1
|
Angolano C, Hansen E, Ajjawi H, Nowlin P, Zhang Y, Thunemann N, Ferran C, Todd N. Characterization of focused ultrasound blood-brain barrier disruption effect on inflammation as a function of treatment parameters. Biomed Pharmacother 2025; 182:117762. [PMID: 39719739 PMCID: PMC11803570 DOI: 10.1016/j.biopha.2024.117762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 12/26/2024] Open
Abstract
The technology of focused ultrasound-mediated disruption of the blood-brain barrier (FUS-BBB opening) has now been used in over 20 Phase 1 clinical trials to validate the safety and feasibility of BBB opening for drug delivery in patients with brain tumors and neurodegenerative diseases. The primary treatment parameters, FUS intensity and microbubble dose, are chosen to balance sufficient BBB disruption to achieve drug delivery against potential acute vessel damage leading to microhemorrhage. However, other safety considerations due to second order effects caused by BBB disruption, such as inflammation and alteration of neurovascular function, are only beginning to be understood. This study builds on previous work that has investigated the inflammatory response following FUS-BBB opening. In this study, we characterize the effect of FUS intensity, microbubble dose and single vs multiple treatments on the extent of BBB disruption, observed level of microhemorrhage, and degree of inflammatory response at acute post-treatment time points in the wild-type mouse brain. Results show that upregulation of pro-inflammatory markers is primarily driven by microbubble dose, with peak effects seen at 24 hours post-treatment. We additionally saw significantly elevated levels of cytokine and chemokine markers in female vs male mice, despite no sex differences in level of BBB disruption or microglia activation. Multiple treatments did not result in increased levels of pro-inflammatory markers compared to single treatment baseline. However, we did see an interesting elevation of the anti-inflammatory molecule eNOS after multiple treatments, indicating active mechanisms were at work to restore homeostasis in the brain environment.
Collapse
Affiliation(s)
- Cleide Angolano
- Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Emily Hansen
- Harvard University, Cambridge, MA, United States
| | - Hala Ajjawi
- Harvard University, Cambridge, MA, United States
| | - Paige Nowlin
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Yongzhi Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Natalie Thunemann
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Christiane Ferran
- Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Division of Nephrology and the Transplant Institute, Department of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Nick Todd
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
2
|
Brennan PG, Mota L, Aridi T, Patel N, Liang P, Ferran C. Advancements in Omics and Breakthrough Gene Therapies: A Glimpse into the Future of Peripheral Artery Disease. Ann Vasc Surg 2024; 107:229-246. [PMID: 38582204 DOI: 10.1016/j.avsg.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 01/01/2024] [Indexed: 04/08/2024]
Abstract
Peripheral artery disease (PAD), a highly prevalent global disease, associates with significant morbidity and mortality in affected patients. Despite progress in endovascular and open revascularization techniques for advanced PAD, these interventions grapple with elevated rates of arterial restenosis and vein graft failure attributed to intimal hyperplasia (IH). Novel multiomics technologies, coupled with sophisticated analyses tools recently powered by advances in artificial intelligence, have enabled the study of atherosclerosis and IH with unprecedented single-cell and spatial precision. Numerous studies have pinpointed gene hubs regulating pivotal atherogenic and atheroprotective signaling pathways as potential therapeutic candidates. Leveraging advancements in viral and nonviral gene therapy (GT) platforms, gene editing technologies, and cutting-edge biomaterial reservoirs for delivery uniquely positions us to develop safe, efficient, and targeted GTs for PAD-related diseases. Gene therapies appear particularly fitting for ex vivo genetic engineering of IH-resistant vein grafts. This manuscript highlights currently available state-of-the-art multiomics approaches, explores promising GT-based candidates, and details GT delivery modalities employed by our laboratory and others to thwart mid-term vein graft failure caused by IH, as well as other PAD-related conditions. The potential clinical translation of these targeted GTs holds the promise to revolutionize PAD treatment, thereby enhancing patients' quality of life and life expectancy.
Collapse
Affiliation(s)
- Phillip G Brennan
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Lucas Mota
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Tarek Aridi
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Nyah Patel
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Patric Liang
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Christiane Ferran
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Division of Nephrology and the Transplant Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| |
Collapse
|
3
|
Angolano C, Hansen E, Ajjawi H, Nowlin P, Zhang Y, Thunemann N, Ferran C, Todd N. Characterization of focused ultrasound blood-brain barrier disruption effect on inflammation as a function of treatment parameters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602776. [PMID: 39071338 PMCID: PMC11275883 DOI: 10.1101/2024.07.10.602776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The technology of focused ultrasound-mediated disruption of the blood-brain barrier (FUS- BBB opening) has now been used in over 20 Phase 1 clinical trials to validate the safety and feasibility of BBB opening for drug delivery in patients with brain tumors and neurodegenerative diseases. The primary treatment parameters, FUS intensity and microbubble dose, are chosen to balance sufficient BBB disruption to achieve drug delivery against potential acute vessel damage leading to microhemorrhage. This can largely be achieved based on both empirical results from animal studies and by monitoring the microbubble cavitation signal in real time during the treatment. However, other safety considerations due to second order effects caused by BBB disruption, such as inflammation and alteration of neurovascular function, are not as easily measurable, may take longer to manifest and are only beginning to be understood. This study builds on previous work that has investigated the inflammatory response following FUS-BBB opening. In this study, we characterize the effect of FUS intensity and microbubble dose on the extent of BBB disruption, observed level of microhemorrhage, and degree of inflammatory response at three acute post-treatment time points in the wild-type mouse brain. Additionally, we evaluate differences related to biological sex, presence and degree of the anti- inflammatory response that develops to restore homeostasis in the brain environment, and the impact of multiple FUS-BBB opening treatments on this inflammatory response.
Collapse
|
4
|
Kommer A, Meineck M, Classen P, Weinmann-Menke J. A20 in Kidney Transplantation and Autoimmunity. Int J Mol Sci 2024; 25:6628. [PMID: 38928333 PMCID: PMC11203976 DOI: 10.3390/ijms25126628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
A20, the central inhibitor of NFκB, has multiple anti-inflammatory properties, making it an interesting target in kidney autoimmune disease and transplant biology. It has been shown to be able to inhibit inflammatory functions in macrophages, dendritic cells, T cells, and B cells in various ways, leading to less tissue damage and better graft outcomes. In this review, we will discuss the current literature regarding A20 in kidney transplantation and autoimmunity. Future investigations on animal models and in existing immunosuppressive therapies are needed to establish A20 as a therapeutic target in kidney transplantation and autoimmunity. Cell-based therapies, modified viruses or RNA-based therapies could provide a way for A20 to be utilized as a promising mediator of inflammation and tissue damage.
Collapse
Affiliation(s)
- Andreas Kommer
- Department of Nephrology, I. Department of Medicine, University Medical Center Mainz, Johannes Gutenberg University, D 55131 Mainz, Germany; (M.M.); (P.C.)
| | | | | | | |
Collapse
|
5
|
Johann L, Soldati S, Müller K, Lampe J, Marini F, Klein M, Schramm E, Ries N, Schelmbauer C, Palagi I, Karram K, Assmann JC, Khan MA, Wenzel J, Schmidt MH, Körbelin J, Schlüter D, van Loo G, Bopp T, Engelhardt B, Schwaninger M, Waisman A. A20 regulates lymphocyte adhesion in murine neuroinflammation by restricting endothelial ICOSL expression in the CNS. J Clin Invest 2023; 133:e168314. [PMID: 37856217 PMCID: PMC10721159 DOI: 10.1172/jci168314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 10/18/2023] [Indexed: 10/21/2023] Open
Abstract
A20 is a ubiquitin-modifying protein that negatively regulates NF-κB signaling. Mutations in A20/TNFAIP3 are associated with a variety of autoimmune diseases, including multiple sclerosis (MS). We found that deletion of A20 in central nervous system (CNS) endothelial cells (ECs) enhances experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. A20ΔCNS-EC mice showed increased numbers of CNS-infiltrating immune cells during neuroinflammation and in the steady state. While the integrity of the blood-brain barrier (BBB) was not impaired, we observed a strong activation of CNS-ECs in these mice, with dramatically increased levels of the adhesion molecules ICAM-1 and VCAM-1. We discovered ICOSL to be expressed by A20-deficient CNS-ECs, which we found to function as adhesion molecules. Silencing of ICOSL in CNS microvascular ECs partly reversed the phenotype of A20ΔCNS-EC mice without reaching statistical significance and delayed the onset of EAE symptoms in WT mice. In addition, blocking of ICOSL on primary mouse brain microvascular ECs impaired the adhesion of T cells in vitro. Taken together, we propose that CNS EC-ICOSL contributes to the firm adhesion of T cells to the BBB, promoting their entry into the CNS and eventually driving neuroinflammation.
Collapse
Affiliation(s)
- Lisa Johann
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg, University Mainz, Mainz, Germany
| | - Sasha Soldati
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Kristin Müller
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Josephine Lampe
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Hamburg-Lübeck-Kiel, Germany
| | - Federico Marini
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI)
- Research Center for Immunotherapy (FZI), and
| | - Matthias Klein
- Institute for Immunology, University Medical Center of the Johannes Gutenberg, University Mainz, Mainz, Germany
| | - Eva Schramm
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg, University Mainz, Mainz, Germany
| | - Nathalie Ries
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg, University Mainz, Mainz, Germany
| | - Carsten Schelmbauer
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg, University Mainz, Mainz, Germany
| | - Ilaria Palagi
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg, University Mainz, Mainz, Germany
| | - Khalad Karram
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg, University Mainz, Mainz, Germany
| | - Julian C. Assmann
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Mahtab A. Khan
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Jan Wenzel
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Hamburg-Lübeck-Kiel, Germany
| | - Mirko H.H. Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany
| | - Jakob Körbelin
- University Medical Center Hamburg-Eppendorf, Department of Oncology, Hematology and Bone Marrow Transplantation, Hamburg, Germany
| | - Dirk Schlüter
- Hannover Medical School, Institute of Medical Microbiology and Hospital Epidemiology, Hannover, Germany
| | - Geert van Loo
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Tobias Bopp
- Research Center for Immunotherapy (FZI), and
- Institute for Immunology, University Medical Center of the Johannes Gutenberg, University Mainz, Mainz, Germany
| | | | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Hamburg-Lübeck-Kiel, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg, University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), and
| |
Collapse
|
6
|
Natalia P, Zwirchmayr J, Rudžionytė I, Pulsinger A, Breuss JM, Uhrin P, Rollinger JM, de Martin R. Pterocarpus santalinus Selectively Inhibits a Subset of Pro-Inflammatory Genes in Interleukin-1 Stimulated Endothelial Cells. Front Pharmacol 2022; 12:802153. [PMID: 35115943 PMCID: PMC8804362 DOI: 10.3389/fphar.2021.802153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Based on the traditional use and scientific reports on the anti-inflammatory potential of red sandalwood, i.e., the heartwood of Pterocarpus santalinus L., we investigated its activity in a model of IL-1 stimulated endothelial cells. Endothelial cells were stimulated with IL-1 with or without prior incubation with a defined sandalwoodextract (PS), and analyzed for the expression of selected pro-inflammatory genes. The activity of NF-κB, a transcription factor of central importance for inflammatory gene expression was assessed by reporter gene analysis, Western blotting of IκBα, and nuclear translocation studies. In addition, microarray studies were performed followed by verification of selected genes by qPCR and supplemented by bioinformatics analysis. Our results show that PS is able to suppress the induction of E-selectin and VCAM-1, molecules that mediate key steps in the adhesion of leukocytes to the endothelium. It also suppressed the activity of an NF-κB reporter, IκBα phosphorylation and degradation, and the nuclear translocation of NF-κB RelA. In contrast, it stimulated JNK phosphorylation indicating the activation of the JNK signaling pathway. Gene expression profiling revealed that PS inhibits only a specific subset of IL-1 induced genes, while others remain unaffected. Most strongly suppressed genes were the signal transducer TRAF1 and the chemokine CX3CL1, whereas IL-8 was an example of a non-affected gene. Notably, PS also stimulated the expression of certain genes, including ones with negative regulatory function, e.g., members of the NR4A family, the mRNA destabilizing protein TTP as well as the transcription factors ATF3 and BHLHB40. These results provide mechanistic insight into the anti-inflammatory activity of PS, and suggest that it acts through the interplay of negative and positive regulators to achieve a differential inhibition of inflammatory gene expression.
Collapse
Affiliation(s)
- Priscilla Natalia
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Julia Zwirchmayr
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Ieva Rudžionytė
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Alexandra Pulsinger
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Johannes M. Breuss
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Pavel Uhrin
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Judith M. Rollinger
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Rainer de Martin
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Parihar N, Bhatt LK. Deubiquitylating enzymes: potential target in autoimmune diseases. Inflammopharmacology 2021; 29:1683-1699. [PMID: 34792672 DOI: 10.1007/s10787-021-00890-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 10/28/2021] [Indexed: 12/28/2022]
Abstract
The ubiquitin-proteasome pathway is responsible for the turnover of different cellular proteins, such as transport proteins, presentation of antigens to the immune system, control of the cell cycle, and activities that promote cancer. The enzymes which remove ubiquitin, deubiquitylating enzymes (DUBs), play a critical role in central and peripheral immune tolerance to prevent the development of autoimmune diseases and thus present a potential therapeutic target for the treatment of autoimmune diseases. DUBs function by removing ubiquitin(s) from target protein and block ubiquitin chain elongation. The addition and removal of ubiquitin molecules have a significant impact on immune responses. DUBs and E3 ligases both specifically cleave target protein and modulate protein activity and expression. The balance between ubiquitylation and deubiquitylation modulates protein levels and also protein interactions. Dysregulation of the ubiquitin-proteasome pathway results in the development of various autoimmune diseases such as inflammatory bowel diseases (IBD), psoriasis, multiple sclerosis (MS), systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). This review summarizes the current understanding of ubiquitination in autoimmune diseases and focuses on various DUBs responsible for the progression of autoimmune diseases.
Collapse
Affiliation(s)
- Niraj Parihar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
8
|
Inhibitory feedback control of NF-κB signalling in health and disease. Biochem J 2021; 478:2619-2664. [PMID: 34269817 PMCID: PMC8286839 DOI: 10.1042/bcj20210139] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
Cells must adapt to changes in their environment to maintain cell, tissue and organismal integrity in the face of mechanical, chemical or microbiological stress. Nuclear factor-κB (NF-κB) is one of the most important transcription factors that controls inducible gene expression as cells attempt to restore homeostasis. It plays critical roles in the immune system, from acute inflammation to the development of secondary lymphoid organs, and also has roles in cell survival, proliferation and differentiation. Given its role in such critical processes, NF-κB signalling must be subject to strict spatiotemporal control to ensure measured and context-specific cellular responses. Indeed, deregulation of NF-κB signalling can result in debilitating and even lethal inflammation and also underpins some forms of cancer. In this review, we describe the homeostatic feedback mechanisms that limit and ‘re-set’ inducible activation of NF-κB. We first describe the key components of the signalling pathways leading to activation of NF-κB, including the prominent role of protein phosphorylation and protein ubiquitylation, before briefly introducing the key features of feedback control mechanisms. We then describe the array of negative feedback loops targeting different components of the NF-κB signalling cascade including controls at the receptor level, post-receptor signalosome complexes, direct regulation of the critical ‘inhibitor of κB kinases’ (IKKs) and inhibitory feedforward regulation of NF-κB-dependent transcriptional responses. We also review post-transcriptional feedback controls affecting RNA stability and translation. Finally, we describe the deregulation of these feedback controls in human disease and consider how feedback may be a challenge to the efficacy of inhibitors.
Collapse
|
9
|
Angolano C, Kaczmarek E, Essayagh S, Daniel S, Choi LY, Tung B, Sauvage G, Lee A, Kipper FC, Arvelo MB, Moll HP, Ferran C. A20/TNFAIP3 Increases ENOS Expression in an ERK5/KLF2-Dependent Manner to Support Endothelial Cell Health in the Face of Inflammation. Front Cardiovasc Med 2021; 8:651230. [PMID: 34026871 PMCID: PMC8138474 DOI: 10.3389/fcvm.2021.651230] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Rationale: Decreased expression and activity of endothelial nitric oxide synthase (eNOS) in response to inflammatory and metabolic insults is the hallmark of endothelial cell (EC) dysfunction that preludes the development of atherosclerosis and hypertension. We previously reported the atheroprotective properties of the ubiquitin-editing and anti-inflammatory protein A20, also known as TNFAIP3, in part through interrupting nuclear factor-kappa B (NF-κB) and interferon signaling in EC and protecting these cells from apoptosis. However, A20's effect on eNOS expression and function remains unknown. In this study, we evaluated the impact of A20 overexpression or knockdown on eNOS expression in EC, at baseline and after tumor necrosis factor (TNF) treatment, used to mimic inflammation. Methods and Results: A20 overexpression in human coronary artery EC (HCAEC) significantly increased basal eNOS mRNA (qPCR) and protein (western blot) levels and prevented their downregulation by TNF. Conversely, siRNA-induced A20 knockdown decreased eNOS mRNA levels, identifying A20 as a physiologic regulator of eNOS expression. By reporter assays, using deletion and point mutants of the human eNOS promoter, and knockdown of eNOS transcriptional regulators, we demonstrated that A20-mediated increase of eNOS was transcriptional and relied on increased expression of the transcription factor Krüppel-like factor (KLF2), and upstream of KLF2, on activation of extracellular signal-regulated kinase 5 (ERK5). Accordingly, ERK5 knockdown or inhibition significantly abrogated A20's ability to increase KLF2 and eNOS expression. In addition, A20 overexpression in HCAEC increased eNOS phosphorylation at Ser-1177, which is key for the function of this enzyme. Conclusions: This is the first report demonstrating that overexpression of A20 in EC increases eNOS transcription in an ERK5/KLF2-dependent manner and promotes eNOS activating phosphorylation. This effect withstands eNOS downregulation by TNF, preventing EC dysfunction in the face of inflammation. This novel function of A20 further qualifies its therapeutic promise to prevent/treat atherosclerosis.
Collapse
Affiliation(s)
- Cleide Angolano
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Elzbieta Kaczmarek
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Sanah Essayagh
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Soizic Daniel
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Lynn Y. Choi
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Brian Tung
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Gabriel Sauvage
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Andy Lee
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Franciele C. Kipper
- The Division of Neurosurgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Maria B. Arvelo
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Herwig P. Moll
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Christiane Ferran
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
- The Transplant Institute and the Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Cultrone D, Zammit NW, Self E, Postert B, Han JZR, Bailey J, Warren J, Croucher DR, Kikuchi K, Bogdanovic O, Chtanova T, Hesselson D, Grey ST. A zebrafish functional genomics model to investigate the role of human A20 variants in vivo. Sci Rep 2020; 10:19085. [PMID: 33154446 PMCID: PMC7644770 DOI: 10.1038/s41598-020-75917-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 09/25/2020] [Indexed: 01/21/2023] Open
Abstract
Germline loss-of-function variation in TNFAIP3, encoding A20, has been implicated in a wide variety of autoinflammatory and autoimmune conditions, with acquired somatic missense mutations linked to cancer progression. Furthermore, human sequence data reveals that the A20 locus contains ~ 400 non-synonymous coding variants, which are largely uncharacterised. The growing number of A20 coding variants with unknown function, but potential clinical impact, poses a challenge to traditional mouse-based approaches. Here we report the development of a novel functional genomics approach that utilizes a new A20-deficient zebrafish (Danio rerio) model to investigate the impact of TNFAIP3 genetic variants in vivo. A20-deficient zebrafish are hyper-responsive to microbial immune activation and exhibit spontaneous early lethality. Ectopic addition of human A20 rescued A20-null zebrafish from lethality, while missense mutations at two conserved A20 residues, S381A and C243Y, reversed this protective effect. Ser381 represents a phosphorylation site important for enhancing A20 activity that is abrogated by its mutation to alanine, or by a causal C243Y mutation that triggers human autoimmune disease. These data reveal an evolutionarily conserved role for TNFAIP3 in limiting inflammation in the vertebrate linage and show how this function is controlled by phosphorylation. They also demonstrate how a zebrafish functional genomics pipeline can be utilized to investigate the in vivo significance of medically relevant human TNFAIP3 gene variants.
Collapse
Affiliation(s)
- Daniele Cultrone
- Immunology Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, The University of New South Wales Sydney, Darlinghurst, NSW, 2010, Australia
| | - Nathan W Zammit
- Immunology Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, The University of New South Wales Sydney, Darlinghurst, NSW, 2010, Australia
| | - Eleanor Self
- Immunology Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, The University of New South Wales Sydney, Darlinghurst, NSW, 2010, Australia
| | - Benno Postert
- St Vincent's Clinical School, The University of New South Wales Sydney, Darlinghurst, NSW, 2010, Australia
- Diabetes Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Jeremy Z R Han
- St Vincent's Clinical School, The University of New South Wales Sydney, Darlinghurst, NSW, 2010, Australia
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Jacqueline Bailey
- Immunology Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, The University of New South Wales Sydney, Darlinghurst, NSW, 2010, Australia
| | - Joanna Warren
- Immunology Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, The University of New South Wales Sydney, Darlinghurst, NSW, 2010, Australia
| | - David R Croucher
- St Vincent's Clinical School, The University of New South Wales Sydney, Darlinghurst, NSW, 2010, Australia
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Kazu Kikuchi
- St Vincent's Clinical School, The University of New South Wales Sydney, Darlinghurst, NSW, 2010, Australia
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Ozren Bogdanovic
- St Vincent's Clinical School, The University of New South Wales Sydney, Darlinghurst, NSW, 2010, Australia
- Epigenetics Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Tatyana Chtanova
- Immunology Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, The University of New South Wales Sydney, Darlinghurst, NSW, 2010, Australia
| | - Daniel Hesselson
- St Vincent's Clinical School, The University of New South Wales Sydney, Darlinghurst, NSW, 2010, Australia
- Diabetes Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Shane T Grey
- Immunology Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia.
- St Vincent's Clinical School, The University of New South Wales Sydney, Darlinghurst, NSW, 2010, Australia.
| |
Collapse
|
11
|
Andersen MJ, Kerr DA, Lisovsky M, Vaickus LJ, Linos K. Fine needle aspiration of an intranodal follicular dendritic cell sarcoma: A case report with molecular analysis and review of the literature. Diagn Cytopathol 2020; 49:E65-E70. [PMID: 32816379 DOI: 10.1002/dc.24584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/15/2020] [Accepted: 08/03/2020] [Indexed: 11/10/2022]
Abstract
Follicular dendritic cell sarcoma (FDCS) is a rare malignant neoplasm of follicular dendritic cell origin which can present a diagnostic challenge. Due to the rarity of this neoplasm, its molecular pathogenesis has not been fully elaborated. A previous series of 13 cases reported that 38% contained mutations of genes encoding proteins involved in negative regulation of NF-κB. NF-κB is a family of transcription factors regulated through multiple cellular processes known as the canonical and noncanonical pathways. Here we present the case of a 62-year-old man who presented with abdominal pain and systemic symptoms and was found to have a mass in the porta hepatis. Fine needle aspiration cytology demonstrated a spindle cell neoplasm with vesicular chromatin and prominent nucleoli with admixed lymphocytes. Surgical resection showed an intranodal, 7.3 × 5.5 × 3.5 cm, solid mass composed of plump, spindle to histiocytoid cells with ovoid nuclei and small, prominent nucleoli arranged in a whorled and fascicular pattern. The lesional cells stained positively for CD21, CD23, and CD35 by immunohistochemistry, consistent with a diagnosis of FDCS. Next-generation sequencing revealed pathologic mutations in three genes involved in NF-κB regulation pathways: NFKBIA, TNFAIP3, and TRAF3. A pathologic TP53 mutation was also identified. This case report supports prior associations of the NF-κB pathway dysregulation and FDCS. Additionally, it is the first reported FDCS case with TRAF3 mutation as well as the first reported case to suggest disruption in both the canonical and noncanonical NF-κB pathways in the same lesion.
Collapse
Affiliation(s)
- Michael J Andersen
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA.,Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Darcy A Kerr
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA.,Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Mikhail Lisovsky
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA.,Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Louis J Vaickus
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA.,Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Konstantinos Linos
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA.,Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
12
|
Targeted inhibition of endothelial calpain delays wound healing by reducing inflammation and angiogenesis. Cell Death Dis 2020; 11:533. [PMID: 32665543 PMCID: PMC7360547 DOI: 10.1038/s41419-020-02737-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/23/2020] [Indexed: 12/27/2022]
Abstract
Wound healing is a multistep phenomenon that relies on complex interactions between various cell types. Calpains are a well-known family of calcium-dependent cysteine proteases that regulate several processes, including cellular adhesion, proliferation, and migration, as well as inflammation and angiogenesis. CAPNS1, the common regulatory subunit of Calpain-1 and 2, is indispensable for catalytic subunit stabilization and activity. Calpain inhibition has been shown to reduce organ damage in various disease models. Here, we report that endothelial calpain-1/2 is crucially involved in skin wound healing. Using a mouse genetic model where Capns1 is deleted only in endothelial cells, we showed that calpain-1/2 disruption is associated with reduced injury-activated inflammation, reduced CD31+ blood vessel density, and delayed wound healing. Moreover, in cultured HUVECs, inhibition of calpain reduced TNF-α-induced proliferation, migration, and tube formation. Deletion of Capns1 was associated with elevated levels of IκB and downregulation of β-catenin expression in endothelial cells. These observations delineate a novel mechanistic role for calpain in the crosstalk between inflammation and angiogenesis during skin repair.
Collapse
|
13
|
Priem D, Devos M, Druwé S, Martens A, Slowicka K, Ting AT, Pasparakis M, Declercq W, Vandenabeele P, van Loo G, Bertrand MJM. A20 protects cells from TNF-induced apoptosis through linear ubiquitin-dependent and -independent mechanisms. Cell Death Dis 2019; 10:692. [PMID: 31534131 PMCID: PMC6751190 DOI: 10.1038/s41419-019-1937-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/21/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022]
Abstract
The cytokine TNF promotes inflammation either directly by activating the MAPK and NF-κB signaling pathways, or indirectly by triggering cell death. A20 is a potent anti-inflammatory molecule, and mutations in the gene encoding A20 are associated with a wide panel of inflammatory pathologies, both in human and in the mouse. Binding of TNF to TNFR1 triggers the NF-κB-dependent expression of A20 as part of a negative feedback mechanism preventing sustained NF-κB activation. Apart from acting as an NF-κB inhibitor, A20 is also well-known for its ability to counteract the cytotoxic potential of TNF. However, the mechanism by which A20 mediates this function and the exact cell death modality that it represses have remained incompletely understood. In the present study, we provide in vitro and in vivo evidences that deletion of A20 induces RIPK1 kinase-dependent and -independent apoptosis upon single TNF stimulation. We show that constitutively expressed A20 is recruited to TNFR1 signaling complex (Complex I) via its seventh zinc finger (ZF7) domain, in a cIAP1/2-dependent manner, within minutes after TNF sensing. We demonstrate that Complex I-recruited A20 protects cells from apoptosis by stabilizing the linear (M1) ubiquitin network associated to Complex I, a process independent of its E3 ubiquitin ligase and deubiquitylase (DUB) activities and which is counteracted by the DUB CYLD, both in vitro and in vivo. In absence of linear ubiquitylation, A20 is still recruited to Complex I via its ZF4 and ZF7 domains, but this time protects the cells from death by deploying its DUB activity. Together, our results therefore demonstrate two distinct molecular mechanisms by which constitutively expressed A20 protect cells from TNF-induced apoptosis.
Collapse
Affiliation(s)
- Dario Priem
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Michael Devos
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sarah Druwé
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Arne Martens
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Karolina Slowicka
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Adrian T Ting
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manolis Pasparakis
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Wim Declercq
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Geert van Loo
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mathieu J M Bertrand
- Center for Inflammation Research, VIB, Ghent, Belgium. .,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
14
|
Huynh C, Shih TY, Mammoo A, Samant A, Pathan S, Nelson DW, Ferran C, Mooney D, LoGerfo F, Pradhan-Nabzdyk L. Delivery of targeted gene therapies using a hybrid cryogel-coated prosthetic vascular graft. PeerJ 2019; 7:e7377. [PMID: 31497383 PMCID: PMC6707340 DOI: 10.7717/peerj.7377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/28/2019] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES The success of prosthetic vascular grafts in the management of peripheral arterial disease is frequently limited by the development of anastomotic neointimal hyperplasia (ANIH), with the host response to prosthetic grafts beginning soon after implantation. To address this, we combine a platform of polyethylene terephthalate (PET) fabric with an applied cryogel layer containing biologic agents to create a bioactive prosthetic graft system, with the ability to deliver therapeutics targeting modulators of the ANIH-associated transcriptome response, along with antithrombotic agents. METHODS Hybrid graft materials were synthesized by cryopolymerization of methacrylated alginate and heparin onto electrospun (ePET), knitted PET (kPET), or woven PET (wPET). Arg-Gly-Asp (RGD) peptides were added to increase cell adhesion. Scanning electron microscopy (SEM) was used to study the microstructure at 1 day, and 2, 4, and 8 weeks. Physical properties such as swelling ratio, pore connectivity, shape recovery, and stiffness were evaluated. Human aortic endothelial cell (HAoEC) adherence was visualized using confocal microscopy after 24 hours and proliferation was evaluated with a resazurin-based assay for 7 days. Confocal microscopy was used to assess delivery of adeno-associated virus (AAV-GFP) after incubation of hybrid grafts with HAoECs. Heparin activity of the materials was measured using an anti-Xa assay. RESULTS SEM demonstrated large interconnected pores throughout the entire structure for all graft types, with minimal degradation of the cryogel after 8 weeks. Hybrid materials showed a trend towards increased shape recovery, increased stiffness, decreased swelling ratio, and no difference in pore connectivity. HAoECs incorporated, adhered, and proliferated over 7 days on all materials. HAoECs were successfully transduced with AAV-GFP from the hybrid graft materials. Anti-Xa assay confirmed continued activity of heparin from all materials for over 7 days. CONCLUSIONS We have developed a bioactive prosthetic graft system with a cryogel coating capable of delivering biologic agents with antithrombotic activity. By applying the cryogel and selected agents onto PET prior to graft implantation, this study sets the stage for the system to be individualized and tailored to the patient, with bioengineering and targeted gene therapy strategies dovetailing to create an improved prosthetic graft adaptable to emerging knowledge and technologies.
Collapse
Affiliation(s)
- Cindy Huynh
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
- Department of Surgery, State University of New York (SUNY), Syracuse, NY, United States of America
| | - Ting-Yu Shih
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States of America
| | - Alexander Mammoo
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America
- Division of Pharmacology, Department of Pharmaceutical Biosciences, Uppsala Universitet, Uppsala, Sweden
| | - Amruta Samant
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Saif Pathan
- BioSurfaces, Inc, Ashland, MA, United States of America
| | | | - Christiane Ferran
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - David Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States of America
| | - Frank LoGerfo
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Leena Pradhan-Nabzdyk
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| |
Collapse
|
15
|
Xu X, Gao J, Dai W, Wang D, Wu J, Wang J. Gene activation by a CRISPR-assisted trans enhancer. eLife 2019; 8:45973. [PMID: 30973327 PMCID: PMC6478495 DOI: 10.7554/elife.45973] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/10/2019] [Indexed: 12/15/2022] Open
Abstract
The deactivated CRISPR/Cas9 (dCas9) is now the most widely used gene activator. However, current dCas9-based gene activators are still limited by their unsatisfactory activity. In this study, we developed a new strategy, the CRISPR-assisted trans enhancer, for activating gene expression at high efficiency by combining dCas9-VP64/sgRNA with the widely used strong CMV enhancer. In this strategy, CMV enhancer DNA was recruited to target genes in trans by two systems: dCas9-VP64/csgRNA-sCMV and dCas9-VP64-GAL4/sgRNA-UAS-CMV. The former recruited trans enhancer by annealing between two short complementary oligonucleotides at the ends of the sgRNA and trans enhancer. The latter recruited trans enhancer by binding between GAL4 fused to dCas9 and UAS sequence of trans enhancer. The trans enhancer activated gene transcription as the natural looped cis enhancer. The trans enhancer could activate both exogenous reporter genes and variant endogenous genes in various cells, with much higher activation efficiency than that of current dCas9 activators.
Collapse
Affiliation(s)
- Xinhui Xu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
| | - Jinliang Gao
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
| | - Wei Dai
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
| | - Danyang Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
| | - Jian Wu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
| | - Jinke Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
| |
Collapse
|
16
|
Mérour E, Jami R, Lamoureux A, Bernard J, Brémont M, Biacchesi S. A20 (tnfaip3) is a negative feedback regulator of RIG-I-Mediated IFN induction in teleost. FISH & SHELLFISH IMMUNOLOGY 2019; 84:857-864. [PMID: 30385247 DOI: 10.1016/j.fsi.2018.10.082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/01/2018] [Accepted: 10/29/2018] [Indexed: 06/08/2023]
Abstract
Interferon production is tightly regulated in order to prevent excessive immune responses. The RIG-I signaling pathway, which is one of the major pathways inducing the production of interferon, is therefore finely regulated through the participation of different molecules such as A20 (TNFAIP3). A20 is a negative key regulatory factor of the immune response. Although A20 has been identified and actively studied in mammals, nothing is known about its putative function in lower vertebrates. In this study, we sought to define the involvement of fish A20 orthologs in the regulation of RIG-I signaling. We showed that A20 completely blocked the activation of IFN and ISG promoters mediated by RIG-I. Furthermore, A20 expression in fish cells was sufficient to reverse the antiviral state induced by the expression of a constitutively active form of RIG-I, thus allowing the efficient replication of a fish rhabdovirus, the viral hemorrhagic septicemia virus (VHSV). We brought evidence that A20 interrupted RIG-I signaling at the level of TBK1 kinase, a critical point of convergence for many different pathways that activates important transcription factors involved in the expression of many cytokines. Finally, we showed that A20 expression was directly induced by the RIG-I pathway demonstrating that fish A20 acts as a negative feedback regulator of this key pathway for the establishment of an antiviral state.
Collapse
Affiliation(s)
- Emilie Mérour
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Raphaël Jami
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Annie Lamoureux
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Julie Bernard
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Michel Brémont
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | |
Collapse
|
17
|
Lappas M. A20, an essential component of the ubiquitin-editing protein complex, is a negative regulator of inflammation in human myometrium and foetal membranes. Mol Hum Reprod 2018; 23:628-645. [PMID: 28911210 DOI: 10.1093/molehr/gax041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/17/2017] [Indexed: 01/16/2023] Open
Abstract
STUDY QUESTION Does A20 regulate mediators involved in the terminal processes of human labour in primary myometrial and amnion cells? SUMMARY ANSWER A20 is a nuclear factor-kappa B (NF-κB) responsive gene that acts as a negative regulator of NF-κB-induced expression of pro-labour mediators. WHAT IS KNOWN ALREADY Inflammation is commonly implicated in spontaneous preterm birth and the processes involved in rupture of foetal membranes and uterine contractions. In myometrium and foetal membranes, the pro-inflammatory transcription factor NF-κB regulates the transcription of pro-labour mediators in response to inflammatory stimuli. In non-gestational tissues, A20 is widely recognised as an anti-inflammatory protein that inhibits inflammation-induced NF-κB signalling. STUDY DESIGN, SIZE, DURATION Primary human amnion and myometrial cells were used to determine the effect of pro-inflammatory mediators on A20 expression and the effect of A20 siRNA on the expression and secretion of pro-labour mediators. The expression of A20 was assessed in myometrium and foetal membranes from non-labouring and labouring women at preterm and or term (n = 8 or nine samples per group). PARTICIPANTS/MATERIALS, SETTING, METHODS The effects of pro-inflammatory mediators and of A20 siRNA in cell cultures were determined by quantitative RT-PCR (qRT-PCR), western blots, immunoassays, gelatin zymography and luciferase assays. A20 expression in tissue samples was assessed by qRT-PCR. Statistical significance was ascribed to a P value < 0.05. MAIN RESULTS AND THE ROLE OF CHANCE In primary cells isolated from myometrium and or amnion, the pro-inflammatory cytokines IL1B and TNF, the bacterial products flagellin and fsl-1, and the viral double stranded RNA analogue poly(I:C) significantly increased A20 mRNA expression via NF-κB. A20 siRNA studies in primary myometrial and amnion cells demonstrated an augmentation of inflammation-induced expression and or secretion of pro-inflammatory cytokines (IL1A, IL6), chemokines (CXCL1, CXCL8, CCL2), adhesion molecules (ICAM1, VCAM1), contraction-associated proteins (PTGS2, PTGFR, PGF2α) and the extracellular matrix degrading enzyme MMP9, as well as NF-κB activation. Inhibition of NF-κB activity significant attenuated inflammation-induced expression of pro-labour mediators in A20 siRNA transfected cells. Finally, A20 mRNA expression was decreased in myometrium and foetal membranes with labour, and in foetal membranes with chorioamnionitis. LARGE SCALE DATA Not applicable. LIMITATIONS, REASONS FOR CAUTION The conclusions of this study are solely reliant on the data from in vitro experiments using cells isolated from myometrium and amnion. WIDER IMPLICATIONS OF THE FINDINGS The results of this study raise the possibility that targeting A20 may be a therapeutic approach to reduce inflammation associated with spontaneous preterm birth. STUDY FUNDING AND COMPETING INTEREST(S) Associate Professor Martha Lappas is supported by a Career Development Fellowship from the National Health and Medical Research Council (NHMRC; grant no. 1047025). Funding for this study was provided by the NHMRC (grant no. 1058786), Norman Beischer Medical Research Foundation and the Mercy Research Foundation. There are no competing interests.
Collapse
Affiliation(s)
- Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| |
Collapse
|
18
|
Increased A20-E3 ubiquitin ligase interactions in bid-deficient glia attenuate TLR3- and TLR4-induced inflammation. J Neuroinflammation 2018; 15:130. [PMID: 29720226 PMCID: PMC5930864 DOI: 10.1186/s12974-018-1143-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 04/02/2018] [Indexed: 01/26/2023] Open
Abstract
Background Chronic pro-inflammatory signaling propagates damage to neural tissue and affects the rate of disease progression. Increased activation of Toll-like receptors (TLRs), master regulators of the innate immune response, is implicated in the etiology of several neuropathologies including amyotrophic lateral sclerosis, Alzheimer’s disease, and Parkinson’s disease. Previously, we identified that the Bcl-2 family protein BH3-interacting domain death agonist (Bid) potentiates the TLR4-NF-κB pro-inflammatory response in glia, and specifically characterized an interaction between Bid and TNF receptor associated factor 6 (TRAF6) in microglia in response to TLR4 activation. Methods We assessed the activation of mitogen-activated protein kinase (MAPK) and interferon regulatory factor 3 (IRF3) inflammatory pathways in response to TLR3 and TLR4 agonists in wild-type (wt) and bid-deficient microglia and macrophages, using Western blot and qPCR, focusing on the response of the E3 ubiquitin ligases Pellino 1 (Peli1) and TRAF3 in the absence of microglial and astrocytic Bid. Additionally, by Western blot, we investigated the Bid-dependent turnover of Peli1 and TRAF3 in wt and bid−/− microglia using the proteasome inhibitor Bortezomib. Interactions between the de-ubiquitinating Smad6-A20 and the E3 ubiquitin ligases, TRAF3 and TRAF6, were determined by FLAG pull-down in TRAF6-FLAG or Smad6-FLAG overexpressing wt and bid-deficient mixed glia. Results We elucidated a positive role of Bid in both TIR-domain-containing adapter-inducing interferon-β (TRIF)- and myeloid differentiation primary response 88 (MyD88)-dependent pathways downstream of TLR4, concurrently implicating TLR3-induced inflammation. We identified that Peli1 mRNA levels were significantly reduced in PolyI:C- and lipopolysaccharide (LPS)-stimulated bid-deficient microglia, suggesting disturbed IRF3 activation. Differential regulation of TRAF3 and Peli1, both essential E3 ubiquitin ligases facilitating TRIF-dependent signaling, was observed between wt and bid−/− microglia and astrocytes. bid deficiency resulted in increased A20-E3 ubiquitin ligase protein interactions in glia, specifically A20-TRAF6 and A20-TRAF3, implicating enhanced de-ubiquitination as the mechanism of action by which E3 ligase activity is perturbed. Furthermore, Smad6-facilitated recruitment of the de-ubiquitinase A20 to E3-ligases occurred in a bid-dependent manner. Conclusions This study demonstrates that Bid promotes E3 ubiquitin ligase-mediated signaling downstream of TLR3 and TLR4 and provides further evidence for the potential of Bid inhibition as a therapeutic for the attenuation of the robust pro-inflammatory response culminating in TLR activation. Electronic supplementary material The online version of this article (10.1186/s12974-018-1143-3) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Feng Z, Zhai Y, Zheng Z, Yang L, Luo X, Dong X, Han Q, Jin J, Chen ZN, Zhu P. Loss of A20 in BM-MSCs regulates the Th17/Treg balance in Rheumatoid Arthritis. Sci Rep 2018; 8:427. [PMID: 29323140 PMCID: PMC5765124 DOI: 10.1038/s41598-017-18693-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/15/2017] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multi-potent cells that are self-renewable and possess the potential to differentiate into multiple lineages. Several studies demonstrated that MSCs could regulate a Th17/Treg balance and could be a potential therapeutic target for Rheumatoid Arthritis (RA). A20 is highly expressed in many cell types after the stimulation of TNF-α, where it may inhibit pro-inflammatory cytokine secretion. However, the expression of A20 in BM-MSCs in RA is not fully understood. In our study, we found that A20 was decreased in RA patients’ bone marrow MSCs (BM-MSCs), and with more IL-6 secretion, the balance of Th17/Treg was broken. In CIA mice, we found a moderate A20 decrease in mice MSCs as compared with those of control group in mRNA and protein levels. However, the IL-6 expression was increased. After umbilical cord MSCs treatment, A20 and IL-6 expressions were equal to the control group. Thus, our study indicates that loss of A20 in MSCs regulates the Th17/Treg balance in RA and the regulatory role of A20 in pro-inflammatory IL-6 production could be a potential target for the transfer of MSCs in RA adoptive therapy.
Collapse
Affiliation(s)
- Zhuan Feng
- Department of Clinical Immunology, Xijing Hospital, The Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, People's Republic of China.,Department of Cell Biology, Fourth Military Medical University, Xi'an, China.,National Translational Science Center for Molecular Medicine, Xi'an, 710032, China
| | - Yue Zhai
- Department of Clinical Immunology, Xijing Hospital, The Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, People's Republic of China.,Department of Cell Biology, Fourth Military Medical University, Xi'an, China.,National Translational Science Center for Molecular Medicine, Xi'an, 710032, China
| | - Zhaohui Zheng
- Department of Clinical Immunology, Xijing Hospital, The Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, People's Republic of China.,National Translational Science Center for Molecular Medicine, Xi'an, 710032, China
| | - Lijie Yang
- Department of hematology, Xijing Hospital, The Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, People's Republic of China
| | - Xing Luo
- Department of Clinical Immunology, Xijing Hospital, The Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, People's Republic of China.,National Translational Science Center for Molecular Medicine, Xi'an, 710032, China
| | - Xiwen Dong
- Department of Clinical Immunology, Xijing Hospital, The Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, People's Republic of China.,Department of Cell Biology, Fourth Military Medical University, Xi'an, China.,National Translational Science Center for Molecular Medicine, Xi'an, 710032, China
| | - Qing Han
- Department of Clinical Immunology, Xijing Hospital, The Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, People's Republic of China.,National Translational Science Center for Molecular Medicine, Xi'an, 710032, China
| | - Jin Jin
- Department of Cell Biology, Fourth Military Medical University, Xi'an, China.,National Translational Science Center for Molecular Medicine, Xi'an, 710032, China
| | - Zhi-Nan Chen
- Department of Cell Biology, Fourth Military Medical University, Xi'an, China. .,National Translational Science Center for Molecular Medicine, Xi'an, 710032, China.
| | - Ping Zhu
- Department of Clinical Immunology, Xijing Hospital, The Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, People's Republic of China. .,National Translational Science Center for Molecular Medicine, Xi'an, 710032, China.
| |
Collapse
|
20
|
Xu H, Wang L, Zheng P, Liu Y, Zhang C, Jiang K, Song H, Ji G. Elevated serum A20 is associated with severity of chronic hepatitis B and A20 inhibits NF-κB-mediated inflammatory response. Oncotarget 2017; 8:38914-38926. [PMID: 28473659 PMCID: PMC5503582 DOI: 10.18632/oncotarget.17153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/03/2017] [Indexed: 12/14/2022] Open
Abstract
A20 is a powerful suppressor for inflammatory response. This study aims to determine A20 level in patients with chronic hepatitis B (CHB), and analyze its association with the disease severity. The role of A20 in inflammatory response was further investigated in vivo and in vitro. Our results showed significantly higher A20 in both serum and liver tissues in CHB patients than in health controls. Serum A20 level was positively correlated with ALT, AST and TNF-α. To induce hepatitis with inflammation and liver injury, mice were injected intraperitoneally with D-galactosamine (D-GalN), resulting in rapid increase of A20 in serum and liver tissues. Consistently, HepG2 and Huh-7 cells exposed to Lipopolysaccharide (LPS) or D-GalN were promoted to express A20. Moreover, overexpression or knockdown of A20 inhibited or increased TNF-α secretion separately. A20 significantly reduced pro-inflammatory cytokines expression and down-regulated phospho-IκBα and phospho-p65 in both cells. In conclusion, elevated A20 expression is involved in the severity of CHB, suggesting A20 to be a possible serological biomarker for the disease prognosis. Additionally, the inflammatory response is attenuated by A20 through inhibiting NF-κB activity, which partially contributes to the hepato-protective function of this molecule. Thus, up-regulating A20 might be a potential strategy for preventing the progress of CHB.
Collapse
Affiliation(s)
- Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lei Wang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Peiyong Zheng
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- China-Canada Centre of Research for Digestive Diseases, Shanghai 200032, China
| | - Yang Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Chunlei Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Kaiping Jiang
- Department of Hepatology, Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, China
| | - Haiyan Song
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- China-Canada Centre of Research for Digestive Diseases, Shanghai 200032, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- China-Canada Centre of Research for Digestive Diseases, Shanghai 200032, China
| |
Collapse
|
21
|
Wei L, Zhang X, Ye Q, Yang Y, Chen X. The transfection of A20 gene prevents kidney from ischemia reperfusion injury in rats. Mol Med Rep 2017; 16:1486-1492. [PMID: 29067462 DOI: 10.3892/mmr.2017.6725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 03/24/2017] [Indexed: 11/06/2022] Open
Abstract
Ischemia/reperfusion may induce inflammation and cell death through the nuclear factor (NF)‑κB signaling pathway. As a negative regulator of NF‑κB, zinc finger A20 exhibits anti-apoptotic and anti‑inflammatory effects in vitro. The present study was designed to upregulate A20 expression using an A20 transfection approach to investigate the in vivo protective effects of the A20 gene on renal ischemia reperfusion injury. The A20 gene was cloned into a pcDNA3.1 vector to construct the expression plasmid pcDNA3.1‑A20. The plasmid was wrapped with a liposome and injected intravenously into rats 48 h prior to establishing the models of renal ischemia reperfusion injury. Saline and the empty plasmid pcDNA3.1 were used as controls. Following 24 h post‑operation, A20 expression was determined using reverse transcription‑quantitative polymerase chain reaction and western blotting. The renal function and structure were assessed by analyzing the concentrations of serum creatinine (Scr), blood urea nitrogen (BUN) and histological features. Renal tissues were additionally examined for renal tubular cell apoptosis and NF‑κB activity. The results demonstrated that in vivo transfection of pcDNA3.1‑A20 induced renal A20 expression in rats. A20 overexpression in vivo significantly reduced renal injury as demonstrated by the improved levels of Scr and BUN and the reduction in histological damage. These improvements were accompanied by a suppression of renal proximal tubular epithelial cell apoptosis and an inhibition of NF‑κB activity. These results indicated that transfection of the A20 gene upregulates the expression of A20 in vivo and protects the kidneys from ischemia reperfusion injury via inhibition of the NF‑κB signal transduction pathway.
Collapse
Affiliation(s)
- Lixin Wei
- Department of Nephropathy, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Xianghui Zhang
- Department of Nephropathy, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, Guangdong 519000, P.R. China
| | - Qiuping Ye
- Department of Nephropathy, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Yueer Yang
- Department of Nephropathy, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Xiaowen Chen
- Department of Nephropathy, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
22
|
A20 Haploinsufficiency Aggravates Transplant Arteriosclerosis in Mouse Vascular Allografts: Implications for Clinical Transplantation. Transplantation 2017; 100:e106-e116. [PMID: 27495763 DOI: 10.1097/tp.0000000000001407] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Inflammation is central to the pathogenesis of transplant arteriosclerosis (TA). We questioned whether physiologic levels of anti-inflammatory A20 influence TA severity. METHODS We performed major histocompatibility complex mismatched aorta to carotid artery interposition grafts, using wild type (WT) or A20 heterozygote (HET) C57BL/6 (H-2) donors and BALB/c (H-2) recipients, and conversely BALB/c donors and WT/HET recipients. We analyzed aortic allografts by histology, immunohistochemistry, immunofluorescence, and gene profiling (quantitative real-time reverse-transcriptase polymerase chain reaction). We validated select in vivo A20 targets in human and mouse smooth muscle cell (SMC) cultures. RESULTS We noted significantly greater intimal hyperplasia in HET versus WT allografts, indicating aggravated TA. Inadequate upregulation of A20 in HET allografts after transplantation was associated with excessive NF-кB activation, gauged by higher levels of IkBα, p65, VCAM-1, ICAM-1, CXCL10, CCL2, TNF, and IL-6 (mostly localized to SMC). Correspondingly, cytokine-induced upregulation of TNF and IL-6 in human and mouse SMC cultures inversely correlated with A20 expression. Aggravated TA in HET versus WT allografts correlated with increased intimal SMC proliferation, and a higher number of infiltrating IFNγ and Granzyme B CD4 T cells and natural killer cells, and lower number of FoxP3 regulatory T cells. A20 haploinsufficiency in allograft recipients did not influence TA. CONCLUSIONS A20 haploinsufficiency in vascular allografts aggravates lesions of TA by exacerbating inflammation, SMC proliferation, and infiltration of pathogenic T cells. A20 single nucleotide polymorphisms associating with lower A20 expression or function in donors of vascularized allografts may inform risk and severity of TA, highlighting the clinical implications of our findings.
Collapse
|
23
|
Garrett NE, Grainger AT, Li J, Chen MH, Shi W. Genetic analysis of a mouse cross implicates an anti-inflammatory gene in control of atherosclerosis susceptibility. Mamm Genome 2017; 28:90-99. [PMID: 28116503 DOI: 10.1007/s00335-016-9677-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/29/2016] [Indexed: 12/24/2022]
Abstract
Nearly all genetic crosses generated from Apoe-/- or Lldlr-/- mice for genetic analysis of atherosclerosis have used C57BL/6 J (B6) mice as one parental strain, thus limiting their mapping power and coverage of allelic diversity. SM/J-Apoe -/- and BALB/cJ-Apoe -/- mice differ significantly in atherosclerosis susceptibility. 224 male F2 mice were generated from the two Apoe -/- strains to perform quantitative trait locus (QTL) analysis of atherosclerosis. F2 mice were fed 5 weeks of Western diet and analyzed for atherosclerotic lesions in the aortic root. Genome-wide scans with 144 informative SNP markers identified a significant locus near 20.2 Mb on chromosome 10 (LOD score: 6.03), named Ath48, and a suggestive locus near 49.5 Mb on chromosome 9 (LOD: 2.29; Ath29) affecting atherosclerotic lesion sizes. Using bioinformatics tools, we prioritized 12 candidate genes for Ath48. Of them, Tnfaip3, an anti-inflammatory gene, is located precisely underneath the linkage peak and contains two non-synonymous SNPs leading to conservative amino acid substitutions. Thus, this study demonstrates the power of forward genetics involving the use of a different susceptible strain and bioinformatics tools in finding atherosclerosis susceptibility genes.
Collapse
Affiliation(s)
- Norman E Garrett
- Departments of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Andrew T Grainger
- Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Jing Li
- Departments of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Mei-Hua Chen
- Departments of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Weibin Shi
- Departments of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA. .,Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, USA. .,University of Virginia, Snyder Bldg Rm 266, 480 Ray C. Hunt Dr, P.O. Box 801339, Fontaine Research Park, Charlottesville, VA, 22908, USA.
| |
Collapse
|
24
|
Wylezinski LS, Hawiger J. Interleukin 2 Activates Brain Microvascular Endothelial Cells Resulting in Destabilization of Adherens Junctions. J Biol Chem 2016; 291:22913-22923. [PMID: 27601468 DOI: 10.1074/jbc.m116.729038] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Indexed: 11/06/2022] Open
Abstract
The pleiotropic cytokine interleukin 2 (IL2) disrupts the blood-brain barrier and alters brain microcirculation, underlying vascular leak syndrome that complicates cancer immunotherapy with IL2. The microvascular effects of IL2 also play a role in the development of multiple sclerosis and other chronic neurological disorders. The mechanism of IL2-induced disruption of brain microcirculation has not been determined previously. We found that both human and murine brain microvascular endothelial cells express constituents of the IL2 receptor complex. Then we established that signaling through this receptor complex leads to activation of the transcription factor, nuclear factor κB, resulting in expression of proinflammatory interleukin 6 and monocyte chemoattractant protein 1. We also discovered that IL2 induces disruption of adherens junctions, concomitant with cytoskeletal reorganization, ultimately leading to increased endothelial cell permeability. IL2-induced phosphorylation of vascular endothelial cadherin (VE-cadherin), a constituent of adherens junctions, leads to dissociation of its stabilizing adaptor partners, p120-catenin and β-catenin. Increased phosphorylation of VE-cadherin was also accompanied by a reduction of Src homology 2 domain-containing protein-tyrosine phosphatase 2, known to maintain vascular barrier function. These results unravel the mechanism of deleterious effects induced by IL2 on brain microvascular endothelial cells and may inform the development of new measures to improve IL2 cancer immunotherapy, as well as treatments for autoimmune diseases affecting the central nervous system.
Collapse
Affiliation(s)
| | - Jacek Hawiger
- From the Departments of Molecular Physiology and Biophysics and .,Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center and.,Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee 37232-2363
| |
Collapse
|
25
|
Ai L, Wang X, Chen Z, Lin Q, Su D, Xu Q, Wu C, Jiang X, Xu A, Fan Z. A20 reduces lipid storage and inflammation in hypertrophic adipocytes via p38 and Akt signaling. Mol Cell Biochem 2016; 420:73-83. [PMID: 27443844 DOI: 10.1007/s11010-016-2768-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 07/09/2016] [Indexed: 02/06/2023]
Abstract
Adipose tissue plays a vital role in the development of obesity and related disorders. Our previous study showed that A20, an ubiquitin-editing enzyme with anti-inflammation function, attenuated free fatty acids (FFAs)-induced lipid accumulation in nonalcoholic steatohepatitis. Here, we investigated A20 expression in adipose tissue of obese individuals and its effects on 3T3-L1 lipogenesis as well as the likely mechanisms underlying this process. By re-annotation of raw microarray data downloaded from Gene Expression Omnibus, we found that obese individuals showed significantly higher A20 mRNA levels in adipocytes. In vitro, A20 inhibited MCP-1 and IL-6 secretion in adipocytes. Forced expression of A20 resulted in decreased expression of key markers of lipogenesis and adipogenesis, such as sterol regulatory element binding protein 1c (SREBP-1c) and adipogenesis (aP2), leading to less lipids accumulation in differentiated 3T3-L1 cells. This process was concomitant with attenuated activation of p38 and Akt signaling. Our results suggest that A20 may have therapeutic potential for obesity and related diseases. The mechanisms involved the suppression of lipid storage and inflammation in adipocytes.
Collapse
Affiliation(s)
- Luoyan Ai
- Department of Health Manage Center, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, China
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohan Wang
- Department of Health Manage Center, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, China
- The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Zhiwei Chen
- Department of Health Manage Center, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, China
- Division of Rheumatology, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Lin
- Department of Health Manage Center, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, China
| | - Dazhi Su
- Department of Health Manage Center, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, China
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Shanghai Jiao Tong University, Shanghai, China
| | - Qingqing Xu
- Department of Health Manage Center, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, China
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Shanghai Jiao Tong University, Shanghai, China
| | - Changwei Wu
- Department of Health Manage Center, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, China
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoke Jiang
- Department of Health Manage Center, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, China
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Shanghai Jiao Tong University, Shanghai, China
| | - Antao Xu
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuping Fan
- Department of Health Manage Center, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, China.
| |
Collapse
|
26
|
Li J, Zhang L, Zhang Y, Liu Y, Zhang H, Wei L, Shen T, Jiang C, Zhu D. A20 deficiency leads to angiogenesis of pulmonary artery endothelial cells through stronger NF-κB activation under hypoxia. J Cell Mol Med 2016; 20:1319-28. [PMID: 26991692 PMCID: PMC4929300 DOI: 10.1111/jcmm.12816] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/17/2016] [Indexed: 12/11/2022] Open
Abstract
A20 is a zinc finger protein associated with hypoxia. As chronic hypoxia is responsible for intimal hyperplasia and disordered angiogenesis of pulmonary artery, which are histological hallmarks of pulmonary artery hypertension, we intended to explore the role of A20 in angiogenesis of pulmonary artery endothelial cells (ECs). Here, we found a transient elevation of A20 expression in the lung tissues from hypoxic rats compared with normoxic controls. This rapid enhancement was mainly detected in the endothelium, and similar results were reproduced in vitro. During early hypoxia, genetic inhibition of A20 increased proliferation in pulmonary artery ECs, linking to advanced cell cycle progression as well as microtubule polymerization, and aggravated angiogenic effects including tube formation, cell migration and adhesion molecules expression. In addition, a negative feedback loop between nuclear factor-kappa B and A20 was confirmed. Our findings provide evidence for an adaptive role of A20 against pulmonary artery ECs angiogenesis via nuclear factor-kappa B activation.
Collapse
Affiliation(s)
- Jing Li
- Department of Biopharmaceutical Sciences, Harbin Medical University, Daqing, Heilongjiang, China.,Department of Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin, Heilongjiang, China
| | - Linlin Zhang
- Department of Biopharmaceutical Sciences, Harbin Medical University, Daqing, Heilongjiang, China
| | - Yueming Zhang
- Department of Biopharmaceutical Sciences, Harbin Medical University, Daqing, Heilongjiang, China.,Department of Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin, Heilongjiang, China
| | - Ying Liu
- Department of Biopharmaceutical Sciences, Harbin Medical University, Daqing, Heilongjiang, China.,Department of Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongyue Zhang
- Department of Biopharmaceutical Sciences, Harbin Medical University, Daqing, Heilongjiang, China.,Department of Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin, Heilongjiang, China
| | - Liuping Wei
- Department of Biopharmaceutical Sciences, Harbin Medical University, Daqing, Heilongjiang, China.,Department of Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin, Heilongjiang, China
| | - Tingting Shen
- Department of Biopharmaceutical Sciences, Harbin Medical University, Daqing, Heilongjiang, China.,Department of Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin, Heilongjiang, China
| | - Chun Jiang
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Daling Zhu
- Department of Biopharmaceutical Sciences, Harbin Medical University, Daqing, Heilongjiang, China.,Department of Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
27
|
Lohkamp LN, Öllinger R, Chatzigeorgiou A, Illigens BMW, Siepmann T. Intraoperative biomarkers in renal transplantation. Nephrology (Carlton) 2016; 21:188-199. [PMID: 26132511 DOI: 10.1111/nep.12556] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2015] [Indexed: 12/11/2022]
Abstract
The emerging need for biomarkers in the management of renal transplantation is highlighted by the severity of related complications such as acute renal failure and ischaemia/reperfusion injury (IRI) and by the increasing efforts to identify novel markers of these events to predict and monitor delayed graft function (DGF) and long-term outcome. In clinical studies candidate markers such as kidney injury molecule-1, neutrophil gelatinase-associated lipocalin and interleukin-18 have been demonstrated to be valid biomarkers with high predictive value for DFG in a post-transplant setting. However, studies investigating biomarkers for early diagnosis of IRI and assumable DGF as well as identification of potential graft recipients at increased risk at the time point of transplantation lack further confirmation and translation into clinical practice. This review summarizes the current literature on the value of IRI biomarkers in outcome prediction following renal transplantation as well their capacity as surrogate end points from an intraoperative perspective.
Collapse
Affiliation(s)
- Laura-Nanna Lohkamp
- Department of Neurosurgery with Pediatric Neurosurgery, Charité-University Medicine, Campus Virchow, Berlin, Germany
- Center for Clinical Research and Management Education, Division of Health Care Sciences, Dresden International University, Dresden, Germany
| | - Robert Öllinger
- Department for General, Visceral and Transplantation Surgery, Charité-University Medicine, Campus Virchow, Berlin, Germany
| | - Antonios Chatzigeorgiou
- Department of Clinical Pathobiochemistry, Medical Faculty Carl Gustav Carus Technische Universität Dresden, Dresden, Germany
- Paul-Langerhans Institute Dresden, German Center for Diabetes Research, Dresden, Germany
| | - Ben Min-Woo Illigens
- Center for Clinical Research and Management Education, Division of Health Care Sciences, Dresden International University, Dresden, Germany
- Department of Neurology, University Hospital Carl Gustav Carus Technische Universität Dresden, Dresden, Germany
| | - Timo Siepmann
- Center for Clinical Research and Management Education, Division of Health Care Sciences, Dresden International University, Dresden, Germany
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Fredericksen F, Villalba M, Olavarría VH. Characterization of bovine A20 gene: Expression mediated by NF-κB pathway in MDBK cells infected with bovine viral diarrhea virus-1. Gene 2016; 581:117-29. [PMID: 26809100 DOI: 10.1016/j.gene.2016.01.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/03/2015] [Accepted: 01/17/2016] [Indexed: 02/06/2023]
Abstract
Cytokine production for immunological process is tightly regulated at the transcriptional and posttranscriptional levels. The NF-κB signaling pathway maintains immune homeostasis in the cell through the participation of molecules such as A20 (TNFAIP3), which is a key regulatory factor in the immune response, hematopoietic differentiation, and immunomodulation. Although A20 has been identified in mammals, and despite recent efforts to identify A20 members in other higher vertebrates, relatively little is known about the composition of this regulator in other classes of vertebrates, particularly for bovines. In this study, the genetic context of bovine A20 was explored and compared against homologous genes in the human, mouse, chicken, dog, and zebrafish chromosomes. Through in silico analysis, several regions of interest were found conserved between even phylogenetically distant species. Additionally, a protein-deduced sequence of bovine A20 evidenced many conserved domains in humans and mice. Furthermore, all potential amino acid residues implicated in the active site of A20 were conserved. Finally, bovine A20 mRNA expression as mediated by the bovine viral diarrhea virus and poly (I:C) was evaluated. These analyses evidenced a strong fold increase in A20 expression following virus exposure, a phenomenon blocked by a pharmacological NF-κB inhibitor (BAY 117085). Interestingly, A20 mRNA had a half-life of only 32min, likely due to adenylate- and uridylate-rich elements in the 3'-untranslated region. Collectively, these data identify bovine A20 as a regulator of immune marker expression. Finally, this is the first report to find the bovine viral diarrhea virus modulating bovine A20 activation through the NF-κB pathway.
Collapse
Affiliation(s)
- Fernanda Fredericksen
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Melina Villalba
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Víctor H Olavarría
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile.
| |
Collapse
|
29
|
Guan X, Hou Y, Sun F, Yang Z, Li C. Dysregulated Chemokine Signaling in Cystic Fibrosis Lung Disease: A Potential Therapeutic Target. Curr Drug Targets 2016; 17:1535-1544. [PMID: 26648071 PMCID: PMC6500735 DOI: 10.2174/1389450117666151209120516] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 12/26/2022]
Abstract
CF lung disease is characterized by a chronic and non-resolving activation of the innate immune system with excessive release of chemokines/cytokines including IL-8 and persistent infiltration of immune cells, mainly neutrophils, into the airways. Chronic infection and impaired immune response eventually lead to pulmonary damage characterized by bronchiectasis, emphysema, and lung fibrosis. As a complete knowledge of the pathways responsible for the exaggerated inflammatory response in CF lung disease is lacking, understanding these pathways could reveal new therapeutic targets, and lead to novel treatments. Therefore, there is a strong rationale for the identification of mechanisms and pathways underlying the exaggerated inflammatory response in CF lung disease. This article reviews the role of inflammation in the pathogenesis of CF lung disease, with a focus on the dysregulated signaling involved in the overexpression of chemokine IL-8 and excessive recruitment of neutrophils in CF airways. The findings suggest that targeting the exaggerated IL-8/IL-8 receptor (mainly CXCR2) signaling pathway in immune cells (especially neutrophils) may represent a potential therapeutic strategy for CF lung disease.
Collapse
Affiliation(s)
- Xiaoqing Guan
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yuning Hou
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Fei Sun
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhe Yang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chunying Li
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
30
|
Studer P, da Silva CG, Revuelta Cervantes JM, Mele A, Csizmadia E, Siracuse JJ, Damrauer SM, Peterson CR, Candinas D, Stroka DM, Ma A, Bhasin M, Ferran C. Significant lethality following liver resection in A20 heterozygous knockout mice uncovers a key role for A20 in liver regeneration. Cell Death Differ 2015; 22:2068-77. [PMID: 25976305 PMCID: PMC4816110 DOI: 10.1038/cdd.2015.52] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 02/24/2015] [Accepted: 03/13/2015] [Indexed: 12/14/2022] Open
Abstract
Hepatic expression of A20, including in hepatocytes, increases in response to injury, inflammation and resection. This increase likely serves a hepatoprotective purpose. The characteristic unfettered liver inflammation and necrosis in A20 knockout mice established physiologic upregulation of A20 as integral to the anti-inflammatory and anti-apoptotic armamentarium of hepatocytes. However, the implication of physiologic upregulation of A20 in modulating hepatocytes' proliferative responses following liver resection remains controversial. To resolve the impact of A20 on hepatocyte proliferation and the liver's regenerative capacity, we examined whether decreased A20 expression, as in A20 heterozygous knockout mice, affects outcome following two-third partial hepatectomy. A20 heterozygous mice do not demonstrate a striking liver phenotype, indicating that their A20 expression levels are still sufficient to contain inflammation and cell death at baseline. However, usually benign partial hepatectomy provoked a staggering lethality (>40%) in these mice, uncovering an unsuspected phenotype. Heightened lethality in A20 heterozygous mice following partial hepatectomy resulted from impaired hepatocyte proliferation due to heightened levels of cyclin-dependent kinase inhibitor, p21, and deficient upregulation of cyclins D1, E and A, in the context of worsened liver steatosis. A20 heterozygous knockout minimally affected baseline liver transcriptome, mostly circadian rhythm genes. Nevertheless, this caused differential expression of >1000 genes post hepatectomy, hindering lipid metabolism, bile acid biosynthesis, insulin signaling and cell cycle, all critical cellular processes for liver regeneration. These results demonstrate that mere reduction of A20 levels causes worse outcome post hepatectomy than full knockout of bona fide liver pro-regenerative players such as IL-6, clearly ascertaining A20's primordial role in enabling liver regeneration. Clinical implications of these data are of utmost importance as they caution safety of extensive hepatectomy for donation or tumor in carriers of A20/TNFAIP3 single nucleotide polymorphisms alleles that decrease A20 expression or function, and prompt the development of A20-based liver pro-regenerative therapies.
Collapse
Affiliation(s)
- P Studer
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Visceral Surgery and Medicine, University Hospital Bern, Bern, Switzerland
| | - C G da Silva
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - J M Revuelta Cervantes
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - A Mele
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - E Csizmadia
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - J J Siracuse
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - S M Damrauer
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - C R Peterson
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - D Candinas
- Department of Visceral Surgery and Medicine, University Hospital Bern, Bern, Switzerland
| | - D M Stroka
- Department of Visceral Surgery and Medicine, University Hospital Bern, Bern, Switzerland
| | - A Ma
- Division of Interdisciplinary Medicine and Biotechnology, Bioinformatics core, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - M Bhasin
- Division of Gastroenterology, Department of Medicine, University of California in San Francisco, San Fransisco, CA, USA
| | - C Ferran
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Ai L, Xu Q, Wu C, Wang X, Chen Z, Su D, Jiang X, Xu A, Lin Q, Fan Z. A20 Attenuates FFAs-induced Lipid Accumulation in Nonalcoholic Steatohepatitis. Int J Biol Sci 2015; 11:1436-1446. [PMID: 26681923 PMCID: PMC4672001 DOI: 10.7150/ijbs.13371] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/01/2015] [Indexed: 02/07/2023] Open
Abstract
A20 is a ubiquitin-editing enzyme that attenuates the activity of proximal signaling complexes at pro-inflammatory receptors. It has been well documented that A20 protein plays an important role in response to liver injury and hepatocytes apoptosis in pro-inflammatory pathways. However, there was little evidence showing that A20 protein was involving in fatty-acid homeostasis except the up-regulation of two fatty acid metabolism regulatory genes at mRNA level (PPARa and CPT1a) by adenovirus-mediated A20 protein overexpression. In this study we found that: 1) the expression level of A20 protein was significantly higher in the steatotic liver from MCD-fed mice than the controls; 2) Overexpression of A20 protein suppressed FFAs-stimulated triglyceride deposition in HepG2 cells while under expression of A20 protein increased FFAs-stimulated triglyceride deposition; 3) Overexpression of A20 protein in HepG2 cells upregulated genes that promote β-oxidation and decreased the mRNA levels of key lipogenic genes such as fatty acid synthase (FAS), indicating A20 function as anti-steatotic factor by the activation of mitochondrial β-oxidation and attenuation of de novo lipogenesis; 4) Nonalcoholic steatohepatitis (NASH) patients showed significantly higher A20 expression level in liver compared with control individuals. Our results demonstrated that A20 protein plays an important role in fatty-acid homeostasis in human as well as animals. In addition, our data suggested that the pathological function of A20 protein in hepatocyte from lipotoxicity to NASH is by the alleviation of triglyceride accumulation in hepatocytes. Elevated expression of A20 protein could be a potential therapeutic strategy for preventing the progression of nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Luoyan Ai
- 1. Department of Health Care Center, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shang hai, China
- 2. Division of Gastroenterology and Hepatology, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health (Shanghai Jiao Tong University), Shanghai, China
| | - Qingqing Xu
- 1. Department of Health Care Center, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shang hai, China
- 2. Division of Gastroenterology and Hepatology, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health (Shanghai Jiao Tong University), Shanghai, China
| | - Changwei Wu
- 1. Department of Health Care Center, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shang hai, China
- 2. Division of Gastroenterology and Hepatology, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health (Shanghai Jiao Tong University), Shanghai, China
| | - Xiaohan Wang
- 1. Department of Health Care Center, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shang hai, China
- 2. Division of Gastroenterology and Hepatology, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health (Shanghai Jiao Tong University), Shanghai, China
| | - Zhiwei Chen
- 1. Department of Health Care Center, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shang hai, China
- 2. Division of Gastroenterology and Hepatology, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health (Shanghai Jiao Tong University), Shanghai, China
| | - Dazhi Su
- 1. Department of Health Care Center, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shang hai, China
- 2. Division of Gastroenterology and Hepatology, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health (Shanghai Jiao Tong University), Shanghai, China
| | - Xiaoke Jiang
- 1. Department of Health Care Center, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shang hai, China
- 2. Division of Gastroenterology and Hepatology, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health (Shanghai Jiao Tong University), Shanghai, China
| | - Antao Xu
- 2. Division of Gastroenterology and Hepatology, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health (Shanghai Jiao Tong University), Shanghai, China
| | - Qing Lin
- 1. Department of Health Care Center, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shang hai, China
| | - Zhuping Fan
- 1. Department of Health Care Center, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shang hai, China
| |
Collapse
|
32
|
Hong JY, Bae WJ, Yi JK, Kim GT, Kim EC. Anti-inflammatory and anti-osteoclastogenic effects of zinc finger protein A20 overexpression in human periodontal ligament cells. J Periodontal Res 2015; 51:529-39. [PMID: 26548452 DOI: 10.1111/jre.12332] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2015] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND OBJECTIVE Although overexpression of the nuclear factor κB inhibitory and ubiquitin-editing enzyme A20 is thought to be involved in the pathogenesis of inflammatory diseases, its function in periodontal disease remains unknown. The aims of the present study were to evaluate A20 expression in patients with periodontitis and to study the effects of A20 overexpression, using a recombinant adenovirus encoding A20 (Ad-A20), on the inflammatory response and on osteoclastic differentiation in lipopolysaccharide (LPS)- and nicotine-stimulated human periodontal ligament cells (hPDLCs). MATERIAL AND METHODS The concentration of prostaglandin E2 was measured by radioimmunoassay. Reverse transcription-polymerase chain reactions and western blot analyses were used to measure mRNA and protein levels, respectively. Osteoclastic differentiation was assessed in mouse bone marrow-derived macrophages using conditioned medium from LPS- and nicotine-treated hPDLCs. RESULTS A20 was upregulated in the gingival tissues and neutrophils from patients with periodontitis and in LPS- and nicotine-exposed hPDLCs. Pretreatment with A20 overexpression by Ad-A20 markedly attenuated LPS- and nicotine-induced production of prostaglandin E2 , as well as expression of cyclooxygenase-2 and proinflammatory cytokines. Moreover, A20 overexpression inhibited the number and size of tartrate-resistant acid phosphatase-stained osteoclasts, and downregulated osteoclast-specific gene expression. LPS- and nicotine-induced p38 phosphorylation and nuclear factor κB activation were blocked by Ad-A20. Ad-A20 inhibited the effects of nicotine and LPS on the activation of pan-protein kinase C, Akt, GSK-3β and protein kinase Cα. CONCLUSIONS This study is the first to demonstrate that A20 overexpression has anti-inflammatory effects and blocks osteoclastic differentiation in a nicotine- and LPS-stimulated hPDLC model. Thus, A20 overexpression may be a potential therapeutic target in inflammatory bone loss diseases, such as periodontal disease.
Collapse
Affiliation(s)
- J-Y Hong
- Department of Periodontology, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - W-J Bae
- Department of Oral and Maxillofacial Pathology & Research Center for Tooth and Periodontal Tissue Regeneration (MRC), School of Dentistry, Kyung Hee University, Seoul, Korea
| | - J-K Yi
- Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - G-T Kim
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - E-C Kim
- Department of Oral and Maxillofacial Pathology & Research Center for Tooth and Periodontal Tissue Regeneration (MRC), School of Dentistry, Kyung Hee University, Seoul, Korea
| |
Collapse
|
33
|
Iijima S, Matsuura K, Watanabe T, Onomoto K, Fujita T, Ito K, Iio E, Miyaki T, Fujiwara K, Shinkai N, Kusakabe A, Endo M, Nojiri S, Joh T, Tanaka Y. Influence of genes suppressing interferon effects in peripheral blood mononuclear cells during triple antiviral therapy for chronic hepatitis C. PLoS One 2015; 10:e0118000. [PMID: 25706116 PMCID: PMC4338062 DOI: 10.1371/journal.pone.0118000] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/03/2015] [Indexed: 01/16/2023] Open
Abstract
The levels of expression of interferon-stimulated genes (ISGs) in liver are associated with response to treatment with pegylated interferon (PEG-IFN) plus ribavirin (RBV). However, associations between the responses of ISGs to IFN-based therapy and treatment efficacy or interleukin-28B (IL28B) genotype have not yet been determined. Therefore, we investigated the early responses of ISGs and interferon-lambdas (IFN-λs) in peripheral blood mononuclear cells (PBMCs) during PEG-IFN/RBV plus NS3/4 protease inhibitor (PI) therapy. We prospectively enrolled 50 chronic hepatitis C patients with HCV genotype 1, and collected PBMCs at baseline, 8 and 24 h after the initial administration of PEG-IFN/RBV/PI. Levels of mRNAs for selected ISGs and IFN-λs were evaluated by real-time PCR. All 31 patients with a favorable IL28B genotype and 13 of 19 with an unfavorable genotype achieved sustained virological responses (SVR). Levels of mRNA for A20, SOCS1, and SOCS3, known to suppress antiviral activity by interfering with the IFN signaling pathway, as well as IRF1 were significantly higher at 8 h in patients with an unfavorable IL28B genotype than in those with a favorable one (P = 0.007, 0.026, 0.0004, 0.0006, respectively), especially in the non-SVR group. Particularly, the fold-change of IRF1 at 8 h relative to baseline was significantly higher in non-SVR than in SVR cases with an unfavorable IL28B genotype (P = 0.035). In conclusion, levels of several mRNAs of genes suppressing antiviral activity in PBMCs during PEG-IFN/RBV/PI differed according to IL28B genotypes, paralleling treatment efficacy.
Collapse
Affiliation(s)
- Sayuki Iijima
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kentaro Matsuura
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Infectious Disease and Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Tsunamasa Watanabe
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Koji Onomoto
- Laboratory of Molecular Genetics, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Takashi Fujita
- Laboratory of Molecular Genetics, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Kyoko Ito
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Etsuko Iio
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tomokatsu Miyaki
- Division of Internal Medicine, Toyokawa City Hospital, Toyokawa, Japan
| | - Kei Fujiwara
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Noboru Shinkai
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Atsunori Kusakabe
- Division of Gastroenterology, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Mio Endo
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shunsuke Nojiri
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takashi Joh
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
34
|
Enesa K, Moll HP, Luong L, Ferran C, Evans PC. A20 suppresses vascular inflammation by recruiting proinflammatory signaling molecules to intracellular aggresomes. FASEB J 2015; 29:1869-78. [PMID: 25667218 DOI: 10.1096/fj.14-258533] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 12/24/2014] [Indexed: 12/16/2022]
Abstract
A20 protects against pathologic vascular remodeling by inhibiting the inflammatory transcription factor NF-κB. A20's function has been attributed to ubiquitin editing of receptor-interacting protein 1 (RIP1) to influence activity/stability. The validity of this mechanism was tested using a murine model of transplant vasculopathy and human cells. Mouse C57BL/6 aortae transduced with adenoviruses containing A20 (or β-galactosidase as a control) were allografted into major histocompatibility complex-mismatched BALB/c mice. Primary endothelial cells, smooth muscle cells, or transformed epithelial cells (all human) were transfected with wild-type A20 or with catalytically inactive mutants as a control. NF-κB activity and intracellular localization of RIP1 was monitored by reporter gene assay, immunofluorescent staining, and Western blotting. Native and catalytically inactive versions of A20 had similar inhibitory effects on NF-κB activity (-70% vs. -76%; P > 0.05). A20 promoted localization of RIP1 to insoluble aggresomes in murine vascular allografts and in human cells (53% vs. 0%) without altering RIP1 expression, and this process was increased by the assembly of polyubiquitin chains (87% vs. 28%; P < 0.05). A20 captures polyubiquitinated signaling intermediaries in insoluble aggresomes, thus reducing their bioavailability for downstream NF-κB signaling. This novel mechanism contributes to protection from vasculopathy in transplanted organs treated with exogenous A20.
Collapse
Affiliation(s)
- Karine Enesa
- *British Heart Foundation Cardiovascular Sciences Unit, Imperial College London, London, United Kingdom; Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Cambridge, Massachusetts, USA; and Department of Cardiovascular Sciences and INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Herwig P Moll
- *British Heart Foundation Cardiovascular Sciences Unit, Imperial College London, London, United Kingdom; Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Cambridge, Massachusetts, USA; and Department of Cardiovascular Sciences and INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Le Luong
- *British Heart Foundation Cardiovascular Sciences Unit, Imperial College London, London, United Kingdom; Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Cambridge, Massachusetts, USA; and Department of Cardiovascular Sciences and INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Christiane Ferran
- *British Heart Foundation Cardiovascular Sciences Unit, Imperial College London, London, United Kingdom; Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Cambridge, Massachusetts, USA; and Department of Cardiovascular Sciences and INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Paul C Evans
- *British Heart Foundation Cardiovascular Sciences Unit, Imperial College London, London, United Kingdom; Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Cambridge, Massachusetts, USA; and Department of Cardiovascular Sciences and INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
35
|
von Rossum A, Laher I, Choy JC. Immune-mediated vascular injury and dysfunction in transplant arteriosclerosis. Front Immunol 2015; 5:684. [PMID: 25628623 PMCID: PMC4290675 DOI: 10.3389/fimmu.2014.00684] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/18/2014] [Indexed: 12/16/2022] Open
Abstract
Solid organ transplantation is the only treatment for end-stage organ failure but this life-saving procedure is limited by immune-mediated rejection of most grafts. Blood vessels within transplanted organs are targeted by the immune system and the resultant vascular damage is a main contributor to acute and chronic graft failure. The vasculature is a unique tissue with specific immunological properties. This review discusses the interactions of the immune system with blood vessels in transplanted organs and how these interactions lead to the development of transplant arteriosclerosis, a leading cause of heart transplant failure.
Collapse
Affiliation(s)
- Anna von Rossum
- Department of Molecular Biology and Biochemistry, Simon Fraser University , Burnaby, BC , Canada
| | - Ismail Laher
- Department of Anaesthesiology, Pharmacology and Therapeutics, University of British Columbia , Vancouver, BC , Canada
| | - Jonathan C Choy
- Department of Molecular Biology and Biochemistry, Simon Fraser University , Burnaby, BC , Canada
| |
Collapse
|
36
|
Moll HP, Lee A, Minussi DC, da Silva CG, Csizmadia E, Bhasin M, Ferran C. A20 regulates atherogenic interferon (IFN)-γ signaling in vascular cells by modulating basal IFNβ levels. J Biol Chem 2014; 289:30912-24. [PMID: 25217635 DOI: 10.1074/jbc.m114.591966] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
IFNγ signaling in endothelial (EC) and smooth muscle cells (SMC) is a key culprit of pathologic vascular remodeling. The impact of NF-κB inhibitory protein A20 on IFNγ signaling in vascular cells remains unknown. In gain- and loss-of-function studies, A20 inversely regulated expression of IFNγ-induced atherogenic genes in human EC and SMC by modulating STAT1 transcription. In vivo, inadequate A20 expression in A20 heterozygote mice aggravated intimal hyperplasia following partial carotid artery ligation. This outcome uniquely associated with increased levels of Stat1 and super-induction of Ifnγ-dependent genes. Transcriptome analysis of the aortic media from A20 heterozygote versus wild-type mice revealed increased basal Ifnβ signaling as the likely cause for higher Stat1 transcription. We confirmed higher basal IFNβ levels in A20-silenced human SMC and showed that neutralization or knockdown of IFNβ abrogates heightened STAT1 levels in these cells. Upstream of IFNβ, A20-silenced EC and SMC demonstrated higher levels of phosphorylated/activated TANK-binding kinase-1 (TBK1), a regulator of IFNβ transcription. This suggested that A20 knockdown increased STAT1 transcription by enhancing TBK1 activation and subsequently basal IFNβ levels. Altogether, these results uncover A20 as a key physiologic regulator of atherogenic IFNγ/STAT1 signaling. This novel function of A20 added to its ability to inhibit nuclear factor-κB (NF-κB) activation solidifies its promise as an ideal therapeutic candidate for treatment and prevention of vascular diseases. In light of recently discovered A20/TNFAIP3 (TNFα-induced protein 3) single nucleotide polymorphisms that impart lower A20 expression or function, these results also qualify A20 as a reliable clinical biomarker for vascular risk assessment.
Collapse
Affiliation(s)
- Herwig P Moll
- From the Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery
| | - Andy Lee
- From the Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery
| | - Darlan C Minussi
- From the Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery
| | - Cleide G da Silva
- From the Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery
| | - Eva Csizmadia
- From the Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery
| | - Manoj Bhasin
- the Division of Interdisciplinary Medicine and Biotechnology, Bioinformatics Core, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02135
| | - Christiane Ferran
- From the Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Division of Nephrology, Department of Medicine, and
| |
Collapse
|
37
|
Cancer cell growth inhibitory effect of bee venom via increase of death receptor 3 expression and inactivation of NF-kappa B in NSCLC cells. Toxins (Basel) 2014; 6:2210-28. [PMID: 25068924 PMCID: PMC4147578 DOI: 10.3390/toxins6082210] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/16/2014] [Accepted: 07/18/2014] [Indexed: 01/24/2023] Open
Abstract
Our previous findings have demonstrated that bee venom (BV) has anti-cancer activity in several cancer cells. However, the effects of BV on lung cancer cell growth have not been reported. Cell viability was determined with trypan blue uptake, soft agar formation as well as DAPI and TUNEL assay. Cell death related protein expression was determined with Western blotting. An EMSA was used for nuclear factor kappaB (NF-κB) activity assay. BV (1–5 μg/mL) inhibited growth of lung cancer cells by induction of apoptosis in a dose dependent manner in lung cancer cell lines A549 and NCI-H460. Consistent with apoptotic cell death, expression of DR3 and DR6 was significantly increased. However, deletion of DRs by small interfering RNA significantly reversed BV induced cell growth inhibitory effects. Expression of pro-apoptotic proteins (caspase-3 and Bax) was concomitantly increased, but the NF-κB activity and expression of Bcl-2 were inhibited. A combination treatment of tumor necrosis factor (TNF)-like weak inducer of apoptosis, TNF-related apoptosis-inducing ligand, docetaxel and cisplatin, with BV synergistically inhibited both A549 and NCI-H460 lung cancer cell growth with further down regulation of NF-κB activity. These results show that BV induces apoptotic cell death in lung cancer cells through the enhancement of DR3 expression and inhibition of NF-κB pathway.
Collapse
|
38
|
Guedes RP, Csizmadia E, Moll HP, Ma A, Ferran C, da Silva CG. A20 deficiency causes spontaneous neuroinflammation in mice. J Neuroinflammation 2014; 11:122. [PMID: 25026958 PMCID: PMC4128606 DOI: 10.1186/1742-2094-11-122] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/25/2014] [Indexed: 11/10/2022] Open
Abstract
Background A20 (TNFAIP3) is a pleiotropic NFκB-dependent gene that terminates NFκB activation in response to inflammatory stimuli. The potent anti-inflammatory properties of A20 are well characterized in several organs. However, little is known about its role in the brain. In this study, we investigated the brain phenotype of A20 heterozygous (HT) and knockout (KO) mice. Methods The inflammatory status of A20 wild type (WT), HT and KO brain was determined by immunostaining, quantitative PCR, and Western blot analysis. Cytokines secretion was evaluated by ELISA. Quantitative results were statistically analyzed by ANOVA followed by a post-hoc test. Results Total loss of A20 caused remarkable reactive microgliosis and astrogliosis, as determined by F4/80 and GFAP immunostaining. Glial activation correlated with significantly higher mRNA and protein levels of the pro-inflammatory molecules TNF, IL-6, and MCP-1 in cerebral cortex and hippocampus of A20 KO, as compared to WT. Basal and TNF/LPS-induced cytokine production was significantly higher in A20 deficient mouse primary astrocytes and in a mouse microglia cell line. Brain endothelium of A20 KO mice demonstrated baseline activation as shown by increased vascular immunostaining for ICAM-1 and VCAM-1, and mRNA levels of E-selectin. In addition, total loss of A20 increased basal brain oxidative/nitrosative stress, as indicated by higher iNOS and NADPH oxidase subunit gp91phox levels, correlating with increased protein nitration, gauged by nitrotyrosine immunostaining. Notably, we also observed lower neurofilaments immunostaining in A20 KO brains, suggesting higher susceptibility to axonal injury. Importantly, A20 HT brains showed an intermediate phenotype, exhibiting considerable, albeit not statistically significant, increase in markers of basal inflammation when compared to WT. Conclusions This is the first characterization of spontaneous neuroinflammation caused by total or partial loss of A20, suggesting its key role in maintenance of nervous tissue homeostasis, particularly control of inflammation. Remarkably, mere partial loss of A20 was sufficient to cause chronic, spontaneous low-grade cerebral inflammation, which could sensitize these animals to neurodegenerative diseases. These findings carry strong clinical relevance in that they question implication of identified A20 SNPs that lower A20 expression/function (phenocopying A20 HT mice) in the pathophysiology of neuroinflammatory diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Cleide Gonçalves da Silva
- Division of Vascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
Abstract
The NF-κB family of inducible transcription factors is activated in response to a variety of stimuli. Amongst the best-characterized inducers of NF-κB are members of the TNF family of cytokines. Research on NF-κB and TNF have been tightly intertwined for more than 25 years. Perhaps the most compelling examples of the interconnectedness of NF-κB and the TNF have come from analysis of knock-out mice that are unable to activate NF-κB. Such mice die embryonically, however, deletion of TNF or TNFR1 can rescue the lethality thereby illustrating the important role of NF-κB as the key regulator of transcriptional responses to TNF. The physiological connections between NF-κB and TNF cytokines are numerous and best explored in articles focusing on a single TNF family member. Instead, in this review, we explore general mechanisms of TNF cytokine signaling, with a focus on the upstream signaling events leading to activation of the so-called canonical and noncanonical NF-κB pathways by TNFR1 and CD40, respectively.
Collapse
Affiliation(s)
- Matthew S Hayden
- Department of Microbiology and Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA; Department of Dermatology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA.
| | - Sankar Ghosh
- Department of Microbiology and Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA.
| |
Collapse
|
40
|
IL-8 and global gene expression analysis define a key role of ATP in renal epithelial cell responses induced by uropathogenic bacteria. Purinergic Signal 2014; 10:499-508. [PMID: 24817659 DOI: 10.1007/s11302-014-9414-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/25/2014] [Indexed: 10/25/2022] Open
Abstract
The recent recognition of receptor-mediated ATP signalling as a pathway of epithelial pro-inflammatory cytokine release challenges the ubiquitous role of the TLR4 pathway during urinary tract infection. The aim of this study was to compare cellular responses of renal epithelial cells infected with uropathogenic Escherichia coli (UPEC) strain IA2 to stimulation with ATP-γ-S. A498 cells were infected or stimulated in the presence or absence of apyrase, that degrades extracellular ATP, or after siRNA-mediated knockdown of ATP-responding P2Y2 receptors. Cellular IL-8 release and global gene expression were analysed. Both IA2 and A498 cells per se released ATP, which increased during infection. IA2 and ATP-γ-S caused a ∼5-fold increase in cellular release of IL-8 and stimulations performed in the presence of apyrase or after siRNA knockdown of P2Y2 receptors resulted in attenuation of IA2-mediated IL-8 release. Microarray results show that both IA2 and ATP-γ-S induced marked changes in gene expression of renal cells. Thirty-six genes were in common between both stimuli, and many of these are key genes belonging to classical response pathways of bacterial infection. Functional analysis shows that 88 biological function-annotated cellular pathways were identical between IA2 and ATP-γ-S stimuli. Results show that UPEC-induced release of IL-8 is dependent on P2Y2 signalling and that cellular responses elicited by UPEC and ATP-γ-S have many identical features. This indicates that renal epithelial responses elicited by bacteria could be mediated by bacteria- or host-derived ATP, thus defining a key role of ATP during infection.
Collapse
|
41
|
Abstract
SIGNIFICANCE Inflammation and immunity can be associated with varying degrees of heme release from hemoproteins, eventually leading to cellular and tissue iron (Fe) overload, oxidative stress, and tissue damage. Presumably, these deleterious effects contribute to the pathogenesis of systemic infections. RECENT ADVANCES Heme release from hemoglobin sensitizes parenchyma cells to undergo programmed cell death in response to proinflammatory cytokines, such as tumor necrosis factor. This cytotoxic effect is driven by a mechanism involving intracellular accumulation of free radicals, which sustain the activation of the c-Jun N-terminal kinase (JNK) signaling transduction pathway. While heme catabolism by heme oxygenase-1 (HO-1) prevents programmed cell death, this cytoprotective effect requires the co-expression of ferritin H (heart/heavy) chain (FTH), which controls the pro-oxidant effect of labile Fe released from the protoporphyrin IX ring of heme. This antioxidant effect of FTH restrains JNK activation, whereas JNK activation inhibits FTH expression, a cross talk that controls metabolic adaptation to cellular Fe overload associated with systemic infections. CRITICAL ISSUES AND FUTURE DIRECTIONS Identification and characterization of the mechanisms via which FTH provides metabolic adaptation to tissue Fe overload should provide valuable information to our current understanding of the pathogenesis of systemic infections as well as other immune-mediated inflammatory diseases.
Collapse
|
42
|
Campolo J, Vozzi F, Penco S, Cozzi L, Caruso R, Domenici C, Ahluwalia A, Rial M, Marraccini P, Parodi O. Vascular injury post stent implantation: different gene expression modulation in human umbilical vein endothelial cells (HUVECs) model. PLoS One 2014; 9:e90213. [PMID: 24587287 PMCID: PMC3935971 DOI: 10.1371/journal.pone.0090213] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/27/2014] [Indexed: 12/14/2022] Open
Abstract
To explore whether stent procedure may influence transcriptional response of endothelium, we applied different physical (flow changes) and/or mechanical (stent application) stimuli to human endothelial cells in a laminar flow bioreactor (LFB) system. Gene expression analysis was then evaluated in each experimental condition. Human umbilical vein endothelial cells (HUVECs) were submitted to low and physiological (1 and 10 dyne/cm(2)) shear stress in absence (AS) or presence (PS) of stent positioning in a LFB system for 24 h. Different expressed genes, coming from Affymetrix results, were identified based on one-way ANOVA analysis with p values <0.01 and a fold changed >3 in modulus. Low shear stress was compared with physiological one in AS and PS conditions. Two major groups include 32 probes commonly expressed in both 1AS versus 10AS and 1PS versus 10PS comparison, and 115 probes consisting of 83 in addition to the previous 32, expressed only in 1PS versus 10PS comparison. Genes related to cytoskeleton, extracellular matrix, and cholesterol transport/metabolism are differently regulated in 1PS versus 10PS condition. Inflammatory and apoptotic mediators seems to be, instead, closely modulated by changes in flow (1 versus 10), independently of stent application. Low shear stress together with stent procedure are the experimental conditions that mainly modulate the highest number of genes in our human endothelial model. Those genes belong to pathways specifically involved in the endothelial dysfunction.
Collapse
Affiliation(s)
- Jonica Campolo
- CNR Institute of Clinical Physiology, Milan and Pisa, Italy
- * E-mail:
| | - Federico Vozzi
- CNR Institute of Clinical Physiology, Milan and Pisa, Italy
| | - Silvana Penco
- Department of Laboratory Medicine, Medical Genetics, Niguarda Ca' Granda Hospital Milan, Italy
| | - Lorena Cozzi
- CNR Institute of Clinical Physiology, Milan and Pisa, Italy
| | | | | | - Arti Ahluwalia
- Interdepartmental Research Centre “E. Piaggio”, University of Pisa, Pisa, Italy
| | - Michela Rial
- CNR Institute of Clinical Physiology, Milan and Pisa, Italy
| | | | - Oberdan Parodi
- CNR Institute of Clinical Physiology, Milan and Pisa, Italy
| |
Collapse
|
43
|
Zammit NW, Grey ST. Emerging roles for A20 in islet biology and pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 809:141-62. [PMID: 25302370 DOI: 10.1007/978-1-4939-0398-6_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A20 is most characteristically described in terms relating to inflammation and inflammatory pathologies. The emerging understanding of inflammation in the etiology of diabetes mellitus lays the framework for considering a central role for A20 in this disease process. Diabetes mellitus is considered a major health issue, and describes a group of common metabolic disorders pathophysiologically characterized by hyperglycemia. Within islets of Langherhans, the endocrine powerhouse of the pancreas, are the insulin-producing pancreatic beta-cells. Loss of beta-cell mass and function to inflammation and apoptosis is a major contributing factor to diabetes. Consequently, restoring functional beta-cell mass via transplantation represents a therapeutic option for diabetes. Unfortunately, transplanted islets also suffers from loss of beta-cell function and mass fueled by a multifactorial inflammatory cycle triggered by islet isolation prior to transplantation, the ischemic environment at transplantation as well as allogeneic or recurrent auto-immune responses. Activation of the transcription factor NF-kappaB is a central mediator of inflammatory mediated beta-cell dysfunction and loss. Accordingly, a plethora of strategies to block NF-kappaB activation in islets and hence limit beta-cell loss have been explored, with mixed success. We propose that the relatively poor efficacy of NF-kappaB blockade in beta-cells is due to concommittant loss of the important, NF-kappaB regulated anti-apoptotic and anti-inflammatory protein A20. A20 has been identified as a beta-cell expressed gene, raising questions about its role in beta-cell development and function, and in beta-cell related pathologies. Involvement of apoptosis, inflammation and NF-kappaB activation as beta-cell factors contributing to the pathophysiology of diabetes, coupled with the knowledge that beta-cells express the A20 gene, implies an important role for A20 in both normal beta-cell biology as well as beta-cell related pathology. Genome wide association studies (GWAS) linking single nucleotide polymorphisms in the A20 gene with the occurrence of diabetes and its complications support this hypothesis. In this chapter we review data supporting the role of A20 in beta-cell health and disease. Furthermore, by way of their specialized function in metabolism, pancreatic beta-cells also provide opportunities to explore the biology of A20 in scenarios beyond inflammation.
Collapse
|
44
|
da Silva CG, Minussi DC, Ferran C, Bredel M. A20 expressing tumors and anticancer drug resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 809:65-81. [PMID: 25302366 DOI: 10.1007/978-1-4939-0398-6_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Resistance to anticancer drugs is a major impediment to treating patients with cancer. The molecular mechanisms deciding whether a tumor cell commits to cell death or survives under chemotherapy are complex. Mounting evidence indicates a critical role of cell death and survival pathways in determining the response of human cancers to chemotherapy. Nuclear factor-kappaB (NF-kappaB) is a eukaryotic transcription factor on the crossroad of a cell's decision to live or die. Under physiological conditions, NF-kappaB is regulated by a complex network of endogenous pathway modulators. Tumor necrosis factor alpha induced protein 3 (tnfaip3), a gene encoding the A20 protein, is one of the cell's own inhibitory molecule, which regulates canonical NF-kappaB activation by interacting with upstream signaling pathway components. Interestingly, A20 is also itself a NF-kappaB dependent gene, that has been shown to also exert cell-type specific anti- or pro-apoptotic functions. Recent reports suggest that A20 expression is increased in a number of solid human tumors. This likely contributes to both carcinogenesis and response to chemotherapy. These data uncover the complexities of the mechanisms involved in A20's impact on tumor development and response to treatment, highlighting tumor and drug-type specific outcomes. While A20-targeted therapies may certainly add to the chemotherapeutic armamentarium, better understanding of A20 regulation, molecular targets and function(s) in every single tumor and in response to any given drug is required prior to any clinical implementation. Current renewed appreciation of the unique molecular signature of each tumor holds promise for personalized chemotherapeutic regimen hopefully comprising specific A20-targeting agents i.e., both inhibitors and enhancers.
Collapse
|
45
|
McGillicuddy FC, Moll HP, Farouk S, Damrauer SM, Ferran C, Reilly MP. Translational studies of A20 in atherosclerosis and cardiovascular disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 809:83-101. [PMID: 25302367 DOI: 10.1007/978-1-4939-0398-6_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cardiovascular disease (CVD) is the biggest killer in the Western World despite significant advances in understanding its molecular underpinnings. Chronic inflammation, the classical hallmark of atherogenesis is thought to play a key pathogenic role in the development of atherosclerotic lesions from initiation of fatty streaks to plaque rupture. Over-representation of mostly pro-inflammatory nuclear factor kappa B (NF-kappaB) target genes within atherosclerotic lesions has led to the common-held belief that excessive NF-kappaB activity promotes and aggravates atherogenesis. However, mouse models lacking various proteins involved in NF-kappaB signaling have often resulted in conflicting findings, fueling additional investigations to uncover the molecular involvement of NF-kappaB and its target genes in atherogenesis. In this chapter we will review the role of the NF-kappaB-regulated, yet potent NF-kappaB inhibitory and anti-inflammatory gene A20/TNFAIP3 in atherogenesis, and highlight the potential use of its atheroprotective properties for the prevention and treatment of cardiovascular diseases.
Collapse
|
46
|
Anti-viral tetris: modulation of the innate anti-viral immune response by A20. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 809:49-64. [PMID: 25302365 DOI: 10.1007/978-1-4939-0398-6_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The A20 protein has emerged as an important negative regulator of Toll like receptor (TLR) and retinoic acid-inducible gene 1 (RIG-I)-mediated anti-viral signaling. A20 functions both as a RING-type E3 ubiquitin ligase and as a de-ubiquitinating enzyme. Nuclear factor kappa B (NF-kappaB) and interferon regulatory factor (IRF) pathways are targeted by A20 through mechanisms that appear to be both overlapping and distinct, resulting in the downregulation of interferon alpha/beta (IFNalpha/beta) production. This review specifically details the impact of A20 on the cytosolic RIG-I/MDA5 pathway, a process that is less understood than that of NF-kappaB but is essential for the regulation of the innate immune response to viral infection.
Collapse
|
47
|
Wertz I, Dixit V. A20--a bipartite ubiquitin editing enzyme with immunoregulatory potential. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 809:1-12. [PMID: 25302362 DOI: 10.1007/978-1-4939-0398-6_1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proper regulation of inflammation is essential for combating pathogen invasion and maintaining homeostasis. While hyporesponsive hosts succumb to infections, unchecked inflammatory reactions promote debilitating and fatal conditions including septic shock, autoimmune disease, atherosclerosis, graft rejection, and cancer. Pathogens, host immune cell ligands, and pro-inflammatory cytokines such as Tumor Necrosis Factor-alpha (TNF-alpha), Interleukin-1-beta (IL1-beta), and Lipopolysaccharide (LPS) induce an array of inflammatory responses by activating a variety of cell types. Although much is known about how inflammatory responses are initiated and sustained, less is known about how inflammation is attenuated to maintain a homeostatic balance. In this chapter, we review the key role played by A20, also referred to as Tumor Necrosis Factor Inducible Protein 3 (TNFAIP3) in restoring cellular homeostasis through NF-kappaB inhibition, and discuss the molecular basis for its potent anti-inflammatory function as related to the ubiquitin editing and ubiquitin binding activities of A20.
Collapse
|
48
|
Mele A, Cervantes JR, Chien V, Friedman D, Ferran C. Single nucleotide polymorphisms at the TNFAIP3/A20 locus and susceptibility/resistance to inflammatory and autoimmune diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 809:163-83. [PMID: 25302371 DOI: 10.1007/978-1-4939-0398-6_10] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The anti-inflammatory and immune regulatory functions of the ubiquitin-editing and NF-kappaB inhibitory protein A20 are well documented in vitro, and in multiple animal models. The high rank held by A20 in the cell's physiologic anti-inflammatory defense mechanisms is highlighted by the striking phenotype of A20 knockout mice, characterized by cachexia, multi-organ failure, and premature death. Even partial depletion of A20, as in A20 heterozygous mice, significantly alters NF-kappaB activation in response to pro-inflammatory activators, even though these mice are phenotypically unremarkable at baseline. A recent burst of genome wide association studies (GWAS), fueled by advances in genomic technologies and analysis tools, uncovered associations between single nucleotide polymorphisms (SNPs) at the TNFAIP3/A20 gene locus and multiple autoimmune and inflammatory diseases in humans. Interestingly, some of these studies emphasized significant associations between TNFAIP3/A20 SNPs imparting decreased expression or loss of NF-kappaB inhibitory function, and susceptibility to systemic lupus erythematosus (SLE) and coronary artery disease (CAD). These clinical data phenocopy partial loss of A20 in mouse models of inflammatory diseases, thereby incriminating TNFAIP3/A20 deficiency as a pathogenic culprit in autoimmune and inflammatory diseases. In this chapter, we undertook a thorough review of studies that explored association between TNFAIP3/A20 SNPs and human autoimmune and inflammatory diseases. Beyond the prognostic value of TNFAIP3/ A20 SNPs for assessing disease risk, their implication in the pathogenic processes of these maladies prompts the pursuit of A20-targeted therapies for disease prevention/treatment in patients harboring susceptibility haplotypes.
Collapse
|
49
|
Sulindac activates NF-κB signaling in colon cancer cells. Cell Commun Signal 2013; 11:73. [PMID: 24083678 PMCID: PMC3896984 DOI: 10.1186/1478-811x-11-73] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/25/2013] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The non-steroidal anti-inflammatory drug (NSAID) sulindac has shown efficacy in preventing colorectal cancer. This potent anti-tumorigenic effect is mediated through multiple cellular pathways but is also accompanied by gastrointestinal side effects, such as colon inflammation. We have recently shown that sulindac can cause up-regulation of pro-inflammatory factors in the mouse colon mucosa. The aim of this study was to determine the signaling pathways that mediate the transcriptional activation of pro-inflammatory cytokines in colon cancer epithelial cells treated with sulindac sulfide. RESULTS We found that sulindac sulfide increased NF-κB signaling in HCT-15, HCT116, SW480 and SW620 cells, although the level of induction varied between cell lines. The drug caused a decrease in IκBα levels and an increase of p65(RelA) binding to the NF-κB DNA response element. It induced expression of IL-8, ICAM1 and A20, which was inhibited by the NF-κB inhibitor PDTC. Sulindac sulfide also induced activation of the AP-1 transcription factor, which co-operated with NF-κB in up-regulating IL-8. Up-regulation of NF-κB genes was most prominent in conditions where only a subset of cells was undergoing apoptosis. In TNFα stimulated conditions the drug treatment inhibited phosphorylation on IκBα (Ser 32) which is consistent with previous studies and indicates that sulindac sulfide can inhibit TNFα-induced NF-κB activation. Sulindac-induced upregulation of NF-κB target genes occurred early in the proximal colon of mice given a diet containing sulindac for one week. CONCLUSIONS This study shows for the first time that sulindac sulfide can induce pro-inflammatory NF-κB and AP-1 signaling as well as apoptosis in the same experimental conditions. Therefore, these results provide insights into the effect of sulindac on pro-inflammatory signaling pathways, as well as contribute to a better understanding of the mechanism of sulindac-induced gastrointestinal side effects.
Collapse
|
50
|
Wu Z, Zhao G, Peng L, Du J, Wang S, Huang Y, Ou J, Jian Z. Protein kinase C beta mediates CD40 ligand-induced adhesion of monocytes to endothelial cells. PLoS One 2013; 8:e72593. [PMID: 24039784 PMCID: PMC3767684 DOI: 10.1371/journal.pone.0072593] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 07/15/2013] [Indexed: 11/27/2022] Open
Abstract
Accumulating evidence supports the early involvement of monocyte/macrophage recruitment to activated endothelial cells by leukocyte adhesion molecules during atherogenesis. CD40 and its ligand CD40L are highly expressed in vascular endothelial cells, but its impact on monocyte adhesion and the related molecular mechanisms are not fully understood. The present study was designed to evaluate the direct effect of CD40L on monocytic cell adhesion and gain mechanistic insight into the signaling coupling CD40L function to the proinflammatory response. Exposure of cultured human aortic endothelial cells (HAECs) to clinically relevant concentrations of CD40L (20 to 80 ng/mL) dose-dependently increased human monocytic THP-1 cells to adhere to them under static condition. CD40L treatment induced the expression of vascular cell adhesion molecule-1 (VCAM-1) mRNA and protein expression in HAECs. Furthermore, exposure of HAECs to CD40L robustly increased the activation of protein kinase C beta (PKCβ) in ECs. A selective inhibitor of PKCβ prevented the rise in VCAM-1 and THP-1 cell adhesion to ECs. Moreover, stimulation of ECs to CD40L induced nuclear factor-κB (NF-κB) activation. PKCβ inhibition abolished CD40L-induced NF-κB activation, and NF-κB inhibition reduced expression of VCAM-1, each resulting in reduced THP-1 cell adhesion. Our findings provide the evidence that CD40L increases VCAM-1 expression in ECs by activating PKCβ and NF-κB, suggesting a novel mechanism for EC activation. Finally, administration of CD40L resulted in PKCβ activation, increased VCAM-1 expression and activated monocytes adhesiveness to HAECs, processes attenuated by PKCβ inhibitor. Therefore, CD40L may contribute directly to atherogenesis by activating ECs and recruiting monocytes to them.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of General Surgery, Guangdong General Hospital, Guangzhou, Guangdong Province, China
- Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Gang Zhao
- Department of General Surgery, Guangdong General Hospital, Guangzhou, Guangdong Province, China
- Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Lin Peng
- Department of General Surgery, Guangdong General Hospital, Guangzhou, Guangdong Province, China
- Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Jialin Du
- Department of General Surgery, Guangdong General Hospital, Guangzhou, Guangdong Province, China
- Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Sanming Wang
- Department of General Surgery, Guangdong General Hospital, Guangzhou, Guangdong Province, China
- Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Yijie Huang
- Department of General Surgery, Guangdong General Hospital, Guangzhou, Guangdong Province, China
- Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Jinrui Ou
- Department of General Surgery, Guangdong General Hospital, Guangzhou, Guangdong Province, China
- Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Zhixiang Jian
- Department of General Surgery, Guangdong General Hospital, Guangzhou, Guangdong Province, China
- Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| |
Collapse
|