1
|
Singh AK, Kumar A, Arora S, Kumar R, Verma A, Khalilullah H, Jaremko M, Emwas AH, Kumar P. Current insights and molecular docking studies of HIV-1 reverse transcriptase inhibitors. Chem Biol Drug Des 2024; 103:e14372. [PMID: 37817296 DOI: 10.1111/cbdd.14372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/12/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023]
Abstract
Human immunodeficiency virus (HIV) causes acquired immunodeficiency syndrome (AIDS), a lethal disease that is prevalent worldwide. According to the Joint United Nations Programme on HIV/AIDS (UNAIDS) data, 38.4 million people worldwide were living with HIV in 2021. Viral reverse transcriptase (RT) is an excellent target for drug intervention. Nucleoside reverse transcriptase inhibitors (NRTIs) were the first class of approved antiretroviral drugs. Later, a new type of non-nucleoside reverse transcriptase inhibitors (NNRTIs) were approved as anti-HIV drugs. Zidovudine, didanosine, and stavudine are FDA-approved NRTIs, while nevirapine, efavirenz, and delavirdine are FDA-approved NNRTIs. Several agents are in clinical trials, including apricitabine, racivir, elvucitabine, doravirine, dapivirine, and elsulfavirine. This review addresses HIV-1 structure, replication cycle, reverse transcription, and HIV drug targets. This study focuses on NRTIs and NNRTIs, their binding sites, mechanisms of action, FDA-approved drugs and drugs in clinical trials, their resistance and adverse effects, their molecular docking studies, and highly active antiretroviral therapy (HAART).
Collapse
Affiliation(s)
- Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Sahil Arora
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Raj Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Amita Verma
- Department of Pharmaceutical Sciences, Bioorganic and Medicinal Chemistry Research Laboratory, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unayzah, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
2
|
Ndashimye E, Reyes PS, Arts EJ. New antiretroviral inhibitors and HIV-1 drug resistance: more focus on 90% HIV-1 isolates? FEMS Microbiol Rev 2023; 47:fuac040. [PMID: 36130204 PMCID: PMC9841967 DOI: 10.1093/femsre/fuac040] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 01/21/2023] Open
Abstract
Combined HIV antiretroviral therapy (cART) has been effective except if drug resistance emerges. As cART has been rolled out in low-income countries, drug resistance has emerged at higher rates than observed in high income countries due to factors including initial use of these less tolerated cART regimens, intermittent disruptions in drug supply, and insufficient treatment monitoring. These socioeconomic factors impacting drug resistance are compounded by viral mechanistic differences by divergent HIV-1 non-B subtypes compared to HIV-1 subtype B that largely infects the high-income countries (just 10% of 37 million infected). This review compares the inhibition and resistance of diverse HIV-1 subtypes and strains to the various approved drugs as well as novel inhibitors in clinical trials. Initial sequence variations and differences in replicative fitness between HIV-1 subtypes pushes strains through different fitness landscapes to escape from drug selective pressure. The discussions here provide insight to patient care givers and policy makers on how best to use currently approved ART options and reduce the emergence of drug resistance in ∼33 million individuals infected with HIV-1 subtype A, C, D, G, and recombinants forms. Unfortunately, over 98% of the literature on cART resistance relates to HIV-1 subtype B.
Collapse
Affiliation(s)
- Emmanuel Ndashimye
- Department of Microbiology and Immunology, Western University Schulich School of Medicine & Dentistry, Western University, N6A 3K7, London, Ontario, Canada
- Joint Clinical Research Centre, -Center for AIDS Research Laboratories, 256, Kampala, Uganda
| | - Paul S Reyes
- Department of Microbiology and Immunology, Western University Schulich School of Medicine & Dentistry, Western University, N6A 3K7, London, Ontario, Canada
| | - Eric J Arts
- Department of Microbiology and Immunology, Western University Schulich School of Medicine & Dentistry, Western University, N6A 3K7, London, Ontario, Canada
| |
Collapse
|
3
|
Pandey AK, Dixit U, Kholodovych V, Comollo TW, Pandey VN. The β1'-β2' Motif of the RNase H Domain of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Is Responsible for Conferring Open Conformation to the p66 Subunit by Displacing the Connection Domain from the Polymerase Cleft. Biochemistry 2017; 56:3434-3442. [PMID: 28627879 DOI: 10.1021/acs.biochem.7b00005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The heterodimeric human immunodeficiency virus type 1 reverse transcriptase is composed of p66 and p51 subunits. While in the p51 subunit, the connection domain is tucked in the polymerase cleft; it is effectively displaced from the cleft of the catalytically active p66 subunit. How is the connection domain relocated from the polymerase cleft of p66? Does the RNase H domain have any role in this process? To answer this question, we extended the C-terminal region of p51 by stepwise addition of N-terminal motifs of RNase H domain to generate p54, p57, p60, and p63 derivatives. We found all of the C-terminal extended derivatives of p51 assume open conformation, bind to the template-primer, and catalyze the polymerase reaction. Glycerol gradient ultracentrifugation analysis showed that only p54 sedimented as a monomer, while other derivatives were in a homodimeric conformation. We proposed a model to explain the monomeric conformation of catalytically active p54 derivative carrying additional 21-residues long β1'-β2' motif from the RNase H domain. Our results indicate that the β1'-β2' motif of the RNase H domain may be responsible for displacing the connection domain from the polymerase cleft of putative monomeric p66. The unstable elongated p66 molecule may then readily dimerize with p51 to assume a stable dimeric conformation.
Collapse
Affiliation(s)
- Ashutosh K Pandey
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University-Newark , Newark, New Jersey 07103, United States
| | - Updesh Dixit
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University-Newark , Newark, New Jersey 07103, United States
| | - Vlad Kholodovych
- Office of Advanced Research Computing, Rutgers University , Piscataway, New Jersey 08854, United States
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University , Piscataway, New Jersey 08854, United States
| | - Thomas W Comollo
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University-Newark , Newark, New Jersey 07103, United States
| | - Virendra N Pandey
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University-Newark , Newark, New Jersey 07103, United States
| |
Collapse
|
4
|
Menéndez-Arias L, Sebastián-Martín A, Álvarez M. Viral reverse transcriptases. Virus Res 2017; 234:153-176. [PMID: 28043823 DOI: 10.1016/j.virusres.2016.12.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/19/2016] [Accepted: 12/24/2016] [Indexed: 12/11/2022]
Abstract
Reverse transcriptases (RTs) play a major role in the replication of Retroviridae, Metaviridae, Pseudoviridae, Hepadnaviridae and Caulimoviridae. RTs are enzymes that are able to synthesize DNA using RNA or DNA as templates (DNA polymerase activity), and degrade RNA when forming RNA/DNA hybrids (ribonuclease H activity). In retroviruses and LTR retrotransposons (Metaviridae and Pseudoviridae), the coordinated action of both enzymatic activities converts single-stranded RNA into a double-stranded DNA that is flanked by identical sequences known as long terminal repeats (LTRs). RTs of retroviruses and LTR retrotransposons are active as monomers (e.g. murine leukemia virus RT), homodimers (e.g. Ty3 RT) or heterodimers (e.g. human immunodeficiency virus type 1 (HIV-1) RT). RTs lack proofreading activity and display high intrinsic error rates. Besides, high recombination rates observed in retroviruses are promoted by poor processivity that causes template switching, a hallmark of reverse transcription. HIV-1 RT inhibitors acting on its polymerase activity constitute the backbone of current antiretroviral therapies, although novel drugs, including ribonuclease H inhibitors, are still necessary to fight HIV infections. In Hepadnaviridae and Caulimoviridae, reverse transcription leads to the formation of nicked circular DNAs that will be converted into episomal DNA in the host cell nucleus. Structural and biochemical information on their polymerases is limited, although several drugs inhibiting HIV-1 RT are known to be effective against the human hepatitis B virus polymerase. In this review, we summarize current knowledge on reverse transcription in the five virus families and discuss available biochemical and structural information on RTs, including their biosynthesis, enzymatic activities, and potential inhibition.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Alba Sebastián-Martín
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Mar Álvarez
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
5
|
Rausch JW, Grice SFJL. Reverse Transcriptase-Associated Ribonuclease H Activity as a Target for Antiviral Chemotherapy. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029700800301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The availability of highly purified recombinant enzymes and model heteropolymeric nucleic acid substrates now allows more precise evaluation of the ribonuclease H (RNase H) activity associated with human immunodeficiency virus (HIV) reverse transcriptase. In addition to degrading the RNA–DNA replicative intermediate, this C-terminal domain of around 130 residues supports highly specialized events that cannot be complemented by host-coded enzymes during retrovirus replication. RNase H activity should therefore be considered a plausible candidate for therapeutic intervention. Events during HIV replication requiring precise RNase H-mediated hydrolysis, the methodologies available to study these events, and their potential for therapeutic intervention are reviewed here.
Collapse
Affiliation(s)
- JW Rausch
- Center For AIDS Research and Division of Infectious Diseases, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-4984, USA
| | - SFJ Le Grice
- Center For AIDS Research and Division of Infectious Diseases, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-4984, USA
| |
Collapse
|
6
|
Seif E, Niu M, Kleiman L. Annealing to sequences within the primer binding site loop promotes an HIV-1 RNA conformation favoring RNA dimerization and packaging. RNA (NEW YORK, N.Y.) 2013; 19:1384-1393. [PMID: 23960173 PMCID: PMC3854529 DOI: 10.1261/rna.038497.113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 07/02/2013] [Indexed: 06/02/2023]
Abstract
The 5' untranslated region (5' UTR) of HIV-1 genomic RNA (gRNA) includes structural elements that regulate reverse transcription, transcription, translation, tRNA(Lys3) annealing to the gRNA, and gRNA dimerization and packaging into viruses. It has been reported that gRNA dimerization and packaging are regulated by changes in the conformation of the 5'-UTR RNA. In this study, we show that annealing of tRNA(Lys3) or a DNA oligomer complementary to sequences within the primer binding site (PBS) loop of the 5' UTR enhances its dimerization in vitro. Structural analysis of the 5'-UTR RNA using selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) shows that the annealing promotes a conformational change of the 5' UTR that has been previously reported to favor gRNA dimerization and packaging into virus. The model predicted by SHAPE analysis is supported by antisense experiments designed to test which annealed sequences will promote or inhibit gRNA dimerization. Based on reports showing that the gRNA dimerization favors its incorporation into viruses, we tested the ability of a mutant gRNA unable to anneal to tRNA(Lys3) to be incorporated into virions. We found a ∼60% decrease in mutant gRNA packaging compared with wild-type gRNA. Together, these data further support a model for viral assembly in which the initial annealing of tRNA(Lys3) to gRNA is cytoplasmic, which in turn aids in the promotion of gRNA dimerization and its incorporation into virions.
Collapse
Affiliation(s)
- Elias Seif
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Meijuan Niu
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Lawrence Kleiman
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
- Department of Medicine, McGill University, Montreal, Quebec H3A 1A1, Canada
| |
Collapse
|
7
|
Chung S, Miller JT, Lapkouski M, Tian L, Yang W, Le Grice SFJ. Examining the role of the HIV-1 reverse transcriptase p51 subunit in positioning and hydrolysis of RNA/DNA hybrids. J Biol Chem 2013; 288:16177-84. [PMID: 23595992 DOI: 10.1074/jbc.m113.465641] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent crystallographic analysis of p66/p51 human immunodeficiency virus (HIV) type 1 reverse transcriptase (RT) complexed with a non-polypurine tract RNA/DNA hybrid has illuminated novel and important contacts between structural elements at the C terminus of the noncatalytic p51 subunit and the nucleic acid duplex in the vicinity of the ribonuclease H (RNase H) active site. In particular, a short peptide spanning residues Phe-416-Pro-421 was shown to interact with the DNA strand, cross the minor groove of the helix, and then form Van der Waals contacts with the RNA strand adjacent to the scissile phosphate. At the base of the adjoining α-helix M', Tyr-427 forms a hydrogen bond with Asn-348, the latter of which, when mutated to Ile, is implicated in resistance to both nucleoside and non-nucleoside RT inhibitors. Based on our structural data, we analyzed the role of the p51 C terminus by evaluating selectively mutated p66/p51 heterodimers carrying (i) p51 truncations that encroach on α-M', (ii) alterations that interrupt the Asn-348-Tyr-427 interaction, and (iii) alanine substitutions throughout the region Phe-416-Pro-421. Collectively, our data support the notion that the p51 C terminus makes an important contribution toward hybrid binding and orienting the RNA strand for catalysis at the RNase H active site.
Collapse
Affiliation(s)
- Suhman Chung
- RT Biochemistry Section, HIV Drug Resistance Program, Center for Cancer Research, NCI, National Institutes of Health, Frederick Maryland 21702, USA
| | | | | | | | | | | |
Collapse
|
8
|
Le Grice SFJ. Human immunodeficiency virus reverse transcriptase: 25 years of research, drug discovery, and promise. J Biol Chem 2012; 287:40850-7. [PMID: 23043108 DOI: 10.1074/jbc.r112.389056] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synthesis of integration-competent, double-stranded DNA from the (+)-RNA strand genome of retroviruses and long terminal repeat-containing retrotransposons reflects a multistep process catalyzed by the virus-encoded reverse transcriptase (RT). In conjunction with RNA- and DNA-templated DNA synthesis, a hydrolytic activity of the same enzyme (RNase H) is required to remove genomic RNA of the RNA/DNA replication intermediate. Together, these combined synthetic and degradative functions ensure correct selection, extension, and removal of the RNA primers of (-)- and (+)-strand DNA synthesis (tRNA and the polypurine tract, respectively). For HIV-1 RT, a quarter century of research has not only illuminated the biochemical properties, structure, and conformational dynamics of this highly versatile enzyme but has also witnessed drug discovery advances from the first Food and Drug Administration-approved anti-RT drug to recent use of RT inhibitors as potential colorectal microbicides. Salient features of HIV-1 RT and extension of these findings into programs of drug discovery are reviewed here.
Collapse
Affiliation(s)
- Stuart F J Le Grice
- RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA.
| |
Collapse
|
9
|
Sleiman D, Goldschmidt V, Barraud P, Marquet R, Paillart JC, Tisné C. Initiation of HIV-1 reverse transcription and functional role of nucleocapsid-mediated tRNA/viral genome interactions. Virus Res 2012; 169:324-39. [PMID: 22721779 DOI: 10.1016/j.virusres.2012.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/05/2012] [Accepted: 06/06/2012] [Indexed: 12/28/2022]
Abstract
HIV-1 reverse transcription is initiated from a tRNA(Lys)(3) molecule annealed to the viral RNA at the primer binding site (PBS). The annealing of tRNA(Lys)(3) requires the opening of its three-dimensional structure and RNA rearrangements to form an efficient initiation complex recognized by the reverse transcriptase. This annealing is mediated by the nucleocapsid protein (NC). In this paper, we first review the actual knowledge about HIV-1 viral RNA and tRNA(Lys)(3) structures. Then, we summarize the studies explaining how NC chaperones the formation of the tRNA(Lys)(3)/PBS binary complex. Additional NMR data that investigated the NC interaction with tRNA(Lys)(3) D-loop are presented. Lastly, we focused on the additional interactions occurring between tRNA(Lys)(3) and the viral RNA and showed that they are dependent on HIV-1 isolates, i.e. the sequence and the structure of the viral RNA.
Collapse
Affiliation(s)
- Dona Sleiman
- Laboratoire de Cristallographie et RMN biologiques, Université Paris-Descartes, CNRS UMR 8015, 4 avenue de l'Observatoire, 75006 Paris, France
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
In recent years, the functional roles of effectors from a wide variety of fungal and oomycete pathogens have begun to emerge. As a product of this work, the importance of effector-lipid interactions has been made apparent. Phospholipids are not only important signaling molecules, but they also play important roles in the trafficking of endosomes and the localization of proteins. Characterizing effector-lipid interactions can provide novel information regarding the functions of effectors relevant to their cellular and subcellular targeting and their potential effects on host signaling and vesicle trafficking. We present here two techniques that can be used to screen for and validate protein-lipid interactions without the need to access highly specialized machinery. We describe in detail how to perform lipid filter and liposome-binding assays and provide suggestions for troubleshooting potential problems with these assays.
Collapse
Affiliation(s)
- Shiv D Kale
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| | | |
Collapse
|
11
|
|
12
|
Monitoring insulin-stimulated production of signaling lipids at the plasma membrane. Methods Mol Biol 2009. [PMID: 19763497 DOI: 10.1007/978-1-60327-378-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Lipid second messengers play important roles in many cell signaling cascades. Lipid signaling molecules allow for high specificity, rapid transduction, and rapid reversibility of localized stimulation events. Fluorescent sensors capable of detecting individual signaling lipids enable their production and degradation to be followed, revealing the nature and dynamics of signaling pathways. The following sections outline a method for using lipid sensors to monitor the production of signaling lipids on the plasma membrane of C2C12 myotubes in response to insulin signaling.
Collapse
|
13
|
Abbink TEM, Berkhout B. HIV-1 reverse transcription initiation: a potential target for novel antivirals? Virus Res 2008; 134:4-18. [PMID: 18255184 DOI: 10.1016/j.virusres.2007.12.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 12/14/2007] [Accepted: 12/14/2007] [Indexed: 11/19/2022]
Abstract
Reverse transcription is an essential step in the retroviral life cycle, as it converts the genomic RNA into DNA. In this review, we describe recent developments concerning the initiation step of this complex, multi-step reaction. During initiation of reverse transcription, a cellular tRNA primer is placed onto a complementary sequence in the viral genome, called the primer binding site or PBS. The viral enzyme reverse transcriptase (RT) recognizes this RNA-RNA complex, and catalyzes the extension of the 3' end of the tRNA primer, with the viral RNA (vRNA) acting as template. The initiation step is highly specific and most retroviruses are restricted to the use of the cognate, self-tRNA primer. Human immunodeficiency virus type 1 (HIV-1) uses the cellular tRNA(Lys,3) molecule as primer for reverse transcription. No spontaneous switches in tRNA usage by HIV-1 or other retroviruses have been described and attempts to change the identity of the tRNA primer were unsuccessful in the past. These observations indicate that the virus strongly prefers the self-primer, suggesting that a very specific mechanism for primer selection must exist. Indeed, tRNA primers are selectively packaged into virus particles, are specifically recognized by RT and are placed onto the viral RNA genome via base pairing to the PBS and other sequence motifs, thus rendering a specific initiation complex. Analysis of this critical step in the viral life cycle may result in the discovery of novel antiviral drugs in the battle against HIV/AIDS.
Collapse
Affiliation(s)
- Truus E M Abbink
- Laboratory of Experimental Virology, Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre of the University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | | |
Collapse
|
14
|
Abbink TEM, Berkhout B. HIV-1 reverse transcription: close encounters between the viral genome and a cellular tRNA. ADVANCES IN PHARMACOLOGY 2007; 55:99-135. [PMID: 17586313 DOI: 10.1016/s1054-3589(07)55003-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
Affiliation(s)
- Truus E M Abbink
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center of the University of Amsterdam, Meibergdreef 15, Amsterdam, The Netherlands
| | | |
Collapse
|
15
|
Dobard CW, Briones MS, Chow SA. Molecular mechanisms by which human immunodeficiency virus type 1 integrase stimulates the early steps of reverse transcription. J Virol 2007; 81:10037-46. [PMID: 17626089 PMCID: PMC2045400 DOI: 10.1128/jvi.00519-07] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Reverse transcriptase (RT) and integrase (IN) are two essential enzymes that play a critical role in synthesis and integration of the retroviral cDNA, respectively. For human immunodeficiency virus type 1 (HIV-1), RT and IN physically interact and certain mutations and deletions of IN result in viruses defective in early steps of reverse transcription. However, the mechanism by which IN affects reverse transcription is not understood. We used a cell-free reverse transcription assay with different primers and compositions of deoxynucleoside triphosphates to differentially monitor the effect of IN on the initiation and elongation modes of reverse transcription. During the initiation mode, addition of IN stimulated RT-catalyzed reverse transcription by fourfold. The stimulation was specific to IN and could not be detected when the full-length IN was replaced with truncated IN derivatives. The IN-stimulated initiation was also restricted to the template-primer complex formed using tRNA(3)(Lys) or short RNA oligonucleotides as the primer and not those formed using DNA oligonucleotides as the primer. Addition of IN also produced a threefold stimulation during the elongation mode, which was not primer dependent. The stimulation of both initiation and elongation by IN was retained in the presence of an RT trap. Furthermore, IN had no effect on steps at or before template-primer annealing, including packaging of viral genomic RNA and tRNA(3)(Lys). Taken together, our results showed that IN acts at early steps of reverse transcription by increasing the processivity of RT and suppressing the formation of the pause products.
Collapse
Affiliation(s)
- Charles W Dobard
- Department of Molecular and Medical Pharmacology, School of Medicine, University of California-Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
16
|
Mulky A, Kappes JC. Analysis of human immunodeficiency virus type 1 reverse transcriptase subunit structure/function in the context of infectious virions and human target cells. Antimicrob Agents Chemother 2005; 49:3762-9. [PMID: 16127051 PMCID: PMC1195396 DOI: 10.1128/aac.49.9.3762-3769.2005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The reverse transcriptase (RT) of all retroviruses is required for synthesis of the viral DNA genome. The human immunodeficiency virus type 1 (HIV-1) RT exists as a heterodimer made up of 51-kDa and 66-kDa subunits. The crystal structure and in vitro biochemical analyses indicate that the p66 subunit of RT is primarily responsible for the enzyme's polymerase and RNase H activities. Since both the p51 and p66 subunits are generated from the same coding region, as part of the Pr160(Gag-Pol) precursor protein, there are inherent limitations for studying subunit-specific function with intact provirus in a virologically relevant context. Our lab has recently described a novel system for studying the RT heterodimer (p51/p66) wherein a LTR-vpr-p51-IRES-p66 expression cassette provided in trans to an RT-deleted HIV-1 genome allows precise molecular analysis of the RT heterodimer. In this report, we describe in detail the specific approaches, alternative strategies, and pitfalls that may affect the application of this novel assay for analyzing RT subunit structure/function in infectious virions and human target cells. The ability to study HIV-1 RT subunit structure/function in a physiologically relevant context will advance our understanding of both RT and the process of reverse transcription. The study of antiretroviral drugs in a subunit-specific virologic context should provide new insights into drug resistance and viral fitness. Finally, we anticipate that this approach will help elucidate determinants that mediate p51-p66 subunit interactions, which is essential for structure-based drug design targeting RT heterodimerization.
Collapse
Affiliation(s)
- Alok Mulky
- University of Alabama at Birmingham, Department of Microbiology, LHRB 613, 701 South 19th Street, Birmingham, AL 35294, USA
| | | |
Collapse
|
17
|
Hong F, Hollenback D, Singer JW, Klein P. Diamino-C,N-diarylpyridine positional isomers as inhibitors of lysophosphatidic acid acyltransferase-β. Bioorg Med Chem Lett 2005; 15:4703-7. [PMID: 16143520 DOI: 10.1016/j.bmcl.2005.07.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 07/14/2005] [Accepted: 07/27/2005] [Indexed: 10/25/2022]
Abstract
2,6-Diamino-4,N-diarylpyridines were identified as potent, isoform selective inhibitors of the enzymatic activity of lysophosphatidic acid acyltransferase-beta (LPAAT-beta).
Collapse
Affiliation(s)
- Feng Hong
- Cell Therapeutics, Inc., 201 Elliott Ave. W., Suite 400, Seattle, WA 98119, USA
| | | | | | | |
Collapse
|
18
|
Abstract
Ten years after the isoforms of mammalian phospholipase D (PLD), PLD1 and 2, were cloned, their roles in the brain remain speculative but several lines of evidence now implicate these enzymes in basic cell functions such as vesicular trafficking as well as in brain development. Many mitogenic factors, including neurotransmitters and growth factors, activate PLD in neurons and astrocytes. Activation of PLD downstream of protein kinase C seems to be a required step for astroglial proliferation. The characteristic disruption of the PLD signaling pathway by ethanol probably contributes to the delay of brain growth in fetal alcohol syndrome. The post-natal increase of PLD activities concurs with synapto- and myelinogenesis in the brain and PLD is apparently involved in neurite formation. In the adult and aging brain, PLD activity has antiapoptotic properties suppressing ceramide formation. Increased PLD activities in acute and chronic neurodegeneration as well as in inflammatory processes are evidently due to astrogliosis and may be associated with protective responses of tissue repair and remodeling. ARF-regulated PLD participates in receptor endocytosis as well as in exocytosis of neurotransmitters where PLD seems to favor vesicle fusion by modifications of the shape and charge of lipid membranes. Finally, PLD activities contribute free choline for the synthesis of acetylcholine in the brain. Novel tools such as RNA interference should help to further elucidate the roles of PLD isoforms in brain physiology and pathology.
Collapse
Affiliation(s)
- Jochen Klein
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, Amarillo, Texas 79106, USA.
| |
Collapse
|
19
|
Helmreich EJM. Structural flexibility of small GTPases. Can it explain their functional versatility? Biol Chem 2005; 385:1121-36. [PMID: 15653425 DOI: 10.1515/bc.2004.146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Multiple interactions with many different partners are responsible for the amazing functional versatility of proteins, especially those participating in cellular regulation. The structural properties that could facilitate multiple interactions are examined for small GTPases. The role of cellular constraints, compartmentation and scaffolds on protein-protein interactions is considered.
Collapse
Affiliation(s)
- Ernst J M Helmreich
- The Biocenter of the University of Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| |
Collapse
|
20
|
Roldan A, Warren OU, Russell RS, Liang C, Wainberg MA. A HIV-1 minimal gag protein is superior to nucleocapsid at in vitro annealing and exhibits multimerization-induced inhibition of reverse transcription. J Biol Chem 2005; 280:17488-96. [PMID: 15731102 DOI: 10.1074/jbc.m501310200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
HIV-1 uses tRNA3Lys to prime reverse transcription of its viral RNA. In this process, the 3'-end of tRNA3Lys must be annealed to the primer binding site of HIV-1 genomic RNA, and the two molecules together form a complex structure. During annealing, the nucleocapsid (NC) protein enhances the unwinding of tertiary structures within both RNA molecules. Moreover, the packaging of tRNA3Lys occurs prior to viral budding at a time when NC is still part of the Pr55Gag polyprotein. In contrast, Pr55Gag is able to produce virus-like particles on its own. We have recently shown that an N-terminal extended form of NC (mGag), containing all of the minimal elements required for virus-like particle formation, possesses greater affinity for HIV-1 genomic RNA than does NC alone. We have now studied the tRNA3Lys-annealing properties of mGag in comparison to those of NC and report that the former is more efficient in this regard than the latter. We have also tested each of a mutant version of mGag, an extended form of mGag, and an almost full-length form of Gag, and showed that all of these possessed greater tRNA-annealing capacity than did the viral NC protein. Yet, surprisingly, multimerization of Gag-related proteins did not abrogate this annealing process but rather resulted in dramatically reduced levels of reverse transcriptase processivity. These results suggest that the initial stages of reverse transcription may be regulated by the multimerization of Pr55Gag polyprotein at times prior to the cleavage of NC.
Collapse
MESH Headings
- DNA/chemistry
- DNA Primers/chemistry
- Dimerization
- Dose-Response Relationship, Drug
- Gene Products, gag/chemistry
- Gene Products, gag/physiology
- HIV-1/metabolism
- Hot Temperature
- In Vitro Techniques
- Models, Biological
- Models, Genetic
- Mutation
- Nucleic Acid Conformation
- Nucleocapsid/chemistry
- Polymerase Chain Reaction
- Protein Binding
- Protein Folding
- Protein Precursors/chemistry
- Protein Precursors/physiology
- Protein Structure, Tertiary
- Proteins/chemistry
- RNA/chemistry
- RNA, Transfer/chemistry
- RNA, Transfer, Amino Acyl/chemistry
- Transcription, Genetic
Collapse
Affiliation(s)
- Ariel Roldan
- McGill University AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | | | | | | | | |
Collapse
|
21
|
Olivares I, Gutiérrez-Rivas M, López-Galíndez C, Menéndez-Arias L. Tryptophan scanning mutagenesis of aromatic residues within the polymerase domain of HIV-1 reverse transcriptase: critical role of Phe-130 for p51 function and second-site revertant restoring viral replication capacity. Virology 2004; 324:400-11. [PMID: 15207625 DOI: 10.1016/j.virol.2004.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Revised: 02/10/2004] [Accepted: 04/08/2004] [Indexed: 10/26/2022]
Abstract
The effects on virus viability and reverse transcriptase (RT) function of substituting Trp for Tyr or Phe residues within the polymerase domain of human immunodeficiency virus type 1 (HIV-1) RT have been analyzed with an infectious HIV-1 clone. Viruses containing mutations Y56W, F61W, F87W, F116W, Y127W, Y144W, F171W, Y181W, Y183W, Y188W, F227W, or Y232W in their RT-coding regions were viable and showed replication capacities similar or slightly reduced in comparison with the wild-type HIV-1. However, RTs bearing mutations F77W or Y146W had a dNTP-binding defect, rendering nonviable viruses. HIV-1 carrying RT mutations F124W or F130W replicated very poorly, but compensatory changes (K83R for F124W, and T58S for F130W) were selected upon passaging the virus in cell culture. The amino acid substitution F130W diminishes the stability of the 51-kDa subunit of the RT (p51) and impairs polyprotein processing in virus-infected cells, an effect that can be mitigated when T58S is found in p51.
Collapse
Affiliation(s)
- Isabel Olivares
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | | | | | | |
Collapse
|
22
|
Goldschmidt V, Paillart JC, Rigourd M, Ehresmann B, Aubertin AM, Ehresmann C, Marquet R. Structural variability of the initiation complex of HIV-1 reverse transcription. J Biol Chem 2004; 279:35923-31. [PMID: 15194685 DOI: 10.1074/jbc.m404473200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HIV-1 reverse transcription is initiated from a tRNA(3)(Lys) molecule annealed to the viral RNA at the primer binding site (PBS), but the structure of the initiation complex of reverse transcription remains controversial. Here, we performed in situ structural probing, as well as in vitro structural and functional studies, of the initiation complexes formed by highly divergent isolates (MAL and NL4.3/HXB2). Our results show that the structure of the initiation complex is not conserved. In MAL, and according to sequence analysis in 14% of HIV-1 isolates, formation of the initiation complex is accompanied by complex rearrangements of the viral RNA, and extensive interactions with tRNA(3)(Lys) are required for efficient initiation of reverse transcription. In NL4.3, HXB2, and most isolates, tRNA(3)(Lys) annealing minimally affects the viral RNA structure and no interaction outside the PBS is required for optimal initiation of reverse transcription. We suggest that in MAL, extensive interactions with tRNA(3)(Lys) are required to drive the structural rearrangements generating the structural elements ultimately recognized by reverse transcriptase. In NL4.3 and HXB2, these elements are already present in the viral RNA prior to tRNA(3)(Lys) annealing, thus explaining that extensive interactions with the primer are not required. Interestingly, such interactions are required in HXB2 mutants designed to use a non-cognate tRNA as primer (tRNA(His)). In the latter case, the extended interactions are required to counteract a negative contribution associate with the alternate primer.
Collapse
Affiliation(s)
- Valérie Goldschmidt
- Unité Propre de Recherche 9002 du CNRS conventionnée à l'Université Louis Pasteur, IBMC, 15 rue René Descartes, 67084 Strasbourg cedex, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Gong B, Hong F, Kohm C, Bonham L, Klein P. Synthesis and SAR of 2-arylbenzoxazoles, benzothiazoles and benzimidazoles as inhibitors of lysophosphatidic acid acyltransferase-β. Bioorg Med Chem Lett 2004; 14:1455-9. [PMID: 15006381 DOI: 10.1016/j.bmcl.2004.01.023] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Accepted: 01/13/2004] [Indexed: 10/26/2022]
Abstract
2-Arylbenzoxazoles, benzothiazoles and benzimidazoles were identified as new classes of potent, isoform specific inhibitors of lysophosphatidic acid acyltransferase-beta (LPAAT-beta). Effects of selected inhibitors on proliferation of tumor cells in vitro were investigated.
Collapse
Affiliation(s)
- Baoqing Gong
- Cell Therapeutics, Inc., 201 Elliott Ave. W., Suite 400, Seattle, WA 98119, USA
| | | | | | | | | |
Collapse
|
24
|
Monoclonal and Bispecific Antibodies in Combination with Radiotherapy for Cancer Treatment. Antibodies (Basel) 2004. [DOI: 10.1007/978-1-4419-8877-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
25
|
Rigourd M, Goldschmidt V, Brulé F, Morrow CD, Ehresmann B, Ehresmann C, Marquet R. Structure-function relationships of the initiation complex of HIV-1 reverse transcription: the case of mutant viruses using tRNA(His) as primer. Nucleic Acids Res 2003; 31:5764-75. [PMID: 14500840 PMCID: PMC206454 DOI: 10.1093/nar/gkg754] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Reverse transcription of HIV-1 RNA is initiated from the 3' end of a tRNA3Lys molecule annealed to the primer binding site (PBS). An additional interaction between the anticodon loop of tRNA3Lys and a viral A-rich loop is required for efficient initiation of reverse transcription of the HIV-1 MAL isolate. In the HIV-1 HXB2 isolate, simultaneous mutations of the PBS and the A-rich loop (mutant His-AC), but not of the PBS alone (mutant His) allows the virus to stably utilize tRNA(His) as primer. However, mutant His-AC selects additional mutations during cell culture, generating successively His-AC-GAC and His-AC-AT-GAC. Here, we wanted to establish direct relationships between the evolution of these mutants in cell culture, their efficiency in initiating reverse transcription and the structure of the primer/template complexes in vitro. The initiation of reverse transcription of His and His-AC RNAs was dramatically reduced. However, His-AC-GAC RNA, which incorporated three adaptative point mutations, was reverse transcribed more efficiently than the wild type RNA. Incorporation of two additional mutations decreased the efficiency of the initiation of reverse transcription, which remained at the wild type level. Structural probing showed that even though both His-AC and His-AC-GAC RNAs can potentially interact with the anticodon loop of tRNA(His), only the latter template formed a stable interaction. Thus, our results showed that the selection of adaptative mutations by HIV-1 mutants utilizing tRNA(His) as primer was initially dictated by the efficiency of the initiation of reverse transcription, which relied on the existence of a stable interaction between the mutated A-rich loop and the anticodon loop of tRNA(His).
Collapse
Affiliation(s)
- Mickaël Rigourd
- Unité Propre de Recherche 9002 du CNRS conventionnée à l'Université Louis Pasteur, IBMC, 15 rue René Descartes, 67084 Strasbourg cedex, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Goldschmidt V, Ehresmann C, Ehresmann B, Marquet R. Does the HIV-1 primer activation signal interact with tRNA3(Lys) during the initiation of reverse transcription? Nucleic Acids Res 2003; 31:850-9. [PMID: 12560480 PMCID: PMC149207 DOI: 10.1093/nar/gkg187] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Reverse transcription of HIV-1 RNA is primed by a tRNA3(Lys) molecule bound at the primer binding site (PBS). Complex intermolecular interactions were proposed between tRNA3(Lys) and the RNA of the HIV-1 Mal isolate. Recently, an alternative interaction was proposed between the TPsiC stem of tRNA3(Lys) and a primer activation signal (PAS) of the Lai and Hxb2 RNAs, suggesting major structural variations in the reverse transcription complex of different HIV-1 strains. Here, we analyzed mutants of the Hxb2 RNA that prevent the interaction between the PAS and tRNA3(Lys) or/and a complementary sequence in the viral RNA. We compared the kinetics of reverse transcription of the wild type and mutant Hxb2 RNAs, using either tRNA3(Lys) or an 18mer oligoribonucleotide complementary to the PBS, which cannot interact with the PAS, as primers. We also used chemical probing to test the structure of the mutant and wild type RNAs, as well as the complex formed between the later RNA and tRNA3(Lys). These experiments, together with the analysis of long term replication data of mutant viruses obtained by C. Morrow and coworkers (Birmingham, USA) that use alternate tRNAs as primers, strongly suggest that the interaction between the Hxb2 PAS and tRNA3(Lys) does not exist. Instead, the effects of the vRNA mutations on reverse transcription seem to be linked to incorrect folding of the mutant RNAs.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- DNA Primers
- DNA, Viral/biosynthesis
- Gene Expression Regulation, Viral
- HIV Reverse Transcriptase/metabolism
- HIV-1/genetics
- Kinetics
- Molecular Sequence Data
- Mutation
- Nucleic Acid Conformation
- Oligoribonucleotides
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Valérie Goldschmidt
- UPR 9002 du CNRS, l'Université Louis Pasteur, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg cedex, France
| | | | | | | |
Collapse
|
27
|
Grewal T, Enrich C, Jäckie S. Role of Annexin 6 in Receptor-Mediated Endocytosis, Membrane Trafficking and Signal Transduction. ANNEXINS 2003. [DOI: 10.1007/978-1-4419-9214-7_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Future directions in the development of small molecule immunosuppressants. Curr Opin Organ Transplant 2002. [DOI: 10.1097/00075200-200212000-00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Goldschmidt V, Rigourd M, Ehresmann C, Le Grice SFJ, Ehresmann B, Marquet R. Direct and indirect contributions of RNA secondary structure elements to the initiation of HIV-1 reverse transcription. J Biol Chem 2002; 277:43233-42. [PMID: 12194974 DOI: 10.1074/jbc.m205295200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Initiation of human immunodeficiency virus type 1 (HIV-1) reverse transcription requires specific recognition between the viral RNA (vRNA), tRNA(3)(Lys), which acts as primer, and reverse transcriptase (RT). The specificity of this ternary complex is mediated by intricate interactions between the HIV-1 RNA and tRNA(3)(Lys). Here, we compared the relative importance of the secondary structure elements of this complex in the initiation process. To this aim, we used the previously published three-dimensional model of the initiation complex to rationally introduce a series of deletions and substitutions in the vRNA. When necessary, we used chemical probing to check the structure of the tRNA(3)(Lys)-mutant vRNA complexes. For each of them, we measured the binding affinity of RT and the kinetics of initial extension of tRNA(3)(Lys) and of synthesis of the (-) strand strong stop DNA. Our results were overall in keeping with the three-dimensional model of the initiation complex. Surprisingly, we found that disruption of the intermolecular template-primer interactions, which are not directly recognized by RT, more severely affected reverse transcription than deletions or disruption of one of the intramolecular helices to which RT directly binds. Perturbations of the highly constrained junction between the intermolecular helix formed by the primer binding site and the 3' end of tRNA(3)(Lys) and the helix immediately upstream also had dramatic effects on the initiation of reverse transcription. Taken together, our results demonstrate the overwhelming importance of the overall three-dimensional structure of the initiation complex and identify structural elements that constitute promising targets for anti-initiation-specific drugs.
Collapse
Affiliation(s)
- Valerie Goldschmidt
- UPR 9002 du CNRS affiliée à l'Université Louis Pasteur, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg cedex, France
| | | | | | | | | | | |
Collapse
|
30
|
Beerens N, Berkhout B. The tRNA primer activation signal in the human immunodeficiency virus type 1 genome is important for initiation and processive elongation of reverse transcription. J Virol 2002; 76:2329-39. [PMID: 11836411 PMCID: PMC153804 DOI: 10.1128/jvi.76.5.2329-2339.2002] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) reverse transcription is primed by the cellular tRNA(3)(Lys) molecule, which binds, with its 3"-terminal 18 nucleotides (nt), to a complementary sequence in the viral genome, the primer-binding site (PBS). Besides PBS-anti-PBS pairing, additional interactions between viral RNA sequences and the tRNA primer are thought to regulate the process of reverse transcription. We previously identified a novel 8-nt sequence motif in the U5 region of the HIV-1 RNA genome that is critical for tRNA(3)(Lys)-mediated initiation of reverse transcription in vitro. This motif activates initiation from the natural tRNA(3)(Lys) primer but is not involved in tRNA placement and was therefore termed primer activation signal (PAS). It was proposed that the PAS interacts with the anti-PAS motif in the TphiC arm of tRNA(3)(Lys). In this study, we analyzed several PAS-mutated viruses and performed reverse transcription assays with virion-extracted RNA-tRNA complexes. Mutation of the PAS reduced the efficiency of tRNA-primed reverse transcription. In contrast, mutations in the opposing leader sequence that trigger release of the PAS from base pairing stimulated reverse transcription. These results are similar to the reverse transcription effects observed in vitro. We also selected revertant viruses that partially overcome the reverse transcription defect of the PAS deletion mutant. Remarkably, all revertants acquired a single nucleotide substitution that does not restore the PAS sequence but that stimulates elongation of reverse transcription. These combined results indicate that the additional PAS-anti-PAS interaction is needed to assemble an initiation-competent and processive reverse transcription complex.
Collapse
Affiliation(s)
- Nancy Beerens
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, The Netherlands
| | | |
Collapse
|
31
|
Abstract
During reverse transcription, the positive-strand HIV-1 RNA genome is converted into a double-stranded DNA copy which can be permanently integrated into the host cell genome. Recent analyses show that HIV-1 reverse transcription is a highly regulated process. The initiation reaction can be distinguished from a subsequent elongation reaction carried out by a reverse transcription complex composed of (at least) heterodimeric reverse transcriptase, cellular tRNA(lys3) and HIV-1 genomic RNA sequences. In addition, viral factors including Tat, Nef, Vif, Vpr, IN and NCp7, cellular proteins, and TAR RNA and other RNA stem-loop structures appear to influence this complex and contribute to the efficiency of the initiation reaction. As viral resistance to many antiretroviral compounds is a continuing problem, understanding the ways in which these factors influence the reverse transcription complex will likely lead to novel antiretroviral strategies.
Collapse
Affiliation(s)
- David Harrich
- HIV Research Unit, Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Herston Road, Herston, Queensland, Australia 4029
| | | |
Collapse
|
32
|
Navarro JM, Damier L, Boretto J, Priet S, Canard B, Quérat G, Sire J. Glutamic residue 438 within the protease-sensitive subdomain of HIV-1 reverse transcriptase is critical for heterodimer processing in viral particles. Virology 2001; 290:300-8. [PMID: 11883194 DOI: 10.1006/viro.2001.1188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The biological form of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) is a heterodimer consisting of two polypeptides, p66 and p51, which have identical N-termini. The p51 polypeptide is generated by action of viral protease cleaving the p66 polypeptide between residues Phe440 and Tyr441. Dimerization has been mostly studied using bacterially purified RT bearing amino acid changes in either subunit, but not in the context of HIV-1 particles. We introduced changes of conserved amino acid residues 430-438 into the protease-sensitive subdomain of the p66 subunit and analyzed the reverse transcriptase processing and function using purified variants and their corresponding HIV-1 recombinant clones. Our mutational analysis shows that the conserved Glu438 residue is critical for proper heterodimerization and function of virion-associated RT, but not of bacterially expressed RT. In contrast, the conserved Glu430, Glu432, and Pro433 residues are not important for dimerization of virion-associated RT. The network of interactions made by the Glu438 carboxyl group with neighboring residues is critical to protect the Phe440-Tyr441 from cleavage in the context of the p66/p51 heterodimer and may explain why the p66/p51 is not processed further to p51/p51.
Collapse
Affiliation(s)
- J M Navarro
- INSERM U372, 163 avenue de Luminy, BP 178, 13276 Marseille, France
| | | | | | | | | | | | | |
Collapse
|
33
|
Fayen JD. Multiple cytokines sharing the common receptor gamma chain can induce CD154/CD40 ligand expression by human CD4+ T lymphocytes via a cyclosporin A-resistant pathway. Immunology 2001; 104:299-306. [PMID: 11722644 PMCID: PMC1783314 DOI: 10.1046/j.1365-2567.2001.01296.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Expression of CD154/CD40 ligand (CD154/CD40L), an important molecular component of CD4+ T-cell help, can be triggered by T-cell receptor (TCR) stimulation. Dephosphorylation of the transcriptional element Nuclear Factor of Activated T cells-1 (NFAT1) is a critical activation step in the TCR-initiated signal transduction cascade which promotes CD154/CD40L expression. Cyclosporin A (CsA), which interferes with NFAT1 activation, has been shown to be an effective inhibitor of TCR-triggered CD154/CD40L expression by resting T cells. We now report that recombinant interleukin-2 (rIL-2) is also capable of inducing CD154/CD40L on CD4+ T lymphoblasts via a pathway triggered independently of the CD3/TCR receptor complex. Recombinant IL-2-mediated CD154/CD40L expression, in contrast to that triggered by CD3/TCR stimulation, is only partially inhibited by CsA. The capacity of rIL-2 to induce CD154/CD40L expression by T lymphoblasts also extends to a restricted number of cytokines sharing the cytokine receptor common gamma chain, including IL-15, and, to a lesser extent, IL-7, but not IL-4. A similar CsA-resistant CD154/CD40L induction pathway can be triggered in primary T cells by the combination of anti-CD3 stimulation and recombinant lymphokines. In contrast to T lymphoblasts, the CsA-resistant CD154/CD40L induction in primary lymphocytes can be efficiently triggered by multiple cytokines which bind the common gamma chain receptor family. The data outline a novel pathway of CD154/CD40L induction which is, at least in part, independent of NFAT1 and resistant to CsA. A more complete understanding of the mechanisms governing CD154/CD40L expression may facilitate the rational design of specifically targeted immunotherapeutic agents.
Collapse
Affiliation(s)
- J D Fayen
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
34
|
Beerens N, Groot F, Berkhout B. Initiation of HIV-1 reverse transcription is regulated by a primer activation signal. J Biol Chem 2001; 276:31247-56. [PMID: 11384976 DOI: 10.1074/jbc.m102441200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reverse transcription of the human immunodeficiency virus type 1 (HIV-1) RNA genome appears to be strictly regulated at the level of initiation. The primer binding site (PBS), at which the tRNA(3)(Lys) molecule anneals and reverse transcription is initiated, is present in a highly structured region of the untranslated leader RNA. Detailed mutational analysis of the U5 leader stem identified a sequence motif in the U5 region that is critical for activation of the PBS-bound tRNA(3)(Lys) primer. This U5 motif, termed the primer activation signal (PAS), may interact with the TPsiC arm of the tRNA(3)(Lys) primer, similar to the additional interaction proposed for the genome of Rous sarcoma virus and its tRNA(Trp) primer. This suggests that reverse transcription is regulated by a common mechanism in all retroviruses. In HIV-1, the PAS is masked through base pairing in the U5 leader stem. This provides a mechanism for positive and negative regulation of reverse transcription. Based on structure probing of the mutant and wild-type RNAs, an RNA secondary structure model is proposed that juxtaposes the critical PAS and PBS motifs.
Collapse
Affiliation(s)
- N Beerens
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, The Netherlands
| | | | | |
Collapse
|
35
|
Uzun O, Gabriel A. A Ty1 reverse transcriptase active-site aspartate mutation blocks transposition but not polymerization. J Virol 2001; 75:6337-47. [PMID: 11413300 PMCID: PMC114356 DOI: 10.1128/jvi.75.14.6337-6347.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reverse transcriptases (RTs) are found in a wide variety of mobile genetic elements including viruses, retrotransposons, and infectious organellar introns. An invariant triad of aspartates is thought to be required for the catalytic function of RTs. We generated RT mutants in the yeast retrotransposon Ty1, changing each of these active-site aspartates to asparagine or glutamate. All but one of the mutants lacked detectable polymerase activity. The novel exception, D(211)N, retained near wild-type in vitro polymerase activity within virus-like particles but failed to carry out in vivo transposition. For this mutant, minus-strand synthesis is impaired and formation of the plus-strand strong-stop intermediate is eliminated. Intragenic second-site suppressor mutations of the transposition defect map to the RNase H domain of the enzyme. Our results demonstrate that one of the three active-site aspartates in a retrotransposon RT is not catalytically critical. This implies a basic difference in the polymerase active-site geometry of Ty1 and human immunodeficiency virus RT and shows that subtle mutations in one domain can cause dramatic functional effects on a distant domain of the same enzyme.
Collapse
Affiliation(s)
- O Uzun
- Graduate Program in Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 689 Hoes Lane, Piscataway, NJ 08854
| | | |
Collapse
|
36
|
Menéndez-Arias L, Abraha A, Quiñones-Mateu ME, Mas A, Camarasa MJ, Arts EJ. Functional characterization of chimeric reverse transcriptases with polypeptide subunits of highly divergent HIV-1 group M and O strains. J Biol Chem 2001; 276:27470-9. [PMID: 11353775 DOI: 10.1074/jbc.m104342200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus (HIV)-1 strains have been divided into three groups: main (M), outlier (O), and non-M non-O (N). Biochemical analyses of HIV-1 reverse transcriptase (RT) have been performed predominantly with enzymes derived from HIV-1 group M:subtype B laboratory strains. This study was designed to optimize the expression and to characterize the enzymatic properties of HIV-1 group O RTs as well as chimeric RTs composed of group M and O p66 and p51 subunits. The DNA-dependent DNA polymerase activity on a short heteropolymeric template-primer was similar with all enzymes, i.e. the HIV-1 group O and M and chimeric RTs. Our data revealed that the 51-kDa subunit in the chimeric heterodimer p66(M:B)/p51(O) confers increased heterodimer stability and partial resistance to non-nucleoside RT inhibitors. Chimeric RTs (p66(M:B)/p51(O) and p66(O)/p51(M:B)) were unable to initiate reverse transcription from tRNA(3)(Lys) using HIV-1 group O or group M:subtype B RNA templates. In contrast, HIV-1 group O and M RTs supported (-)-strand DNA synthesis from tRNA(3)(Lys) hybridized to any of their corresponding HIV-1 RNA templates. HIV-2 RT could not initiate reverse transcription on tRNA(3)(Lys)-primed HIV-1 genomic RNA. These findings suggest that the initiation event is conserved between HIV-1 groups, but not HIV types.
Collapse
Affiliation(s)
- L Menéndez-Arias
- Centro de Biologia Molecular "Severo Ochoa," Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
37
|
Miller JT, Ehresmann B, Hübscher U, Le Grice SF. A novel interaction of tRNA(Lys,3) with the feline immunodeficiency virus RNA genome governs initiation of minus strand DNA synthesis. J Biol Chem 2001; 276:27721-30. [PMID: 11353768 DOI: 10.1074/jbc.m100513200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Complementarity between nucleotides at the 5' terminus of tRNA(Lys,3) and the U5-IR loop of the feline immunodeficiency virus RNA genome suggests a novel intermolecular interaction controls initiation of minus strand synthesis in a manner analogous to other retroviral systems. Base pairing of this tRNA-viral RNA duplex was confirmed by nuclease mapping of the RNA genome containing full-length or 5'-deleted variants of tRNA(Lys,3) hybridized to the primer-binding site. A major pause in RNA-dependent DNA synthesis occurred 14 nucleotides ahead of the primer-binding site with natural and synthetic tRNA(Lys,3) primers, indicating it was not a consequence of tRNA base modifications. The majority of the paused complexes resulted in dissociation of the reverse transcriptase from the template/primer, as demonstrated by an assay limited to a single binding event. Hybridization of a tRNA mutant whose 5' nucleotides are deleted relieved pausing at this position and subsequently allowed high level DNA synthesis. Additional experiments with tRNA-DNA chimeric primers were used to localize the stage of minus strand synthesis at which the tRNA-viral RNA interaction was disrupted. Finally, replacing nucleotides of the feline immunodeficiency virus U5-IR loop with the (A)(4) sequence of its human immunodeficiency virus (HIV)-1 counterpart also relieved pausing, but did not induce pausing immediately downstream of the primer-binding site previously noted during initiation of HIV-1 DNA synthesis. These combined observations provide further evidence of cis-acting sequences immediately adjacent to the primer-binding site controlling initiation of minus strand DNA synthesis in retroviruses and retrotransposons.
Collapse
Affiliation(s)
- J T Miller
- HIV Drug Resistance Program, NCI-Frederick Cancer Research and Development Center, Frederick, Maryland 21702, USA
| | | | | | | |
Collapse
|
38
|
Beerens N, Groot F, Berkhout B. Stabilization of the U5-leader stem in the HIV-1 RNA genome affects initiation and elongation of reverse transcription. Nucleic Acids Res 2000; 28:4130-7. [PMID: 11058109 PMCID: PMC113157 DOI: 10.1093/nar/28.21.4130] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Reverse transcription of the Human Immunodeficiency Virus type I (HIV-1) RNA genome is primed by a cellular tRNA-lys3 molecule that binds to the primer binding site (PBS). The PBS is predicted to be part of an extended RNA structure, consisting of a small U5-PBS hairpin and a large U5-leader stem. In this study we stabilized the U5-leader stem of HIV-1 to study its role in reverse transcription. We tested in vitro synthesized wild-type and mutant templates in primer annealing, initiation and elongation assays. Stabilization of the stem inhibits the initiation of reverse transcription, but not the annealing of the tRNA primer onto the PBS. These results suggest that stabilization of the stem results in occlusion of a sequence motif that is involved in an additional interaction with the tRNA-lys3 primer and that is needed to trigger the initiation of reverse transcription. The stable structure was also found to affect the elongation of reverse transcription, causing the RT enzyme to pause upon copying 7-8 bases into the extended base paired stem. The stabilizing mutations were also introduced into proviral constructs for replication studies, demonstrating that the mutant viruses have a reduced replication capacity. Analysis of a revertant virus demonstrated that opening of the stabilized U5-leader stem can restore both virus replication and reverse transcription.
Collapse
MESH Headings
- Base Pairing/genetics
- Base Sequence
- Biological Evolution
- Cell Line
- Enzyme-Linked Immunosorbent Assay
- Gene Expression Regulation, Viral
- Genetic Engineering
- Genome, Viral
- HIV Long Terminal Repeat/genetics
- HIV Reverse Transcriptase/metabolism
- HIV-1/enzymology
- HIV-1/genetics
- HIV-1/physiology
- Humans
- Molecular Sequence Data
- Proviruses/enzymology
- Proviruses/genetics
- Proviruses/physiology
- RNA/genetics
- RNA/metabolism
- RNA Stability
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Viral/biosynthesis
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Selection, Genetic
- Serial Passage
- Suppression, Genetic/genetics
- T-Lymphocytes/virology
- Templates, Genetic
- Thermodynamics
- Transcription, Genetic
- Transfection
- Virus Replication/genetics
Collapse
Affiliation(s)
- N Beerens
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, PO Box 22700, 1100 DE Amsterdam, The Netherlands
| | | | | |
Collapse
|
39
|
|
40
|
Rausch JW, Grice MK, Henrietta M, Miller JT, Le Grice SF. Interaction of p55 reverse transcriptase from the Saccharomyces cerevisiae retrotransposon Ty3 with conformationally distinct nucleic acid duplexes. J Biol Chem 2000; 275:13879-87. [PMID: 10788512 DOI: 10.1074/jbc.275.18.13879] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 55-kDa reverse transcriptase (RT) domain of the Ty3 POL3 open reading frame was purified and evaluated on conformationally distinct nucleic acid duplexes. Purified enzyme migrated as a monomer by size exclusion chromatography. Enzymatic footprinting indicate Ty3 RT protects template nucleotides +7 through -21 and primer nucleotides -1 through -24. Contrary to previous data with retroviral enzymes, a 4-base pair region of the template-primer duplex remained nuclease accessible. The C-terminal portion of Ty3 RT encodes a functional RNase H domain, although the hydrolysis profile suggests an increased spatial separation between the catalytic centers. Despite conservation of catalytically important residues in the RNase H domain, Fe(2+) fails to replace Mg(2+) in the RNase H catalytic center for localized generation of hydroxyl radicals, again suggesting this domain may be structurally distinct from its retroviral counterparts. RNase H specificity was investigated using a model system challenging the enzyme to select the polypurine tract primer from within an RNA/DNA hybrid, extend this into (+) DNA, and excise the primer from nascent DNA. Purified RT catalyzed each of these three steps but was almost inactive on a non-polypurine tract RNA primer. Our studies provide the first detailed characterization of the enzymatic activities of a retrotransposon reverse transcriptase.
Collapse
Affiliation(s)
- J W Rausch
- Human Immunodeficiency Virus Drug Resistance Program, Division of Basic Sciences, NCI-Frederick Cancer Research and Development Center, Frederick, Maryland 21702, USA
| | | | | | | | | |
Collapse
|
41
|
Lanchy JM, Isel C, Keith G, Le Grice SF, Ehresmann C, Ehresmann B, Marquet R. Dynamics of the HIV-1 reverse transcription complex during initiation of DNA synthesis. J Biol Chem 2000; 275:12306-12. [PMID: 10766870 DOI: 10.1074/jbc.275.16.12306] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Initiation of human immunodeficiency virus-1 (HIV-1) reverse transcription requires formation of a complex containing the viral RNA (vRNA), tRNA(3)(Lys) and reverse transcriptase (RT). The vRNA and the primer tRNA(3)(Lys) form several intermolecular interactions in addition to annealing of the primer 3' end to the primer binding site (PBS). These interactions are crucial for the efficiency and the specificity of the initiation of reverse transcription. However, as they are located upstream of the PBS, they must unwind as DNA synthesis proceeds. Here, the dynamics of the complex during initiation of reverse transcription was followed by enzymatic probing. Our data revealed reciprocal effects of the tertiary structure of the vRNA.tRNA(3)(Lys) complex and reverse transcriptase (RT) at a distance from the polymerization site. The structure of the initiation complex allowed RT to interact with the template strand up to 20 nucleotides upstream from the polymerization site. Conversely, nucleotide addition by RT modified the tertiary structure of the complex at 10-14 nucleotides from the catalytic site. The viral sequences became exposed at the surface of the complex as they dissociated from the tRNA following primer extension. However, the counterpart tRNA sequences became buried inside the complex. Surprisingly, they became exposed when mutations prevented the intermolecular interactions in the initial complex, indicating that the fate of the tRNA depended on the tertiary structure of the initial complex.
Collapse
Affiliation(s)
- J M Lanchy
- UPR 9002 du CNRS, IBMC, 67084 Strasbourg cedex, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Since the Human Immunodeficiency Virus Type 1 (HIV-1) was identified as the etiologic agent of the Acquired Immune Deficiency Syndrome (AIDS), the HIV-1 reverse transcriptase (RT) has been the subject of intensive study. The reverse transcription entails the transition of the single-stranded viral RNA into double-stranded proviral DNA, which is then integrated into the host chromosome. Therefore, the HIV-1 reverse transcriptase plays a pivotal role in the life cycle of the virus and is consequently an interesting target for anti-HIV drug therapy. In the first section, we describe the complex process of reverse transcription and the different activities involved in this process. We then highlight the structure-function relationship of the HIV-1 reverse transcriptase, which is of great importance for a better understanding of resistance development, a major problem in anti-AIDS therapies. Finally, we summarize the mechanisms of HIV resistance toward various RT inhibitors and the implications thereof for the current anti-HIV drug therapies.
Collapse
Affiliation(s)
- H Jonckheere
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
43
|
Brown HE, Chen H, Engelman A. Structure-based mutagenesis of the human immunodeficiency virus type 1 DNA attachment site: effects on integration and cDNA synthesis. J Virol 1999; 73:9011-20. [PMID: 10516007 PMCID: PMC112933 DOI: 10.1128/jvi.73.11.9011-9020.1999] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/1999] [Accepted: 07/30/1999] [Indexed: 11/20/2022] Open
Abstract
Sequences at the ends of linear retroviral cDNA important for integration define the viral DNA attachment (att) site. Whereas determinants of human immunodeficiency virus type 1 (HIV-1) integrase important for replication in T lymphocytes have been extensively characterized, regions of the att site important for viral spread have not been thoroughly examined. Previous transposon-mediated footprinting of preintegration complexes isolated from infected cells revealed enhanced regions of bacteriophage Mu insertion near the ends of HIV-1 cDNA, in the regions of the att sites. Here, we identified the subterminal cDNA sequences cleaved during in vitro footprinting and used this structure-based information together with results of previous work to construct and characterize 24 att site mutant viruses. We found that although subterminal cDNA sequences contributed to HIV-1 replication, the identities of these bases were not critical for integration. In contrast, the phylogenetically conserved CA dinucleotides located at the ends of HIV-1 contributed significantly to virus replication and integration. Mutants containing one intact CA end displayed delays in peak virus growth compared to the wild type. In contrast, double mutant viruses lacking both CAs were replication defective. The A of the CA appeared to be the most critical determinant of integration, because two different U5 mutant viruses containing the substitution of TG for CA partially reverted by changing the G back to A. We also identified a U5 deletion mutant in which the CA played a crucial role in reverse transcription.
Collapse
Affiliation(s)
- H E Brown
- Department of Cancer Immunology, Dana-Farber Cancer Institute Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
44
|
Abstract
The nuclear factor of activated T cells (NFAT) plays an important role in T-cell biology. Activation of T cells results in the rapid calcineurin-dependent translocation of NFAT transcription factors from the cytoplasm to the nucleus. This translocation process coupled to the subsequent active maintenance of NFAT in the nucleus compartment is critical for the induction of expression of several genes encoding cytokines and membrane proteins that modulate immune responses. The molecular cloning of the NFAT family of transcription factors has facilitated rapid progress in the understanding of the signalling mechanisms that control the activity of NFAT.
Collapse
Affiliation(s)
- E S Masuda
- Department of Cell Signalling, DNAX Research Institute of Molecular and Cellular Biology, Palo Alto, CA 94304, USA.
| | | | | | | | | |
Collapse
|
45
|
Lanchy JM, Keith G, Le Grice SF, Ehresmann B, Ehresmann C, Marquet R. Contacts between reverse transcriptase and the primer strand govern the transition from initiation to elongation of HIV-1 reverse transcription. J Biol Chem 1998; 273:24425-32. [PMID: 9733733 DOI: 10.1074/jbc.273.38.24425] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HIV-1 reverse transcriptase (RT) utilizes RNA oligomers to prime DNA synthesis. The initiation of reverse transcription requires specific interactions between HIV-1 RNA, primer tRNA3Lys, and RT. We have previously shown that extension of an oligodeoxyribonucleotide, a situation that mimicks elongation, is unspecific and differs from initiation by the polymerization rate and dissociation rate of RT from the primer-template complex. Here, we used replication intermediates to analyze the transition from the initiation to the elongation phases. We found that the 2'-hydroxyl group at the 3' end of tRNA had limited effects on the polymerization and dissociation rate constants. Instead, the polymerization rate increased 3400-fold between addition of the sixth and seventh nucleotide to tRNA3Lys. The same increase in the polymerization rate was observed when an oligoribonucleotide, but not an oligodeoxyribonucleotide, was used as a primer. In parallel, the dissociation rate of RT from the primer-template complex decreased 30-fold between addition of the 17th and 19th nucleotide to tRNA3Lys. The polymerization and dissociation rates are most likely governed by interactions of the primer strand with helix alphaH in the p66 thumb subdomain and the RNase H domain of RT, respectively.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cattle
- Chimera
- Crystallography, X-Ray
- DNA Primers
- DNA, Viral/chemistry
- DNA, Viral/metabolism
- HIV Reverse Transcriptase/chemistry
- HIV Reverse Transcriptase/metabolism
- HIV-1/enzymology
- HIV-1/genetics
- Kinetics
- Liver/chemistry
- Liver/metabolism
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Conformation
- RNA, Transfer, Amino Acyl/isolation & purification
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Viral/chemistry
- RNA, Viral/metabolism
- Ribonuclease H/chemistry
- Ribonuclease H/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- J M Lanchy
- Unité Propre de Recherche 9002, CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg cedex, France
| | | | | | | | | | | |
Collapse
|
46
|
Greenberg SS, Jie O, Zhao X, Wang JF, Giles TD. The Potential Mechanism of Induction of Inducible Nitric Oxide Synthase mRNA in Alveolar Macrophages by Lipopolysaccharide and Its Suppression by Ethanol, In Vivo. Alcohol Clin Exp Res 1998. [DOI: 10.1111/j.1530-0277.1998.tb04014.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Arts EJ, Miller JT, Ehresmann B, Le Grice SF. Mutating a region of HIV-1 reverse transcriptase implicated in tRNA(Lys-3) binding and the consequences for (-)-strand DNA synthesis. J Biol Chem 1998; 273:14523-32. [PMID: 9603966 DOI: 10.1074/jbc.273.23.14523] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, tRNALys-3 was cross-linked via its anticodon loop to human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) between residues 230 and 357 (Mishima, Y., and Steitz, J. A. (1995) EMBO J. 14, 2679-2687). Scanning the surface of this region identified three basic amino acids Lys249, Arg307, and Lys311 flanking a small crevice on the p66 thumb subdomain outside the primer-template binding cleft. To assess an interaction of this region with the tRNA anticodon loop, these p66 residues were altered to Glu or Gln. p66 subunits containing K249Q, K311Q, K311E, and a dual R307E/K311E mutation formed a stable dimer with wild type p51. All mutants showed reduced affinity for tRNALys-3 and supported significantly less (-)-strand DNA synthesis from this primer than the parental heterodimer. In contrast, these variants efficiently synthesized HIV-1 (-)-strand strong-stop DNA from oligonucleotide primers and had minimal effect on RNase H activity, retaining endonucleolytic and directed cleavage of an RNA/DNA hybrid. Structural features of binary RT.tRNALys-3 complexes were examined by in situ footprinting, via susceptibility to 1, 10-phenanthroline-copper-mediated cleavage. Unlike wild type RT, mutants p66(K311Q)/p51 and p66(K311E)/p51 failed to protect the tRNA anticodon domain from chemical cleavage, indicating a significant structural alteration in the binary RT.tRNA complex. These results suggest a crevice in the p66 thumb subdomain of HIV-1 RT supports an interaction with the tRNALys-3 anticodon loop critical for efficient (-)-strand DNA synthesis.
Collapse
Affiliation(s)
- E J Arts
- Department of Medicine, University Hospitals of Cleveland and Center for AIDS Research at Case Western Reserve University, Cleveland, Ohio 44106-4984, USA
| | | | | | | |
Collapse
|
48
|
Hodgkin MN, Pettitt TR, Martin A, Michell RH, Pemberton AJ, Wakelam MJ. Diacylglycerols and phosphatidates: which molecular species are intracellular messengers? Trends Biochem Sci 1998; 23:200-4. [PMID: 9644971 DOI: 10.1016/s0968-0004(98)01200-6] [Citation(s) in RCA: 213] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In eukaryotes, many receptor agonists use phospholipase-generated lipids as intracellular messengers. Receptor occupation stimulates the production of polyunsaturated 1,2-diacylglycerols by phosphatidylinositol-4,5-bisphosphate specific phospholipases C and/or of mono-unsaturated and saturated phosphatidates by phospholipase-D-catalysed phosphatidylcholine breakdown. The primary phospholipase products are rapidly metabolized: polyunsaturated 1,2-diacylglycerols are converted to polyunsaturated phosphatidates by diacylglycerol kinase; mono-unsaturated and saturated phosphatidates are dephosphorylated to give mono-unsaturated and saturated 1,2-diacylglycerols by phosphatidate phosphohydrolase. The phospholipase-generated polyunsaturated 1,2-diacylglycerols and mono-unsaturated and saturated phosphatidates appear to be intracellular messengers, whereas their immediate metabolites probably do not have signalling functions.
Collapse
Affiliation(s)
- M N Hodgkin
- Institute for Cancer Studies, University of Birmingham Edgbaston, UK
| | | | | | | | | | | |
Collapse
|
49
|
Huang Y, Khorchid A, Gabor J, Wang J, Li X, Darlix JL, Wainberg MA, Kleiman L. The role of nucleocapsid and U5 stem/A-rich loop sequences in tRNA(3Lys) genomic placement and initiation of reverse transcription in human immunodeficiency virus type 1. J Virol 1998; 72:3907-15. [PMID: 9557676 PMCID: PMC109616 DOI: 10.1128/jvi.72.5.3907-3915.1998] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have studied the effect of mutations in the human immunodeficiency virus type 1 (HIV-1) nucleocapsid (NC) sequence on tRNA(3Lys) genomic placement, i.e., the in vivo placement of primer tRNA(3Lys) on the HIV-1 primer binding site (PBS). HIV-1 produced from COS cells transfected with wild-type or mutant proviral DNA was used in this study. We have found that mutations in the amino acid sequences flanking the first Cys-His box in the NC sequence produce the maximum inhibition of genomic placement. A similar finding was obtained when the NC-facilitated annealing of primer tRNA(3Lys) to the HIV PBS in vitro was studied. However, since the genomic placement of tRNA(3Lys) occurs independently of precursor protein processing, the NC mutations studied here have probably exerted their effect through one or both of the precursor proteins, Pr55gag and/or Pr160(gag-pol). One mutation in the linker region between the two Cys-His boxes, P31L, prevented packaging of both Pr160(gag-pol) and tRNA(3Lys) and prevented the genomic placement of tRNA(3Lys). Both packaging and genomic placement were rescued by cotransfection with a plasmid coding for wild-type Pr160(gag-pol). For other linker mutations [R7R10K11 S, R32G, and S3(32-34)], packaging of Pr160(gag-pol) and tRNA(3Lys) was not affected, but genomic placement was, and placement could not be rescued by cotransfection with plasmids coding for either Pr55gag or Pr160(gag-pol). After placement, the initiation of reverse transcription within extracellular virions is characterized by a 2-base DNA extension of the placed tRNA(3Lys). This process requires precursor processing, and those NC mutations which showed the most inhibition of initiation were in either of the two NC Cys-His boxes. Destabilization of a U5 stem-A-rich loop immediately upstream of the PBS (through deletion of four consecutive A's in the loop) did not affect the in vivo genomic placement of tRNA(3Lys) but resulted in the presence in the extracellular virus of longer cDNA extensions of tRNA(3Lys), with a corresponding decrease in the presence of unextended and 2-base-extended tRNA(3Lys).
Collapse
Affiliation(s)
- Y Huang
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- T S Lewis
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder 80309, USA
| | | | | |
Collapse
|