1
|
Lindsay MA, Daniels I, Fletcher J. Phospholipases and the Activation and Priming of Neutrophils by Peritoneal Dialysis Effluent. Perit Dial Int 2020. [DOI: 10.1177/089686089701700510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
ObjectiveTo investigate the role of phospholipases during the activation and priming of neutrophil nicotinamide adenine dinucleotide phosphate (NADPH) oxidase by peritoneal dialysis effluent (PDE).DesignExamine the action of 4-hour dwell PDE upon phospholipase activation in the circulating neutrophils obtained from healthy individuals.ResultsWe have previously reported that PDE stimulated superoxide release by the NADPH oxidase of human neutrophils and primed the response to the bacterial peptide, fMLP (fMetLeuPhe). To elucidate the biochemical mechanisms underlying these observations, we have examined the roles of phospholipases (PL) C, D, and A2, whose activation causes the release of a range of intracellular secondary messengers. Following fMLP stimulation, we observed a rapid activation of both PLC and PLD as well as a small but nonsignificant increase in PLA2 activity. Peritoneal dialysis effluent alone failed to stimulate either PLC or PLD, while pre-incubation with PDE had no affect upon fMLP-induced PLC and PLD activation. However, PDE caused a small but nonsignificant increase in PLA2 activity (which was comparable to that observed with fMLP) and primed the fMLP-induced response. In common with a role for PLA2 and the subsequent release of arachidonic acid (AA), we have demonstrated dose-dependent inhibition of PDE-induced superoxide release by the PLA2 inhibitor mepacrine, as well as activation and priming of the fMLP-induced superoxide generation by AA.ConclusionsThese results imply that PDE-induced NADPH-oxidase activation and priming in human neutrophils is mediated via a PLA2-dependent but PLC and PLD-independent mechanism.
Collapse
Affiliation(s)
- Mark A. Lindsay
- Medical Research Centre, City Hospital, Hucknall Road, Nottingham, United Kingdom
| | - Ian Daniels
- Medical Research Centre, City Hospital, Hucknall Road, Nottingham, United Kingdom
| | - John Fletcher
- Medical Research Centre, City Hospital, Hucknall Road, Nottingham, United Kingdom
| |
Collapse
|
2
|
Scheffzek K, Shivalingaiah G. Ras-Specific GTPase-Activating Proteins-Structures, Mechanisms, and Interactions. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a031500. [PMID: 30104198 DOI: 10.1101/cshperspect.a031500] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ras-specific GTPase-activating proteins (RasGAPs) down-regulate the biological activity of Ras proteins by accelerating their intrinsic rate of GTP hydrolysis, basically by a transition state stabilizing mechanism. Oncogenic Ras is commonly not sensitive to RasGAPs caused by interference of mutants with the electronic or steric requirements of the transition state, resulting in up-regulation of activated Ras in respective cells. RasGAPs are modular proteins containing a helical catalytic RasGAP module surrounded by smaller domains that are frequently involved in the subcellular localization or contributing to regulatory features of their host proteins. In this review, we summarize current knowledge about RasGAP structure, mechanism, regulation, and dual-substrate specificity and discuss in some detail neurofibromin, one of the most important negative Ras regulators in cellular growth control and neuronal function.
Collapse
Affiliation(s)
- Klaus Scheffzek
- Division of Biological Chemistry (Biocenter), Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Giridhar Shivalingaiah
- Division of Biological Chemistry (Biocenter), Medical University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
3
|
Ohr plays a central role in bacterial responses against fatty acid hydroperoxides and peroxynitrite. Proc Natl Acad Sci U S A 2016; 114:E132-E141. [PMID: 28028230 DOI: 10.1073/pnas.1619659114] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Organic hydroperoxide resistance (Ohr) enzymes are unique Cys-based, lipoyl-dependent peroxidases. Here, we investigated the involvement of Ohr in bacterial responses toward distinct hydroperoxides. In silico results indicated that fatty acid (but not cholesterol) hydroperoxides docked well into the active site of Ohr from Xylella fastidiosa and were efficiently reduced by the recombinant enzyme as assessed by a lipoamide-lipoamide dehydrogenase-coupled assay. Indeed, the rate constants between Ohr and several fatty acid hydroperoxides were in the 107-108 M-1⋅s-1 range as determined by a competition assay developed here. Reduction of peroxynitrite by Ohr was also determined to be in the order of 107 M-1⋅s-1 at pH 7.4 through two independent competition assays. A similar trend was observed when studying the sensitivities of a ∆ohr mutant of Pseudomonas aeruginosa toward different hydroperoxides. Fatty acid hydroperoxides, which are readily solubilized by bacterial surfactants, killed the ∆ohr strain most efficiently. In contrast, both wild-type and mutant strains deficient for peroxiredoxins and glutathione peroxidases were equally sensitive to fatty acid hydroperoxides. Ohr also appeared to play a central role in the peroxynitrite response, because the ∆ohr mutant was more sensitive than wild type to 3-morpholinosydnonimine hydrochloride (SIN-1 , a peroxynitrite generator). In the case of H2O2 insult, cells treated with 3-amino-1,2,4-triazole (a catalase inhibitor) were the most sensitive. Furthermore, fatty acid hydroperoxide and SIN-1 both induced Ohr expression in the wild-type strain. In conclusion, Ohr plays a central role in modulating the levels of fatty acid hydroperoxides and peroxynitrite, both of which are involved in host-pathogen interactions.
Collapse
|
4
|
Reyes AM, Vazquez DS, Zeida A, Hugo M, Piñeyro MD, De Armas MI, Estrin D, Radi R, Santos J, Trujillo M. PrxQ B from Mycobacterium tuberculosis is a monomeric, thioredoxin-dependent and highly efficient fatty acid hydroperoxide reductase. Free Radic Biol Med 2016; 101:249-260. [PMID: 27751911 DOI: 10.1016/j.freeradbiomed.2016.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/16/2016] [Accepted: 10/06/2016] [Indexed: 12/23/2022]
Abstract
Mycobacterium tuberculosis (M. tuberculosis) is the intracellular bacterium responsible for tuberculosis disease (TD). Inside the phagosomes of activated macrophages, M. tuberculosis is exposed to cytotoxic hydroperoxides such as hydrogen peroxide, fatty acid hydroperoxides and peroxynitrite. Thus, the characterization of the bacterial antioxidant systems could facilitate novel drug developments. In this work, we characterized the product of the gene Rv1608c from M. tuberculosis, which according to sequence homology had been annotated as a putative peroxiredoxin of the peroxiredoxin Q subfamily (PrxQ B from M. tuberculosis or MtPrxQ B). The protein has been reported to be essential for M. tuberculosis growth in cholesterol-rich medium. We demonstrated the M. tuberculosis thioredoxin B/C-dependent peroxidase activity of MtPrxQ B, which acted as a two-cysteine peroxiredoxin that could function, although less efficiently, using a one-cysteine mechanism. Through steady-state and competition kinetic analysis, we proved that the net forward rate constant of MtPrxQ B reaction was 3 orders of magnitude faster for fatty acid hydroperoxides than for hydrogen peroxide (3×106vs 6×103M-1s-1, respectively), while the rate constant of peroxynitrite reduction was (0.6-1.4) ×106M-1s-1 at pH 7.4. The enzyme lacked activity towards cholesterol hydroperoxides solubilized in sodium deoxycholate. Both thioredoxin B and C rapidly reduced the oxidized form of MtPrxQ B, with rates constants of 0.5×106 and 1×106M-1s-1, respectively. Our data indicated that MtPrxQ B is monomeric in solution both under reduced and oxidized states. In spite of the similar hydrodynamic behavior the reduced and oxidized forms of the protein showed important structural differences that were reflected in the protein circular dichroism spectra.
Collapse
Affiliation(s)
- Aníbal M Reyes
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| | - Diego S Vazquez
- Instituto de Química y Físicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Universidad de Buenos Aires and CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ari Zeida
- Departamento de Química Inorgánica, Analítica y Química-Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martín Hugo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| | - M Dolores Piñeyro
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Unidad de Biología Molecular-Institut Pasteur Montevideo, Montevideo, Uruguay
| | - María Inés De Armas
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| | - Darío Estrin
- Departamento de Química Inorgánica, Analítica y Química-Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| | - Javier Santos
- Instituto de Química y Físicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Universidad de Buenos Aires and CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
5
|
Bizouarn T, Karimi G, Masoud R, Souabni H, Machillot P, Serfaty X, Wien F, Réfrégiers M, Houée-Levin C, Baciou L. Exploring the arachidonic acid-induced structural changes in phagocyte NADPH oxidase p47phoxand p67phoxvia thiol accessibility and SRCD spectroscopy. FEBS J 2016; 283:2896-910. [DOI: 10.1111/febs.13779] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/20/2016] [Accepted: 06/08/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Tania Bizouarn
- Laboratoire de Chimie Physique UMR 8000; Univ. Paris-Sud; CNRS; Université Paris Saclay; Orsay Cedex France
| | - Gilda Karimi
- Laboratoire de Chimie Physique UMR 8000; Univ. Paris-Sud; CNRS; Université Paris Saclay; Orsay Cedex France
| | - Rawand Masoud
- Laboratoire de Chimie Physique UMR 8000; Univ. Paris-Sud; CNRS; Université Paris Saclay; Orsay Cedex France
| | - Hager Souabni
- Laboratoire de Chimie Physique UMR 8000; Univ. Paris-Sud; CNRS; Université Paris Saclay; Orsay Cedex France
| | - Paul Machillot
- Laboratoire de Chimie Physique UMR 8000; Univ. Paris-Sud; CNRS; Université Paris Saclay; Orsay Cedex France
| | - Xavier Serfaty
- Laboratoire de Chimie Physique UMR 8000; Univ. Paris-Sud; CNRS; Université Paris Saclay; Orsay Cedex France
| | - Frank Wien
- Synchrotron SOLEIL, Campus Paris-Saclay; Gif-sur-Yvette Cedex France
| | | | - Chantal Houée-Levin
- Laboratoire de Chimie Physique UMR 8000; Univ. Paris-Sud; CNRS; Université Paris Saclay; Orsay Cedex France
| | - Laura Baciou
- Laboratoire de Chimie Physique UMR 8000; Univ. Paris-Sud; CNRS; Université Paris Saclay; Orsay Cedex France
| |
Collapse
|
6
|
Abstract
Ever since their discovery as cellular counterparts of viral oncogenes more than 25 years ago, much progress has been made in understanding the complex networks of signal transduction pathways activated by oncogenic Ras mutations in human cancers. The activity of Ras is regulated by nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs), and much emphasis has been put into the biochemical and structural analysis of the Ras/GAP complex. The mechanisms by which GAPs catalyze Ras-GTP hydrolysis have been clarified and revealed that oncogenic Ras mutations confer resistance to GAPs and remain constitutively active. However, it is yet unclear how cells coordinate the large and divergent GAP protein family to promote Ras inactivation and ensure a certain biological response. Different domain arrangements in GAPs to create differential protein-protein and protein-lipid interactions are probably key factors determining the inactivation of the 3 Ras isoforms H-, K-, and N-Ras and their effector pathways. In recent years, in vitro as well as cell- and animal-based studies examining GAP activity, localization, interaction partners, and expression profiles have provided further insights into Ras inactivation and revealed characteristics of several GAPs to exert specific and distinct functions. This review aims to summarize knowledge on the cell biology of RasGAP proteins that potentially contributes to differential regulation of spatiotemporal Ras signaling.
Collapse
Affiliation(s)
- Thomas Grewal
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
7
|
Cook N, Harris A, Hopkins A, Hughes K. Scintillation proximity assay (SPA) technology to study biomolecular interactions. ACTA ACUST UNITED AC 2008; Chapter 19:Unit 19.8. [PMID: 18429228 DOI: 10.1002/0471140864.ps1908s27] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Scintillation proximity assay (SPA) is a versatile homogeneous technique for radioactive assays which eliminates the need for separation steps. In SPA, scintillant is incorporated into small fluomicrospheres. These microspheres or "beads" are constructed in such a way as to bind specific molecules. If a radioactive molecule is bound to the bead, it is brought into close enough proximity that it can stimulate the scintillant contained within to emit light. Otherwise, the unbound radioactivity is too distant, the energy released is dissipated before reaching the bead, and these disintegrations are not detected. In this unit, the application of SPA technology to measuring protein-protein interactions, Src Homology 2 (SH2) and 3 (SH3) domain binding to specific peptide sequences, and receptor-ligand interactions are described. Three other protocols discuss the application of SPA technology to cell-adhesion-molecule interactions, protein-DNA interactions, and radioimmunoassays. In addition, protocols are given for preparation of SK-N-MC cells and cell membranes.
Collapse
Affiliation(s)
- Neil Cook
- Amersham Biosciences Ltd., Cardiff, United Kingdom
| | | | | | | |
Collapse
|
8
|
Miller SJ, Li H, Rizvi TA, Huang Y, Johansson G, Bowersock J, Sidani A, Vitullo J, Vogel K, Parysek LM, DeClue JE, Ratner N. Brain lipid binding protein in axon-Schwann cell interactions and peripheral nerve tumorigenesis. Mol Cell Biol 2003; 23:2213-24. [PMID: 12612091 PMCID: PMC149461 DOI: 10.1128/mcb.23.6.2213-2224.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Loss of axonal contact characterizes Schwann cells in benign and malignant peripheral nerve sheath tumors (MPNST) from neurofibromatosis type 1 (NF1) patients. Tumor Schwann cells demonstrate NF1 mutations, elevated Ras activity, and aberrant epidermal growth factor receptor (EGFR) expression. Using cDNA microarrays, we found that brain lipid binding protein (BLBP) is elevated in an EGFR-positive subpopulation of Nf1 mutant mouse Schwann cells (Nf1(-/-) TXF) that grows away from axons; BLBP expression was not affected by farnesyltransferase inhibitor, an inhibitor of H-Ras. BLBP was also detected in EGFR-positive cell lines derived from Nf1:p53 double mutant mice and human MPNST. BLBP expression was induced in normal Schwann cells following transfection with EGFR but not H-Ras12V. Furthermore, EGFR-mediated BLBP expression was not inhibited by dominant-negative H-Ras, indicating that BLBP expression is downstream of Ras-independent EGFR signaling. BLBP-blocking antibodies enabled process outgrowth from Nf1(-/-) TXF cells and restored interaction with axons, without affecting cell proliferation or migration. Following injury, BLBP expression was induced in normal sciatic nerves when nonmyelinating Schwann cells remodeled their processes. These data suggest that BLBP, stimulated by Ras-independent pathways, regulates Schwann cell-axon interactions in normal peripheral nerve and peripheral nerve tumors.
Collapse
MESH Headings
- Animals
- Axons/metabolism
- Carrier Proteins/biosynthesis
- Carrier Proteins/genetics
- Carrier Proteins/physiology
- Cell Movement
- Cells, Cultured/cytology
- Cells, Cultured/metabolism
- Cytoplasm/metabolism
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Fatty Acid-Binding Protein 7
- Fatty Acid-Binding Proteins
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Genes, Dominant
- Genes, Neurofibromatosis 1
- Genes, ras
- Humans
- Membrane Proteins/biosynthesis
- Membrane Proteins/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Nerve Crush
- Nerve Regeneration
- Nerve Sheath Neoplasms/etiology
- Nerve Sheath Neoplasms/metabolism
- Nerve Sheath Neoplasms/pathology
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Neural Crest/cytology
- Neurofibromin 1/physiology
- Oligonucleotide Array Sequence Analysis
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- Recombinant Fusion Proteins/physiology
- Schwann Cells/cytology
- Schwann Cells/metabolism
- Sciatic Nerve/injuries
- Signal Transduction
- Tumor Cells, Cultured/cytology
- Tumor Cells, Cultured/metabolism
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- Shyra J Miller
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati College of Medicine, 231 Bethesda Avenue, Cincinnati, OH 45267-0521, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Parmentier JH, Muthalif MM, Saeed AE, Malik KU. Phospholipase D activation by norepinephrine is mediated by 12(s)-, 15(s)-, and 20-hydroxyeicosatetraenoic acids generated by stimulation of cytosolic phospholipase a2. tyrosine phosphorylation of phospholipase d2 in response to norepinephrine. J Biol Chem 2001; 276:15704-11. [PMID: 11278912 DOI: 10.1074/jbc.m011473200] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Norepinephrine (NE) stimulates phospholipase D (PLD) through a Ras/MAPK pathway in rabbit vascular smooth muscle cells (VSMC). NE also activates calcium influx and calmodulin (CaM)-dependent protein kinase II-dependent cytosolic phospholipase A(2) (cPLA(2)). Arachidonic acid (AA) released by cPLA(2)-catalyzed phospholipid hydrolysis is then metabolized into hydroxyeicosatetraenoic acids (HETEs) through lipoxygenase and cytochrome P450 4A (CYP4A) pathways. HETEs, in turn, have been shown to stimulate Ras translocation and to increase MAPK activity in VSMC. This study was conducted to determine the contribution of cPLA(2)-derived AA and its metabolites (HETEs) to the activation of PLD. NE-induced PLD activation was reduced by two structurally distinct CaM antagonists, W-7 and calmidazolium, and by CaM-dependent protein kinase II inhibition. Blockade of cPLA(2) activity or protein depletion with selective cPLA(2) antisense oligonucleotides abolished NE-induced PLD activation. The increase in PLD activity elicited by NE was also blocked by inhibitors of lipoxygenases (baicalein) and CYP4A (17-octadecynoic acid), but not of cyclooxygenase (indomethacin). AA and its metabolites (12(S)-, 15(S)-, and 20-HETEs) increased PLD activity. PLD activation by AA and HETEs was reduced by inhibitors of Ras farnesyltransferase (farnesyl protein transferase III and BMS-191563) and MEK (U0126 and PD98059). These data suggest that HETEs are the mediators of cPLA(2)-dependent PLD activation by NE in VSMC. In addition to cPLA(2), PLD was also found to contribute to AA release for prostacyclin production via the phosphatidate phosphohydrolase/diacylglycerol lipase pathway. Finally, a catalytically inactive PLD(2) (but not PLD(1)) mutant inhibited NE-induced PLD activity, and PLD(2) was tyrosine-phosphorylated in response to NE by a MAPK-dependent pathway. We conclude that NE stimulates cPLA(2)-dependent PLD(2) through lipoxygenase- and CYP4A-derived HETEs via the Ras/ERK pathway by a mechanism involving tyrosine phosphorylation of PLD(2) in rabbit VSMC.
Collapse
Affiliation(s)
- J H Parmentier
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | |
Collapse
|
10
|
Collett ED, Davidson LA, Fan YY, Lupton JR, Chapkin RS. n-6 and n-3 polyunsaturated fatty acids differentially modulate oncogenic Ras activation in colonocytes. Am J Physiol Cell Physiol 2001; 280:C1066-75. [PMID: 11287318 DOI: 10.1152/ajpcell.2001.280.5.c1066] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ras proteins are critical regulators of cell function, including growth, differentiation, and apoptosis, with membrane localization of the protein being a prerequisite for malignant transformation. We have recently demonstrated that feeding fish oil, compared with corn oil, decreases colonic Ras membrane localization and reduces tumor formation in rats injected with a colon carcinogen. Because the biological activity of Ras is regulated by posttranslational lipid attachment and its interaction with stimulatory lipids, we investigated whether docosahexaenoic acid (DHA), found in fish oil, compared with linoleic acid (LA), found in corn oil, alters Ras posttranslational processing, activation, and effector protein function in young adult mouse colon cells overexpressing H-ras (YAMC-ras). We show here that the major n-3 polyunsaturated fatty acid (PUFA) constituent of fish oil, DHA, compared with LA (an n-6 PUFA), reduces Ras localization to the plasma membrane without affecting posttranslational lipidation and lowers GTP binding and downstream p42/44(ERK)-dependent signaling. In view of the central role of oncogenic Ras in the development of colon cancer, the finding that n-3 and n-6 PUFA differentially modulate Ras activation may partly explain why dietary fish oil protects against colon cancer development.
Collapse
Affiliation(s)
- E D Collett
- Molecular and Cell Biology Group, Faculty of Nutrition, and Center for Environmental and Rural Health, Texas A&M University, College Station, Texas 77843-2471, USA
| | | | | | | | | |
Collapse
|
11
|
Bunt G, van Rossum GS, Boonstra J, van Den Bosch H, Verkleij AJ. Regulation of cytosolic phospholipase A(2) in a new perspective: recruitment of active monomers from an inactive clustered pool. Biochemistry 2000; 39:7847-50. [PMID: 10891062 DOI: 10.1021/bi992725p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
cPLA(2) plays a key role in many signal transduction cascades by hydrolyzing arachidonic acid from membrane phospholipids. Tight control of cPLA(2) activity by a number of regulatory mechanisms is essential to its cellular function. We recently described the localization of cPLA(2) in clusters in fibroblasts and now propose that these clusters reflect a localized inactive pool from which active monomers can be recruited to keep cPLA(2) activity under control on the subcellular level. Using an electron microscopic in vitro approach, we show that cPLA(2) monomers, but not the clusters, bind to membranes in a Ca(2+)-dependent manner. This binding is accompanied by hydrolytic activity. The present data combined with our previous observation of a relative abundance of clusters over monomers in fixed fibroblasts [Bunt, G., de Wit, J., van den Bosch, H., Verkleij, A., and Boonstra, J. (1997) J. Cell Sci. 110, 2449-2459] gives rise to a concept of cPLA(2) regulation in which small amounts of active monomers are recruited to fulfill their function upon stimulation. This is in contrast to processes described for inflammatory cells, where a substantial part of the cytoplasmically localized cPLA(2) translocates to the perinuclear region upon stimulation to become active. Small-scale regulation of cPLA(2) by the proposed cluster-monomer cycle allows local and strictly confined control of cPLA(2) activity, apparently necessary for its cellular role in fibroblasts.
Collapse
Affiliation(s)
- G Bunt
- Department of Molecular Cell Biology and Centre for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Padualaan 8, NL-3584 CH, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
12
|
Lee JH, Harwalkar JA, Bryant SS, Sundaram V, Jove R, Golubic M. Inhibition of neurofibromin and p120 GTPase activating protein (GAP) by dietary fatty acids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 469:391-8. [PMID: 10667358 DOI: 10.1007/978-1-4615-4793-8_57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Neurofibromin and p120 GTPase activating protein (p120 GAP) down-regulate the activity of cellular Ras proteins. How the activity of these two proteins is controlled is not yet clear. In this study, we analyzed the effects of eight nutritionally relevant fatty acids on GTPase stimulatory activity of full-length neurofibromin and p120 GAP. The fatty acids tested were: saturated stearic acid, monounsaturated oleic acid, three omega-6 and three omega-3 polyunsaturated fatty acids. The analysis was performed by Ras immunoprecipitation GTPase assay. The full-length p120 GAP expressed in insect Sf9 cells and the immunoaffinity purified full-length neurofibromin were used. Neurofibromin was readily inhibited by stearic and oleic acid, but p120 GAP was not inhibited even at high concentrations (> 80 microM). Neurofibromin was also inhibited by low concentrations of all the polyunsaturated fatty acids tested (IC50 of 6 to 16 microM). p120 GAP was 2-3 fold less sensitive to inhibition by these fatty acids. The GTPase stimulatory activity of neurofibromin was also inhibited by arachidonic and oleic acid in the presence of a lipid mixture representing the major lipid components of the cell membrane. Chimeric proteins of neurofibromin and p120 GAP were used to determine that differential sensitivity to fatty acid inhibition maps to the catalytic domain of the proteins. These results indicated that fatty acids can modulate the GTPase function of the c-Ha-Ras protein by inhibiting the GTPase stimulatory activity of two Ras regulators, full-length neurofibromin and p120 GAP, at physiologically relevant concentrations in vitro.
Collapse
Affiliation(s)
- J H Lee
- Department of Neurosurgery, Cleveland Clinic Foundation, Ohio, USA
| | | | | | | | | | | |
Collapse
|
13
|
Burgermeister E, Pessara U, Tibes U, Küster A, Heinrich PC, Scheuer WV. Inhibition of cytosolic phospholipase A(2) attenuates activation of mitogen-activated protein kinases in human monocytic cells. Eur J Pharmacol 2000; 388:195-208. [PMID: 10675727 DOI: 10.1016/s0014-2999(99)00816-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Eicosanoids and platelet-activating factor generated upon activation of cytosolic phospholipase A(2) enhance activity of transcription factors and synthesis of proinflammatory cytokines. Here, we show that selective inhibitors and antisense oligonucleotides against this enzyme suppressed expression of the interleukin-1beta gene at the level of transcription and promoter activation in human monocytic cell lines. This inhibitory effect was due to failure of activation of mitogen-activated protein kinases (MAPK) through phosphorylation by upstream mitogen-activated protein kinase kinases (MKK). Consequently, phosphorylation and degradation of inhibitor-kappaBalpha (I-kappaBalpha) and subsequent cytoplasmic mobilization, DNA-binding and the transactivating potential of nuclear factor-kappaB (NF-kB), nuclear factor-interleukin-6 (NF-IL6), activation protein-1 (AP-1) and signal-transducer-and-activator-of-transcription-1 (STAT-1) were impaired. It is concluded, that lipid mediators promote activation of MAPKs, which in turn lead to phosphorylation and liberation of active transcription factors. Since inhibition of cytosolic phospholipase A(2) ameliorates inflammation in vivo, this potency may reside in interference with the MAPK pathway.
Collapse
Affiliation(s)
- E Burgermeister
- Department of Molecular Pharmacology, Roche Diagnostics, Nonnenwald. 2, D-82372, Penzberg, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Zhang Y, Cribbs LL, Satin J. Arachidonic acid modulation of alpha1H, a cloned human T-type calcium channel. Am J Physiol Heart Circ Physiol 2000; 278:H184-93. [PMID: 10644598 DOI: 10.1152/ajpheart.2000.278.1.h184] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arachidonic acid (AA) and the products of its metabolism are central mediators of changes in cellular excitability. We show that the recently cloned and expressed T-type or low-voltage-activated Ca channel, alpha1H, is modulated by external AA. AA (10 microM) causes a slow, time-dependent attenuation of alpha1H current. At a holding potential of -80 mV, 10 microM AA reduces peak inward alpha1H current by 15% in 15 min and 70% in 30 min and shifts the steady-state inactivation curve -25 mV. AA inhibition was not affected by applying the cyclooxygenase inhibitor indomethacin or the lipoxygenase inhibitor nordihydroguaiaretic acid. The epoxygenase inhibitor octadecynoic acid partially antagonized AA attenuation of alpha1H. The epoxygenase metabolite epoxyeicosatrienoic acid (8,9-EET) mimicked the inhibitory effect of AA on alpha1H peak current. A protein kinase C (PKC)-specific inhibitor (peptide fragment 19-36) only partially antagonized the AA-induced reduction of peak alpha1H current and the shift of the steady-state inactivation curve but had no effect on 8,9-EET-induced attenuation of current. In contrast, PKA has no role in the modulation of alpha1H. These results suggest that AA attenuation and shift of alpha1H may be mediated directly by AA. The heterologous expression of T-type Ca channels allows us to study for the first time properties of this important class of ion channel in isolation. There is a significant overlap of the steady-state activation and inactivation curves, which implies a substantial window current. The selective shift of the steady-state inactivation curve by AA reduces peak Ca current and eliminates the window current. We conclude that AA may partly mediate physiological effects such as vasodilatation via the attenuation of T-type Ca channel current and the elimination of a T-type channel steady window current.
Collapse
Affiliation(s)
- Y Zhang
- Department of Physiology, The University of Kentucky College of Medicine, Lexington, Kentucky 40536-0298, USA
| | | | | |
Collapse
|
15
|
Burgermeister E, Tibes U, Stockinger H, Scheuer WV. Activation of nuclear factor-kappaB by lipopolysaccharide in mononuclear leukocytes is prevented by inhibitors of cytosolic phospholipase A2. Eur J Pharmacol 1999; 369:373-86. [PMID: 10225377 DOI: 10.1016/s0014-2999(99)00011-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In monocytes, lipopolysaccharide induces synthesis and activity of the 85-kDa cytosolic phospholipase A2. This enzyme releases arachidonic acid and lyso-phospholipids from membranes which are metabolized to eicosanoids and platelet-activating-factor. These lipid mediators increase activity of transcription factors and expression of cytokine genes indicating a function for cytosolic phospholipase A2 in signal transduction and inflammation. We have shown previously that trifluoromethylketone inhibitors of cytosolic phospholipase A2 suppressed interleukin-1beta protein and steady-state mRNA levels in human lipopolysaccharide-stimulated peripheral blood mononuclear leukocytes. In this study, the subcellular mechanisms were analyzed by which trifluoromethylketones interfere with gene expression. We found that they reduced the initial interleukin-1beta mRNA transcription rate through prevention of degradation of inhibitor-kappaB alpha. Consequently, cytosolic activation, nuclear translocation and DNA-binding of nuclear factor-kappaB were decreased. Trifluoromethylketones ameliorate chronic inflammation in vivo. Thus, this therapeutic potency may reside in retention of inactive nuclear factor-kappaB in the cytosol thereby abrogating interleukin-1beta gene transcription.
Collapse
Affiliation(s)
- E Burgermeister
- Department of Molecular Pharmacology, Roche Diagnostics, Penzberg, Germany
| | | | | | | |
Collapse
|
16
|
Giglione C, Parmeggiani A. Raf-1 is involved in the regulation of the interaction between guanine nucleotide exchange factor and Ha-ras. Evidences for a function of Raf-1 and phosphatidylinositol 3-kinase upstream to Ras. J Biol Chem 1998; 273:34737-44. [PMID: 9856997 DOI: 10.1074/jbc.273.52.34737] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The observation that activated c-Ha-Ras p21 interacts with diverse protein ligands suggests the existence of mechanisms that regulate multiple interactions with Ras. This work studies the influence of the Ras effector c-Raf-1 on the action of guanine nucleotide exchange factors (GEFs) on Ha-Ras in vitro. Purified GEFs (the catalytic domain of yeast Sdc25p and the full-length and catalytic domain of mouse CDC25Mm) and the Ras binding domains (RBDs) of Raf-1 (Raf (1-149) and Raf (51-131)) were used. Our results show that not only the intrinsic GTP/GTP exchange on Ha-Ras but also the GEF-stimulated exchange is inhibited in a concentration-dependent manner by the RBDs of Raf. Conversely, the scintillation proximity assay, which monitors the effect of GEF on the Ras.Raf complex, showed that the binding of Raf and GEF to Ha-Ras.GTP is mutually exclusive. The various GEFs used yielded comparable results. It is noteworthy that under more physiological conditions mimicking the cellular GDP/GTP ratio, Raf enhances the GEF-stimulated GDP/GTP exchange on Ha-Ras, in agreement with the sequestration of Ras.GTP by Raf. Consistent with our results, the GEF-stimulated exchange of Ha-Ras.GTP was also inhibited by another effector of Ras, the RBD (amino acid residues 133-314) of phosphatidylinositol 3-kinase p110alpha. Our data show that Raf-1 and phosphatidylinositol 3-kinase can influence the upstream activation of Ha-Ras. The interference between Ras effectors and GEF could be a regulatory mechanism to promote the activity of Ha-Ras in the cell.
Collapse
Affiliation(s)
- C Giglione
- Groupe de Biophysique-Equipe 2, Ecole Polytechnique, F-91128 Palaiseau Cedex, France
| | | |
Collapse
|
17
|
Chen JK, Falck JR, Reddy KM, Capdevila J, Harris RC. Epoxyeicosatrienoic acids and their sulfonimide derivatives stimulate tyrosine phosphorylation and induce mitogenesis in renal epithelial cells. J Biol Chem 1998; 273:29254-61. [PMID: 9786938 DOI: 10.1074/jbc.273.44.29254] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In our present studies utilizing a well characterized proximal tubule cell line, LLCPKcl4, we determined that all four EET regioisomers (5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET) stimulated [3H]thymidine incorporation, with 14,15-EET being the most potent. In contrast, no mitogenic effects were seen with arachidonic acid, other cP450 arachidonate metabolites (12R-hydroxyeicosatetraenoic acid (12R-HETE), 14,15-dihydroxyeicosatrienoic acid (14,15-DHET), or 20-HETE), or lipoxygenase metabolites (5S-HETE, leukotriene B4, or lipoxin A4). We found that their metabolically more stable sulfonimide (SI) analogs (11,12-EET-SI and 14,15-EET-SI) were also potent mitogens. In addition 14,15-EET-SI also increased cell proliferation as well as expression of both c-fos and egr-1 mRNA. The protein kinase C and A inhibitors, H-7 and H-8, or the cyclooxygenase inhibitor, indomethacin, had no effect upon 14, 15-EET-induced [3H]thymidine incorporation, but the selective tyrosine kinase inhibitor, genistein, significantly inhibited it. Immunoprecipitation and immunoblotting demonstrated increased tyrosine phosphorylation of PI3-kinase and epidermal growth factor receptor (EGFR) within 1 min of EET administration. EETs also stimulated association of PI3-kinase with EGFR. PI3-kinase inhibitors, wortmannin and LY 294002, markedly inhibited 14, 15-EET-SI-stimulated [3H]thymidine incorporation. In addition, 14, 15-EET-SI administration stimulated tyrosine phosphorylation of src homologous and collagen-like protein (SHC) and association of SHC with both growth factor receptor-binding protein (GRB2) and EGFR. Mitogen-activated protein kinase was also activated within 5 min. Pretreatment of the cells with the mitogen-activated protein kinase kinase inhibitor, PD98059, inhibited the 14,15-EET-SI-stimulated [3H]thymidine incorporation. Moreover, immunoblotting indicated that 14,15-EET stimulated tyrosine phosphorylation of the specific pp60(c-src) substrate p120 and c-Src association with EGFR. 14, 15-EET increased src kinase activity within 1 min. Our data indicate that EETs are potent mitogens for renal epithelial cells, and the mitogenic effects of the EETs are mediated, at least in part, by the activation of Src kinase and initiation of a tyrosine kinase phosphorylation cascade.
Collapse
Affiliation(s)
- J K Chen
- Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
18
|
Allen M, Chu S, Brill S, Stotler C, Buckler A. Restricted tissue expression pattern of a novel human rasGAP-related gene and its murine ortholog. Gene X 1998; 218:17-25. [PMID: 9751798 DOI: 10.1016/s0378-1119(98)00394-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mammalian rasGAPs constitute a group of widely expressed proteins involved in the negative regulation of ras-mediated signaling. In this study we have isolated a novel human gene, RASAL (Ras GTPase-activating-like) and its murine ortholog, MRASAL which are most similar to the GAP1 family of rasGAP proteins, based upon the presence and organization of specific conserved domains. Full-length human and murine mRNA sequences are predicted to encode 804 and 799 amino acid polypeptides, respectively. Sequence analysis of these two proteins revealed the presence of two N-terminal calcium-dependent phospholipid binding C2 domains, a conserved GAP related domain (GRD) and a C-terminal pleckstrin homology (PH) domain. Northern blot and mRNA in situ hybridization analyses indicate that RASAL, in contrast to other mammalian rasGAP proteins, has a limited expression pattern; RASAL is highly expressed in the follicular cells of the thyroid and the adrenal medulla and expressed at lower levels in brain, spinal cord and trachea. Human RASAL has been localized by radiation hybrid mapping to chromosome 12q23-24.
Collapse
Affiliation(s)
- M Allen
- Axys Pharmaceuticals, Suite 160, 11099 N. Torrey Pines Rd, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
19
|
Lindsay MA, Giembycz MA. Signal transduction and activation of the NADPH oxidase in eosinophils. Mem Inst Oswaldo Cruz 1998; 92 Suppl 2:115-23. [PMID: 9698923 DOI: 10.1590/s0074-02761997000800016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Activation of eosinophil NADPH oxidase and the subsequent release of toxic oxygen radicals has been implicated in the mechanism of parasite killing and inflammation. At present, little is known of the signal transduction pathway that govern agonist-induced activation of the respiratory burst and is the subject of this review. In particular, we focus on the ability of leukotrine B4 to activate the NADPH oxidase in guinea-pig peritoneal eosinophils which can be obtained in sufficient number and purity for detailed biochemical experiments to be performed.
Collapse
Affiliation(s)
- M A Lindsay
- Thoracic Medicine, Imperial College School of Medicine, National Heart and Lung Institute, London, UK
| | | |
Collapse
|
20
|
Capodici C, Pillinger MH, Han G, Philips MR, Weissmann G. Integrin-dependent homotypic adhesion of neutrophils. Arachidonic acid activates Raf-1/Mek/Erk via a 5-lipoxygenase- dependent pathway. J Clin Invest 1998; 102:165-75. [PMID: 9649570 PMCID: PMC509078 DOI: 10.1172/jci592] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AA stimulates integrin-dependent neutrophil adhesion, a critical early step in acute inflammation. However, neither the signaling pathway(s) of AA-stimulated adhesion, nor whether AA acts directly or through the generation of active metabolites, has been elucidated. Previously, we have observed a tight association between neutrophil Erk activation and homotypic adhesion in response to chemoattractants acting through G protein-linked receptors. We now report a similar association between homotypic adhesion and Erk activation in response to AA. Erk activation was cyclooxygenase independent and required AA metabolism to 5(S)- hydroperoxyeicosatetraenoic acid (5-HpETE) via 5-lipoxygenase, but not the further lipoxygenase-dependent metabolism of 5-HpETE to leukotrienes. AA stimulation of Erk was accompanied by Raf-1 activation and was sensitive to inhibitors of Raf-1 and Mek. Whereas activation of Erk by AA was pertussis toxin sensitive, [3H]-AA binding to neutrophils was not saturable, suggesting that an AA metabolite activates a G protein. Consistent with this hypothesis, Erk activation by 5(S)-hydroxyeicosatetraenoic acid (5-HETE; lipoxygenase-independent metabolite of 5-HpETE) was also pertussis toxin sensitive. These data suggest that a 5-lipoxygenase metabolite of AA, e.g., 5-HETE, is released from AA-treated cells to engage a plasma membrane-associated, pertussis toxin-sensitive, G protein-linked receptor, leading to activation of Erk and adhesion via the Raf-1/Mek signal transduction pathway.
Collapse
Affiliation(s)
- C Capodici
- Department of Medicine, New York University School of Medicine, New York 10016, USA
| | | | | | | | | |
Collapse
|
21
|
Misra UK, Pizzo SV. Ligation of the alpha2M signalling receptor elevates the levels of p21Ras-GTP in macrophages. Cell Signal 1998; 10:441-5. [PMID: 9720766 DOI: 10.1016/s0898-6568(97)00171-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ligation of the alpha2-macroglobulin signalling receptor (alpha2MSR) with alpha2-macroglobulin (alpha2M)-methylamine or a cloned and expressed receptor binding fragment (RBF) stimulates DNA synthesis. To examine the possible role of the Ras pathway in the mitogenic effects observed on ligating alpha2MSR, we studied the formation of p2 Ras-GTP in murine peritoneal macrophages upon treatment with alpha2M-methylamine and RBF, respectively. Both alpha2M-methylamine (50 pM) and RBF (50 pM) stimulated a 2-3-fold increase in the formation of the p21Ras-GTP complex compared with unstimulated cells. p21Ras-GT32P complex formation was both time and RBF concentration dependent and was comparable to p21Ras-GT32P complex formation induced by EGF (200 ng/mL) and platelet derived growth factor (50 mg/mL). Up-regulation of cells with phorbol dibutyrate prior to stimulation with RBF had no effect on p2 Ras-GT32P formation. However, treatment of macrophages with the tyrosine kinase inhibitor genestein drastically reduced RBF-induced formation of the p21 Ras-GT32P complex. Wortmannin, an inhibitor of phosphatidylinositol-3'-kinase (PI3K), had no effect on p21Ras-GT32P complex formation. It is concluded that the mitogenic effects of ligating alpha2MSR are mediated through a Ras-dependent pathway.
Collapse
Affiliation(s)
- U K Misra
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
22
|
Golubić M, Harwalkar JA, Bryant SS, Sundaram V, Jove R, Lee JH. Differential regulation of neurofibromin and p120 GTPase-activating protein by nutritionally relevant fatty acids. Nutr Cancer 1998; 30:97-107. [PMID: 9589427 DOI: 10.1080/01635589809514648] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Arachidonic acid, phosphatidic acid, and other lipids inhibit the catalytic fragment of neurofibromin more potently than that of p120 guanosine triphosphatase-activating protein (GAP). The effects of fatty acids other than arachidonic acid on full-length neurofibromin and p120 GAP, to our knowledge, have not been studied. In this study, we analyzed the effects of eight nutritionally relevant fatty acids on guanosine triphosphatase (GTPase) stimulatory activity of full-length neurofibromin and p120 GAP. The fatty acids tested were saturated stearic acid, monounsaturated oleic acid, and three n-6 and three n-3 polyunsaturated fatty acids. Analysis was performed by Ras immunoprecipitation GTPase assay. The full-length p120 GAP expressed in insect Sf9 cells and immunoaffinity-purified full-length neurofibromin were used. In contrast to neurofibromin, which was readily inhibited by stearic and oleic acid, p120 GAP was only weakly inhibited even at high concentrations (> 80 microM). Neurofibromin was also two- to threefold more sensitive to inhibition by other fatty acids tested. A chimeric protein in which the neurofibromin catalytic domain was fused to the NH2-terminal sequences of p120 GAP was used to determine that differential sensitivity to fatty acid inhibition maps to the catalytic domain of the proteins. These results indicate that nutritionally relevant fatty acids can modulate the GTPase function of c-Ha-Ras protein by inhibiting GTPase stimulatory activity of two Ras regulators, full-length neurofibromin and p120 GAP, at physiologically relevant concentrations in vitro.
Collapse
Affiliation(s)
- M Golubić
- Department of Neurosurgery, Cleveland Clinic Foundation, OH 44195, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Sermon BA, Lowe PN, Strom M, Eccleston JF. The importance of two conserved arginine residues for catalysis by the ras GTPase-activating protein, neurofibromin. J Biol Chem 1998; 273:9480-5. [PMID: 9545275 DOI: 10.1074/jbc.273.16.9480] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ras proteins are guanine-nucleotide binding proteins that have a low intrinsic GTPase activity that is enhanced 10(5)-fold by the GTPase-activating proteins (GAPs) p120-GAP and neurofibromin. Comparison of the primary sequences of RasGAPs shows two invariant arginine residues (Arg1276 and Arg1391 of neurofibromin). In this study, site-directed mutagenesis was used to change each of these residues in the catalytic domain of neurofibromin (NF1-334) to alanine. The ability of the mutant proteins to bind to Ras.GTP and to stimulate their intrinsic GTPase rate was then determined by kinetic methods under single turnover conditions using a fluorescent analogue of GTP. The separate contributions of each of these residues to catalysis and binding affinity to Ras were measured. Both the R1276A and the R1391A mutant NF1-334 proteins were 1000-fold less active than wild-type NF1-334 in activating the GTPase when measured at saturating concentrations. In contrast, there was only a minor effect of either mutation on NF1-334 affinity for wild-type Ha-Ras. These data are consistent with both arginines being required for efficient catalysis. Neither arginine is absolutely essential, because the mutant NF1-334 proteins increase the intrinsic Ras.GTPase by at least 100-fold. The roles of Arg1276 and Arg1391 in neurofibromin are consistent with proposals based on the recently published x-ray structure of p120-GAP complexed with Ras.
Collapse
Affiliation(s)
- B A Sermon
- Division of Physical Biochemistry, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | | |
Collapse
|
24
|
Giglione C, Parrini MC, Baouz S, Bernardi A, Parmeggiani A. A new function of p120-GTPase-activating protein. Prevention of the guanine nucleotide exchange factor-stimulated nucleotide exchange on the active form of Ha-ras p21. J Biol Chem 1997; 272:25128-34. [PMID: 9312123 DOI: 10.1074/jbc.272.40.25128] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This work studies the coordination of the action of GTPase-activating protein (GAP) and guanine nucleotide exchange factor (GEF) on activated human c-Ha-Ras p21. Purified human p120-GAP was obtained with a new efficient procedure. To distinguish the GTPase-activating effect of p120-GAP from other effects dependent on the interaction with activated Ha-Ras, the nonhydrolyzable GTP analogue guanosine 5'-O-(thiotriphosphate) (GTPgammaS) was used. The results showed that the GTPgammaS/GTPgammaS exchange enhanced by the C-terminal catalytic domain of the yeast GEF Sdc25p (C-Sdc25p) is prevented by p120-GAP. This effect is strictly specific for the activated form of Ha-Ras, the target of GAP; no effect on Ha-Ras.GDP was detectable. The GAP catalytic domain also inhibited C-Sdc25p but to a lower extent. The interfering effect by p120-GAP was also evident in a homologous mammalian system, using full-length mouse RasGEF, its C-terminal half-molecule, or C-terminal catalytic domain. As a consequence of this inhibition, presence of p120-GAP enhanced the regeneration of Ha-Ras.GTPgammaS by GEF at a GDP:GTPgammaS ratio mimicking the in vivo GDP:GTP ratio. Our work describes a novel function of p120-GAP and suggests a mechanism by which GAP protects Ha-Ras.GTP in vivo against unproductive exchanges. This constrain is likely involved in the regulation of the physiological GDP/GTP cycle of Ras and in the action of p120-GAP as downstream effector of Ras. Helix alpha3 is proposed as a Ras element playing a key-role in the interference between GAP and GEF on Ras.
Collapse
Affiliation(s)
- C Giglione
- Groupe de Biophysique-Equipe 2, Ecole Polytechnique, F-91128 Palaiseau Cedex, France
| | | | | | | | | |
Collapse
|
25
|
Sellmayer A, Danesch U, Weber PC. Modulation of the expression of early genes by polyunsaturated fatty acids. Prostaglandins Leukot Essent Fatty Acids 1997; 57:353-7. [PMID: 9430378 DOI: 10.1016/s0952-3278(97)90410-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Expression of early genes is a characteristic immediate cellular response to mitogenic or inflammatory stimulation. Various second messenger systems have been found to transduce the signal from the plasma membrane to the nucleus. Recent observations indicate that in addition to well characterized second messenger systems, polyunsaturated fatty acids, especially the n-6 fatty acid arachidonic acid and its endogenously produced metabolites affect the expression of early genes in different cell types. At least in fibroblasts, the stimulatory effect of arachidonic acid can be antagonized by n-3 polyunsaturated fatty acids. Further identification of the mechanisms through which polyunsaturated fatty acids modulate early gene expression and regulate subsequent cellular responses, like cell growth, may help to define novel concepts in the management of cardiovascular diseases.
Collapse
Affiliation(s)
- A Sellmayer
- Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten, Universität München, Munich, Germany
| | | | | |
Collapse
|
26
|
Scheffzek K, Ahmadian MR, Kabsch W, Wiesmüller L, Lautwein A, Schmitz F, Wittinghofer A. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 1997; 277:333-8. [PMID: 9219684 DOI: 10.1126/science.277.5324.333] [Citation(s) in RCA: 1170] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The three-dimensional structure of the complex between human H-Ras bound to guanosine diphosphate and the guanosine triphosphatase (GTPase)-activating domain of the human GTPase-activating protein p120GAP (GAP-334) in the presence of aluminum fluoride was solved at a resolution of 2.5 angstroms. The structure shows the partly hydrophilic and partly hydrophobic nature of the communication between the two molecules, which explains the sensitivity of the interaction toward both salts and lipids. An arginine side chain (arginine-789) of GAP-334 is supplied into the active site of Ras to neutralize developing charges in the transition state. The switch II region of Ras is stabilized by GAP-334, thus allowing glutamine-61 of Ras, mutation of which activates the oncogenic potential, to participate in catalysis. The structural arrangement in the active site is consistent with a mostly associative mechanism of phosphoryl transfer and provides an explanation for the activation of Ras by glycine-12 and glutamine-61 mutations. Glycine-12 in the transition state mimic is within van der Waals distance of both arginine-789 of GAP-334 and glutamine-61 of Ras, and even its mutation to alanine would disturb the arrangements of residues in the transition state.
Collapse
Affiliation(s)
- K Scheffzek
- Max-Planck-Institut für molekulare Physiologie, Abteilung Strukturelle Biologie, Rheinlanddamm 201, 44139 Dortmund, Germany
| | | | | | | | | | | | | |
Collapse
|