1
|
Kim CW, Lee JM, Park SW. Divergent roles of the regulatory subunits of class IA PI3K. Front Endocrinol (Lausanne) 2024; 14:1152579. [PMID: 38317714 PMCID: PMC10839044 DOI: 10.3389/fendo.2023.1152579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 12/11/2023] [Indexed: 02/07/2024] Open
Abstract
The regulatory subunit of phosphatidylinositol 3-kinase (PI3K), known as p85, is a critical component in the insulin signaling pathway. Extensive research has shed light on the diverse roles played by the two isoforms of p85, namely p85α and p85β. The gene pik3r1 encodes p85α and its variants, p55α and p50α, while pik3r2 encodes p85β. These isoforms exhibit various activities depending on tissue types, nutrient availability, and cellular stoichiometry. Whole-body or liver-specific deletion of pik3r1 have shown to display increased insulin sensitivity and improved glucose homeostasis; however, skeletal muscle-specific deletion of p85α does not exhibit any significant effects on glucose homeostasis. On the other hand, whole-body deletion of pik3r2 shows improved insulin sensitivity with no significant impact on glucose tolerance. Meanwhile, liver-specific double knockout of pik3r1 and pik3r2 leads to reduced insulin sensitivity and glucose tolerance. In the context of obesity, upregulation of hepatic p85α or p85β has been shown to improve glucose homeostasis. However, hepatic overexpression of p85α in the absence of p50α and p55α results in increased insulin resistance in obese mice. p85α and p85β have distinctive roles in cancer development. p85α acts as a tumor suppressor, but p85β promotes tumor progression. In the immune system, p85α facilitates B cell development, while p85β regulates T cell differentiation and maturation. This review provides a comprehensive overview of the distinct functions attributed to p85α and p85β, highlighting their significance in various physiological processes, including insulin signaling, cancer development, and immune system regulation.
Collapse
Affiliation(s)
- Cho-Won Kim
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Junsik M. Lee
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA, United States
| | - Sang Won Park
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Gregor T, Bosakova MK, Nita A, Abraham SP, Fafilek B, Cernohorsky NH, Rynes J, Foldynova-Trantirkova S, Zackova D, Mayer J, Trantirek L, Krejci P. Elucidation of protein interactions necessary for the maintenance of the BCR-ABL signaling complex. Cell Mol Life Sci 2020; 77:3885-3903. [PMID: 31820037 PMCID: PMC11104816 DOI: 10.1007/s00018-019-03397-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/05/2019] [Accepted: 11/26/2019] [Indexed: 10/25/2022]
Abstract
Many patients with chronic myeloid leukemia in deep remission experience return of clinical disease after withdrawal of tyrosine kinase inhibitors (TKIs). This suggests signaling of inactive BCR-ABL, which allows the survival of cancer cells, and relapse. We show that TKI treatment inhibits catalytic activity of BCR-ABL, but does not dissolve BCR-ABL core signaling complex, consisting of CRKL, SHC1, GRB2, SOS1, cCBL, p85a-PI3K, STS1 and SHIP2. Peptide microarray and co-immunoprecipitation results demonstrate that CRKL binds to proline-rich regions located in C-terminal, intrinsically disordered region of BCR-ABL, that SHC1 requires pleckstrin homology, src homology and tyrosine kinase domains of BCR-ABL for binding, and that BCR-ABL sequence motif located in disordered region around phosphorylated tyrosine 177 mediates binding of three core complex members, i.e., GRB2, SOS1, and cCBL. Further, SHIP2 binds to the src homology and tyrosine kinase domains of BCR-ABL and its inositol phosphatase activity contributes to BCR-ABL-mediated phosphorylation of SHC1. Together, this study characterizes protein-protein interactions within the BCR-ABL core complex and determines the contribution of particular BCR-ABL domains to downstream signaling. Understanding the structure and dynamics of BCR-ABL interactome is critical for the development of drugs targeting integrity of the BCR-ABL core complex.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Amino Acid Motifs
- Binding Sites
- Cell Line, Tumor
- Fusion Proteins, bcr-abl/chemistry
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- HEK293 Cells
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism
- Phosphorylation
- Protein Array Analysis
- Protein Binding/drug effects
- Protein Kinase Inhibitors/pharmacology
- Pyrimidines/pharmacology
- Signal Transduction/drug effects
- Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism
- src Homology Domains
Collapse
Affiliation(s)
- Tomas Gregor
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
| | - Michaela Kunova Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
- Institute of Animal Physiology and Genetics of the CAS, 60200, Brno, Czech Republic
| | - Alexandru Nita
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- Institute of Organic Chemistry and Biochemistry of the CAS, 16610, Prague, Czech Republic
| | - Sara P Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Bohumil Fafilek
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
- Institute of Animal Physiology and Genetics of the CAS, 60200, Brno, Czech Republic
| | - Nicole H Cernohorsky
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Jan Rynes
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | | | - Daniela Zackova
- Department of Internal Medicine, Hematology and Oncology, Masaryk University Hospital, 62500, Brno, Czech Republic
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and Oncology, Masaryk University Hospital, 62500, Brno, Czech Republic
| | - Lukas Trantirek
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic.
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic.
- Institute of Animal Physiology and Genetics of the CAS, 60200, Brno, Czech Republic.
| |
Collapse
|
3
|
Gainullin MR, Zhukov IY, Zhou X, Mo Y, Astakhova L, Ernberg I, Matskova L. Degradation of cofilin is regulated by Cbl, AIP4 and Syk resulting in increased migration of LMP2A positive nasopharyngeal carcinoma cells. Sci Rep 2017; 7:9012. [PMID: 28827787 PMCID: PMC5567079 DOI: 10.1038/s41598-017-09540-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/27/2017] [Indexed: 12/13/2022] Open
Abstract
Expression of cofilin is directly associated with metastatic activity in many tumors. Here, we studied the role of Latent Membrane Protein 2 A (LMP2A) of Epstein-Barr Virus (EBV) in the accumulation of cofilin observed in nasopharyngeal cancer (NPC) tumor cells. We used LMP2A transformed NPC cell lines to analyze cofilin expression. We used mutation analysis, ectopic expression and down-regulation of Cbl, AIP4 and Syk in these cell lines to determine the effect of the LMP2A viral protein on cofilin degradation and its role in the assembly of a cofilin degrading protein complex. The LMP2A of EBV was found to interfer with cofilin degradation in NPC cells by accelerating the proteasomal degradation of Cbl and Syk. In line with this, we found significantly higher cofilin expression in NPC tumor samples as compared to the surrounding epithelial tissues. Cofilin, as an actin severing protein, influences cellular plasticity, and facilitates cellular movement in response to oncogenic stimuli. Thus, under relaxed cellular control, cofilin facilitates tumor cell movement and dissemination. Interference with its degradation may enhance the metastatic potential of NPC cells.
Collapse
Affiliation(s)
- Murat R Gainullin
- Central Research Laboratory, Nizhniy Novgorod State Medical Academy, Nizhniy Novgorod, Minin Sq. 10/1, 603005, Russia.,Institute of Information Technology, Mathematics and Mechanics, Nizhniy Novgorod State University, Nizhniy Novgorod, Gagarin Av. 23, 603950, Russia
| | - Ilya Yu Zhukov
- Central Research Laboratory, Nizhniy Novgorod State Medical Academy, Nizhniy Novgorod, Minin Sq. 10/1, 603005, Russia.,Institute of Biology and Biomedicine, Nizhniy Novgorod State University, Nizhniy Novgorod, Gagarin Av. 23, 603950, Russia
| | - Xiaoying Zhou
- Medical Research Center, Guangxi Medical University, Nanning, China
| | - Yingxi Mo
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Lidiia Astakhova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Sweden.,Institute of Food Science and Technology, Kemerovo, Russia
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Sweden
| | - Liudmila Matskova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Sweden.
| |
Collapse
|
4
|
Nadeau SA, An W, Mohapatra BC, Mushtaq I, Bielecki TA, Luan H, Zutshi N, Ahmad G, Storck MD, Sanada M, Ogawa S, Band V, Band H. Structural Determinants of the Gain-of-Function Phenotype of Human Leukemia-associated Mutant CBL Oncogene. J Biol Chem 2017; 292:3666-3682. [PMID: 28082680 DOI: 10.1074/jbc.m116.772723] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Indexed: 01/19/2023] Open
Abstract
Mutations of the tyrosine kinase-directed ubiquitin ligase CBL cause myeloid leukemias, but the molecular determinants of the dominant leukemogenic activity of mutant CBL oncogenes are unclear. Here, we first define a gain-of-function attribute of the most common leukemia-associated CBL mutant, Y371H, by demonstrating its ability to increase proliferation of hematopoietic stem/progenitor cells (HSPCs) derived from CBL-null and CBL/CBL-B-null mice. Next, we express second-site point/deletion mutants of CBL-Y371H in CBL/CBL-B-null HSPCs or the cytokine-dependent human leukemic cell line TF-1 to show that individual or combined Tyr → Phe mutations of established phosphotyrosine residues (Tyr-700, Tyr-731, and Tyr-774) had little impact on the activity of the CBL-Y371H mutant in HSPCs, and the triple Tyr → Phe mutant was only modestly impaired in TF-1 cells. In contrast, intact tyrosine kinase-binding (TKB) domain and proline-rich region (PRR) were critical in both cell models. PRR deletion reduced the stem cell factor (SCF)-induced hyper-phosphorylation of the CBL-Y371H mutant and the c-KIT receptor and eliminated the sustained p-ERK1/2 and p-AKT induction by SCF. GST fusion protein pulldowns followed by phospho-specific antibody array analysis identified distinct CBL TKB domains or PRR-binding proteins that are phosphorylated in CBL-Y371H-expressing TF-1 cells. Our results support a model of mutant CBL gain-of-function in which mutant CBL proteins effectively compete with the remaining wild type CBL-B and juxtapose TKB domain-associated PTKs with PRR-associated signaling proteins to hyper-activate signaling downstream of hematopoietic growth factor receptors. Elucidation of mutant CBL domains required for leukemogenesis should facilitate targeted therapy approaches for patients with mutant CBL-driven leukemias.
Collapse
Affiliation(s)
- Scott A Nadeau
- From the Eppley Institute for Research in Cancer and Allied Diseases.,the Departments of Genetics, Cell Biology and Anatomy
| | - Wei An
- From the Eppley Institute for Research in Cancer and Allied Diseases.,the Departments of Genetics, Cell Biology and Anatomy
| | - Bhopal C Mohapatra
- From the Eppley Institute for Research in Cancer and Allied Diseases.,Biochemistry and Molecular Biology
| | - Insha Mushtaq
- From the Eppley Institute for Research in Cancer and Allied Diseases.,Pathology and Microbiology, College of Medicine, and
| | | | - Haitao Luan
- From the Eppley Institute for Research in Cancer and Allied Diseases.,the Departments of Genetics, Cell Biology and Anatomy
| | - Neha Zutshi
- From the Eppley Institute for Research in Cancer and Allied Diseases.,Pathology and Microbiology, College of Medicine, and
| | - Gulzar Ahmad
- From the Eppley Institute for Research in Cancer and Allied Diseases
| | - Matthew D Storck
- From the Eppley Institute for Research in Cancer and Allied Diseases
| | - Masashi Sanada
- the Department of Pathology and Tumor Biology, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Seishi Ogawa
- the Department of Pathology and Tumor Biology, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Vimla Band
- From the Eppley Institute for Research in Cancer and Allied Diseases.,the Departments of Genetics, Cell Biology and Anatomy.,the Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198 and
| | - Hamid Band
- From the Eppley Institute for Research in Cancer and Allied Diseases, .,the Departments of Genetics, Cell Biology and Anatomy.,Biochemistry and Molecular Biology.,Pathology and Microbiology, College of Medicine, and.,the Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198 and
| |
Collapse
|
5
|
Kang MM, Shan SL, Wen XY, Shan HS, Wang ZJ. Tumor-Suppression Mechanisms of Protein Tyrosine Phosphatase O and Clinical Applications. Asian Pac J Cancer Prev 2015; 16:6215-23. [PMID: 26434819 DOI: 10.7314/apjcp.2015.16.15.6215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Tyrosine phosphorylation plays an important role in regulating human physiological and pathological processes. Functional stabilization of tyrosine phosphorylation largely contributes to the balanced, coordinated regulation of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Research has revealed PTPs play an important suppressive role in carcinogenesis and progression by reversing oncoprotein functions. Receptor-type protein tyrosine phosphatase O (PTPRO) as one member of the PTPs family has also been identified to have some roles in tumor development. Some reports have shown PTPRO over-expression in tumors can not only inhibit the frequency of tumor cell division and induce tumor cell death, but also suppress migration. However, the tumor-suppression mechanisms are very complex and understanding is incomplete, which in some degree blocks the further development of PTPRO. Hence, in order to resolve this problem, we here have summarized research findings to draw meaningful conclusions. We found tumor-suppression mechanisms of PTPRO to be diverse, such as controlling G0/G1 of the tumor cell proliferation cycle, inhibiting substrate phosphorylation, down-regulating transcription activators and other activities. In clinical anticancer efforts, expression level of PTPRO in tumors can not only serve as a biomarker to monitor the prognosis of patients, but act as an epigenetic biomarker for noninvasive diagnosis. In addition, the re-activation of PTPRO in tumor tissues, not only can induce tumor volume reduction, but also enhance the susceptibility to chemotherapy drugs. So, we can propose that these research findings of PTPRO will not only support new study ideas and directions for other tumor- suppressors, importantly, but also supply a theoretical basis for researching new molecular targeting agents in the future.
Collapse
Affiliation(s)
- Man-Man Kang
- The Center of Radiation Oncology, the 82th Hospital of People's Liberation Army of China, Huaian, Jiangsu, China E-mail : ,
| | | | | | | | | |
Collapse
|
6
|
Joshi S, Singh AR, Zulcic M, Durden DL. A PKC-SHP1 signaling axis desensitizes Fcγ receptor signaling by reducing the tyrosine phosphorylation of CBL and regulates FcγR mediated phagocytosis. BMC Immunol 2014; 15:18. [PMID: 24886428 PMCID: PMC4017086 DOI: 10.1186/1471-2172-15-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fcγ receptors mediate important biological signals in myeloid cells including the ingestion of microorganisms through a process of phagocytosis. It is well-known that Fcγ receptor (FcγR) crosslinking induces the tyrosine phosphorylation of CBL which is associated with FcγR mediated phagocytosis, however how signaling molecules coordinate to desensitize these receptors is unclear. An investigation of the mechanisms involved in receptor desensitization will provide new insight into potential mechanisms by which signaling molecules may downregulate tyrosine phosphorylation dependent signaling events to terminate important signaling processes. RESULTS Using the U937IF cell line, we observed that FcγR1 crosslinking induces the tyrosine phosphorylation of CBL, which is maximal at 5 min. followed by a kinetic pattern of dephosphorylation. An investigation of the mechanisms involved in receptor desensitization revealed that pretreatment of U937IF or J774 cells with PMA followed by Fcγ receptor crosslinking results in the reduced tyrosine phosphorylation of CBL and the abrogation of downstream signals, such as CBL-CRKL binding, Rac-GTP activation and the phagocytic response. Pretreatment of J774 cells with GF109203X, a PKC inhibitor was observed to block dephosphorylation of CBL and rescued the phagocytic response. We demonstrate that the PKC induced desensitization of FcγR/ phagocytosis is associated with the inactivation of Rac-GTP, which is deactivated in a hematopoietic specific phosphatase SHP1 dependent manner following ITAM stimulation. The effect of PKC on FcγR signaling is augmented by the transfection of catalytically active SHP1 and not by the transfection of catalytic dead SHP1 (C124S). CONCLUSIONS Our results suggest a functional model by which PKC interacts with SHP1 to affect the phosphorylation state of CBL, the activation state of Rac and the negative regulation of ITAM signaling i.e. Fcγ receptor mediated phagocytosis. These findings suggest a mechanism for Fcγ receptor desensitization by which a serine-threonine kinase e.g. PKC downregulates tyrosine phosphorylation dependent signaling events via the reduced tyrosine phosphorylation of the complex adapter protein, CBL.
Collapse
Affiliation(s)
| | | | | | - Donald L Durden
- UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California School of Medicine, San Diego, CA 92093, USA.
| |
Collapse
|
7
|
Nadeau S, An W, Palermo N, Feng D, Ahmad G, Dong L, Borgstahl GEO, Natarajan A, Naramura M, Band V, Band H. Oncogenic Signaling by Leukemia-Associated Mutant Cbl Proteins. ACTA ACUST UNITED AC 2013; Suppl 6. [PMID: 23997989 DOI: 10.4172/2161-1009.s6-001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Members of the Cbl protein family (Cbl, Cbl-b, and Cbl-c) are E3 ubiquitin ligases that have emerged as critical negative regulators of protein tyrosine kinase (PTK) signaling. This function reflects their ability to directly interact with activated PTKs and to target them as well as their associated signaling components for ubiquitination. Given the critical roles of PTK signaling in driving oncogenesis, recent studies in animal models and genetic analyses in human cancer have firmly established that Cbl proteins function as tumor suppressors. Missense mutations or small in-frame deletions within the regions of Cbl protein that are essential for its E3 activity have been identified in nearly 5% of leukemia patients with myelodysplastic/myeloproliferative disorders. Based on evidence from cell culture studies, in vivo models and clinical data, we discuss the potential signaling mechanisms of mutant Cbl-driven oncogenesis. Mechanistic insights into oncogenic Cbl mutants and associated animal models are likely to enhance our understanding of normal hematopoietic stem cell homeostasis and provide avenues for targeted therapy of mutant Cbl-driven cancers.
Collapse
Affiliation(s)
- Scott Nadeau
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center Omaha, NE 68198-5950, USA ; Departments of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, 985950 Nebraska Medical Center Omaha, NE 68198-5950, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Mohapatra B, Ahmad G, Nadeau S, Zutshi N, An W, Scheffe S, Dong L, Feng D, Goetz B, Arya P, Bailey TA, Palermo N, Borgstahl GEO, Natarajan A, Raja SM, Naramura M, Band V, Band H. Protein tyrosine kinase regulation by ubiquitination: critical roles of Cbl-family ubiquitin ligases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:122-39. [PMID: 23085373 DOI: 10.1016/j.bbamcr.2012.10.010] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/05/2012] [Accepted: 10/08/2012] [Indexed: 12/20/2022]
Abstract
Protein tyrosine kinases (PTKs) coordinate a broad spectrum of cellular responses to extracellular stimuli and cell-cell interactions during development, tissue homeostasis, and responses to environmental challenges. Thus, an understanding of the regulatory mechanisms that ensure physiological PTK function and potential aberrations of these regulatory processes during diseases such as cancer are of broad interest in biology and medicine. Aside from the expected role of phospho-tyrosine phosphatases, recent studies have revealed a critical role of covalent modification of activated PTKs with ubiquitin as a critical mechanism of their negative regulation. Members of the Cbl protein family (Cbl, Cbl-b and Cbl-c in mammals) have emerged as dominant "activated PTK-selective" ubiquitin ligases. Structural, biochemical and cell biological studies have established that Cbl protein-dependent ubiquitination targets activated PTKs for degradation either by facilitating their endocytic sorting into lysosomes or by promoting their proteasomal degradation. This mechanism also targets PTK signaling intermediates that become associated with Cbl proteins in a PTK activation-dependent manner. Cellular and animal studies have established that the relatively broadly expressed mammalian Cbl family members Cbl and Cbl-b play key physiological roles, including their critical functions to prevent the transition of normal immune responses into autoimmune disease and as tumor suppressors; the latter function has received validation from human studies linking mutations in Cbl to human leukemia. These newer insights together with embryonic lethality seen in mice with a combined deletion of Cbl and Cbl-b genes suggest an unappreciated role of the Cbl family proteins, and by implication the ubiquitin-dependent control of activated PTKs, in stem/progenitor cell maintenance. Future studies of existing and emerging animal models and their various cell lineages should help test the broader implications of the evolutionarily-conserved Cbl family protein-mediated, ubiquitin-dependent, negative regulation of activated PTKs in physiology and disease.
Collapse
Affiliation(s)
- Bhopal Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Mohapatra B, Ahmad G, Nadeau S, Zutshi N, An W, Scheffe S, Dong L, Feng D, Goetz B, Arya P, Bailey TA, Palermo N, Borgstahl GEO, Natarajan A, Raja SM, Naramura M, Band V, Band H. Protein tyrosine kinase regulation by ubiquitination: critical roles of Cbl-family ubiquitin ligases. BIOCHIMICA ET BIOPHYSICA ACTA 2012. [PMID: 23085373 DOI: 10.1016/j.bbamcr] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Protein tyrosine kinases (PTKs) coordinate a broad spectrum of cellular responses to extracellular stimuli and cell-cell interactions during development, tissue homeostasis, and responses to environmental challenges. Thus, an understanding of the regulatory mechanisms that ensure physiological PTK function and potential aberrations of these regulatory processes during diseases such as cancer are of broad interest in biology and medicine. Aside from the expected role of phospho-tyrosine phosphatases, recent studies have revealed a critical role of covalent modification of activated PTKs with ubiquitin as a critical mechanism of their negative regulation. Members of the Cbl protein family (Cbl, Cbl-b and Cbl-c in mammals) have emerged as dominant "activated PTK-selective" ubiquitin ligases. Structural, biochemical and cell biological studies have established that Cbl protein-dependent ubiquitination targets activated PTKs for degradation either by facilitating their endocytic sorting into lysosomes or by promoting their proteasomal degradation. This mechanism also targets PTK signaling intermediates that become associated with Cbl proteins in a PTK activation-dependent manner. Cellular and animal studies have established that the relatively broadly expressed mammalian Cbl family members Cbl and Cbl-b play key physiological roles, including their critical functions to prevent the transition of normal immune responses into autoimmune disease and as tumor suppressors; the latter function has received validation from human studies linking mutations in Cbl to human leukemia. These newer insights together with embryonic lethality seen in mice with a combined deletion of Cbl and Cbl-b genes suggest an unappreciated role of the Cbl family proteins, and by implication the ubiquitin-dependent control of activated PTKs, in stem/progenitor cell maintenance. Future studies of existing and emerging animal models and their various cell lineages should help test the broader implications of the evolutionarily-conserved Cbl family protein-mediated, ubiquitin-dependent, negative regulation of activated PTKs in physiology and disease.
Collapse
Affiliation(s)
- Bhopal Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hatton O, Lambert SL, Krams SM, Martinez OM. Src kinase and Syk activation initiate PI3K signaling by a chimeric latent membrane protein 1 in Epstein-Barr virus (EBV)+ B cell lymphomas. PLoS One 2012; 7:e42610. [PMID: 22880054 PMCID: PMC3411813 DOI: 10.1371/journal.pone.0042610] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 07/09/2012] [Indexed: 02/06/2023] Open
Abstract
The B lymphotrophic γ-herpesvirus EBV is associated with a variety of lymphoid- and epithelial-derived malignancies, including B cell lymphomas in immunocompromised and immunosuppressed individuals. The primary oncogene of EBV, latent membrane protein 1 (LMP1), activates the PI3K/Akt pathway to induce the autocrine growth factor, IL-10, in EBV-infected B cells, but the mechanisms underlying PI3K activation remain incompletely understood. Using small molecule inhibition and siRNA strategies in human B cell lines expressing a chimeric, signaling-inducible LMP1 protein, nerve growth factor receptor (NGFR)-LMP1, we show that NGFR-LMP1 utilizes Syk to activate PI3K/Akt signaling and induce IL-10 production. NGFR-LMP1 signaling induces phosphorylation of BLNK, a marker of Syk activation. Whereas Src kinases are often required for Syk activation, we show here that PI3K/Akt activation and autocrine IL-10 production by NGFR-LMP1 involves the Src family kinase Fyn. Finally, we demonstrate that NGFR-LMP1 induces phosphorylation of c-Cbl in a Syk- and Fyn-dependent fashion. Our results indicate that the EBV protein LMP1, which lacks the canonical ITAM required for Syk activation, can nevertheless activate Syk, and the Src kinase Fyn, resulting in downstream c-Cbl and PI3K/Akt activation. Fyn, Syk, and PI3K/Akt antagonists thus may present potential new therapeutic strategies that target the oncogene LMP1 for treatment of EBV+ B cell lymphomas.
Collapse
Affiliation(s)
- Olivia Hatton
- Program in Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Surgery/Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, California, United States of America
| | - Stacie L. Lambert
- Program in Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Surgery/Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sheri M. Krams
- Program in Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Surgery/Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, California, United States of America
| | - Olivia M. Martinez
- Program in Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Surgery/Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
11
|
CIN85 is required for Cbl-mediated regulation of antigen receptor signaling in human B cells. Blood 2012; 119:2263-73. [PMID: 22262777 DOI: 10.1182/blood-2011-04-351965] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The aberrant regulation of B-cell receptor (BCR) signaling allows unwanted B cells to persist, thereby potentially leading to autoimmunity and B-cell malignancies. Casitas B-lineage lymphoma (Cbl) proteins suppress BCR signaling; however, the molecular mechanisms that control Cbl function in human B cells remain unclear. Here, we demonstrate that CIN85 (c-Cbl interacting protein of 85 kDa) is constitutively associated with c-Cbl, Cbl-b, and B-cell linker in B cells. Experiments using CIN85-overexpressing and CIN85-knockdown B-cell lines revealed that CIN85 increased c-Cbl phosphorylation and inhibited BCR-induced calcium flux and phosphorylation of Syk and PLCγ2, whereas it did not affect BCR internalization. The Syk phosphorylation in CIN85-overexpressing and CIN85-knockdown cells was inversely correlated with the ubiquitination and degradation of Syk. Moreover, CIN85 knockdown in primary B cells enhanced BCR-induced survival and growth, and increased the expression of BcLxL, A1, cyclin D2, and myc. Following the stimulation of BCR and Toll-like receptor 9, B-cell differentiation- associated molecules were up-regulated in CIN85-knockdown cells. Together, these results suggest that CIN85 is required for Cbl-mediated regulation of BCR signaling and for downstream events such as survival, growth, and differentiation of human B cells.
Collapse
|
12
|
Schnyder T, Castello A, Feest C, Harwood NE, Oellerich T, Urlaub H, Engelke M, Wienands J, Bruckbauer A, Batista FD. B cell receptor-mediated antigen gathering requires ubiquitin ligase Cbl and adaptors Grb2 and Dok-3 to recruit dynein to the signaling microcluster. Immunity 2011; 34:905-18. [PMID: 21703542 DOI: 10.1016/j.immuni.2011.06.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 02/11/2011] [Accepted: 03/23/2011] [Indexed: 12/11/2022]
Abstract
The B cell receptor (BCR) mediates B cell antigen gathering and acquisition for presentation to T cells. Although the amount of antigen presentation to T cells determines the extent of B cell activation, the molecular mechanisms underlying antigen gathering remain unexplored. Here, through a combination of high-resolution imaging, genetics and quantitative mass spectrometry, we demonstrate that adaptors Grb2 and Dok-3, and ubiquitin ligase Cbl in signaling BCR microclusters mediate association with the microtubule motor dynein. Furthermore, we visualize the localization and movement of these microclusters on the underlying microtubule network. Importantly, disruption of this network or diminished dynein recruitment in Grb2-, Dok-3-, or Cbl-deficient B cells, does not influence microcluster formation or actin-dependent spreading, but abrogates directed movement of microclusters and antigen accumulation. Thus we identify a surprising but pivotal role for dynein and the microtubule network alongside Grb2, Dok-3, and Cbl in antigen gathering during B cell activation.
Collapse
Affiliation(s)
- Tim Schnyder
- Lymphocyte Interaction Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chiang J, Hodes RJ. Cbl enforces Vav1 dependence and a restricted pathway of T cell development. PLoS One 2011; 6:e18542. [PMID: 21490975 PMCID: PMC3072394 DOI: 10.1371/journal.pone.0018542] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 03/03/2011] [Indexed: 11/29/2022] Open
Abstract
Extensive studies of pre-TCR- and TCR-dependent signaling have led to characterization of a pathway deemed essential for efficient T cell development, and comprised of a cascade of sequential events involving phosphorylation of Lck and ZAP-70, followed by phosphorylation of LAT and SLP-76, and subsequent additional downstream events. Of interest, however, reports from our lab as well as others have indicated that the requirements for ZAP-70, LAT, and SLP-76 are partially reversed by inactivation of c-Cbl (Cbl), an E3 ubiquitin ligase that targets multiple molecules for ubiquitination and degradation. Analysis of signaling events in these Cbl knockout models, including the recently reported analysis of SLP-76 transgenes defective in interaction with Vav1, suggested that activation of Vav1 might be a critical event in alternative pathways of T cell development. To extend the analysis of signaling requirements for thymic development, we have therefore assessed the effect of Cbl inactivation on the T cell developmental defects that occur in Vav1-deficient mice. The defects in Vav1-deficient thymic development, including a marked defect in DN3-DN4 transition, were completely reversed by Cbl inactivation, accompanied by enhanced phosphorylation of PLC-γ1 and ERKs in response to pre-TCR/TCR cross-linking of Vav1-/-Cbl-/- DP thymocytes. Taken together, these results suggest a substantially modified paradigm for pre-TCR/TCR signaling and T cell development. The observed consensus pathways of T cell development, including requirements for ZAP-70, LAT, SLP-76, and Vav1, appear to reflect the restriction by Cbl of an otherwise much broader set of molecular pathways capable of mediating T cell development.
Collapse
Affiliation(s)
- Jeffrey Chiang
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America.
| | | |
Collapse
|
14
|
Abstract
The growth factor receptor-bound protein 2 (Grb2) is a ubiquitously expressed and evolutionary conserved adapter protein possessing a plethora of described interaction partners for the regulation of signal transduction. In B lymphocytes, the Grb2-mediated scaffolding function controls the assembly and subcellular targeting of activating as well as inhibitory signalosomes in response to ligation of the antigen receptor. Also, integration of simultaneous signals from B-cell coreceptors that amplify or attenuate antigen receptor signal output relies on Grb2. Hence, Grb2 is an essential signal integrator. The key question remains, however, of how pathway specificity can be maintained during signal homeostasis critically required for the balance between immune cell activation and tolerance induction. Here, we summarize the molecular network of Grb2 in B cells and introduce a proteomic approach to elucidate the interactome of Grb2 in vivo.
Collapse
Affiliation(s)
- Konstantin Neumann
- Institute of Cellular and Molecular Immunology, Georg August University of Göttingen, Göttingen, Germany
| | | | | | | |
Collapse
|
15
|
Finetti F, Savino MT, Baldari CT. Positive and negative regulation of antigen receptor signaling by the Shc family of protein adapters. Immunol Rev 2010; 232:115-34. [PMID: 19909360 DOI: 10.1111/j.1600-065x.2009.00826.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Shc adapter family includes four members that are expressed as multiple isoforms and participate in signaling by a variety of cell-surface receptors. The biological relevance of Shc proteins as well as their variegated function, which relies on their highly conserved modular structure, is underscored by the distinct and dramatic phenotypic alterations resulting from deletion of individual Shc isoforms both in the mouse and in two model organisms, Drosophila melanogaster and Caenorhabditis elegans. The p52 isoform of ShcA couples antigen and cytokine receptors to Ras activation in both lymphoid and myeloid cells. However, the recognition of the spectrum of activities of p52ShcA in the immune system has been steadily expanding in recent years to other fundamental processes both at the cell and organism levels. Two other Shc family members, p66ShcA and p52ShcC/Rai, have been identified recently in T and B lymphocytes, where they antagonize survival and attenuate antigen receptor signaling. These developments reveal an unexpected and complex interplay of multiple Shc proteins in lymphocytes.
Collapse
Affiliation(s)
- Francesca Finetti
- Department of Evolutionary Biology, University of Siena, Siena, Italy
| | | | | |
Collapse
|
16
|
Daniel JL, Dangelmaier CA, Mada S, Buitrago L, Jin J, Langdon WY, Tsygankov AY, Kunapuli SP, Sanjay A. Cbl-b is a novel physiologic regulator of glycoprotein VI-dependent platelet activation. J Biol Chem 2010; 285:17282-91. [PMID: 20400514 DOI: 10.1074/jbc.m109.080200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cbl-b, a member of the Cbl family of E3 ubiquitin ligases, plays an important role in the activation of lymphocytes. However, its function in platelets remains unknown. We show that Cbl-b is expressed in human platelets along with c-Cbl, but in contrast to c-Cbl, it is not tyrosine-phosphorylated upon glycoprotein VI (GPVI) stimulation. Cbl-b, unlike c-Cbl, is not required for Syk ubiquitylation downstream of GPVI activation. Phospholipase Cgamma2 (PLCgamma2) and Bruton's tyrosine kinase (BTK) are constituently associated with Cbl-b. Cbl-b-deficient (Cbl-b(-/-)) platelets display an inhibition in the concentration-response curve for GPVI-specific agonist-induced aggregation, secretion, and Ca(2+) mobilization. A parallel inhibition is found for activation of PLCgamma2 and BTK. However, Syk activation is not affected by the absence of Cbl-b, indicating that Cbl-b acts downstream of Syk but upstream of BTK and PLCgamma2. When Cbl-b(-/-) mice were tested in the ferric chloride thrombosis model, occlusion time was increased and clot stability was reduced compared with wild type controls. These data indicate that Cbl-b plays a positive modulatory role in GPVI-dependent platelet signaling, which translates to an important regulatory role in hemostasis and thrombosis in vivo.
Collapse
Affiliation(s)
- James L Daniel
- Department of Anatomy, Sol Sherry Thrombosis Research Center, Temple University, Philadelphia, Pennsylvania 19140, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Jacob M, Todd L, Sampson MF, Puré E. Dual role of Cbl links critical events in BCR endocytosis. Int Immunol 2008; 20:485-97. [PMID: 18283045 DOI: 10.1093/intimm/dxn010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Receptor endocytosis down-regulates ligand-induced signaling in a timely manner and depends on cytoskeletal remodeling. In B lymphocytes, internalization of B cell receptors (BCRs) is also critical to antigen presentation. However, the mechanisms underlying BCR endocytosis are not fully understood. Similarly, the molecular mechanisms linking endocytosis to cytoskeletal remodeling remain poorly defined. We used flow cytometry, pull-down assays, immunochemistry and fluorescence microscopy to investigate BCR internalization in the DT40 B cell line. We demonstrate that ablation of Cbl impacts BCR endocytosis and the underlying cytoskeletal dynamics. Specifically, we demonstrate that ligand-induced endocytosis is impaired in Cbl-/- cells and that the ubiquitin ligase activity is required for Cbl to promote endocytosis. We also show that phosphorylation of CrkII, activation of Rac downstream of CrkII and BCR capping require Cbl. Furthermore, we show that the association of Cbl and CrkII requires phosphorylation of Cbl, but not its ubiquitin ligase activity. Our data indicate that Cbl promotes BCR endocytosis and attenuates ligand-induced signaling by virtue of its ability to orchestrate receptor ubiquitylation and cytoskeletal dynamics.
Collapse
Affiliation(s)
- Michele Jacob
- Wistar Institute and Ludwig Institute for Cancer Research, 3601 Spruce Street, Philadelphia, PA 19104-4268, USA.
| | | | | | | |
Collapse
|
18
|
Fasen K, Cerretti DP, Huynh-Do U. Ligand binding induces Cbl-dependent EphB1 receptor degradation through the lysosomal pathway. Traffic 2007; 9:251-66. [PMID: 18034775 DOI: 10.1111/j.1600-0854.2007.00679.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Eph receptor tyrosine kinases play a critical role in embryonic patterning and angiogenesis. In the adult, they are involved in carcinogenesis and pathological neovascularization. However, the mechanisms underlying their role in tumor formation and metastasis remain to be defined. Here, we demonstrated that stimulation of EphB1 with ephrinB1/Fc led to a marked downregulation of EphB1 protein, a process blocked by the lysosomal inhibitor bafilomycin. Following ephrinB1 stimulation, the ubiquitin ligase Cbl was recruited by EphB1 and then phosphorylated. Both Cbl phosphorylation and EphB1 ubiquitination were blocked by the Src inhibitor PP2. Overexpression of wild-type Cbl, but not of 70Z mutant lacking ligase activity, enhanced EphB1 ubiquitination and degradation. This negative regulation required the tyrosine kinase activity of EphB1 as kinase-dead EphB1-K652R was resistant to Cbl. Glutathione S-transferase binding experiments showed that Cbl bound to EphB1 through its tyrosine kinase-binding domain. In aggregate, we demonstrated that Cbl induces the ubiquitination and lysosomal degradation of activated EphB1, a process requiring EphB1 and Src kinase activity. To our knowledge, this is the first study dissecting the molecular mechanisms leading to EphB1 downregulation, thus paving the way to new means of modulating their angiogenic and tumorigenic properties.
Collapse
Affiliation(s)
- Katrin Fasen
- Division of Nephrology and Department of Clinical Research, University of Bern Medical School, Inselspital, CH-3010 Bern, Switzerland
| | | | | |
Collapse
|
19
|
ZAP-70 enhances IgM signaling independent of its kinase activity in chronic lymphocytic leukemia. Blood 2007; 111:2685-92. [PMID: 18048647 DOI: 10.1182/blood-2006-12-062265] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We transduced chronic lymphocytic leukemia (CLL) cells lacking ZAP-70 with vectors encoding ZAP-70 or various mutant forms of ZAP-70 and monitored the response of transduced CLL cells to treatment with F(ab)(2) anti-IgM (anti-mu). CLL cells made to express ZAP-70, a kinase-defective ZAP-70 (ZAP-70-KA(369)), or a ZAP-70 unable to bind c-Cbl (ZAP-YF(292)) experienced greater intracellular calcium flux and had greater increases in the levels of phosphorylated p72(Syk), B-cell linker protein (BLNK), and phospholipase C-gamma, and greater activation of the Ig accessory molecule CD79b in response to treatment with anti-mu than did mock-transfected CLL cells lacking ZAP-70. Transfection of CLL cells with vectors encoding truncated forms of ZAP-70 revealed that the SH2 domain, but not the SH1 domain, was necessary to enhance intracellular calcium flux in response to treatment with anti-mu. We conclude that ZAP-70 most likely acts as an adapter protein that facilitates B-cell receptor (BCR) signaling in CLL cells independent of its tyrosine kinase activity or its ability to interact with c-Cbl.
Collapse
|
20
|
Zha Y, Gajewski TF. An adenoviral vector encoding dominant negative Cbl lowers the threshold for T cell activation in post-thymic T cells. Cell Immunol 2007; 247:95-102. [PMID: 17897636 PMCID: PMC3286639 DOI: 10.1016/j.cellimm.2007.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 07/03/2007] [Accepted: 07/30/2007] [Indexed: 10/22/2022]
Abstract
Cbl family ubiquitin ligases act as key negative regulators of TCR signaling. Knockout mice lacking Cbl-b and c-Cbl show augmented T cell activation and CD28-independent IL-2 production. In order to study Cbl function directly in post-thymic T cells, a DN Cbl adenovirus was generated for transduction of T cells from Coxsackie/adenovirus receptor (CAR) transgenic (Tg) mice. We show that dominant negative (DN) Cbl-transduced CD4+ T cells exhibited enhanced IL-2 production upon TCR/CD28 engagement compared with empty adenoviral vector-transduced cells. This augmentation was reflected at both IL-2 mRNA and protein level, and correlated with increased protein phosphorylation of Vav, Akt, ERK, and p38MAPK. Our results indicate that introduction of dominant negative Cbl can potentiate activation of post-thymic CD4+ T cells, which argues for development of strategies to interfere with Cbl function as a method of immunopotentiation.
Collapse
Affiliation(s)
- Yuanyuan Zha
- Department of Pathology, University of Chicago, Chicago, IL 60637
| | - Thomas F. Gajewski
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Medicine, University of Chicago, Chicago, IL 60637
| |
Collapse
|
21
|
Song H, Zhang J, Chiang YJ, Siraganian RP, Hodes RJ. Redundancy in B Cell Developmental Pathways: c-Cbl Inactivation Rescues Early B Cell Development through a B Cell Linker Protein-Independent Pathway. THE JOURNAL OF IMMUNOLOGY 2007; 178:926-35. [PMID: 17202354 DOI: 10.4049/jimmunol.178.2.926] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Deficiency in the adaptor protein B cell linker protein (BLNK) results in a substantial but incomplete block in B cell development, suggesting that alternative pathways exist for B lineage differentiation. Another adaptor protein, c-Cbl, plays a negative regulatory role in several BCR-signaling pathways. We therefore investigated the role of c-Cbl during B cell development and addressed the possibility that redundancies in pathways for B cell differentiation could be further revealed by eliminating negative effects mediated by c-Cbl. Strikingly, c-Cbl inactivation reversed a number of the critical defects in early B cell differentiation that are seen in BLNK-deficient mice. c-Cbl(-/-)BLNK(-/-) mice exhibited normalized down-regulation of pre-BCR and CD43, up-regulation of MHC class II, and augmented L chain rearrangement, resulting in a successful transition from pre-B cells to immature B cells. c-Cbl inactivation also reversed the potentially tumor-predisposing hyperproliferative response of BLNK(-/-) pre-B cells to IL-7. Pre-BCR cross-linking induced enhanced and prolonged tyrosine phosphorylation in c-Cbl(-/-)BLNK(-/-) pre-BCR(+) pre-B cells compared with c-Cbl(+/-)BLNK(-/-) cells, including elevated phosphorylation of Lyn, Syk, Btk, and phospholipase C-gamma2. Our studies suggest that some, but not all, pre-BCR-triggered developmental events can be mediated by BLNK-independent pathways that are negatively regulated by c-Cbl, and further suggest that different events during early B cell development require different strength or duration of pre-BCR signaling.
Collapse
Affiliation(s)
- Haifeng Song
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
22
|
Wossning T, Herzog S, Köhler F, Meixlsperger S, Kulathu Y, Mittler G, Abe A, Fuchs U, Borkhardt A, Jumaa H. Deregulated Syk inhibits differentiation and induces growth factor-independent proliferation of pre-B cells. ACTA ACUST UNITED AC 2006; 203:2829-40. [PMID: 17130299 PMCID: PMC2118175 DOI: 10.1084/jem.20060967] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The nonreceptor protein spleen tyrosine kinase (Syk) is a key mediator of signal transduction in a variety of cell types, including B lymphocytes. We show that deregulated Syk activity allows growth factor–independent proliferation and transforms bone marrow–derived pre–B cells that are then able to induce leukemia in mice. Syk-transformed pre–B cells show a characteristic pattern of tyrosine phosphorylation, increased c-Myc expression, and defective differentiation. Treatment of Syk-transformed pre–B cells with a novel Syk-specific inhibitor (R406) reduces tyrosine phosphorylation and c-Myc expression. In addition, R406 treatment removes the developmental block and allows the differentiation of the Syk-transformed pre–B cells into immature B cells. Because R406 treatment also prevents the proliferation of c-Myc–transformed pre–B cells, our data indicate that endogenous Syk kinase activity may be required for the survival of pre–B cells transformed by other oncogenes. Collectively, our data suggest that Syk is a protooncogene involved in the transformation of lymphocytes, thus making Syk a potential target for the treatment of leukemia.
Collapse
Affiliation(s)
- Thomas Wossning
- Institute of Biology III, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, and Department of Pediatric Hematology and Oncology, Children's Hospital, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Samaan A, . EH, . WM. Differential Phosphorylation of c-Cbl in Leukemogenic and Nonleukemogenic HTLV-I Cell Lines. ACTA ACUST UNITED AC 2005. [DOI: 10.3923/ijv.2006.39.49] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Affiliation(s)
- Simrit Parmar
- Robert H Lurie Comprehensive Cancer Center, Division of Hematology-Onocology, Northwestern University Medical School, Chicago, IL, USA
| | | |
Collapse
|
25
|
Zhang J, Chiang YJ, Hodes RJ, Siraganian RP. Inactivation of c-Cbl or Cbl-b differentially affects signaling from the high affinity IgE receptor. THE JOURNAL OF IMMUNOLOGY 2004; 173:1811-8. [PMID: 15265912 DOI: 10.4049/jimmunol.173.3.1811] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Cbl family of proteins negatively regulate signaling from tyrosine kinase-coupled receptors. Among the three members of this family, only c-Cbl and Cbl-b are expressed in hemopoietic cells. To examine the role of c-Cbl and Cbl-b in Fc epsilon RI signaling, mast cell cultures from wild-type, c-Cbl(-/-), and Cbl-b(-/-) mice were generated. Cell growth rates and cell surface expression of Fc epsilon RI were similar in the different cell populations. Compared with control cells, Cbl-b inactivation resulted in increases in Fc epsilon RI-induced Ca(2+) response and histamine release. Fc epsilon RI-induced tyrosine phosphorylation of total cellular proteins, Syk, and phospholipase C-gamma was also enhanced by Cbl-b deficiency, whereas receptor-initiated phosphorylation of Vav, JNK, and p38 kinases was not changed in these cells. In contrast to Cbl-b, c-Cbl deficiency had no detectable effect on Fc epsilon RI-induced histamine release or on the phosphorylation of total cellular proteins or Syk. The absence of c-Cbl increased the phosphorylation of ERK after receptor stimulation, but resulted in slightly reduced p38 phosphorylation and Ca(2+) response. These results suggest that Cbl-b and c-Cbl have divergent effects on Fc epsilon RI signal transduction and that Cbl-b, but not c-Cbl, functions as a negative regulator of Fc epsilon RI-induced degranulation.
Collapse
Affiliation(s)
- Juan Zhang
- Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
26
|
Geahlen RL, Handley MD, Harrison ML. Molecular interdiction of Src-family kinase signaling in hematopoietic cells. Oncogene 2004; 23:8024-32. [PMID: 15489920 DOI: 10.1038/sj.onc.1208078] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ability of Src-family kinases (SFKs) to mediate signaling from cell surface receptors in hematopoietic cells is a function of their catalytic activity, location and binding partners. Kinase activity is regulated in the cell by kinases and phosphatases that alter the state of phosphorylation of key tyrosine residues and by protein binding partners that stabilize the kinase in active or inactive conformations or localize the enzyme to specific subcellular or submembrane domains. Kinase activity and function can be modulated experimentally through the use of small molecule inhibitors designed to directly target catalytic or binding domains or regulate the location of the protein by altering its state of acylation.
Collapse
Affiliation(s)
- Robert L Geahlen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
27
|
Hsu JH, Shi Y, Frost P, Yan H, Hoang B, Sharma S, Gera J, Lichtenstein A. Interleukin-6 activates phosphoinositol-3' kinase in multiple myeloma tumor cells by signaling through RAS-dependent and, separately, through p85-dependent pathways. Oncogene 2004; 23:3368-75. [PMID: 15021914 DOI: 10.1038/sj.onc.1207459] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The IL-6-induced activation of the phosphatidylinositol-3' kinase (PI3-K)/AKT cascade in multiple myeloma (MM) cells is critical for tumor cell proliferation and viability. Since the IL-6 receptor does not contain binding sites for the p85 regulatory portion of PI3-K, intermediate molecules must play a role. Coimmunoprecipitation studies in MM cell lines demonstrated the IL-6-induced formation of two independent PI3-K-containing complexes: one containing p21 RAS but not STAT-3 and a second containing STAT-3 but not RAS. Both complexes demonstrated IL-6-induced lipid kinase activity. IL-6 also generated kinase activity in a mutant p110 molecule that could not bind p85. Use of dominant-negative (DN) constructs confirmed the presence of two independent pathways of activation: a DN RAS prevented the IL-6-induced generation of lipid kinase activity in the mutant p110 molecule but had no effect on activity generated in the STAT-3-containing complex. In contrast, a DN p85 prevented the generation of kinase activity in the STAT-3-containing complex but had no effect on activity generated in the p110 molecule. Both DN constructs significantly prevented the IL-6-induced activation of AKT. MM cells expressing activating RAS mutations demonstrated enhanced IL-6-independent growth and constitutive PI3-K activity. These data indicate two potential independent pathways of PI3-K/AKT activation in MM cells: one mediated via signaling through RAS which is independent of p85 and a second mediated via p85 and due to a STAT-3-containing complex.
Collapse
Affiliation(s)
- Jung-Hsin Hsu
- Department of Medicine, West LA VA-UCLA Medical Center and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90073, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Regulation of tyrosine kinase-mediated cellular activation through antigen receptors is of great biological and practical significance. The evolutionarily conserved Cbl family ubiquitin ligases have emerged as key negative regulators of activated tyrosine kinase-coupled receptors, and their impaired function switches a normal immune response into autoimmunity. Cbl proteins facilitate the ubiquitinylation of activated tyrosine kinases and other signaling proteins and of the signaling chains of receptors themselves; monoubiquitin tag promotes sorting of activated receptors and associated proteins into internal vesicles of the multivesicular body, facilitating their lysosomal degradation, whereas polyubiquitin tag promotes proteasomal degradation. Notably, increased expression of Cbl proteins and other ubiquitin ligases is a component of anergic signaling program in T cells. Thus, controlled destruction of the signaling apparatus has emerged as a key to fine-tuning antigen receptor signaling. Further studies of this pathway are likely to elucidate the pathogenesis of autoimmune diseases and offer new therapeutic targets.
Collapse
Affiliation(s)
- Lei Duan
- Division of Molecular Oncology, Department of Medicine, Evanston Northwestern Healthcare Research Institute, Feinberg School of Medicine, Northwestern University, IL 60201, USA
| | | | | | | | | |
Collapse
|
29
|
Gaston I, Johnson KJ, Oda T, Bhat A, Reis M, Langdon W, Shen L, Deininger MW, Druker BJ. Coexistence of phosphotyrosine-dependent and -independent interactions between Cbl and Bcr-Abl. Exp Hematol 2004; 32:113-21. [PMID: 14725908 DOI: 10.1016/j.exphem.2003.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cbl is one of the major tyrosine-phosphorylated proteins in Bcr-Abl-expressing cells. A direct association between the SH2 domain of Bcr-Abl and tyrosine-phosphorylated Cbl has been demonstrated. The purpose of this study was to determine if and how unphosphorylated Cbl and Bcr-Abl may associate. Interactions between Cbl and Bcr-Abl were investigated in yeast two- and three-hybrid systems, gel overlay assays, and immunoprecipitates from mammalian cells expressing wild-type and the Y177F mutant of Bcr-Abl. No direct interaction between Bcr-Abl and unphosphorylated Cbl was observed. Bcr-Abl did, however, associate with Grb2, an adaptor protein that binds tyrosine 177 of Bcr-Abl. Additionally, Grb2 interacted with Cbl. In a yeast three-hybrid assay, Grb2 mediated an interaction between Cbl and Bcr-Abl that was dependent on a functional Grb2 binding site. This interaction was confirmed in vitro using purified proteins. In cells expressing Bcr-Abl with a mutation in the Grb2 binding site, binding of Cbl to Bcr-Abl was significantly reduced, but Cbl tyrosine phosphorylation was maintained. Imatinib treatment of these cells further reduced but did not abrogate Cbl binding, reflecting residual kinase activity. Multiple phosphotyrosine-dependent and -independent interactions stabilize the interaction between Cbl and Abl. Grb2 or another, yet unidentified, protein may mediate an initial interaction between Cbl and Bcr-Abl that is independent of Cbl tyrosine phosphorylation. Following this initial interaction, Cbl can then become tyrosine phosphorylated and interact with the SH2 domain of Bcr-Abl, further stabilizing the complex.
Collapse
Affiliation(s)
- Isabelle Gaston
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Ore. 97239, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Christian SL, Lee RL, McLeod SJ, Burgess AE, Li AHY, Dang-Lawson M, Lin KBL, Gold MR. Activation of the Rap GTPases in B lymphocytes modulates B cell antigen receptor-induced activation of Akt but has no effect on MAPK activation. J Biol Chem 2003; 278:41756-67. [PMID: 12904304 DOI: 10.1074/jbc.m303180200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Signaling by the B cell antigen receptor (BCR) activates the Rap1 and Rap2 GTPases, putative antagonists of Ras-mediated signaling. Because Ras can activate the Raf-1/ERK pathway and the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, we asked whether Rap activation limits the ability of the BCR to signal via these pathways. To do this, we blocked the activation of endogenous Rap1 and Rap2 by expressing the Rap-specific GTPase-activating protein RapGAPII. Preventing Rap activation had no effect on BCR-induced activation of ERK. In contrast, BCR-induced phosphorylation of Akt on critical activating sites was increased 2- to 3-fold when Rap activation was blocked. Preventing Rap activation also increased the ability of the BCR to stimulate Akt-dependent phosphorylation of the FKHR transcription factor on negative regulatory sites and decreased the levels of p27Kip1, a pro-apoptotic factor whose transcription is enhanced by FKHR. Moreover, preventing Rap activation reduced BCR-induced cell death in the WEHI-231 B cell line. Thus activation of endogenous Rap by the BCR limits BCR-induced activation of the PI3K/Akt pathway, opposes the subsequent inhibition of the FKHR/p27Kip1 pro-apoptotic module, and enhances BCR-induced cell death. Consistent with the idea that Rap-GTP is a negative regulator of the PI3K/Akt pathway, expressing constitutively active Rap2 (Rap2V12) reduced BCR-induced phosphorylation of Akt and FKHR. Finally, our finding that Rap2V12 can bind PI3K and inhibit its activity in a manner that depends upon BCR engagement provides a potential mechanism by which Rap-GTP limits activation of the PI3K/Akt pathway, a central regulator of B cell growth and survival.
Collapse
Affiliation(s)
- Sherri L Christian
- Department of Microbiology and Immunology, University of British Columbia, 6174 University Boulevard, Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Sharfe N, Freywald A, Toro A, Roifman CM. Ephrin-A1 induces c-Cbl phosphorylation and EphA receptor down-regulation in T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:6024-32. [PMID: 12794130 DOI: 10.4049/jimmunol.170.12.6024] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Eph receptor tyrosine kinases are expressed by T lineage cells, and stimulation with their ligands, the ephrins, has recently been shown to modulate T cell behavior. We show that ephrin-A1 stimulation of Jurkat T cells induces tyrosine phosphorylation of EphA3 receptors and cytoplasmic proteins, including the c-cbl proto-oncogene. Cbl phosphorylation was also observed in peripheral blood T cells. In contrast, stimulation of Jurkat cells with the EphB receptor ligand ephrin-B1 does not cause Cbl phosphorylation. EphA activation also induced Cbl association with Crk-L and Crk-II adapters, but not the related Grb2 protein. Induction of Cbl phosphorylation upon EphA activation appeared to be dependent upon Src family kinase activity, as Cbl phosphorylation was selectively abrogated by the Src family inhibitor 4-amino-5(4-chlorophenyl-7-(tert-butyl)pyrazolo[3,4-d]pyrimidine, while EphA phosphorylation was unimpaired. Ephrin-A1 stimulation of Jurkat cells was also found to cause down-regulation of endogenous EphA3 receptors from the cell surface and their degradation. In accordance with the role of Cbl as a negative regulator of receptor tyrosine kinases, overexpression of wild-type Cbl, but not its 70-Z mutant, was found to down-regulate EphA receptor expression. Receptor down-regulation could also be inhibited by blockage of Src family kinase activity. Our findings show that EphA receptors can actively signal in T cells, and that Cbl performs multiple roles in this signaling pathway, functioning to transduce signals from the receptors as well as regulating activated EphA receptor expression.
Collapse
Affiliation(s)
- Nigel Sharfe
- Immunology and Allergy, Department of Pediatrics, Research Institute, Hospital for Sick Children, and University of Toronto, Toronto, Canada
| | | | | | | |
Collapse
|
32
|
Duval M, Bédard-Goulet S, Delisle C, Gratton JP. Vascular endothelial growth factor-dependent down-regulation of Flk-1/KDR involves Cbl-mediated ubiquitination. Consequences on nitric oxide production from endothelial cells. J Biol Chem 2003; 278:20091-7. [PMID: 12649282 DOI: 10.1074/jbc.m301410200] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ligand-stimulated degradation of receptor tyrosine kinase (RTK) is an important regulatory step of signal transduction. The vascular endothelial growth factor (VEGF) receptor Flk-1/KDR is responsible for the VEGF-stimulated nitric oxide (NO) production from endothelial cells. Cellular mechanisms mediating the negative regulation of Flk-1 signaling in endothelial cells have not been investigated. Here we show that Flk-1 is rapidly down-regulated following VEGF stimulation of bovine aortic endothelial cells (BAECs). Consequently, VEGF pretreatment of endothelial cells prevents any further stimulation of Flk-1, resulting in decreased NO production from subsequent VEGF challenges. Ubiquitination of RTKs targets them for degradation; we demonstrate that activation of Flk-1 by VEGF leads to its polyubiquitination in BAECs. Furthermore, VEGF stimulation of BAECs or COS-7 cells transiently transfected with Flk-1 results in the phosphorylation of the ubiquitin ligase Cbl, the enhanced association of Cbl with Flk-1, and the relocalization of Cbl to vesicular structures in BAECs. Overexpression of Cbl in COS-7 cells enhances VEGF-induced ubiquitination of Flk-1, whereas a Cbl mutant lacking the ubiquitin ligase RING finger domain, 70Z/3-Cbl, does not. Moreover, expression of Cbl in contrast to 70Z/3-Cbl inhibits the Flk-1-dependent activation of eNOS and, thus, NO release. In BAEC overexpressing Cbl, the degradation of Flk-1 upon VEGF stimulation is accelerated compared with cells transfected with a control vector (green fluorescent protein). Our findings demonstrate that Flk-1 is rapidly down-regulated following sustained VEGF stimulation and identify Cbl as a negative regulator of Flk-1 signaling to eNOS. Cbl thus plays a role in the regulation of VEGF signaling by mediating the stimulated ubiquitination and, consequently, degradation of Flk-1 in endothelial cells.
Collapse
Affiliation(s)
- Martine Duval
- Laboratory of Endothelial Cell Biology, Institut de Recherches Cliniques de Montréal (IRCM), Quebec H2W 1R7, Canada
| | | | | | | |
Collapse
|
33
|
Goodman PA, Burkhardt N, Juran B, Tibbles HE, Uckun FM. Hypermethylation of the spleen tyrosine kinase promoter in T-lineage acute lymphoblastic leukemia. Oncogene 2003; 22:2504-14. [PMID: 12717427 DOI: 10.1038/sj.onc.1206313] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sequence analysis of the noncoding first exon (exon 1) of the Syk gene demonstrated the presence of a previously cloned CpG island (GenBank #Z 65706). Transient transfection analysis in Daudi cells demonstrated promoter activity (18-fold increase over parental luciferase plasmid) for a 348 bp BstXI-BsrBI fragment containing this island. This region exhibits a high GC content (approximately 75%), contains several SP1 binding sites and a potential initiator sequence, but lacks a strong TATA consensus. Bisulfite sequencing and methylation-specific PCR (MSP) of this region demonstrated that the Syk promoter CpG island was largely unmethylated in B-lineage leukemia cell lines, control peripheral blood cells, human thymocytes and CD3(+) T lymphocytes. However, dense methylation was seen in four T-lineage leukemia cell lines, Jurkat, H9, Molt 3 and HUT 78. MSP screening of leukemia cells from six T-lineage acute lymphoblastic leukemia (ALL) patients demonstrated methylation of the Syk promoter CpG island in one T-lineage ALL patient. Promoter methylation was correlated with reduced to absent expression of Syk mRNA and SYK protein in the T-lineage leukemia cell lines. Treatment of the leukemia lines Ha and Molt 3, with the methylation inhibitor, 5-aza-2'-deoxycytidine (5-aza-CdR) resulted in increased Syk mRNA expression. The presence of a methylated promoter sequence in these T-lineage leukemia cell lines and in one T-lineage patient suggests a potential role for SYK as a tumor suppressor in T-ALL.
Collapse
Affiliation(s)
- Patricia A Goodman
- Department of Molecular Genetics, Parker Hughes Institute and Parker Hughes Cancer Center, 2699 Patton Road, St Paul, MN 55113, USA
| | | | | | | | | |
Collapse
|
34
|
Taher TEI, Tjin EPM, Beuling EA, Borst J, Spaargaren M, Pals ST. c-Cbl Is Involved in Met Signaling in B Cells and Mediates Hepatocyte Growth Factor-Induced Receptor Ubiquitination. THE JOURNAL OF IMMUNOLOGY 2002; 169:3793-800. [PMID: 12244174 DOI: 10.4049/jimmunol.169.7.3793] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatocyte growth factor/scatter factor (HGF) and its receptor tyrosine kinase Met are key regulators of epithelial motility and morphogenesis. Recent studies indicate that the HGF/Met pathway also plays a role in B cell differentiation, whereas uncontrolled Met signaling may lead to B cell neoplasia. These observations prompted us to explore HGF/Met signaling in B cells. In this study, we demonstrate that HGF induces strong tyrosine phosphorylation of the proto-oncogene product c-Cbl in B cells and increases Cbl association with the Src family tyrosine kinases Fyn and Lyn, as well as with phosphatidylinositol-3 kinase and CrkL. In addition, we demonstrate that c-Cbl mediates HGF-induced ubiquitination of Met. This requires the juxtamembrane tyrosine Y1001 (Y2) of Met, but not the multifunctional docking site (Y14/15) or any additional C-terminal tyrosine residues (Y13-16). In contrast to wild-type c-Cbl, the transforming mutants v-Cbl and 70Z/3 Cbl, which lack the ubiquitin ligase RING finger domain, suppress Met ubiquitination. Our findings identify c-Cbl as a negative regulator of HGF/Met signaling in B cells, mediating ubiquitination and, consequently, proteosomal degradation of Met, and suggest a role for Cbl in Met-mediated tumorigenesis.
Collapse
Affiliation(s)
- Taher E I Taher
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
35
|
Nishio H, Otsuka M, Kinoshita S, Tokuoka T, Nakajima M, Noda Y, Fukuyama Y, Suzuki K. Phosphorylation of c-Cbl protooncogene product following ethanol administration in rat cerebellum: possible involvement of Fyn kinase. Brain Res 2002; 950:203-9. [PMID: 12231245 DOI: 10.1016/s0006-8993(02)03038-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have previously shown that ethanol administration results in tyrosine phosphorylation of the 130 kDa protein in rat brain, and identified the protein as Cas, the crk-associated src substrate. In the present study, we demonstrate that Cbl of a 120 kDa protein is also tyrosine-phosphorylated in the cerebellum in response to ethanol administration. We also investigated whether Fyn kinase was involved in ethanol-induced Cbl phosphorylation. Immunoprecipitation experiments showed that the amount of coimmunoprecipitated Fyn kinase with an anti-Cbl antibody increased in extracts from ethanol-administered rats compared to those from saline-administered rats. Exogenous Fyn kinase was shown to phosphorylate on tyrosine residue(s) of Cbl from the cerebellum in vitro. Furthermore, Fyn kinase and Cbl were demonstrated immunohistochemically to be coexpressed in white matter in the cerebellum. These findings indicate that Cbl is tyrosine-phosphorylated in rat cerebellum in response to ethanol administration, and also raise the possibility that Fyn kinase may be involved in the process.
Collapse
Affiliation(s)
- Hajime Nishio
- Department of Legal Medicine, Osaka Medical College, 2-7 Daigaku, 569-8686, Takatsuki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Goodman PA, Jurana B, Wood CM, Uckun F. Genomic studies of the spleen protein tyrosine kinase locus reveal a complex promoter structure and several genetic variants. Leuk Lymphoma 2002; 43:1627-35. [PMID: 12400606 DOI: 10.1080/1042819021000002965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Here we show that the gene of the cytoplasmic tyrosine kinase SYK spans a region of 90kb with 13 coding exons, an alternative exon 14 and at least two 5' untranslated regions exons 1a and 1b. 5' RACE (Rapid amplification of cDNA ends) of human Syk cDNAs demonstrated a complex promoter usage and splicing pattern. We identified three common single nucleotide polymorphisms in the exon la promoter region of the Syk gene as well as a variant Syk cDNA haplotype. This haplotype was characterized by a constellation of 5 silent mutations in the Syk cDNA: 1065(C-T), 1302(G-C), 1338(G-A), 1521(C-T) and 1545(T-C). A hypervariable CATATA(n) repeat polymorphism was also localized to the intron between exons 11 and 12. These novel insights into the genomic organization, promoter structure and genetic variability of Syk will serve as a foundation for detailed molecular epidemiological investigation of its potential role in human cancer biology.
Collapse
Affiliation(s)
- Patricia A Goodman
- Department of Molecular Genetics, Parker Hughes Institute and Parker Hughes Cancer Center St Paul, MN 55113, USA
| | | | | | | |
Collapse
|
37
|
Christian SL, Sims PV, Gold MR. The B cell antigen receptor regulates the transcriptional activator beta-catenin via protein kinase C-mediated inhibition of glycogen synthase kinase-3. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:758-69. [PMID: 12097378 DOI: 10.4049/jimmunol.169.2.758] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Beta-catenin is a transcriptional activator that is regulated by glycogen synthase kinase-3 (GSK-3). GSK-3 is constitutively active in unstimulated cells where it phosphorylates beta-catenin, targeting beta-catenin for rapid degradation. Receptor-induced inhibition of GSK-3 allows beta-catenin to accumulate in the cytoplasm and then translocate to the nucleus where it promotes the transcription of genes such as c-myc and cyclin D1. Wnt hormones, the best known regulators of beta-catenin, inhibit GSK-3 via the Disheveled protein. However, GSK-3 is also inhibited when it is phosphorylated by Akt, a downstream target of phosphatidylinositol 3-kinase (PI3K). We have previously shown that B cell Ag receptor (BCR) signaling leads to activation of PI3K and Akt as well as inhibition of GSK-3. Therefore, we hypothesized that BCR engagement would induce the accumulation of beta-catenin via a PI3K/Akt/GSK-3 pathway. We now show that BCR ligation causes an increase in the level of beta-catenin in the nuclear fraction of B cells as well as an increase in beta-catenin-dependent transcription. Direct inhibition of GSK-3 by LiCl also increased beta-catenin levels in B cells. This suggests that GSK-3 keeps beta-catenin levels low in unstimulated B cells and that BCR-induced inhibition of GSK-3 allows the accumulation of beta-catenin. Surprisingly, we found that the BCR-induced phosphorylation of GSK-3 on its negative regulatory sites, as well as the subsequent up-regulation of beta-catenin, was not mediated by Akt but by the phospholipase C-dependent activation of protein kinase C. Thus, the BCR regulates beta-catenin levels via a phospholipase C/protein kinase C/GSK-3 pathway.
Collapse
Affiliation(s)
- Sherri L Christian
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
38
|
Kassenbrock CK, Hunter S, Garl P, Johnson GL, Anderson SM. Inhibition of Src family kinases blocks epidermal growth factor (EGF)-induced activation of Akt, phosphorylation of c-Cbl, and ubiquitination of the EGF receptor. J Biol Chem 2002; 277:24967-75. [PMID: 11994282 DOI: 10.1074/jbc.m201026200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Stimulation of T47D cells with epidermal growth factor (EGF) results in the activation of the intrinsic tyrosine kinases of the receptor and the phosphorylation of multiple cellular proteins including the receptor, scaffold molecules such as c-Cbl, adapter molecules such as Shc, and the serine/threonine protein kinase Akt. We demonstrate that EGF stimulation of T47D cells results in the activation of the Src protein-tyrosine kinase and that the Src kinase inhibitor PP1 blocks the EGF-induced phosphorylation of c-Cbl but not the activation/phosphorylation of the EGF receptor itself. PP1 also blocks EGF-induced ubiquitination of the EGF receptor, which is presumably mediated by phosphorylated c-Cbl. Src is associated with c-Cbl, and we have previously demonstrated that the Src-like kinase Fyn can phosphorylate c-Cbl at a preferred binding site for the p85 subunit of phosphatidylinositol 3'-kinase. PP1 treatment blocks EGF-induced activation of the anti-apoptotic protein kinase Akt suggesting that Src may regulate activation of Akt, perhaps by a Src --> c-Cbl --> phosphatidylinositol 3'-kinase --> Akt pathway.
Collapse
Affiliation(s)
- C Kenneth Kassenbrock
- Department of Pathology, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | |
Collapse
|
39
|
Bisson SA, Ujack EE, Robbins SM. Isolation and characterization of a novel, transforming allele of the c-Cbl proto-oncogene from a murine macrophage cell line. Oncogene 2002; 21:3677-87. [PMID: 12032836 DOI: 10.1038/sj.onc.1205510] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2001] [Revised: 03/22/2002] [Accepted: 03/22/2002] [Indexed: 11/08/2022]
Abstract
The c-Cbl proto-oncogene acts as an E3 ubiquitin ligase via its RING finger domain to negatively regulate activated cellular signal transduction pathways. We have identified an aberrant Cbl-protein of approximately 95 kDa, which we have called p95Cbl, from the murine reticulum sarcoma cell-line, J-774. Cloning of the p95Cbl cDNA revealed that it contains a deletion resulting in the loss of 111 amino acids, eliminating two critical tyrosine residues in the linker region as well as the entire RING finger domain. p95Cbl displays a propensity for its interaction with the Src-family kinase Hck over cellular Cbl expressed in the same cells. Like its wildtype counterpart, p95Cbl is inducibly tyrosine phosphorylated in response to Fcgamma receptor engagement on hematopoietic cells, however this phosphorylation is sustained beyond that of cellular Cbl. NIH3T3 fibroblasts stably expressing p95Cbl acquire the typical refractile morphology associated with cellular transformation and form colonies in a focus-formation assay. The exogenously expressed mutant protein is constitutively phosphorylated in fibroblasts and partitions into the particulate fraction of cells, while cellular Cbl is exclusively cytoplasmic. p95Cbl is a novel, oncogenic mutant of the c-Cbl proto-oncogene, which might act in a dominant negative fashion to prolong normal cellular signaling responses by interfering with the down-regulation of activated signaling complexes through c-Cbl.
Collapse
Affiliation(s)
- Sabine A Bisson
- Department of Oncology, The University of Calgary, 3330 Hospital Drive NW Calgary, Alberta T2N-4N1, Canada
| | | | | |
Collapse
|
40
|
Vilen BJ, Burke KM, Sleater M, Cambier JC. Transmodulation of BCR signaling by transduction-incompetent antigen receptors: implications for impaired signaling in anergic B cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:4344-51. [PMID: 11970976 PMCID: PMC3726184 DOI: 10.4049/jimmunol.168.9.4344] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B cell tolerance can be maintained by functional inactivation, or anergy, wherein B cell Ag receptors (BCR) remain capable of binding Ag, but are unable to transduce signals. Although the molecular mechanisms underlying this unresponsiveness are unknown, some models of B cell anergy are characterized by disruption of proximal BCR signaling events, and by destabilization of the BCR complex. Receptor destabilization is manifest by a reduced ability to coimmunoprecipitate membrane Ig with the Ig-alpha/Ig-beta signal-transducing complex. To begin to explore the possibility that anergy is the consequence of receptor destabilization, we analyzed a panel of B lymphoma transfectants expressing constant amounts of signal-competent Ag receptors and varied amounts of a receptor with identical specificity, but bearing mutations that render it incapable of interacting with Ig-alpha/Ig-beta. This analysis revealed that coaggregation of signal-incompetent receptors prevented Ag-induced Ig-alpha and Syk phosphorylation, mobilization of Ca(2+), and the up-regulation of CD69 mediated by competent receptors. In contrast, Ag-induced Cbl and Erk phosphorylation were unaffected. Data indicate that coaggregation of destabilized receptors (as few as approximately 15% of total) with signal-competent receptors significantly affects the ability of competent receptors to transduce signals. Thus, BCR destabilization may underlie the Ag unresponsiveness of anergic B cells.
Collapse
MESH Headings
- Animals
- Antigens/immunology
- Antigens, CD/biosynthesis
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- B-Lymphocytes/immunology
- CD79 Antigens
- Calcium/metabolism
- Cells, Cultured
- Clonal Anergy
- Enzyme Precursors/metabolism
- Immunoglobulin D/immunology
- Immunoglobulin M/immunology
- Intracellular Signaling Peptides and Proteins
- Lectins, C-Type
- Lymphoma, B-Cell
- Mitogen-Activated Protein Kinases/metabolism
- Phosphorylation
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-cbl
- Receptor Aggregation
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction
- Syk Kinase
- Tumor Cells, Cultured
- Ubiquitin-Protein Ligases
Collapse
Affiliation(s)
| | | | | | - John C. Cambier
- Address correspondence and reprint requests to: Dr. John C. Cambier, Integrated Department of Immunology, National Jewish Medical and Research Center, 1400 Jackson Street, K1001, Denver, CO 80206.
| |
Collapse
|
41
|
Miao H, Yuan S, Wang Y, Tsygankov A, Chien S. Role of Cbl in shear-activation of PI 3-kinase and JNK in endothelial cells. Biochem Biophys Res Commun 2002; 292:892-9. [PMID: 11944898 DOI: 10.1006/bbrc.2002.6750] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fluid shear stress can activate PI-3 kinase and JNK in vascular endothelial cells. This study was designed to establish the role of Cbl as an upstream molecule in the shear stress activation of PI-3 kinase and JNK. Confluent monolayers of bovine aortic endothelial cells (BAECs) were subjected to a shear stress of 12 dyn/cm(2) over intervals ranging from 0.5 to 30 min. Shear stress increased Cbl phosphorylation to 2.9-fold of control and Cbl association with the regulatory PI-3 kinase subunit p85 to 5.4-fold. The PI-3 kinase activity measured in Cbl-immunoprecipitated complexes increased to 11.7-fold in response to shear, suggesting that the shear stress activation of PI-3 kinase involves its association with Cbl. Furthermore, the shear stress induction of JNK was attenuated by a negative mutant of Cbl. Finally, shear stress caused an activation of PI 3-kinase only in BAECs seeded onto fibronectin, vitronectin, or laminin, but not poly-l-lysine. Our results suggest that Cbl plays a critical role in the shear stress induction of PI 3-kinase and JNK activities, and that this shear-induced activation requires the interaction of endothelial integrins with extracellular matrix proteins.
Collapse
Affiliation(s)
- Hui Miao
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093-0427, USA
| | | | | | | | | |
Collapse
|
42
|
Rao N, Miyake S, Reddi AL, Douillard P, Ghosh AK, Dodge IL, Zhou P, Fernandes ND, Band H. Negative regulation of Lck by Cbl ubiquitin ligase. Proc Natl Acad Sci U S A 2002; 99:3794-9. [PMID: 11904433 PMCID: PMC122603 DOI: 10.1073/pnas.062055999] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Cbl-family ubiquitin ligases function as negative regulators of activated receptor tyrosine kinases by facilitating their ubiquitination and subsequent targeting to lysosomes. Cbl associates with the lymphoid-restricted nonreceptor tyrosine kinase Lck, but the functional relevance of this interaction remains unknown. Here, we demonstrate that T cell receptor and CD4 coligation on human T cells results in enhanced association between Cbl and Lck, together with Lck ubiquitination and degradation. A Cbl(-/-) T cell line showed a marked deficiency in Lck ubiquitination and increased levels of kinase-active Lck. Coexpression in 293T cells demonstrated that Lck kinase activity and Cbl ubiquitin ligase activity were essential for Lck ubiquitination and negative regulation of Lck-dependent serum response element-luciferase reporter activity. The Lck SH3 domain was pivotal for Cbl-Lck association and Cbl-mediated Lck degradation, with a smaller role for interactions mediated by the Cbl tyrosine kinase-binding domain. Finally, analysis of a ZAP-70-deficient T cell line revealed that Cbl inhibited Lck-dependent mitogen-activated protein kinase activation, and an intact Cbl RING finger domain was required for this functional effect. Our results demonstrate a direct, ubiquitination-dependent, negative regulatory role of Cbl for Lck in T cells, independent of Cbl-mediated regulation of ZAP-70.
Collapse
Affiliation(s)
- Navin Rao
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Phosphoinositide 3-kinases (PI3Ks) are an evolutionarily conserved family of signal transducing enzymes. A great variety of stimuli activate PI3K, leading to the transient accumulation of its lipid products in cell membranes. These lipids serve as second messengers to regulate the location and activity of an array of downstream effector molecules. In cells of the mammalian immune system, PI3K is activated by receptors for antigen, cytokines, costimulatory molecules, immunoglobulins and chemoattractants. Signaling via PI3K regulates immune cell proliferation, survival, differentiation, chemotaxis, phagocytosis, degranulation, and respiratory burst. Here we review our current understanding of PI3K signaling in leukocytes.
Collapse
Affiliation(s)
- David A Fruman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA.
| | | |
Collapse
|
44
|
Tsygankov AY, Teckchandani AM, Feshchenko EA, Swaminathan G. Beyond the RING: CBL proteins as multivalent adapters. Oncogene 2001; 20:6382-402. [PMID: 11607840 DOI: 10.1038/sj.onc.1204781] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Following discovery of c-Cbl, a cellular form of the transforming retroviral protein v-Cbl, multiple Cbl-related proteins have been identified in vertebrate and invertebrate organisms. c-Cbl and its homologues are capable of interacting with numerous proteins involved in cell signaling, including various molecular adapters and protein tyrosine kinases. It appears that Cbl proteins play several functional roles, acting both as multivalent adapters and inhibitors of various protein tyrosine kinases. The latter function is linked, to a substantial extent, to the E3 ubiquitin-ligase activity of Cbl proteins. Experimental evidence for these functions, interrelations between them, and their biological significance are addressed in this review, with the main accent placed on the adapter functions of Cbl proteins.
Collapse
Affiliation(s)
- A Y Tsygankov
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania, PA 19140, USA.
| | | | | | | |
Collapse
|
45
|
Arron JR, Vologodskaia M, Wong BR, Naramura M, Kim N, Gu H, Choi Y. A positive regulatory role for Cbl family proteins in tumor necrosis factor-related activation-induced cytokine (trance) and CD40L-mediated Akt activation. J Biol Chem 2001; 276:30011-7. [PMID: 11406619 DOI: 10.1074/jbc.m100414200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor (TNF)-related activation-induced cytokine (TRANCE) is a TNF family member essential for osteoclast differentiation, and it induces the activation and survival of osteoclasts and mature dendritic cells. We recently demonstrated that TRANCE activates Akt via a mechanism involving TRANCE receptor (TRANCE-R)/RANK, TRAF6, and c-Src. Here, we show that TRANCE-R and CD40 recruit TRAF6, Cbl family-scaffolding proteins, and the phospholipid kinase phosphatidylinositol 3-kinase in a ligand-dependent manner. The recruitment of Cbl-b and c-Cbl to TRANCE-R is dependent upon the activity of Src-family kinases. TRANCE and CD40L-mediated Akt activation is defective in Cbl-b -/- dendritic cells, and CD40L-mediated Akt activation is defective in c-Cbl -/- B cells. These findings implicate Cbl family proteins as not only negative regulators of signaling but as positive modulators of TNF receptor superfamily signaling as well.
Collapse
Affiliation(s)
- J R Arron
- Laboratory of Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Engels N, Merchant M, Pappu R, Chan AC, Longnecker R, Wienands J. Epstein-Barr virus latent membrane protein 2A (LMP2A) employs the SLP-65 signaling module. J Exp Med 2001; 194:255-64. [PMID: 11489945 PMCID: PMC2193464 DOI: 10.1084/jem.194.3.255] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2001] [Accepted: 06/20/2001] [Indexed: 11/29/2022] Open
Abstract
In latently infected B lymphocytes, the Epstein-Barr virus (EBV) suppresses signal transduction from the antigen receptor through expression of the integral latent membrane protein 2A (LMP2A). At the same time, LMP2A triggers B cell survival by a yet uncharacterized maintenance signal that is normally provided by the antigen receptor. The molecular mechanisms are unknown as LMP2A-regulated signaling cascades have not been described so far. Using a novel mouse model we have identified the intracellular adaptor protein Src homology 2 (SH2) domain-containing leukocyte protein (SLP)-65 as a critical downstream effector of LMP2A in vivo. Biochemical analysis of the underlying signaling pathways revealed that EBV infection causes constitutive tyrosine phosphorylation of one of the two SLP-65 isoforms and complex formation between SLP-65 and the protooncoprotein CrkL (CT10 regulator of kinase like). This leads to antigen receptor-independent phosphorylation of Cbl (Casitas B lineage lymphoma) and C3G. In contrast, phospholipase C-gamma2 (PLC-gamma2) activation is completely blocked. Our data show that in order to establish a latent EBV infection, LMP2A selectively activates or represses SLP-65-regulated signaling pathways.
Collapse
Affiliation(s)
- Niklas Engels
- Department of Biochemistry I, University of Bielefeld, Bielefeld D-33615, Germany
| | - Mark Merchant
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611
| | - Rajita Pappu
- Center for Immunology, Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110
| | - Andrew C. Chan
- Center for Immunology, Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110
| | - Richard Longnecker
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611
| | - Jürgen Wienands
- Department of Biochemistry I, University of Bielefeld, Bielefeld D-33615, Germany
| |
Collapse
|
47
|
Goodman PA, Wood CM, Vassilev A, Mao C, Uckun FM. Spleen tyrosine kinase (Syk) deficiency in childhood pro-B cell acute lymphoblastic leukemia. Oncogene 2001; 20:3969-78. [PMID: 11494125 DOI: 10.1038/sj.onc.1204515] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2001] [Revised: 04/03/2001] [Accepted: 04/09/2001] [Indexed: 01/27/2023]
Abstract
The cytoplasmic spleen tyrosine kinase (SYK) is a key regulator of signal transduction events, apoptosis and orderly cell cycle progression in B-lineage lymphoid cells. Although SYK has not been linked to a human disease, defective expression of the closely related T-cell tyrosine kinase ZAP-70 has been associated with severe combined immunodeficiency. Childhood CD19(+)CD10(-) pro-B cell acute lymphoblastic leukemia (ALL) is thought to originate from B-cell precursors with a maturational arrest at the pro-B cell stage and it is associated with poor prognosis. Since lethally irradiated mice reconstituted with SYK-deficient fetal liver-derived lymphohematopoietic progenitor cells show a block in B-cell ontogeny at the pro-B to pre-B cell transition, we examined the SYK expression profiles of primary leukemic cells from children with pro-B cell ALL. Here we report that leukemic cells from pediatric CD19(+)CD10(-) pro-B cell ALL patients (but not leukemic cells from patients with CD19(+)CD10(+) common pre-pre-B cell ALL) have markedly reduced SYK activity. Sequencing of the reverse transcriptase-polymerase chain reaction (RT-PCR) products of the Syk mRNA in these pro-B leukemia cells revealed profoundly aberrant coding sequences with deletions or insertions. These mRNA species encode abnormal SYK proteins with a missing or truncated catalytic kinase domain. In contrast to pro-B leukemia cells, pre-pre-B leukemia cells from children with CD19(+)CD10(+) common B-lineage ALL and EBV-transformed B-cell lines from healthy volunteers expressed wild-type Syk coding sequences. Examination of the genomic structure of the Syk gene by inter-exonic PCR and genomic cloning demonstrated that the deletions and insertions in the abnormal mRNA species of pro-B leukemia cells are caused by aberrant splicing resulting in either mis-splicing, exon skipping or inclusion of alternative exons, consistent with an abnormal posttranscriptional regulation of alternative splicing of Syk pre-mRNA. Our findings link for the first time specific molecular defects involving the Syk gene to an immunophenotypically distinct category of childhood ALL. To our knowledge, this is the first discovery of a specific tyrosine kinase deficiency in a human hematologic malignancy.
Collapse
Affiliation(s)
- P A Goodman
- Department of Molecular Genetics, Parker Hughes Institute & Parker Hughes Cancer Center, St Paul, Minnesota, MN 55113, USA
| | | | | | | | | |
Collapse
|
48
|
Koncz G, Tóth GK, Bökönyi G, Kéri G, Pecht I, Medgyesi D, Gergely J, Sármay G. Co-clustering of Fcgamma and B cell receptors induces dephosphorylation of the Grb2-associated binder 1 docking protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3898-906. [PMID: 11453982 DOI: 10.1046/j.1432-1327.2001.02295.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The immunoreceptor tyrosine-based inhibitory motif (ITIM) of human type IIb Fcgamma receptor (FcgammaRIIb) is phosphorylated on its tyrosine upon co-clustering with the B cell receptor (BCR). The phosphorylated ITIM (p-ITIM) binds to the SH2 domains of polyphosphoinositol 5-phosphatase (SHIP) and the tyrosine phosphatase, SHP-2. We investigated the involvement of the molecular complex composed of the phosphorylated SHIP and FcgammaRIIb in the activation of SHP-2. As a model compound, we synthesized a bisphosphopeptide, combining the sequences of p-ITIM and the N-terminal tyrosine phosphorylated motif of SHIP with a flexible spacer. This compound bound to the recombinant SH2 domains of SHP-2 with high affinity and activated the phosphatase in an in vitro assay. These data suggest that the phosphorylated FcgammaRII-SHIP complexes formed in the intact cells may also activate SHP-2. Grb2-associated binder 1 (Gab1) is a multisite docking protein, which becomes tyrosine-phosphorylated in response to various types of signaling, including BCR. In turn it binds to the SH2 domains of SHP-2, SHIP and the p85 subunit of phosphatidyl inositol 3-kinase (PtdIns3-K) and may regulate their activity. Gab1 is a potential substrate of SHP-2, thus its binding to FcgammaRIIb may modify the Gab1-bound signaling complex. We show here that Gab1 is part of the multiprotein complex assembled by FcgammaRIIb upon its co-clustering with BCR. Gab1 may recruit SH2 domain-containing molecules to the phosphorylated FcgammaRIIb. SHP-2, activated upon the binding to FcgammaRIIb-SHIP complex, partially dephosphorylates Gab1, resulting in the release of PtdIns3-K and ultimately in the inhibition of downstream activation pathways in BCR/FcgammaRIIb co-aggregated cells.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport
- Amino Acid Motifs
- Antigens, CD/metabolism
- Intracellular Signaling Peptides and Proteins
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases
- Phosphopeptides/metabolism
- Phosphoproteins/metabolism
- Phosphoric Monoester Hydrolases/metabolism
- Protein Binding
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/metabolism
- Proteins/metabolism
- Receptors, Antigen, B-Cell/metabolism
- Receptors, IgG/metabolism
- SH2 Domain-Containing Protein Tyrosine Phosphatases
- Shc Signaling Adaptor Proteins
- Signal Transduction
- Src Homology 2 Domain-Containing, Transforming Protein 1
Collapse
Affiliation(s)
- G Koncz
- Research Group of the Hungarian Academy of Science at the Department of Immunology, Loránd Eötvös University, Göd, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Sinha S, Jancarik J, Roginskaya V, Rothermund K, Boxer LM, Corey SJ. Suppression of apoptosis and granulocyte colony-stimulating factor-induced differentiation by an oncogenic form of Cbl. Exp Hematol 2001; 29:746-55. [PMID: 11378270 DOI: 10.1016/s0301-472x(01)00647-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE The retroviral oncogene v-Cbl causes pre-B cell lymphomas and myeloid leukemias in mice, and its Drosophila homologue is oncogenic, causing enhanced receptor tyrosine kinase signaling. The human Cbl gene resides at 11q23. The aim of this study is to determine the effect of oncogenic Cbl on growth-regulating responses. MATERIALS AND METHODS The oncogenic mutant of Cbl (CblDelta1-357) was transfected into factor-dependent 32Dcl3 myeloid cells. Consequently, cell survival and differentiation were measured. Lyn, Syk, MAP kinase, and phosphatidylinositol 3'(PI3')-kinase activities, protein phosphorylation, Bcl-2 promoter activity, ubiquitination, and levels of Bcl-2, Bax, Bad, and Bcl-x(L) were determined. In addition, the effect of v-Cbl on TF-1 cell survival upon granulocyte-macrophage colony-stimulating factor withdrawal was studied. RESULTS 32Dcl3 and TF-1 cells expressing v-Cbl showed resistance to apoptosis upon growth factor withdrawal, and 32Dcl3 cells completely failed to respond to granulocyte colony-stimulating factor's induction of differentiation. Basal activities of Lyn, Syk, and PI3'-kinase were elevated in the v-Cbl line. There was neither enhanced tyrosine phosphorylation of cellular protein content, Cbl, or Jak2, nor serine phosphorylation of MAP kinase or Akt. After factor withdrawal, the level of Bcl-2 was greater in v-Cbl cells than in control cells. CONCLUSIONS Neither increased Bcl-2 promoter activity nor decreased ubiquitination of Bcl-2 could account for increased Bcl-2 levels. v-Cbl-expressing 32Dcl3 cells were resistant to differentiation. v-Cbl suppresses apoptosis and differentiation, possibly through enhancement of Lyn, Syk, and PI3'-kinase activities and Bcl-2.
Collapse
Affiliation(s)
- S Sinha
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
50
|
Ingham RJ, Santos L, Dang-Lawson M, Holgado-Madruga M, Dudek P, Maroun CR, Wong AJ, Matsuuchi L, Gold MR. The Gab1 docking protein links the b cell antigen receptor to the phosphatidylinositol 3-kinase/Akt signaling pathway and to the SHP2 tyrosine phosphatase. J Biol Chem 2001; 276:12257-65. [PMID: 11278704 DOI: 10.1074/jbc.m010590200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
B cell antigen receptor (BCR) signaling causes tyrosine phosphorylation of the Gab1 docking protein. This allows phosphatidylinositol 3-kinase (PI3K) and the SHP2 tyrosine phosphatase to bind to Gab1. In this report, we tested the hypothesis that Gab1 acts as an amplifier of PI3K- and SHP2-dependent signaling in B lymphocytes. By overexpressing Gab1 in the WEHI-231 B cell line, we found that Gab1 can potentiate BCR-induced phosphorylation of Akt, a PI3K-dependent response. Gab1 expression also increased BCR-induced tyrosine phosphorylation of SHP2 as well as the binding of Grb2 to SHP2. We show that the pleckstrin homology (PH) domain of Gab1 is required for BCR-induced phosphorylation of Gab1 and for Gab1 participation in BCR signaling. Moreover, using confocal microscopy, we show that BCR ligation can induce the translocation of Gab1 from the cytosol to the plasma membrane and that this requires the Gab1 PH domain as well as PI3K activity. These findings are consistent with a model in which the binding of the Gab1 PH domain to PI3K-derived lipids brings Gab1 to the plasma membrane, where it can be tyrosine-phosphorylated and then act as an amplifier of BCR signaling.
Collapse
Affiliation(s)
- R J Ingham
- Departments of Microbiology and Immunology and Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|