and G1-to-S phase transition assays. Methodology/Principal Findings Surprisingly, much like the transcriptional activation domains of sequence-specific DNA-binding transcription factors, there is no unique sequence within the Basic region required for promoting cell proliferation or G1-to-S phase transition. Indeed, the ability to promote these activities is size dependent such that the shorter the Basic region segment the less activity observed. We find, however, that the Basic region requirements for promoting cell proliferation in a temperature-sensitive tsBN67 cell assay are more stringent than for G1-to-S phase progression in an HCF-1 siRNA-depletion HeLa-cell assay. Thus, either half of the Basic region alone can support G1-to-S phase progression but not cell proliferation effectively in these assays. Nevertheless, the Basic region displays considerable structural plasticity because each half is able to promote cell proliferation when duplicated in tandem. Consistent with a potential role in promoting cell-cycle progression, the Sin3a HDAC component can associate independently with either half of the Basic region fused to the HCF-1 Kelch domain. Conclusions/Significance While conserved, the HCF-1 Basic region displays striking structural flexibility for controlling cell proliferation.
Collapse
Affiliation(s)
- Marco Mangone
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Michael P. Myers
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Winship Herr
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- * E-mail:
| |
Collapse
|
20
|
Transcriptional coactivator HCF-1 couples the histone chaperone Asf1b to HSV-1 DNA replication components. Proc Natl Acad Sci U S A 2010; 107:2461-6. [PMID: 20133788 DOI: 10.1073/pnas.0911128107] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The cellular transcriptional coactivator HCF-1 interacts with numerous transcription factors as well as other coactivators and is a component of multiple chromatin modulation complexes. The protein is essential for the expression of the immediate early genes of both herpes simplex virus (HSV) and varicella zoster virus and functions, in part, by coupling chromatin modification components including the Set1 or MLL1 histone methyltransferases and the histone demethylase LSD1 to promote the installation of positive chromatin marks and the activation of viral immediately early gene transcription. Although studies have investigated the role of HCF-1 in both cellular and viral transcription, little is known about other processes that the protein may be involved in. Here we demonstrate that HCF-1 localizes to sites of HSV replication late in infection. HCF-1 interacts directly and simultaneously with both HSV DNA replication proteins and the cellular histone chaperone Asf1b, a protein that regulates the progression of cellular DNA replication forks via chromatin reorganization. Asf1b localizes with HCF-1 in viral replication foci and depletion of Asf1b results in significantly reduced viral DNA accumulation. The results support a model in which the transcriptional coactivator HCF-1 is a component of the HSV DNA replication assembly and promotes viral DNA replication by coupling Asf1b to DNA replication components. This coupling provides a novel function for HCF-1 and insights into the mechanisms of modulating chromatin during DNA replication.
Collapse
|
21
|
Machida YJ, Machida Y, Vashisht AA, Wohlschlegel JA, Dutta A. The deubiquitinating enzyme BAP1 regulates cell growth via interaction with HCF-1. J Biol Chem 2009; 284:34179-88. [PMID: 19815555 DOI: 10.1074/jbc.m109.046755] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The deubiquitinating enzyme BRCA1-associated protein 1 (BAP1) possesses growth inhibitory activity and functions as a tumor suppressor. In this study we report that BAP1 also plays positive roles in cell proliferation. BAP1 depletion by RNAi inhibits cell proliferation as does overexpression of a dominant negative mutant of BAP1. Mass spectrometry analyses of copurified proteins revealed that BAP1 is associated with factors involved in chromatin modulation and transcriptional regulation. We show that the interaction with host cell factor-1 (HCF-1), a cell-cycle regulator composed of HCF-1N and HCF-1C, is critical for the BAP1-mediated growth regulation. We found that HCF-1N is modified with Lys-48-linked polyubiquitin chains on its Kelch domain. The HCF-1 binding motif of BAP1 is required for interaction with HCF-1N and mediates deubiquitination of HCF-1N by BAP1. The importance of the BAP1-HCF-1 interaction is underscored by the fact that growth suppression by the dominant negative BAP1 mutant is entirely dependent on the HCF-1 binding motif. These results suggest that BAP1 regulates cell proliferation by deubiquitinating HCF-1.
Collapse
Affiliation(s)
- Yuichi J Machida
- Division of Oncology Research, Mayo College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
22
|
Kristie TM, Liang Y, Vogel JL. Control of alpha-herpesvirus IE gene expression by HCF-1 coupled chromatin modification activities. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1799:257-65. [PMID: 19682612 DOI: 10.1016/j.bbagrm.2009.08.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 07/15/2009] [Accepted: 08/01/2009] [Indexed: 01/17/2023]
Abstract
The immediate early genes of the alpha-herpesviruses HSV and VZV are transcriptionally regulated by viral and cellular factors in a complex combinatorial manner. Despite this complexity and the apparent redundancy of activators, the expression of the viral IE genes is critically dependent upon the cellular transcriptional coactivator HCF-1. Although the role of HCF-1 had remained elusive, recent studies have demonstrated that the protein is a component of multiple chromatin modification complexes including the Set1/MLL1 histone H3K4 methyltransferases. Studies using model viral promoter-reporter systems as well as analyses of components recruited to the viral genome during the initiation of infection have elucidated the significance of HCF-1 chromatin modification complexes in contributing to the final state of modified histones assembled on the viral IE promoters. Strikingly, the absence of HCF-1 results in the accumulation of nucleosomes bearing repressive marks on the viral IE promoters and silencing of viral gene expression.
Collapse
Affiliation(s)
- Thomas M Kristie
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4-129, 4 Center Drive, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
23
|
Association of C-terminal ubiquitin hydrolase BRCA1-associated protein 1 with cell cycle regulator host cell factor 1. Mol Cell Biol 2009; 29:2181-92. [PMID: 19188440 DOI: 10.1128/mcb.01517-08] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein ubiquitination provides an efficient and reversible mechanism to regulate cell cycle progression and checkpoint control. Numerous regulatory proteins direct the addition of ubiquitin to lysine residues on target proteins, and these are countered by an army of deubiquitinating enzymes (DUBs). BRCA1-associated protein-1 (Bap1) is a ubiquitin carboxy-terminal hydrolase and is frequently mutated in lung and sporadic breast tumors. Bap1 can suppress growth of lung cancer cells in athymic nude mice and this requires its DUB activity. We show here that Bap1 interacts with host cell factor 1 (HCF-1), a transcriptional cofactor found in a number of important regulatory complexes. Bap1 binds to the HCF-1 beta-propeller using a variant of the HCF-binding motif found in herpes simplex virus VP16 and other HCF-interacting proteins. HCF-1 is K48 and K63 ubiquitinated, with a major site of linkage at lysines 1807 and 1808 in the HCF-1(C) subunit. Expression of a catalytically inactive version of Bap1 results in the selective accumulation of K48 ubiquitinated polypeptides. Depletion of Bap1 using small interfering RNA results in a modest accumulation of HCF-1(C), suggesting that Bap1 helps to control cell proliferation by regulating HCF-1 protein levels and by associating with genes involved in the G(1)-S transition.
Collapse
|
24
|
Li J, Ebata A, Dong Y, Rizki G, Iwata T, Lee SS. Caenorhabditis elegans HCF-1 functions in longevity maintenance as a DAF-16 regulator. PLoS Biol 2008; 6:e233. [PMID: 18828672 PMCID: PMC2553839 DOI: 10.1371/journal.pbio.0060233] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 08/15/2008] [Indexed: 11/18/2022] Open
Abstract
The transcription factor DAF-16/forkhead box O (FOXO) is a critical longevity determinant in diverse organisms, however the molecular basis of how its transcriptional activity is regulated remains largely unknown. We report that the Caenorhabditis elegans homolog of host cell factor 1 (HCF-1) represents a new longevity modulator and functions as a negative regulator of DAF-16. In C. elegans, hcf-1 inactivation caused a daf-16-dependent lifespan extension of up to 40% and heightened resistance to specific stress stimuli. HCF-1 showed ubiquitous nuclear localization and physically associated with DAF-16. Furthermore, loss of hcf-1 resulted in elevated DAF-16 recruitment to the promoters of its target genes and altered expression of a subset of DAF-16-regulated genes. We propose that HCF-1 modulates C. elegans longevity and stress response by forming a complex with DAF-16 and limiting a fraction of DAF-16 from accessing its target gene promoters, and thereby regulates DAF-16-mediated transcription of selective target genes. As HCF-1 is highly conserved, our findings have important implications for aging and FOXO regulation in mammals.
Collapse
Affiliation(s)
- Ji Li
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Atsushi Ebata
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Yuqing Dong
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Gizem Rizki
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Terri Iwata
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
25
|
Association of the cellular coactivator HCF-1 with the Golgi apparatus in sensory neurons. J Virol 2008; 82:9555-63. [PMID: 18667495 DOI: 10.1128/jvi.01174-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
HCF-1 is a cellular transcriptional coactivator that is critical for mediating the regulated expression of the immediate-early genes of the alphaherpesviruses herpes simplex virus type 1 and varicella-zoster virus. HCF-1 functions, at least in part, by modulating the modification of nucleosomes at these viral promoters to reverse cell-mediated repressive marks and promote activating marks. Strikingly, HCF-1 is specifically sequestered in the cytoplasm of sensory neurons where these viruses establish latency and is rapidly relocalized to the nucleus upon stimuli that result in viral reactivation. However, the analysis of HCF-1 in latently infected neurons and the protein's specific subcellular location have not been determined. Therefore, in this study, the localization of HCF-1 in unstimulated and induced latently infected sensory neurons was investigated and was found to be similar to that observed in uninfected mice, with a time course of induced nuclear accumulation that correlated with viral reactivation. Using a primary neuronal cell culture system, HCF-1 was localized to the Golgi apparatus in unstimulated neurons, a unique location for a transcriptional coactivator. Upon disruption of the Golgi body, HCF-1 was rapidly relocalized to the nucleus in contrast to other Golgi apparatus-associated proteins. The location of HCF-1 is distinct from that of CREB3, an endoplasmic reticulum-resident HCF-1 interaction partner that has been proposed to sequester HCF-1. The results support the model that HCF-1 is an important component of the viral latency-reactivation cycle and that it is regulated by association with a component that is distinct from the identified HCF-1 interaction factors.
Collapse
|
26
|
Lee S, Horn V, Julien E, Liu Y, Wysocka J, Bowerman B, Hengartner MO, Herr W. Epigenetic regulation of histone H3 serine 10 phosphorylation status by HCF-1 proteins in C. elegans and mammalian cells. PLoS One 2007; 2:e1213. [PMID: 18043729 PMCID: PMC2082077 DOI: 10.1371/journal.pone.0001213] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 10/30/2007] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The human herpes simplex virus (HSV) host cell factor HCF-1 is a transcriptional coregulator that associates with both histone methyl- and acetyltransferases, and a histone deacetylase and regulates cell proliferation and division. In HSV-infected cells, HCF-1 associates with the viral protein VP16 to promote formation of a multiprotein-DNA transcriptional activator complex. The ability of HCF proteins to stabilize this VP16-induced complex has been conserved in diverse animal species including Drosophila melanogaster and Caenorhabditis elegans suggesting that VP16 targets a conserved cellular function of HCF-1. METHODOLOGY/PRINCIPAL FINDINGS To investigate the role of HCF proteins in animal development, we have characterized the effects of loss of the HCF-1 homolog in C. elegans, called Ce HCF-1. Two large hcf-1 deletion mutants (pk924 and ok559) are viable but display reduced fertility. Loss of Ce HCF-1 protein at reduced temperatures (e.g., 12 degrees C), however, leads to a high incidence of embryonic lethality and early embryonic mitotic and cytokinetic defects reminiscent of mammalian cell-division defects upon loss of HCF-1 function. Even when viable, however, at normal temperature, mutant embryos display reduced levels of phospho-histone H3 serine 10 (H3S10P), a modification implicated in both transcriptional and mitotic regulation. Mammalian cells with defective HCF-1 also display defects in mitotic H3S10P status. CONCLUSIONS/SIGNIFICANCE These results suggest that HCF-1 proteins possess conserved roles in the regulation of cell division and mitotic histone phosphorylation.
Collapse
Affiliation(s)
- Soyoung Lee
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Virginie Horn
- Center for Integrative Genomics, University of Lausanne, Génopode, Lausanne, Switzerland
| | - Eric Julien
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Yi Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Joanna Wysocka
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Michael O. Hengartner
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Winship Herr
- Center for Integrative Genomics, University of Lausanne, Génopode, Lausanne, Switzerland
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| |
Collapse
|
27
|
Capotosti F, Hsieh JJD, Herr W. Species selectivity of mixed-lineage leukemia/trithorax and HCF proteolytic maturation pathways. Mol Cell Biol 2007; 27:7063-72. [PMID: 17698583 PMCID: PMC2168920 DOI: 10.1128/mcb.00769-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Site-specific proteolytic processing plays important roles in the regulation of cellular activities. The histone modification activity of the human trithorax group mixed-lineage leukemia (MLL) protein and the cell cycle regulatory activity of the cell proliferation factor herpes simplex virus host cell factor 1 (HCF-1) are stimulated by cleavage of precursors that generates stable heterodimeric complexes. MLL is processed by a protease called taspase 1, whereas the precise mechanisms of HCF-1 maturation are unclear, although they are known to depend on a series of sequence repeats called HCF-1(PRO) repeats. We demonstrate here that the Drosophila homologs of MLL and HCF-1, called Trithorax and dHCF, are both cleaved by Drosophila taspase 1. Although highly related, the human and Drosophila taspase 1 proteins display cognate species specificity. Thus, human taspase 1 preferentially cleaves MLL and Drosophila taspase 1 preferentially cleaves Trithorax, consistent with coevolution of taspase 1 and MLL/Trithorax proteins. HCF proteins display even greater species-specific divergence in processing: whereas dHCF is cleaved by the Drosophila taspase 1, human and mouse HCF-1 maturation is taspase 1 independent. Instead, human and Xenopus HCF-1PRO repeats are cleaved in vitro by a human proteolytic activity with novel properties. Thus, from insects to humans, HCF proteins have conserved proteolytic maturation but evolved different mechanisms.
Collapse
Affiliation(s)
- Francesca Capotosti
- Center for Integrative Genomics, University of Lausanne, Génopode Building, 1015 Lausanne, Switzerland
| | | | | |
Collapse
|
28
|
Tyagi S, Chabes AL, Wysocka J, Herr W. E2F activation of S phase promoters via association with HCF-1 and the MLL family of histone H3K4 methyltransferases. Mol Cell 2007; 27:107-19. [PMID: 17612494 DOI: 10.1016/j.molcel.2007.05.030] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 04/23/2007] [Accepted: 05/22/2007] [Indexed: 02/04/2023]
Abstract
E2F transcriptional regulators control human-cell proliferation by repressing and activating the transcription of genes required for cell-cycle progression, particularly the S phase. E2F proteins repress transcription in association with retinoblastoma pocket proteins, but less is known about how they activate transcription. Here, we show that the human G1 phase regulator HCF-1 associates with both activator (E2F1 and E2F3a) and repressor (E2F4) E2F proteins, properties that are conserved in insect cells. Human HCF-1-E2F interactions are versatile: their associations and binding to E2F-responsive promoters are cell-cycle selective, and HCF-1 displays coactivator properties when bound to the E2F1 activator and corepressor properties when bound to the E2F4 repressor. During the G1-to-S phase transition, HCF-1 recruits the mixed-lineage leukemia (MLL) and Set-1 histone H3 lysine 4 methyltransferases to E2F-responsive promoters and induces histone methylation and transcriptional activation. These results suggest that HCF-1 induces cell-cycle-specific transcriptional activation by E2F proteins to promote cell proliferation.
Collapse
Affiliation(s)
- Shweta Tyagi
- Center for Integrative Genomics, University of Lausanne, Génopode, 1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
29
|
Narayanan A, Ruyechan WT, Kristie TM. The coactivator host cell factor-1 mediates Set1 and MLL1 H3K4 trimethylation at herpesvirus immediate early promoters for initiation of infection. Proc Natl Acad Sci U S A 2007; 104:10835-40. [PMID: 17578910 PMCID: PMC1894567 DOI: 10.1073/pnas.0704351104] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Originally identified as an essential component of the herpes simplex virus immediate early (IE) gene enhancer complex, the transcriptional coactivator host cell factor-1 (HCF-1) has been implicated in a broad range of cellular regulatory circuits. The protein mediates activation through multiple interactions with transcriptional activators, coactivators, and chromatin remodeling complexes. However, the mechanisms involved in HCF-1-dependent transcriptional stimulation were undefined. By using a minimal HCF-1-dependent promoter and a model activator, the varicella zoster IE62 protein, it was determined that HCF-1 was not required for the assembly of the RNAPII basal complex, which depended solely on IE62 in conjunction with the cellular factor Sp1. In contrast, HCF-1 was required for recruitment of the histone methyltransferases Set1 and MLL1 (mixed-lineage leukemia 1), leading to histone H3K4 trimethylation and transcriptional activation. Similarly, in a varicella zoster virus lytic infection, HCF-1, Set1, and MLL1 were recruited to the viral genomic IE promoter, suggesting an essential role for HCF-1 in chromatin modification and remodeling during initiation of lytic infection. The results indicate that one biological rationale for the incorporation of the viral IE activators in the viral particle is to recruit HCF-1/histone methyltransferase complexes and promote assembly of the viral IE gene promoters into transcriptionally active chromatin. These studies also contribute to the model whereby the induced nuclear transport of HCF-1 in sensory neurons may be critical to the reactivation of latent herpesviruses by promoting the activation of chromatin modifications.
Collapse
Affiliation(s)
- Aarthi Narayanan
- *Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 4-131, 4 Center Drive, Bethesda, MD 20892; and
| | - William T. Ruyechan
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, 251 Biomedical Research Building, Buffalo, NY 14214
| | - Thomas M. Kristie
- *Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 4-131, 4 Center Drive, Bethesda, MD 20892; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
30
|
Vogel JL, Kristie TM. Site-specific proteolysis of the transcriptional coactivator HCF-1 can regulate its interaction with protein cofactors. Proc Natl Acad Sci U S A 2006; 103:6817-22. [PMID: 16624878 PMCID: PMC1440766 DOI: 10.1073/pnas.0602109103] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Limited proteolytic processing is an important transcriptional regulatory mechanism. In various contexts, proteolysis controls the cytoplasmic-to-nuclear transport of important transcription factors or removes domains to produce factors with altered activities. The transcriptional coactivator host cell factor-1 (HCF-1) is proteolytically processed within a unique domain consisting of 20-aa reiterations. Site-specific cleavage within one or more repeats generates a family of amino- and carboxyl-terminal subunits that remain tightly associated. However, the consequences of HCF-1 processing have been undefined. In this study, it was determined that the HCF-1-processing domain interacts with several proteins including the transcriptional coactivator/corepressor four-and-a-half LIM domain-2 (FHL2). Analysis of this interaction has uncovered specificity with both sequence and context determinants within the reiterations of this processing domain. In cells, FHL2 interacts exclusively with the nonprocessed coactivator and costimulates transcription of an HCF-1-dependent target gene. The functional interaction of HCF-1 with FHL2 supports a model in which site-specific proteolysis regulates the interaction of HCF-1 with protein partners and thus can modulate the activity of this coactivator. This paradigm expands the biological significance of limited proteolytic processing as a regulatory mechanism in gene transcription.
Collapse
Affiliation(s)
- Jodi L. Vogel
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 4-131, 4 Center Drive, Bethesda, MD 20892
| | - Thomas M. Kristie
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 4-131, 4 Center Drive, Bethesda, MD 20892
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
31
|
Akhova O, Bainbridge M, Misra V. The neuronal host cell factor-binding protein Zhangfei inhibits herpes simplex virus replication. J Virol 2006; 79:14708-18. [PMID: 16282471 PMCID: PMC1287584 DOI: 10.1128/jvi.79.23.14708-14718.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During lytic infection in epithelial cells the expression of herpes simplex virus type 1 (HSV-1) immediate-early (IE) genes is initiated by a multiprotein complex comprising the virion-associated protein VP16 and two cellular proteins, host cellular factor (HCF) and Oct-1. Oct-1 directly recognizes TAATGARAT elements in promoters of IE genes. The role of HCF is not clear. HSV-1 also infects sensory neurons innervating the site of productive infection and establishes a latent infection in these cells. It is likely that some VP16 is retained by the HSV-1 nucleocapsid as it reaches the neuronal nucleus. Its activity must therefore be suppressed for successful establishment of viral latency. Recently, we discovered an HCF-binding cellular protein called Zhangfei. Zhangfei, in an HCF-dependent manner, inhibits Luman/LZIP/CREB3, another cellular HCF-binding transcription factor. Here we show that Zhangfei is selectively expressed in human neurons. When delivered to cultured cells that do not normally express the protein, Zhangfei inhibited the ability of VP16 to activate HSV-1 IE expression. The inhibition was specific for HCF-dependent transcriptional activation by VP16, since a Gal4-VP16 chimeric protein was inhibited only on a TAATGARAT-containing promoter and not a on a Gal4-containing promoter. Zhangfei associated with VP16 and inhibited formation of the VP16-HCF-Oct-1 complex on TAATGARAT motifs. Zhangfei also suppressed HSV-1-induced expression of several cellular genes including topoisomerase IIalpha, suggesting that in addition to suppressing IE expression Zhangfei may have an inhibitory effect on HSV-1 DNA replication and late gene expression.
Collapse
Affiliation(s)
- Oksana Akhova
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada
| | | | | |
Collapse
|
32
|
Juang BT, Izeta A, O'Hare P, Luisi BF. Purification and characterization of the Caenorhabditis elegans HCF protein and domains of human HCF. Biochemistry 2005; 44:10396-405. [PMID: 16042417 DOI: 10.1021/bi050357l] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human cellular factor (HCF) is a multidomain protein that is implicated in processes of cell cycle progression, and it is recruited into a multicomponent assembly that triggers the expression of the herpes simplex virus genome. The amino-terminal domain of HCF has been proposed to form a "kelch" type beta-propeller fold, and the carboxy-terminal domain contains a repeat of a fibronectin-like motif. We describe the expression, purification, and characterization of the domains from the human HCF and of the full-length HCF from Caenorhabditis elegans. The purified recombinant C. elegans HCF can substitute for the human HCF in efficiently forming a multiprotein complex on a herpes simplex virus promoter element. As noted in earlier studies, a segment of human HCF encompassing the human kelch domain forms a stable complex on a viral promoter element. The purified fibronectin domain can also be recruited into this complex, but not into the stable complex formed with the minimal kelch domain. These results suggest that the fibronectin domain can interact with HCF in the transcriptional activating complex and that the association requires a region outside the putative beta-propeller.
Collapse
Affiliation(s)
- Bi-Tzen Juang
- Department of Biochemistry, University of Cambridge, UK
| | | | | | | |
Collapse
|
33
|
Abstract
HSV triggers and blocks apoptosis in cell type-specific fashion. This review discusses present understanding of the role of apoptosis and signaling cascades in neuronal pathogenesis and survival and summarizes present findings relating to the modulation of these strictly balanced processes by HSV infection. Underscored are the findings that HSV-1, but not HSV-2, triggers apoptosis in CNS neurons and causes encephalitis in adult subjects. Mechanisms responsible for the different outcomes of infection with the two HSV serotypes are described, including the contribution of viral antiapoptotic genes, notably the HSV-2 gene ICP10PK. Implications for the potential use of HSV vectors in future therapeutic developments are discussed.
Collapse
Affiliation(s)
- L Aurelian
- Virology/Immunology Laboratories, University of Maryland, Bressler, Room 4-023, 655 West Baltimore Street, Baltimore, MD 21201, USA.
| |
Collapse
|
34
|
Narayanan A, Nogueira ML, Ruyechan WT, Kristie TM. Combinatorial transcription of herpes simplex virus and varicella zoster virus immediate early genes is strictly determined by the cellular coactivator HCF-1. J Biol Chem 2004; 280:1369-75. [PMID: 15522876 DOI: 10.1074/jbc.m410178200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian transcriptional coactivator host cell factor-1 (HCF-1) functions in concert with Oct-1 and VP16 to assemble the herpes simplex virus (HSV) immediate early (IE) transcription enhancer core complexes that mediate the high level transcription of these genes upon infection. Although this transcriptional model has been well characterized in vitro, the requirements and significance of the components have not been addressed. Oct-1 was previously determined to be critical but not essential for HSV IE gene expression. In contrast, RNA interference-mediated depletion of HCF-1 resulted in abrogation of HSV IE gene expression. The HSV IE gene enhancer domain is a model of combinatorial transcription and consists of the core enhancer and multiple binding sites for factors such as Sp1 and GA-binding protein. It was striking that HCF-1 was strictly required for VP16-mediated transcriptional induction via the core enhancer as well as for basal level transcription mediated by GA-binding protein and Sp1. HCF-1 was also found to be essential for the induction of varicella zoster virus IE gene expression by ORF10, the VZV ortholog of the HSV IE transactivator VP16, and the autostimulatory IE62 protein. The critical dependence upon HCF-1 demonstrates that this cellular component is a key factor for control of HSV and VZV IE gene expression by functioning as the common element for distinct factors cooperating at the IE gene enhancers. The requirements for this protein supports the model whereby the regulated transport of HCF-1 from the cytoplasm to the nucleus in sensory neurons may control IE gene expression and reactivation of these viruses from the latent state.
Collapse
Affiliation(s)
- Aarthi Narayanan
- Laboratory of Viral Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
35
|
Yokoyama A, Wang Z, Wysocka J, Sanyal M, Aufiero DJ, Kitabayashi I, Herr W, Cleary ML. Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol Cell Biol 2004; 24:5639-49. [PMID: 15199122 PMCID: PMC480881 DOI: 10.1128/mcb.24.13.5639-5649.2004] [Citation(s) in RCA: 522] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
MLL (for mixed-lineage leukemia) is a proto-oncogene that is mutated in a variety of human leukemias. Its product, a homolog of Drosophila melanogaster trithorax, displays intrinsic histone methyltransferase activity and functions genetically to maintain embryonic Hox gene expression. Here we report the biochemical purification of MLL and demonstrate that it associates with a cohort of proteins shared with the yeast and human SET1 histone methyltransferase complexes, including a homolog of Ash2, another Trx-G group protein. Two other members of the novel MLL complex identified here are host cell factor 1 (HCF-1), a transcriptional coregulator, and the related HCF-2, both of which specifically interact with a conserved binding motif in the MLL(N) (p300) subunit of MLL and provide a potential mechanism for regulating its antagonistic transcriptional properties. Menin, a product of the MEN1 tumor suppressor gene, is also a component of the 1-MDa MLL complex. Abrogation of menin expression phenocopies loss of MLL and reveals a critical role for menin in the maintenance of Hox gene expression. Oncogenic mutant forms of MLL retain an ability to interact with menin but not other identified complex components. These studies link the menin tumor suppressor protein with the MLL histone methyltransferase machinery, with implications for Hox gene expression in development and leukemia pathogenesis.
Collapse
Affiliation(s)
- Akihiko Yokoyama
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Khurana B, Kristie TM. A Protein Sequestering System Reveals Control of Cellular Programs by the Transcriptional Coactivator HCF-1. J Biol Chem 2004; 279:33673-83. [PMID: 15190068 DOI: 10.1074/jbc.m401255200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian transcriptional coactivator HCF-1 is a critical component of the multiprotein herpes simplex virus immediate early gene enhancer core complex. The protein has also been implicated in basic cellular processes such as cell-cycle progression, transcriptional coactivation, and mRNA processing. Functions have been attributed to HCF-1 primarily from analyses of protein-protein interactions and from the cell-cycle-arrested phenotype of an HCF-1 temperature-sensitive mutant. However, neither the mechanisms involved nor specific cellular transcriptional targets have been identified. As the protein is essential for cell viability and proliferation, a genetic system was developed to specifically sequester the nuclear factor in the cell cytoplasm in a regulated manner. This approach exhibits no significant cell toxicity yet clearly demonstrates the requirement of available nuclear HCF-1 for herpes simplex virus immediate early gene expression during productive infection. Additionally, cellular transcriptional events were identified that contribute to understanding the functions ascribed to the protein and implicate the protein in events that impact the regulation of critical cellular processes.
Collapse
Affiliation(s)
- Bharat Khurana
- Laboratory of Viral Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
37
|
Nogueira ML, Wang VEH, Tantin D, Sharp PA, Kristie TM. Herpes simplex virus infections are arrested in Oct-1-deficient cells. Proc Natl Acad Sci U S A 2004; 101:1473-8. [PMID: 14745036 PMCID: PMC341744 DOI: 10.1073/pnas.0307300101] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Expression of the herpes simplex virus (HSV) immediate early (IE) genes is regulated by a multiprotein complex that is assembled on the TAATGARAT enhancer core element. The complex contains the cellular POU domain protein Oct-1, the viral transactivator VP16, and the cellular cofactor host cell factor 1. The current model suggests that the assembly depends on recognition of the core element by Oct-1. Here, HSV infection of Oct-1-deficient mouse embryonic fibroblast cells demonstrates that Oct-1 is critical for IE gene expression at low multiplicities of infection (moi). However, the protein is not essential for IE gene expression at high moi, indicating that VP16-mediated transcriptional induction through other IE regulatory elements is also important. This induction depends, at least in part, on the GA-binding protein binding elements that are present in each IE enhancer domain. Surprisingly, whereas the viral IE genes are expressed after high moi infection of Oct-1-deficient cells, the assembly of viral replication factories is severely impaired, revealing a second critical role for Oct-1 in HSV replication. The results have implications for both the HSV lytic and latency-reactivation cycles.
Collapse
Affiliation(s)
- Mauricio L Nogueira
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 4-131, 4 Center Drive, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
38
|
Abstract
HCF-1 is a transcriptional cofactor required for activation of herpes simplex virus immediate-early genes by VP16 as well as less clearly defined roles in cell proliferation, cytokinesis, and spliceosome formation. It is expressed as a large precursor that undergoes proteolysis to yield two subunits that remain stably associated. VP16 uses a degenerate 4-amino acid sequence, known as the HCF-binding motif, to bind to a six-bladed beta-propeller domain at the N terminus of HCF-1. Functional HCF-binding motifs are also found in LZIP and Zhangfei, two cellular bZIP transcription factors of unknown function. Here we show that the HCF-binding motif occurs in a wide spectrum of DNA-binding proteins and transcriptional cofactors. Three well characterized examples were further analyzed for their ability to use HCF-1 as a coactivator. Krox20, a zinc finger transcription factor required for Schwann cell differentiation, and E2F4, a cell cycle regulator, showed a strong requirement for functional HCF-1 to activate transcription. In contrast, activation by estrogen receptor-alpha did not display HCF dependence. In Krox20, the HCF-binding motif lies within the N-terminal activation domain and mutation of this sequence diminishes both transactivation and association with the HCF-1 beta-propeller. The activation domain in the C-terminal subunit of HCF-1 contributes to activation by Krox20, possibly through recruitment of p300. These results suggest that HCF-1 is recruited by many different classes of cellular transcription factors and is therefore likely to be required for a variety of cellular processes including cell cycle progression and development.
Collapse
Affiliation(s)
| | - Angus C. Wilson
- To whom correspondence should be addressed: Dept. of Microbiology, 550 First Ave., New York, NY 10016. Tel.: 212-263-0206; Fax: 212-263-8276;
| |
Collapse
|
39
|
Wysocka J, Herr W. The herpes simplex virus VP16-induced complex: the makings of a regulatory switch. Trends Biochem Sci 2003; 28:294-304. [PMID: 12826401 DOI: 10.1016/s0968-0004(03)00088-4] [Citation(s) in RCA: 238] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
When herpes simplex virus (HSV) infects human cells, it is able to enter two modes of infection: lytic and latent. A key activator of lytic infection is a virion protein called VP16, which, upon infection of a permissive cell, forms a transcriptional regulatory complex with two cellular proteins - the POU-domain transcription factor Oct-1 and the cell-proliferation factor HCF-1 - to activate transcription of the first set of expressed viral genes. This regulatory complex, called the VP16-induced complex, reveals mechanisms of combinatorial control of transcription. The activities of Oct-1 and HCF-1 - two important regulators of cellular gene expression and proliferation - illuminate strategies by which HSV might coexist with its host.
Collapse
|
40
|
Julien E, Herr W. Proteolytic processing is necessary to separate and ensure proper cell growth and cytokinesis functions of HCF-1. EMBO J 2003; 22:2360-9. [PMID: 12743030 PMCID: PMC156000 DOI: 10.1093/emboj/cdg242] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
HCF-1 is a highly conserved and abundant chromatin-associated host cell factor required for transcriptional activation of herpes simplex virus immediate-early genes by the virion protein VP16. HCF-1 exists as a heterodimeric complex of associated N- (HCF-1(N)) and C- (HCF-1(C)) terminal subunits that result from proteolytic processing of a precursor protein. We have used small-interfering RNA (siRNA) to inactivate HCF-1 in an array of normal and transformed mammalian cells to identify its cellular functions. Our results show that HCF-1 is a broadly acting regulator of two stages of the cell cycle: exit from mitosis, where it ensures proper cytokinesis, and passage through the G(1) phase, where it promotes cell cycle progression. Proteolytic processing is necessary to separate and ensure these two HCF-1 activities, which are performed by separate HCF-1 subunits: the HCF-1(N) subunit promotes passage through the G(1) phase whereas the HCF-1(C) subunit is involved in proper exit from mitosis. These results suggest that HCF-1 links the regulation of exit from mitosis and the G(1) phase of cell growth, possibly to coordinate the reactivation of gene expression after mitosis.
Collapse
Affiliation(s)
- Eric Julien
- Cold Spring Harbor Laboratory, NY 11724, USA
| | | |
Collapse
|
41
|
Wysocka J, Myers MP, Laherty CD, Eisenman RN, Herr W. Human Sin3 deacetylase and trithorax-related Set1/Ash2 histone H3-K4 methyltransferase are tethered together selectively by the cell-proliferation factor HCF-1. Genes Dev 2003; 17:896-911. [PMID: 12670868 PMCID: PMC196026 DOI: 10.1101/gad.252103] [Citation(s) in RCA: 320] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The abundant and chromatin-associated protein HCF-1 is a critical player in mammalian cell proliferation as well as herpes simplex virus (HSV) transcription. We show here that separate regions of HCF-1 critical for its role in cell proliferation associate with the Sin3 histone deacetylase (HDAC) and a previously uncharacterized human trithorax-related Set1/Ash2 histone methyltransferase (HMT). The Set1/Ash2 HMT methylates histone H3 at Lys 4 (K4), but not if the neighboring K9 residue is already methylated. HCF-1 tethers the Sin3 and Set1/Ash2 transcriptional regulatory complexes together even though they are generally associated with opposite transcriptional outcomes: repression and activation of transcription, respectively. Nevertheless, this tethering is context-dependent because the transcriptional activator VP16 selectively binds HCF-1 associated with the Set1/Ash2 HMT complex in the absence of the Sin3 HDAC complex. These results suggest that HCF-1 can broadly regulate transcription, both positively and negatively, through selective modulation of chromatin structure.
Collapse
Affiliation(s)
- Joanna Wysocka
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | |
Collapse
|
42
|
Izeta A, Malcomber S, O'Hare P. Primary structure and compartmentalization of Drosophila melanogaster host cell factor. Gene 2003; 305:175-83. [PMID: 12609738 DOI: 10.1016/s0378-1119(03)00380-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Human host cell factor-1 (HCF-1) is a large, 2035-residue nuclear protein that interacts with cellular and viral transcription factors. It contains an N-terminal kelch domain, C-terminal fibronectin type III (FnIII) domain, and a central region including tandem repeats which act as cleavage sites. A second human HCF-1 related gene encodes a protein with a high degree of homology in both the N-terminal kelch domain and C-terminal FnIII domain, but lacks the central portion and as a result is considerably smaller at 792 residues. A unique HCF orthologue has been found in Caenorhabditis elegans which is structurally more related to HCF-2 than HCF-1. Here we report the cloning and expression of the single Drosophila melanogaster host cell factor orthologue (dHCF). The dHCF is 1500 residues in size, intermediate between HCF-1 and HCF-2 and contains an N-terminal kelch domain, and C-terminal FnIII domain both of which show a very high degree of identity, and a central region of some 700 residues with more limited homology. Despite containing a central region no repeat-related motifs were apparent. The dHCF is expressed as a single unprocessed polypeptide consistent with the lack of the internal HCF-1 processing sites, and exhibits a predominantly nuclear localization. We show that this nuclear localization is dependent on a bipartite nuclear localization signal at the C-terminus of the protein, which contains a long spacer of 20 amino acids between two basic clusters. Finally, we also show that dHCF is unable to rescue the tsBN67 cell cycle arrest phenotype. These results indicate that dHCF is an orthologue of HCF-1, although both proteins might not be functionally exchangeable.
Collapse
Affiliation(s)
- Ander Izeta
- Herpesvirus Group, Marie Curie Research Institute, The Chart, Oxted, Surrey RH8 0TL, UK
| | | | | |
Collapse
|
43
|
Mahajan SS, Johnson KM, Wilson AC. Molecular cloning of Drosophila HCF reveals proteolytic processing and self-association of the encoded protein. J Cell Physiol 2003; 194:117-26. [PMID: 12494450 PMCID: PMC4407374 DOI: 10.1002/jcp.10193] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
HCF-1 functions as a coactivator for herpes simplex virus VP16 and a number of mammalian transcription factors. Mature HCF-1 is composed of two subunits generated by proteolytic cleavage of a larger precursor at six centrally-located HCF(PRO) repeats. The resulting N- and C-terminal subunits remain tightly associated via two complementary pairs of self-association domains: termed SAS1N-SAS1C and SAS2N-SAS2C. Additional HCF proteins have been identified in mammals (HCF-2) and Caenorhabditis elegans (CeHCF). Both contain well-conserved SAS1 domains but do not undergo proteolytic processing. Thus, the significance of the cleavage and self-association of HCF-1 remains enigmatic. Here, we describe the isolation of the Drosophila HCF homologue (dHCF) using a genetic screen based on conservation of the SAS1 interaction. The N-terminal beta-propeller domain of dHCF supports VP16-induced complex formation and is more similar to mammalian HCF-1 than other homologues. We show that full-length dHCF expressed in Drosophila cells undergoes proteolytic cleavage giving rise to tightly associated N- and C-terminal subunits. As with HCF-1, the SAS1N and SAS1C elements of dHCF are separated by a large central region, however, this sequence lacks obvious homology to the HCF(PRO) repeats required for HCF-1 cleavage. The conservation of HCF processing in insect cells argues that formation of separate N- and C-terminal subunits is important for HCF function.
Collapse
Affiliation(s)
| | | | - Angus C. Wilson
- Correspondence to: Angus C. Wilson, Department of Microbiology, NYU School of Medicine, 550 First Avenue, New York, NY 10016.
| |
Collapse
|
44
|
Abstract
Primary infection by herpes simplex virus type 1 (HSV-1) can cause clinical symptoms in the peripheral and central nervous system, upper respiratory tract, and gastrointestinal tract. Recurrent ocular shedding leads to corneal scarring that can progress to vision loss. Consequently, HSV-1 is the leading cause of corneal blindness due to an infectious agent. Bovine herpesvirus 1 (BHV-1) has similar biological properties to HSV-1 and is a significant health concern to the cattle industry. Latency of BHV-1 and HSV-1 is established in sensory neurons of trigeminal ganglia, but latency can be interrupted periodically, leading to reactivation from latency and spread of infectious virus. The ability of HSV-1 and BHV-1 to reactivate from latency leads to virus transmission and can lead to recurrent disease in individuals latently infected with HSV-1. During latency, the only abundant HSV-1 RNA expressed is the latency-associated transcript (LAT). In latently infected cattle, the latency-related (LR) RNA is the only abundant transcript that is expressed. LAT and LR RNA are antisense to ICP0 or bICP0, viral genes that are crucial for productive infection, suggesting that LAT and LR RNA interfere with productive infection by inhibiting ICP0 or bICP0 expression. Numerous studies have concluded that LAT expression is important for the latency-reactivation cycle in animal models. The LR gene has recently been demonstrated to be required for the latency-reactivation cycle in cattle. Several recent studies have demonstrated that LAT and the LR gene inhibit apoptosis (programmed cell death) in trigeminal ganglia of infected animals and transiently transfected cells. The antiapoptotic properties of LAT map to the same sequences that are necessary for promoting reactivation from latency. This review summarizes our current knowledge of factors regulating the latency-reactivation cycle of HSV-1 and BHV-1.
Collapse
Affiliation(s)
- Clinton Jones
- Department of Veterinary and Biomedical Sciences, The Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0905, USA.
| |
Collapse
|
45
|
Ajuh P, Chusainow J, Ryder U, Lamond AI. A novel function for human factor C1 (HCF-1), a host protein required for herpes simplex virus infection, in pre-mRNA splicing. EMBO J 2002; 21:6590-602. [PMID: 12456665 PMCID: PMC136956 DOI: 10.1093/emboj/cdf652] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human factor C1 (HCF-1) is needed for the expression of herpes simplex virus 1 (HSV-1) immediate-early genes in infected mammalian cells. Here, we provide evidence that HCF-1 is required for spliceosome assembly and splicing in mammalian nuclear extracts. HCF-1 interacts with complexes containing splicing snRNPs in uninfected mammalian cells and is a stable component of the spliceosome complex. We show that a missense mutation in HCF-1 in the BHK21 hamster cell line tsBN67, at the non-permissive temperature, inhibits the protein's interaction with U1 and U5 splicing snRNPs, causes inefficient spliceosome assembly and inhibits splicing. Transient expression of wild-type HCF-1 in tsBN67 cells restores splicing at the non-permissive temperature. The inhibition of splicing in tsBN67 cells correlates with the temperature-sensitive cell cycle arrest phenotype, suggesting that HCF-1-dependent splicing events may be required for cell cycle progression.
Collapse
Affiliation(s)
| | | | | | - Angus I. Lamond
- School of Life Sciences, The University of Dundee, Dow Street, Dundee DD1 5EH, UK
Corresponding author e-mail:
| |
Collapse
|
46
|
Mahajan SS, Little MM, Vazquez R, Wilson AC. Interaction of HCF-1 with a cellular nuclear export factor. J Biol Chem 2002; 277:44292-9. [PMID: 12235138 PMCID: PMC4291127 DOI: 10.1074/jbc.m205440200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HCF-1 is a cellular protein required by VP16 to activate the herpes simplex virus (HSV) immediate-early genes. VP16 is a component of the viral tegument and, after release into the cell, binds to HCF-1 and translocates to the nucleus to form a complex with the POU domain protein Oct-1 and a VP16-responsive DNA sequence. This VP16-induced complex boosts transcription of the viral immediate-early genes and initiates lytic replication. In uninfected cells, HCF-1 functions as a coactivator for the cellular transcription factors LZIP and GABP and also plays an essential role in cell proliferation. VP16 and LZIP share a tetrapeptide HCF-binding motif recognized by the beta-propeller domain of HCF-1. Here we describe a new cellular HCF-1 beta-propeller domain binding protein, termed HPIP, which contains a functional HCF-binding motif and a leucine-rich nuclear export sequence. We show that HPIP shuttles between the nucleus and cytoplasm in a CRM1-dependent manner and that overexpression of HPIP leads to accumulation of HCF-1 in the cytoplasm. These data suggest that HPIP regulates HCF-1 activity by modulating its subcellular localization. Furthermore, HPIP-mediated export may provide the pool of cytoplasmic HCF-1 required for import of virion-derived VP16 into the nucleus.
Collapse
Affiliation(s)
| | | | | | - Angus C. Wilson
- To whom correspondence should be addressed: Dept. of Microbiology, NYU Medical Center, 550 First Ave., New York, NY 10016. Tel.: 212-263-0206; Fax: 212-263-8276;
| |
Collapse
|
47
|
Reilly PT, Wysocka J, Herr W. Inactivation of the retinoblastoma protein family can bypass the HCF-1 defect in tsBN67 cell proliferation and cytokinesis. Mol Cell Biol 2002; 22:6767-78. [PMID: 12215534 PMCID: PMC134044 DOI: 10.1128/mcb.22.19.6767-6778.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Owing to a single missense mutation in the cell proliferation factor HCF-1, the temperature-sensitive tsBN67 hamster cell line arrests proliferation at nonpermissive temperatures, primarily in a G(0)/G(1) state, and displays temperature-sensitive cytokinesis defects. The HCF-1 mutation in tsBN67 cells also causes a temperature-sensitive dissociation of HCF-1 from chromatin prior to cell proliferation arrest, suggesting that HCF-1-chromatin association is important for mammalian-cell proliferation. Here, we report that the simian virus 40 (SV40) early region, in particular, large T antigen (Tag), and the adenovirus oncoprotein E1A can rescue the tsBN67 cell proliferation defect at nonpermissive temperatures. The SV40 early region rescues the tsBN67 cell proliferation defect without restoring the HCF-1-chromatin association, indicating that these oncoproteins bypass a requirement for HCF-1 function. The SV40 early region also rescues the tsBN67 cytokinesis defect, suggesting that the roles of HCF-1 in cell proliferation and proper cytokinesis are intimately linked. The ability of SV40 Tag and adenovirus E1A to inactivate members of the pRb protein family-pRb, p107, and p130-is important for the bypass of HCF-1 function. These results suggest that HCF-1 regulates mammalian-cell proliferation and cytokinesis, at least in part, by either directly or indirectly opposing pRb family member function.
Collapse
Affiliation(s)
- Patrick T Reilly
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | |
Collapse
|
48
|
Luciano RL, Wilson AC. An activation domain in the C-terminal subunit of HCF-1 is important for transactivation by VP16 and LZIP. Proc Natl Acad Sci U S A 2002; 99:13403-8. [PMID: 12271126 PMCID: PMC129685 DOI: 10.1073/pnas.202200399] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In herpes simplex virus, lytic replication is initiated by the viral transactivator VP16 acting with cellular cofactors Oct-1 and HCF-1. Although this activator complex has been studied in detail, the role of HCF-1 remains elusive. Here, we show that HCF-1 contains an activation domain (HCF-1(AD)) required for maximal transactivation by VP16 and its cellular counterpart LZIP. Expression of the VP16 cofactor p300 augments HCF-1(AD) activity, suggesting a mechanism of synergy. Infection of cells lacking the HCF-1(AD) leads to reduced viral immediate-early gene expression and lowered viral titers. These findings underscore the importance of HCF-1 to herpes simplex virus replication and VP16 transactivation.
Collapse
Affiliation(s)
- Randy L Luciano
- Department of Microbiology and Kaplan Comprehensive Cancer Center, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | |
Collapse
|
49
|
Piluso D, Bilan P, Capone JP. Host cell factor-1 interacts with and antagonizes transactivation by the cell cycle regulatory factor Miz-1. J Biol Chem 2002; 277:46799-808. [PMID: 12244100 DOI: 10.1074/jbc.m206226200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Human host cell factor-1 (HCF-1) is essential for cell cycle progression and is required, in conjunction with the herpes simplex virus transactivator VP16, for induction of viral immediate-early gene expression. We show here that HCF-1 directly binds to the Myc-interacting protein Miz-1, a transcription factor that induces cell cycle arrest at G(1), in part by directly stimulating expression of the cyclin-dependent kinase inhibitor p15(INK4b). A domain encompassing amino acids 750-836, contained within a subregion of HCF-1 required for cell cycle progression, was sufficient to bind Miz-1. Conversely, HCF-1 interacted with two separate regions in Miz-1: the N-terminal POZ domain and a C-terminal domain (residues 637-803) previously shown to harbor determinants for interaction with c-Myc and the coactivator p300. The latter functioned as a potent transactivation domain when tethered to DNA, indicating that HCF-1 targets a transactivation function in Miz-1. HCF-1 or a Miz-1-binding fragment of HCF-1 repressed transactivation by Gal4-Miz-1 in transfection assays. Moreover, HCF-1 repressed Miz-1-mediated transactivation of a reporter gene linked to the p15(INK4b) promoter. Protein/protein interaction studies and transient transfection assays demonstrated that HCF-1 interferes with recruitment of p300 to Miz-1, similar to what has been reported with c-Myc. Our findings identify Miz-1 as a novel HCF-1-interacting partner and illustrate cross-talk between these two proteins that may be of consequence to their respective functions in gene regulation and their opposing effects on the cell cycle.
Collapse
Affiliation(s)
- David Piluso
- Department of Biochemistry, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | | | |
Collapse
|
50
|
Vinson C, Myakishev M, Acharya A, Mir AA, Moll JR, Bonovich M. Classification of human B-ZIP proteins based on dimerization properties. Mol Cell Biol 2002; 22:6321-35. [PMID: 12192032 PMCID: PMC135624 DOI: 10.1128/mcb.22.18.6321-6335.2002] [Citation(s) in RCA: 343] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Charles Vinson
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | |
Collapse
|