1
|
Ariza ME, Cox B, Martinez B, Mena-Palomo I, Zarate GJ, Williams MV. Viral dUTPases: Modulators of Innate Immunity. Biomolecules 2022; 12:227. [PMID: 35204728 PMCID: PMC8961515 DOI: 10.3390/biom12020227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
Most free-living organisms encode for a deoxyuridine triphosphate nucleotidohydrolase (dUTPase; EC 3.6.1.23). dUTPases represent a family of metalloenzymes that catalyze the hydrolysis of dUTP to dUMP and pyrophosphate, preventing dUTP from being incorporated into DNA by DNA polymerases, maintaining a low dUTP/dTTP pool ratio and providing a necessary precursor for dTTP biosynthesis. Thus, dUTPases are involved in maintaining genomic integrity by preventing the uracilation of DNA. Many DNA-containing viruses, which infect mammals also encode for a dUTPase. This review will summarize studies demonstrating that, in addition to their classical enzymatic activity, some dUTPases possess novel functions that modulate the host innate immune response.
Collapse
Affiliation(s)
- Maria Eugenia Ariza
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (B.C.); (B.M.); (I.M.-P.); (G.J.Z.)
| | - Brandon Cox
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (B.C.); (B.M.); (I.M.-P.); (G.J.Z.)
| | - Britney Martinez
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (B.C.); (B.M.); (I.M.-P.); (G.J.Z.)
| | - Irene Mena-Palomo
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (B.C.); (B.M.); (I.M.-P.); (G.J.Z.)
| | - Gloria Jeronimo Zarate
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (B.C.); (B.M.); (I.M.-P.); (G.J.Z.)
| | - Marshall Vance Williams
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (B.C.); (B.M.); (I.M.-P.); (G.J.Z.)
| |
Collapse
|
2
|
Gourdain S, Petermann C, Harakat D, Clivio P. Highly efficient and facile synthesis of 5-azido-2'-deoxyuridine. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2011; 29:542-6. [PMID: 20589573 DOI: 10.1080/15257770.2010.487507] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Previously reported syntheses of the photoaffinity label 5-azido-2'-deoxyuridine are rather inefficient and involve the tedious preparation of a 5-nitro intermediate. To overcome these inconveniences, we have developed a new approach from the commercially available 5-bromo-2'-deoxyuridine nucleoside. Our synthetic route makes use of a benzylamination reduction sequence. Using this strategy, the 5-azido-2'-deoxyuridine photolabel is prepared in three steps and quantitative yields.
Collapse
Affiliation(s)
- Stephanie Gourdain
- Universite de Reims Champagne Ardenne, Institut de Chimie Moleculaire de Reims, Reims cedex, France
| | | | | | | |
Collapse
|
3
|
Antiviral Activity of 4'-thioIDU and Thymidine Analogs against Orthopoxviruses. Viruses 2010; 2:1968-1983. [PMID: 21994716 PMCID: PMC3185742 DOI: 10.3390/v2091968] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 08/20/2010] [Accepted: 09/07/2010] [Indexed: 11/17/2022] Open
Abstract
The search for effective therapies for orthopoxvirus infections has identified diverse classes of molecules with antiviral activity. Pyrimidine analogs, such as 5-iodo-2'-deoxyuridine (idoxuridine, IDU) were among the first compounds identified with antiviral activity against a number of orthopoxviruses and have been reported to be active both in vitro and in animal models of infection. More recently, additional analogs have been reported to have improved antiviral activity against orthopoxviruses including several derivatives of deoxyuridine with large substituents in the 5 position, as well as analogs with modifications in the deoxyribose moiety including (north)-methanocarbathymidine, and 5-iodo-4'-thio-2'-deoxyuridine (4'-thioIDU). The latter molecule has proven to have good antiviral activity against the orthopoxviruses both in vitro and in vivo and has the potential to be an effective therapy in humans.
Collapse
|
4
|
Gourdain S, Martinez A, Petermann C, Harakat D, Clivio P. Unraveling the photochemistry of the 5-azido-2'-deoxyuridine photoaffinity label. J Org Chem 2009; 74:6885-7. [PMID: 19653622 DOI: 10.1021/jo901544a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
UV irradiation of 5-azido-2'-deoxyuridine in water provides up to seven products. All likely result from a pivotal azirene, formed by the intramolecular rearrangement of the initially formed nitrene, that undergoes nucleophilic addition at its C5 position. This study strongly suggests that only nucleophilic amino acid residues in close proximity are cross-linkable in photolabeling experiments by using the 5-azidouracil photophore.
Collapse
Affiliation(s)
- Stéphanie Gourdain
- Université de Reims Champagne Ardenne, Institut de Chimie Moléculaire de Reims, CNRS UMR 6229, UFR de Pharmacie, 51 rue Cognacq-Jay, 51096 Reims Cedex, France
| | | | | | | | | |
Collapse
|
5
|
De Silva FS, Moss B. Effects of vaccinia virus uracil DNA glycosylase catalytic site and deoxyuridine triphosphatase deletion mutations individually and together on replication in active and quiescent cells and pathogenesis in mice. Virol J 2008; 5:145. [PMID: 19055736 PMCID: PMC2630940 DOI: 10.1186/1743-422x-5-145] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 12/02/2008] [Indexed: 01/24/2023] Open
Abstract
Background Low levels of uracil in DNA result from misincorporation of dUMP or cytosine deamination. Vaccinia virus (VACV), the prototype poxvirus, encodes two enzymes that can potentially reduce the amount of uracil in DNA. Deoxyuridine triphosphatase (dUTPase) hydrolyzes dUTP, generating dUMP for biosynthesis of thymidine nucleotides while decreasing the availability of dUTP for misincorporation; uracil DNA glycosylase (UNG) cleaves uracil N-glycosylic bonds in DNA initiating base excision repair. Studies with actively dividing cells showed that the VACV UNG protein is required for DNA replication but the UNG catalytic site is not, whereas the dUTPase gene can be deleted without impairing virus replication. Recombinant VACV with an UNG catalytic site mutation was attenuated in vivo, while a dUTPase deletion mutant was not. However, the importance of the two enzymes for replication in quiescent cells, their possible synergy and roles in virulence have not been fully assessed. Results VACV mutants lacking the gene encoding dUTPase or with catalytic site mutations in UNG and double UNG/dUTPase mutants were constructed. Replication of UNG and UNG/dUTPase mutants were slightly reduced compared to wild type or the dUTPase mutant in actively dividing cells. Viral DNA replication was reduced about one-third under these conditions. After high multiplicity infection of quiescent fibroblasts, yields of wild type and mutant viruses were decreased by 2-logs with relative differences similar to those observed in active fibroblasts. However, under low multiplicity multi-step growth conditions in quiescent fibroblasts, replication of the dUTPase/UNG mutant was delayed and 5-fold lower than that of either single mutant or parental virus. This difference was exacerbated by 1-day serial passages on quiescent fibroblasts, resulting in 2- to 3-logs lower titer of the double mutant compared to the parental and single mutant viruses. Each mutant was more attenuated than a revertant virus upon intranasal infection of mice. Conclusion VACV UNG and dUTPase activities are more important for replication in quiescent cells, which have low levels of endogenous UNG and dUTPase, than in more metabolically active cells and the loss of both is more detrimental than either alone. Both UNG and dUTPase activities are required for full virulence in mice.
Collapse
Affiliation(s)
- Frank S De Silva
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-3210, USA
| | | |
Collapse
|
6
|
Prichard MN, Kern ER, Quenelle DC, Keith KA, Moyer RW, Turner PC. Vaccinia virus lacking the deoxyuridine triphosphatase gene (F2L) replicates well in vitro and in vivo, but is hypersensitive to the antiviral drug (N)-methanocarbathymidine. Virol J 2008; 5:39. [PMID: 18321387 PMCID: PMC2276199 DOI: 10.1186/1743-422x-5-39] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 03/05/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The vaccinia virus (VV) F2L gene encodes a functional deoxyuridine triphosphatase (dUTPase) that catalyzes the conversion of dUTP to dUMP and is thought to minimize the incorporation of deoxyuridine residues into the viral genome. Previous studies with with a complex, multigene deletion in this virus suggested that the gene was not required for viral replication, but the impact of deleting this gene alone has not been determined in vitro or in vivo. Although the crystal structure for this enzyme has been determined, its potential as a target for antiviral therapy is unclear. RESULTS The F2L gene was replaced with GFP in the WR strain of VV to assess its effect on viral replication. The resulting virus replicated well in cell culture and its replication kinetics were almost indistinguishable from those of the wt virus and attained similar titers. The virus also appeared to be as pathogenic as the WR strain suggesting that it also replicated well in mice. Cells infected with the dUTPase mutant would be predicted to affect pyrimidine deoxynucleotide pools and might be expected to exhibit altered susceptibility to pyrimidine analogs. The antiviral activity of cidofovir and four thymidine analogs were evaluated both in the mutant and the parent strain of this virus. The dUTPase knockout remained fully susceptible to cidofovir and idoxuridine, but was hypersensitive to the drug (N)-methanocarbathymidine, suggesting that pyrimidine metabolism was altered in cells infected with the mutant virus. The absence of dUTPase should reduce cellular dUMP pools and may result in a reduced conversion to dTMP by thymidylate synthetase or an increased reliance on the salvage of thymidine by the viral thymidine kinase. CONCLUSION We confirmed that F2L was not required for replication in cell culture and determined that it does not play a significant role on virulence of the virus in intranasally infected mice. The recombinant virus is hypersensitive to (N)-methanocarbathymidine and may reflect metabolic differences in the mutant virus.
Collapse
Affiliation(s)
- Mark N Prichard
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, AL 35233, USA
| | - Earl R Kern
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, AL 35233, USA
| | - Debra C Quenelle
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, AL 35233, USA
| | - Kathy A Keith
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, AL 35233, USA
| | - Richard W Moyer
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Peter C Turner
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
7
|
Gaywee J, Xu W, Radulovic S, Bessman MJ, Azad AF. The Rickettsia prowazekii invasion gene homolog (invA) encodes a Nudix hydrolase active on adenosine (5')-pentaphospho-(5')-adenosine. Mol Cell Proteomics 2002; 1:179-85. [PMID: 12096117 DOI: 10.1074/mcp.m100030-mcp200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The genomic sequence of Rickettsia prowazekii, the obligate intracellular bacterium responsible for epidemic typhus, reveals an uncharacterized invasion gene homolog (invA). The deduced protein of 18,752 Da contains a Nudix signature, the specific motif found in the Nudix hydrolase family. To characterize the function of InvA, the gene was cloned and overexpressed in Escherichia coli. The expressed protein was purified to near homogeneity and subsequently tested for its enzymatic activity against a series of nucleoside diphosphate derivatives. The purified InvA exhibits hydrolytic activity toward dinucleoside oligophosphates (Np(n)N; n > or = 5), a group of cellular signaling molecules. At optimal pH 8.5, the enzyme actively degrades adenosine (5')-pentaphospho-(5')-adenosine into ATP and ADP with a K(m) of 0.1 mM and k(cat) of 1.9 s(-1). Guanosine (5')-pentaphospho-(5')-guanosine and adenosine-(5')-hexaphospho (5')-adenosine are also substrates. Similar to other Nudix hydrolases, InvA requires a divalent metal cation, Mg(2+) or Zn(2+), for optimal activity. These data suggest that the rickettsial invasion protein likely plays a role in controlling the concentration of stress-induced dinucleoside oligophosphates following bacterial invasion.
Collapse
Affiliation(s)
- Jariyanart Gaywee
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
8
|
McCraith S, Holtzman T, Moss B, Fields S. Genome-wide analysis of vaccinia virus protein-protein interactions. Proc Natl Acad Sci U S A 2000; 97:4879-84. [PMID: 10781095 PMCID: PMC18326 DOI: 10.1073/pnas.080078197] [Citation(s) in RCA: 206] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
To detect interactions between proteins of vaccinia virus, we carried out a comprehensive two-hybrid analysis to assay every pairwise combination. We constructed an array of yeast transformants that contained each of the 266 predicted viral ORFs as Gal4 activation domain hybrid proteins. The array was individually mated to transformants containing each ORF as a Gal4-DNA-binding domain hybrid, and diploids expressing the two-hybrid reporter gene were identified. Of the approximately 70,000 combinations, we found 37 protein-protein interactions, including 28 that were previously unknown. In some cases, e.g., late transcription factors, both proteins were known to have related roles although there was no prior evidence of physical associations. For some other interactions, neither protein had a known role. In the majority of cases, however, one of the interacting proteins was known to be involved in DNA replication, transcription, virion structure, or host evasion, thereby providing a clue to the role of the other uncharacterized protein in a specific process.
Collapse
Affiliation(s)
- S McCraith
- Departments of Genetics and Medicine, Box 357360, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
9
|
Abstract
We have determined the complete DNA sequence of the Leporipoxvirus Shope fibroma virus (SFV). The SFV genome spans 159.8 kb and encodes 165 putative genes of which 13 are duplicated in the 12.4-kb terminal inverted repeats. Although most SFV genes have homologs encoded by other Chordopoxvirinae, the SFV genome lacks a key gene required for the production of extracellular enveloped virus. SFV also encodes only the smaller ribonucleotide reductase subunit and has a limited nucleotide biosynthetic capacity. SFV preserves the Chordopoxvirinae gene order from S012L near the left end of the chromosome through to S142R (homologs of vaccinia F2L and B1R, respectively). The unique right end of SFV appears to be genetically unstable because when the sequence is compared with that of myxoma virus, five myxoma homologs have been deleted (C. Cameron, S. Hota-Mitchell, L. Chen, J. Barrett, J.-X. Cao, C. Macaulay, D. Willer, D. Evans, and G. McFadden, 1999, Virology 264, 298-318). Most other differences between these two Leporipoxviruses are located in the telomeres. Leporipoxviruses encode several genes not found in other poxviruses including four small hydrophobic proteins of unknown function (S023R, S119L, S125R, and S132L), an alpha 2, 3-sialyltransferase (S143R), a protein belonging to the Ig-like protein superfamily (S141R), and a protein resembling the DNA-binding domain of proteins belonging to the HIN-200 protein family S013L). SFV also encodes a type II DNA photolyase (S127L). Melanoplus sanguinipes entomopoxvirus encodes a similar protein, but SFV is the first mammalian virus potentially capable of photoreactivating ultraviolet DNA damage.
Collapse
Affiliation(s)
- D O Willer
- Department of Molecular Biology, The University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | | | |
Collapse
|
10
|
Oliveros M, García-Escudero R, Alejo A, Viñuela E, Salas ML, Salas J. African swine fever virus dUTPase is a highly specific enzyme required for efficient replication in swine macrophages. J Virol 1999; 73:8934-43. [PMID: 10515998 PMCID: PMC112924 DOI: 10.1128/jvi.73.11.8934-8943.1999] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The African swine fever virus (ASFV) gene E165R, which is homologous to dUTPases, has been characterized. A multiple alignment of dUTPases showed the conservation in ASFV dUTPase of the motifs that define this protein family. A biochemical analysis of the purified recombinant enzyme showed that the virus dUTPase is a trimeric, highly specific enzyme that requires a divalent cation for activity. The enzyme is most probably complexed with Mg(2+), the preferred cation, and has an apparent K(m) for dUTP of 1 microM. Northern and Western blotting, as well as immunofluorescence analyses, indicated that the enzyme is expressed at early and late times of infection and is localized in the cytoplasm of the infected cells. On the other hand, an ASFV dUTPase-deletion mutant (vDeltaE165R) has been obtained. Growth kinetics showed that vDeltaE165R replicates as efficiently as parental virus in Vero cells but only to 10% or less of parental virus in swine macrophages. Our results suggest that the dUTPase activity is dispensable for virus replication in dividing cells but is required for productive infection in nondividing swine macrophages, the natural host cell for the virus. The viral dUTPase may play a role in lowering the dUTP concentration in natural infections to minimize misincorporation of deoxyuridine into the viral DNA and ensure the fidelity of genome replication.
Collapse
Affiliation(s)
- M Oliveros
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
11
|
Harris JM, McIntosh EM, Muscat GE. Structure/function analysis of a dUTPase: catalytic mechanism of a potential chemotherapeutic target. J Mol Biol 1999; 288:275-87. [PMID: 10329142 DOI: 10.1006/jmbi.1999.2680] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
dUTP pyrophosphatase catalyses hydrolysis of deoxyuridine triphosphate (dUTP) to deoxyuridine monophosphate (dUMP) and inorganic pyrophosphate (PPi). Elimination of dUTP is vital since its misincorporation into DNA by DNA polymerases can initiate a damaging iterative repair and misincorporation cycle, resulting in DNA fragmentation and cell death. The anti-tumour activity of folate agonists and thymidylate synthase inhibitors is thought to rely on dUTP misincorporation. Furthermore, retroviral cDNA production may be particularly susceptible to the effects of dUTP misincorporation by virtue of the error-prone nature of reverse trans criptase. Consequently, dUTPase activity is an ideal point of intervention in both chemotherapy and anti-retroviral therapy. In particular, the dUTPase encoded by a human endogenous retrovirus (HERV-K) has been suggested to complement HIV infection and so is an attractive target for specific inhibition. Hence, we used site photoaffinity labelling, site-directed mutagenesis and molecular modelling to assign catalytic roles to the conserved amino acid residues in the active site of the HERV-K dUTPase and to identify structural differences with other dUTPase enzymes. We found that dUTP photoaffinity labelling was specific for a beta-hairpin motif in HERV-K dUTPase. Mutagenesis of aspartate residues Asp84 and 86 to asparagine within this beta-hairpin showed the carboxylate moiety of both residues was required for catalysis but not for dUTP binding. An increase in the pKa of both aspartate residues brought about by substitution of a serine residue with a glutamate residue adjacent to the aspartate residues increased activity by a factor of 1.67 at pH 8.0, implicating general base catalysis as the enzyme's catalytic mechanism. Conservative mutagenesis of Tyr87 to Phe resulted in a sevenfold reduction of dUTPase activity and a 3.3-fold reduction in binding activity, whilst substitution with an isoleucine residue totally abolished both catalytic activity and dUTP binding, suggesting that binding/activity is dependent on an aromatic side-chain at the base of the hairpin. Comparison of a homology-based three-dimensional model structure of HERV-K dUTPase with a crystallographic structure of the human dUTPase revealed displacement of a conserved alpha-helix in the HERV-K enzyme causing expansion of the HERV-K active site. This expansion may be responsible for the ability of the HERV-K enzyme to hydrolyse dTTP and bind the bulkier dNTPs in contrast to the majority of dUTPases which are highly specific for dUTP. Knowledge of the dUTPase catalytic mechanism and the distinctive topography of the HERV-K active site provides a molecular basis for the design of HERV-K dUTPase-specific inhibitors.
Collapse
Affiliation(s)
- J M Harris
- Centre for Molecular and Cellular Biology, University of Queensland, St Lucia, Australia.
| | | | | |
Collapse
|
12
|
Dauter Z, Persson R, Rosengren AM, Nyman PO, Wilson KS, Cedergren-Zeppezauer ES. Crystal structure of dUTPase from equine infectious anaemia virus; active site metal binding in a substrate analogue complex. J Mol Biol 1999; 285:655-73. [PMID: 9878436 DOI: 10.1006/jmbi.1998.2332] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The X-ray structures of dUTPase from equine infectious anaemia virus (EIAV) in unliganded and complexed forms have been determined to 1.9 and 2.0 A resolution, respectively. The structures were solved by molecular replacement using Escherichia coli dUTPase as search model. The exploitation of a relatively novel refinement approach for the initial model, combining maximum likelihood refinement with stereochemically unrestrained updating of the model, proved to be of crucial importance and should be of general relevance.EIAV dUTPase is a homotrimer where each subunit folds into a twisted antiparallel beta-barrel with the N and C-terminal portions interacting with adjacent subunits. The C-terminal 14 and 17 amino acid residues are disordered in the crystal structure of the unliganded and complexed enzyme, respectively. Interactions along the 3-fold axis include a water-containing volume (size 207 A3) which has no contact with bulk solvent. It has earlier been shown that a divalent metal ion is essential for catalysis. For the first time, a putative binding site for such a metal ion, in this case Sr2+, is established. The positions of the inhibitor (the non-hydrolysable substrate analogue dUDP) and the metal ion in the complex are consistent with the location of the active centre established for trimeric dUTPase structures, in which subunit interfaces form three surface clefts lined with evolutionary conserved residues. However, a detailed comparison of the active sites of the EIAV and E. coli enzymes reveals some structural differences. The viral enzyme undergoes a small conformational change in the uracil-binding beta-hairpin structure upon dUDP binding not observed in the other known dUTPase structures.
Collapse
Affiliation(s)
- Z Dauter
- Department of Chemistry, University of York, Heslington, YO1 5DD, UK
| | | | | | | | | | | |
Collapse
|
13
|
Antoine G, Scheiflinger F, Dorner F, Falkner FG. The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses. Virology 1998; 244:365-96. [PMID: 9601507 DOI: 10.1006/viro.1998.9123] [Citation(s) in RCA: 406] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The complete genomic DNA sequence of the highly attenuated vaccinia strain modified vaccinia Ankara (MVA) was determined. The genome of MVA is 178 kb in length, significantly smaller than that of the vaccinia Copenhagen genome, which is 192 kb. The 193 open reading frames (ORFs) mapped in the MVA genome probably correspond to 177 genes, 25 of which are split and/or have suffered mutations resulting in truncated proteins. The left terminal genomic region of MVA contains four large deletions and one large insertion relative to the Copenhagen strain. In addition, many ORFs in this region are fragmented, leaving only eight genes structurally intact and therefore presumably functional. The inserted DNA codes for a cluster of genes that is also found in the vaccinia WR strain and in cowpox virus and includes a highly fragmented gene homologous to the cowpox virus host range gene, providing further evidence that a cowpox-like virus was the ancestor of vaccinia. Surprisingly, the central conserved region of the genome also contains some fragmented genes, including ORF F5L, encoding a major membrane protein, and ORFs F11L and O1L, encoding proteins of 39.7 and 77.6 kDa, respectively. The right terminal genomic region carries three large deletions all classical poxviral immune evasion genes and all ankyrin-like genes located in this region are fragmented except for those encoding the interleukin-1 beta receptor and the 68-kDa ankyrin-like protein B18R. Thus, the attenuated phenotype of MVA is the result of numerous mutations, particularly affecting the host interactive proteins, including the ankyrin-like genes, but also involving some structural proteins.
Collapse
Affiliation(s)
- G Antoine
- Biomedical Research Center, Hyland-Immuno, Orth/Donau, Austria
| | | | | | | |
Collapse
|
14
|
Nord J, Larsson G, Kvassman JO, Rosengren AM, Nyman PO. dUTPase from the retrovirus equine infectious anemia virus: specificity, turnover and inhibition. FEBS Lett 1997; 414:271-4. [PMID: 9315700 DOI: 10.1016/s0014-5793(97)00935-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The kinetic properties of dUTPase from equine infectious anemia virus (EIAV) were investigated. K(M) (1.1 +/- 0.1 microM) and k(cat) (25 s(-1)) were found to be independent of pH in the neutral pH range. Above pH 8.0, K(M) increases slightly. Below pH 6.0, the enzyme is rapidly deactivated. Detergent was found to enhance activity, leaving K(M) and k(cat) unaffected. Compared to the Escherichia coli dUTPase, the EIAV enzyme is equally potent in hydrolyzing dUTP, but less specific. Inhibition of the viral enzyme by the nucleotides dTTP, dUMP and a synthetic analogue, 2'-deoxyuridine 5'-(alpha,beta-imido)triphosphate, is stronger by one order of magnitude.
Collapse
Affiliation(s)
- J Nord
- Department of Biochemistry, Center for Chemistry and Chemical Engineering, University of Lund, Sweden.
| | | | | | | | | |
Collapse
|