1
|
Park AR, Oh D, Lim SH, Choi J, Moon J, Yu DY, Park SG, Heisterkamp N, Kim E, Myung PK, Lee JR. Regulation of dendritic arborization by BCR Rac1 GTPase-activating protein, a substrate of PTPRT. J Cell Sci 2012; 125:4518-31. [PMID: 22767509 DOI: 10.1242/jcs.105502] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Dendritic arborization is important for neuronal development as well as the formation of neural circuits. Rac1 is a member of the Rho GTPase family that serve as regulators of neuronal development. Breakpoint cluster region protein (BCR) is a Rac1 GTPase-activating protein that is abundantly expressed in the central nervous system. Here, we show that BCR plays a key role in neuronal development. Dendritic arborization and actin polymerization were attenuated by overexpression of BCR in hippocampal neurons. Knockdown of BCR using specific shRNAs increased the dendritic arborization as well as actin polymerization. The number of dendrites in null mutant BCR(-/-) mice was considerably increased compared with that in wild-type mice. We found that the function of the BCR GTPase-activating domain could be modulated by protein tyrosine phosphatase receptor T (PTPRT), which is expressed principally in the brain. We demonstrate that tyrosine 177 of BCR was the main target of PTPRT and the BCR mutant mimicking dephosphorylation of tyrosine 177 alleviated the attenuation of dendritic arborization. Additionally the attenuated dendritic arborization found upon BCR overexpression was relieved upon co-expression of PTPRT. When PTPRT was knocked down by a specific shRNA, the dendritic arborization was significantly reduced. The activity of the BCR GTPase-activating domain was modulated by means of conversions between the intra- and inter-molecular interactions, which are finely regulated through the dephosphorylation of a specific tyrosine residue by PTPRT. We thus show conclusively that BCR is a novel substrate of PTPRT and that BCR is involved in the regulation of neuronal development via control of the BCR GTPase-activating domain function by PTPRT.
Collapse
Affiliation(s)
- A-Reum Park
- Biomedical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Tolias KF, Duman JG, Um K. Control of synapse development and plasticity by Rho GTPase regulatory proteins. Prog Neurobiol 2011; 94:133-48. [PMID: 21530608 DOI: 10.1016/j.pneurobio.2011.04.011] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 04/13/2011] [Accepted: 04/15/2011] [Indexed: 12/21/2022]
Abstract
Synapses are specialized cell-cell contacts that mediate communication between neurons. Most excitatory synapses in the brain are housed on dendritic spines, small actin-rich protrusions extending from dendrites. During development and in response to environmental stimuli, spines undergo marked changes in shape and number thought to underlie processes like learning and memory. Improper spine development, in contrast, likely impedes information processing in the brain, since spine abnormalities are associated with numerous brain disorders. Elucidating the mechanisms that regulate the formation and plasticity of spines and their resident synapses is therefore crucial to our understanding of cognition and disease. Rho-family GTPases, key regulators of the actin cytoskeleton, play essential roles in orchestrating the development and remodeling of spines and synapses. Precise spatio-temporal regulation of Rho GTPase activity is critical for their function, since aberrant Rho GTPase signaling can cause spine and synapse defects as well as cognitive impairments. Rho GTPases are activated by guanine nucleotide exchange factors (GEFs) and inhibited by GTPase-activating proteins (GAPs). We propose that Rho-family GEFs and GAPs provide the spatiotemporal regulation and signaling specificity necessary for proper Rho GTPase function based on the following features they possess: (i) existence of multiple GEFs and GAPs per Rho GTPase, (ii) developmentally regulated expression, (iii) discrete localization, (iv) ability to bind to and organize specific signaling networks, and (v) tightly regulated activity, perhaps involving GEF/GAP interactions. Recent studies describe several Rho-family GEFs and GAPs that uniquely contribute to spinogenesis and synaptogenesis. Here, we highlight several of these proteins and discuss how they occupy distinct biochemical niches critical for synaptic development.
Collapse
Affiliation(s)
- Kimberley F Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|
3
|
Shaffer JM, Hellwig S, Smithgall TE. Bimolecular fluorescence complementation demonstrates that the c-Fes protein-tyrosine kinase forms constitutive oligomers in living cells. Biochemistry 2009; 48:4780-8. [PMID: 19382747 DOI: 10.1021/bi900238f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The c-fes proto-oncogene encodes a unique nonreceptor protein-tyrosine kinase (c-Fes) that contributes to the differentiation of myeloid hematopoietic, vascular endothelial, and some neuronal cell types. Although originally identified as the normal cellular homologue of the oncoproteins encoded by avian and feline transforming retroviruses, c-Fes has recently been implicated as a tumor suppressor in breast and colonic epithelial cells. Structurally, c-Fes consists of a unique N-terminal region harboring an FCH domain, two coiled-coil motifs, a central SH2 domain, and a C-terminal kinase domain. In living cells, c-Fes kinase activity is tightly regulated by a mechanism that remains unclear. Previous studies have established that c-Fes forms high molecular weight oligomers in vitro, suggesting that the dual coiled-coil motifs may regulate the interconversion of inactive monomeric and active oligomeric states. Here we show for the first time that c-Fes forms oligomers in live cells independently of its activation status using a YFP bimolecular fluorescence complementation assay. We also demonstrate that both N-terminal coiled-coil regions are essential for c-Fes oligomerization in transfected COS-7 cells as well as HCT 116 colorectal cancer and K-562 myeloid leukemia cell lines. Together, these data provide the first evidence that c-Fes, unlike c-Src, c-Abl, and other nonreceptor tyrosine kinases, is constitutively oligomeric in both its repressed and active states. This finding suggests that conformational changes, rather than oligomerization, may govern its kinase activity in vivo.
Collapse
Affiliation(s)
- Jonathan M Shaffer
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
4
|
Delfino F, Shaffer J, Smithgall T. The KRAB-associated co-repressor KAP-1 is a coiled-coil binding partner, substrate and activator of the c-Fes protein tyrosine kinase. Biochem J 2006; 399:141-50. [PMID: 16792528 PMCID: PMC1570157 DOI: 10.1042/bj20060194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The c-Fes protein tyrosine kinase is implicated in the differentiation of a number of cell types including neuronal, endothelial and myeloid cells. Structurally, Fes consists of a unique N-terminal region, followed by SH2 (Src homology domain 2) and kinase domains. Two coiled-coil (CC) domains (CC1 and CC2) located within the unique N-terminal region are critical regulators of Fes activity in vivo and may function to recruit Fes activators and/or substrates. A yeast two-hybrid screen, utilizing a K-562 cell cDNA library and the Fes CC2 domain as bait, identified an interacting clone encoding the CC domain and B-box motifs (residues 114-357) of the transcriptional co-repressor KRAB-associated protein (KAP)-1. KAP-1(114-357) interacted with full-length Fes in yeast, and the KAP-1 CC domain was sufficient to bind the Fes N-terminal region in Sf-9 cells. Co-expression of Fes with full-length KAP-1 in human 293T cells stimulated Fes autophosphorylation and led to KAP-1 tyrosine phosphorylation. Association of endogenous Fes and KAP-1 was also observed in HL-60 myeloid leukaemia cells. Together, these data identify a novel Fes-KAP-1 interaction, and suggest a dual role for KAP-1 as both a Fes activator and downstream effector.
Collapse
Affiliation(s)
- Frank J. Delfino
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, U.S.A
| | - Jonathan M. Shaffer
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, U.S.A
| | - Thomas E. Smithgall
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
5
|
Ress A, Moelling K. Bcr is a negative regulator of the Wnt signalling pathway. EMBO Rep 2005; 6:1095-100. [PMID: 16211085 PMCID: PMC1371031 DOI: 10.1038/sj.embor.7400536] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Revised: 07/20/2005] [Accepted: 08/18/2005] [Indexed: 11/09/2022] Open
Abstract
The Wnt signalling pathway can activate transcription of genes such as c-myc through beta-catenin. Here, we describe the protein breakpoint cluster region, Bcr, as a negative regulator of this pathway. Bcr can form a complex with beta-catenin and negatively regulate expression of c-Myc. Knockdown of Bcr by short interfering RNA relieves the block and activates expression of c-Myc. Expression of Bcr in the human colon carcinoma cell line HCT116, which has a high level of endogenous beta-catenin, leads to reduced c-Myc expression. The negative effect is exerted by the amino terminus of Bcr, which does not harbour the kinase domain. Bcr-Abl, the oncogene protein expressed in chronic myelogenous leukaemia (CML), does not bind to beta-catenin. It phosphorylates Bcr in the first exon sequence on tyrosines, which abrogates the binding of Bcr to beta-catenin. The inhibitor of the Bcr-Abl tyrosine kinase, STI-571 or Gleevec, a drug against CML, reverses this effect. Our data contribute to the understanding of Bcr as a tumour suppressor in the Wnt signalling pathway, as well as in CML.
Collapse
Affiliation(s)
- Angelika Ress
- Institute of Medical Virology, University of Zurich, Gloriastrasse 30, 8006 Zurich, Switzerland
- Institute of Biochemistry, FU Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Karin Moelling
- Institute of Medical Virology, University of Zurich, Gloriastrasse 30, 8006 Zurich, Switzerland
- Institute of Biochemistry, FU Berlin, Thielallee 63, 14195 Berlin, Germany
- Tel: +41 44 634 26 52/53; Fax: +41 44 634 49 67; E-mail:
| |
Collapse
|
6
|
Laurent CE, Smithgall TE. The c-Fes tyrosine kinase cooperates with the breakpoint cluster region protein (Bcr) to induce neurite extension in a Rac- and Cdc42-dependent manner. Exp Cell Res 2004; 299:188-98. [PMID: 15302586 DOI: 10.1016/j.yexcr.2004.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Revised: 05/10/2004] [Indexed: 10/26/2022]
Abstract
The c-fes locus encodes a cytoplasmic protein-tyrosine kinase (Fes) previously shown to accelerate nerve growth factor (NGF)-induced neurite outgrowth in rat PC12 cells. Here, we investigated the role of the Rho family small GTPases Rac1 and Cdc42 in Fes-mediated neuritogenesis, which have been implicated in neuronal differentiation in other systems. Fes-induced acceleration of neurite outgrowth in response to NGF treatment was completely blocked by the expression of dominant-negative Rac1 or Cdc42. Expression of a kinase-active mutant of Fes induced constitutive relocalization of endogenous Rac1 to the cell periphery in the absence of NGF, and led to dramatic actin reorganization and spontaneous neurite extension. We also investigated the breakpoint cluster region protein (Bcr), which possesses the Dbl and PH domains characteristic of guanine nucleotide exchange factors for Rho family GTPases, as a possible link between Fes, Rac/Cdc42 activation, and neuritogenesis. Coexpression of a GFP-Bcr fusion protein containing the Fes binding and tyrosine phosphorylation sites (amino acids 162-413) completely suppressed neurite outgrowth triggered by Fes. Conversely, coexpression of full-length Bcr with wild-type Fes in PC12 cells induced NGF-independent neurite formation. Taken together, these data suggest that Fes and Bcr cooperate to activate Rho family GTPases as part of a novel pathway regulating neurite extension in PC12 cells, and provide more evidence for an emerging role for Fes in neuronal differentiation.
Collapse
Affiliation(s)
- Charles E Laurent
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
7
|
Radziwill G, Erdmann RA, Margelisch U, Moelling K. The Bcr kinase downregulates Ras signaling by phosphorylating AF-6 and binding to its PDZ domain. Mol Cell Biol 2003; 23:4663-72. [PMID: 12808105 PMCID: PMC164848 DOI: 10.1128/mcb.23.13.4663-4672.2003] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The protein kinase Bcr is a negative regulator of cell proliferation and oncogenic transformation. We identified Bcr as a ligand for the PDZ domain of the cell junction and Ras-interacting protein AF-6. The Bcr kinase phosphorylates AF-6, which subsequently allows efficient binding of Bcr to AF-6, showing that the Bcr kinase is a regulator of the PDZ domain-ligand interaction. Bcr and AF-6 colocalize in epithelial cells at the plasma membrane. In addition, Bcr, AF-6, and Ras form a trimeric complex. Bcr increases the affinity of AF-6 to Ras, and a mutant of AF-6 that lacks a specific phosphorylation site for Bcr shows a reduced binding to Ras. Wild-type Bcr, but not Bcr mutants defective in binding to AF-6, interferes with the Ras-dependent stimulation of the Raf/MEK/ERK pathway. Since AF-6 binds to Bcr via its PDZ domain and to Ras via its Ras-binding domain, we propose that AF-6 functions as a scaffold-like protein that links Bcr and Ras to cellular junctions. We suggest that this trimeric complex is involved in downregulation of Ras-mediated signaling at sites of cell-cell contact to maintain cells in a nonproliferating state.
Collapse
Affiliation(s)
- G Radziwill
- Institute of Medical Virology, University of Zurich, CH-8028 Zurich, Switzerland
| | | | | | | |
Collapse
|
8
|
Tagliafico E, Siena M, Zanocco-Marani T, Manfredini R, Tenedini E, Montanari M, Grande A, Ferrari S. Requirement of the coiled-coil domains of p92(c-Fes) for nuclear localization in myeloid cells upon induction of differentiation. Oncogene 2003; 22:1712-23. [PMID: 12642874 DOI: 10.1038/sj.onc.1206279] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The nonreceptor tyrosine kinase Fes is implicated in myeloid cells differentiation. It has been observed that its localization can be cytoplasmic, perinuclear, or nuclear. To further characterize this point, we studied Fes subcellular localization in myeloid cell lines (HL60 and K562) and in COS1 cells. Fes was observed in both the nucleus and the cytoplasm of HL60, K562 cells overexpressing Fes and only in the cytoplasm of COS1 cells, suggesting that nuclear localization is cell context dependent. Moreover, in myeloid cells, the treatment with differentiation-inducing agents such as retinoic acid, phorbol esters and vitamin D, is followed by an increase of the oligomeric form of Fes in the nucleus. In fact, oligomerization seems to be necessary for translocation to occur, since Fes mutants missing the coiled-coil domains are not able to form oligomers and fail to localize in the nucleus. The active form of Fes is tyrosine phosphorylated; however, phosphorylation is not required for Fes to localize in the nucleus, since tyrosine kinase inhibitors do not block the translocation process.
Collapse
Affiliation(s)
- Enrico Tagliafico
- Dipartimento di Scienze Biomediche, Universitá di Modena e Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Mitsui N, Inatome R, Takahashi S, Goshima Y, Yamamura H, Yanagi S. Involvement of Fes/Fps tyrosine kinase in semaphorin3A signaling. EMBO J 2002; 21:3274-85. [PMID: 12093729 PMCID: PMC125392 DOI: 10.1093/emboj/cdf328] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Collapsin response mediator proteins (CRMPs)/TOAD64/Ulips/DRPs and CRAM have emerged as strong candidates for a role in semaphorin signaling. In this study we identified Fes/Fps (Fes) tyrosine kinase in the CRMP-CRAM complex and investigated whether Fes was involved in semaphorin3A (Sema3A) signaling. In COS-7 cells, the interaction between Fes and plexinA1 (PlexA1) and the tyrosine phosphorylation of PlexA1 by Fes were observed; however, these events were significantly attenuated by co-expression of neuropilin-1 (NP-1). Even with NP-1 co-expression, Sema3A was able to enhance the association of Fes with PlexA1 and Fes-mediated tyrosine phosphorylation of PlexA1, CRAM and CRMP2. Co-expression of Fes with PlexA1 exhibited COS-7 cell contraction activity, indicating that Fes can convert inactive PlexA1 to its active form, whereas combination of Fes/NP-1/PlexA1 or Fes kinase-negative mutants/PlexA1 did not alter cell morphology. Finally, Sema3A-induced growth cone collapse of dorsal root ganglion neurons was suppressed by expression of Fes kinase-negative mutants. Taken together, our findings suggest that Fes links Sema3A signals to CRMP-CRAM, and that NP-1 negatively regulates PlexA1 activation by Fes in resting condition.
Collapse
Affiliation(s)
| | | | | | - Yoshio Goshima
- Division of Proteomics, Department of Genome Sciences, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, 650-0017 and
Department of Pharmacology, Yokohama City University School of Medicine, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan Corresponding author e-mail:
N.Mitsui and R.Inatome contributed equally to this work
| | | | - Shigeru Yanagi
- Division of Proteomics, Department of Genome Sciences, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, 650-0017 and
Department of Pharmacology, Yokohama City University School of Medicine, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan Corresponding author e-mail:
N.Mitsui and R.Inatome contributed equally to this work
| |
Collapse
|
10
|
Hackenmiller R, Simon MC. Truncation of c-fes via gene targeting results in embryonic lethality and hyperproliferation of hematopoietic cells. Dev Biol 2002; 245:255-69. [PMID: 11977979 DOI: 10.1006/dbio.2002.0643] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The c-fes protooncogene encodes a nonreceptor tyrosine kinase (Fes) implicated in cytokine receptor signal transduction, granulocyte survival, and myeloid differentiation. To study the role of c-fes during myelopoiesis, we generated embryonic stem (ES) cells with a targeted disruption of the c-fes locus. Targeted mutagenesis deletes the C-terminal SH2 and tyrosine kinase domains of c-fes (referred to as c-fes(Delta c/Delta c)). We demonstrate that the c-fes(Delta c/Delta c) allele results in a truncated Fes protein that retains the N-terminal oligomerization domain, but lacks both the SH2 and the tyrosine kinase domain. In vitro differentiation of c-fes(Delta c/Delta c) ES cells results in hyperproliferation of an early myeloid cell. Generation of c-fes(Delta c/Delta c) mutant chimeric mice causes lethality by E13.5 with embryos exhibiting pleiotropic defects, the most striking being cardiovascular abnormalities. These results establish that c-fes is an important regulator of myeloid cell proliferation and embryonic development.
Collapse
Affiliation(s)
- Renee Hackenmiller
- Committee on Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
11
|
Scheijen B, Griffin JD. Tyrosine kinase oncogenes in normal hematopoiesis and hematological disease. Oncogene 2002; 21:3314-33. [PMID: 12032772 DOI: 10.1038/sj.onc.1205317] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tyrosine kinase oncogenes are formed as a result of mutations that induce constitutive kinase activity. Many of these tyrosine kinase oncogenes that are derived from genes, such as c-Abl, c-Fes, Flt3, c-Fms, c-Kit and PDGFRbeta, that are normally involved in the regulation of hematopoiesis or hematopoietic cell function. Despite differences in structure, normal function, and subcellular location, many of the tyrosine kinase oncogenes signal through the same pathways, and typically enhance proliferation and prolong viability. They represent excellent potential drug targets, and it is likely that additional mutations will be identified in other kinases, their immediate downstream targets, or in proteins regulating their function.
Collapse
Affiliation(s)
- Blanca Scheijen
- Department of Adult Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, Massachusetts, MA 02115, USA
| | | |
Collapse
|
12
|
Abstract
Fps/Fes and Fer are the only known members of a distinct subfamily of the non-receptor protein-tyrosine kinase family. Recent studies indicate that these kinases have roles in regulating cytoskeletal rearrangements and inside out signalling that accompany receptor ligand, cell matrix and cell cell interactions. Genetic analysis using transgenic mouse models also implicates these kinases in the regulation of inflammation and innate immunity.
Collapse
MESH Headings
- Animals
- Biological Evolution
- Chromosomes, Human, Pair 15/genetics
- Chromosomes, Human, Pair 5/genetics
- Fusion Proteins, gag-onc/chemistry
- Fusion Proteins, gag-onc/genetics
- Fusion Proteins, gag-onc/physiology
- Humans
- Inflammation/physiopathology
- Mice
- Mice, Knockout
- Mice, Transgenic
- Models, Biological
- Models, Molecular
- Protein Structure, Tertiary
- Protein-Tyrosine Kinases/chemistry
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/physiology
- Proto-Oncogene Proteins/chemistry
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- Receptor Cross-Talk
- Receptors, Platelet-Derived Growth Factor/physiology
- Signal Transduction
Collapse
Affiliation(s)
- Peter Greer
- Division of Cancer Research and Genetics, Queen's University Cancer Research Institute, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
13
|
Zirngibl RA, Senis Y, Greer PA. Enhanced endotoxin sensitivity in fps/fes-null mice with minimal defects in hematopoietic homeostasis. Mol Cell Biol 2002; 22:2472-86. [PMID: 11909942 PMCID: PMC133716 DOI: 10.1128/mcb.22.8.2472-2486.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The fps/fes proto-oncogene encodes a cytoplasmic protein tyrosine kinase implicated in growth factor and cytokine receptor signaling and thought to be essential for the survival and terminal differentiation of myeloid progenitors. Fps/Fes-null mice were healthy and fertile, displayed slightly reduced numbers of bone marrow myeloid progenitors and circulating mature myeloid cells, and were more sensitive to lipopolysaccharide (LPS). These phenotypes were rescued using a fps/fes transgene. This confirmed that Fps/Fes is involved in, but not required for, myelopoiesis and that it plays a role in regulating the innate immune response. Bone marrow-derived Fps/Fes-null macrophages showed no defects in granulocyte-macrophage colony-stimulating factor-, interleukin 6 (IL-6)-, or IL-3-induced activation of signal transducer and activator of transcription 3 (Stat3) and Stat5A or LPS-induced degradation of I kappa B or activation of p38, Jnk, Erk, or Akt.
Collapse
Affiliation(s)
- Ralph A Zirngibl
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Queen's University, Kingston, Ontario K7L-3N6, Canada
| | | | | |
Collapse
|
14
|
Abstract
Multistep carcinogenesis is exemplified by chronic myeloid leukemia with clinical manifestation consisting of a chronic phase and blast crisis. Pathological generation of BCR-ABL (breakpoint cluster region-Abelson) results in growth promotion, differentiation, resistance to apoptosis, and defect in DNA repair in targeted blood cells. Domains in BCR and ABL sequences work in concert to elicit a variety of leukemogenic signals including Ras, STAT5 (signal transducer and activator of transcription-5), Myc, cyclin D1, P13 (phosphatidylinositol 3-kinase), RIN1 (Ras interaction/interference), and activation of actin cytoskeleton. However, the mechanism of differentiation of transformed cells is poorly understood. A mutator phenotype of BCR-ABL could explain the transformation to blast crisis. The aim of this review is to integrate molecular and biological information on BCR, ABL, and BCR-ABL and to focus on how signaling from those molecules mirrors the biological phenotypes of chronic myeloid leukemia.
Collapse
MESH Headings
- Animals
- Blast Crisis/genetics
- Cell Differentiation
- Cell Transformation, Neoplastic/genetics
- Disease Progression
- Fusion Proteins, bcr-abl/chemistry
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/physiology
- Gene Expression Regulation, Leukemic
- Genes, abl
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myeloid, Accelerated Phase/genetics
- Leukemia, Myeloid, Chronic-Phase/genetics
- Mice
- Mice, Knockout
- Models, Biological
- Neoplasm Proteins/physiology
- Neoplastic Stem Cells/enzymology
- Neoplastic Stem Cells/pathology
- Oncogene Proteins/chemistry
- Oncogene Proteins/genetics
- Oncogene Proteins/physiology
- Phenotype
- Philadelphia Chromosome
- Phosphorylation
- Protein Processing, Post-Translational
- Protein Structure, Tertiary
- Protein-Tyrosine Kinases
- Proto-Oncogene Proteins
- Proto-Oncogene Proteins c-abl/chemistry
- Proto-Oncogene Proteins c-abl/genetics
- Proto-Oncogene Proteins c-abl/physiology
- Proto-Oncogene Proteins c-bcr
- Rats
- Signal Transduction
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Y Maru
- Department of Genetics, Institute of Medical Science, University of Tokyo, Japan.
| |
Collapse
|
15
|
Hackenmiller R, Kim J, Feldman RA, Simon MC. Abnormal Stat activation, hematopoietic homeostasis, and innate immunity in c-fes-/- mice. Immunity 2000; 13:397-407. [PMID: 11021537 DOI: 10.1016/s1074-7613(00)00039-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The c-fes protooncogene encodes a nonreceptor tyrosine kinase (Fes) implicated in cytokine receptor signal transduction, neutrophil survival, and myeloid differentiation. To determine the role of Fes in embryonic development and hematopoiesis, we engineered a null mutation of the murine c-fes locus. c-fes-/- mice are viable but not born in the expected Mendelian ratios. Live born c-fes-/- mice exhibit lymphoid/myeloid homeostasis defects, compromised innate immunity, and increased Stat activation in response to GM-CSF and IL-6 signaling. Therefore, increased cytokine responsiveness in the absence of Fes leads to abnormal myeloid proliferation and functional defects in the macrophage lineage.
Collapse
Affiliation(s)
- R Hackenmiller
- Committee on Genetics, University of Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
16
|
Cheng H, Rogers JA, Dunham NA, Smithgall TE. Regulation of c-Fes tyrosine kinase and biological activities by N-terminal coiled-coil oligomerization domains. Mol Cell Biol 1999; 19:8335-43. [PMID: 10567558 PMCID: PMC84918 DOI: 10.1128/mcb.19.12.8335] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The cytoplasmic protein-tyrosine kinase Fes has been implicated in cytokine signal transduction, hematopoiesis, and embryonic development. Previous work from our laboratory has shown that active Fes exists as a large oligomeric complex in vitro. However, when Fes is expressed in mammalian cells, its kinase activity is tightly repressed. The Fes unique N-terminal sequence has two regions with strong homology to coiled-coil-forming domains often found in oligomeric proteins. Here we show that disruption or deletion of the first coiled-coil domain upregulates Fes tyrosine kinase and transforming activities in Rat-2 fibroblasts and enhances Fes differentiation-inducing activity in myeloid leukemia cells. Conversely, expression of a Fes truncation mutant consisting only of the unique N-terminal domain interfered with Rat-2 fibroblast transformation by an activated Fes mutant, suggesting that oligomerization is essential for Fes activation in vivo. Coexpression with the Fes N-terminal region did not affect the transforming activity of v-Src in Rat-2 cells, arguing against a nonspecific suppressive effect. Taken together, these findings suggest a model in which Fes activation may involve coiled-coil-mediated interconversion of monomeric and oligomeric forms of the kinase. Mutation of the first coiled-coil domain may activate Fes by disturbing intramolecular coiled-coil interaction, allowing for oligomerization via the second coiled-coil domain. Deletion of the second coiled-coil domain blocks fibroblast transformation by an activated form of c-Fes, consistent with this model. These results provide the first evidence for regulation of a nonreceptor protein-tyrosine kinase by coiled-coil domains.
Collapse
Affiliation(s)
- H Cheng
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska
| | | | | | | |
Collapse
|
17
|
Wu Y, Ma G, Lu D, Lin F, Xu HJ, Liu J, Arlinghaus RB. Bcr: a negative regulator of the Bcr-Abl oncoprotein. Oncogene 1999; 18:4416-24. [PMID: 10442632 DOI: 10.1038/sj.onc.1202828] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chronic myelogenous leukemia is typically characterized by the presence of the Philadelphia chromosome (Ph) in which 5' portions of the BCR gene are fused to a large portion of the ABL gene. Our studies and those of others indicate that Bcr sequences within the Bcr-Abl oncoprotein are critically involved in activating the Abl tyrosine kinase and actively participate in the oncogenic response, which is generated by the Bcr-Abl oncoprotein. We investigated the role of the Bcr protein in the oncogenic effects of Bcr-Abl. Reduction of the level of the Bcr protein by incubating cells with a 3' BCR anti-sense oligodeoxynucleotide increased the growth rate and survival of hematopoietic cell lines expressing Bcr-Abl. Also, enforced expression of Bcr in Bcr-Abl cell lines strongly reduced transformation efficiency. Induction of Bcr expression drastically reduced the phosphotyrosine content of Bcr-Abl in Rat-1 fibroblasts transformed by P185 BCR-ABL and in hematopoietic cells expressing P210 Bcr-Abl within days following induction of Bcr. Rat-1/P185 cells maintained for three weeks after Bcr induction had dramatically reduced amounts of phosphotyrosine proteins compared to cells in which Bcr expression was repressed by the addition of Tet. In contrast Bcr expression did not decrease the phosphotyrosine content of either v-Src or activated Neu tyrosine kinase. Importantly, the phosphotyrosine content of total P160 BCR (induced plus endogenous) was strongly reduced by inducing expression of Bcr, indicating that the induced Bcr protein was not a target of the tyrosine kinase activity of Bcr-Abl but instead functioned as an inhibitor of Bcr-Abl. These results show that the Bcr protein can function as a negative regulator of Bcr-Abl, but that the inhibitory effects of Bcr are dependent on achieving an elevated level of Bcr expression relative to Bcr-Abl.
Collapse
Affiliation(s)
- Y Wu
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston 77030, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Peters KL, Smithgall TE. Tyrosine phosphorylation enhances the SH2 domain-binding activity of Bcr and inhibits Bcr interaction with 14-3-3 proteins. Cell Signal 1999; 11:507-14. [PMID: 10405761 DOI: 10.1016/s0898-6568(99)00021-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The cellular Bcr protein consists of an N-terminal serine/threonine kinase domain, a central guanine nucleotide exchange factor homology region and a C-terminal GTPase-activating protein domain. Previous work in our laboratory established that Bcr is a major transformation-related substrate for the v-Fps tyrosine kinase, and tyrosine phosphorylation of Bcr induces Bcr-Grb-2/SOS association in vivo through the Src homology 2 (SH2) domain of Grb-2. In the present study, we mapped the region of Bcr tyrosine phosphorylation by c-Fes, the human homologue of v-Fps, to Bcr N-terminal amino acids 162-413 by using a baculovirus/Sf-9 cell co-expression system. Tyrosine phosphorylation of Bcr by Fes greatly enhanced the binding of Bcr to the SH2 domains of multiple signalling molecules in vitro, including Grb-2, Ras GTPase activating protein, phospholipase C-gamma, the 85,000 M(r) subunit of phosphatidylinositol 3'-kinase, and the Abl tyrosine kinase. In contrast with SH2 binding, tyrosine phosphorylation of Bcr reduced its ability to associate with the 14-3-3 protein Bap-1 (Bcr-associated protein-1), a Bcr substrate and member of a family of phosphoserine-binding adaptor proteins. These experiments provide in vitro evidence that tyrosine phosphorylation may modulate the interaction of Bcr with multiple growth-regulatory signalling pathways.
Collapse
Affiliation(s)
- K L Peters
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha 68198, USA
| | | |
Collapse
|
19
|
Li J, Smithgall TE. Fibroblast transformation by Fps/Fes tyrosine kinases requires Ras, Rac, and Cdc42 and induces extracellular signal-regulated and c-Jun N-terminal kinase activation. J Biol Chem 1998; 273:13828-34. [PMID: 9593727 DOI: 10.1074/jbc.273.22.13828] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small GTP-binding proteins Ras, Rac, and Cdc42 link protein-tyrosine kinases with mitogen-activated protein kinase (MAPK) signaling cascades. Ras controls the activation of extracellular signal-regulated kinases (ERKs), while Rac and Cdc42 regulate the c-Jun N-terminal kinases (JNKs). In this study, we investigated whether small G protein/MAPK cascades contribute to signal transduction by transforming variants of c-Fes, a nonreceptor tyrosine kinase implicated in cytokine signaling and myeloid differentiation. First, we investigated the effects of dominant-negative small G proteins on Rat-2 fibroblast transformation by a retroviral homolog of c-Fes (v-Fps) and by c-Fes activated via N-terminal addition of the v-Src myristylation signal (Myr-Fes). We observed that dominant-negative Ras, Rac, and Cdc42 inhibited v-Fps- and Myr-Fes-induced growth of Rat-2 cells in soft agar, indicating that activation of these small GTP-binding proteins is required for fibroblast transformation by Fps/Fes tyrosine kinases. To determine whether MAPK pathways are activated downstream of these small G proteins, we measured ERK and JNK activity in the v-Fps- and Myr-Fes-transformed Rat-2 cells. Both ERK and JNK activities were elevated in the transformed cells, suggesting that these pathways are involved in cellular transformation. Dominant-negative mutants of Ras (but not Rac or Cdc42) specifically inhibited ERK activation by v-Fps and Myr-Fes, demonstrating that ERK activation occurs exclusively downstream of Ras. All three dominant-negative small G proteins inhibited JNK activation by v-Fps and Myr-Fes, indicating that JNK activation by these tyrosine kinases requires both Ras and Rho family GTPases. These data demonstrate that multiple small G protein/MAPK cascades are involved in downstream signal transduction by Fps/Fes tyrosine kinases.
Collapse
Affiliation(s)
- J Li
- Eppley Institute for Research in Cancer and Department of Pharmacology University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | |
Collapse
|
20
|
Nelson KL, Rogers JA, Bowman TL, Jove R, Smithgall TE. Activation of STAT3 by the c-Fes protein-tyrosine kinase. J Biol Chem 1998; 273:7072-7. [PMID: 9507017 DOI: 10.1074/jbc.273.12.7072] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
STATs (signal transducers and activators of transcription) are transcription factors that contain SH2 domains and are activated by tyrosine phosphorylation, often in response to cytokine stimulation. Recent evidence indicates that the transforming tyrosine kinases encoded by the v-Src, v-Abl, and v-Fps oncogenes can induce STAT activation, suggesting that their normal cellular homologs may contribute to STAT activation under physiological conditions. In this report, we provide direct evidence that c-Fes, the normal human homolog of v-Fps, potently activates STAT3. Transient transfection of human 293T cells with STAT3 and Fes resulted in strong stimulation of STAT3 DNA binding activity. In contrast, only modest activation of STAT5 by Fes was observed in this system, indicative of possible selectivity. To determine whether Fes-induced STAT3 activation is dependent upon endogenous mammalian kinases, co-expression studies were also performed in Sf-9 insect cells. Fes also induced a dramatic increase in STAT3 DNA binding activity in this system, whereas no activation of STAT5 was observed. As a positive control, both STAT3 and STAT5 were shown to be activated by the Bcr-Abl tyrosine kinase in Sf-9 cells. Fes induced strong tyrosine phosphorylation of STAT3 in both expression systems, consistent with the gel-shift results. Fes and STAT3 have been independently linked to myeloid differentiation. Results presented here suggest that these proteins may cooperate to promote differentiation signaling in response to hematopoietic cytokines.
Collapse
Affiliation(s)
- K L Nelson
- Eppley Institute for Research in Cancer and Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | | | | | | | |
Collapse
|
21
|
Read RD, Lionberger JM, Smithgall TE. Oligomerization of the Fes tyrosine kinase. Evidence for a coiled-coil domain in the unique N-terminal region. J Biol Chem 1997; 272:18498-503. [PMID: 9218495 DOI: 10.1074/jbc.272.29.18498] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The c-fes proto-oncogene encodes a non-receptor tyrosine kinase (Fes) that has been implicated in cytokine receptor signal transduction and myeloid differentiation. Previous work from our laboratory has shown that Fes autophosphorylates via an intermolecular mechanism more commonly associated with growth factor receptor tyrosine kinases. Analysis of the Fes amino acid sequence with the COILS algorithm indicates that the N-terminal region of the protein has a very high probability of forming coiled-coil structures often associated with oligomeric proteins. These findings suggest that oligomerization may be a prerequisite for trans-autophosphorylation and activation of Fes. To establish whether the active form of Fes is oligomeric, we performed gel-filtration experiments with recombinant Fes and found that it eluted as a single symmetrical peak of approximately 500 kDa. No evidence of the monomeric, 93-kDa form of the protein was observed. Deletion of the unique N-terminal domain (amino acids 1-450, including the coiled-coil homology region) completely abolished the formation of oligomers. Furthermore, co-precipitation assays demonstrated that an immobilized glutathione S-transferase fusion protein containing the Fes N-terminal region bound to full-length Fes but not to a mutant lacking the N-terminal region. Similarly, a recombinant Fes N-terminal domain protein was readily cross-linked in vitro, whereas the SH2 and kinase domains were refractory to cross-linking. Incubation of wild-type Fes with a kinase-inactive Fes mutant or with the isolated N-terminal region suppressed Fes autophosphorylation in vitro, suggesting that oligomerization may be essential for autophosphorylation of full-length Fes. The presence of an oligomerization function in the Fes family of tyrosine kinases suggests a novel mechanism for non-receptor protein-tyrosine kinase regulation.
Collapse
Affiliation(s)
- R D Read
- Eppley Institute for Research in Cancer and the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | | | |
Collapse
|