1
|
Chaturvedi AK, Dym O, Levin Y, Fluhr R. PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1A redox states alleviate photoinhibition during changes in light intensity. PLANT PHYSIOLOGY 2024; 194:1059-1074. [PMID: 37787609 DOI: 10.1093/plphys/kiad518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 10/04/2023]
Abstract
Plants have evolved photosynthetic regulatory mechanisms to maintain homeostasis in response to light changes during diurnal transitions and those caused by passing clouds or by wind. One such adaptation directs photosynthetic electron flow to a cyclic pathway to alleviate excess energy surges. Here, we assign a function to regulatory cysteines of PGR5-like protein 1A (PGRL1A), a constituent of the PROTON GRADIENT REGULATION5 (PGR5)-dependent cyclic electron flow (CEF) pathway. During step increases from darkness to low light intensity in Arabidopsis (Arabidopsis thaliana), the intermolecular disulfide of the PGRL1A 59-kDa complex was reduced transiently within seconds to the 28-kDa form. In contrast, step increases from darkness to high light stimulated a stable, partially reduced redox state in PGRL1A. Mutations of 2 cysteines in PGRL1A, Cys82 and Cys183, resulted in a constitutively pseudo-reduced state. The mutant displayed higher proton motive force (PMF) and nonphotochemical quenching (NPQ) than the wild type (WT) and showed altered donor and acceptor dynamic flow around PSI. These changes were found to correspond with the redox state of PGRL1A. Continuous light regimes did not affect mutant growth compared to the WT. However, under fluctuating regimes of high light, the mutant showed better growth than the WT. In contrast, in fluctuating regimes of low light, the mutant displayed a growth penalty that can be attributed to constant stimulation of CEF under low light. Treatment with photosynthetic inhibitors indicated that PGRL1A redox state control depends on the penultimate Fd redox state. Our results showed that redox state changes in PGRL1A are crucial to optimize photosynthesis.
Collapse
Affiliation(s)
- Amit Kumar Chaturvedi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Orly Dym
- Department of Life Science Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yishai Levin
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Robert Fluhr
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
2
|
Sadeghmousavi S, Rezaei N, Hanaei S. Nutrition and Diet: A Double-Edged Sword in Development and Treatment of Brain Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1394:153-180. [PMID: 36587387 DOI: 10.1007/978-3-031-14732-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Brain tumor (BT) is the second most common pediatric cancer, one of the most common cancers among adults, and the major cause of cancer-related morbidity and mortality worldwide. Both genetics and environment can contribute to BT induction. One of the environmental risks is diet which has not been proven as a certain hazard yet. The objective of the current chapter was to review the literature concerning both positive and negative effects of nutrition on BT risk.
Collapse
Affiliation(s)
- Shaghayegh Sadeghmousavi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sara Hanaei
- Universal Scientific Education and Research Network (USERN), Tehran, Iran. .,Department of Neurosurgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
3
|
Smethurst DGJ, Shcherbik N. Interchangeable utilization of metals: New perspectives on the impacts of metal ions employed in ancient and extant biomolecules. J Biol Chem 2021; 297:101374. [PMID: 34732319 PMCID: PMC8633580 DOI: 10.1016/j.jbc.2021.101374] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023] Open
Abstract
Metal ions provide considerable functionality across biological systems, and their utilization within biomolecules has adapted through changes in the chemical environment to maintain the activity they facilitate. While ancient earth's atmosphere was rich in iron and manganese and low in oxygen, periods of atmospheric oxygenation significantly altered the availability of certain metal ions, resulting in ion replacement within biomolecules. This adaptation mechanism has given rise to the phenomenon of metal cofactor interchangeability, whereby contemporary proteins and nucleic acids interact with multiple metal ions interchangeably, with different coordinated metals influencing biological activity, stability, and toxic potential. The ability of extant organisms to adapt to fluctuating metal availability remains relevant in a number of crucial biomolecules, including the superoxide dismutases of the antioxidant defense systems and ribonucleotide reductases. These well-studied and ancient enzymes illustrate the potential for metal interchangeability and adaptive utilization. More recently, the ribosome has also been demonstrated to exhibit interchangeable interactions with metal ions with impacts on function, stability, and stress adaptation. Using these and other examples, here we review the biological significance of interchangeable metal ions from a new angle that combines both biochemical and evolutionary viewpoints. The geochemical pressures and chemical properties that underlie biological metal utilization are discussed in the context of their impact on modern disease states and treatments.
Collapse
Affiliation(s)
- Daniel G J Smethurst
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, Stratford, New Jersey, USA.
| | - Natalia Shcherbik
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, Stratford, New Jersey, USA.
| |
Collapse
|
4
|
Yoon C, Lee SJ. Selective coordination of cobalt ions by zinc fingers in
Escherichia coli
. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chungwoon Yoon
- Department of Chemistry and Institute for Molecular Biology and Genetics Jeonbuk National University Jeonju Republic of Korea
| | - Seung Jae Lee
- Department of Chemistry and Institute for Molecular Biology and Genetics Jeonbuk National University Jeonju Republic of Korea
| |
Collapse
|
5
|
Emerging role of ferroptosis in breast cancer: New dawn for overcoming tumor progression. Pharmacol Ther 2021; 232:107992. [PMID: 34606782 DOI: 10.1016/j.pharmthera.2021.107992] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023]
Abstract
Breast cancer has become a serious threat to women's health. Cancer progression is mainly derived from resistance to apoptosis induced by procedures or therapies. Therefore, new drugs or models that can overcome apoptosis resistance should be identified. Ferroptosis is a recently identified mode of cell death characterized by excess reactive oxygen species-induced lipid peroxidation. Since ferroptosis is distinct from apoptosis, necrosis and autophagy, its induction successfully eliminates cancer cells that are resistant to other modes of cell death. Therefore, ferroptosis may become a new direction around which to design breast cancer treatment. Unfortunately, the complete appearance of ferroptosis in breast cancer has not yet been fully elucidated. Furthermore, whether ferroptosis inducers can be used in combination with traditional anti- breast cancer drugs is still unknown. Moreover, a summary of ferroptosis in breast cancer progression and therapy is currently not available. In this review, we discuss the roles of ferroptosis-associated modulators glutathione, glutathione peroxidase 4, iron, nuclear factor erythroid-2 related factor-2, superoxide dismutases, lipoxygenase and coenzyme Q in breast cancer. Furthermore, we provide evidence that traditional drugs against breast cancer induce ferroptosis, and that ferroptosis inducers eliminate breast cancer cells. Finally, we put forward prospect of using ferroptosis inducers in breast cancer therapy, and predict possible obstacles and corresponding solutions. This review will deepen our understanding of the relationship between ferroptosis and breast cancer, and provide new insights into breast cancer-related therapeutic strategies.
Collapse
|
6
|
Huang Y, Li Z, Zhang L, Tang H, Zhang H, Wang C, Chen SY, Bu D, Zhang Z, Zhu Z, Yuan P, Li K, Yu X, Kong W, Tang C, Jung Y, Ferreira RB, Carroll KS, Du J, Yang J, Jin H. Endogenous SO 2-dependent Smad3 redox modification controls vascular remodeling. Redox Biol 2021; 41:101898. [PMID: 33647858 PMCID: PMC7933484 DOI: 10.1016/j.redox.2021.101898] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
Sulfur dioxide (SO2) has emerged as a physiological relevant signaling molecule that plays a prominent role in regulating vascular functions. However, molecular mechanisms whereby SO2 influences its upper-stream targets have been elusive. Here we show that SO2 may mediate conversion of hydrogen peroxide (H2O2) to a more potent oxidant, peroxymonosulfite, providing a pathway for activation of H2O2 to convert the thiol group of protein cysteine residues to a sulfenic acid group, aka cysteine sulfenylation. By using site-centric chemoproteomics, we quantified >1000 sulfenylation events in vascular smooth muscle cells in response to exogenous SO2. Notably, ~42% of these sulfenylated cysteines are dynamically regulated by SO2, among which is cysteine-64 of Smad3 (Mothers against decapentaplegic homolog 3), a key transcriptional modulator of transforming growth factor β signaling. Sulfenylation of Smad3 at cysteine-64 inhibits its DNA binding activity, while mutation of this site attenuates the protective effects of SO2 on angiotensin II-induced vascular remodeling and hypertension. Taken together, our findings highlight the important role of SO2 in vascular pathophysiology through a redox-dependent mechanism.
Collapse
Affiliation(s)
- Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Zongmin Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences • Beijing, Beijing Institute of Lifeomics, Beijing, 102206, China; Anhui Medical University, Hefei, 230032, China
| | - Lulu Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Huan Tang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Heng Zhang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Chu Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Selena Ying Chen
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Dingfang Bu
- Laboratory Center, Peking University First Hospital, Beijing, 100034, China
| | - Zaifeng Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Zhigang Zhu
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Piaoliu Yuan
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiaoqi Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, 100191, China; Key Laboratory of Cardiovascular Sciences, Ministry of Education, China
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, 100191, China; Key Laboratory of Cardiovascular Sciences, Ministry of Education, China
| | - Youngeun Jung
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Renan B Ferreira
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Kate S Carroll
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China; Key Laboratory of Cardiovascular Sciences, Ministry of Education, China
| | - Jing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences • Beijing, Beijing Institute of Lifeomics, Beijing, 102206, China; Anhui Medical University, Hefei, 230032, China.
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China; Key Laboratory of Cardiovascular Sciences, Ministry of Education, China.
| |
Collapse
|
7
|
Yoon C, Lee D, Lee SJ. Regulation of the Central Dogma through Bioinorganic Events with Metal Coordination for Specific Interactions. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chungwoon Yoon
- Department of Chemistry Institute for Molecular Biology and Genetics, Jeonbuk National University Jeonju 54896 Republic of Korea
| | - Dong‐Heon Lee
- Department of Chemistry Institute for Molecular Biology and Genetics, Jeonbuk National University Jeonju 54896 Republic of Korea
| | - Seung Jae Lee
- Department of Chemistry Institute for Molecular Biology and Genetics, Jeonbuk National University Jeonju 54896 Republic of Korea
| |
Collapse
|
8
|
Ganasen M, Togashi H, Takeda H, Asakura H, Tosha T, Yamashita K, Hirata K, Nariai Y, Urano T, Yuan X, Hamza I, Mauk AG, Shiro Y, Sugimoto H, Sawai H. Structural basis for promotion of duodenal iron absorption by enteric ferric reductase with ascorbate. Commun Biol 2018; 1:120. [PMID: 30272000 PMCID: PMC6123691 DOI: 10.1038/s42003-018-0121-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/25/2018] [Indexed: 12/16/2022] Open
Abstract
Dietary iron absorption is regulated by duodenal cytochrome b (Dcytb), an integral membrane protein that catalyzes reduction of nonheme Fe3+ by electron transfer from ascorbate across the membrane. This step is essential to enable iron uptake by the divalent metal transporter. Here we report the crystallographic structures of human Dcytb and its complex with ascorbate and Zn2+. Each monomer of the homodimeric protein possesses cytoplasmic and apical heme groups, as well as cytoplasmic and apical ascorbate-binding sites located adjacent to each heme. Zn2+ coordinates to two hydroxyl groups of the apical ascorbate and to a histidine residue. Biochemical analysis indicates that Fe3+ competes with Zn2+ for this binding site. These results provide a structural basis for the mechanism by which Fe3+ uptake is promoted by reducing agents and should facilitate structure-based development of improved agents for absorption of orally administered iron.
Collapse
Affiliation(s)
- Menega Ganasen
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo, 678-1297, Japan
| | - Hiromi Togashi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Hanae Takeda
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo, 678-1297, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Honami Asakura
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo, 678-1297, Japan
| | - Takehiko Tosha
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | | | - Kunio Hirata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Yuko Nariai
- Department of Biochemistry, Shimane University School of Medicine, 89-1 Enya, Izumo, Shimane, 693-8501, Japan
| | - Takeshi Urano
- Department of Biochemistry, Shimane University School of Medicine, 89-1 Enya, Izumo, Shimane, 693-8501, Japan
| | - Xiaojing Yuan
- Department of Animal and Avian Sciences, University of Maryland, 8127 Regents Drive, College Park, MD, 20742, USA
| | - Iqbal Hamza
- Department of Animal and Avian Sciences, University of Maryland, 8127 Regents Drive, College Park, MD, 20742, USA
| | - A Grant Mauk
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Yoshitsugu Shiro
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo, 678-1297, Japan
| | - Hiroshi Sugimoto
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo, 678-1297, Japan. .,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan.
| | - Hitomi Sawai
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo, 678-1297, Japan. .,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan.
| |
Collapse
|
9
|
Kluska K, Adamczyk J, Krężel A. Metal binding properties, stability and reactivity of zinc fingers. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Ćurko-Cofek B, Grubić Kezele T, Barac-Latas V. Hepcidin and metallothioneins as molecular base for sex-dependent differences in clinical course of experimental autoimmune encephalomyelitis in chronic iron overload. Med Hypotheses 2017; 107:51-54. [PMID: 28915963 DOI: 10.1016/j.mehy.2017.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/12/2017] [Accepted: 07/15/2017] [Indexed: 12/24/2022]
Abstract
Multiple sclerosis is a chronic demyelinating disease of the central nervous system characterised by inflammatory and degenerative changes. It is considered that disease arises from the influence of environmental factors on genetically susceptible individuals. Recent researches, using magnetic resonance imaging, connected iron deposits in different brain regions with demyelinating process in multiple sclerosis patients. Although iron is an essential trace element important for many biological functions it could be harmful because iron excess can induce the production of reactive oxygen species, development of oxidative stress and lipid peroxidation which leads to demyelination. In experimental autoimmune encephalomyelitis model, the most common experimental animal model for multiple sclerosis, we recently found that chronic iron overload influences the clinical course of disease in Dark Agouti rats. In female rats iron overload accelerated the onset of disease, while in male rats it accelerated the progression of disease and increased mortality rate. We hypothesize that those differences arise on molecular level in different expression of stress response proteins hepcidin and metallothioneins in male and female iron overloaded rats. They are both upregulated by metal ions in both sexes. Hepcidin is additionally upregulated by estrogen in female rats and therefore causes higher degradation of iron exporter ferroportin and sequestration of iron in the cells, lowering the possibility for the development of oxidative stress. Antioxidative effect of metallothioneins could be increased in female rats because of their ability to reversibly exchange metal ions with the estrogen receptor. In case of iron excess metallothioneins release zinc, which is normally bound to them. Zinc binds to estrogen receptor and leaves metallothioneins binding domains free for iron, causing at least provisional cytoprotective effect. To test this hypothesis, we propose to determine and compare serum levels of hepcidin and estrogen using ELISA essay as well as expression and distribution of acute stress response proteins hepcidin and metallothioneins, iron and estrogen receptor in the brain and spinal cord tissue using immunohistochemistry in control and chronic iron overloaded male and female rats in experimental autoimmune encephalomyelitis model. It would be also possible to perform the same immunohistochemistry in the brain tissue of multiple sclerosis patients post mortem. The results of experiments could contribute to better understanding of cytoprotective mechanisms in chronic iron overload that could have possible therapeutic applications in iron disturbances. In order to elucidate whether common measure of systemic iron status, like ferritin, haemoglobin concentration and transferrin saturation levels, may be used to distinguish physiologic from potentially harmful iron levels in local disease, for example multiple sclerosis and Still's disease, well-designed clinical trials would be of great interest.
Collapse
Affiliation(s)
- Božena Ćurko-Cofek
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, B. Branchetta 20, 51 000 Rijeka, Croatia.
| | - Tanja Grubić Kezele
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, B. Branchetta 20, 51 000 Rijeka, Croatia
| | - Vesna Barac-Latas
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, B. Branchetta 20, 51 000 Rijeka, Croatia
| |
Collapse
|
11
|
Shimberg GD, Ok K, Neu HM, Splan KE, Michel SLJ. Cu(I) Disrupts the Structure and Function of the Nonclassical Zinc Finger Protein Tristetraprolin (TTP). Inorg Chem 2017; 56:6838-6848. [PMID: 28557421 DOI: 10.1021/acs.inorgchem.7b00125] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tristetraprolin (TTP) is a nonclassical zinc finger (ZF) protein that plays a key role in regulating inflammatory response. TTP regulates cytokines at the mRNA level by binding to AU-rich sequences present at the 3'-untranslated region, forming a complex that is then degraded. TTP contains two conserved CCCH domains with the sequence CysX8CysX5CysX3His that are activated to bind RNA when zinc is coordinated. During inflammation, copper levels are elevated, which is associated with increased inflammatory response. A potential target for Cu(I) during inflammation is TTP. To determine whether Cu(I) binds to TTP and how Cu(I) can affect TTP/RNA binding, two TTP constructs were prepared. One construct contained just the first CCCH domain (TTP-1D) and serves as a peptide model for a CCCH domain; the second construct contains both CCCH domains (TTP-2D) and is functional (binds RNA) when Zn(II) is coordinated. Cu(I) binding to TTP-1D was assessed via electronic absorption spectroscopy titrations, and Cu(I) binding to TTP-2D was assessed via both absorption spectroscopy and a spin filter/inductively coupled plasma mass spectrometry (ICP-MS) assay. Cu(I) binds to TTP-1D with a 1:1 stoichiometry and to TTP-2D with a 3:1 stoichiometry. The CD spectrum of Cu(I)-TTP-2D did not exhibit any secondary structure, matching that of apo-TTP-2D, while Zn(II)-TTP-2D exhibited a secondary structure. Measurement of RNA binding via fluorescence anisotropy revealed that Cu(I)-TTP-2D does not bind to the TTP-2D RNA target sequence UUUAUUUAUUU with any measurable affinity, while Zn(II)-TTP-2D binds to this site with nanomolar affinity. Similarly, addition of Cu(I) to the Zn(II)-TTP-2D/RNA complex resulted in inhibition of RNA binding. Together, these data indicate that, while Cu(I) binds to TTP-2D, it does not result in a folded or functional protein and that Cu(I) inhibits Zn(II)-TTP-2D/RNA binding.
Collapse
Affiliation(s)
- Geoffrey D Shimberg
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201-1180, United States
| | - Kiwon Ok
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201-1180, United States
| | - Heather M Neu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201-1180, United States
| | - Kathryn E Splan
- Department of Chemistry, Macalester College , 1600 Grand Avenue, Saint Paul, Minnesota 55105, United States
| | - Sarah L J Michel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201-1180, United States
| |
Collapse
|
12
|
Kumar N, Krishnani KK, Kumar P, Jha AK, Gupta SK, Singh NP. Dietary zinc promotes immuno-biochemical plasticity and protects fish against multiple stresses. FISH & SHELLFISH IMMUNOLOGY 2017; 62:184-194. [PMID: 28108338 DOI: 10.1016/j.fsi.2017.01.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/07/2017] [Accepted: 01/13/2017] [Indexed: 05/22/2023]
Abstract
The abiotic and biotic stress is an episode that effect on regulatory, neuro-endocrine and immune systems of animals including fish. The stress creates stimulatory and suppressive of immune system resulting in increases the incidence of infection. In view of these points, we have conducted an experiment to mitigate the stress through a nutritional approach through Zinc (Zn) supplementation in Pangasius hypophthalmus (initial weight-3.65 ± 0.75 g). Three isocaloric and isonitrogenous diets with graded levels of zinc 0, 10 and 20 mg/kg were prepared and fed to seven different groups with each in triplicate. The experimental group as follows as normal water with control diet (Ctr/Ctr), lead (Pb) exposed and fed with control diet (Ctr/Pb), control diet and exposed to Pb and temperature (Ctr/Pb-T), Zn 10 mg/kg fed without stressors (Zn- 10 mg/kg), Zn 20 mg/kg fed without stressors (Zn-20 mg/kg), Zn 10 mg/kg fed and Pb and temperature exposed (Pb-T/Zn 10 mg/kg) and Zn 20 mg/kg fed and exposed to Pb and temperature (Pb-T/Zn 20 mg/kg). The Pb in treated water was maintained at the level of 1/20th of LC50 (4 ppm) and temperature at 34 °C in exposure groups. The neutraceuticals role of dietary Zn was studied in terms of antioxidative enzymes (catalase, superoxide dismutase, glutathione-S-transferase), stress markers (Heat shock protein 70, cortisol, acetylcholine esterase, blood glucose, Vitamin C), immunological parameters (Total protein, albumin, globulin, A/G ratio and NBT) and subsequent challenge with Aeromonas veronii biovar sobria. The antioxidative enzymes, stress markers, albumin were significantly (p < 0.01) elevated, brain AChE and immuno-hematological parameters were significantly (p < 0.01) decreased due to lead (Pb) and temperature exposure. The relative survival (%) was reduced due to the concurrent effect of Pb, high temperature stress and bacterial challenge. Zinc at the rate of 10 and 20 mg/kg was found to be restore the biochemical and immunological parameters against concurrent exposure to lead (Pb), temperature and pathogenic infection. Results obtained in the present study indicate that supplementation of 10 and 20 mg/kg of Zn in the diet has a definitive role in the mitigation of lead (Pb) and temperature exposure along with pathogenic infection in P. hypophthalmus.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune 413115, India.
| | - K K Krishnani
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune 413115, India
| | - Paritosh Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune 413115, India
| | - Ashish Kumar Jha
- ICAR- Veraval Research Centre of Central Institute of Fisheries Technology, Veraval 362 269, India
| | - Sanjay Kumar Gupta
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi 834 010, India
| | - N P Singh
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune 413115, India
| |
Collapse
|
13
|
Коbylinska LI, Boiko NM, Panchuk RR, Grytsyna II, Klyuchivska OY, Biletska LP, Lesyk RB, Zіmenkovsky BS, Stoika RS. Putative anticancer potential of novel 4-thiazolidinone derivatives: cytotoxicity toward rat C6 glioma in vitro and correlation of general toxicity with the balance of free radical oxidation in rats. Croat Med J 2017; 57:151-63. [PMID: 27106357 PMCID: PMC4856196 DOI: 10.3325/cmj.2016.57.151] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aim To evaluate the cytotoxic action of 4-thiazolidinone derivatives (ID 3288, ID 3882, and ID 3833) toward rat glioma C6 cells and to compare the effects of these compounds and doxorubicin on the balance of free radical oxidation (FRO) and antioxidant activity (AOA) in the serum of rats. Methods Glioma cells were treated with ID 3882, ID 3288, ID 3833, and doxorubicin, and their cytotoxicity was studied using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and Trypan blue exclusion test, light and fluorescent microscopy, and flow cytometric study of cell cycling and apoptosis, including measuring of Annexin V-positive cells. The contents of superoxide radical, hydrogen peroxide, hydroxyl radical, malonic dialdehyde, and hydrogen sulfide were measured in the serum of rats. Enzymatic activity of superoxide dismutase (SOD), catalase (Cat), and glutathione peroxydase (GPO) was determined. Results Among novel 4-thiazolidinone derivatives, ID 3288 was most toxic toward rat glioma C6 cells, even compared with doxorubicin. All applied derivatives were less active than doxorubicin in inducing reactive oxygen species-related indicators in the serum of rats. A similar effect was observed when enzymatic indicators of AOA processes were measured. While doxorubicin inhibited the activity of SOD, GPO, and Cat, the effects of 4-thiazolidinone derivatives were less prominent. Conclusion Novel 4-thiazolidinone derivatives differ in their antineoplastic action toward rat glioma C6 cells, and ID 3288 possesses the highest activity compared to doxorubicin. Measurement of indicators of FRO and AOA in the serum of rats treated with these compounds showed their lower general toxicity compared with doxorubicin’s toxicity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Rostyslav S Stoika
- Rostyslav S. Stoika, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street 14/16, 79005, Lviv, Ukraine,
| |
Collapse
|
14
|
Kobayashi T, Nishizawa NK. Intracellular iron sensing by the direct binding of iron to regulators. FRONTIERS IN PLANT SCIENCE 2015; 6:155. [PMID: 25815002 PMCID: PMC4356067 DOI: 10.3389/fpls.2015.00155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 02/26/2015] [Indexed: 05/18/2023]
Affiliation(s)
- Takanori Kobayashi
- Japan Science and Technology Agency, PRESTOKawaguchi, Japan
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural UniversityNonoichi, Japan
| | - Naoko K. Nishizawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural UniversityNonoichi, Japan
- *Correspondence: Naoko K. Nishizawa,
| |
Collapse
|
15
|
Tejedor J, Papasaikas P, Valcárcel J. Genome-Wide Identification of Fas/CD95 Alternative Splicing Regulators Reveals Links with Iron Homeostasis. Mol Cell 2015; 57:23-38. [DOI: 10.1016/j.molcel.2014.10.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 09/24/2014] [Accepted: 10/31/2014] [Indexed: 10/24/2022]
|
16
|
Anchordoquy JM, Anchordoquy JP, Sirini MA, Picco SJ, Peral-García P, Furnus CC. The importance of having zinc during in vitro maturation of cattle cumulus-oocyte complex: role of cumulus cells. Reprod Domest Anim 2014; 49:865-74. [PMID: 25131826 DOI: 10.1111/rda.12385] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 06/22/2014] [Indexed: 12/17/2022]
Abstract
The aim of this study was to investigate the influence of zinc (Zn) on the health of cumulus-oocyte complex (COC) during in vitro maturation (IVM). Experiments were designed to evaluate the effect of Zn added to IVM medium on: DNA integrity, apoptosis, cumulus expansion and superoxide dismutase (SOD) activity of cumulus cells (CC). Also, role of CC on Zn transport during IVM was evaluated on oocyte developmental capacity. DNA damage and early apoptosis were higher in CC matured with 0 μg/ml Zn compared with 0.7, 1.1 and 1.5 μg/ml Zn (p < 0.05). Cumulus expansion did not show differences in COC matured with or without Zn supplementation (p > 0.05). Superoxide dismutase activity was higher in COC matured with 1.5 μg/ml Zn than with 0 μg/ml Zn (p < 0.05). Cleavage and blastocyst rates were recorded after IVM in three maturation systems: intact COCs, denuded oocytes with cumulus cells monolayer (DO + CC) and denuded oocytes (DO). Cleavage rates were similar when COC, DO + CC or DO were matured with 1.5 μg/ml Zn compared with control group (p > 0.05). Blastocyst rates were significantly higher in COC than in DO + CC and DO with the addition of 1.5 μg/ml Zn during IVM (p < 0.01). Blastocyst quality was enhanced in COC and DO + CC compared with DO when Zn was added to IVM medium (p < 0.001). The results of this study indicate that Zn supplementation to IVM medium (i) decreased DNA damage and apoptosis in CC; (ii) increased SOD activity in CC; (iii) did not modify cumulus expansion and cleavage rates after in vitro fertilization; (iv) improved subsequent embryo development up to blastocyst stage; and (v) enhanced blastocyst quality when CC were present either in intact COC or in coculture during IVM.
Collapse
Affiliation(s)
- J M Anchordoquy
- Instituto de Genética Veterinaria Prof. Fernando N. Dulout (IGEVET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina; Cátedra de Fisiología, Laboratorio de Nutrición Mineral, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
17
|
Iron homeostasis in breast cancer. Cancer Lett 2014; 347:1-14. [DOI: 10.1016/j.canlet.2014.01.029] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/16/2013] [Accepted: 01/24/2014] [Indexed: 02/08/2023]
|
18
|
Rao VA. Iron chelators with topoisomerase-inhibitory activity and their anticancer applications. Antioxid Redox Signal 2013; 18:930-55. [PMID: 22900902 PMCID: PMC3557438 DOI: 10.1089/ars.2012.4877] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Iron and topoisomerases are abundant and essential cellular components. Iron is required for several key processes such as DNA synthesis, mitochondrial electron transport, synthesis of heme, and as a co-factor for many redox enzymes. Topoisomerases serve as critical enzymes that resolve topological problems during DNA synthesis, transcription, and repair. Neoplastic cells have higher uptake and utilization of iron, as well as elevated levels of topoisomerase family members. Separately, the chelation of iron and the cytotoxic inhibition of topoisomerase have yielded potent anticancer agents. RECENT ADVANCES The chemotherapeutic drugs doxorubicin and dexrazoxane both chelate iron and target topoisomerase 2 alpha (top2α). Newer chelators such as di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone and thiosemicarbazone -24 have recently been identified as top2α inhibitors. The growing list of agents that appear to chelate iron and inhibit topoisomerases prompts the question of whether and how these two distinct mechanisms might interplay for a cytotoxic chemotherapeutic outcome. CRITICAL ISSUES While iron chelation and topoisomerase inhibition each represent mechanistically advantageous anticancer therapeutic strategies, dual targeting agents present an attractive multi-modal opportunity for enhanced anticancer tumor killing and overcoming drug resistance. The commonalities and caveats of dual inhibition are presented in this review. FUTURE DIRECTIONS Gaps in knowledge, relevant biomarkers, and strategies for future in vivo studies with dual inhibitors are discussed.
Collapse
Affiliation(s)
- V Ashutosh Rao
- Laboratory of Biochemistry, Division of Therapeutic Proteins, Office of Biotechnology Products, Office of Pharmaceutical Science, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA.
| |
Collapse
|
19
|
Study of the impact of omega-3 PUFA on fatty acid composition of heart, respiration and swelling of mitochondria of the heart in diabetes. ACTA ACUST UNITED AC 2012. [DOI: 10.15407/fz58.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Rancelis V, Cesniene T, Kleizaite V, Zvingila D, Balciuniene L. Influence of cobalt uptake by Vicia faba seeds on chlorophyll morphosis induction, SOD polymorphism, and DNA methylation. ENVIRONMENTAL TOXICOLOGY 2012; 27:32-41. [PMID: 20549638 DOI: 10.1002/tox.20609] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 03/02/2010] [Accepted: 03/13/2010] [Indexed: 05/29/2023]
Abstract
Vicia faba plants show polymorphism to cobalt (Co) excess, expressed by a different degree of chlorophyll morphosis (CM)-from normally green (N) to yellow (Y) seedlings. For superoxide dismutase (SOD), the high V. faba polymorphism was revealed and increased by Co stress. Epigenetic mechanisms may be involved in both phenomena. For such reasons, we investigated the effect of 5-azacytosine (AzaC) and Na butyrate (NaBut) on CM induction, SOD polymorphism, and DNA methylation-demethylation events in Co(NO(3) )(2) affected plants, without or with AzaC or NaBut. CMs were induced after treatment of seeds for 8 h with 7.5 mM Co(NO(3) )(2) plus 12 h with H(2) O or 8 h with H(2) O plus 12 h with Co(NO(3) )(2) . In the same order AzaC and NaBut were applied in concentrations equimolar to Co(NO(3) )(2) . SOD isoforms were investigated electrophoretically, and for DNA methylation-demethylation events the Aina [Aina et al. (2004) Physiol Plant 121:472-480] system was applied upon using the random amplified polymorphic DNA (RAPD) method employing restrictases MspI and HpaII. The effect of AzaC and NaBut on CM induction in combination with Co was unclear. Posttreatment with Co was more effective than Co-pretreatment. SOD polymorphism was significantly strengthened by NaBut. Detection of DNA methylation-demethylation events depended on the primers used for RAPD analysis. With AP5 and MP4 primers, DNA demethylation was observed in N-seedlings after exposure to Co, AzaC or NaBut applied separately. With primer A6, only DNA methylation events were determined in N-seedlings from seeds exposed to Co or Co-AzaC, and in Y-seedlings after Co-AzaC or Co-NaBut treatment. UPGMA grouping of the results showed that all N-seedlings comprised one common cluster after Co exposure, independently of treatment combinations (Co alone, Co with AzaC, Co with NaBut). On the contrary, no significant differences were determined in SOD polymorphism among the most resistant N-seedlings and the most severely affected Y-seedlings.
Collapse
Affiliation(s)
- Vytautas Rancelis
- Department of Botany and Genetics, Vilnius University, Vilnius, Lithuania
| | | | | | | | | |
Collapse
|
21
|
Tanase Y, Yamada Y, Shigetomi H, Kajihara H, Oonogi A, Yoshizawa Y, Furukawa N, Haruta S, Yoshida S, Sado T, Oi H, Kobayashi H. Modulation of estrogenic action in clear cell carcinoma of the ovary (Review). Exp Ther Med 2011; 3:18-24. [PMID: 22969838 DOI: 10.3892/etm.2011.376] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 09/07/2011] [Indexed: 12/14/2022] Open
Abstract
Two histologic types, clear cell carcinoma (CCC) and endometrioid adenocarcinoma (EAC), are the common histology in ovarian cancer patients who have associated endometriosis. However, both tumor types have distinct clinicopathological characteristics and molecular phenotypes. EAC is predominantly positive for estrogen receptor (ER), but CCC specifically exhibits lower ER expression. This study reviews the current understanding of the role of the ER information in the pathogenesis of CCC, as well as the English language literature for biochemical studies on ER expression and estrogenic action in CCC. The iron-mediated oxidative stress occurs due to repeated hemorrhage in endometriosis, then this compound oxidatively modifies genomic DNA and, subsequently, ER depletion may be observed. There are a number of factors that interfere with ER expression and estrogen activity, which include DNA methylation of the promoter region, histone deacetylation, heme and iron binding, chromatin remodeling and ubiquitin ligase activity. Loss of estrogen function may be a turning point in CCC progression and aggressiveness.
Collapse
Affiliation(s)
- Yasuhito Tanase
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lee SJ, Michalek JL, Besold AN, Rokita SE, Michel SLJ. Classical Cys2His2 Zinc Finger Peptides Are Rapidly Oxidized by Either H2O2 or O2 Irrespective of Metal Coordination. Inorg Chem 2011; 50:5442-50. [DOI: 10.1021/ic102252a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Seung Jae Lee
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, United States
| | - Jamie L. Michalek
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, United States
| | - Angelique N. Besold
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, United States
| | - Steven E. Rokita
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742-4454, United States
| | - Sarah L. J. Michel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, United States
| |
Collapse
|
23
|
Lu J, Wang W, Tan G, Landry AP, Yi P, Si F, Ren Y, Ding H. Escherichia coli topoisomerase I is an iron and zinc binding protein. Biometals 2011; 24:729-36. [PMID: 21347852 DOI: 10.1007/s10534-011-9425-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 02/11/2011] [Indexed: 01/13/2023]
Abstract
Escherichia coli topoisomerase I (TopA) cleaves and rejoins one strand of double-stranded DNA to relax the negatively supercoiled DNA. Structurally, TopA contains an N-terminal catalytic fragment and a C-terminal zinc-binding region that is required for relaxation of the negatively supercoiled DNA. Here we report that E. coli TopA is an iron and zinc binding protein. The UV-Vis absorption measurements and metal content analyses reveal that TopA purified from E. coli cells grown in the rich LB medium contains both iron and zinc. However, TopA purified from E. coli cells grown in the M9 minimal medium has negligible amounts of zinc or iron and no topoisomerase activity. Nevertheless, supplement of exogenous zinc or iron in E. coli cells grown in the M9 minimal medium produces the zinc- or iron-bound TopA, respectively. Whereas the zinc-bound TopA is fully active to relax the negatively supercoiled DNA, the iron-bound TopA has little or no enzyme activity. Furthermore, excess iron in the M9 minimal medium is able to compete with the zinc binding in TopA in E. coli cells and attenuate the topoisomerase activity, suggesting that E. coli TopA may be modulated by iron and zinc binding in vivo.
Collapse
Affiliation(s)
- Jianxin Lu
- Laboratory of Molecular Medicine, Wenzhou Medical College, Wenzhou 325035, Zhejiang, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Quintal SM, dePaula QA, Farrell NP. Zinc finger proteins as templates for metal ion exchange and ligand reactivity. Chemical and biological consequences. Metallomics 2011; 3:121-39. [PMID: 21253649 DOI: 10.1039/c0mt00070a] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Zinc finger reactions with inorganic ions and coordination compounds are as diverse as the zinc fingers themselves. Use of metal ions such as Co(2+) and Cd(2+) has given structural, thermodynamic and kinetic information on zinc fingers and zinc-finger-DNA/RNA interactions. It is a general truism that alteration of the coordination sphere in the finger environment will disrupt the recognition with DNA/RNA and this has implications for mechanism of toxicity and carcinogenesis of metal ions. Structural zinc fingers are susceptible to electrophilic attack and the recognition that the coordination sphere of inorganic compounds may be modulated for control of electrophilic attack on zinc fingers raises the possibility of systematic studies of zinc fingers as drug targets using inorganic chemistry. Some inorganic compounds such as those of As(III) and Au(I) may exert their biological effects through inactivation of zinc fingers and novel approaches to specifically attack the zinc-bound ligands using Co(III)-Schiff bases and Platinum(II)-Nucleobase compounds have been proposed. The genomic importance of zinc fingers suggests that the "coordination chemistry" of zinc fingers themselves is ripe for exploration to design new targets for medicinal inorganic chemistry.
Collapse
Affiliation(s)
- Susana M Quintal
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main St., Richmond, VA 23284-2006, USA
| | | | | |
Collapse
|
25
|
Besold AN, Lee SJ, Michel SLJ, Lue Sue N, Cymet HJ. Functional characterization of iron-substituted neural zinc finger factor 1: metal and DNA binding. J Biol Inorg Chem 2010; 15:583-90. [DOI: 10.1007/s00775-010-0626-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 01/20/2010] [Indexed: 10/19/2022]
|
26
|
Lee SJ, Michel SLJ. Cysteine Oxidation Enhanced by Iron in Tristetraprolin, A Zinc Finger Peptide. Inorg Chem 2010; 49:1211-9. [DOI: 10.1021/ic9024298] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Seung Jae Lee
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180
| | - Sarah L. J. Michel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180
| |
Collapse
|
27
|
Kang X, Zhong W, Liu J, Song Z, McClain CJ, Kang YJ, Zhou Z. Zinc supplementation reverses alcohol-induced steatosis in mice through reactivating hepatocyte nuclear factor-4alpha and peroxisome proliferator-activated receptor-alpha. Hepatology 2009; 50:1241-50. [PMID: 19637192 PMCID: PMC2757527 DOI: 10.1002/hep.23090] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
UNLABELLED Alcoholic steatosis is a fundamental metabolic disorder in the progression of alcoholic liver disease. Zinc deficiency is one of the most consistently observed biochemical/nutritional manifestations of alcoholic liver disease. The purpose of this study is to determine whether dietary zinc supplementation to mice previously exposed to alcohol could reverse alcoholic steatosis. Male 129S mice were pair-fed an alcohol or isocaloric maltose dextrin liquid diet for 16 weeks with or without dietary zinc supplementation for the last 4 weeks. Zinc supplementation significantly attenuated alcohol-mediated increases in hepatic triglyceride, cholesterol, and free fatty acids in association with accelerated hepatic fatty acid oxidation and very low density lipoproteins (VLDL) secretion. Hepatic genes related to fatty acid oxidation and VLDL secretion were up-regulated by zinc supplementation, which was accompanied by restoring activity of hepatocyte nuclear factor-4alpha (HNF-4alpha) and peroxisome proliferators activated receptor-alpha (PPAR-alpha). Zinc supplementation enhanced alcohol metabolism and attenuated oxidative stress and liver injury. Zinc supplementation also normalized alcohol-mediated increases in plasma triglycerides and partially reversed decrease in gonadal adipose depot mass. Studies in HepG2 cells showed that zinc deprivation significantly suppressed the DNA-binding activities of HNF-4alpha and PPAR-alpha, and reduced HNF-4alpha and PPAR-alpha target proteins. Consequently, zinc deprivation caused cellular accumulation of lipid droplets, triglycerides and free fatty acids in the HepG2 cells. CONCLUSION Zinc supplementation reverses alcoholic steatosis, and reactivation of HNF-4alpha and PPAR-alpha by increasing zinc availability and inhibiting oxidative stress are potential mechanisms underlying these beneficial effects of zinc on hepatic lipid homeostasis.
Collapse
Affiliation(s)
- Xinqin Kang
- Department of Medicine, University of Louisville School of Medicine Louisville, KY40202
| | - Wei Zhong
- Department of Medicine, University of Louisville School of Medicine Louisville, KY40202,College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Jie Liu
- Zunyi Medical College, Key Laboratory of Pharmacology, Zunyi 56300, China
| | - Zhenyuan Song
- Department of Medicine, University of Louisville School of Medicine Louisville, KY40202
| | - Craig J. McClain
- Department of Medicine, University of Louisville School of Medicine Louisville, KY40202,Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY40202,Louisville VAMC, Louisville, KY40202
| | - Y. James Kang
- Department of Medicine, University of Louisville School of Medicine Louisville, KY40202,Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY40202
| | - Zhanxiang Zhou
- Department of Medicine, University of Louisville School of Medicine Louisville, KY40202
| |
Collapse
|
28
|
Cheng WH. Impact of inorganic nutrients on maintenance of genomic stability. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2009; 50:349-360. [PMID: 19326466 DOI: 10.1002/em.20489] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Maintenance of genome stability is of fundamental importance for counteracting carcinogenesis. Many human genome instability syndromes exhibit a predisposition to cancer. An increasing body of epidemiological evidence has suggested a link between nutrient status and risk of cancer. Like other chemicals, nutrients can be toxic when consumed in excess. It has become clear that both nutritional deficiency and toxicity can compromise the integrity of the genome. This article focuses on roles of inorganic trace nutrients, including selenium, copper, zinc, and iron, in the redox regulation of genome stability and how they relate to the pathologies of genomic instability syndromes and cancer.
Collapse
Affiliation(s)
- Wen-Hsing Cheng
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, USA.
| |
Collapse
|
29
|
Dar NA, Mir MM, Salam I, Malik MA, Gulzar GM, Yatoo GN, Ahmad A, Shah A. Association between copper excess, zinc deficiency, and TP53 mutations in esophageal squamous cell carcinoma from Kashmir Valley, India--a high risk area. Nutr Cancer 2009; 60:585-91. [PMID: 18791921 DOI: 10.1080/01635580802290231] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Trace element deficiency or excess is implicated in the development or progression in some cancers. Here we report the elevated level of copper and low level of zinc in the plasma of esophageal cancer patients in Kashmir India--a high incidence area. The average level of copper was significantly higher (P < 0.0001) for patients than for controls, with a mean concentration of 169 microg/dl and 149 microg/dl for patients and controls, respectively. The control group consisted of 55 healthy individuals matched for age, sex, and place of residence of the patients. In contrast, the average level of zinc in patients was significantly lower than in controls (P < 0.0001), with a mean concentration of 86.8 microg/dl and 96.1 microg/dl for patients and controls, respectively. The levels of both copper and zinc showed significant differences based on gender and age in patients as compared to controls. Similarly, smokers depicted a significant increase in serum copper (N = 39, P = 0.002) and a decrease in serum zinc approaching level of significance in the patient group as compared to controls. The copper and zinc levels were significantly altered in patients (N = 40) when compared to controls as a function of snuff consumption. The differences in the levels of copper and zinc showed significant association with the consumption of local salted tea up to 1,500 ml per day, but the changes were insignificant beyond that. Patients with poorly differentiated tumors (N = 7) had a higher copper concentration than those with moderately or well-differentiated tumors (P < 0.0001). To validate the general notion that imbalance in copper and zinc levels may lead to higher prevalence of TP53 mutations, we compared the 3 variables, and no association was found between copper concentration and TP53 mutation status; but patients with TP53 mutant tumor had lower zinc levels than those with no mutation. In conclusion, our results point toward a role of the trace element imbalance in the esophageal tumorigenesis in high-risk Kashmiri population exposed to a range of nitroso compounds or their precursors. Further prospective cohort studies are warranted to determine whether change in the plasma zinc and copper homeostasis may represent an independent risk factor for this malignancy as well as a possible target for preventive intervention.
Collapse
Affiliation(s)
- Nazir Ahmad Dar
- Department of Clinical Biochemistry, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Andriollo-Sanchez M, Hininger-Favier I, Meunier N, Venneria E, O'Connor JM, Maiani G, Polito A, Bord S, Ferry M, Coudray C, Roussel AM. No Antioxidant Beneficial Effect of Zinc Supplementation on Oxidative Stress Markers and Antioxidant Defenses in Middle-Aged and Elderly Subjects: The Zenith Study. J Am Coll Nutr 2008; 27:463-9. [DOI: 10.1080/07315724.2008.10719726] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Kabat GC, Rohan TE. Does excess iron play a role in breast carcinogenesis? An unresolved hypothesis. Cancer Causes Control 2007; 18:1047-53. [PMID: 17823849 DOI: 10.1007/s10552-007-9058-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 08/20/2007] [Indexed: 12/11/2022]
Abstract
Free iron is a pro-oxidant and can induce oxidative stress and DNA damage. The carcinogenicity of iron has been demonstrated in animal models, and epidemiologic studies have shown associations with several human cancers. However, a possible role of excess body iron stores or of elevated iron intake in breast carcinogenesis has received little attention epidemiologically. We propose that iron overload and the disruption of iron homeostasis with a resulting increase in free iron may contribute to the development of breast cancer, and we summarize the relevant evidence from mechanistic studies, animal experiments, and studies in humans. Over time a high intake of iron can lead to iron overload. Furthermore, body iron stores increase in women following menopause. Reactive oxygen species produced by normal aerobic cellular metabolism can lead to the release of free iron from ferritin. In the presence of superoxide radical and hydrogen peroxide, stored ferric iron (Fe(3+)) is reduced to ferrous iron (Fe(2+)), which catalyzes the formation of the hydroxyl radical (*OH). *OH in turn can promote lipid peroxidation, mutagenesis, DNA strand breaks, oncogene activation, and tumor suppressor inhibition, increasing the risk of breast cancer. In addition to its independent role as a proxidant, high levels of free iron may potentiate the effects of estradiol, ethanol, and ionizing radiation - three established risk factors for breast cancer. In order to identify the role of iron in breast carcinogenesis, improved biomarkers of body iron stores are needed, as are cohort studies which assess heme iron intake. Ultimately, it is important to determine whether iron levels in the breast and iron-induced pathology are higher in women who go on to develop breast cancer compared to women who do not.
Collapse
Affiliation(s)
- Geoffrey C Kabat
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, NY 10461, USA..
| | | |
Collapse
|
32
|
diTargiani RC, Lee SJ, Wassink S, Michel SLJ. Functional Characterization of Iron-Substituted Tristetraprolin-2D (TTP-2D, NUP475-2D): RNA Binding Affinity and Selectivity. Biochemistry 2006; 45:13641-9. [PMID: 17087518 DOI: 10.1021/bi060747n] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The protein tristetraprolin (TTP, also known as NUP475 and TIS11) is a nonclassical zinc finger protein that is involved in regulating the inflammatory response. Specifically, TTP binds to AU-rich sequence elements located at the 3'-untranslated region of cytokine mRNAs forming a complex that is degraded by the exosome. The nucleic acid binding region of TTP is comprised of two CysX(8)CysX(5)CysX(3)His domains that are activated in the presence of zinc. A two-domain construct of TTP (TTP-2D) has been cloned and overexpressed in E. coli. TTP-2D picks up visible red coloration from the expression media, unless it is expressed under iron-restricted conditions. The iron-binding properties of TTP-2D and the effect of iron substitution on RNA recognition have been investigated. Both Fe(II) and Fe(III) bind to TTP-2D and a full titration of Fe(III) with TTP-2D revealed that this metal ion binds with micromolar affinity. Upon reconstitution of TTP-2D with either Fe(II) or Fe(III), the protein recognizes a canonical RNA-binding sequence, UUUAUUUAUUU, with nanomolar affinity. Substitution of a single adenine or both adenines results in a decreased affinity of TTP-2D for the RNA molecule, demonstrating that both Fe(II)-TTP-2D and Fe(III)-TTP-2D selectively recognize a physiologically relevant RNA sequence. The relative affinities of Fe(II)-TTP-2D and Fe(III)-TTP-2D for the series of RNA sequences mirror those observed for Zn(II)-TTP-2D and suggest that iron is a viable substitute for zinc in this protein.
Collapse
Affiliation(s)
- Robert C diTargiani
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, USA
| | | | | | | |
Collapse
|
33
|
Santon A, Formigari A, Albergoni V, Irato P. Effect of Zn treatment on wild type and MT-null cell lines in relation to apoptotic and/or necrotic processes and on MT isoform gene expression. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1763:305-312. [PMID: 16563532 DOI: 10.1016/j.bbamcr.2006.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 01/20/2006] [Accepted: 01/25/2006] [Indexed: 11/22/2022]
Abstract
It has been shown in various systems that zinc is able to antagonize the catalytic properties of the redox-active transition metals iron and copper, although the process is still unclear. Probably, the protective effect of Zn against oxidative stress is mainly due to the induction of a scavenger metal binding protein such as metallothionein (MT), rather than a direct action. To support this hypothesis, in this study, the effects of Zn, Cu, Fe, Zn + Cu and Zn + Fe treatments were investigated in a fibroblast cell line corresponding to an SV40-transformed MT-1/-2 mutant (MT-/-), and in wild type (MT+/+), by valuing metal concentrations and apoptotic and/or necrotic processes. We also investigated the synthesis of MT and the levels of both MT-1 and MT-2 mRNAs. In MT+/+ cells, co-treatment with Zn + Fe caused a decrease in Fe content compared to treatment with Fe alone. After Zn and Zn + Cu exposure the expression of MT-1 and MT-2 isoforms increased with a concomitant increase in MT synthesis. Annexin V-FITC and propidium iodide staining revealed necrotic or apoptotic cells in terminal stages, especially after Fe treatments. Immunofluorescent staining with an anti-ssDNA Mab and annexin detected a lower signal in co-treated cells compared to the single treatments in both cell lines. The intensity and quantity of fluorescence resulting from anti-ssDNA and Annexin V staining of MT null cells was higher compared to wild type cells. These results suggest that Zn alone does not completely exert an anti-oxidant effect against Cu and Fe toxicity, but that induction of MT is necessary.
Collapse
Affiliation(s)
- Alessandro Santon
- Department of Biology, University of Padova, via U. Bassi, 58/B, 35131 Padova, Italy
| | | | | | | |
Collapse
|
34
|
ATCUN-like metal-binding motifs in proteins: identification and characterization by crystal structure and sequence analysis. Proteins 2006; 58:211-21. [PMID: 15508143 DOI: 10.1002/prot.20265] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The amino terminal Cu(II)- and Ni(II)-binding (ATCUN) motif is a small metal-binding site found in the N-terminus of many naturally occurring proteins. The ATCUN motif has been implicated in DNA cleavage and has been shown to have antitumor activity. In proteins, the ATCUN motif is formed from a histidine in the third position, its preceding residue and the free N-terminus. Four nitrogen atoms from these three residues act as metal ligands. Knowledge of metal-binding geometry helps in the design of metal-binding peptides and in understanding of the mechanisms of metal-mediated functions. Since the N-terminus region of ATCUN-containing proteins is highly disordered, no geometrical features can be derived from the protein structures. However, the crystal structure of a small metal-bound ATCUN peptide shows that the nitrogen ligands form a distorted square planar geometry. Distance constraints derived from this designed peptide were used to search 1949 polypeptide chains to find ATCUN-like motifs in any position along the polypeptide chain. Only approximately 1.9% and approximately 0.3% of histidines are involved in partial and full ATCUN-like geometric features, respectively. These two datasets were compared with the dataset of all histidines. None of the ATCUN-like motifs occur in the middle of an alpha-helix or a beta-strand. Further sequence analysis revealed total conservation of ATCUN histidines in four proteins including the transcription factor TBX3, implicated in Ulnar-Mammary Syndrome. Our analysis suggests that the ATCUN-like motif in TBX3 is a potential metal-binding site, although a structural role was not completely ruled out. Metal-binding activity in TBX3, if confirmed, will help us to understand the role of metals in transcriptional regulation and is likely to cast light on the causes of some serious genetic disorders. A conformational role is suggested for ATCUN-like motifs in other proteins.
Collapse
|
35
|
Lee DH, Jacobs DR. Interaction among heme iron, zinc, and supplemental vitamin C intake on the risk of lung cancer: Iowa Women's Health Study. Nutr Cancer 2006; 52:130-7. [PMID: 16201844 DOI: 10.1207/s15327914nc5202_3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Redox-active iron present at physiological levels in the pulmonary epithelial lining fluid may lead to damage of lung tissue under some circumstances. For example, factors that increase potential for oxidative stress, such as higher intake of heme iron or higher intake of vitamin C in the presence of high intake of iron, might increase the risk of lung cancer, whereas higher intake of the antioxidant zinc might decrease that risk. During 16 yr of follow-up, 34,708 postmenopausal women, aged 55-69 yr at baseline who completed a food-frequency questionnaire for the Iowa Women's Health Study, were followed for 700 incident lung cancers. When subjects were stratified by intake of vitamin C supplements, among women who took vitamin C supplements of >500 mg/day, after adjusting for age, total energy intake, cigarette smoking, alcohol consumption, and dietary zinc or dietary heme iron intake, relative risks across categories of dietary heme iron intake were 1.0, 0.85, 0.93, 1.32, 1.70, and 3.77 (P for trend = 0.05; P for interaction = 0.08), whereas corresponding figures for dietary zinc intake were 1.0, 1.15, 0.71, 0.84, 0.61, and 0.11 (P for trend = 0.12; P for interaction = 0.04). The strength of the associations of heme iron and zinc intake with lung cancer appeared to be stronger with increasing levels of vitamin C supplement intake. Our results suggest that high dietary heme iron intake may increase the risk of lung cancer, whereas high dietary zinc may decrease the risk of lung cancer among postmenopausal women who consume high-dose vitamin C supplements. This finding may be of particular importance to smokers, for whom vitamin C supplementation is a common recommendation.
Collapse
Affiliation(s)
- Duk-Hee Lee
- Department of Preventive Medicine, college of Medicine, Kyungpook National University, Daegu, Korea
| | | |
Collapse
|
36
|
Stefanidou M, Maravelias C, Dona A, Spiliopoulou C. Zinc: a multipurpose trace element. Arch Toxicol 2005; 80:1-9. [PMID: 16187101 DOI: 10.1007/s00204-005-0009-5] [Citation(s) in RCA: 274] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 06/14/2005] [Indexed: 12/14/2022]
Abstract
Zinc (Zn) is one of the most important trace elements in the body and it is essential as a catalytic, structural and regulatory ion. It is involved in homeostasis, in immune responses, in oxidative stress, in apoptosis and in ageing. Zinc-binding proteins (metallothioneins, MTs), are protective in situations of stress and in situations of exposure to toxic metals, infections and low Zn nutrition. Metallothioneins play a key role in Zn-related cell homeostasis due to their high affinity for Zn, which is in turn relevant against oxidative stress and immune responses, including natural killer (NK) cell activity and ageing, since NK activity and Zn ion bioavailability decrease in ageing. Physiological supplementation of Zn in ageing and in age-related degenerative diseases corrects immune defects, reduces infection relapse and prevents ageing. Zinc is not stored in the body and excess intakes result in reduced absorption and increased excretion. Nevertheless, there are cases of acute and chronic Zn poisoning.
Collapse
Affiliation(s)
- M Stefanidou
- Department of Forensic Medicine and Toxicology, Medical School, University of Athens, 75, Mikras Asias street, Goudi, Athens 11527, Greece.
| | | | | | | |
Collapse
|
37
|
Ho E. Zinc deficiency, DNA damage and cancer risk. J Nutr Biochem 2005; 15:572-8. [PMID: 15542347 DOI: 10.1016/j.jnutbio.2004.07.005] [Citation(s) in RCA: 306] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Revised: 06/17/2004] [Accepted: 07/06/2004] [Indexed: 12/13/2022]
Abstract
A large body of evidence suggests that a significant percentage of deaths resulting from cancer in the United States could be avoided through greater attention to proper and adequate nutrition. Although many dietary compounds have been suggested to contribute to the prevention of cancer, there is strong evidence to support the fact that zinc, a key constituent or cofactor of over 300 mammalian proteins, may be of particular importance in host defense against the initiation and progression of cancer. Remarkably, 10% of the U.S. population consumes less than half the recommended dietary allowance for zinc and are at increased risk for zinc deficiency. Zinc is known to be an essential component of DNA-binding proteins with zinc fingers, as well as copper/zinc superoxide dismutase and several proteins involved in DNA repair. Thus, zinc plays an important role in transcription factor function, antioxidant defense and DNA repair. Dietary deficiencies in zinc can contribute to single- and double-strand DNA breaks and oxidative modifications to DNA that increase risk for cancer development. This review will focus on potential mechanisms by which zinc deficiency impairs host protective mechanisms designed to protect against DNA damage, enhances susceptibility to DNA-damaging agents and ultimately increases risk for cancer.
Collapse
Affiliation(s)
- Emily Ho
- Department of Nutrition and Food Management and Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
38
|
Lee DH, Anderson KE, Folsom AR, Jacobs DR. Heme iron, zinc and upper digestive tract cancer: The Iowa Women's Health Study. Int J Cancer 2005; 117:643-7. [PMID: 15929082 DOI: 10.1002/ijc.21215] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We examined associations among dietary heme iron as a possible pro-oxidant, dietary zinc as a possible antioxidant, and the incidence of upper digestive tract cancer; 34,708 postmenopausal women, aged 55-69 years at baseline who completed a food frequency questionnaire, were followed 16 years. There were 75 upper digestive tract cancer cases (52 gastric cancer and 23 esophageal cancer). When heme iron and zinc were mutually adjusted, in dose-response manners, heme iron intake was positively associated with the risk of upper digestive tract cancer, while zinc intake was inversely associated with risk. After adjusting for age, total energy intake, cigarette smoking and alcohol consumption, relative risks for quintiles of heme iron intake were 1.0, 1.53, 2.15, 3.05 and 2.83 (p for trend = 0.06) and corresponding relative risks for zinc intake were 1.0, 0.86, 0.42, 0.37 and 0.13 (p for trend < 0.01). Additional adjustment for body mass index, physical activity, hormone replacement therapy, multivitamin intake and intake of saturated fat, vitamin C, vitamin E and folate did not change the results. Higher intake of heme iron is associated with higher risk, while higher intake of zinc is associated with lower, risk of upper digestive tract cancer.
Collapse
Affiliation(s)
- Duk-Hee Lee
- Department of Preventive Medicine, College of Medicine, Kyungpook National University, Daegu, Korea
| | | | | | | |
Collapse
|
39
|
Di Baccio D, Navari-Izzo F, Izzo R. Seawater irrigation: antioxidant defence responses in leaves and roots of a sunflower (Helianthus annuus L.) ecotype. JOURNAL OF PLANT PHYSIOLOGY 2004; 161:1359-1366. [PMID: 15658806 DOI: 10.1016/j.jplph.2003.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Salinity is a widespread environmental stress for crop plants. It is common in arid, semiarid, and coast regions. In those environments, seawater infiltrations can occur or the sea provides the only source of water for irrigation. The effects of 10% and 20% seawater in nutrient solutions were studied in 30 day-old plants of sunflower (Helianthus annuus L.) ecotype Katharina Piacenza. Growth parameters, ascorbate and glutathione contents, and the activities of ascorbate peroxidase and glutathione reductase were determined in shoots and roots. The results showed antioxidative responses of the ecotype to both salt treatments. The different activity patterns of antioxidant molecules and enzymes in the leaves and roots suggested a different kind of reaction to the two seawater concentrations.
Collapse
Affiliation(s)
- Daniela Di Baccio
- Dipartimento di Chimica e Biotecnologie Agrarie, Universita degli Studi di Pisa, Pisa 1-56124, Italy
| | | | | |
Collapse
|
40
|
Lee DH, Anderson KE, Harnack LJ, Folsom AR, Jacobs DR. Heme iron, zinc, alcohol consumption, and colon cancer: Iowa Women's Health Study. J Natl Cancer Inst 2004; 96:403-7. [PMID: 14996862 DOI: 10.1093/jnci/djh047] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We examined associations among colon cancer incidence and dietary intake of heme iron, a possible prooxidant, zinc, a possible antioxidant, and alcohol, a disruptor of iron homeostasis. During 15 years of follow-up, 34 708 postmenopausal women, aged 55-69 years at baseline who completed a food-frequency questionnaire for the Iowa Women's Health Study, were followed for incident colon cancer. After adjusting for each micronutrient, the relative risks for proximal colon cancer increased more than twofold across categories of heme iron intake (P(trend) =.01) and the corresponding relative risks decreased more than 50% across categories for zinc intake (P(trend) =.01). The positive association with heme iron and the inverse association with zinc intake were stronger among women who consumed alcohol than among those who did not. Zinc intake was also associated with a decreased risk of distal colon cancer (P(trend) =.03), regardless of alcohol or heme iron consumption. Our results suggest that intake of dietary heme iron is associated with an increased risk of proximal colon cancer, especially among women who drink, but that intake of dietary zinc is associated with a decreased risk of both proximal and distal colon cancer.
Collapse
Affiliation(s)
- Duk-Hee Lee
- Department of Preventive Medicine, College of Medicine, Kyungpook National University, Daegu, Korea
| | | | | | | | | |
Collapse
|
41
|
Tapiero H, Tew KD. Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother 2004; 57:399-411. [PMID: 14652165 DOI: 10.1016/s0753-3322(03)00081-7] [Citation(s) in RCA: 517] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Zinc is one of the most abundant nutritionally essential elements in the human body. It is found in all body tissues with 85% of the whole body zinc in muscle and bone, 11% in the skin and the liver and the remaining in all the other tissues. In multicellular organisms, virtually all zinc is intracellular, 30-40% is located in the nucleus, 50% in the cytoplasm, organelles and specialized vesicles (for digestive enzymes or hormone storage) and the remainder in the cell membrane. Zinc intake ranges from 107 to 231 micromol/d depending on the source, and human zinc requirement is estimated at 15 mg/d. Zinc has been shown to be essential to the structure and function of a large number of macromolecules and for over 300 enzymic reactions. It has both catalytic and structural roles in enzymes, while in zinc finger motifs, it provides a scaffold that organizes protein sub-domains for the interaction with either DNA or other proteins. It is critical for the function of a number of metalloproteins, inducing members of oxido-reductase, hydrolase ligase, lyase family and has co-activating functions with copper in superoxide dismutase or phospholipase C. The zinc ion (Zn(++)) does not participate in redox reactions, which makes it a stable ion in a biological medium whose potential is in constant flux. Zinc ions are hydrophilic and do not cross cell membranes by passive diffusion. In general, transport has been described as having both saturable and non-saturable components, depending on the Zn(II) concentrations involved. Zinc ions exist primarily in the form of complexes with proteins and nucleic acids and participate in all aspects of intermediary metabolism, transmission and regulation of the expression of genetic information, storage, synthesis and action of peptide hormones and structural maintenance of chromatin and biomembranes.
Collapse
Affiliation(s)
- Haim Tapiero
- Université de Paris - Faculté de Pharmacie CNRS UMR 8612, 5, rue Jean-Baptiste-Clément, 94200, Chatenay-Malabry, France.
| | | |
Collapse
|
42
|
Freeman ADJ, Déclais AC, Lilley DMJ. Metal Ion Binding in the Active Site of the Junction-resolving Enzyme T7 Endonuclease I in the Presence and in the Absence of DNA. J Mol Biol 2003; 333:59-73. [PMID: 14516743 DOI: 10.1016/j.jmb.2003.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Endonuclease I of bacteriophage T7 is a DNA junction-resolving enzyme. We have previously used crystallography to demonstrate the binding of two manganese ions into the active site that is formed by three carboxylate (Glu 20, Asp 55 and Glu 65) and a lysine residue (Lys 67). Endonuclease I is active in the presence of magnesium, manganese, iron (II) and cobalt (II) ions, weakly active in the presence of nickel, copper (II) and zinc ions, and completely inactive in the presence of calcium ions. However, using calorimetry, we have observed the binding of two calcium ions to the free enzyme in a manner very similar to the binding of manganese ions. In the presence of iron (II) ions, we have obtained a cleavage of the continuous strands of a junction bound by endonuclease I, at sites close to (but not identical with) enzyme-induced hydrolysis. The results suggest that this arises from attack by locally generated hydroxyl radicals, arising from iron (II) ions bound into the active site. This therefore provides an indirect way of examining metal ion binding in the enzyme-junction complex. Ion binding in free protein (by calorimetry) and the enzyme-junction complex (iron-induced cleavage) have been studied in series of active-site mutants. Both confirm the importance of the three carboxylate ligands, and the lack of a requirement for Lys67 for the ion binding. Calorimetry points to particularly critical role of Asp55, as mutation completely abolishes all binding of both manganese and calcium ions.
Collapse
Affiliation(s)
- Alasdair D J Freeman
- Cancer Research UK Nucleic Acid Structure Research Group, Department of Biochemistry, MSI/WTB Complex, The University of Dundee, Dundee DD1 5EH, UK
| | | | | |
Collapse
|
43
|
Kovacic RT, Welch JT, Franklin SJ. Sequence-selective DNA cleavage by a chimeric metallopeptide. J Am Chem Soc 2003; 125:6656-62. [PMID: 12769574 DOI: 10.1021/ja0210998] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A chimeric metallopeptide derived from the sequences of two structurally superimposable motifs was designed as an artificial nuclease. Both DNA recognition and nuclease activity have been incorporated into a small peptide sequence. P3W, a 33-mer peptide comprising helices alpha2 and alpha3 from the engrailed homeodomain and the consensus EF-hand Ca-binding loop binds one equivalent of lanthanides or calcium and folds upon metal binding. The conditional formation constants (in the presence of 50 mM Tris) of P3W for Eu(III) (K(a) = (2.1 +/- 0.1) x 10(5) M(-1)) and Ce(IV) (K(a) = (2.6 +/- 0.1) x 10(5) M(-1)) are typical of isolated EF-hand peptides. Circular dichroism studies show that 1:1 CeP3W is 26% alpha-helical and EuP3W is up to 40% alpha-helical in the presence of excess metal. The predicted helicity of the folded peptide based on helix length and end effects is about 50%, showing the metallopeptides are significantly folded. EuP3W has considerably more secondary structure than our previously reported chimeras (Welch, J. T.; Sirish, M.; Lindstrom, K. M.; Franklin, S. J. Inorg. Chem. 2001, 40, 1982-1984). Eu(III)P3W and Ce(IV)P3W nick supercoiled DNA at pH 6.9, although EuP3W is more active at pH 8. CeP3W cleaves linearized, duplex DNA as well as supercoiled plasmid. The cleavage of a 5'-(32)P-labeled 121-mer DNA fragment was followed by polyacrylamide gel electrophoresis. The cleavage products are 3'-OPO(3) termini exclusively, suggesting a regioselective or multistep mechanism. In contrast, uncomplexed Ce(IV) and Eu(III) ions produce both 3'-OPO(3) and 3'-OH, and no evidence of 4'-oxidative cleavage termini with either metal. The complementary 3'-(32)P-labeled oligonucleotide experiment also showed both 5'-OPO(3) and 5'-OH termini were produced by the free ions, whereas CeP3W produces only 5'-OPO(3) termini. In addition to apparent regioselectivity, the metallopeptides cut DNA with modest sequence discrimination, which suggests that the HTH motif binds DNA as a folded domain and thus cleaves selected sequences. The de novo artificial nuclease LnP3W represents the first small, underivatized peptide that is both active as a nuclease and sequence selective.
Collapse
Affiliation(s)
- Roger T Kovacic
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
44
|
Welch JT, Kearney WR, Franklin SJ. Lanthanide-binding helix-turn-helix peptides: solution structure of a designed metallonuclease. Proc Natl Acad Sci U S A 2003; 100:3725-30. [PMID: 12644701 PMCID: PMC152989 DOI: 10.1073/pnas.0536562100] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A designed lanthanide-binding chimeric peptide based on the strikingly similar geometries of the EF-hand and helix-turn-helix (HTH) motifs was investigated by NMR and CD spectroscopy and found to retain the same overall solution structure of the parental motifs. CD spectroscopy showed that the 33-mer peptide P3W folds on binding lanthanides, with an increase in alpha-helicity from 20% in the absence of metal to 38% and 35% in the presence of excess Eu(III) and La(III) ions, respectively. The conditional binding affinities of P3W for La(III) (5.9 +/- 0.3 microM) and for Eu(III) (6.2 +/- 0.3 microM) (pH 7.8, 5 mM Tris) were determined by tryptophan fluorescence titration. The La(III) complex of peptide P3, which differs from P3W by only one Trp-to-His substitution, has much less signal dispersion in the proton NMR spectra than LaP3W, indicating that the Trp residue is a critical hydrophobic anchor for maintaining a well-folded helix-turn-helix structure. A chemical-shift index analysis indicates the metallopeptide has a helix-loop-helix secondary structure. A structure calculated by using nuclear Overhauser effect and other NMR constraints reveals that P3W not only has a tightly folded metal-binding loop but also retains the alpha-alpha corner supersecondary structure of the parental motifs. Although the solution structure is undefined at both the N and C termini, the NMR structure confirms the successful incorporation of a metal-binding loop into a HTH sequence.
Collapse
Affiliation(s)
- Joel T Welch
- Department of Chemistry and College of Medicine NMR Facility, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
45
|
Wilcox DE, Schenk AD, Feldman BM, Xu Y. Oxidation of zinc-binding cysteine residues in transcription factor proteins. Antioxid Redox Signal 2001; 3:549-64. [PMID: 11554444 DOI: 10.1089/15230860152542925] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recent results on the oxidation of cysteine residues that bind zinc in transcription factors and their analogous peptides and in related proteins and model systems are reviewed. Two classes of oxidants, the transition metals and dioxygen, hydrogen peroxide, and related species, are considered, and the role of metal ions in suppressing or enhancing Cys oxidation is a major focus. Cysteines in the zinc-bound structures of transcription factors are less susceptible to oxidation than in the metal-free form, and this appears to correlate with reduced accessibility of the thiolates to oxidants. Substitution of other metal ions for Zn(II) increases the rate of Cys oxidation, apparently through increased oxidant accessibility. Reactions that result in reversible or irreversible oxidation of these zinc-binding cysteines under biological conditions are identified in the context of deleterious implications for gene expression.
Collapse
Affiliation(s)
- D E Wilcox
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA.
| | | | | | | |
Collapse
|
46
|
Abstract
A significant portion of cellular zinc is found in the nucleus where it appears to be critically involved in maintaining genetic stability and in the process of gene expression. With regard to gene expression zinc functions mechanistically at several levels but recent interest has focussed especially on the involvement of zinc in DNA transcription through the activity of transcription factors which contain specific zinc-finger regions which bind to DNA and, in conjunction with other families of transcription factors, control cell proliferation, differentiation and cell death. Because of the central importance of zinc in cell division and growth, considerable attention is paid to zinc as an essential trace element and much has been written concerning dietary sources of zinc and recommended dietary intakes of the metal.
Collapse
Affiliation(s)
- I E Dreosti
- CSIRO Health Sciences & Nutrition, Adelaide, Australia, PO Box 10041, BC, SA 5000, Adelaide, Australia.
| |
Collapse
|
47
|
Abstract
Lanthanide ions are remarkably effective catalysts for the hydrolytic cleavage of phosphate ester bonds, including the robust bonds of DNA. This makes Ln(III) and Ce(IV) ions attractive candidates for developing selective and efficient artificial nucleases, which could have many biochemical and clinical applications. Both small-molecule-based and biopolymer-based lanthanide complexes are being pursued.
Collapse
Affiliation(s)
- S J Franklin
- Department of Chemistry, University of Iowa, Iowa City 52242, USA.
| |
Collapse
|
48
|
Hori Y, Suzuki K, Okuno Y, Nagaoka M, Futaki S, Sugiura Y. Artificial Zinc Finger Peptide Containing a Novel His4Domain. J Am Chem Soc 2000. [DOI: 10.1021/ja994009g] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Abstract
The ability of zinc to retard oxidative processes has been recognized for many years. In general, the mechanism of antioxidation can be divided into acute and chronic effects. Chronic effects involve exposure of an organism to zinc on a long-term basis, resulting in induction of some other substance that is the ultimate antioxidant, such as the metallothioneins. Chronic zinc deprivation generally results in increased sensitivity to some oxidative stress. The acute effects involve two mechanisms: protection of protein sulfhydryls or reduction of (*)OH formation from H(2)O(2) through the antagonism of redox-active transition metals, such as iron and copper. Protection of protein sulfhydryl groups is thought to involve reduction of sulfhydryl reactivity through one of three mechanisms: (1) direct binding of zinc to the sulfhydryl, (2) steric hindrance as a result of binding to some other protein site in close proximity to the sulfhydryl group or (3) a conformational change from binding to some other site on the protein. Antagonism of redox-active, transition metal-catalyzed, site-specific reactions has led to the theory that zinc may be capable of reducing cellular injury that might have a component of site-specific oxidative damage, such as postischemic tissue damage. Zinc is capable of reducing postischemic injury to a variety of tissues and organs through a mechanism that might involve the antagonism of copper reactivity. Although the evidence for the antioxidant properties of zinc is compelling, the mechanisms are still unclear. Future research that probes these mechanisms could potentially develop new antioxidant functions and uses for zinc.
Collapse
Affiliation(s)
- S R Powell
- Department of Obstetrics-Gynecology, Winthrop University Hospital, Mineola, NY 11501, USA
| |
Collapse
|
50
|
|