1
|
Johnson MP. Structure, regulation and assembly of the photosynthetic electron transport chain. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00847-y. [PMID: 40399647 DOI: 10.1038/s41580-025-00847-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2025] [Indexed: 05/23/2025]
Abstract
The electron transfer chain of chloroplast thylakoid membranes uses solar energy to split water into electrons and protons, creating energetic gradients that drive the formation of photosynthetic fuel in the form of NADPH and ATP. These metabolites are then used to power the fixation of carbon dioxide into biomass through the Calvin-Benson-Bassham cycle in the chloroplast stroma. Recent advances in molecular genetics, structural biology and spectroscopy have provided an unprecedented understanding of the molecular events involved in photosynthetic electron transfer from photon capture to ATP production. Specifically, we have gained insights into the assembly of the photosynthetic complexes into larger supercomplexes, thylakoid membrane organization and the mechanisms underpinning efficient light harvesting, photoprotection and oxygen evolution. In this Review, I focus on the angiosperm plant thylakoid system, outlining our current knowledge on the structure, function, regulation and assembly of each component of the photosynthetic chain. I explain how solar energy is harvested and converted into chemical energy by the photosynthetic electron transfer chain, how its components are integrated into a complex membrane macrostructure and how this organization contributes to regulation and photoprotection.
Collapse
Affiliation(s)
- Matthew P Johnson
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, UK.
| |
Collapse
|
2
|
Tang X, Yu X, Zhu X, Bian K, Meng C, Mao Y. Characterization of the Pyropia katadae plastid genome and comparative analysis within Bangiales species. JOURNAL OF PHYCOLOGY 2025; 61:275-287. [PMID: 40062743 DOI: 10.1111/jpy.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/21/2025] [Accepted: 02/10/2025] [Indexed: 05/02/2025]
Abstract
Bangiales species live in intertidal regions and suffer from stresses from a variable environment, making them suitable research objects for studying how plants adapt to nature. In this study, the plastid genome of Pyropia katadae was sequenced and compared with those of 11 previously reported Bangiales species. The Py. katadae plastid genome was 193,531 bp long and contained a single-copy region (LSC) of 149,821 bp, a small single-copy region (SSC) of 34,732 bp, and two direct repeats (DRs) 4489 bp long in between. Furthermore, we compared the plastid genomes of 12 Bangiales species. Among the 12 Bangiales plastid genomes, Bangia fuscopurpurea harbored the largest plastid genome size (196,913 bp), and Py. perforata harbored the smallest (189,789 bp). Phylogenetic analyses of shared genes indicated that Py. katadae clustered with Py. yezoensis into a single clade with a high bootstrap value. An overall high degree of similarity in gene content and arrangement among the Bangiales plastid genomes was observed. The size of the plastid genomes and that of the repeats of Pyropia were positively correlated, demonstrating that the repeats were essential for changes in the plastid genome size over a short evolutionary time. The presence of DR or approximate DR regions in most Bangiales plastid genomes indicates the existence of DR regions in their last common ancestor. The different shortened lengths of identical DR regions showed that each species experienced species-specific evolutionary events, which might cause variations in the sequences and the loss of genes. The two steps of fragment reversal could generate the DRs of Bangiales species from an ancestor in common with Florideophyceae. We identified positive selection sites in eight genes that appeared to be essential for Bangiales species to adapt to diverse environments. Our results provide essential genetic data for an in-depth understanding of the evolution and phylogeny of Bangiales species.
Collapse
Affiliation(s)
- Xianghai Tang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xinzi Yu
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xinyu Zhu
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ka Bian
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Chengzhen Meng
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yunxiang Mao
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
3
|
Cheng X, Shi C, Yang T, Ge Q, Kress WJ, Liu X. Unveiling the conserved nature of Heliconia chloroplast genomes: insights from the assembly and analysis of four complete chloroplast genomes. FRONTIERS IN PLANT SCIENCE 2025; 15:1535549. [PMID: 39886692 PMCID: PMC11779715 DOI: 10.3389/fpls.2024.1535549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 12/24/2024] [Indexed: 02/01/2025]
Abstract
Introduction Heliconia, a genus within the Zingiberales order, is renowned for its diverse morphology, suggesting a rich genetic reservoir. However, genetic research on plants within the Heliconiaceae family has primarily focused on taxonomy and phylogenetics, with limited exploration into other genetic aspects, particularly the chloroplast genome. Given the significance of chloroplast genomes in evolutionary studies, a deeper understanding of their structure and diversity within Heliconia is essential. Methods In this study, we sequenced and assembled the complete chloroplast genomes of four representative Heliconia species: Heliconia bihai, Heliconia caribaea, Heliconia orthotricha, and Heliconia tortuosa. The chloroplast genomes were analyzed for structure, gene content, and nucleotide diversity. We also performed comparative analysis with other species within the Zingiberales order to investigate structural and functional differences. Results The assembled chloroplast genomes of the four Heliconia species exhibited a typical quadripartite structure and ranged in length from 161,680 bp to 161,913 bp. All genomes contained 86 protein-coding genes. Comparative analysis revealed that the chloroplast genome structures of the different Heliconia species were highly conserved, with minor variations. Notably, the chloroplast genome of Heliconia was slightly shorter than those of other Zingiberales species, primarily due to the reduced length of the inverted repeat region. In terms of nucleotide diversity, Heliconia species exhibited lower diversity in their chloroplast genomes compared to other families within the Zingiberales order. Discussion This study provides valuable insights into the conserved nature of the chloroplast genome in Heliconia. The reduced chloroplast genome size, particularly the shortened inverted repeat region, marks a distinct feature of Heliconia within the Zingiberales family. Our findings also underscore the low nucleotide diversity within the chloroplast genomes of Heliconia species, which could be indicative of their evolutionary history and limited genetic differentiation. These results contribute to a broader understanding of chloroplast genome evolution in the Zingiberales and offer important genetic resources for future research on Heliconia and related species.
Collapse
Affiliation(s)
- Xin Cheng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Research, Beijing, China
| | | | | | | | - W. John Kress
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Xin Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Research, Beijing, China
| |
Collapse
|
4
|
Zhou YR, Li Y, Yang LH, Kozlowski G, Yi LT, Liu MH, Zheng SS, Song YG. The adaptive evolution of Quercus section Ilex using the chloroplast genomes of two threatened species. Sci Rep 2024; 14:20577. [PMID: 39232239 PMCID: PMC11375091 DOI: 10.1038/s41598-024-71838-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
Chloroplast (cp) genome sequences have been extensively used for phylogenetic and evolutionary analyses, as many have been sequenced in recent years. Identification of Quercus is challenging because many species overlap phenotypically owing to interspecific hybridization, introgression, and incomplete lineage sorting. Therefore, we wanted to gain a better understanding of this genus at the level of the maternally inherited chloroplast genome. Here, we sequenced, assembled, and annotated the cp genomes of the threatened Quercus marlipoensis (160,995 bp) and Q. kingiana (161,167 bp), and mined these genomes for repeat sequences and codon usage bias. Comparative genomic analyses, phylogenomics, and selection pressure analysis were also performed in these two threatened species along with other species of Quercus. We found that the guanine and cytosine content of the two cp genomes were similar. All 131 annotated genes, including 86 protein-coding genes, 37 transfer RNA genes, and 8 ribosomal RNA genes, had the same order in the two species. A strong A/T bias was detected in the base composition of simple sequence repeats. Among the 59 synonymous codons, the codon usage pattern of the cp genomes in these two species was more inclined toward the A/U ending. Comparative genomic analyses indicated that the cp genomes of Quercus section Ilex are highly conserved. We detected eight highly variable regions that could be used as molecular markers for species identification. The cp genome structure was consistent and different within and among the sections of Quercus. The phylogenetic analysis showed that section Ilex was not monophyletic and was divided into two groups, which were respectively nested with section Cerris and section Cyclobalanopsis. The two threatened species sequenced in this study were grouped into the section Cyclobalanopsis. In conclusion, the analyses of cp genomes of Q. marlipoensis and Q. kingiana promote further study of the taxonomy, phylogeny and evolution of these two threatened species and Quercus.
Collapse
Affiliation(s)
- Yu-Ren Zhou
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yu Li
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Liang-Hai Yang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Gregor Kozlowski
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
- Department of Biology and Botanic Garden, University of Fribourg, 1700, Fribourg, Switzerland
- Natural History Museum Fribourg, 1700, Fribourg, Switzerland
| | - Li-Ta Yi
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Mei-Hua Liu
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China.
| | - Si-Si Zheng
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
| | - Yi-Gang Song
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| |
Collapse
|
5
|
Liu HW, Urzica EI, Gallaher SD, Schmollinger S, Blaby-Haas CE, Iwai M, Merchant SS. Chlamydomonas cells transition through distinct Fe nutrition stages within 48 h of transfer to Fe-free medium. PHOTOSYNTHESIS RESEARCH 2024; 161:213-232. [PMID: 39017982 DOI: 10.1007/s11120-024-01103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/15/2024] [Indexed: 07/18/2024]
Abstract
Low iron (Fe) bioavailability can limit the biosynthesis of Fe-containing proteins, which are especially abundant in photosynthetic organisms, thus negatively affecting global primary productivity. Understanding cellular coping mechanisms under Fe limitation is therefore of great interest. We surveyed the temporal responses of Chlamydomonas (Chlamydomonas reinhardtii) cells transitioning from an Fe-rich to an Fe-free medium to document their short and long-term adjustments. While slower growth, chlorosis and lower photosynthetic parameters are evident only after one or more days in Fe-free medium, the abundance of some transcripts, such as those for genes encoding transporters and enzymes involved in Fe assimilation, change within minutes, before changes in intracellular Fe content are noticeable, suggestive of a sensitive mechanism for sensing Fe. Promoter reporter constructs indicate a transcriptional component to this immediate primary response. With acetate provided as a source of reduced carbon, transcripts encoding respiratory components are maintained relative to transcripts encoding components of photosynthesis and tetrapyrrole biosynthesis, indicating metabolic prioritization of respiration over photosynthesis. In contrast to the loss of chlorophyll, carotenoid content is maintained under Fe limitation despite a decrease in the transcripts for carotenoid biosynthesis genes, indicating carotenoid stability. These changes occur more slowly, only after the intracellular Fe quota responds, indicating a phased response in Chlamydomonas, involving both primary and secondary responses during acclimation to poor Fe nutrition.
Collapse
Affiliation(s)
- Helen W Liu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 99354, USA
| | - Eugen I Urzica
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
- Competence Network IBD, Hopfenstrasse 60, 24103, Kiel, Germany
| | - Sean D Gallaher
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
| | - Stefan Schmollinger
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
- Plant Research Laboratory, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Crysten E Blaby-Haas
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Masakazu Iwai
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sabeeha S Merchant
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 99354, USA.
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA.
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA.
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
6
|
Wen J, Wu BC, Li HM, Zhou W, Song CF. Plastome structure and phylogenetic relationships of genus Hydrocotyle (apiales): provide insights into the plastome evolution of Hydrocotyle. BMC PLANT BIOLOGY 2024; 24:778. [PMID: 39148054 PMCID: PMC11325595 DOI: 10.1186/s12870-024-05483-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND The genus Hydrocotyle Tourn. ex L. is a key group for further study on the evolution of Apiales, comprising around 170 species globally. Previous studies mainly focused on separate sections and provided much information about this genus, but its infrageneric relationships are still confusing. In addition, the genetic basis of its adaptive evolution remains poorly understood. To investigate the phylogeny and evolution of the genus, we selected ten representative species covering two of three diversity distribution centers and exhibiting rich morphology diversity. Comparative plastome analysis was conducted to clarify the structural character of Hydrocotyle plastomes. Positive selection analyses were implemented to assess the evolution of the genus. Phylogenetic inferences with protein-coding sequences (CDS) of Hydrocotyle and 17 related species were also performed. RESULTS Plastomes within Hydrocotyle were generally conservative in structure, gene order, and size. A total of 14 regions (rps16-trnK, trnQ-rps16, atpI-atpH, trnC-petN-psbM, ycf3-trnS, accD-psaI-ycf4, petA-psbJ, rps12-rpl20, rpl16 intron, rps3-rpl16 intron, rps9-rpl22, ndhF-rpl32, ndhA intron, and ycf1a) were recognized as hotspot regions within the genus, which suggested to be promising DNA barcodes for global phylogenetic analysis of Hydrocotyle. The ycf15 gene was suggested to be a protein-coding gene for Hydrocotyle species, and it could be used as a DNA barcode to identify Hydrocotyle. In phylogenetic analysis, three monophyletic clades (Clade I, II, III) were identified with evidence of rapid radiation speciation within Clade I. The selective pressure analysis detected that six CDS genes (ycf1b, matK, atpF, accD, rps14, and psbB) of Hydrocotyle species were under positive selection. Within the genus, the last four genes were conservative, suggesting a relation to the unique evolution of the genus in Apiales. Seven genes (atpE, matK, psbH, ycf1a, ycf1b, rpoA, and ycf2) were detected to be under some degree of positive selection in different taxa within the genus Hydrocotyle, indicating their role in the adaptive evolution of species. CONCLUSIONS Our study offers new insights into the phylogeny and adaptive evolution of Hydrocotyle. The plastome sequences could significantly enhance phylogenetic resolution and provide genomic resources and potential DNA markers useful for future studies of the genus.
Collapse
Affiliation(s)
- Jun Wen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Bao-Cheng Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Hui-Min Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Wei Zhou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Chun-Feng Song
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China.
| |
Collapse
|
7
|
Yeasmin T, Carroll SC, Hawtof DJ, Sutherland MC. Helicobacter pylori and Campylobacter jejuni bacterial holocytochrome c synthase structure-function analysis reveals conservation of heme binding. Commun Biol 2024; 7:984. [PMID: 39138305 PMCID: PMC11322641 DOI: 10.1038/s42003-024-06688-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Heme trafficking is essential for cellular function, yet mechanisms of transport and/or heme interaction are not well defined. The System I and System II bacterial cytochrome c biogenesis pathways are developing into model systems for heme trafficking due to their functions in heme transport, heme stereospecific positioning, and mediation of heme attachment to apocytochrome c. Here we focus on the System II pathway, CcsBA, that is proposed to be a bi-functional heme transporter and holocytochrome c synthase. An extensive structure-function analysis of recombinantly expressed Helicobacter pylori and Campylobacter jejuni CcsBAs revealed key residues required for heme interaction and holocytochrome c synthase activity. Homologous residues were previously identified to be required for heme interaction in Helicobacter hepaticus CcsBA. This study provides direct, biochemical evidence that mechanisms of heme interaction are conserved, leading to the proposal that the CcsBA WWD heme-handling domain represents a novel target for therapeutics.
Collapse
Affiliation(s)
- Tania Yeasmin
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Susan C Carroll
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - David J Hawtof
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Molly C Sutherland
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
8
|
Xu H, Guo Y, Xia M, Yu J, Chi X, Han Y, Li X, Zhang F. An updated phylogeny and adaptive evolution within Amaranthaceae s.l. inferred from multiple phylogenomic datasets. Ecol Evol 2024; 14:e70013. [PMID: 39011133 PMCID: PMC11246835 DOI: 10.1002/ece3.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 06/17/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024] Open
Abstract
Amaranthaceae s.l. is a widely distributed family consisting of over 170 genera and 2000 species. Previous molecular phylogenetic studies have shown that Amaranthaceae s.s. and traditional Chenopodiaceae form a monophyletic group (Amaranthaceae s.l.), however, the relationships within this evolutionary branch have yet to be fully resolved. In this study, we assembled the complete plastomes and full-length ITS of 21 Amaranthaceae s.l. individuals and compared them with 38 species of Amaranthaceae s.l. Through plastome structure and sequence alignment analysis, we identified a reverse complementary region approximately 5200 bp long in the genera Atriplex and Chenopodium. Adaptive evolution analysis revealed significant positive selection in eight genes, which likely played a driving role in the evolution of Amaranthaceae s.l., as demonstrated by partitioned evolutionary analysis. Furthermore, we found that about two-thirds of the examined species lack the ycf15 gene, potentially associated with natural selection pressures from their adapted habitats. The phylogenetic tree indicated that some genera (Chenopodium, Halogeton, and Subtr. Salsolinae) are paraphyletic lineages. Our results strongly support the clustering of Amaranthaceae s.l. with monophyletic traditional Chenopodiaceae (Clades I and II) and Amaranthaceae s.s. After a comprehensive analysis, we determined that cytonuclear conflict, gene selection by adapted habitats, and incomplete lineage sorting (ILS) events were the primary reasons for the inconsistent phylogeny of Amaranthaceae s.l. During the last glacial period, certain species within Amaranthaceae s.l. underwent adaptations to different environments and began to differentiate rapidly. Since then, these species may have experienced morphological and genetic changes distinct from those of other genera due to intense selection pressure.
Collapse
Affiliation(s)
- Hao Xu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology and Institute of Sanjiangyuan National ParkChinese Academy of SciencesXiningChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yuqin Guo
- Qinghai National Park Research Monitoring and Evaluation CenterXiningChina
| | - Mingze Xia
- School of PharmacyWeifang Medical UniversityWeifangChina
| | - Jingya Yu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology and Institute of Sanjiangyuan National ParkChinese Academy of SciencesXiningChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaofeng Chi
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology and Institute of Sanjiangyuan National ParkChinese Academy of SciencesXiningChina
| | - Yun Han
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology and Institute of Sanjiangyuan National ParkChinese Academy of SciencesXiningChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaoping Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology and Institute of Sanjiangyuan National ParkChinese Academy of SciencesXiningChina
- University of Chinese Academy of SciencesBeijingChina
| | - Faqi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology and Institute of Sanjiangyuan National ParkChinese Academy of SciencesXiningChina
- Qinghai Provincial Key Laboratory of Crop Molecular BreedingXiningChina
| |
Collapse
|
9
|
Li QQ, Zhang ZP, Aogan, Wen J. Comparative chloroplast genomes of Argentina species: genome evolution and phylogenomic implications. FRONTIERS IN PLANT SCIENCE 2024; 15:1349358. [PMID: 38766467 PMCID: PMC11099909 DOI: 10.3389/fpls.2024.1349358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/25/2024] [Indexed: 05/22/2024]
Abstract
The genus Argentina Hill belongs to the tribe Potentilleae Sweet and contains approximately 75 species predominantly distributed in the Sino-Himalayan region and the Malesian archipelago. So far we have less knowledge on the phylogenetic relationships within Argentina owing to limited sampling of Argentina taxa or gene fragments in previous studies. Moreover, to date there is no phylogenetic study on Argentina from the perspective of comparative chloroplast (cp) genomics. Here we performed comparative genomic analyses on the cp genomes of 39 accessions representing 18 taxa of Argentina. The Argentina cp genomes presented the typical quadripartite structure, with the sizes ranging from 155 096 bp to 157 166 bp. The 39 Argentina cp genomes contained a set of 112 unique genes, comprising four ribosomal RNA (rRNA) genes, 30 transfer RNA (tRNA) genes, as well as 78 protein-coding genes (PCGs). The cp genome organization, gene content and order in Argentina were highly conserved, but some visible divergences were present in IR/SC boundary regions. Ten regions (trnH-GUG-psbA, trnG-GCC-trnfM-CAU, trnD-GUC-trnY-GUA, rpl32-trnL-UAG, atpH-atpI, rps16-trnQ-UUG, trnS-GCU-trnG-UCC, ndhF-rpl32, trnR-UCU-atpA, and accD-psaI) were identified as excellent candidate DNA markers for future studies on species identification, population genetics and phylogeny of Argentina. Our results indicated that Argentina is monophyletic. In the current sampling, the A. smithiana - A. anserina clade was sister to the remainder of Argentina. Our results corroborated the previous taxonomic treatments to transfer A. phanerophlebia and A. micropetala from the genus Sibbaldia L. to Argentina. Our results showed close relationships among A. stenophylla, A. microphylla, A. taliensis, and A. tatsienluensis, congruent with previous studies based on the morphology of these species. Twenty-six genes (rps3, rps15, rps16, rps19, rpl16, rpl20, rpl22, rpoA, rpoB, rpoC1, rpoC2, atpA, atpF, psbB, psbF, ndhA, ndhB, ndhC, ndhD, ndhF, rbcL, accD, ccsA, matK, ycf1, ycf2) were with sites under positive selection, and adaptive evolution of these genes might have played crucial roles in Argentina species adaptation to the harsh mountain environment. This study will facilitate future work on taxonomy, phylogenetics, and adaptive evolution of Argentina.
Collapse
Affiliation(s)
- Qin-Qin Li
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot, China
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot, China
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Zhi-Ping Zhang
- College of Computer Science and Technology, Inner Mongolia Normal University, Hohhot, China
| | - Aogan
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| |
Collapse
|
10
|
Wang Y, Zhao X, Chen Q, Yang J, Hu J, Jia D, Ma R. Complete Chloroplast Genome of Alternanthera sessilis and Comparative Analysis with Its Congeneric Invasive Weed Alternanthera philoxeroides. Genes (Basel) 2024; 15:544. [PMID: 38790173 PMCID: PMC11121667 DOI: 10.3390/genes15050544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Alternanthera sessilis is considered the closest relative to the invasive weed Alternanthera philoxeroides in China, making it an important native species for studying the invasive mechanisms and adaptations of A. philoxeroides. Chloroplasts play a crucial role in a plant's environmental adaptation, with their genomes being pivotal in the evolution and adaptation of both invasive and related species. However, the chloroplast genome of A. sessilis has remained unknown until now. In this study, we sequenced and assembled the complete chloroplast genome of A. sessilis using high-throughput sequencing. The A. sessilis chloroplast genome is 151,935 base pairs long, comprising two inverted repeat regions, a large single copy region, and a small single copy region. This chloroplast genome contains 128 genes, including 8 rRNA-coding genes, 37 tRNA-coding genes, 4 pseudogenes, and 83 protein-coding genes. When compared to the chloroplast genome of the invasive weed A. philoxeroides and other Amaranthaceae species, we observed significant variations in the ccsA, ycf1, and ycf2 regions in the A. sessilis chloroplast genome. Moreover, two genes, ccsA and accD, were found to be undergoing rapid evolution due to positive selection pressure. The phylogenetic trees were constructed for the Amaranthaceae family, estimating the time of independent species formation between A. philoxeroides and A. sessilis to be approximately 3.5186-8.8242 million years ago. These findings provide a foundation for understanding the population variation within invasive species among the Alternanthera genus.
Collapse
Affiliation(s)
- Yuanxin Wang
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China; (Y.W.); (X.Z.); (Q.C.); (J.Y.); (J.H.)
| | - Xueying Zhao
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China; (Y.W.); (X.Z.); (Q.C.); (J.Y.); (J.H.)
| | - Qianhui Chen
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China; (Y.W.); (X.Z.); (Q.C.); (J.Y.); (J.H.)
| | - Jun Yang
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China; (Y.W.); (X.Z.); (Q.C.); (J.Y.); (J.H.)
| | - Jun Hu
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China; (Y.W.); (X.Z.); (Q.C.); (J.Y.); (J.H.)
| | - Dong Jia
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China; (Y.W.); (X.Z.); (Q.C.); (J.Y.); (J.H.)
- Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-Quality and Effciency in Loess Plateau, Taigu 030801, China
| | - Ruiyan Ma
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China; (Y.W.); (X.Z.); (Q.C.); (J.Y.); (J.H.)
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Taiyuan 030031, China
| |
Collapse
|
11
|
Kim SH, Yang J, Cho MS, Stuessy TF, Crawford DJ, Kim SC. Chloroplast Genome Provides Insights into Molecular Evolution and Species Relationship of Fleabanes ( Erigeron: Tribe Astereae, Asteraceae) in the Juan Fernández Islands, Chile. PLANTS (BASEL, SWITZERLAND) 2024; 13:612. [PMID: 38475459 DOI: 10.3390/plants13050612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Erigeron represents the third largest genus on the Juan Fernández Islands, with six endemic species, five of which occur exclusively on the younger Alejandro Selkirk Island with one species on both islands. While its continental sister species is unknown, Erigeron on the Juan Fernández Islands appears to be monophyletic and most likely evolved from South American progenitor species. We characterized the complete chloroplast genomes of five Erigeron species, including accessions of E. fernandezia and one each from Alejandro Selkirk and Robinson Crusoe Islands, with the purposes of elucidating molecular evolution and phylogenetic relationships. We found highly conserved chloroplast genomes in size, gene order and contents, and further identified several mutation hotspot regions. In addition, we found two positively selected chloroplast genes (ccsA and ndhF) among species in the islands. The complete plastome sequences confirmed the monophyly of Erigeron in the islands and corroborated previous phylogenetic relationships among species. New findings in the current study include (1) two major lineages, E. turricola-E. luteoviridis and E. fernandezia-E. ingae-E. rupicola, (2) the non-monophyly of E. fernandezia occurring on the two islands, and (3) the non-monophyly of the alpine species E. ingae complex.
Collapse
Affiliation(s)
- Seon-Hee Kim
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - JiYoung Yang
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Myong-Suk Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Tod F Stuessy
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel J Crawford
- Department of Ecology and Evolutionary Biology and the Biodiversity Institute, The University of Kansas, Lawrence, KS 66045, USA
| | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
12
|
Li YL, Nie LY, Deng SW, Duan L, Wang ZF, Charboneau JLM, Ho BC, Chen HF. Characterization of Firmiana danxiaensis plastomes and comparative analysis of Firmiana: insight into its phylogeny and evolution. BMC Genomics 2024; 25:203. [PMID: 38389079 PMCID: PMC10885454 DOI: 10.1186/s12864-024-10046-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Firmiana danxiaensis is a critically endangered and ecologically important tree currently only found in four locations in Danxia or Karst habitats in northern Guangdong Province, China. The specialized habitat preference makes it an ideal model species for study of adaptive evolution. Meanwhile, the phylogenetic relationships of F. danxiaensis in four locations under two landforms are unclear. Therefore, we sequenced its complete chloroplast (cp.) genomes and conducted comprehensive interspecific and intrageneric plastome studies. RESULTS The F. danxiaensis plastomes in four locations showed a typical quadripartite and circular structure that ranged from 160,832 to 161,206 bp in size, with 112 unique genes encoded. Comparative genomics showed that the plastomes of F. danxiaensis were relatively conserved with high similarity of genome organization, gene number, GC content and SSRs. While the genomes revealed higher biased codon preferences in Karst habitat than those in Danxia habitats. Eighteen and 11 divergent hotpots were identified at interspecific and intrageneric levels for species identification and further phylogenetic studies. Seven genes (clpP, accD, ccsA, ndhH, rpl20, rpoC2, and rps4) were under positive selection and may be related to adaptation. Phylogenetic analysis revealed that F. danxiaensis is sister to F. major and F. simplex. However, the interspecific relationships are not consistent with the habitat types. CONCLUSIONS The characteristics and interspecific relationship of F. danxiaensis plastomes provide new insights into further integration of geographical factors, environmental factors, and genetic variations on the genomic study of F. danxiaensis. Together, our study will contribute to the study of species identification, population genetics, and conservation biology of F. danxiaensis.
Collapse
Affiliation(s)
- Ya-Li Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Yun Nie
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang-Wen Deng
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Duan
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Zheng-Feng Wang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510650, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Key Laboratory of Carbon Sequestration in Terrestrial Ecosystem, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Joseph L M Charboneau
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Boon-Chuan Ho
- Singapore Botanic Gardens, National Parks Board, 1 Cluny Road, Singapore, 259569, Republic of Singapore
| | - Hong-Feng Chen
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
13
|
Lubna, Asaf S, Jan R, Asif S, Bilal S, Khan AL, Kim KM, Lee IJ, Al-Harrasi A. Plastome diversity and evolution in mosses: Insights from structural characterization, comparative genomics, and phylogenetic analysis. Int J Biol Macromol 2024; 257:128608. [PMID: 38065441 DOI: 10.1016/j.ijbiomac.2023.128608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 01/27/2024]
Abstract
Mosses play a significant role in ecology, evolution, and the economy. They belong to the nonvascular plant kingdom and are considered the closest living relatives of the first terrestrial plants. The circular chloroplast DNA molecules (plastomes) of mosses contain all the genetic information essential for chloroplast functions and represent the source of the evolutionary history of these organisms. This study comprehensively analyzed the plastomes of 47 moss species belonging to 14 orders, focusing on their size, GC content, gene loss, gene content, synteny, and evolution. The findings revealed great differences among plastome sizes, with Takakia lepidozioides (Takakiopsida) and Funaria hygrometrica (Funariales) having the largest and smallest plastomes, respectively. Moss plastomes included 69 to 89 protein-coding genes, 8 rRNA genes, and 34 to 42 tRNA genes, resulting in the total number of genes in a plastome ranging between 115 and 138. Various genes have been lost from the plastomes of different moss species, with Atrichum angustatum lacking the highest number of genes. This study also examined plastome synteny and moss evolution using comparative genomics and repeat sequence analysis. The results demonstrated that synteny and similarity levels varied across the 47 moss examined species, with some exhibiting structure similarity and others displaying structural inversions. Maximum likelihood and Bayesian approaches were used to construct a phylogenetic tree using 36 concatenated protein-coding genes, and the results revealed that the genera Sphagnum and Takakia are sister groups to the other mosses. Additionally, it was found that Tetraphidales, Polytrichales, Buxbaumiales, and Diphysciales are closely related. This research describes the evolutionary diversity of mosses and offers guidelines for future studies in this field. The findings also highlight the need for more investigations into the factors regulating plastome size variation in these plants.
Collapse
Affiliation(s)
- Lubna
- Natural and Medical Science Research Center, University of Nizwa, 616 Nizwa, Oman
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, 616 Nizwa, Oman.
| | - Rahmatullah Jan
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Saleem Asif
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Saqib Bilal
- Natural and Medical Science Research Center, University of Nizwa, 616 Nizwa, Oman
| | - Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX, 77479, USA
| | - Kyung-Min Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Ahmed Al-Harrasi
- Natural and Medical Science Research Center, University of Nizwa, 616 Nizwa, Oman.
| |
Collapse
|
14
|
Fu CN, Wicke S, Zhu AD, Li DZ, Gao LM. Distinctive plastome evolution in carnivorous angiosperms. BMC PLANT BIOLOGY 2023; 23:660. [PMID: 38124058 PMCID: PMC10731798 DOI: 10.1186/s12870-023-04682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Independent origins of carnivory in multiple angiosperm families are fabulous examples of convergent evolution using a diverse array of life forms and habitats. Previous studies have indicated that carnivorous plants have distinct evolutionary trajectories of plastid genome (plastome) compared to their non-carnivorous relatives, yet the extent and general characteristics remain elusive. RESULTS We compared plastomes from 9 out of 13 carnivorous families and their non-carnivorous relatives to assess carnivory-associated evolutionary patterns. We identified inversions in all sampled Droseraceae species and four species of Utricularia, Pinguicula, Darlingtonia and Triphyophyllum. A few carnivores showed distinct shifts in inverted repeat boundaries and the overall repeat contents. Many ndh genes, along with some other genes, were independently lost in several carnivorous lineages. We detected significant substitution rate variations in most sampled carnivorous lineages. A significant overall substitution rate acceleration characterizes the two largest carnivorous lineages of Droseraceae and Lentibulariaceae. We also observe moderate substitution rates acceleration in many genes of Cephalotus follicularis, Roridula gorgonias, and Drosophyllum lusitanicum. However, only a few genes exhibit significant relaxed selection. CONCLUSION Our results indicate that the carnivory of plants have different effects on plastome evolution across carnivorous lineages. The complex mechanism under carnivorous habitats may have resulted in distinctive plastome evolution with conserved plastome in the Brocchinia hechtioides to strongly reconfigured plastomes structures in Droseraceae. Organic carbon obtained from prey and the efficiency of utilizing prey-derived nutrients might constitute possible explanation.
Collapse
Affiliation(s)
- Chao-Nan Fu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, Yunnan, China
| | - Susann Wicke
- Institute for Biology, Humboldt-University Berlin, Berlin, Germany
- Späth-Arboretum of the Humboldt-University Berlin, Berlin, Germany
| | - An-Dan Zhu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - De-Zhu Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, Yunnan, China.
| |
Collapse
|
15
|
Huynh JQ, Lowder EP, Kranz RG. Structural basis of membrane machines that traffick and attach heme to cytochromes. J Biol Chem 2023; 299:105332. [PMID: 37827288 PMCID: PMC10663686 DOI: 10.1016/j.jbc.2023.105332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023] Open
Abstract
We evaluate cryoEM and crystal structures of two molecular machines that traffick heme and attach it to cytochrome c (cyt c), the second activity performed by a cyt c synthase. These integral membrane proteins, CcsBA and CcmF/H, both covalently attach heme to cyt c, but carry it out via different mechanisms. A CcsB-CcsA complex transports heme through a channel to its external active site, where it forms two thioethers between reduced (Fe+2) heme and CysXxxXxxCysHis in cyt c. The active site is formed by a periplasmic WWD sequence and two histidines (P-His1 and P-His2). We evaluate each proposed functional domain in CcsBA cryoEM densities, exploring their presence in other CcsB-CcsA proteins from a wide distribution of organisms (e.g., from Gram positive to Gram negative bacteria to chloroplasts.) Two conserved pockets, for the first and second cysteines of CXXCH, explain stereochemical heme attachment. In addition to other universal features, a conserved periplasmic beta stranded structure, called the beta cap, protects the active site when external heme is not present. Analysis of CcmF/H, here called an oxidoreductase and cyt c synthase, addresses mechanisms of heme access and attachment. We provide evidence that CcmF/H receives Fe+3 heme from holoCcmE via a periplasmic entry point in CcmF, whereby heme is inserted directly into a conserved WWD/P-His domain from above. Evidence suggests that CcmF acts as a heme reductase, reducing holoCcmE (to Fe+2) through a transmembrane electron transfer conduit, which initiates a complicated series of events at the active site.
Collapse
Affiliation(s)
- Jonathan Q Huynh
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Ethan P Lowder
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Robert G Kranz
- Department of Biology, Washington University, St. Louis, Missouri, USA.
| |
Collapse
|
16
|
Ma D, Ding Q, Zhao Z, Han X, Zheng HL. Chloroplast genome analysis of three Acanthus species reveal the adaptation of mangrove to intertidal habitats. Gene 2023; 873:147479. [PMID: 37182557 DOI: 10.1016/j.gene.2023.147479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
Acanthus is a distinctive genus that covers three species with different ecological niches including Acanthus mollis (arid terrestrial), Acanthus leucostachyus (damp forest) and Acanthus ilicifolius (coastal intertidal). It is an intriguing question how these species evolved from terrestrial to coastal intertidal. In the present study, we assembled chloroplast genomes of A. ilicifolius, A. leucostachyus and A. mollis, which exhibited typical quadripartite structures. The sizes were 150,758, 154,686 and 150,339 bp that comprised a large single copy (LSC, 82,963, 86,461 and 82,612 bp), a small single copy (SSC, 17,191, 17,511 and 17,019 bp), and a pair of inverted repeats (IRs, 25,302, 25,357 and 25,354 bp), respectively. Gene annotation revealed that A. ilicifolius, A. leucostachyus and A. mollis contained 113, 112 and 108 unique genes, each of which contained 79, 79 and 74 protein-coding genes, 30, 29 and 30 tRNAs, and 4 rRNA genes, respectively. Differential gene analysis revealed plenty of ndhs gene deletions in the terrestrial plant A. mollis. Nucleotide diversity analysis showed that the psbK, ycf1, ndhG, and rpl22 have the highest nucleotide variability. Compared to A. leucostachyus and A. mollis, seven genes in A. ilicifolius underwent positive selection. Among them, the atpF gene showed a strong positive selection throughout terrestrial to marine evolution and was important for adaptation to coastal intertidal habitats. Phylogenetic analysis indicated that A. ilicifolius has a closer genetic relationship with A. leucostachyus than A. mollis which further confirmed the evolutionary direction of Acanthus going from terrestrial to coastal intertidal zones.
Collapse
Affiliation(s)
- Dongna Ma
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Qiansu Ding
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Zhizhu Zhao
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Xiao Han
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
17
|
Yang L, Deng S, Zhu Y, Da Q. Comparative chloroplast genomics of 34 species in subtribe Swertiinae (Gentianaceae) with implications for its phylogeny. BMC PLANT BIOLOGY 2023; 23:164. [PMID: 36977991 PMCID: PMC10044379 DOI: 10.1186/s12870-023-04183-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Subtribe Swertiinae, a medicinally significant and highly speciose Subtribe of family Gentianaceae. Despite previous extensive studies based on both morphology and molecular data, intergeneric and infrageneric relationships within subtribe Swertiinae remain controversial. METHODS Here, we employed four newly generated Swertia chloroplast genomes with thirty other published genomes to elucidate their genomic characteristics. RESULTS The 34 chloroplast genomes were small and ranged in size from 149,036 to 154,365 bp, each comprising two inverted repeat regions (size range 25,069-26,126 bp) that separated large single-copy (80,432-84,153 bp) and small single-copy (17,887-18,47 bp) regions, and all the chloroplast genomes showed similar gene orders, contents, and structures. These chloroplast genomes contained 129-134 genes each, including 84-89 protein-coding genes, 37 tRNAs, and 8 rRNAs. The chloroplast genomes of subtribe Swertiinae appeared to have lost some genes, such as rpl33, rpl2 and ycf15 genes. Comparative analyses revealed that two mutation hotspot regions (accD-psaI and ycf1) could serve as effective molecular markers for further phylogenetic analyses and species identification in subtribe Swertiinae. Positive selection analyses showed that two genes (ccsA and psbB) had high Ka/Ks ratios, indicating that chloroplast genes may have undergone positive selection in their evolutionary history. Phylogenetic analysis showed that the 34 subtribe Swertiinae species formed a monophyletic clade, with Veratrilla, Gentianopsis and Pterygocalyx located at the base of the phylogenetic tree. Some genera of this subtribe, however, were not monophyletic, including Swertia, Gentianopsis, Lomatogonium, Halenia, Veratrilla and Gentianopsis. In addition, our molecular phylogeny was consistent with taxonomic classification of subtribe Swertiinae in the Roate group and Tubular group. The results of molecular dating showed that the divergence between subtrib Gentianinae and subtrib Swertiinae was estimated to occur in 33.68 Ma. Roate group and Tubular group in subtribe Swertiinae approximately diverged in 25.17 Ma. CONCLUSION Overall, our study highlighted the taxonomic utility of chloroplast genomes in subtribe Swertiinae, and the genetic markers identified here will facilitate future studies on the evolution, conservation, population genetics, and phylogeography of subtribe Swertiinae species.
Collapse
Affiliation(s)
- Lucun Yang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.
- Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences, Xining, 81008, China.
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resource, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.
| | - Shengxue Deng
- Qinghai Environmental Science Research and Design Institute Co. Ltd, Xining, 810007, China
| | - Yongqing Zhu
- Maqin County Forestry and Grassland Station, Maqin, 814000, China
| | - Qilin Da
- Bureau of Forestry in Hualong County, Hualong, 810900, China
| |
Collapse
|
18
|
Comparative Analyses of Plastomes of Four Anubias (Araceae) Taxa, Tropical Aquatic Plants Endemic to Africa. Genes (Basel) 2022; 13:genes13112043. [DOI: 10.3390/genes13112043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Anubias Schott (Araceae) have high ornamental properties as aquarium plants. However, the genus has difficulties in species identification, and the mechanism of its adaptation to the aquatic environment is unknown. To better identify species and understand the evolutionary history of Anubias, the plastomes of Anubias barteri Schott, A. barteri var. nana (Engl.) Crusio, and A. hastifolia Engl., were sequenced. The sizes of the plastomes of Anubias ranged from 169,841 bp to 170,037 bp. These plastomes were composed of conserved quadripartite circular structures and comprised 112 unique genes, including 78 protein-coding genes, 30 transfer RNA genes, and 4 ribosomal RNA genes. The comparative analysis of genome structure, repeat sequences, codon usage and RNA editing sites revealed high similarities among the Anubias plastomes, indicating the conservation of plastomes of Anubias. Three spacer regions with relatively high nucleotide diversity, trnL-CAA-ndhB, ycf1-ndhF, and rps15-ycf1, were found within the plastomes of Anubias. Phylogenetic analysis, based on 75 protein-coding genes, showed that Anubias was sister to Montrichardia arborescens (L.) Schott (BS = 99). In addition, four genes (ccsA, matK, ndhF, and ycf4) that contain sites undergoing positive selection were identified within the Anubias plastomes. These genes may play an important role in the adaptation of Anubias to the aquatic environment. The present study provides a valuable resource for further studies on species identification and the evolutionary history of Anubias.
Collapse
|
19
|
Zhang ZR, Yang X, Li WY, Peng YQ, Gao J. Comparative chloroplast genome analysis of Ficus (Moraceae): Insight into adaptive evolution and mutational hotspot regions. FRONTIERS IN PLANT SCIENCE 2022; 13:965335. [PMID: 36186045 PMCID: PMC9521400 DOI: 10.3389/fpls.2022.965335] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
As the largest genus in Moraceae, Ficus is widely distributed across tropical and subtropical regions and exhibits a high degree of adaptability to different environments. At present, however, the phylogenetic relationships of this genus are not well resolved, and chloroplast evolution in Ficus remains poorly understood. Here, we sequenced, assembled, and annotated the chloroplast genomes of 10 species of Ficus, downloaded and assembled 13 additional species based on next-generation sequencing data, and compared them to 46 previously published chloroplast genomes. We found a highly conserved genomic structure across the genus, with plastid genome sizes ranging from 159,929 bp (Ficus langkokensis) to 160,657 bp (Ficus religiosa). Most chloroplasts encoded 113 unique genes, including a set of 78 protein-coding genes, 30 transfer RNA (tRNA) genes, four ribosomal RNA (rRNA) genes, and one pseudogene (infA). The number of simple sequence repeats (SSRs) ranged from 67 (Ficus sagittata) to 89 (Ficus microdictya) and generally increased linearly with plastid size. Among the plastomes, comparative analysis revealed eight intergenic spacers that were hotspot regions for divergence. Additionally, the clpP, rbcL, and ccsA genes showed evidence of positive selection. Phylogenetic analysis indicated that none of the six traditionally recognized subgenera of Ficus were monophyletic. Divergence time analysis based on the complete chloroplast genome sequences showed that Ficus species diverged rapidly during the early to middle Miocene. This research provides basic resources for further evolutionary studies of Ficus.
Collapse
Affiliation(s)
- Zheng-Ren Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue Yang
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Wei-Ying Li
- Southwest Research Center for Landscape Architecture Engineering Technology, State Forestry and Grassland Administration, Southwest Forestry University, Kunming, China
| | - Yan-Qiong Peng
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Jie Gao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| |
Collapse
|
20
|
Comparative Plastome Analysis of Three Amaryllidaceae Subfamilies: Insights into Variation of Genome Characteristics, Phylogeny, and Adaptive Evolution. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3909596. [PMID: 35372568 PMCID: PMC8970886 DOI: 10.1155/2022/3909596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/19/2022] [Accepted: 02/05/2022] [Indexed: 11/17/2022]
Abstract
In the latest APG IV classification system, Amaryllidaceae is placed under the order of Asparagus and includes three subfamilies: Agapanthoideae, Allioideae, and Amaryllidoideae, which include many economically important crops. With the development of molecular phylogeny, research on the phylogenetic relationship of Amaryllidaceae has become more convenient. However, the current comparative analysis of Amaryllidaceae at the whole chloroplast genome level is still lacking. In this study, we sequenced 18 Allioideae plastomes and combined them with publicly available data (a total of 41 plastomes), including 21 Allioideae species, 1 Agapanthoideae species, 14 Amaryllidoideae species, and 5 Asparagaceae species. Comparative analyses were performed including basic characteristics of genome structure, codon usage, repeat elements, IR boundary, and genome divergence. Phylogenetic relationships were detected using single-copy genes (SCGs) and ribosomal internal transcribed spacer sequences (ITS), and the branch-site model was also employed to conduct the positive selection analysis. The results indicated that all Amaryllidaceae species showed a highly conserved typical tetrad structure. The GC content and five codon usage indexes in Allioideae species were lower than those in the other two subfamilies. Comparison analysis of Bayesian and ML phylogeny based on SCGs strongly supports the monophyly of three subfamilies and the sisterhood among them. Besides, positively selected genes (PSGs) were detected in each of the three subfamilies. Almost all genes with significant posterior probabilities for codon sites were associated with self-replication and photosynthesis. Our study investigated the three subfamilies of Amaryllidaceae at the whole chloroplast genome level and suggested the key role of selective pressure in the adaptation and evolution of Amaryllidaceae.
Collapse
|
21
|
Sadamitsu A, Inoue Y, Sakakibara K, Tsubota H, Yamaguchi T, Deguchi H, Nishiyama T, Shimamura M. The complete plastid genome sequence of the enigmatic moss, Takakia lepidozioides (Takakiopsida, Bryophyta): evolutionary perspectives on the largest collection of genes in mosses and the intensive RNA editing. PLANT MOLECULAR BIOLOGY 2021; 107:431-449. [PMID: 34817767 DOI: 10.1007/s11103-021-01214-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Complete chloroplast genome sequence of a moss, Takakia lepidozioides (Takakiopsida) is reported. The largest collection of genes in mosses and the intensive RNA editing were discussed from evolutionary perspectives. We assembled the entire plastid genome sequence of Takakia lepidozioides (Takakiopsida), emerging from the first phylogenetic split among extant mosses. The genome sequences were assembled into a circular molecule 149,016 bp in length, with a quadripartite structure comprising a large and a small single-copy region separated by inverted repeats. It contained 88 genes coding for proteins, 32 for tRNA, four for rRNA, two open reading frames, and at least one pseudogene (tufA). This is the largest number of genes of all sequenced plastid genomes in mosses and Takakia is the only moss that retains the seven coding genes ccsA, cysA, cysT, petN rpoA, rps16 and trnPGGG. Parsimonious interpretation of gene loss suggests that the last common ancestor of bryophytes had all seven genes and that mosses lost at least three of them during their diversification. Analyses of the plastid transcriptome identified the extraordinary frequency of RNA editing with more than 1100 sites. We indicated a close correlation between the monoplastidy of vegetative tissue and the intensive RNA editing sites in the plastid genome in land plant lineages. Here, we proposed a hypothesis that the small population size of plastids in each vegetative cell of some early diverging land plants, including Takakia, might cause the frequent fixation of mutations in plastid genome through the intracellular genetic drift and that deleterious mutations might be continuously compensated by RNA editing during or following transcription.
Collapse
Affiliation(s)
- Atsushi Sadamitsu
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8526, Japan
| | - Yuya Inoue
- Department of Botany, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki, 305-0005, Japan
- Hattori Botanical Laboratory, 6-1-26 Obi, Nichinan, Miyazaki, 889-2535, Japan
| | - Keiko Sakakibara
- Department of Life Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Hiromi Tsubota
- Miyajima Natural Botanical Garden, Graduate School of Integrated Sciences for Life, Hiroshima University, 1156-2, Mitsumaruko-yama, Miyajima-cho, Hatsukaichi, Hiroshima, 739-0543, Japan
| | - Tomio Yamaguchi
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8526, Japan
| | - Hironori Deguchi
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8526, Japan
| | - Tomoaki Nishiyama
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, 920-0934, Japan
| | - Masaki Shimamura
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8526, Japan.
| |
Collapse
|
22
|
Chen J, Zang Y, Shang S, Liang S, Zhu M, Wang Y, Tang X. Comparative Chloroplast Genomes of Zosteraceae Species Provide Adaptive Evolution Insights Into Seagrass. FRONTIERS IN PLANT SCIENCE 2021; 12:741152. [PMID: 34630493 PMCID: PMC8495015 DOI: 10.3389/fpls.2021.741152] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/23/2021] [Indexed: 05/29/2023]
Abstract
Seagrasses are marine flowering plants found in tropical and sub-tropical areas that live in coastal regions between the sea and land. All seagrass species evolved from terrestrial monocotyledons, providing the opportunity to study plant adaptation to sea environments. Here, we sequenced the chloroplast genomes (cpGenomes) of three Zostera species, then analyzed and compared their cpGenome structures and sequence variations. We also performed a phylogenetic analysis using published seagrass chloroplasts and calculated the selection pressure of 17 species within seagrasses and nine terrestrial monocotyledons, as well as estimated the number of shared genes of eight seagrasses. The cpGenomes of Zosteraceae species ranged in size from 143,877 bp (Zostera marina) to 152,726 bp (Phyllospadix iwatensis), which were conserved and displayed similar structures and gene orders. Additionally, we found 17 variable hotspot regions as candidate DNA barcodes for Zosteraceae species, which will be helpful for studying the phylogenetic relationships and interspecies differences between seagrass species. Interestingly, nine genes had positive selection sites, including two ATP subunit genes (atpA and atpF), two ribosome subunit genes (rps4 and rpl20), two DNA-dependent RNA polymerase genes (rpoC1 and rpoC2), as well as accD, clpP, and ycf2. These gene regions may have played key roles in the seagrass adaptation to diverse environments. The Branch model analysis showed that seagrasses had a higher rate of evolution than terrestrial monocotyledons, suggesting that seagrasses experienced greater environmental pressure. Moreover, a branch-site model identified positively selected sites (PSSs) in ccsA, suggesting their involvement in the adaptation to sea environments. These findings are valuable for further investigations on Zosteraceae cpGenomes and will serve as an excellent resource for future studies on seagrass adaptation to sea environments.
Collapse
Affiliation(s)
- Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yu Zang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Shuai Shang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| | - Shuo Liang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Meiling Zhu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ying Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
23
|
Sutherland MC, Mendez DL, Babbitt SE, Tillman DE, Melnikov O, Tran NL, Prizant NT, Collier AL, Kranz RG. In vitro reconstitution reveals major differences between human and bacterial cytochrome c synthases. eLife 2021; 10:64891. [PMID: 33973521 PMCID: PMC8112865 DOI: 10.7554/elife.64891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/23/2021] [Indexed: 11/25/2022] Open
Abstract
Cytochromes c are ubiquitous heme proteins in mitochondria and bacteria, all possessing a CXXCH (CysXxxXxxCysHis) motif with covalently attached heme. We describe the first in vitro reconstitution of cytochrome c biogenesis using purified mitochondrial (HCCS) and bacterial (CcsBA) cytochrome c synthases. We employ apocytochrome c and peptide analogs containing CXXCH as substrates, examining recognition determinants, thioether attachment, and subsequent release and folding of cytochrome c. Peptide analogs reveal very different recognition requirements between HCCS and CcsBA. For HCCS, a minimal 16-mer peptide is required, comprised of CXXCH and adjacent alpha helix 1, yet neither thiol is critical for recognition. For bacterial CcsBA, both thiols and histidine are required, but not alpha helix 1. Heme attached peptide analogs are not released from the HCCS active site; thus, folding is important in the release mechanism. Peptide analogs behave as inhibitors of cytochrome c biogenesis, paving the way for targeted control. From tiny bacteria to the tallest trees, most life on Earth carries a protein called cytochrome c, which helps to create the energy that powers up cells. Cytochrome c does so thanks to its heme, a molecule that enables the chemical reactions required for the energy-creating process. Despite both relying on cytochrome c, animals and bacteria differ in the enzyme they use to attach the heme to the cytochrome. Spotting variations in how this ‘cytochrome c synthase’ works would help to find compounds that deactivate the enzyme in bacteria, but not in humans. However, studying cytochrome c synthase in living cells is challenging. To bypass this issue, Sutherland, Mendez, Babbitt et al. successfully reconstituted cytochrome c synthases from humans and bacteria in test tubes. This allowed them to examine in detail which structures the enzymes recognize to spot where to attach the heme onto their target. The experiments revealed that human and bacterial synthases actually rely on different parts of the cytochrome c to orient themselves. Different short compounds could also block either the human or bacterial enzyme. Variations between human and bacterial cytochrome c synthase could lead to new antibiotics which deactivate the cytochrome and kill bacteria while sparing patients. The next step is to identify molecules that specifically interfere with cytochrome c synthase in bacteria, and could be tested in clinical trials.
Collapse
Affiliation(s)
- Molly C Sutherland
- Department of Biology, Washington University in St. Louis, St. Louis, United States.,Department of Biological Sciences, University of Delaware, Newark, United States
| | - Deanna L Mendez
- Department of Biology, Washington University in St. Louis, St. Louis, United States
| | - Shalon E Babbitt
- Department of Biology, Washington University in St. Louis, St. Louis, United States
| | - Dustin E Tillman
- Department of Biology, Washington University in St. Louis, St. Louis, United States
| | - Olga Melnikov
- Department of Biology, Washington University in St. Louis, St. Louis, United States
| | - Nathan L Tran
- Department of Biology, Washington University in St. Louis, St. Louis, United States
| | - Noah T Prizant
- Department of Biology, Washington University in St. Louis, St. Louis, United States
| | - Andrea L Collier
- Department of Biology, Washington University in St. Louis, St. Louis, United States
| | - Robert G Kranz
- Department of Biology, Washington University in St. Louis, St. Louis, United States
| |
Collapse
|
24
|
Ping J, Feng P, Li J, Zhang R, Su Y, Wang T. Molecular evolution and SSRs analysis based on the chloroplast genome of Callitropsis funebris. Ecol Evol 2021; 11:4786-4802. [PMID: 33976848 PMCID: PMC8093713 DOI: 10.1002/ece3.7381] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
Chloroplast genome sequences have been used to understand evolutionary events and to infer efficiently phylogenetic relationships. Callitropsis funebris (Cupressaceae) is an endemic species in China. Its phylogenetic position is controversial due to morphological characters similar to those of Cupressus, Callitropsis, and Chamaecyparis. This study used next-generation sequencing technology to sequence the complete chloroplast genome of Ca. funebris and then constructed the phylogenetic relationship between Ca. funebris and its related species based on a variety of data sets and methods. Simple sequence repeats (SSRs) and adaptive evolution analysis were also conducted. Our results showed that the monophyletic branch consisting of Ca. funebris and Cupressus tonkinensis is a sister to Cupressus, while Callitropsis is not monophyletic; Ca. nootkatensis and Ca. vietnamensis are nested in turn at the base of the monophyletic group Hesperocyparis. The statistical results of SSRs supported the closest relationship between Ca. funebris and Cupressus. By performing adaptive evolution analysis under the phylogenetic background of Cupressales, the Branch model detected three genes and the Site model detected 10 genes under positive selection; and the Branch-Site model uncovered that rpoA has experienced positive selection in the Ca. funebries branch. Molecular analysis from the chloroplast genome highly supported that Ca. funebris is at the base of Cupressus. Of note, SSR features were found to be able to shed some light on phylogenetic relationships. In short, this chloroplast genomic study has provided new insights into the phylogeny of Ca. funebris and revealed multiple chloroplast genes possibly undergoing adaptive evolution.
Collapse
Affiliation(s)
- Jingyao Ping
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Peipei Feng
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Jinye Li
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Rongjing Zhang
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yingjuan Su
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
- Research Institute of Sun Yat‐sen University in ShenzhenShenzhenChina
| | - Ting Wang
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
25
|
Puthiyaveetil S, McKenzie SD, Kayanja GE, Ibrahim IM. Transcription initiation as a control point in plastid gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194689. [PMID: 33561560 DOI: 10.1016/j.bbagrm.2021.194689] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022]
Abstract
The extensive processing and protein-assisted stabilization of transcripts have been taken as evidence for a viewpoint that the control of gene expression had shifted entirely in evolution from transcriptional in the bacterial endosymbiont to posttranscriptional in the plastid. This suggestion is however at odds with many observations on plastid gene transcription. Chloroplasts of flowering plants and mosses contain two or more RNA polymerases with distinct promoter preference and division of labor for the coordinated synthesis of plastid RNAs. Plant and algal plastids further possess multiple nonredundant sigma factors that function as transcription initiation factors. The controlled accumulation of plastid sigma factors and modification of their activity by sigma-binding proteins and phosphorylation constitute additional transcriptional regulatory strategies. Plant and algal plastids also contain dedicated one- or two-component transcriptional regulators. Transcription initiation thus continues to form a critical control point at which varied developmental and environmental signals intersect with plastid gene expression.
Collapse
Affiliation(s)
- Sujith Puthiyaveetil
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA.
| | - Steven D McKenzie
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Gilbert E Kayanja
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Iskander M Ibrahim
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
26
|
Ren T, Li ZX, Xie DF, Gui LJ, Peng C, Wen J, He XJ. Plastomes of eight Ligusticum species: characterization, genome evolution, and phylogenetic relationships. BMC PLANT BIOLOGY 2020; 20:519. [PMID: 33187470 PMCID: PMC7663912 DOI: 10.1186/s12870-020-02696-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/12/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND The genus Ligusticum consists of approximately 60 species distributed in the Northern Hemisphere. It is one of the most taxonomically difficult taxa within Apiaceae, largely due to the varied morphological characteristics. To investigate the plastome evolution and phylogenetic relationships of Ligusticum, we determined the complete plastome sequences of eight Ligusticum species using a de novo assembly approach. RESULTS Through a comprehensive comparative analysis, we found that the eight plastomes were similar in terms of repeat sequence, SSR, codon usage, and RNA editing site. However, compared with the other seven species, L. delavayi exhibited striking differences in genome size, gene number, IR/SC borders, and sequence identity. Most of the genes remained under the purifying selection, whereas four genes showed relaxed selection, namely ccsA, rpoA, ycf1, and ycf2. Non-monophyly of Ligusticum species was inferred from the plastomes and internal transcribed spacer (ITS) sequences phylogenetic analyses. CONCLUSION The plastome tree and ITS tree produced incongruent tree topologies, which may be attributed to the hybridization and incomplete lineage sorting. Our study highlighted the advantage of plastome with mass informative sites in resolving phylogenetic relationships. Moreover, combined with the previous studies, we considered that the current taxonomy system of Ligusticum needs to be improved and revised. In summary, our study provides new insights into the plastome evolution, phylogeny, and taxonomy of Ligusticum species.
Collapse
Affiliation(s)
- Ting Ren
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zi-Xuan Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Deng-Feng Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Ling-Jian Gui
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Chang Peng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jun Wen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
27
|
Folk RA, Sewnath N, Xiang CL, Sinn BT, Guralnick RP. Degradation of key photosynthetic genes in the critically endangered semi-aquatic flowering plant Saniculiphyllum guangxiense (Saxifragaceae). BMC PLANT BIOLOGY 2020; 20:324. [PMID: 32640989 PMCID: PMC7346412 DOI: 10.1186/s12870-020-02533-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 06/28/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Plastid gene loss and pseudogenization has been widely documented in parasitic and mycoheterotrophic plants, which have relaxed selective constraints on photosynthetic function. More enigmatic are sporadic reports of pseudogenization and loss of important photosynthesis genes in lineages thought to be fully photosynthetic. Here we report the complete plastid genome of Saniculiphyllum guangxiense, a critically endangered and phylogenetically isolated plant lineage, along with genomic evidence of reduced chloroplast function. We also report 22 additional plastid genomes representing the diversity of its containing clade Saxifragales, characterizing gene content and placing variation in a broader phylogenetic context. RESULTS We find that the plastid genome of Saniculiphyllum has experienced pseudogenization of five genes of the ndh complex (ndhA, ndhB, ndhD, ndhF, and ndhK), previously reported in flowering plants with an aquatic habit, as well as the surprising pseudogenization of two genes more central to photosynthesis (ccsA and cemA), contrasting with strong phylogenetic conservatism of plastid gene content in all other sampled Saxifragales. These genes participate in photooxidative protection, cytochrome synthesis, and carbon uptake. Nuclear paralogs exist for all seven plastid pseudogenes, yet these are also unlikely to be functional. CONCLUSIONS Saniculiphyllum appears to represent the greatest degree of plastid gene loss observed to date in any fully photosynthetic lineage, perhaps related to its extreme habitat specialization, yet plastid genome length, structure, and substitution rate are within the variation previously reported for photosynthetic plants. These results highlight the increasingly appreciated dynamism of plastid genomes, otherwise highly conserved across a billion years of green plant evolution, in plants with highly specialized life history traits.
Collapse
Affiliation(s)
- Ryan A Folk
- Department of Biological Sciences, Mississippi State University, Mississippi, Mississippi State, USA.
| | - Neeka Sewnath
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - Chun-Lei Xiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, P. R. China
| | - Brandon T Sinn
- Department of Biology & Earth Science, Otterbein University, Westerville, OH, USA
| | - Robert P Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
28
|
Abstract
The movement or trafficking of heme is critical for cellular functions (e.g., oxygen transport and energy production); however, intracellular heme is tightly regulated due to its inherent cytotoxicity. These factors, combined with the transient nature of transport, have resulted in a lack of direct knowledge on the mechanisms of heme binding and trafficking. Here, we used the cytochrome c biogenesis system II pathway as a model to study heme trafficking. System II is composed of two integral membrane proteins (CcsBA) which function to transport heme across the membrane and stereospecifically position it for covalent attachment to apocytochrome c. We mapped two heme binding domains in CcsBA and suggest a path for heme trafficking. These data, in combination with metagenomic coevolution data, are used to determine a structural model of CcsBA, leading to increased understanding of the mechanisms for heme transport and the cytochrome c synthetase function of CcsBA. Although intracellular heme trafficking must occur for heme protein assembly, only a few heme transporters have been unequivocally discovered and nothing is known about their structure or mechanisms. Cytochrome c biogenesis in prokaryotes requires the transport of heme from inside to outside for stereospecific attachment to cytochrome c via two thioether bonds (at CXXCH). The CcsBA integral membrane protein was shown to transport and attach heme (and thus is a cytochrome c synthetase), but the structure and mechanisms underlying these two activities are poorly understood. We employed a new cysteine/heme crosslinking tool that traps endogenous heme in heme binding sites. We combined these data with a comprehensive imidazole correction approach (for heme ligand interrogation) to map heme binding sites. Results illuminate the process of heme transfer through the membrane to an external binding site (called the WWD domain). Using meta-genomic data (GREMLIN) and Rosetta modeling programs, a structural model of the transmembrane (TM) regions in CcsBA were determined. The heme mapping data were then incorporated to model the TM heme binding site (with TM-His1 and TM-His2 as ligands) and the external heme binding WWD domain (with P-His1 and P-His2 as ligands). Other periplasmic structure/function studies facilitated modeling of the full CcsBA protein as a framework for understanding the mechanisms. Mechanisms are proposed for heme transport from TM-His to WWD/P-His and subsequent stereospecific attachment of heme. A ligand exchange of the P-His1 for histidine of CXXCH at the synthetase active site is suggested.
Collapse
|
29
|
Abstract
Although many putative heme transporters have been discovered, it has been challenging to prove that these proteins are directly involved with heme trafficking in vivo and to identify their heme binding domains. The prokaryotic pathways for cytochrome c biogenesis, Systems I and II, transport heme from inside the cell to outside for stereochemical attachment to cytochrome c, making them excellent models to study heme trafficking. System I is composed of eight integral membrane proteins (CcmA-H) and is proposed to transport heme via CcmC to an external "WWD" domain for presentation to the membrane-tethered heme chaperone, CcmE. Herein, we develop a new cysteine/heme crosslinking approach to trap and map endogenous heme in CcmC (WWD domain) and CcmE (defining "2-vinyl" and "4-vinyl" pockets for heme). Crosslinking occurs when either of the two vinyl groups of heme localize near a thiol of an engineered cysteine residue. Double crosslinking, whereby both vinyls crosslink to two engineered cysteines, facilitated a more detailed structural mapping of the heme binding sites, including stereospecificity. Using heme crosslinking results, heme ligand identification, and genomic coevolution data, we model the structure of the CcmCDE complex, including the WWD heme binding domain. We conclude that CcmC trafficks heme via its WWD domain and propose the structural basis for stereochemical attachment of heme.
Collapse
|
30
|
Piot A, Hackel J, Christin PA, Besnard G. One-third of the plastid genes evolved under positive selection in PACMAD grasses. PLANTA 2018; 247:255-266. [PMID: 28956160 DOI: 10.1007/s00425-017-2781-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/18/2017] [Indexed: 05/10/2023]
Abstract
We demonstrate that rbcL underwent strong positive selection during the C 3 -C 4 photosynthetic transitions in PACMAD grasses, in particular the 3' end of the gene. In contrast, selective pressures on other plastid genes vary widely and environmental drivers remain to be identified. Plastid genomes have been widely used to infer phylogenetic relationships among plants, but the selective pressures driving their evolution have not been systematically investigated. In our study, we analyse all protein-coding plastid genes from 113 species of PACMAD grasses (Poaceae) to evaluate the selective pressures driving their evolution. Our analyses confirm that the gene encoding the large subunit of RubisCO (rbcL) evolved under strong positive selection after C3-C4 photosynthetic transitions. We highlight new codons in rbcL that underwent parallel changes, in particular those encoding the C-terminal part of the protein. C3-C4 photosynthetic shifts did not significantly affect the evolutionary dynamics of other plastid genes. Instead, while two-third of the plastid genes evolved under purifying selection or neutrality, 25 evolved under positive selection across the PACMAD clade. This set of genes encode for proteins involved in diverse functions, including self-replication of plastids and photosynthesis. Our results suggest that plastid genes widely adapt to changing ecological conditions, but factors driving this evolution largely remain to be identified.
Collapse
Affiliation(s)
- Anthony Piot
- Laboratoire Evolution and Diversité Biologique (EDB, UMR 5174), CNRS/ENSFEA/IRD/Université Toulouse III, 118 Route de Narbonne, 31062, Toulouse, France.
| | - Jan Hackel
- Laboratoire Evolution and Diversité Biologique (EDB, UMR 5174), CNRS/ENSFEA/IRD/Université Toulouse III, 118 Route de Narbonne, 31062, Toulouse, France
| | - Pascal-Antoine Christin
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Guillaume Besnard
- Laboratoire Evolution and Diversité Biologique (EDB, UMR 5174), CNRS/ENSFEA/IRD/Université Toulouse III, 118 Route de Narbonne, 31062, Toulouse, France.
| |
Collapse
|
31
|
Alvarez-Paggi D, Hannibal L, Castro MA, Oviedo-Rouco S, Demicheli V, Tórtora V, Tomasina F, Radi R, Murgida DH. Multifunctional Cytochrome c: Learning New Tricks from an Old Dog. Chem Rev 2017; 117:13382-13460. [DOI: 10.1021/acs.chemrev.7b00257] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Damián Alvarez-Paggi
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Luciana Hannibal
- Department
of Pediatrics, Universitätsklinikum Freiburg, Mathildenstrasse 1, Freiburg 79106, Germany
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - María A. Castro
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Santiago Oviedo-Rouco
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Veronica Demicheli
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Veronica Tórtora
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Florencia Tomasina
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Rafael Radi
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Daniel H. Murgida
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
32
|
Gabilly ST, Hamel PP. Maturation of Plastid c-type Cytochromes. FRONTIERS IN PLANT SCIENCE 2017; 8:1313. [PMID: 28798763 PMCID: PMC5526843 DOI: 10.3389/fpls.2017.01313] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 07/12/2017] [Indexed: 05/07/2023]
Abstract
Cytochromes c are hemoproteins, with the prosthetic group covalently linked to the apoprotein, which function as electron carriers. A class of cytochromes c is defined by a CXXCH heme-binding motif where the cysteines form thioether bonds with the vinyl groups of heme. Plastids are known to contain up to three cytochromes c. The membrane-bound cytochrome f and soluble cytochrome c6 operate in photosynthesis while the activity of soluble cytochrome c6A remains unknown. Conversion of apo- to holocytochrome c occurs in the thylakoid lumen and requires the independent transport of apocytochrome and heme across the thylakoid membrane followed by the stereospecific attachment of ferroheme via thioether linkages. Attachment of heme to apoforms of plastid cytochromes c is dependent upon the products of the CCS (for cytochrome csynthesis) genes, first uncovered via genetic analysis of photosynthetic deficient mutants in the green alga Chlamydomonas reinhardtii. The CCS pathway also occurs in cyanobacteria and several bacteria. CcsA and CCS1, the signature components of the CCS pathway are polytopic membrane proteins proposed to operate in the delivery of heme from the stroma to the lumen, and also in the catalysis of the heme ligation reaction. CCDA, CCS4, and CCS5 are components of trans-thylakoid pathways that deliver reducing equivalents in order to maintain the heme-binding cysteines in a reduced form prior to thioether bond formation. While only four CCS components are needed in bacteria, at least eight components are required for plastid cytochrome c assembly, suggesting the biochemistry of thioether formation is more nuanced in the plastid system.
Collapse
Affiliation(s)
- Stéphane T. Gabilly
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, The Ohio State University, ColumbusOH, United States
- Molecular and Cellular Developmental Biology Graduate Program, The Ohio State University, ColumbusOH, United States
| | - Patrice P. Hamel
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, The Ohio State University, ColumbusOH, United States
- Molecular and Cellular Developmental Biology Graduate Program, The Ohio State University, ColumbusOH, United States
- *Correspondence: Patrice P. Hamel,
| |
Collapse
|
33
|
Cline SG, Laughbaum IA, Hamel PP. CCS2, an Octatricopeptide-Repeat Protein, Is Required for Plastid Cytochrome c Assembly in the Green Alga Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2017; 8:1306. [PMID: 28824661 PMCID: PMC5541062 DOI: 10.3389/fpls.2017.01306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 07/12/2017] [Indexed: 05/19/2023]
Abstract
In bacteria and energy generating organelles, c-type cytochromes are a class of universal electron carriers with a heme cofactor covalently linked via one or two thioether bonds to a heme binding site. The covalent attachment of heme to apocytochromes is a catalyzed process, taking place via three evolutionarily distinct assembly pathways (Systems I, II, III). System II was discovered in the green alga Chlamydomonas reinhardtii through the genetic analysis of the ccs mutants (cytochrome csynthesis), which display a block in the apo- to holo- form conversion of cytochrome f and c6, the thylakoid lumen resident c-type cytochromes functioning in photosynthesis. Here we show that the gene corresponding to the CCS2 locus encodes a 1,719 amino acid polypeptide and identify the molecular lesions in the ccs2-1 to ccs2-5 alleles. The CCS2 protein displays seven degenerate amino acid repeats, which are variations of the octatricopeptide-repeat motif (OPR) recently recognized in several nuclear-encoded proteins controlling the maturation, stability, or translation of chloroplast transcripts. A plastid site of action for CCS2 is inferred from the finding that GFP fused to the first 100 amino acids of the algal protein localizes to chloroplasts in Nicotiana benthamiana. We discuss the possible functions of CCS2 in the heme attachment reaction.
Collapse
Affiliation(s)
- Sara G. Cline
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, The Ohio State University, ColumbusOH, United States
- Plant Cellular and Molecular Biology Graduate Program, The Ohio State University, ColumbusOH, United States
| | - Isaac A. Laughbaum
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, The Ohio State University, ColumbusOH, United States
| | - Patrice P. Hamel
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, The Ohio State University, ColumbusOH, United States
- Plant Cellular and Molecular Biology Graduate Program, The Ohio State University, ColumbusOH, United States
- *Correspondence: Patrice P. Hamel,
| |
Collapse
|
34
|
Chotewutmontri P, Barkan A. Dynamics of Chloroplast Translation during Chloroplast Differentiation in Maize. PLoS Genet 2016; 12:e1006106. [PMID: 27414025 PMCID: PMC4945096 DOI: 10.1371/journal.pgen.1006106] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/13/2016] [Indexed: 11/18/2022] Open
Abstract
Chloroplast genomes in land plants contain approximately 100 genes, the majority of which reside in polycistronic transcription units derived from cyanobacterial operons. The expression of chloroplast genes is integrated into developmental programs underlying the differentiation of photosynthetic cells from non-photosynthetic progenitors. In C4 plants, the partitioning of photosynthesis between two cell types, bundle sheath and mesophyll, adds an additional layer of complexity. We used ribosome profiling and RNA-seq to generate a comprehensive description of chloroplast gene expression at four stages of chloroplast differentiation, as displayed along the maize seedling leaf blade. The rate of protein output of most genes increases early in development and declines once the photosynthetic apparatus is mature. The developmental dynamics of protein output fall into several patterns. Programmed changes in mRNA abundance make a strong contribution to the developmental shifts in protein output, but output is further adjusted by changes in translational efficiency. RNAs with prioritized translation early in development are largely involved in chloroplast gene expression, whereas those with prioritized translation in photosynthetic tissues are generally involved in photosynthesis. Differential gene expression in bundle sheath and mesophyll chloroplasts results primarily from differences in mRNA abundance, but differences in translational efficiency amplify mRNA-level effects in some instances. In most cases, rates of protein output approximate steady-state protein stoichiometries, implying a limited role for proteolysis in eliminating unassembled or damaged proteins under non-stress conditions. Tuned protein output results from gene-specific trade-offs between translational efficiency and mRNA abundance, both of which span a large dynamic range. Analysis of ribosome footprints at sites of RNA editing showed that the chloroplast translation machinery does not generally discriminate between edited and unedited RNAs. However, editing of ACG to AUG at the rpl2 start codon is essential for translation initiation, demonstrating that ACG does not serve as a start codon in maize chloroplasts.
Collapse
Affiliation(s)
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
- * E-mail:
| |
Collapse
|
35
|
Babbitt SE, Hsu J, Kranz RG. Molecular Basis Behind Inability of Mitochondrial Holocytochrome c Synthase to Mature Bacterial Cytochromes: DEFINING A CRITICAL ROLE FOR CYTOCHROME c α HELIX-1. J Biol Chem 2016; 291:17523-34. [PMID: 27387500 DOI: 10.1074/jbc.m116.741231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial holocytochrome c synthase (HCCS) is required for cytochrome c (cyt c) maturation and therefore respiration. HCCS efficiently attaches heme via two thioethers to CXXCH of mitochondrial but not bacterial cyt c even though they are functionally conserved. This inability is due to residues in the bacterial cyt c N terminus, but the molecular basis is unknown. Human cyts c with deletions of single residues in α helix-1, which mimic bacterial cyt c, are poorly matured by human HCCS. Focusing on ΔM13 cyt c, we co-purified this variant with HCCS, demonstrating that HCCS recognizes the bacterial-like cytochrome. Although an HCCS-WT cyt c complex contains two covalent links, HCCS-ΔM13 cyt c contains only one thioether attachment. Using multiple approaches, we show that the single attachment is to the second thiol of C(15)SQC(18)H, indicating that α helix-1 is required for positioning the first cysteine for covalent attachment, whereas the histidine of CXXCH positions the second cysteine. Modeling of the N-terminal structure suggested that the serine residue (of CSQCH) would be anchored where the first cysteine should be in ΔM13 cyt c An engineered cyt c with a CQCH motif in the ΔM13 background is matured at higher levels (2-3-fold), providing further evidence for α helix-1 positioning the first cysteine. Bacterial cyt c biogenesis pathways (Systems I and II) appear to recognize simply the CXXCH motif, not requiring α helix-1. Results here explain mechanistically how HCCS (System III) requires an extended region adjacent to CXXCH for maturation.
Collapse
Affiliation(s)
- Shalon E Babbitt
- From the Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Jennifer Hsu
- From the Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Robert G Kranz
- From the Department of Biology, Washington University, St. Louis, Missouri 63130
| |
Collapse
|
36
|
Abstract
Codon adaptation is codon usage bias that results from selective pressure to increase the translation efficiency of a gene. Codon adaptation has been studied across a wide range of genomes and some early analyses of plastids have shown evidence for codon adaptation in a limited set of highly expressed plastid genes. Here we study codon usage bias across all fully sequenced plastid genomes which includes representatives of the Rhodophyta, Alveolata, Cryptophyta, Euglenozoa, Glaucocystophyceae, Rhizaria, Stramenopiles and numerous lineages within the Viridiplantae, including Chlorophyta and Embryophyta. We show evidence that codon adaptation occurs in all genomes except for two, Theileria parva and Heicosporidium sp., both of which have highly reduced gene contents and no photosynthesis genes. We also show evidence that selection for codon adaptation increases the representation of the same set of codons, which we refer to as the adaptive codons, across this wide range of taxa, which is probably due to common features descended from the initial endosymbiont. We use various measures to estimate the relative strength of selection in the different lineages and show that it appears to be fairly strong in certain Stramenopiles and Chlorophyta lineages but relatively weak in many members of the Rhodophyta, Euglenozoa and Embryophyta. Given these results we propose that codon adaptation in plastids is widespread and displays the same general features as adaptation in eubacterial genomes.
Collapse
Affiliation(s)
- Haruo Suzuki
- Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi, Japan
| | - Brian R. Morton
- Department of Biology, Barnard College, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
37
|
Qiao J, Cai M, Yan G, Wang N, Li F, Chen B, Gao G, Xu K, Li J, Wu X. High-throughput multiplex cpDNA resequencing clarifies the genetic diversity and genetic relationships among Brassica napus, Brassica rapa and Brassica oleracea. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:409-18. [PMID: 26031705 PMCID: PMC11388923 DOI: 10.1111/pbi.12395] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 03/26/2015] [Accepted: 04/09/2015] [Indexed: 05/14/2023]
Abstract
Brassica napus (rapeseed) is a recent allotetraploid plant and the second most important oilseed crop worldwide. The origin of B. napus and the genetic relationships with its diploid ancestor species remain largely unresolved. Here, chloroplast DNA (cpDNA) from 488 B. napus accessions of global origin, 139 B. rapa accessions and 49 B. oleracea accessions were populationally resequenced using Illumina Solexa sequencing technologies. The intraspecific cpDNA variants and their allelic frequencies were called genomewide and further validated via EcoTILLING analyses of the rpo region. The cpDNA of the current global B. napus population comprises more than 400 variants (SNPs and short InDels) and maintains one predominant haplotype (Bncp1). Whole-genome resequencing of the cpDNA of Bncp1 haplotype eliminated its direct inheritance from any accession of the B. rapa or B. oleracea species. The distribution of the polymorphism information content (PIC) values for each variant demonstrated that B. napus has much lower cpDNA diversity than B. rapa; however, a vast majority of the wild and cultivated B. oleracea specimens appeared to share one same distinct cpDNA haplotype, in contrast to its wild C-genome relatives. This finding suggests that the cpDNA of the three Brassica species is well differentiated. The predominant B. napus cpDNA haplotype may have originated from uninvestigated relatives or from interactions between cpDNA mutations and natural/artificial selection during speciation and evolution. These exhaustive data on variation in cpDNA would provide fundamental data for research on cpDNA and chloroplasts.
Collapse
Affiliation(s)
- Jiangwei Qiao
- Key laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Mengxian Cai
- Key laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Guixin Yan
- Key laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Nian Wang
- Key laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Feng Li
- Key laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Binyun Chen
- Key laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Guizhen Gao
- Key laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Kun Xu
- Key laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jun Li
- Key laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaoming Wu
- Key laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
38
|
Schöttler MA, Tóth SZ, Boulouis A, Kahlau S. Photosynthetic complex stoichiometry dynamics in higher plants: biogenesis, function, and turnover of ATP synthase and the cytochrome b6f complex. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2373-400. [PMID: 25540437 DOI: 10.1093/jxb/eru495] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
During plant development and in response to fluctuating environmental conditions, large changes in leaf assimilation capacity and in the metabolic consumption of ATP and NADPH produced by the photosynthetic apparatus can occur. To minimize cytotoxic side reactions, such as the production of reactive oxygen species, photosynthetic electron transport needs to be adjusted to the metabolic demand. The cytochrome b6f complex and chloroplast ATP synthase form the predominant sites of photosynthetic flux control. Accordingly, both respond strongly to changing environmental conditions and metabolic states. Usually, their contents are strictly co-regulated. Thereby, the capacity for proton influx into the lumen, which is controlled by electron flux through the cytochrome b6f complex, is balanced with proton efflux through ATP synthase, which drives ATP synthesis. We discuss the environmental, systemic, and metabolic signals triggering the stoichiometry adjustments of ATP synthase and the cytochrome b6f complex. The contribution of transcriptional and post-transcriptional regulation of subunit synthesis, and the importance of auxiliary proteins required for complex assembly in achieving the stoichiometry adjustments is described. Finally, current knowledge on the stability and turnover of both complexes is summarized.
Collapse
Affiliation(s)
- Mark Aurel Schöttler
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Szilvia Z Tóth
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Alix Boulouis
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Sabine Kahlau
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
39
|
Scharff LB, Bock R. Synthetic biology in plastids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:783-98. [PMID: 24147738 DOI: 10.1111/tpj.12356] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/08/2013] [Accepted: 10/16/2013] [Indexed: 05/21/2023]
Abstract
Plastids (chloroplasts) harbor a small gene-dense genome that is amenable to genetic manipulation by transformation. During 1 billion years of evolution from the cyanobacterial endosymbiont to present-day chloroplasts, the plastid genome has undergone a dramatic size reduction, mainly as a result of gene losses and the large-scale transfer of genes to the nuclear genome. Thus the plastid genome can be regarded as a naturally evolved miniature genome, the gradual size reduction and compaction of which has provided a blueprint for the design of minimum genomes. Furthermore, because of the largely prokaryotic genome structure and gene expression machinery, the high transgene expression levels attainable in transgenic chloroplasts and the very low production costs in plant systems, the chloroplast lends itself to synthetic biology applications that are directed towards the efficient synthesis of green chemicals, biopharmaceuticals and other metabolites of commercial interest. This review describes recent progress with the engineering of plastid genomes with large constructs of foreign or synthetic DNA, and highlights the potential of the chloroplast as a model system in bottom-up and top-down synthetic biology approaches.
Collapse
Affiliation(s)
- Lars B Scharff
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | | |
Collapse
|
40
|
Lyska D, Meierhoff K, Westhoff P. How to build functional thylakoid membranes: from plastid transcription to protein complex assembly. PLANTA 2013; 237:413-28. [PMID: 22976450 PMCID: PMC3555230 DOI: 10.1007/s00425-012-1752-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 08/10/2012] [Indexed: 05/06/2023]
Abstract
Chloroplasts are the endosymbiotic descendants of cyanobacterium-like prokaryotes. Present genomes of plant and green algae chloroplasts (plastomes) contain ~100 genes mainly encoding for their transcription-/translation-machinery, subunits of the thylakoid membrane complexes (photosystems II and I, cytochrome b (6) f, ATP synthase), and the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Nevertheless, proteomic studies have identified several thousand proteins in chloroplasts indicating that the majority of the plastid proteome is not encoded by the plastome. Indeed, plastid and host cell genomes have been massively rearranged in the course of their co-evolution, mainly through gene loss, horizontal gene transfer from the cyanobacterium/chloroplast to the nucleus of the host cell, and the emergence of new nuclear genes. Besides structural components of thylakoid membrane complexes and other (enzymatic) complexes, the nucleus provides essential factors that are involved in a variety of processes inside the chloroplast, like gene expression (transcription, RNA-maturation and translation), complex assembly, and protein import. Here, we provide an overview on regulatory factors that have been described and characterized in the past years, putting emphasis on mechanisms regulating the expression and assembly of the photosynthetic thylakoid membrane complexes.
Collapse
Affiliation(s)
- Dagmar Lyska
- Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, Düsseldorf, Germany.
| | | | | |
Collapse
|
41
|
Peterson PM, Romaschenko K, Snow N, Johnson G. A molecular phylogeny and classification of Leptochloa (Poaceae: Chloridoideae: Chlorideae) sensu lato and related genera. ANNALS OF BOTANY 2012; 109:1317-1330. [PMID: 22628365 PMCID: PMC3359928 DOI: 10.1093/aob/mcs077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 02/24/2012] [Indexed: 05/30/2023]
Abstract
BACKGROUND AND AIMS Leptochloa (including Diplachne) sensu lato (s.l.) comprises a diverse assemblage of C(4) (NAD-ME and PCK) grasses with approx. 32 annual or perennial species. Evolutionary relationships and a modern classification of Leptochloa spp. based on the study of molecular characters have only been superficially investigated in four species. The goals of this study were to reconstruct the evolutionary history of Leptochloa s.l. with molecular data and broad taxon sampling. METHODS A phylogenetic analysis was conducted of 130 species (mostly Chloridoideae), of which 22 are placed in Leptochloa, using five plastid (rpL32-trn-L, ndhA intron, rps16 intron, rps16-trnK and ccsA) and the nuclear ITS 1 and 2 (ribosomal internal transcribed spacer regions) to infer evolutionary relationships and revise the classification. KEY RESULTS Leptochloa s.l. is polyphyletic and strong support was found for five lineages. Embedded within the Leptochloa sensu stricto (s.s.) clade are two Trichloris spp. and embedded in Dinebra are Drake-brockmania and 19 Leptochloa spp. CONCLUSIONS The molecular results support the dissolution of Leptochloa s.l. into the following five genera: Dinebra with 23 species, Diplachne with two species, Disakisperma with three species, Leptochloa s.s. with five species and a new genus, Trigonochloa, with two species.
Collapse
Affiliation(s)
- Paul M Peterson
- Smithsonian Institution, Department of Botany MRC-166, National Museum of Natural History, Washington, DC 20013-7012, USA.
| | | | | | | |
Collapse
|
42
|
Boyle NR, Page MD, Liu B, Blaby IK, Casero D, Kropat J, Cokus SJ, Hong-Hermesdorf A, Shaw J, Karpowicz SJ, Gallaher SD, Johnson S, Benning C, Pellegrini M, Grossman A, Merchant SS. Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas. J Biol Chem 2012; 287:15811-25. [PMID: 22403401 DOI: 10.1074/jbc.m111.334052] [Citation(s) in RCA: 293] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Algae have recently gained attention as a potential source for biodiesel; however, much is still unknown about the biological triggers that cause the production of triacylglycerols. We used RNA-Seq as a tool for discovering genes responsible for triacylglycerol (TAG) production in Chlamydomonas and for the regulatory components that activate the pathway. Three genes encoding acyltransferases, DGAT1, DGTT1, and PDAT1, are induced by nitrogen starvation and are likely to have a role in TAG accumulation based on their patterns of expression. DGAT1 and DGTT1 also show increased mRNA abundance in other TAG-accumulating conditions (minus sulfur, minus phosphorus, minus zinc, and minus iron). Insertional mutants, pdat1-1 and pdat1-2, accumulate 25% less TAG compared with the parent strain, CC-4425, which demonstrates the relevance of the trans-acylation pathway in Chlamydomonas. The biochemical functions of DGTT1 and PDAT1 were validated by rescue of oleic acid sensitivity and restoration of TAG accumulation in a yeast strain lacking all acyltransferase activity. Time course analyses suggest than a SQUAMOSA promoter-binding protein domain transcription factor, whose mRNA increases precede that of lipid biosynthesis genes like DGAT1, is a candidate regulator of the nitrogen deficiency responses. An insertional mutant, nrr1-1, accumulates only 50% of the TAG compared with the parental strain in nitrogen-starvation conditions and is unaffected by other nutrient stresses, suggesting the specificity of this regulator for nitrogen-deprivation conditions.
Collapse
Affiliation(s)
- Nanette R Boyle
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Peter E, Wallner T, Wilde A, Grimm B. Comparative functional analysis of two hypothetical chloroplast open reading frames (ycf) involved in chlorophyll biosynthesis from Synechocystis sp. PCC6803 and plants. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1380-1386. [PMID: 21388705 DOI: 10.1016/j.jplph.2011.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 01/28/2011] [Accepted: 01/29/2011] [Indexed: 05/30/2023]
Abstract
Hypothetical chloroplast open reading frames (ycfs) are highly conserved and interspecifically occurring genes in plastomes of plants and algae with significant functions in gene expression and photosynthesis. However, the function of many ycfs is still in vain so that attention is directed to other chloroplast functions such as metabolism of co-factors, protein translocation and protection against abiotic stress. We provide a comprehensive functional description of ycf53 and ycf59, two genes involved in chlorophyll biosynthesis. While ycf59 encodes an essential enzymatic component of Mg protoporphyrin monomethylester cyclase, ycf53 encodes a posttranslational regulator of chlorophyll biosynthesis. Their roles in tetrapyrrole biosynthesis were compared by using cyanobacterial and plant mutants with modulated expression of these two genes. Our work provides indications for diverse effects of these homologous gene products in plants and cyanobacteria on tetrapyrrole biosynthesis and photosynthesis.
Collapse
Affiliation(s)
- E Peter
- Institute of Biology, Plant Physiology, Humboldt University Berlin, Philippstrasse 13, Berlin, Germany
| | | | | | | |
Collapse
|
45
|
Wicke S, Schneeweiss GM, dePamphilis CW, Müller KF, Quandt D. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. PLANT MOLECULAR BIOLOGY 2011; 76:273-97. [PMID: 21424877 PMCID: PMC3104136 DOI: 10.1007/s11103-011-9762-4] [Citation(s) in RCA: 915] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Accepted: 02/19/2011] [Indexed: 05/18/2023]
Abstract
This review bridges functional and evolutionary aspects of plastid chromosome architecture in land plants and their putative ancestors. We provide an overview on the structure and composition of the plastid genome of land plants as well as the functions of its genes in an explicit phylogenetic and evolutionary context. We will discuss the architecture of land plant plastid chromosomes, including gene content and synteny across land plants. Moreover, we will explore the functions and roles of plastid encoded genes in metabolism and their evolutionary importance regarding gene retention and conservation. We suggest that the slow mode at which the plastome typically evolves is likely to be influenced by a combination of different molecular mechanisms. These include the organization of plastid genes in operons, the usually uniparental mode of plastid inheritance, the activity of highly effective repair mechanisms as well as the rarity of plastid fusion. Nevertheless, structurally rearranged plastomes can be found in several unrelated lineages (e.g. ferns, Pinaceae, multiple angiosperm families). Rearrangements and gene losses seem to correlate with an unusual mode of plastid transmission, abundance of repeats, or a heterotrophic lifestyle (parasites or myco-heterotrophs). While only a few functional gene gains and more frequent gene losses have been inferred for land plants, the plastid Ndh complex is one example of multiple independent gene losses and will be discussed in detail. Patterns of ndh-gene loss and functional analyses indicate that these losses are usually found in plant groups with a certain degree of heterotrophy, might rendering plastid encoded Ndh1 subunits dispensable.
Collapse
Affiliation(s)
- Susann Wicke
- Department of Biogeography and Botanical Garden, University of Vienna, Rennweg 14, 1030 Vienna, Austria.
| | | | | | | | | |
Collapse
|
46
|
Cytochrome c biogenesis: mechanisms for covalent modifications and trafficking of heme and for heme-iron redox control. Microbiol Mol Biol Rev 2009; 73:510-28, Table of Contents. [PMID: 19721088 DOI: 10.1128/mmbr.00001-09] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Heme is the prosthetic group for cytochromes, which are directly involved in oxidation/reduction reactions inside and outside the cell. Many cytochromes contain heme with covalent additions at one or both vinyl groups. These include farnesylation at one vinyl in hemes o and a and thioether linkages to each vinyl in cytochrome c (at CXXCH of the protein). Here we review the mechanisms for these covalent attachments, with emphasis on the three unique cytochrome c assembly pathways called systems I, II, and III. All proteins in system I (called Ccm proteins) and system II (Ccs proteins) are integral membrane proteins. Recent biochemical analyses suggest mechanisms for heme channeling to the outside, heme-iron redox control, and attachment to the CXXCH. For system II, the CcsB and CcsA proteins form a cytochrome c synthetase complex which specifically channels heme to an external heme binding domain; in this conserved tryptophan-rich "WWD domain" (in CcsA), the heme is maintained in the reduced state by two external histidines and then ligated to the CXXCH motif. In system I, a two-step process is described. Step 1 is the CcmABCD-mediated synthesis and release of oxidized holoCcmE (heme in the Fe(+3) state). We describe how external histidines in CcmC are involved in heme attachment to CcmE, and the chemical mechanism to form oxidized holoCcmE is discussed. Step 2 includes the CcmFH-mediated reduction (to Fe(+2)) of holoCcmE and ligation of the heme to CXXCH. The evolutionary and ecological advantages for each system are discussed with respect to iron limitation and oxidizing environments.
Collapse
|
47
|
Saint-Marcoux D, Wollman FA, de Vitry C. Biogenesis of cytochrome b6 in photosynthetic membranes. ACTA ACUST UNITED AC 2009; 185:1195-207. [PMID: 19564403 PMCID: PMC2712960 DOI: 10.1083/jcb.200812025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In chloroplasts, binding of a c′-heme to cytochrome b6 on the stromal side of the thylakoid membranes requires a specific mechanism distinct from the one at work for c-heme binding to cytochromes f and c6 on the lumenal side of membranes. Here, we show that the major protein components of this pathway, the CCBs, are bona fide transmembrane proteins. We demonstrate their association in a series of hetero-oligomeric complexes, some of which interact transiently with cytochrome b6 in the process of heme delivery to the apoprotein. In addition, we provide preliminary evidence for functional assembly of cytochrome b6f complexes even in the absence of c′-heme binding to cytochrome b6. Finally, we present a sequential model for apo- to holo-cytochrome b6 maturation integrated within the assembly pathway of b6f complexes in the thylakoid membranes.
Collapse
Affiliation(s)
- Denis Saint-Marcoux
- Centre National de la Recherche Scientifique, UMR 7141, Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | | | | |
Collapse
|
48
|
CcsBA is a cytochrome c synthetase that also functions in heme transport. Proc Natl Acad Sci U S A 2009; 106:10201-6. [PMID: 19509336 DOI: 10.1073/pnas.0903132106] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Little is known about trafficking of heme from its sites of synthesis to sites of heme-protein assembly. We describe an integral membrane protein that allows trapping of endogenous heme to elucidate trafficking mechanisms. We show that CcsBA, a representative of a superfamily of integral membrane proteins involved in cytochrome c biosynthesis, exports and protects heme from oxidation. CcsBA has 10 transmembrane domains (TMDs) and reconstitutes cytochrome c synthesis in the Escherichia coli periplasm; thus, CcsBA is a cytochrome c synthetase. Purified CcsBA contains heme in an "external heme binding domain" for which two external histidines are shown to serve as axial ligands that protect the heme iron from oxidation. This is likely the active site of the synthetase. Furthermore, two conserved histidines in TMDs are required for heme to travel to the external heme binding domain. Remarkably, the function of CcsBA with mutations in these TMD histidines is corrected by exogenous imidazole, a result analogous to correction of heme binding by myoglobin when its proximal histidine is mutated. These data suggest that CcsBA has a heme binding site within the bilayer and that CcsBA is a heme channel.
Collapse
|
49
|
Meitzler JL, Ortiz de Montellano PR. Caenorhabditis elegans and human dual oxidase 1 (DUOX1) "peroxidase" domains: insights into heme binding and catalytic activity. J Biol Chem 2009; 284:18634-43. [PMID: 19460756 DOI: 10.1074/jbc.m109.013581] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The seven members of the NOX/DUOX family are responsible for generation of the superoxide and H(2)O(2) required for a variety of host defense and cell signaling functions in nonphagocytic cells. Two members, the dual oxidase isozymes DUOX1 and DUOX2, share a structurally unique feature: an N-terminal peroxidase-like domain. Despite sequence similarity to the mammalian peroxidases, the absence of key active site residues makes their binding of heme and their catalytic function uncertain. To explore this domain we have expressed in a baculovirus system and purified the Caenorhabditis elegans (CeDUOX1(1-589)) and human (hDUOX1(1-593)) DUOX1 "peroxidase" domains. Evaluation of these proteins demonstrated that the isolated hDUOX1(1-593) does not bind heme and has no intrinsic peroxidase activity. In contrast, CeDUOX1(1-589) binds heme covalently, exhibits a modest peroxidase activity, but does not oxidize bromide ion. Surprisingly, the heme appears to have two covalent links to the protein despite the absence of a second conserved carboxyl group in the active site. Although the N-terminal dual oxidase motif has been proposed to directly convert superoxide to H(2)O(2), neither DUOX1 domain demonstrated significant superoxide dismutase activity. These results strengthen the in vivo conclusion that the CeDUOX1 protein supports controlled peroxidative polymerization of tyrosine residues and indicate that the hDUOX1 protein either has a unique function or must interact with other protein factors to express its catalytic activity.
Collapse
Affiliation(s)
- Jennifer L Meitzler
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, USA
| | | |
Collapse
|
50
|
Hamel P, Corvest V, Giegé P, Bonnard G. Biochemical requirements for the maturation of mitochondrial c-type cytochromes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:125-38. [DOI: 10.1016/j.bbamcr.2008.06.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 06/18/2008] [Accepted: 06/26/2008] [Indexed: 11/26/2022]
|