1
|
Zhang MY, Zhang H, Yao YM, Yang DW. Krüppel-like factors in mitochondrial quality control. Front Physiol 2025; 16:1554877. [PMID: 40265156 PMCID: PMC12011804 DOI: 10.3389/fphys.2025.1554877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/25/2025] [Indexed: 04/24/2025] Open
Abstract
Krüppel-like factors (KLFs) are a group of transcription factors characterized by conserved zinc finger domains in the C-terminus, which are critically involved in basic cellular processes, including growth, differentiation, apoptosis, and angiogenesis, and play important roles in many pathophysiological responses. Mitochondrial homeostasis relies on a coordinated mitochondrial quality control system, which maintains the number and morphological stability and coordinates mitochondrial physiological functions through renewal and self-clearance. In this paper, we review the current advances of KLFs in mitochondrial quality control (MQC), including the potential roles and regulatory mechanisms in mitochondrial biogenesis, mitochondrial fusion/fission, mitophagy and mitochondrial unfolded protein response. We also introduce the specific pharmacological modulation of KLFs, expecting to transforming basic research achievements and providing the possibility of targeted therapy for KLFs.
Collapse
Affiliation(s)
- M. Y. Zhang
- Department of Nephrology, Tianjin Hospital of Tianjin University, Tianjin, China
| | - H. Zhang
- Translational Medicine Research Center, Medical Innovation Research Division and the Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Y. M. Yao
- Translational Medicine Research Center, Medical Innovation Research Division and the Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - D. W. Yang
- Department of Nephrology, Tianjin Hospital of Tianjin University, Tianjin, China
| |
Collapse
|
2
|
Racca AC, Nardi S, Flores-Martin J, Genti-Raimondi S, Panzetta-Dutari GM. KLF6 negatively regulates HIF-1α in extravillous trophoblasts under hypoxia. Placenta 2024; 156:38-45. [PMID: 39244791 DOI: 10.1016/j.placenta.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
INTRODUCTION HIF-1α, the master regulator of hypoxia cellular response, is stabilized under low oxygen levels and degraded in the presence of oxygen but its transcription, translation, and degradation are tightly regulated by numerous pathways. KLF6 is a transcription factor involved in proliferation, differentiation, and apoptosis in several cell systems. Under hypoxia it is upregulated in a HIF-1α-dependent manner in extravillous trophoblasts. Considering the importance of hypoxia modulation of EVT behavior through HIF1-α we aimed to study whether KLF6 modulates HIF-1α expression in HTR8/SVneo cells. METHODS HTR8/SVneo cells were cultured in a 1 % oxygen chamber or in 3D format where a spontaneous oxygen gradient is generated. qRT-PCR and Western blot were performed to analyze mRNA and protein expression, respectively. SiRNA, shRNA, or plasmids were used to down- or up-regulate gene expression. Wound healing assay was performed under hypoxia to evaluate migration. The NFκB pathway was modulated with dominant negative mutants and a chemical inhibitor. Cobalt chloride was used to block HIF-1α degradation. RESULTS KLF6 up- and down-regulation in HTR8/SVneo cells exposed to acute hypoxia revealed a negative regulation on HIF-1α. KLF6 silencing led to a partially HIF-1α-dependent increase in MMP9 and VEGF. The NF-κB pathway and HIF-1α degradation were involved in KLF6-dependent HIF-1α regulation. HTR8/SVneo-3D culture showed that KLF6 negatively regulates HIF-1α in a microenvironment with naturally generated hypoxia. DISCUSSION Present results reveal that KLF6 contributes to a fine tune modulation of HIF-1α level under hypoxia. Thus, sustaining a HIF-1α homeostatic level, KLF6 might contribute to control EVT adaptation to hypoxia.
Collapse
Affiliation(s)
- Ana C Racca
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| | - Sofía Nardi
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Jésica Flores-Martin
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Susana Genti-Raimondi
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Graciela M Panzetta-Dutari
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| |
Collapse
|
3
|
Kourdova LT, Miranda AL, Ovejero M, Anastasía A, Genti-Raimondi S, Racca AC, Panzetta-Dutari GM. Krüppel-like factor 6 involvement in the endoplasmic reticulum homeostasis of extravillous trophoblasts. Placenta 2024; 155:42-51. [PMID: 39121586 DOI: 10.1016/j.placenta.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION Trophoblast homeostasis and differentiation require a proper endoplasmic reticulum (ER) function. The Krüppel-like factor-6 (KLF6) transcription factor modulates trophoblast migration, differentiation, and reactive oxygen species (ROS) production. Since ROS may impact on ER homeostasis, we assessed whether downregulation of KLF6 altered the unfolded protein response (UPR) and cellular process associated with ER homeostasis. MATERIALS AND METHODS Protein and RNA expression were analyzed by Western blot and qRT-PCR, respectively, in extravillous trophoblast HTR-8/SVneo cells silenced for KLF6. Apoptosis was detected by flow cell cytometry using Annexin V Apoptosis Detection Kit. Protein trafficking was assessed by confocal microscopy of a reporter fluorescent protein whose release from the ER was synchronized. RESULTS KLF6 downregulation reduced the expression of BiP, the master regulator of the UPR, at protein, mRNA, and pre-mRNA levels. Ire1α protein, XBP1 splicing, and DNAJB9 mRNA levels were also reduced in KLF6-silenced cells. Instead, PDI, Ero1α, and the p-eIF2α/eIF2α ratio as well as autophagy and proteasome dependent protein degradation remained unchanged while intracellular trafficking was increased. Under thapsigargin-induced stress, KLF6 silencing impaired BiP protein and mRNA expression increase, as well as the activation of the Ire1α pathway, but it raised the p-eIF2α/eIF2α ratio and CHOP protein levels. Nevertheless, apoptosis was not increased. DISCUSSION Results provide the first evidence of KLF6 as a modulator of the UPR components. The increase in protein trafficking and protection from apoptosis, observed in KLF6-silenced cells, are consistent with its role in extravillous trophoblast migration and differentiation.
Collapse
Affiliation(s)
- Lucille T Kourdova
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Andrea L Miranda
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Milagros Ovejero
- Instituto de Investigación Médica Mercedes y Martin Ferreyra, (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Agustín Anastasía
- Instituto de Investigación Médica Mercedes y Martin Ferreyra, (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Susana Genti-Raimondi
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Ana C Racca
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Graciela M Panzetta-Dutari
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| |
Collapse
|
4
|
Wang X, Sun K, Xu Z, Chen Z, Wu W. Roles of SP/KLF transcription factors in odontoblast differentiation: From development to diseases. Oral Dis 2024; 30:3745-3760. [PMID: 38409677 DOI: 10.1111/odi.14904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/28/2024]
Abstract
OBJECTIVES A zinc-finger transcription factor family comprising specificity proteins (SPs) and Krüppel-like factor proteins (KLFs) plays an important role in dentin development and regeneration. However, a systematic regulatory network involving SPs/KLFs in odontoblast differentiation has not yet been described. This review examined the expression patterns of SP/KLF gene family members and their current known functions and mechanisms in odontoblast differentiation, and discussed prospective research directions for further exploration of mechanisms involving the SP/KLF gene family in dentin development. MATERIALS AND METHODS Relevant literature on SP/KLF gene family members and dentin development was acquired from PubMed and Web of Science. RESULTS We discuss the expression patterns, functions, and related mechanisms of eight members of the SP/KLF gene family in dentin development and genetic disorders with dental problems. We also summarize current knowledge about their complementary or synergistic actions. Finally, we propose future research directions for investigating the mechanisms of dentin development. CONCLUSIONS The SP/KLF gene family plays a vital role in tooth development. Studying the complex complementary or synergistic interactions between SPs/KLFs is helpful for understanding the process of odontoblast differentiation. Applications of single-cell and spatial multi-omics may provide a more complete investigation of the mechanism involved in dentin development.
Collapse
Affiliation(s)
- Xuefei Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Kaida Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Zekai Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Zhuo Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Wenzhi Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| |
Collapse
|
5
|
Li ZY, Zhu YX, Chen JR, Chang X, Xie ZZ. The role of KLF transcription factor in the regulation of cancer progression. Biomed Pharmacother 2023; 162:114661. [PMID: 37068333 DOI: 10.1016/j.biopha.2023.114661] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/19/2023] Open
Abstract
Kruppel-like factors (KLFs) are a family of zinc finger transcription factors that have been found to play an essential role in the development of various human tissues, including epithelial, teeth, and nerves. In addition to regulating normal physiological processes, KLFs have been implicated in promoting the onset of several cancers, such as gastric cancer, lung cancer, breast cancer, liver cancer, and colon cancer. To inhibit cancer progression, various existing medicines have been used to modulate the expression of KLFs, and anti-microRNA treatments have also emerged as a potential strategy for many cancers. Investigating the possibility of targeting KLFs in cancer therapy is urgently needed, as the roles of KLFs in cancer have not received enough attention in recent years. This review summarizes the factors that regulate KLF expression and function at both the transcriptional and posttranscriptional levels, which could aid in understanding the mechanisms of KLFs in cancer progression. We hope that this review will contribute to the development of more effective anti-cancer medicines targeting KLFs in the future.
Collapse
Affiliation(s)
- Zi-Yi Li
- College of Basic Medical, Nanchang University, Nanchang, Jiangxi 330006, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Yu-Xin Zhu
- College of Basic Medical, Nanchang University, Nanchang, Jiangxi 330006, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Jian-Rui Chen
- College of Basic Medical, Nanchang University, Nanchang, Jiangxi 330006, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Xu Chang
- College of Basic Medical, Nanchang University, Nanchang, Jiangxi 330006, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Zhen-Zhen Xie
- College of Basic Medical, Nanchang University, Nanchang, Jiangxi 330006, PR China; Experimental teaching center of Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
6
|
Downregulation of krüppel-like factor 6 expression modulates extravillous trophoblast cell behavior by increasing reactive oxygen species. Placenta 2022; 127:62-72. [PMID: 35973366 DOI: 10.1016/j.placenta.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Placental extravillous trophoblasts play a crucial role in the establishment of a healthy pregnancy. Reactive oxygen species (ROS) may contribute to their differentiation and function as mediators in signaling processes or might cause oxidative stress resulting in trophoblast dysfunction. The krüppel-like transcription factor 6 (KLF6) regulates many genes involved in essential cell processes where ROS are also involved. However, whether KLF6 regulates ROS levels has not been previously investigated. MATERIALS AND METHODS KLF6 was silenced by siRNAs in HTR8-SV/neo cells, an extravillous trophoblast model. Total and mitochondrial ROS levels, as well as mitochondrial membrane potential and apoptosis were analyzed by flow cytometry. The expression of genes and proteins of interest were analyzed by qRT-PCR and Western blot, respectively. Cell response to oxidative stress, proliferation, viability, morphology, and migration were evaluated. RESULTS KLF6 downregulation led to an increase in ROS and NOX4 mRNA levels, accompanied by reduced cell proliferation and increased p21 protein expression. Catalase activity, 2-Cys peroxiredoxin protein levels, Nrf2 cytoplasmic localization and hemoxygenase 1 expression, as well as mitochondrial membrane potential and cell apoptosis were not altered suggesting that ROS increase is not associated with cellular damage. Instead, KLF6 silencing induced cytoskeleton modifications and increased cell migration in a ROS-dependent manner. DISCUSSION Present data reveal a novel role of KLF6 on ROS balance and signaling demonstrating that KLF6 downregulation induces an increase in ROS levels that contribute to extravillous trophoblast cell migration.
Collapse
|
7
|
Miranda AL, Kourdova LT, Racca AC, Cruz Del Puerto M, Rojas ML, Marques ALX, Silva ECO, Fonseca EJS, Gazzoni Y, Gruppi A, Borbely AU, Genti‐Raimondi S, Panzetta‐Dutari GM. Krüppel‐like factor 6 participates in extravillous trophoblast cell differentiation and its expression is reduced in abnormally invasive placenta. FEBS Lett 2022; 596:1700-1719. [DOI: 10.1002/1873-3468.14367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 04/22/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Andrea L. Miranda
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Lucille T. Kourdova
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Ana C. Racca
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Mariano Cruz Del Puerto
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Maria L. Rojas
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Aldilane L. X. Marques
- Cell Biology Laboratory Institute of Health and Biological Sciences Federal University of Alagoas Maceio Brazil
| | - Elaine C. O. Silva
- Optics and Nanoscopy Group Physics Institute Federal University of Alagoas Maceio Brazil
| | - Eduardo J. S. Fonseca
- Optics and Nanoscopy Group Physics Institute Federal University of Alagoas Maceio Brazil
| | - Yamila Gazzoni
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Adriana Gruppi
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Alexandre U. Borbely
- Cell Biology Laboratory Institute of Health and Biological Sciences Federal University of Alagoas Maceio Brazil
| | - Susana Genti‐Raimondi
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Graciela M. Panzetta‐Dutari
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| |
Collapse
|
8
|
Chen Z, Wu W, Zheng C, Lan Y, Xie H, Xie Z. KLF6 facilitates differentiation of odontoblasts through modulating the expression of P21 in vitro. Int J Oral Sci 2022; 14:20. [PMID: 35422483 PMCID: PMC9010434 DOI: 10.1038/s41368-022-00172-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/08/2022] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
Multiple signaling pathways are involved in the regulation of cell proliferation and differentiation in odontogenesis and dental tissue renewal, but the details of these mechanisms remain unknown. Here, we investigated the expression patterns of a transcription factor, Krüppel-like factor 6 (KLF6), during the development of murine tooth germ and its function in odontoblastic differentiation. KLF6 was almost ubiquitously expressed in odontoblasts at various stages, and it was co-expressed with P21 (to varying degrees) in mouse dental germ. To determine the function of Klf6, overexpression and knockdown experiments were performed in a mouse dental papilla cell line (iMDP-3). Klf6 functioned as a promoter of odontoblastic differentiation and inhibited the proliferation and cell cycle progression of iMDP-3 through p21 upregulation. Dual-luciferase reporter assay and chromatin immunoprecipitation showed that Klf6 directly activates p21 transcription. Additionally, the in vivo study showed that KLF6 and P21 were also co-expressed in odontoblasts around the reparative dentin. In conclusion, Klf6 regulates the transcriptional activity of p21, thus promoting the cell proliferation to odontoblastic differentiation transition in vitro. This study provides a theoretical basis for odontoblast differentiation and the formation of reparative dentine regeneration.
Collapse
|
9
|
Zeng B, Lin J, Cai X, Che L, Zeng W, Liu S. Krüppel-Like Factor 6 Downregulation Is Connected with a Poor Prognosis and Tumor Growth in Non-Small-Cell Lung Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3193553. [PMID: 35136416 PMCID: PMC8818409 DOI: 10.1155/2022/3193553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 11/17/2022]
Abstract
PURPOSE Research in this article was performed to explore the biological role and clinical significance of Krüppel-like transcription factor 6 (KLF6) in non-small-cell lung cancer (NSCLC). METHODS KLF6 expression in NSCLC cell lines was analyzed using reverse transcription PCR and Western blot. The expressed KLF6 protein was examined in 50 surgical NSCLC tissues using immunohistochemistry. Statistical analyses were employed for clinical association examinations. CCK8 assay and Annexin V/PI analysis were used to execute cell proliferation and apoptosis in KLF6-overexpression cell lines and the control groups. Cleaved caspase-3 expression was also detected in KLF6-overexpression cells and NSCLC tissues. KLF6 expression correlation with cleaved caspase-3 was also examined. RESULTS It was discovered that downregulation of KLF6 was seen in human NSCLC cell lines. Low KLF6 expression in NSCLC tissues was correlated with poor patient prognosis (P < 0.005); patients with less KLF6 expression possessed a lower cumulative 5-year survival rate. Multivariate analysis showed KLF6 expression as an independent prognostic indicator for NSCLC individuals. Expression levels of KLF6 were associated with NSCLC tumor size (P = 0.041). Overexpression of KLF6 inhibited cell proliferation and stimulated A549 and H322 cell line apoptosis. Cleaved caspase-3 protein had higher expression levels in KLF6-overexpressed cells than in the control group. The KLF6 expression levels were positively related to the cleaved caspase-3 protein expression in NSCLC tissues (r = 0.689, P = 0.001). CONCLUSIONS The results indicate that downregulation of KLF6 is a significant NSCLC progression marker. KLF6 prevents cell growth and promotes cell apoptosis, possibly caspase-3 activations.
Collapse
Affiliation(s)
- Binbin Zeng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Pulmonary and Critical Care Medicine, Huadu District People's Hospital of Guangzhou, Guangzhou, China
| | - Jiaxin Lin
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xingdong Cai
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Li Che
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wei Zeng
- Department of Anatomy, School of Medical College, Jinan University, Guangzhou, China
| | - Shengming Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Raza SHA, Khan R, Cheng G, Long F, Bing S, Easa AA, Schreurs NM, Pant SD, Zhang W, Li A, Zan L. RNA-Seq reveals the potential molecular mechanisms of bovine KLF6 gene in the regulation of adipogenesis. Int J Biol Macromol 2022; 195:198-206. [PMID: 34890637 DOI: 10.1016/j.ijbiomac.2021.11.202] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022]
Abstract
Marbling influences the taste and tenderness of meat and is the main determinant of carcass quality in many countries. This study aims to investigate the influence of KLF6 (Kruppel Like Factor 6) and associated molecular mechanisms on lipid metabolism in bovine adipocytes. In the current study, KLF6 gene expression was down regulated via siRNA (small interfering RNA) in bovine adipocytes in vitro. Subsequently, adipogenic cells were collected from the culture media after 9 days, and subjected to fluorescent imaging and RNA sequencing. After confirming that KLF6 was down regulated in bovine adipocytes by siRNA, differential gene expression analysis was used to characterize the infuence of KLF6 on gene expression profiles in bovine adipocytes. A total of 10,812 genes were characterized as differentially expressed genes (DEGs) of which, 109 were up-regulated and 62 were down-regulated genes. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis identified that the DEGs were associated with lipid metabolism, carbohydrate metabolism, cell growth and death, cancer, and the signaling pathways for calcium, AMPK (Adenosine Monophosphate-Activated Protein Kinase), PI3K-Akt (Phosphatidylinositol 3-kinase), PPAR (Peroxisome proliferator-activated receptors), MAPK (mitogen-activated protein kinase), cAMP (Cyclic adenosine monophosphate), and Wnt (Wingless-related integration site). Similarly, gene ontology analysis indicated that down-regulation of KLF6 gene significantly up regulated the genes that regulate adipogenesis, differentiation and regulation of adipocytes and homeostasis of bovine adipocytes, specifically regulating the cell-type specific apoptotic action, negative regulation of apoptotic pathways, programmed cell death, and growth. Results indicate that KLF6 has a role in regulating lipid metabolism in bovine adipocytes. These findings provide evidence that may inform further investigations into molecular mechanisms that underlie the role of bovine KLF6 gene in regulating adipogenesis.
Collapse
Affiliation(s)
- Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, People's Republic of China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling 712100, People's Republic of China.
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, People's Republic of China; Department of Livestock Management, Breeding and Genetics, The University of Agriculture Peshawar-, Pakistan
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Feng Long
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Sun Bing
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Ahmed A Easa
- Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhour 22511, Egypt
| | - Nicola M Schreurs
- Animal Science, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Sameer D Pant
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Wenzhen Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, People's Republic of China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling 712100, People's Republic of China.
| |
Collapse
|
11
|
Miranda AL, Racca AC, Kourdova LT, Rojas ML, Cruz Del Puerto M, Rodriguez-Lombardi G, Salas AV, Travella C, da Silva ECO, de Souza ST, Fonseca EJS, Marques ALX, Borbely AU, Genti-Raimondi S, Panzetta-Dutari GM. Krüppel-like factor 6 (KLF6) requires its amino terminal domain to promote villous trophoblast cell fusion. Placenta 2021; 117:139-149. [PMID: 34894601 DOI: 10.1016/j.placenta.2021.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/11/2021] [Accepted: 12/01/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Villous cytotrophoblast (vCTB) cells fuse to generate and maintain the syncytiotrophoblast layer required for placental development and function. Krüppel-like factor 6 (KLF6) is a ubiquitous transcription factor with an N-terminal acidic transactivation domain and a C-terminal zinc finger DNA-binding domain. KLF6 is highly expressed in placenta, and it is required for proper placental development. We have demonstrated that KLF6 is necessary for cell fusion in human primary vCTBs, and in the BeWo cell line. MATERIALS AND METHODS Full length KLF6 or a mutant lacking its N-terminal domain were expressed in BeWo cells or in primary vCTB cells isolated from human term placentas. Cell fusion, gene and protein expression, and cell proliferation were analyzed. Moreover, Raman spectroscopy and atomic force microscopy (AFM) were used to identify biochemical, topography, and elasticity cellular modifications. RESULTS The increase in KLF6, but not the expression of its deleted mutant, is sufficient to trigger cell fusion and to raise the expression of β-hCG, syncytin-1, the chaperone protein 78 regulated by glucose (GRP78), the ATP Binding Cassette Subfamily G Member 2 (ABCG2), and Galectin-1 (Gal-1), all molecules involved in vCTB differentiation. Raman and AFM analysis revealed that KLF6 reduces NADH level and increases cell Young's modulus. KLF6-induced differentiation correlates with p21 upregulation and decreased cell proliferation. Remarkable, p21 silencing reduces cell fusion triggered by KLF6 and the KLF6 mutant impairs syncytialization and decreases syncytin-1 and β-hCG expression. DISCUSSION KLF6 induces syncytialization through a mechanism that involves its regulatory transcriptional domain in a p21-dependent manner.
Collapse
Affiliation(s)
- Andrea L Miranda
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Ana C Racca
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Lucille T Kourdova
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Maria Laura Rojas
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Mariano Cruz Del Puerto
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Gonzalo Rodriguez-Lombardi
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Andrea V Salas
- Servicio de Ginecología y Obstetricia, Hospital Privado Universitario de Córdoba, X5000HUA, Córdoba, Argentina
| | - Claudia Travella
- Servicio de Ginecología y Obstetricia, Hospital Privado Universitario de Córdoba, X5000HUA, Córdoba, Argentina
| | - Elaine C O da Silva
- Optics and Nanoscopy Group, Physics Institute, Federal University of Alagoas, Maceio, Brazil
| | - Samuel T de Souza
- Optics and Nanoscopy Group, Physics Institute, Federal University of Alagoas, Maceio, Brazil
| | - Eduardo J S Fonseca
- Optics and Nanoscopy Group, Physics Institute, Federal University of Alagoas, Maceio, Brazil
| | - Aldilane L X Marques
- Cell Biology Laboratory, Institute of Health and Biological Sciences, Federal University of Alagoas, Maceio, Brazil
| | - Alexandre U Borbely
- Cell Biology Laboratory, Institute of Health and Biological Sciences, Federal University of Alagoas, Maceio, Brazil
| | - Susana Genti-Raimondi
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Graciela M Panzetta-Dutari
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| |
Collapse
|
12
|
Weng G, Gu M, Zhang Y, Zhao G, Gu Y. LINC01123 promotes cell proliferation and migration via regulating miR-1277-5p/KLF5 axis in ox-LDL-induced vascular smooth muscle cells. J Mol Histol 2021; 52:943-953. [PMID: 34403009 DOI: 10.1007/s10735-021-10010-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 08/09/2021] [Indexed: 11/25/2022]
Abstract
The pathophysiological mechanism of carotid atherosclerosis (CAS) involves endothelial cell dysfunction, vascular smooth muscle cells (VSMCs), and macrophage activation, which ultimately leads to fibrosis of the vessel wall. lncRNA works weightily in the formation of CAS, but the function and mechanism of lncRNA LINC01123 in stable plaque formation are still equivocal. We collected blood samples from 35 CAS patients as well as 33 healthy volunteers. VSMCs treated with oxidized low-density lipoprotein (ox-LDL) were utilized as the CAS cell models. We applied qRT-PCR for detecting LINC01123, miR-1277-5p and KLF5 mRNA expression, CCK-8 method and BrdU test for determining cell proliferation, Transwell test for measuring cell migration, as well as Western blot for assaying KLF5 protein expression. Dual-luciferase reporter experiment was adopted for assessing the interaction between LINC01123 and miR-1277-5p, as well as KLF5 and miR-1277-5p. LINC01123 and KLF5 expression were dramatically up-regulated, while miR-1277-5p expression was down-regulated in CAS patients and ox-LDL-induced CAS cell models. Overexpressed LINC01123 notedly promoted VSMCs migration and proliferation. LINC01123 knockdown repressed cell proliferation and migration. Also, LINC01123 targeted miR-1277-5p and down-regulated its expression, while miR-1277-5p could negatively regulate KLF5 expression. LINC01123 is highly expressed in CAS patients, and promotes cell proliferation and migration via regulating miR-1277-5p/KLF5 axis in ox-LDL-induced VSMCs. It might be involved in the fibrous plaque formation.
Collapse
Affiliation(s)
- Guohu Weng
- Department of Encephalopathy, Hainan Provincial Hospital of Chinese Medicine, 47# Heping North Road, Haikou, 570203, Hainan, People's Republic of China
| | - Minhua Gu
- Department of Cardiology, Hainan Provincial Hospital of Chinese Medicine, Haikou, 570203, Hainan, People's Republic of China
| | - Yifan Zhang
- Department of Encephalopathy, Hainan Provincial Hospital of Chinese Medicine, 47# Heping North Road, Haikou, 570203, Hainan, People's Republic of China
| | - Guangfeng Zhao
- Department of Encephalopathy, Hainan Provincial Hospital of Chinese Medicine, 47# Heping North Road, Haikou, 570203, Hainan, People's Republic of China
| | - Yong Gu
- Department of Encephalopathy, Hainan Provincial Hospital of Chinese Medicine, 47# Heping North Road, Haikou, 570203, Hainan, People's Republic of China.
| |
Collapse
|
13
|
Hu K, Zheng QK, Ma RJ, Ma C, Sun ZG, Zhang N. Krüppel-Like Factor 6 Splice Variant 1: An Oncogenic Transcription Factor Involved in the Progression of Multiple Malignant Tumors. Front Cell Dev Biol 2021; 9:661731. [PMID: 33816511 PMCID: PMC8017371 DOI: 10.3389/fcell.2021.661731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 02/23/2021] [Indexed: 01/03/2023] Open
Abstract
Krüppel-like factor 6 (KLF6) is one of the most studied members of the specificity protein/Krüppel-like factor (SP/KLF) transcription factor family. It has a typical zinc finger structure and plays a pivotal role in regulating the biological processes of cells. Recently, it has been considered to play a role in combatting cancer. Krüppel-like factor 6 splice variant 1 (KLF6-SV1), being one of the alternative KLF6 splicing isoforms, participates in tumor occurrence and development and has the potential to become a new target for molecular targeted therapy, although its action mechanism remains to be determined. The purpose of this article is to provide a comprehensive and systematic review of the important role of KLF6-SV1 in human malignant tumors to provide novel insights for oncotherapy.
Collapse
Affiliation(s)
- Kang Hu
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Qing-Kang Zheng
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Rui-Jie Ma
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chao Ma
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Zhi-Gang Sun
- Department of Thoracic Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nan Zhang
- Department of Oncology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
14
|
Chen Z, Xie H, Yuan J, Lan Y, Xie Z. Krüppel-like factor 6 promotes odontoblastic differentiation through regulating the expression of dentine sialophosphoprotein and dentine matrix protein 1 genes. Int Endod J 2021; 54:572-584. [PMID: 33200415 DOI: 10.1111/iej.13447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022]
Abstract
AIM To investigate the potential role of Krüppel-like factor 6 (KLF6) in the odontoblastic differentiation of immortalized dental papilla mesenchymal cells (iMDP-3) cells. METHODOLOGY Alizarin Red S (ARS) and Alkaline phosphatase (ALP) staining was used to examine the mineralization effect of iMDP-3 cells after odontoblastic induction. Real-time PCR and Western blotting were employed to analyse dentine sialophosphoprotein (DSPP), dentine matrix protein 1 (DMP1), RUNX family transcription factor 2 (RUNX2), ALP and KLF6 expression during this process. Co-expression of the KLF6 with DMP1, DSPP and RUNX2 was detected by double immunofluorescence staining to explore their local relationship in the cell. To further investigate KLF6 functions, Klf6 gain- and loss-of-function assays followed by ARS and ALP stainings, real-time PCR and Western blotting were performed using Klf6-overexpression plasmids and Klf6 siRNA to investigate whether changes in Klf6 expression affect the odontoblastic differentiation of iMDP-3 cells. Dual-luciferase reporter assays were used to elucidate the mechanistic regulation of Dspp and Dmp1 expression by Klf6. Means were compared using the unpaired t-test and Kruskal-Wallis one-way anova with P < 0.05 and P < 0.01 defined as statistical significance levels. RESULTS The expression levels of Klf6 (P < 0.01), Dspp (P < 0.05), Dmp1 (P < 0.01), Runx2 (P < 0.01) and Alp (P < 0.01) were significantly elevated during odontoblastic differentiation of iMDP-3 cells. KLF6 was co-localized with DSPP, DMP1 and RUNX2 in the cytoplasm and nucleus of iMDP-3 cells. Overexpression of Klf6 promoted the odontoblastic differentiation of iMDP-3, whereas the inhibition of Klf6 prevented this procession. Dual-luciferase assays revealed that Klf6 upregulates Dspp and Dmp1 transcription in iMDP-3 cells during odontoblastic differentiation. CONCLUSION Klf6 promoted odontoblastic differentiation by targeting the transcription promoter of Dmp1 and Dspp. This study may offer novel insights into strategies for treating injuries to dental pulp tissue.
Collapse
Affiliation(s)
- Z Chen
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - H Xie
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - J Yuan
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Y Lan
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Z Xie
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
15
|
Syafruddin SE, Mohtar MA, Wan Mohamad Nazarie WF, Low TY. Two Sides of the Same Coin: The Roles of KLF6 in Physiology and Pathophysiology. Biomolecules 2020; 10:biom10101378. [PMID: 32998281 PMCID: PMC7601070 DOI: 10.3390/biom10101378] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/26/2020] [Accepted: 09/26/2020] [Indexed: 12/12/2022] Open
Abstract
The Krüppel-like factors (KLFs) family of proteins control several key biological processes that include proliferation, differentiation, metabolism, apoptosis and inflammation. Dysregulation of KLF functions have been shown to disrupt cellular homeostasis and contribute to disease development. KLF6 is a relevant example; a range of functional and expression assays suggested that the dysregulation of KLF6 contributes to the onset of cancer, inflammation-associated diseases as well as cardiovascular diseases. KLF6 expression is either suppressed or elevated depending on the disease, and this is largely due to alternative splicing events producing KLF6 isoforms with specialised functions. Hence, the aim of this review is to discuss the known aspects of KLF6 biology that covers the gene and protein architecture, gene regulation, post-translational modifications and functions of KLF6 in health and diseases. We put special emphasis on the equivocal roles of its full-length and spliced variants. We also deliberate on the therapeutic strategies of KLF6 and its associated signalling pathways. Finally, we provide compelling basic and clinical questions to enhance the knowledge and research on elucidating the roles of KLF6 in physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Saiful E. Syafruddin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.A.M.); (T.Y.L.)
- Correspondence: ; Tel.: +60-3-9145-9040
| | - M. Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.A.M.); (T.Y.L.)
| | - Wan Fahmi Wan Mohamad Nazarie
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.A.M.); (T.Y.L.)
| |
Collapse
|
16
|
Yang M, Wang Y, Wang Q, Zhou Z, Yu Y, Wei S, Wang S, Qin Q. Characterization of Kruppel-like factor 6 in Epinephelus coioides: The role in viral infection and the transcriptional regulation on Peroxisome proliferator-activated receptor δ. FISH & SHELLFISH IMMUNOLOGY 2020; 99:9-18. [PMID: 32007559 DOI: 10.1016/j.fsi.2020.01.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
The Kruppel-like factor 6 (KLF6) is a member of Kruppel-like factor family, which belong to the Zinc finger family of transcription factors that mediates various cellular processes, such as proliferation, differentiation, development, and programmed cell death. Peroxisome proliferator-activated receptors (PPARs) are a family of transcription factors belonging to the nuclear receptor superfamily and they regulate numerous genes through ligand-dependent transcriptional activation and repression. In this study, we focus on the role of KLF6 gene in virus infection and the regulation of KLF6 on PPAR-δ in orange-spotted grouper (Epinephelus coioides). The ORF sequence of EcKLF6 was 846 bp, encoding a polypeptide of 282 amino acids with three conserved Zinc finger (type Cys2-His2) domain in the C-terminal region. Basing on the detection of the mRNA levels of viral genes, western blotting of MCP protein, and morphological CPEs, we found that the overexpression of EcKLF6 suppressed the replication of Singapore grouper iridovirus (SGIV), exerting its antiviral activity against fish virus. Moreover, promoter analysis was performed to investigate whether EcKLF6 was a regulator of EcPPAR-δ. The luciferase reporter assay and real time PCR results indicated a negative regulatory role of EcKLF6 on EcPPAR-δ transcription in grouper. Further experimental analysis shows that the potential EcKLF6 binding sites may locate in the EcPPAR-δ-4-M3 (+133 to +154) and EcPPAR-δ-4-M4 (+354 to +368) region of the EcPPAR-δ promoter. Electrophoretic mobile shift assays (EMSAs) verified that EcKLF6 interacted with the binding site of the EcPPAR-δ-4-M4 promoter region. In addition, we also found that KLF6 promotes inflammatory responses in GS cells. Considering that KLF6 and PPAR-δ play opposite roles in regulating inflammatory responses, we speculated the promoting effect of KLF6 on inflammatory response may be related to its negative regulation on EcPPAR-δ. In conclusion, the present study provides the first evidence of the negative regulation of EcPPAR-δ transcription by EcKLF6 and contributes to a better understanding of the transcriptional mechanisms of EcKLF6 in fish.
Collapse
Affiliation(s)
- Min Yang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yuxin Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qing Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhekai Zhou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yepin Yu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shina Wei
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shaowen Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
17
|
Kim GD, Ng HP, Patel N, Mahabeleshwar GH. Kruppel-like factor 6 and miR-223 signaling axis regulates macrophage-mediated inflammation. FASEB J 2019; 33:10902-10915. [PMID: 31262200 DOI: 10.1096/fj.201900867rr] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Macrophage-mediated inflammation is an explicitly robust biologic response that plays a critical role in maintaining tissue homeostasis by eliminating deleterious agents. These tissue macrophages tailor appropriate responses to external cues by altering inflammatory gene expression. Therefore, transcription factors and regulators that modulate inflammatory gene expression play an essential role in shaping the macrophage inflammatory response. Here, we identify that Kruppel-like factor (KLF)6 promotes inflammation by restraining microRNA-223 (miR-223) expression in macrophages. We uncovered that pro- and anti-inflammatory agents oppositely regulate KLF6 and miR-223 expression in macrophages. Using complementary gain- and loss-of-function studies, we observed that overexpression of KLF6 attenuates and deficiency of KLF6 elevates miR-223 expression in macrophages. Furthermore, heightened miR-223 expression in KLF6-deficient macrophages significantly attenuates inducible proinflammatory gene expression. Concordantly, myeloid-Klf6 deficiency significantly curbs diet-induced adipose tissue inflammation, obesity, glucose intolerance, and insulin resistance. At the molecular level, KLF6 directly represses miR-223 expression by occupying its promoter region. More importantly, genetic inhibition of miR-223-3P in KLF6-deficient macrophages completely reversed attenuated proinflammatory gene expression in macrophages. Collectively, our studies reveal that KLF6 promotes proinflammatory gene expression and functions by repressing miR-223 expression in macrophages.-Kim, G.-D., Ng, H. P., Patel, N., Mahabeleshwar, G. H. Kruppel-like factor 6 and miR-223 signaling axis regulates macrophage-mediated inflammation.
Collapse
Affiliation(s)
- Gun-Dong Kim
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Hang Pong Ng
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Nibedita Patel
- Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Ganapati H Mahabeleshwar
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
18
|
Copy Number Variations of KLF6 Modulate Gene Transcription and Growth Traits in Chinese Datong Yak (Bos Grunniens). Animals (Basel) 2018; 8:ani8090145. [PMID: 30134528 PMCID: PMC6162419 DOI: 10.3390/ani8090145] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/06/2018] [Accepted: 08/18/2018] [Indexed: 02/08/2023] Open
Abstract
Copy number variation (CNV) is a significant marker of the genetic and phenotypic diversity among individuals that accounts for complex quantitative traits of phenotype and diseases via modulating gene dosage and disrupting coding regions in the genome. Biochemically, Kruppel-like factor 6 (KLF6) genes plays a significant role in the regulation of cell differentiation and proliferation and muscle development. The aim of this study was to detect the distributions of KLF6 copy number variations (CNVs) in five breeds of domestic yak and to explore their effect on growth traits and gene expression. The data were analyzed by real-time quantitative PCR (qPCR). Our results elucidated that a decreased CNV in the KLF6 gene is more highly associated (p < 0.05) with various growth traits than increased or normal CNVs in six-month-old and five-year-old Datong yak. Nevertheless, negative correlations between the DNA copy number and KLF6 gene expression were observed in the skeletal muscle of adult Datong yak. These results suggest that CNVs of the KLF6 gene could be crucial genomic markers for growth phenotypes of Chinese Datong yak breeds and this finding constitutes the first evidence of the biological role of KLF6 CNVs in Chinese Datong yak breeds.
Collapse
|
19
|
Bialkowska AB, Yang VW, Mallipattu SK. Krüppel-like factors in mammalian stem cells and development. Development 2017; 144:737-754. [PMID: 28246209 DOI: 10.1242/dev.145441] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Krüppel-like factors (KLFs) are a family of zinc-finger transcription factors that are found in many species. Recent studies have shown that KLFs play a fundamental role in regulating diverse biological processes such as cell proliferation, differentiation, development and regeneration. Of note, several KLFs are also crucial for maintaining pluripotency and, hence, have been linked to reprogramming and regenerative medicine approaches. Here, we review the crucial functions of KLFs in mammalian embryogenesis, stem cell biology and regeneration, as revealed by studies of animal models. We also highlight how KLFs have been implicated in human diseases and outline potential avenues for future research.
Collapse
Affiliation(s)
- Agnieszka B Bialkowska
- Division of Gastroenterology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA
| | - Vincent W Yang
- Division of Gastroenterology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA.,Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA
| | - Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA
| |
Collapse
|
20
|
Zhan C, Yan L, Wang L, Jiang W, Zhang Y, Xi J, Jin Y, Chen L, Shi Y, Lin Z, Wang Q. Landscape of expression profiles in esophageal carcinoma by The Cancer Genome Atlas data. Dis Esophagus 2016; 29:920-928. [PMID: 26402921 DOI: 10.1111/dote.12416] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this study, we explored the gene and microRNA (miRNA) expressions profile of esophageal carcinoma. The expression data for messenger RNAs and miRNAs in normal and cancerous esophageal tissues were obtained from the Cancer Genome Atlas database and then the differentially expressed genes and miRNAs were identified. As a result, we identified 2962 genes and 45 miRNAs differentially expressed in esophageal carcinoma compared with normal esophageal tissues. Subsequently, the altered gene functions and signaling pathways were investigated using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, and these differentially expressed genes were significantly enriched in the cell cycle, cell migration, mitogen-activated protein kinase (MAPK) and toll-like receptor signaling pathway, and so on. Then the regulatory relationships between the differentially expressed miRNAs and genes were examined with Targetscan and Miranda, and the potential target sites of transcription factors (TFs) in the promoter regions of these miRNAs and genes were identified using the TRANSFAC database. Finally the TF-miRNA-gene network in esophageal cancer was established, summarizing the regulatory links among the TFs, differentially expressed miRNAs and differentially expressed genes. Factors such as core promoter-binding protein (CPBP), nuclear factor of activated T-cells 1 (NFAT-1), miR-30c-5p, were located in the central hub of this network, highlighting their vital roles in esophageal tumorigenesis. These findings may extend our understanding of the molecular mechanisms underlying esophageal carcinoma and promote new perspectives for prevention, diagnosis and treatment.
Collapse
Affiliation(s)
- C Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - L Yan
- Department of Radiation Oncology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - L Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - W Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Y Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - J Xi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Y Jin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - L Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Y Shi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Z Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Q Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Wang Y, Zhang XN, Xie WH, Zheng YX, Cao JP, Cao PR, Chen QJ, Li X, Sun CD. The Growth of SGC-7901 Tumor Xenografts Was Suppressed by Chinese Bayberry Anthocyanin Extract through Upregulating KLF6 Gene Expression. Nutrients 2016; 8:599. [PMID: 27690088 PMCID: PMC5083987 DOI: 10.3390/nu8100599] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/03/2016] [Accepted: 09/20/2016] [Indexed: 01/12/2023] Open
Abstract
To investigate the antitumor effect of anthocyanins extracted from Chinese bayberry fruit (Myrica rubra Sieb. et Zucc.), a nude mouse tumor xenograft model was established. Treatments with C3G (cyanidin-3-glucoside, an anthocyanin) significantly suppressed the growth of SGC-7901 tumor xenografts in a dose-dependent manner. Immunohistochemical staining showed a significant increase in p21 expression, indicating that the cell cycle of tumor xenografts was inhibited. qPCR screening showed that C3G treatment up-regulated the expression of the KLF6 gene, which is an important tumor suppressor gene inactivated in many human cancers. Western blot showed that C3G treatments markedly increased KLF6 and p21 protein levels, inhibited CDK4 and Cyclin D1 expression, but did not notably change the expression of p53. These results indicated that KLF6 up-regulates p21 in a p53-independent manner and significantly reduces tumor proliferation. This study provides important information for the possible mechanism of C3G-induced antitumor activity against gastric adenocarcinoma in vivo.
Collapse
Affiliation(s)
- Yue Wang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
| | - Xia-Nan Zhang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
| | - Wen-Hua Xie
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
| | - Yi-Xiong Zheng
- Department of Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.
| | - Jin-Ping Cao
- Taizhou Academy of Agricultural Sciences, Linhai 317000, China.
| | - Pei-Rang Cao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Qing-Jun Chen
- National Light Industry Food Quality Inspection Hangzhou Station, Hangzhou 310009, China.
| | - Xian Li
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
| | - Chong-de Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
| |
Collapse
|
22
|
Racca AC, Ridano ME, Bandeira CL, Bevilacqua E, Avvad Portari E, Genti-Raimondi S, Graham CH, Panzetta-Dutari GM. Low oxygen tension induces Krüppel-Like Factor 6 expression in trophoblast cells. Placenta 2016; 45:50-7. [PMID: 27577710 DOI: 10.1016/j.placenta.2016.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/06/2016] [Accepted: 07/25/2016] [Indexed: 12/11/2022]
Abstract
The transcription factor Krüppel-Like Factor 6 (KLF6) has important roles in cell differentiation, angiogenesis, apoptosis, and proliferation. Furthermore, there is evidence that KLF6 is required for proper placental development. While oxygen is a critical mediator of trophoblast differentiation and function, the involvement of oxygen in the regulation of KLF6 expression remains unexplored. In the present study we examined the expression of KLF6 in placental tissue from uncomplicated and preeclamptic pregnancies, the latter often characterized by an inadequately perfused placenta. We also determined the effect of hypoxia and the involvement of Hypoxia-Inducible Factor 1α (HIF-1α) on the expression of KLF6 in cultured trophoblast cells and placental tissues. Results revealed that villous, interstitial and endovascular extravillous cytotrophoblasts from placentas from normal and preeclamptic pregnancies express KLF6. In addition, KLF6 immunoreactivity was higher in the placental bed of preeclamptic pregnancies than in those of uncomplicated pregnancies. We demonstrated that hypoxia induced an early and transient increase in KLF6 protein levels in HTR8/SVneo extravillous cytotrophoblast cells and in placental explants. Reoxygenation returned KLF6 protein to basal levels. Moreover, hypoxia-induced up-regulation of KLF6 expression was dependent on HIF-1α as revealed by siRNA knockdown in HTR8/SVneo cells. These results indicate that KLF6 may mediate some of the effects of hypoxia in placental development. The regulation of KLF6 protein levels by oxygen has significant implications for understanding its putative role in diseases affected by tissue hypoxia.
Collapse
Affiliation(s)
- A C Racca
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M E Ridano
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - C L Bandeira
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - E Bevilacqua
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - E Avvad Portari
- Department of Pathology at Medical Sciences School, State University of Rio de Janeiro, Brazil
| | - S Genti-Raimondi
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - C H Graham
- Departments of Biomedical and Molecular Sciences and Urology, Queen's University, Kingston, Ontario, Canada
| | - G M Panzetta-Dutari
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
23
|
Kim GD, Das R, Goduni L, McClellan S, Hazlett LD, Mahabeleshwar GH. Kruppel-like Factor 6 Promotes Macrophage-mediated Inflammation by Suppressing B Cell Leukemia/Lymphoma 6 Expression. J Biol Chem 2016; 291:21271-21282. [PMID: 27539853 DOI: 10.1074/jbc.m116.738617] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Indexed: 12/24/2022] Open
Abstract
Macrophages are the predominant innate immune cells recruited to tissues following injury or infection. These early-responding, pro-inflammatory macrophages play an essential role in the amplification of inflammation. However, macrophage pro-inflammatory gene expression should be tightly regulated to avert host tissue damage. In this study, we identify the Kruppel-like transcription factor 6 (KLF6)-B cell leukemia/lymphoma 6 (BCL6) signaling axis as a novel regulator of macrophage inflammatory gene expression and function. Utilizing complementary gain- and loss-of-function studies, we observed that KLF6 is essential for macrophage motility under ex vivo and in vivo conditions. Concordant with these observations, myeloid-specific deficiency of KLF6 significantly attenuates macrophage pro-inflammatory gene expression, recruitment, and progression of inflammation. At the molecular level, KLF6 suppresses BCL6 mRNA and protein expression by elevating PR domain-containing 1 with ZNF domain (PRDM1) levels in macrophages. Interestingly, pharmacological or genetic inhibition of BCL6 in KLF6-deficient macrophages completely abrogated the attenuation of pro-inflammatory cytokine/chemokine expression and cellular motility. Collectively, our observations reveal that KLF6 repress BCL6 to enhance macrophage inflammatory gene expression and function.
Collapse
Affiliation(s)
| | - Riku Das
- the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, and
| | | | - Sharon McClellan
- the Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Linda D Hazlett
- the Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Ganapati H Mahabeleshwar
- From the Departments of Medicine, Pathology, Case Western Reserve University, Cleveland, Ohio 44106,
| |
Collapse
|
24
|
Tremblay MA, Mendoza-Villarroel RE, Robert NM, Bergeron F, Tremblay JJ. KLF6 cooperates with NUR77 and SF1 to activate the human INSL3 promoter in mouse MA-10 leydig cells. J Mol Endocrinol 2016; 56:163-73. [PMID: 26874000 DOI: 10.1530/jme-15-0139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/10/2016] [Indexed: 01/22/2023]
Abstract
Insulin-like 3 (INSL3), a Leydig cell-specific hormone, is essential for testis descent during foetal life and bone metabolism in adults. Despite its essential roles in male reproductive and bone health, very little is known regarding its transcriptional regulation in Leydig cells. To date, few transcription factors have been shown to activate INSL3 promoter activity: the nuclear receptors AR, NUR77, COUP-TFII and SF1. To identify additional regulators, we have isolated and performed a detailed analysis of a 1.1 kb human INSL3 promoter fragment. Through 5' progressive deletions and site-directed mutagenesis, we have mapped a 10 bp element responsible for about 80% of INSL3 promoter activity in Leydig cells. This element is identical to the CPE element of the placental-specific glycoprotein-5 (PSG5) promoter that is recognized by the developmental regulator Krüppel-like factor 6 (KLF6). Using PCR and western blotting, we found that KLF6 is expressed in several Leydig and Sertoli cell lines. Furthermore, immunohistochemistry on adult mouse testis revealed the presence of KLF6 in the nuclei of both Leydig and Sertoli cells. KLF6 binds to the 10 bp KLF element at -108 bp and activates the -1.1 kb human, but not the mouse, INSL3 promoter. KLF6-mediated activation of the human INSL3 promoter required an intact KLF element as well as Leydig/Sertoli-enriched factors because KLF6 did not stimulate the human INSL3 promoter activity in CV-1 fibroblast cells. Consistent with this, we found that KLF6 transcriptionally cooperates with NUR77 and SF1. Collectively, our results identify KLF6 as a regulator of human INSL3 transcription.
Collapse
Affiliation(s)
- Maxime A Tremblay
- ReproductionMother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Québec City, Québec, Canada
| | - Raifish E Mendoza-Villarroel
- ReproductionMother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Québec City, Québec, Canada
| | - Nicholas M Robert
- ReproductionMother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Québec City, Québec, Canada
| | - Francis Bergeron
- ReproductionMother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Québec City, Québec, Canada
| | - Jacques J Tremblay
- ReproductionMother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Québec City, Québec, Canada Centre for Research in ReproductionDevelopment and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
25
|
Genome-wide analysis of the zebrafish Klf family identifies two genes important for erythroid maturation. Dev Biol 2015; 403:115-27. [PMID: 26015096 DOI: 10.1016/j.ydbio.2015.05.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 05/17/2015] [Accepted: 05/18/2015] [Indexed: 01/01/2023]
Abstract
Krüppel-like transcription factors (Klfs), each of which contains a CACCC-box binding domain, have been investigated in a variety of developmental processes, such as angiogenesis, neurogenesis and somatic-cell reprogramming. However, the function and molecular mechanism by which the Klf family acts during developmental hematopoiesis remain elusive. Here, we report identification of 24 Klf family genes in zebrafish using bioinformatics. Gene expression profiling shows that 6 of these genes are expressed in blood and/or vascular endothelial cells during embryogenesis. Loss of function of 2 factors (klf3 or klf6a) leads to a decreased number of mature erythrocytes. Molecular studies indicate that both Klf3 and Klf6a are essential for erythroid cell differentiation and maturation but that these two proteins function in distinct manners. We find that Klf3 inhibits the expression of ferric-chelate reductase 1b (frrs1b), thereby promoting the maturation of erythroid cells, whereas Klf6a controls the erythroid cell cycle by negatively regulating cdkn1a expression to determine the rate of red blood cell proliferation. Taken together, our study provides a global view of the Klf family members that contribute to hematopoiesis in zebrafish and sheds new light on the function and molecular mechanism by which Klf3 and Klf6a act during erythropoiesis in vertebrates.
Collapse
|
26
|
Human cancer: Is it linked to dysfunctional lipid metabolism? Biochim Biophys Acta Gen Subj 2015; 1850:352-64. [DOI: 10.1016/j.bbagen.2014.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/27/2014] [Accepted: 11/03/2014] [Indexed: 11/23/2022]
|
27
|
Trucco LD, Andreoli V, Núñez NG, Maccioni M, Bocco JL. Krüppel-like factor 6 interferes with cellular transformation induced by the H-ras oncogene. FASEB J 2014; 28:5262-76. [PMID: 25212220 DOI: 10.1096/fj.14-251884] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
KLF6 is a member of the Krüppel-like factor family of transcription factors, with diverse roles in the regulation of cell physiology, including proliferation, signal transduction, and apoptosis. Mutations or down-regulation of KLF6 have been described in several human cancers. In this work, we found that KLF6-knockdown resulted in the formation of transformed foci and allowed the spontaneous conversion of NIH3T3 cells to a tumorigenic state. We further assessed the role of KLF6 in the context of oncogenic Ras. We showed that KLF6 was up-regulated by H-Ras(G12V) expression in a Jun N-terminal kinase (JNK)-dependent manner, correlated with enhanced klf6 promoter activity. We found that ectopic KLF6 expression induced a G1-phase cell cycle arrest, thereby decreasing the cell proliferation rate. In addition, constitutive KLF6 expression impaired H-Ras(G12V)-mediated loss of density-dependent growth inhibition and anchorage-independent growth. Moreover, growth of H-Ras(G12V)-driven tumors was reduced in mice challenged with cells stably expressing KLF6. KLF6 expression correlated with the up-regulation of p21, whereas neither p53 induction nor apoptotic cell death was detected. Further, p21 knockdown impaired KLF6-induced cell cycle arrest. These findings provide novel evidence highlighting KLF6 function in response to malignant transformation, suggesting the relevance of KLF6 in controlling cell proliferation and hindering tumorigenesis.
Collapse
Affiliation(s)
- Lucas Daniel Trucco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Verónica Andreoli
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nicolás Gonzalo Núñez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana Maccioni
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - José Luis Bocco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
28
|
Ozdemir F, Koksal M, Ozmen V, Aydin I, Buyru N. Mutations and Krüppel-like factor 6 (KLF6) expression levels in breast cancer. Tumour Biol 2014; 35:5219-25. [PMID: 24519062 DOI: 10.1007/s13277-014-1678-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/22/2014] [Indexed: 11/26/2022] Open
Abstract
The transcription factor KLF6 gene has been identified as a tumor suppressor because of its inactivation in several types of cancers by different mechanisms. However, there are no data in the literature investigating the KLF6 mutation rate and expression levels in breast cancer. Therefore, the present study was conducted in order to investigate whether genetic alterations of KLF6 in association with the KLF6 mRNA expression levels may play a role in breast carcinogenesis. For this purpose, we analyzed alterations of the KLF6 gene by direct sequencing and the mRNA levels by reverse transcription-PCR (RT-PCR). In addition to four different non-coding alterations, one missense and two silent alterations were identified in the coding sequence. Reduced KLF6 expression was observed in 41 (83.67 %) of the 49 breast cancer tumors. These findings suggest that the mutation profile of the KLF6 gene in breast tumors is similar to other cancer types. However, these mutations do not exert any effect on the gene expression rate. Downregulation of KLF6 during the progression of breast cancer is independent of the mutations and occurs by a different mechanism.
Collapse
Affiliation(s)
- Filiz Ozdemir
- Cerrahpasa Medical Faculty, Department of Medical Biology, Istanbul University, Kocamustafapasa, Istanbul, 34098, Turkey
| | | | | | | | | |
Collapse
|
29
|
Cai D, Zhao J, Sun Q. Krüppel-like factor 6 in the progression and prognosis of malignant melanoma. J Int Med Res 2013; 42:184-90. [PMID: 24366496 DOI: 10.1177/0300060513499092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objectives: The aims of this study were to investigate the incidence of Krüppel-like factor 6 (KLF6) protein staining in patients with cutaneous malignant melanoma and examine its potential relevance to clinicopathological characteristics and tumour cell proliferation. Methods: Clinicopathological data from patients with cutaneous malignant melanoma were analysed retrospectively. Presence of KLF6 and the antigen Ki-67 in malignant melanoma and healthy tissue samples from each patient was detected by immunohistochemistry. The proliferation index was calculated on the basis of Ki-67 expression. The relationship between KLF6 and clinicopathological characteristics was also analysed. Results: KLF6 was detected more frequently in normal healthy skin tissue compared with cutaneous malignant melanoma lesions ( n = 40). There was a negative correlation between the presence of KLF6 and the proliferation index. The presence of KLF6 was also significantly correlated with tumour diameter, lymph node metastasis, tumour–node–metastasis stage and 3-year survival rate. Conclusions: KLF6 protein is downregulated in human cutaneous malignant melanoma lesions compared with healthy skin tissue. KLF6 may be involved in tumour progression and may be a tumour suppressor and prognostic marker for cutaneous malignant melanoma.
Collapse
Affiliation(s)
- Daxing Cai
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Jing Zhao
- Department of Internal Medicine, Jinan Second People’s Hospital, Jinan, Shandong, China
| | - Qing Sun
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
30
|
Kumari S, Ware D. Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots. PLoS One 2013; 8:e79011. [PMID: 24205361 PMCID: PMC3812177 DOI: 10.1371/journal.pone.0079011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 09/18/2013] [Indexed: 01/22/2023] Open
Abstract
Transcription initiation, essential to gene expression regulation, involves recruitment of basal transcription factors to the core promoter elements (CPEs). The distribution of currently known CPEs across plant genomes is largely unknown. This is the first large scale genome-wide report on the computational prediction of CPEs across eight plant genomes to help better understand the transcription initiation complex assembly. The distribution of thirteen known CPEs across four monocots (Brachypodium distachyon, Oryza sativa ssp. japonica, Sorghum bicolor, Zea mays) and four dicots (Arabidopsis thaliana, Populus trichocarpa, Vitis vinifera, Glycine max) reveals the structural organization of the core promoter in relation to the TATA-box as well as with respect to other CPEs. The distribution of known CPE motifs with respect to transcription start site (TSS) exhibited positional conservation within monocots and dicots with slight differences across all eight genomes. Further, a more refined subset of annotated genes based on orthologs of the model monocot (O. sativa ssp. japonica) and dicot (A. thaliana) genomes supported the positional distribution of these thirteen known CPEs. DNA free energy profiles provided evidence that the structural properties of promoter regions are distinctly different from that of the non-regulatory genome sequence. It also showed that monocot core promoters have lower DNA free energy than dicot core promoters. The comparison of monocot and dicot promoter sequences highlights both the similarities and differences in the core promoter architecture irrespective of the species-specific nucleotide bias. This study will be useful for future work related to genome annotation projects and can inspire research efforts aimed to better understand regulatory mechanisms of transcription.
Collapse
Affiliation(s)
- Sunita Kumari
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America,
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America,
- United States Department of Agriculture-Agriculture Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, United States of America
| |
Collapse
|
31
|
Dionyssiou MG, Salma J, Bevzyuk M, Wales S, Zakharyan L, McDermott JC. Krüppel-like factor 6 (KLF6) promotes cell proliferation in skeletal myoblasts in response to TGFβ/Smad3 signaling. Skelet Muscle 2013; 3:7. [PMID: 23547561 PMCID: PMC3669038 DOI: 10.1186/2044-5040-3-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/15/2013] [Indexed: 11/21/2022] Open
Abstract
Background Krüppel-like factor 6 (KLF6) has been recently identified as a MEF2D target gene involved in neuronal cell survival. In addition, KLF6 and TGFβ have been shown to regulate each other’s expression in non-myogenic cell types. Since MEF2D and TGFβ also fulfill crucial roles in skeletal myogenesis, we wanted to identify whether KLF6 functions in a myogenic context. Methods KLF6 protein expression levels and promoter activity were analyzed using standard cellular and molecular techniques in cell culture. Results We found that KLF6 and MEF2D are co-localized in the nuclei of mononucleated but not multinucleated myogenic cells and, that the MEF2 cis element is a key component of the KLF6 promoter region. In addition, TGFβ potently enhanced KLF6 protein levels and this effect was repressed by pharmacological inhibition of Smad3. Interestingly, pharmacological inhibition of MEK/ERK (1/2) signaling resulted in re-activation of the differentiation program in myoblasts treated with TGFβ, which is ordinarily repressed by TGFβ treatment. Conversely, MEK/ERK (1/2) inhibition had no effect on TGFβ-induced KLF6 expression whereas Smad3 inhibition negated this effect, together supporting the existence of two separable arms of TGFβ signaling in myogenic cells. Loss of function analysis using siRNA-mediated KLF6 depletion resulted in enhanced myogenic differentiation whereas TGFβ stimulation of myoblast proliferation was reduced in KLF6 depleted cells. Conclusions Collectively these data implicate KLF6 in myoblast proliferation and survival in response to TGFβ with consequences for our understanding of muscle development and a variety of muscle pathologies.
Collapse
Affiliation(s)
- Mathew G Dionyssiou
- Department of Biology, York University; York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada.
| | | | | | | | | | | |
Collapse
|
32
|
Wu Z, Wang S. Role of kruppel-like transcription factors in adipogenesis. Dev Biol 2012; 373:235-43. [PMID: 23142072 DOI: 10.1016/j.ydbio.2012.10.031] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 10/31/2012] [Accepted: 10/31/2012] [Indexed: 01/27/2023]
Abstract
The zinc-finger transcription factors of the kruppel-like factor family (KLF) are critical in many physiological and pathological processes including cell proliferation, differentiation, inflammation, and apoptosis. Recently, there is increasing evidence that suggests these KLFs have an important role in fat biology. This review summarizes the role of KLFs in lipid metabolism, especially in adipogenesis, and reveals the relationship networks among members of KLF family in differentiation.
Collapse
Affiliation(s)
- Zeni Wu
- School of Public Health, Wuhan University, Wuhan, China
| | | |
Collapse
|
33
|
Ren YR, Chaerkady R, Hu S, Wan J, Qian J, Zhu H, Pandey A, Kern SE. Unbiased discovery of interactions at a control locus driving expression of the cancer-specific therapeutic and diagnostic target, mesothelin. J Proteome Res 2012; 11:5301-10. [PMID: 23025254 DOI: 10.1021/pr300797v] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although significant effort is expended on identifying transcripts/proteins that are up-regulated in cancer, there are few reports on systematic elucidation of transcriptional mechanisms underlying such druggable cancer-specific targets. The mesothelin (MSLN) gene offers a promising subject, being expressed in a restricted pattern normally, yet highly overexpressed in almost one-third of human malignancies and a target of cancer immunotherapeutic trials. CanScript, a cis promoter element, appears to control MSLN cancer-specific expression; its related genomic sequences may up-regulate other cancer markers. CanScript is a 20-nt bipartite element consisting of an SP1-like motif and a consensus MCAT sequence. The latter recruits TEAD (TEA domain) family members, which are universally expressed. Exploration of the active CanScript element, especially the proteins binding to the SP1-like motif, thus could reveal cancer-specific features having diagnostic or therapeutic interest. The efficient identification of sequence-specific DNA-binding proteins at a given locus, however, has lagged in biomarker explorations. We used two orthogonal proteomics approaches--unbiased SILAC (stable isotope labeling by amino acids in cell culture)/DNA affinity-capture/mass spectrometry survey (SD-MS) and a large transcription factor protein microarray (TFM)--and functional validation to explore systematically the CanScript interactome. SD-MS produced nine candidates, and TFM, 18. The screens agreed in confirming binding by TEAD proteins and by newly identified NAB1 and NFATc. Among other identified candidates, we found functional roles for ZNF24, NAB1 and RFX1 in MSLN expression by cancer cells. Combined interactome screens yield an efficient, reproducible, sensitive, and unbiased approach to identify sequence-specific DNA-binding proteins and other participants in disease-specific DNA elements.
Collapse
Affiliation(s)
- Yunzhao R Ren
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Chlorpyrifos modifies the expression of genes involved in human placental function. Reprod Toxicol 2012; 33:331-8. [DOI: 10.1016/j.reprotox.2012.01.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 12/20/2011] [Accepted: 01/12/2012] [Indexed: 12/31/2022]
|
35
|
Bechmann LP, Gastaldelli A, Vetter D, Patman GL, Pascoe L, Hannivoort RA, Lee UE, Fiel I, Muñoz U, Ciociaro D, Lee YM, Buzzigoli E, Miele L, Hui KY, Bugianesi E, Burt AD, Day CP, Mari A, Agius L, Walker M, Friedman SL, Reeves HL. Glucokinase links Krüppel-like factor 6 to the regulation of hepatic insulin sensitivity in nonalcoholic fatty liver disease. Hepatology 2012; 55:1083-93. [PMID: 22095588 PMCID: PMC3295906 DOI: 10.1002/hep.24793] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 10/27/2011] [Indexed: 12/23/2022]
Abstract
UNLABELLED The polymorphism, KLF6-IVS1-27A, in the Krüppel-like factor 6 (KLF6) transcription factor gene enhances its splicing into antagonistic isoforms and is associated with delayed histological progression of nonalcoholic fatty liver disease (NAFLD). To explore a potential role for KLF6 in the development of insulin resistance, central to NAFLD pathogenesis, we genotyped KLF6-IVS1-27 in healthy subjects and assayed fasting plasma glucose (FPG) and insulin sensitivities. Furthermore, we quantified messenger RNA (mRNA) expression of KLF6 and glucokinase (GCK), as an important mediator of insulin sensitivity, in human livers and in liver tissues derived from a murine Klf6 knockdown model (DeltaKlf6). Klf6 overexpression studies in a mouse hepatocyte line were utilized to mechanistically link KLF6 with Gck promoter activity. KLF6-IVS1-27Gwt (i.e., less KLF6 splicing) was associated with stepwise increases in FPG and insulin and reduced hepatic insulin sensitivity. KLF6 binds to the liver-specific Gck promoter and activates a GCK promoter-reporter, identifying GCK as a KLF6 direct transcriptional target. Accordingly, in DeltaKlf6 hepatocytes Gck expression was reduced and stable transfection of Klf6 led to up-regulation of Gck. GCK and KLF6 mRNAs correlate directly in human NAFLD tissues and immunohistochemistry studies confirm falling levels of both KLF6 and GCK in fat-laden hepatocytes. In contrast to full-length KLF6, splice variant KLF6-SV1 increases in NAFLD hepatocytes and inversely correlates with glucokinase regulatory protein, which negatively regulates GCK activity. CONCLUSION KLF6 regulation of GCK contributes to the development of hepatic insulin resistance. The KLF6-IVS1-27A polymorphism, which generates more KLF6-SV1, combats this, lowering hepatic insulin resistance and blood glucose.
Collapse
Affiliation(s)
- Lars P Bechmann
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY,Department of Gastroenterology and Hepatology; University Hospital Essen, Germany
| | - Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy,RISC Consortium, Pisa, Italy
| | - Diana Vetter
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY
| | - Gillian L Patman
- Northern Institute for Cancer Research, Newcastle University, UK
| | - Laura Pascoe
- RISC Consortium, Pisa, Italy,Institute of Cellular Medicine, Newcastle University, UK
| | - Rebekka A Hannivoort
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY,Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ursula E Lee
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY
| | - Isabel Fiel
- Lillian and Henry M. Stratton-Hans Popper Department of Pathology; Mount Sinai School of Medicine; New York, NY
| | - Ursula Muñoz
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY
| | - Demetrio Ciociaro
- Institute of Clinical Physiology, National Research Council, Pisa, Italy,RISC Consortium, Pisa, Italy
| | - Young-Min Lee
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY
| | - Emma Buzzigoli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy,RISC Consortium, Pisa, Italy
| | - Luca Miele
- Northern Institute for Cancer Research, Newcastle University, UK,Department of Internal Medicine, Policlinico Gemelli Hospital and Catholic University of the Sacred Heart, Rome, Italy
| | - Kei Y Hui
- Northern Institute for Cancer Research, Newcastle University, UK
| | | | | | | | - Andrea Mari
- RISC Consortium, Pisa, Italy,Institute of Biomedical Engineering, National Research Council, Padua, Italy
| | - Loranne Agius
- Institute of Cellular Medicine, Newcastle University, UK
| | - Mark Walker
- RISC Consortium, Pisa, Italy,Institute of Cellular Medicine, Newcastle University, UK
| | - Scott L Friedman
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY
| | - Helen L Reeves
- Northern Institute for Cancer Research, Newcastle University, UK,The Hepatopancreatobiliary Group, Freeman Hospital, Newcastle-upon-Tyne, UK
| |
Collapse
|
36
|
Krüppel-like factor 6 expression changes during trophoblast syncytialization and transactivates ßhCG and PSG placental genes. PLoS One 2011; 6:e22438. [PMID: 21799854 PMCID: PMC3142166 DOI: 10.1371/journal.pone.0022438] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 06/27/2011] [Indexed: 11/19/2022] Open
Abstract
Background Krüppel-like factor-6 (KLF6) is a widely expressed member of the Sp1/KLF family of transcriptional regulators involved in differentiation, cell cycle control and proliferation in several cell systems. Even though the highest expression level of KLF6 has been detected in human and mice placenta, its function in trophoblast physiology is still unknown. Methodology/Principal Findings Herein, we explored KLF6 expression and sub-cellular distribution in human trophoblast cells differentiating into the syncytial pathway, and its role in the regulation of genes associated with placental development and pregnancy maintenance. Confocal immunofluorescence microscopy demonstrated that KLF6 is expressed throughout human cytotrophoblast differentiation showing no evident modifications in its nuclear and cytoplasmic localization pattern. KLF6 transcript and protein peaked early during the syncytialization process as determined by qRT-PCR and western blot assays. Overexpression of KLF6 in trophoblast-derived JEG-3 cells showed a preferential nuclear signal correlating with enhanced expression of human β-chorionic gonadotropin (βhCG) and pregnancy-specific glycoprotein (PSG) genes. Moreover, KLF6 transactivated βhCG5, PSG5 and PSG3 gene promoters. Deletion of KLF6 Zn-finger DNA binding domain or mutation of the consensus KLF6 binding site abolished transactivation of the PSG5 promoter. Conclusions/Significance Results are consistent with KLF6 playing a role as transcriptional regulator of relevant genes for placental differentiation and physiology such as βhCG and PSG, in agreement with an early and transient increase of KLF6 expression during trophoblast syncytialization.
Collapse
|
37
|
Andreoli V, Gehrau RC, Bocco JL. Biology of Krüppel-like factor 6 transcriptional regulator in cell life and death. IUBMB Life 2011; 62:896-905. [PMID: 21154818 DOI: 10.1002/iub.396] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An essential role for the Krüppel-like transcription factor family has been determined in the regulation of remarkable processes including cell proliferation, differentiation, signal transduction, oncogenesis, and cell death. A member of this group, Krüppel-like factor 6 (KLF6), identified on the basis of its ability to regulate a group of genes belonging to the carcinoembryonic antigen gene family, has been involved in human carcinogenesis. Early studies proposed a tumor suppressor function for KLF6 because of its ability to reduce cell proliferation through several biochemical mechanisms including regulation of cell cycle components, oncogene products, and apoptosis. Mutations within the klf6 gene, decreased expression and/or loss-of-heterozygosity were associated with the development of different human malignancies, and, hence, further supporting the tumor suppressor function of KLF6. This view has been challenged by other studies in distinct types of human cancers describing infrequent genetic alterations of klf6 gene or even enhanced expression in some tumors. The scenario about KLF6 function became still more complex as the description of oncogenic KLF6 splice variant 1 (SV1) with dominant negative activity against the wild type KLF6 (wtKLF6) protein. Additionally, increased evidence is suggesting that KLF6 is a bonafide target of several signaling cascades, which ultimate regulatory effect on this protein could drive decisions of cell life and death, facing the dilemma about how wtKLF6 could be involved in both processes. These apparently conflicting situations, emerged by apparently opposite effects mediated by wtKLF6, may be related, at least in part, to the biological cross-talk with the c-Jun oncoprotein. Depending on the stimulus received by the cell, wtKLF6 interaction with c-Jun determines different cell outcomes such as proliferation control or apoptosis. Thus, KLF6 responsiveness represents a kind of cell warning signal on receiving different stimuli, including oncogenic activation and microbial infections, orchestrating the implementation of proliferation and apoptotic programs.
Collapse
Affiliation(s)
- Verónica Andreoli
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | |
Collapse
|
38
|
Singhal G, Akhter MZ, Stern DF, Gupta SD, Ahuja A, Sharma U, Jagannathan NR, Rajeswari MR. DNA triplex-mediated inhibition of MET leads to cell death and tumor regression in hepatoma. Cancer Gene Ther 2011; 18:520-30. [PMID: 21660063 DOI: 10.1038/cgt.2011.21] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mesenchymal epithelial transition factor (MET) is one of the critical cell signaling molecules whose aberrant expression is reported in several human cancers. The aim of the study is to investigate the antigene and antiproliferative effect of short triplex forming oligonucleotides, TFO-1 (part of the positive regulatory element) and TFO-2 (away from the transcription start site) on MET expression. HepG2 cells transfected only with TFO-1 (but not with TFO-2 and non-specific TFO) significantly decreased MET levels, which is accompanied by decrease in antiapoptotic proteins and increase in pro-apoptotic proteins. Phosphoproteome-array analysis of 46 intracellular kinases revealed hypophosphorylation of about 15 kinases including ERK, AKT, Src and MEK, suggesting the growth inhibitory effect of TFO-1. Further, the efficacy of TFO-1 was tested on diethylnitrosamine-induced liver tumors in wistar rats. T2-weighted magnetic resonance imaging showed decrease in liver tumor volume up to 90% after treatment with TFO-1. Decreased MET expression and elevated apoptotic activity further indicate that TFO-1 targeted to c-met leads to cell death and tumor regression in hepatoma. Formation of stable DNA triplex between TFO-1 and targeted gene sequence was confirmed by circular dichroic spectroscopy and gel retardation assay. Therefore, it can be concluded that DNA triplex-based therapeutic approaches hold promise in the treatment of malignancies associated with MET overexpression.
Collapse
Affiliation(s)
- G Singhal
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Upregulation of Krüppel-like factor 6 in the mouse hippocampus after pilocarpine-induced status epilepticus. Neuroscience 2011; 186:170-8. [PMID: 21362463 DOI: 10.1016/j.neuroscience.2011.02.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/21/2011] [Accepted: 02/18/2011] [Indexed: 11/22/2022]
Abstract
Krüppel-like factor 6 (KLF6) is a transcriptional regulator involved in a broad range of cellular processes. To date, however, the expression of KLF6 in brains with pathophysiological conditions, such as epilepsy, has not been reported. Therefore, the present study investigated the temporal pattern of KLF6 expression in the mouse hippocampus and identified cell types expressing KLF6 after pilocarpine-induced status epilepticus (SE). Seizures were induced by administrating pilocarpine hydrochloride (280 mg/kg, i.p.) 30 min after an injection of atropine methyl nitrate (3 mg/kg, i.p.). Pilocarpine- and saline-injected animals were sacrificed 1, 3, 7, 14, or 28 days after the onset of SE. Immunohistochemistry showed that the proportion of KLF6-positive cells increased in the hippocampus 1 day after SE onset, peaked at 3 days after SE, and then gradually decreased until 28 days after SE, consistent with the results from our immunoblot analysis. Cells expressing increased levels of KLF6 following pilocarpine-induced SE also expressed GFAP and Ox-42, markers for astrocytes and microglia, respectively. Quantitative analysis revealed that astrocytes were the major type of KLF6-expressing glial cells. These cells also expressed heat shock protein 47 (HSP47), a collagen-specific molecular chaperone. This is the first report showing that KLF6 is inducible in the hippocampus and may be associated with glial responses, especially HSP47-related tissue remodeling after pilocarpine-induced SE.
Collapse
|
40
|
Selective binding of small molecules to DNA: Application and perspectives. Colloids Surf B Biointerfaces 2010; 79:1-4. [DOI: 10.1016/j.colsurfb.2010.03.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 03/31/2010] [Indexed: 11/22/2022]
|
41
|
DiFeo A, Narla G, Martignetti JA. Emerging roles of Kruppel-like factor 6 and Kruppel-like factor 6 splice variant 1 in ovarian cancer progression and treatment. ACTA ACUST UNITED AC 2010; 76:557-66. [PMID: 20014424 DOI: 10.1002/msj.20150] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Epithelial ovarian cancer is one of the most lethal gynecologic cancers and the fifth most frequent cause of female cancer deaths in the United States. Despite dramatic treatment successes in other cancers through the use of molecular agents targeted against genetically defined events driving cancer development and progression, very few insights into epithelial ovarian cancer have been translated from the laboratory to the clinic. If advances are to be made in the early diagnosis, prevention, and treatment of this disease, it will be critical to characterize the common and private (personalized) genetic defects underlying the development and spread of epithelial ovarian cancer. The tumor suppressor Kruppel-like factor 6 and its alternatively spliced, oncogenic isoform, Kruppel-like factor 6 splice variant 1, are members of the Kruppel-like zinc finger transcription factor family of proteins, which have diverse roles in cellular differentiation, development, proliferation, growth-related signal transduction, and apoptosis. Inactivation of Kruppel-like factor 6 and overexpression of Kruppel-like factor 6 splice variant 1 have been associated with the progression of a number of human cancers and even with patient survival. This article summarizes our recent findings demonstrating that a majority of epithelial ovarian cancer tumors have Kruppel-like factor 6 allelic loss and decreased expression coupled with increased expression of Kruppel-like factor 6 splice variant 1. The targeted reduction of Kruppel-like factor 6 in ovarian cancer cell lines results in marked increases in cell proliferation, invasion, tumor growth, angiogenesis, and intraperitoneal dissemination in vivo. In contrast, the inhibition of Kruppel-like factor 6 splice variant 1 decreases cellular proliferation, invasion, angiogenesis, and tumorigenicity; this provides the rationale for its potential therapeutic application. These results and our recent demonstration that the inhibition of Kruppel-like factor 6 splice variant 1 can dramatically prolong survival in a preclinical mouse model of ovarian cancer are reviewed and discussed.
Collapse
|
42
|
Abstract
Krüppel-like factors (KLFs), members of the zinc-finger family of transcription factors capable of binding GC-rich sequences, have emerged as critical regulators of important functions all over the body. They are characterised by a highly conserved C-terminal DNA-binding motif containing three C2H2 zinc-finger domains, with variable N-terminal regulatory domains. Currently, there are 17 KLFs annotated in the human genome. In spite of their structural similarity to one another, the genes encoding different KLFs are scattered all over the genome. By virtue of their ability to activate and/or repress the expression of a large number of genes, KLFs regulate a diverse array of developmental events and cellular processes, such as erythropoiesis, cardiac remodelling, adipogenesis, maintenance of stem cells, epithelial barrier formation, control of cell proliferation and neoplasia, flow-mediated endothelial gene expression, skeletal and smooth muscle development, gluconeogenesis, monocyte activation, intestinal and conjunctival goblet cell development, retinal neuronal regeneration and neonatal lung development. Characteristic features, nomenclature, evolution and functional diversities of the human KLFs are reviewed here.
Collapse
Affiliation(s)
- Shivalingappa K Swamynathan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Eye and Ear Institute, Room 1025, Pittsburgh, PA 15213, USA.
| |
Collapse
|
43
|
Gehrau RC, D'Astolfo DS, Dumur CI, Bocco JL, Koritschoner NP. Nuclear expression of KLF6 tumor suppressor factor is highly associated with overexpression of ERBB2 oncoprotein in ductal breast carcinomas. PLoS One 2010; 5:e8929. [PMID: 20126619 PMCID: PMC2812494 DOI: 10.1371/journal.pone.0008929] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 01/08/2010] [Indexed: 11/19/2022] Open
Abstract
Background Krüppel-like factor 6 (KLF6) is an evolutionarily conserved and ubiquitously expressed protein that belongs to the mammalian Sp1/KLF family of transcriptional regulators. Though KLF6 is a transcription factor and harbors a nuclear localization signal it is not systematically located in the nucleus but it was detected in the cytoplasm of several tissues and cell lines. Hence, it is still not fully settled whether the tumor suppressor function of KLF6 is directly associated with its ability to regulate target genes. Methodology/Principal Findings In this study we analyzed KLF6 expression and sub-cellular distribution by immunohistochemistry in several normal and tumor tissues in a microarray format representing fifteen human organs. Results indicate that while both nuclear and cytoplasmic distribution of KLF6 is detected in normal breast tissues, breast carcinomas express KLF6 mainly detected in the cytoplasm. Expression of KLF6 was further analyzed in breast cancer tissues overexpressing ERBB2 oncoprotein, which is associated with poor disease prognosis and patient's survival. The analysis of 48 ductal carcinomas revealed a significant population expressing KLF6 predominantly in the nuclear compartment (X2p = 0.005; Fisher p = 0.003). Moreover, this expression pattern correlates directly with early stage and small ductal breast tumors and linked to metastatic events in lymph nodes. Conclusions/Significance Data are consistent with a preferential localization of KLF6 in the nuclear compartment of early stage and small HER2-ERBB2 overexpressing ductal breast tumor cells, also presenting lymph node metastatic events. Thus, KLF6 tumor suppressor could represent a new molecular marker candidate for tumor prognosis and/or a potential target for therapy strategies.
Collapse
Affiliation(s)
- Ricardo C. Gehrau
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Diego S. D'Astolfo
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Catherine I. Dumur
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - José L. Bocco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- * E-mail:
| | - Nicolás P. Koritschoner
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
44
|
Nandan MO, Yang VW. The role of Krüppel-like factors in the reprogramming of somatic cells to induced pluripotent stem cells. Histol Histopathol 2009; 24:1343-55. [PMID: 19688699 PMCID: PMC2753264 DOI: 10.14670/hh-24.1343] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The potential for clinical application of pluripotent embryonic stem cells is immense but hampered by moral and ethical complications. Recent advances in the reprogramming of somatic cells by defined factors to a state that resemble embryonic stem cells have created tremendous excitement in the field. Four factors, Sox2, Oct4, Klf4 and c-Myc, when exogenously introduced into somatic cells, can lead to the formation of induced pluripotent stem (iPS) cells that have the capacity for self-renewal and differentiation into tissues of all three germ layers. In this review, we focus on the role of Krüppel-like factors (KLFs) in regulating somatic cell reprogramming. KLFs are zinc finger-containing transcription factors with diverse biological functions. We first provide an overview of the KLF family of regulatory proteins, paying special attention to the established biological and biochemical functions of KLF4 and KLF5. We then review the role of KLFs in somatic cell reprogramming and delineate the putative mechanism by which KLFs participates the establishment and self-renewal of iPS cells. Further research is likely to provide additional insight into the mechanisms of somatic cell reprogramming and refinement of the technique with which to generate clinically relevant iPS cells.
Collapse
Affiliation(s)
- Mandayam O. Nandan
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Vincent W. Yang
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
45
|
Liu J, Du T, Yuan Y, He Y, Tan Z, Liu Z. KLF6 inhibits estrogen receptor-mediated cell growth in breast cancer via a c-Src-mediated pathway. Mol Cell Biochem 2009; 335:29-35. [PMID: 19707857 DOI: 10.1007/s11010-009-0237-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Accepted: 08/13/2009] [Indexed: 11/25/2022]
Abstract
Estrogen receptors play a key role in breast cancer development and progression. Kruppel-like factor 6 (KLF6) is a tumour-suppressing protein. The aim of this study was to identify the role of KLF6 inhibition in estrogen receptor(alpha) (ERalpha)-elicited breast cancer development. Protein expression levels were examined by western blot analysis and immunoprecipitation was used to analyse interactions between proteins. An MTT assay was used to study cell proliferation. We found that KLF6 mediates cell growth in ERalpha-positive breast cancer cells through interaction with the c-Src protein. This interaction causes inactivation of the Erk and Akt proteins. These pathways are critical for the proliferation and survival of breast cancer cells. We also established that KLF6 could not mediate cell growth in ERalpha-negative cells. We conclude that KLF6 can modulate ERalpha-mediated cell growth in breast cancer cells. The unique role of KLF6 in mediating cell growth in breast cancer cells opens up the possibility of a new therapeutic strategy for treating breast cancer.
Collapse
Affiliation(s)
- Jun Liu
- Department of General Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | | | | | | | | | | |
Collapse
|
46
|
Singhal G, Rajeswari MR. Interaction of actinomycin D with promoter element of c-met and its inhibitory effect on the expression of c-Met. J Biomol Struct Dyn 2009; 26:625-36. [PMID: 19236112 DOI: 10.1080/07391102.2009.10507277] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
c-Met, the tyrosine kinase receptor for hepatocyte growth factor plays a pivotal role in normal cellular signaling and overexpression of c-Met protein is reported in several human cancers. Thus, transcriptional regulation of c-met appears to be an attractive target for chemotherapy. Therefore, we selected a 24mer GC rich sequence (24R) from the c-met promoter located at -142 to -119 from transcription start site and studied its interaction with anticancer drug, Actinomycin D. Spectroscopic analysis demonstrated a strong complexation between ActD and 24RY as shown by: (i) a high binding constant, K of 4-5 x 10(5) M(-1) with DeltaDeltaG of -47 +/- 1.5 Kcalmol(-1); (ii) marked increase by +10 degrees C in melting temperature of 24RY; and (iii) significant changes in circular dichroic spectra of both ActD and 24RY. Molecular modeling revealed the preference of ActD to the Sp1 binding site, GGCGGG, in 24RY. Expression of the c-Met was checked in HepG2 cells, a human hepatocellular carcinoma cell line by using western blotting and immunocytochemistry. Downregulation of c-Met expression by as much as 50% was observed in the presence of 20ng/ml (IC(50)) of ActD. Taking into account of the binding studies also, we feel that the down regulation of c-Met perhaps involves binding of ActD to the promoter site of c-met. Therefore, c-met could be a challenging and promising target for therapeutic strategies in combating cancer.
Collapse
Affiliation(s)
- Garima Singhal
- Department of Biochemistry, All India Institute of Medical Science, New Delhi, India
| | | |
Collapse
|
47
|
Singhal G, Rajeswari MR. Preferential binding of anti-cancer drug adriamycin to the Sp1 binding site in c-met promoter region: A spectroscopic and molecular modeling study. J Mol Struct 2009. [DOI: 10.1016/j.molstruc.2008.10.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
48
|
DiFeo A, Martignetti JA, Narla G. The role of KLF6 and its splice variants in cancer therapy. Drug Resist Updat 2008; 12:1-7. [PMID: 19097929 DOI: 10.1016/j.drup.2008.11.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 11/03/2008] [Accepted: 11/04/2008] [Indexed: 12/21/2022]
Abstract
The Krüppel-like zinc finger transcription factor (KLF6) gene encodes a family of proteins generated through alternative splicing involved in the regulation of cancer development and progression. Alternative splicing of the KLF6 gene results in the production of at least four alternatively spliced isoforms, two of which are extensively discussed in this review. The full length form of the KLF6 gene is a tumor suppressor gene that is frequently inactivated by loss of heterozygozity (LOH), somatic mutation, and/or decreased expression in human cancer. While the exact mechanisms underlying KLF6's tumor suppressor roles are not completely known, a number of highly relevant, overlapping pathways have been described: transactivation of p21 in a p53-independent manner, reduction of cyclin D1/cdk4 complexes via interaction with cyclin D1, inhibition of c-Jun proto-oncoprotein activities, decreased VEGF expression, and induction of apoptosis. Kruppel-like factor 6 splice variant 1 (KLF6-SV1) is an oncogenic splice variant of the KLF6 tumor suppressor gene that is specifically overexpressed in a number of human cancers. Increased KLF6-SV1 expression is associated with poor prognosis in prostate, lung, and ovarian cancer. Furthermore, KLF6-SV1 has been shown to be biologically active, antagonizing the tumor suppressor function of KLF6 and promoting tumor growth and dissemination in both ovarian and prostate cancer models. In addition, a common germline polymorphism in the KLF6 gene associated with increased prostate cancer risk in a large multi-institutional study of 3411 men results in increased expression of KLF6-SV1. Furthermore, recent studies have demonstrated that targeted reduction of KLF6-SV1 results in the induction of spontaneous apoptosis in cell culture, synergizes with chemotherapeutic agents like cisplatin, and results in significant tumor regression in vivo. Combined, these data make the KLF6 gene family a compelling therapeutic target for both the treatment of localized as well as metastatic cancer.
Collapse
Affiliation(s)
- Analisa DiFeo
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
49
|
Kinyamu HK, Collins JB, Grissom SF, Hebbar PB, Archer TK. Genome wide transcriptional profiling in breast cancer cells reveals distinct changes in hormone receptor target genes and chromatin modifying enzymes after proteasome inhibition. Mol Carcinog 2008; 47:845-85. [PMID: 18381591 PMCID: PMC2863309 DOI: 10.1002/mc.20440] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Steroid hormone receptors, like glucocorticoid (GR) and estrogen receptors (ER), are master regulators of genes that control many biological processes implicated in health and disease. Gene expression is dependent on receptor levels which are tightly regulated by the ubiquitin-proteasome system. Previous studies have shown that proteasome inhibition increases GR, but decreases ER-mediated gene expression. At the gene expression level this divergent role of the proteasome in receptor-dependent transcriptional regulation is not well understood. We have used a genomic approach to examine the impact of proteasome activity on GR- and ER-mediated gene expression in MCF-7 breast cancer cells treated with dexamethasone (DEX) or 17beta-estradiol (E2), the proteasome inhibitor MG132 (MG) or MG132 and either hormone (MD or ME2) for 24 h. Transcript profiling reveals that inhibiting proteasome activity modulates gene expression by GR and ER in a similar manner in that several GR and ER target genes are upregulated and downregulated after proteasome inhibition. In addition, proteasome inhibition modulates receptor-dependent genes involved in the etiology of a number of human pathological states, including multiple myeloma, leukemia, breast/prostate cancer, HIV/AIDS, and neurodegenerative disorders. Importantly, our analysis reveals that a number of transcripts encoding histone and DNA modifying enzymes, prominently histone/DNA methyltransferases and demethylases, are altered after proteasome inhibition. As proteasome inhibitors are currently in clinical trials as therapy for multiple myeloma, HIV/AIDS and leukemia, the possibility that some of the target molecules are hormone regulated and chromatin modifying enzymes is intriguing in this era of epigenetic therapy.
Collapse
Affiliation(s)
- H. Karimi Kinyamu
- Chromatin and Gene Expression Section, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, 111 Alexander Drive, P.O. Box 12233 (MD C4-06), Research Triangle Park, NC USA 27709
| | - Jennifer B. Collins
- Microarray Group, National Institute of Environmental Health Sciences, National Institutes of Health, 111 Alexander Drive, P.O. Box 12233 (MD C4-06), Research Triangle Park, NC USA 27709
| | - Sherry F. Grissom
- Microarray Group, National Institute of Environmental Health Sciences, National Institutes of Health, 111 Alexander Drive, P.O. Box 12233 (MD C4-06), Research Triangle Park, NC USA 27709
| | - Pratibha B. Hebbar
- Chromatin and Gene Expression Section, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, 111 Alexander Drive, P.O. Box 12233 (MD C4-06), Research Triangle Park, NC USA 27709
| | - Trevor K. Archer
- Chromatin and Gene Expression Section, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, 111 Alexander Drive, P.O. Box 12233 (MD C4-06), Research Triangle Park, NC USA 27709
| |
Collapse
|
50
|
Hartel M, Narla G, Wente MN, Giese NA, Martignoni ME, Martignetti JA, Friess H, Friedman SL. Increased alternative splicing of the KLF6 tumour suppressor gene correlates with prognosis and tumour grade in patients with pancreatic cancer. Eur J Cancer 2008; 44:1895-903. [PMID: 18691883 DOI: 10.1016/j.ejca.2008.06.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 06/09/2008] [Accepted: 06/16/2008] [Indexed: 01/13/2023]
Abstract
The aim of this study was to correlate the status of the KLF6 tumour suppressor gene including loss of heterozygosity (LOH), mutation and alternative splicing in human pancreatic cancer with tumour grade and survival. Whereas neither KLF6 loss nor mutation was identified, expression of the KLF6 alternative splice forms was significantly increased in pancreatic tumour samples and cell lines. These cancers demonstrated marked cytoplasmic KLF6 expression, consistent with over-expression and accumulation of KLF6 splice form(s), which lack a nuclear localisation signal. In addition, KLF6 splicing correlated significantly with tumour stage and survival. In summary, pancreatic cancer displays a novel pattern of KLF6 dysregulation through selectively increased expression of KLF6 splice variants. Therefore, determination of KLF6 mRNA splicing levels may represent a novel biomarker predicting prognosis.
Collapse
Affiliation(s)
- Mark Hartel
- Department of Surgery, University of Heidelberg, Germany; Department of Surgery, Technische Universität München, Munich, Ismaninger Strasse 22, D-81675 Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|