1
|
Wang Y, Xu X, Ding Y, Yuan G. A Novel Variant in Dentin Sialophosphoprotein (DSPP) Gene Causes Dentinogenesis Imperfecta Type III: Case Report. Mol Genet Genomic Med 2025; 13:e70087. [PMID: 40040554 PMCID: PMC11880773 DOI: 10.1002/mgg3.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Hereditary dentin defects are a group of autosomal dominant disorders characterized by developmental abnormalities in dentin formation and mineralization. They can be categorized into dentin dysplasia and dentinogenesis imperfecta. METHODS In this study, we report a Chinese family with dentinogenesis imperfecta type III (DGI-III). The proband, a 3-year-old girl, and her mother showed extremely rapid attrition and opalescent discoloration in their teeth. Besides, the primary teeth of the proband showed "shell teeth" radiographically, a phenotype characterized by abnormally enlarged pulp cavities and thin dentin, which are specific features of DGI-III. The clinical data was collected and the genomic DNA was extracted from their peripheral blood samples. Whole-exome sequencing and Sanger sequencing were performed to screen for variations. Then we preliminarily evaluated the secretion of the dentin sialophosphoprotein (DSPP) variant of this family and compared this variant with wild-type DSPP via western blot (WB) analysis in vitro. RESULTS The results revealed a novel variant (NM_014208: exon2: c.38C>A: p.A13E) in the signal peptide coding region of the DSPP gene in both the proband and her mother, but not in her father, who had normal teeth. The secretion of the variant DSPP protein was not detected in Human embryonic kidney 293E cells via WB analysis. CONCLUSION Taken together, this study describes the clinical features and genetic etiology of a family with DGI-III, expanding the range of variants that cause DGI-III and enriching the phenotypes associated with variants in the signal peptide segment of DSPP. Functional analysis reveals that this variant disrupts DSPP protein secretion.
Collapse
Affiliation(s)
- Yan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of EducationSchool and Hospital of Stomatology, Wuhan UniversityWuhanChina
- Department of Pediatric DentistrySchool and Hospital of Stomatology, Wuhan UniversityWuhanChina
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhanChina
| | - Ximin Xu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of EducationSchool and Hospital of Stomatology, Wuhan UniversityWuhanChina
- Department of Pediatric DentistrySchool and Hospital of Stomatology, Wuhan UniversityWuhanChina
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhanChina
| | - Yuzhe Ding
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of EducationSchool and Hospital of Stomatology, Wuhan UniversityWuhanChina
- Department of Pediatric DentistrySchool and Hospital of Stomatology, Wuhan UniversityWuhanChina
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhanChina
| | - Guohua Yuan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of EducationSchool and Hospital of Stomatology, Wuhan UniversityWuhanChina
- Department of Pediatric DentistrySchool and Hospital of Stomatology, Wuhan UniversityWuhanChina
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhanChina
| |
Collapse
|
2
|
Hirose H, Fujimasa S, Kanemaru S, Yoshimoto S, Matsumoto N, Anan H, Matsuzaki E. Sphingosine-1-phosphate receptor 1-mediated odontogenic differentiation of mouse apical papilla-derived stem cells. J Dent Sci 2024; 19:2323-2331. [PMID: 39347102 PMCID: PMC11437261 DOI: 10.1016/j.jds.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/05/2024] [Indexed: 10/01/2024] Open
Abstract
Background/purpose Sphingosine-1-phosphate (S1P) exhibits receptor-mediated physiological effects by facilitating the differentiation of mesenchymal stem cells toward the osteoblast lineage. This study aimed to determine the effect of S1P on odontogenic differentiation of mouse immortalized stem cells of dental apical papilla (iSCAP) and assess the distribution of the S1P receptor 1 (S1PR1) in the apical papilla and the root canal wall of immature rat molars. Materials and methods Immunostaining for S1PR1 was conducted at the apex of the rat mandibular first molar and within the root canal wall. The iSCAP was treated with S1P and bone morphogenetic protein (BMP)-9 (for comparison), and the expression levels of the odontogenic differentiation marker were evaluated via real-time reverse-transcriptase quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. Mineralization and lipid droplet formation were evaluated via Alizarin red and Oil red O staining. Results S1PR1-positive cells were expressed in areas of both apical papilla and dentin-pulp interface of root canal wall. During the odontogenic differentiation of iSCAP, S1P and BMP-9 increased the expression of the differentiation marker mRNA and secreted proteins including dentin sialophosphoprotein, dentin matrix phosphoprotein 1, and matrix extracellular phosphoglycoprotein. The S1PR1 signaling pathway is involved in the action of S1P, but not that of BMP-9. S1PR1 signaling also facilitated mineralization in iSCAP and suppressed the differentiation of these cells into adipocytes. Conclusion S1P induced odontogenic differentiation of iSCAP through S1PR1. Furthermore, S1PR1-positive cells were expressed in the apical papilla of immature rat molars and in the dentin-pulp interface where odontoblast-like cells exist.
Collapse
Affiliation(s)
- Haruna Hirose
- Section of Operative Dentistry and Endodontology, Department of Odontology, Fukuoka Dental College, Fukuoka, Japan
| | - Seishiro Fujimasa
- Section of Operative Dentistry and Endodontology, Department of Odontology, Fukuoka Dental College, Fukuoka, Japan
| | - Shingo Kanemaru
- Section of Operative Dentistry and Endodontology, Department of Odontology, Fukuoka Dental College, Fukuoka, Japan
| | - Shohei Yoshimoto
- Section of Pathology, Department of Morphological Biology, Division of Biomedical Sciences, Fukuoka Dental College, Fukuoka, Japan
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Noriyoshi Matsumoto
- Section of Operative Dentistry and Endodontology, Department of Odontology, Fukuoka Dental College, Fukuoka, Japan
| | | | - Etsuko Matsuzaki
- Section of Operative Dentistry and Endodontology, Department of Odontology, Fukuoka Dental College, Fukuoka, Japan
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| |
Collapse
|
3
|
Liu Q, Zhao Y, Shi H, Xiang D, Wu C, Song L, Ma N, Sun H. Long-term haplodeficency of DSPP causes temporomandibular joint osteoarthritis in mice. BMC Oral Health 2024; 24:569. [PMID: 38745274 PMCID: PMC11094853 DOI: 10.1186/s12903-024-04320-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Extracellular matrix (ECM) protein malfunction or defect may lead to temporomandibular joint osteoarthritis (TMJ OA). Dentin sialophophoprotein (DSPP) is a mandibular condylar cartilage ECM protein, and its deletion impacted cell proliferation and other extracellular matrix alterations of postnatal condylar cartilage. However, it remains unclear if long-term loss of function of DSPP leads to TMJ OA. The study aimed to test the hypothesis that long-term haploinsufficiency of DSPP causes TMJ OA. MATERIALS AND METHODS To determine whether Dspp+/- mice exhibit TMJ OA but no severe tooth defects, mandibles of wild-type (WT), Dspp+/-, and Dspp homozygous (Dspp-/-) mice were analyzed by Micro-computed tomography (micro-CT). To characterize the progression and possible mechanisms of osteoarthritic degeneration over time in Dspp+/- mice over time, condyles of Dspp+/- and WT mice were analyzed radiologically, histologically, and immunohistochemically. RESULTS Micro-CT and histomorphometric analyses revealed that Dspp+/- and Dspp-/- mice had significantly lower subchondral bone mass, bone volume fraction, bone mineral density, and trabecular thickness compared to WT mice at 12 months. Interestingly, in contrast to Dspp-/- mice which exhibited tooth loss, Dspp+/- mice had minor tooth defects. RNA sequencing data showed that haplodeficency of DSPP affects the biological process of ossification and osteoclast differentiation. Additionally, histological analysis showed that Dspp+/- mice had condylar cartilage fissures, reduced cartilage thickness, decreased articular cell numbers and severe subchondral bone cavities, and with signs that were exaggerated with age. Radiographic data showed an increase in subchondral osteoporosis up to 18 months and osteophyte formation at 21 months. Moreover, Dspp+/- mice showed increased distribution of osteoclasts in the subchondral bone and increased expression of MMP2, IL-6, FN-1, and TLR4 in the mandibular condylar cartilage. CONCLUSIONS Dspp+/- mice exhibit TMJ OA in a time-dependent manner, with lesions in the mandibular condyle attributed to hypomineralization of subchondral bone and breakdown of the mandibular condylar cartilage, accompanied by upregulation of inflammatory markers.
Collapse
Affiliation(s)
- Qilin Liu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Yitong Zhao
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Haibo Shi
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Danwei Xiang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Chunye Wu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Lina Song
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Ning Ma
- Department of Rheumatology, The First Hospital, Jilin University, Changchun, China.
| | - Hongchen Sun
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, China.
| |
Collapse
|
4
|
Qiu M, Bae KB, Liu G, Jang JH, Koh JT, Hwang YC, Lee BN. Osteolectin Promotes Odontoblastic Differentiation in Human Dental Pulp Cells. J Endod 2023; 49:1660-1667. [PMID: 37774945 DOI: 10.1016/j.joen.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
INTRODUCTION Osteolectin is a secreted glycoprotein of the C-type lectin domain superfamily, expressed in bone tissues and is reported as a novel osteogenic factor that promotes bone regeneration. However, the effect of osteolectin on human dental pulp cells (hDPCs) has not been reported. Therefore, we aimed to investigate the odontoblastic differentiation of osteolectin in hDPCs and further attempt to reveal its underlying mechanism. METHODS Cytotoxicity assays were used to detect the cytotoxicity of osteolectin. The odontoblastic differentiation of hDPCs and its underlying mechanisms were measured by the alkaline phosphatase (ALP) activity, mineralized spots formation, and the gene and protein expression of odontoblastic differentiation through ALP staining, Alizarin red S staining, quantitative real-time polymerase chain reaction, and Western blot analysis, respectively. RESULTS WST-1 assay showed osteolectin at concentrations below 300 ng/ml was noncytotoxic and safe for hDPCs. The following experiment demonstrated that osteolectin could increase ALP activity, accelerate the mineralization process, and up-regulate the odontogenic differentiation markers in both gene and protein levels (P < .05). Osteolectin stimulated the phosphorylation of ERK, JNK, and Protein kinase B (AKT) in hDPCs. Extracellular signal-regulated kinase (ERK), Jun N-terminal kinase (JNK), and AKT inhibitors decreased ALP activity and mineralization capacity and suppressed the expression of dentin sialophosphoprotein and dentin matrix protein-1. CONCLUSION Osteolectin can promote odontoblastic differentiation of hDPCs, and the whole process may stimulate ERK, JNK, and AKT signaling pathways by increasing p-ERK, p-JNK, and p-AKT signals.
Collapse
Affiliation(s)
- Manfei Qiu
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, Republic of Korea
| | - Kkot-Byeol Bae
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, Republic of Korea
| | - Guo Liu
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, Republic of Korea; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Ji-Hyun Jang
- Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Jeong-Tae Koh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Dental Science Research, Institute, Chonnam National University, Gwangju, Republic of Korea; Research Center for Biomineralization Disorders, Chonnam National University, Gwangju, Republic of Korea
| | - Yun-Chan Hwang
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, Republic of Korea
| | - Bin-Na Lee
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
5
|
Chen S, Wang F, Yang G, Yuan G, Liu M, Goldman G, Harris S, Wang W, Chen Z, Mary M. Loss of Bmp2 impairs odontogenesis via dysregulating pAkt/pErk/GCN5/Dlx3/Sp7. RESEARCH SQUARE 2023:rs.3.rs-3299295. [PMID: 37790473 PMCID: PMC10543288 DOI: 10.21203/rs.3.rs-3299295/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
BMP2 signaling plays a pivotal role in odontoblast differentiation and maturation during odontogenesis. Teeth lacking Bmp2 exhibit a morphology reminiscent of dentinogenesis imperfecta (DGI), associated with mutations in dentin matrix protein 1 (DMP1) and dentin sialophosphoprotein (DSPP) genes. Mechanisms by which BMP2 signaling influences expressions of DSPP and DMP1 and contributes to DGI remain elusive. To study the roles of BMP2 in dentin development, we generated Bmp2 conditional knockout (cKO) mice. Through a comprehensive approach involving RNA-seq, immunohistochemistry, promoter activity, ChIP, and Re-ChIP, we investigated downstream targets of Bmp2. Notably, the absence of Bmp2 in cKO mice led to dentin insufficiency akin to DGI. Disrupted Bmp2 signaling was linked to decreased expression of Dspp and Dmp1, as well as alterations in intracellular translocation of transcription factors Dlx3 and Sp7. Intriguingly, upregulation of Dlx3, Dmp1, Dspp, and Sp7, driven by BMP2, fostered differentiation of dental mesenchymal cells and biomineralization. Mechanistically, BMP2 induced phosphorylation of Dlx3, Sp7, and histone acetyltransferase GCN5 at Thr and Tyr residues, mediated by Akt and Erk42/44 kinases. This phosphorylation facilitated protein nuclear translocation, promoting interactions between Sp7 and Dlx3, as well as with GCN5 on Dspp and Dmp1 promoters. The synergy between Dlx3 and Sp7 bolstered transcription of Dspp and Dmp1. Notably, BMP2-driven GCN5 acetylated Sp7 and histone H3, while also recruiting RNA polymerase II to Dmp1 and Dspp chromatins, enhancing their transcriptions. Intriguingly, BMP2 suppressed the expression of histone deacetylases. we unveil hitherto uncharted involvement of BMP2 in dental cell differentiation and dentine development through pAkt/pErk42/44/Dlx3/Sp7/GCN5/Dspp/Dmp1.
Collapse
Affiliation(s)
- Shuo Chen
- UT Health Science Center at San Antonio
| | | | | | | | - Mengmeng Liu
- School of Dentistry, the University of Texas Health Science Center at San Antonio
| | - Graham Goldman
- School of Dentistry, the University of Texas Health Science Center at San Antonio
| | | | | | - Zhi Chen
- Wuhan University School and Hospital of Stomatology
| | | |
Collapse
|
6
|
Hoshino T, Onodera S, Kimura M, Suematsu M, Ichinohe T, Azuma T. FGF4 and FGF9 have synergistic effects on odontoblast differentiation. Med Mol Morphol 2023; 56:159-176. [PMID: 37012505 DOI: 10.1007/s00795-023-00351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/06/2023] [Indexed: 04/05/2023]
Abstract
The purpose of this study was to investigate whether fibroblast growth factor 4 (FGF4) and FGF9 are active in dentin differentiation. Dentin matrix protein 1 (Dmp1) -2A-Cre transgenic mice, which express the Cre-recombinase in Dmp1-expressing cells, were crossed with CAG-tdTomato mice as reporter mouse. The cell proliferation and tdTomato expressions were observed. The mesenchymal cell separated from neonatal molar tooth germ were cultured with or without FGF4, FGF9, and with or without their inhibitors ferulic acid and infigratinib (BGJ398) for 21 days. Their phenotypes were evaluated by cell count, flow cytometry, and real-time PCR. Immunohistochemistry for FGFR1, 2, and 3 expression and the expression of DMP1 were performed. FGF4 treatment of mesenchymal cells obtained promoted the expression of all odontoblast markers. FGF9 failed to enhance dentin sialophosphoprotein (Dspp) expression levels. Runt-related transcription factor 2 (Runx2) was upregulated until day 14 but was downregulated on day 21. Compared to Dmp1-negative cells, Dmp1-positive cells expressed higher levels of all odontoblast markers, except for Runx2. Simultaneous treatment with FGF4 and FGF9 had a synergistic effect on odontoblast differentiation, suggesting that they may play a role in odontoblast maturation.
Collapse
Affiliation(s)
- Tatsuki Hoshino
- Department of Dental Anesthesiology, Tokyo Dental College, Misaki-cho, Chiyoda-ku, Tokyo, Japan
| | - Shoko Onodera
- Department of Biochemistry, Tokyo Dental College, 2-9-18, Kanda-Misakichou, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Motoyoshi Kimura
- Department of Pediatric Dentistry, Tokyo Dental College, Misaki-cho, Chiyoda-ku, Tokyo, Japan
| | - Makoto Suematsu
- Department of Dental Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Tatsuya Ichinohe
- Department of Dental Anesthesiology, Tokyo Dental College, Misaki-cho, Chiyoda-ku, Tokyo, Japan
| | - Toshifumi Azuma
- Department of Biochemistry, Tokyo Dental College, 2-9-18, Kanda-Misakichou, Chiyoda-ku, Tokyo, 101-0061, Japan.
| |
Collapse
|
7
|
Liang T, Smith CE, Hu Y, Zhang H, Zhang C, Xu Q, Lu Y, Qi L, Hu JCC, Simmer JP. Dentin defects caused by a Dspp -1 frameshift mutation are associated with the activation of autophagy. Sci Rep 2023; 13:6393. [PMID: 37076504 PMCID: PMC10115861 DOI: 10.1038/s41598-023-33362-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023] Open
Abstract
Dentin sialophosphoprotein (DSPP) is primarily expressed by differentiated odontoblasts (dentin-forming cells), and transiently expressed by presecretory ameloblasts (enamel-forming cells). Disease-causing DSPP mutations predominantly fall into two categories: 5' mutations affecting targeting and trafficking, and 3' - 1 frameshift mutations converting the repetitive, hydrophilic, acidic C-terminal domain into a hydrophobic one. We characterized the dental phenotypes and investigated the pathological mechanisms of DsppP19L and Dspp-1fs mice that replicate the two categories of human DSPP mutations. In DsppP19L mice, dentin is less mineralized but contains dentinal tubules. Enamel mineral density is reduced. Intracellular accumulation and ER retention of DSPP is observed in odontoblasts and ameloblasts. In Dspp-1fs mice, a thin layer of reparative dentin lacking dentinal tubules is deposited. Odontoblasts show severe pathosis, including intracellular accumulation and ER retention of DSPP, strong ubiquitin and autophagy activity, ER-phagy, and sporadic apoptosis. Ultrastructurally, odontoblasts show extensive autophagic vacuoles, some of which contain fragmented ER. Enamel formation is comparable to wild type. These findings distinguish molecular mechanisms underlying the dental phenotypes of DsppP19L and Dspp-1fs mice and support the recently revised Shields classification of dentinogenesis imperfecta caused by DSPP mutations in humans. The Dspp-1fs mice may be valuable for the study of autophagy and ER-phagy.
Collapse
Affiliation(s)
- Tian Liang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA.
| | - Charles E Smith
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
- Department of Anatomy & Cell Biology, Faculty of Medicine & Health Sciences, McGill University, Montreal, QC, Canada
| | - Yuanyuan Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
| | - Hong Zhang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
| | - Chuhua Zhang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
| | - Qian Xu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, 3302 Gaston Ave., Dallas, TX, 75246, USA
| | - Yongbo Lu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, 3302 Gaston Ave., Dallas, TX, 75246, USA
| | - Ling Qi
- Department of Molecular & Integrative Physiology, Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, 1000 Wall St., Ann Arbor, MI, 48105, USA
| | - Jan C-C Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
| | - James P Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
| |
Collapse
|
8
|
Zhang Z, Huang G, Huang Y, Liu S, Chen F, Gao X, Dong Y, Tian H. Novel dentin sialophosphoprotein gene frameshift mutations affect dentin mineralization. Arch Oral Biol 2023; 151:105701. [PMID: 37084484 DOI: 10.1016/j.archoralbio.2023.105701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/23/2023]
Abstract
OBJECTIVE This study aimed to identify candidate genes for inheritable dentin defects in three Chinese pedigrees and characterize the property of affected teeth. DESIGN Clinical and radiological features were recorded for the affected individuals. Genomic DNA obtained from peripheral venous blood or saliva were analyzed by whole-exome sequencing. The density and microhardness of affected dentin was measured. Scanning electron microscopy (SEM) was also performed to obtain the microstructure phenotype. RESULTS 1) General appearance: the affected dentitions shared yellowish-brown or milky color. Radiographs showed that the pulp cavity and root canals were obliterated in varying degrees or exhibited a pulp aspect in the 'thistle tube'. Some patients exhibited periapical infections without pulpal exposure, and some affected individuals showed shortened, abnormally thin roots accompanied by severe alveolar bone loss. 2) Genomic analysis: three new frameshift mutations (NM_014208.3: c.2833delA, c.2852delGand c.3239delA) were identified in exon 5 of dentin sialophosphoprotein (DSPP) gene, altering dentin phosphoprotein (DPP) as result. In vitro studies showed that the density and microhardness of affected dentin were decreased, the dentinal tubules were sparse and arranged disorderly, and the dentinal-enamel-junction (DEJ) was abnormal. CONCLUSIONS In this study, we identified three novel frameshift mutations of dentin sialophosphoprotein gene related to inherited dentin defects. These mutations are speculated to cause abnormal coding of dentin phosphoprotein C-terminus, which affect dentin mineralization. These results expand the spectrum of dentin sialophosphoprotein gene mutations causing inheritable dentin defects and broaden our understanding of the biological mechanisms by which dentin forms.
Collapse
Affiliation(s)
- Zhenwei Zhang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Guibin Huang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Yu Huang
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health and Science Center, Beijing, PR China
| | - Siyi Liu
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Xuejun Gao
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Yanmei Dong
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China.
| | - Hua Tian
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China.
| |
Collapse
|
9
|
Prostaglandin E 2-Transporting Pathway and Its Roles via EP2/EP4 in Cultured Human Dental Pulp. J Endod 2023; 49:410-418. [PMID: 36758673 DOI: 10.1016/j.joen.2023.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
INTRODUCTION Prostaglandin E2 (PGE2) exerts biological actions through its transport pathway involving intracellular synthesis, extracellular transport, and receptor binding. This study aimed to determine the localization of the components of the PGE2-transporting pathway in human dental pulp and explore the relevance of PGE2 receptors (EP2/EP4) to angiogenesis and dentinogenesis. METHODS Protein localization of microsomal PGE2 (mPGES)synthase, PGE2 transporters (multidrug resistance-associated protein-4 [MRP4] and prostaglandin transporter [PGT]), and EP2/EP4 was analyzed using double immunofluorescence staining. Tooth slices from human third molars were cultured with or without butaprost (EP2 agonist) or rivenprost (EP4 agonist) for 1 week. Morphometric analysis of endothelial cell filopodia was performed to evaluate angiogenesis, and real-time polymerase chain reaction was performed to evaluate angiogenesis and odontoblast differentiation markers. RESULTS MRP4 and PGT were colocalized with mPGES and EP2/EP4 in odontoblasts and endothelial cells. Furthermore, MRP4 was colocalized with mPGES and EP4 in human leukocyte antigen-DR-expressing dendritic cells. In the tooth slice culture, EP2/EP4 agonists induced significant increases in the number and length of filopodia and mRNA expression of angiogenesis markers (vascular endothelial growth factor and fibroblast growth factor-2) and odontoblast differentiation markers (dentin sialophosphoprotein and collagen type 1). CONCLUSIONS PGE2-producing enzyme (mPGES), transporters (MRP4 and PGT), and PGE2-specific receptors (EP2/EP4) were immunolocalized in various cellular components of the human dental pulp. EP2/EP4 agonists promoted endothelial cell filopodia generation and upregulated angiogenesis- and odontoblast differentiation-related genes, suggesting that PGE2 binding to EP2/EP4 is associated with angiogenic and dentinogenic responses.
Collapse
|
10
|
BMP Signaling Pathway in Dentin Development and Diseases. Cells 2022; 11:cells11142216. [PMID: 35883659 PMCID: PMC9317121 DOI: 10.3390/cells11142216] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/27/2022] Open
Abstract
BMP signaling plays an important role in dentin development. BMPs and antagonists regulate odontoblast differentiation and downstream gene expression via canonical Smad and non-canonical Smad signaling pathways. The interaction of BMPs with their receptors leads to the formation of complexes and the transduction of signals to the canonical Smad signaling pathway (for example, BMP ligands, receptors, and Smads) and the non-canonical Smad signaling pathway (for example, MAPKs, p38, Erk, JNK, and PI3K/Akt) to regulate dental mesenchymal stem cell/progenitor proliferation and differentiation during dentin development and homeostasis. Both the canonical Smad and non-canonical Smad signaling pathways converge at transcription factors, such as Dlx3, Osx, Runx2, and others, to promote the differentiation of dental pulp mesenchymal cells into odontoblasts and downregulated gene expressions, such as those of DSPP and DMP1. Dysregulated BMP signaling causes a number of tooth disorders in humans. Mutation or knockout of BMP signaling-associated genes in mice results in dentin defects which enable a better understanding of the BMP signaling networks underlying odontoblast differentiation and dentin formation. This review summarizes the recent advances in our understanding of BMP signaling in odontoblast differentiation and dentin formation. It includes discussion of the expression of BMPs, their receptors, and the implicated downstream genes during dentinogenesis. In addition, the structures of BMPs, BMP receptors, antagonists, and dysregulation of BMP signaling pathways associated with dentin defects are described.
Collapse
|
11
|
The Modified Shields Classification and 12 Families with Defined DSPP Mutations. Genes (Basel) 2022; 13:genes13050858. [PMID: 35627243 PMCID: PMC9141616 DOI: 10.3390/genes13050858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022] Open
Abstract
Mutations in Dentin Sialophosphoprotein (DSPP) are known to cause, in order of increasing severity, dentin dysplasia type-II (DD-II), dentinogenesis imperfecta type-II (DGI-II), and dentinogenesis imperfecta type-III (DGI-III). DSPP mutations fall into two groups: a 5′-group that affects protein targeting and a 3′-group that shifts translation into the −1 reading frame. Using whole-exome sequence (WES) analyses and Single Molecule Real-Time (SMRT) sequencing, we identified disease-causing DSPP mutations in 12 families. Three of the mutations are novel: c.53T>C/p.(Val18Ala); c.3461delG/p.(Ser1154Metfs*160); and c.3700delA/p.(Ser1234Alafs*80). We propose genetic analysis start with WES analysis of proband DNA to identify mutations in COL1A1 and COL1A2 causing dominant forms of osteogenesis imperfecta, 5′-DSPP mutations, and 3′-DSPP frameshifts near the margins of the DSPP repeat region, and SMRT sequencing when the disease-causing mutation is not identified. After reviewing the literature and incorporating new information showing distinct differences in the cell pathology observed between knockin mice with 5′-Dspp or 3′-Dspp mutations, we propose a modified Shields Classification based upon the causative mutation rather than phenotypic severity such that patients identified with 5′-DSPP defects be diagnosed as DGI-III, while those with 3′-DSPP defects be diagnosed as DGI-II.
Collapse
|
12
|
Desai V. A case of isolated wide pulp chambers in second premolars along with enamel hypoplasia - Dentinogenesis imperfecta - A diagnostic dilemma. ARCHIVES OF MEDICINE AND HEALTH SCIENCES 2022. [DOI: 10.4103/amhs.amhs_286_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Xu J, Chen Y, Li X, Lei Y, Shu C, Luo Q, Chen L, Li X. Reconstruction of a Demineralized Dentin Matrix via Rapid Deposition of CaF 2 Nanoparticles In Situ Promotes Dentin Bonding. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51775-51789. [PMID: 34693718 DOI: 10.1021/acsami.1c15787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dentin bonding based on a wet-bonding technique is the fundamental technique used daily in clinics for tooth-restoration fixation and clinical treatment of tooth-related diseases. Limited bonding durability led by insufficient adhesive infiltration in the demineralized dentin (DD) matrix is the biggest concern in contemporary adhesive dentistry. This study proposes that the highly hydrated noncollagenous protein (NCP)-formed interfacial microenvironment of the DD matrix is the root cause of this problem. Meanwhile, the endogenous phosphate groups of the NCPs are used as pseudonuclei to rapidly induce the formation of amorphous CaF2 nanoparticles in situ in the interfacial microenvironment. The DD matrix is thus reconstructed into a novel porous structure. It markedly facilitates the infiltration of dentin adhesives in the DD matrix and also endows the DD matrix with anticollapsing capability when water evaporates. Whether using a wet-bonding or air-drying mode, the bonding effectiveness is greatly promoted, with the 12 month bonding strength being about twice that of the corresponding control groups. This suggests that the nanoreinforced DD matrix eliminates the dependence of bonding effectiveness on the moisture status of the DD surface controlled only by experiences of dentists. Consequently, this bonding strategy not only greatly improves bonding durability but also overcomes the technical sensitivity of bonding operations of the total-etched bonding pattern. This exhibits the potential to promote dentin bonding and is of great significance to dentistry.
Collapse
Affiliation(s)
- Jiajia Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310006, P. R. China
- Zhejiang Provincial Clinical Research Center for Oral Disease, Hangzhou 310006, P. R. China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, P. R. China
| | - Yadong Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310006, P. R. China
- Zhejiang Provincial Clinical Research Center for Oral Disease, Hangzhou 310006, P. R. China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, P. R. China
| | - Xiaojun Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310006, P. R. China
- Zhejiang Provincial Clinical Research Center for Oral Disease, Hangzhou 310006, P. R. China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, P. R. China
| | - Yuqing Lei
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310006, P. R. China
- Zhejiang Provincial Clinical Research Center for Oral Disease, Hangzhou 310006, P. R. China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, P. R. China
| | - Chang Shu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310006, P. R. China
- Zhejiang Provincial Clinical Research Center for Oral Disease, Hangzhou 310006, P. R. China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, P. R. China
| | - Qiaojie Luo
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310006, P. R. China
- Zhejiang Provincial Clinical Research Center for Oral Disease, Hangzhou 310006, P. R. China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, P. R. China
| | - Lili Chen
- Union Hospital, Tongji Medical College, Department of Stomatology, Huazhong University Science & Technology, 1277 Jiefang Ave., Wuhan 430022, Peoples R. China
| | - Xiaodong Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310006, P. R. China
- Zhejiang Provincial Clinical Research Center for Oral Disease, Hangzhou 310006, P. R. China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, P. R. China
| |
Collapse
|
14
|
Liang T, Xu Q, Zhang H, Wang S, Diekwisch TGH, Qin C, Lu Y. Enamel Defects Associated With Dentin Sialophosphoprotein Mutation in Mice. Front Physiol 2021; 12:724098. [PMID: 34630144 PMCID: PMC8497714 DOI: 10.3389/fphys.2021.724098] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/31/2021] [Indexed: 12/04/2022] Open
Abstract
Dentin sialophosphoprotein (DSPP) is an extracellular matrix protein that is highly expressed in odontoblasts, but only transiently expressed in presecretory ameloblasts during tooth development. We previously generated a knockin mouse model expressing a mouse equivalent (DSPP, p.P19L) of human mutant DSPP (p.P17L; referred to as “DsppP19L/+”), and reported that DsppP19L/+ and DsppP19L/P19L mice manifested a dentin phenotype resembling human dentinogenesis imperfecta (DGI). In this study, we analyzed pathogenic effects of mutant P19L-DSPP on enamel development in DsppP19L/+ and DsppP19L/P19L mice. Micro-Computed Tomography (μCT) analyses of 7-week-old mouse mandibular incisors showed that DsppP19L/P19L mice had significantly decreased enamel volume and/or enamel density at different stages of amelogenesis examined. Acid-etched scanning electron microscopy (SEM) analyses of mouse incisors demonstrated that, at the mid-late maturation stage of amelogenesis, the enamel of wild-type mice already had apparent decussating pattern of enamel rods, whereas only minute particulates were found in DsppP19L/+ mice, and no discernible structures in DsppP19L/P19L mouse enamel. However, by the time that incisor enamel was about to erupt into oral cavity, distinct decussating enamel rods were evident in DsppP19L/+ mice, but only poorly-defined enamel rods were revealed in DsppP19L/P19L mice. Moreover, μCT analyses of the mandibular first molars showed that DsppP19L/+ and DsppP19L/P19L mice had a significant reduction in enamel volume and enamel density at the ages of 2, 3, and 24weeks after birth. Backscattered and acid-etched SEM analyses revealed that while 3-week-old DsppP19L/+ mice had similar pattern of enamel rods in the mandibular first molars as age-matched wild-type mice, no distinct enamel rods were observed in DsppP19L/P19L mice. Yet neither DsppP19L/+ nor DsppP19L/P19L mice showed well-defined enamel rods in the mandibular first molars by the age of 24weeks, as judged by backscattered and acid-etched SEM. In situ hybridization showed that DSPP mRNA level was markedly reduced in the presecretory ameloblasts, but immunohistochemistry revealed that DSP/DSPP immunostaining signals were much stronger within the presecretory ameloblasts in Dspp mutant mice than in wild-type mice. These results suggest that mutant P19L-DSPP protein caused developmental enamel defects in mice, which may be associated with intracellular retention of mutant DSPP in the presecretory ameloblasts.
Collapse
Affiliation(s)
- Tian Liang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Qian Xu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Hua Zhang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Suzhen Wang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Thomas G H Diekwisch
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Chunlin Qin
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Yongbo Lu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, United States
| |
Collapse
|
15
|
Jing Z, Chen Z, Jiang Y. Effects of DSPP Gene Mutations on Periodontal Tissues. Glob Med Genet 2021; 8:90-94. [PMID: 34430959 PMCID: PMC8378919 DOI: 10.1055/s-0041-1726416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Dentin sialophosphoprotein ( DSPP ) gene mutations cause autosomal dominantly inherited diseases. DSPP gene mutations lead to abnormal expression of DSPP, resulting in a series of histological, morphological, and clinical abnormalities. A large number of previous studies demonstrated that DSPP is a dentinal-specific protein, and DSPP gene mutations lead to dentin dysplasia and dentinogenesis imperfecta. Recent studies have found that DSPP is also expressed in bone, periodontal tissues, and salivary glands. DSPP is involved in the formation of the periodontium as well as tooth structures. DSPP deficient mice present furcation involvement, cementum, and alveolar bone defect. We speculate that similar periodontal damage may occur in patients with DSPP mutations. This article reviewed the effects of DSPP gene mutations on periodontal status. However, almost all of the research is about animal study, there is no evidence that DSPP mutations cause periodontium defects in patients yet. We need to conduct systematic clinical studies on DSPP mutation families in the future to elucidate the effect of DSPP gene on human periodontium.
Collapse
Affiliation(s)
- Zhaojun Jing
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, People's Republic of China
| | - Zhibin Chen
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, People's Republic of China
| | - Yong Jiang
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, People's Republic of China
| |
Collapse
|
16
|
Korkmaz Y, Imhof T, Kämmerer PW, Bloch W, Rink-Notzon S, Möst T, Weber M, Kesting M, Galler KM, Deschner J. The colocalizations of pulp neural stem cells markers with dentin matrix protein-1, dentin sialoprotein and dentin phosphoprotein in human denticle (pulp stone) lining cells. Ann Anat 2021; 239:151815. [PMID: 34400302 DOI: 10.1016/j.aanat.2021.151815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/01/2021] [Accepted: 08/02/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND The primary dentin, secondary dentin, and reactive tertiary dentin are formed by terminal differentiated odontoblasts, whereas atubular reparative tertiary dentin is formed by odontoblast-like cells. Odontoblast-like cells differentiate from pulpal stem cells, which express the neural stem cell markers nestin, S100β, Sox10, and P0. The denticle (pulp stone) is an unique mineralized extracellular matrix that frequently occurs in association with the neurovascular structures in the dental pulp. However, to date, the cellular origin of denticles in human dental pulp is unclear. In addition, the non-collagenous extracellular dentin matrix proteins dentin matrix protein 1 (DMP1), dentin sialoprotein (DSP), and dentin phosphoprotein (DPP) have been well characterized in the dentin matrix, whereas their role in the formation and mineralization of the denticle matrix remains to be clarified. METHODS To characterize the formation of denticle, healthy human third molars (n = 59) were completely sectioned and evaluated by HE staining in different layers at 720 µm intervals. From these samples, molars with (n = 5) and without denticles (n = 8) were selected. Using consecutive cryo-sections from a layer containing denticles of different sizes, we examined DMP1, DSP, and DPP in denticle lining cells and tested their co-localizations with the glial stem cell markers nestin, S100β, Sox10, and P0 by quantitative and double staining methods. RESULTS DMP1, DSP and DPP were found in odontoblasts, whereas denticle lining cells were positive only for DMP1 and DSP but not for DPP. Nestin was detected in both odontoblasts and denticle lining cells. S100β, Sox10, and P0 were co-localized with DMP1 and DSP in different subpopulations of denticle lining cells. CONCLUSIONS The co-localization of S100β, Sox10, and P0 with DMP1 and DSP in denticle lining cells suggest that denticle lining cells are originated from glial and/or endoneurial mesenchymal stem cells which are involved in biomineralization of denticle matrix by secretion of DMP1 and DSP. Since denticles are atubular compared to primary, secondary, reactionary tertiary dentin and denticle formed by odontoblasts, our results suggest that DPP could be one of the proteins involved in the complex regulation of dentinal tubule formation.
Collapse
Affiliation(s)
- Yüksel Korkmaz
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Thomas Imhof
- Institute for Experimental Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Peer W Kämmerer
- Department of Oral, and Maxillofacial and Plastic Surgery, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Svenja Rink-Notzon
- Department of Prosthetic Dentistry, School of Dental and Oral Medicine, University of Cologne, Cologne, Germany; Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Tobias Möst
- Department of Oral and Maxillofacial Surgery, University Hospital Erlangen, Friedrich Alexander University, Erlangen, Germany
| | - Manuel Weber
- Department of Oral and Maxillofacial Surgery, University Hospital Erlangen, Friedrich Alexander University, Erlangen, Germany
| | - Marco Kesting
- Department of Oral and Maxillofacial Surgery, University Hospital Erlangen, Friedrich Alexander University, Erlangen, Germany
| | - Kerstin M Galler
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
17
|
Kao YH, Igarashi N, Abduweli Uyghurturk D, Li Z, Zhang Y, Ohshima H, MacDougall M, Takano Y, Den Besten P, Nakano Y. Fluoride Alters Signaling Pathways Associated with the Initiation of Dentin Mineralization in Enamel Fluorosis Susceptible Mice. Biol Trace Elem Res 2021; 199:3021-3034. [PMID: 33113116 DOI: 10.1007/s12011-020-02434-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/11/2020] [Indexed: 12/21/2022]
Abstract
Fluoride can alter the formation of mineralized tissues, including enamel, dentin, and bone. Dentin fluorosis occurs in tandem with enamel fluorosis. However, the pathogenesis of dentin fluorosis and its mechanisms are poorly understood. In this study, we report the effects of fluoride on the initiation of dentin matrix formation and odontoblast function. Mice from two enamel fluorosis susceptible strains (A/J and C57BL/6J) were given either 0 or 50 ppm fluoride in drinking water for 4 weeks. In both mouse strains, there was no overall change in dentin thickness, but fluoride treatment resulted in a significant increase in the thickness of the predentin layer. The lightly mineralized layer (LL), which lies at the border between predentin and fully mineralized dentin and is associated with dentin phosphoprotein (DPP), was absent in fluoride exposed mice. Consistent with a possible reduction of DPP, fluoride-treated mice showed reduced immunostaining for dentin sialoprotein (DSP). Fluoride reduced RUNX2, the transcription regulator of dentin sialophosphoprotein (DSPP), that is cleaved to form both DPP and DSP. In fluoride-treated mouse odontoblasts, the effect of fluoride was further seen in the upstream of RUNX2 as the reduced nuclear translocation of β-catenin and phosphorylated p65/NFκB. In vitro, MD10-F2 pre-odontoblast cells showed inhibition of the Dspp mRNA level in the presence of 10 μM fluoride, and qPCR analysis showed a significantly downregulated level of mRNAs for RUNX2, β-catenin, and Wnt10b. These findings indicate that in mice, systemic exposure to excess fluoride resulted in reduced Wnt/β-catenin signaling in differentiating odontoblasts to downregulate DSPP production via RUNX2.
Collapse
Affiliation(s)
- Yu-Hsing Kao
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, USA
| | - Nanase Igarashi
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, USA
| | - Dawud Abduweli Uyghurturk
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Zhu Li
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, USA
| | - Yan Zhang
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, USA
- Center for Children's Oral Health Research, School of Dentistry, University of California San Francisco, San Francisco, USA
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Mary MacDougall
- Faculty of Dentistry, The University of British Columbia, Vancouver, Canada
| | - Yoshiro Takano
- Biostructural Science, Graduate School of Tokyo Medical and Dental University, Tokyo, Japan
| | - Pamela Den Besten
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, USA
- Center for Children's Oral Health Research, School of Dentistry, University of California San Francisco, San Francisco, USA
| | - Yukiko Nakano
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, USA.
- Center for Children's Oral Health Research, School of Dentistry, University of California San Francisco, San Francisco, USA.
| |
Collapse
|
18
|
Nikoloudaki G. Functions of Matricellular Proteins in Dental Tissues and Their Emerging Roles in Orofacial Tissue Development, Maintenance, and Disease. Int J Mol Sci 2021; 22:ijms22126626. [PMID: 34205668 PMCID: PMC8235165 DOI: 10.3390/ijms22126626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/04/2023] Open
Abstract
Matricellular proteins (MCPs) are defined as extracellular matrix (ECM) associated proteins that are important regulators and integrators of microenvironmental signals, contributing to the dynamic nature of ECM signalling. There is a growing understanding of the role of matricellular proteins in cellular processes governing tissue development as well as in disease pathogenesis. In this review, the expression and functions of different MP family members (periostin, CCNs, TSPs, SIBLINGs and others) are presented, specifically in relation to craniofacial development and the maintenance of orofacial tissues, including bone, gingiva, oral mucosa, palate and the dental pulp. As will be discussed, each MP family member has been shown to have non-redundant roles in development, tissue homeostasis, wound healing, pathology and tumorigenesis of orofacial and dental tissues.
Collapse
Affiliation(s)
- Georgia Nikoloudaki
- Schulich Dentistry Department, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; ; Tel.: +1-519-661-2111 (ext. 81102)
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
19
|
Desai V, Chitguppi R. Nonsyndromic dentin genetic diseases: Dentinogenesis imperfecta Type III: A unique presentation of rhizomegaly, taurodontism, and dilacerated roots. SAUDI JOURNAL OF ORAL SCIENCES 2021. [DOI: 10.4103/sjoralsci.sjoralsci_17_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
20
|
Gallorini M, Krifka S, Widbiller M, Schröder A, Brochhausen C, Cataldi A, Hiller KA, Buchalla W, Schweikl H. Distinguished properties of cells isolated from the dentin-pulp interface. Ann Anat 2020; 234:151628. [PMID: 33212174 DOI: 10.1016/j.aanat.2020.151628] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/28/2020] [Accepted: 10/16/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Dental odontoblasts produce dentin mineralized matrix, trigger immune responses and act as sensory cells. The understanding of the mechanisms of these functions has been particularly restricted due to the lack of odontoblasts being cultivable in vitro. Because of the lack of specific markers to identify cells of the odontoblastic lineage, properties of the cells isolated from the dentin-pulp interface were compared to dental pulp cells, periodontal ligament cells, osteoblasts, skin fibroblasts, epithelial cells (A549) and HeLa in the present study. METHODS After surgical procedures, the pulp tissue was removed from the tooth crown, and cells were scrapped off the dentin-pulp interface. Explants from teeth of three patients were routinely cultivated, and cells were harvested after several weeks. Cell morphology and ultrastructure was studied by light microscopy (LM), scanning (SEM) or transmission electron microscopy (TEM). Expression of dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP1), TRPV4, and S100 calcium binding protein A4 (S100A4) were analyzed at the protein level by sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting using specific antibodies. The differential expression of S100A4 in the various cell lines was further investigated at the gene level by semiquantitative real-time PCR. Mineralization in the various cell types was observed after alizarin red staining after a 28 days incubation period. The immunophenotype of the cells was examined by flow cytometry using monoclonal anti-human antibodies CD90-FITC, CD73-PE, CD105-PE, CD29-PE, CD140a-FITC, CD144-PE, CD45-FITC or CD34-FITC. Differences between median values were statistically analyzed (Mann-Whitney U-test). RESULTS Cells from the dentin-pulp interface retain the polarity of odontoblast morphology in culture with an elongated, rounded cell body, and an extended cellular process. Ultrastructural analysis of the cells indicates high secretory activity including the extracellular deposition of fibrillar collagen. An extended rough endoplasmic reticulum is lined by a large number of ribosomes, and a vast number of secretory granules merges with the cell membrane. Protein expression of DSPP, DMP1, and TRPV4 as a transient receptor potential cation was detected in all cell lines. S100A4 was found differentially expressed in cultures of cells from tooth tissues. High expression of S100A4 was observed at the protein and gene level in two fractions of cells isolated from the dentin-pulp interface, but was absent or only weakly expressed in pulp cells. S100A4 expression in cells from the dentin-pulp interface and pulp cells is consistent with the intensity of the formation of mineralized nodules detected by alizarin red staining. Immunophenotyping revealed that a high percentage of CD73 (ecto-5-nucleotidase), an enzyme active on the surface of immune-competent cells, was expressed in cells of the dentin-pulp interface. While 72%-78% of positive cells were detected in dentin-pulp interface fractions, only 28-64% of the cells in pulp cell cultures were stained. CONCLUSIONS The present findings obtained with a variety of cells of different origin provide experimental evidence that cells isolated from the dentin-pulp interface express unique properties different from dental pulp cells in particular. The differential expression of S100A4 is a relevant marker candidate for differentiating between dental pulp cells and cells of the odontoblast lineage.
Collapse
Affiliation(s)
- Marialucia Gallorini
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Stephanie Krifka
- Department of Prosthetic Dentistry, University Hospital Regensburg, D-93042 Regensburg, Germany
| | - Matthias Widbiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, D-93042 Regensburg, Germany
| | - Agnes Schröder
- Department of Orthodontics, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, D-93042 Regensburg, Germany
| | - Christoph Brochhausen
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauss Allee 11, D-93042 Regensburg, Germany
| | - Amelia Cataldi
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Karl-Anton Hiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, D-93042 Regensburg, Germany
| | - Wolfgang Buchalla
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, D-93042 Regensburg, Germany
| | - Helmut Schweikl
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, D-93042 Regensburg, Germany.
| |
Collapse
|
21
|
Shahabipour F, Oskuee RK, Shokrgozar MA, Naderi-Meshkin H, Goshayeshi L, Bonakdar S. CRISPR/Cas9 mediated GFP-human dentin matrix protein 1 (DMP1) promoter knock-in at the ROSA26 locus in mesenchymal stem cell for monitoring osteoblast differentiation. J Gene Med 2020; 22:e3288. [PMID: 33047833 DOI: 10.1002/jgm.3288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Dentin matrix protein 1 (DMP1) is highly expressed in mineralized tooth and bone, playing a critical role in mineralization and phosphate metabolism. One important role for the expression of DMP1 in the nucleus of preosteoblasts is the up-regulation of osteoblast-specific genes such as osteocalcin and alkaline phosphatase1 . The present study aimed to investigate the potential application of human DMP1 promoter as an indicator marker of osteoblastic differentiation. METHODS In the present study, we developed DMP1 promoter-DsRed-GFP knock-in mesenchymal stem cell (MSCs) via the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system that enabled automatic detection of osteoblast differentiation. With the application of a homology-directed knock-in strategy, a 2-kb fragment of DMP1 promoter, which was inserted upstream of the GFP and DsRed reporter cassette, was integrated into the human ROSA locus to generate double fluorescent cells. We further differentiated MSCs under osteogenic media to monitor the fate of MSCs. First, cells were transfected using CRISPR/Cas9 plasmids, which culminated in MSCs with a green fluorescence intensity, then GFP-positive cells were selected using puromycin. Second, the GFP-positive MSCs were differentiated toward osteoblasts, which demonstrated an increased red fluorescence intensity. The osteoblast differentiation of MSCs was also verified by performing alkaline phosphatase and Alizarin Red assays. RESULTS We have exploited the DMP1 promoter as a predictive marker of MSC differentiation toward osteoblasts. Using the CRISPR/Cas9 technology, we have identified a distinctive change in the fluorescence intensities of GFP knock-in (green) and osteoblast differentiated MSCs 2 . CONCLUSIONS The data show that DMP1-DsRed-GFP knock-in MSCs through CRISPR/Cas9 technology provide a valuable indicator for osteoblast differentiation. Moreover, The DMP1 promoter might be used as a predictive marker of MSCs differentiated toward osteoblasts.
Collapse
Affiliation(s)
| | - Reza Kazemi Oskuee
- Targeted Drug Delivery Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hojjat Naderi-Meshkin
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.,Welcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Lena Goshayeshi
- Division of Biotechnology, Faculty of veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Shahin Bonakdar
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
22
|
Liu Q, Ma N, Zhu Q, Duan X, Shi H, Xiang D, Kong H, Sun H. Dentin Sialophosphoprotein Deletion Leads to Femoral Head Cartilage Attenuation and Subchondral Bone Ill-mineralization. J Histochem Cytochem 2020; 68:703-718. [PMID: 32921220 DOI: 10.1369/0022155420960403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dentin sialophosphoprotein (DSPP), which expresses and synthesizes in odontoblasts of dental pulp, is a critical protein for normal teeth mineralization. Originally, DSPP was identified as a dentin-specific protein. In 2010, DSPP was also found in femoral head cartilage, and it is still unclear what roles DSPP play in femoral head cartilage formation, growth, and maintenance. To reveal biological functions of DSPP in the femoral head cartilage, we examined Dspp null mice compared with wild-type (WT) mice to observe DSPP expression as well as localization in WT mice and to uncover differences of femoral head cartilage, bone morphology, and structure between these two kinds of mice. Expression data demonstrated that DSPP had heterogeneous fragments, expressed in each layer of femoral head cartilage and subchondral bone of WT mice. Dspp null mice exhibited a significant reduction in the thickness of femoral head cartilage, with decreases in the amount of proliferating cartilage cells and increases in apoptotic cells. In addition, the subchondral bone mineralization decreased, and the expressions of vessel markers (vascular endothelial growth factor [VEGF] and CD31), osteoblast markers (Osterix and dentin matrix protein 1 [DMP1]), osteocyte marker (sclerostin [SOST]), and osteoclast marker (tartrate-resistant acid phosphatase [TRAP]) were remarkably altered. These indicate that DSPP deletion can affect the proliferation of cartilage cells in the femoral head cartilage and endochondral ossification in subchondral bone. Our data clearly demonstrate that DSPP plays essential roles in the femoral head cartilage growth and maintenance and subchondral biomineralization.
Collapse
Affiliation(s)
- Qilin Liu
- Department of Oral and Maxillofacial Surgery, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Ning Ma
- Department of Rheumatology, The First Hospital (NM), Jilin University, Changchun, China
| | - Qinglin Zhu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xiaoqin Duan
- Department of Rehabilitation, The Second Hospital, Jilin University, Changchun, China
| | - Haibo Shi
- Department of Oral and Maxillofacial Surgery, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Danwei Xiang
- Department of Oral and Maxillofacial Surgery, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Hui Kong
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Hongchen Sun
- Department of Oral Pathology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
23
|
Gou X, Xue Y, Zheng H, Yang G, Chen S, Chen Z, Yuan G. Gelatinases Cleave Dentin Sialoprotein Intracellularly. Front Physiol 2020; 11:686. [PMID: 32670089 PMCID: PMC7330055 DOI: 10.3389/fphys.2020.00686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/27/2020] [Indexed: 11/13/2022] Open
Abstract
Dentin sialoprotein (DSP), the NH2-terminal fragment of dentin sialophosphoprotein (DSPP), is essential for dentin formation and further processed into small fragments inside the odontoblasts. Gelatinases, including matrix metalloproteinases 9 (MMP9) and MMP2, were able to cleave DSP(P) in tooth structures. We hypothesized that gelatinases may also cleave DSP intracellularly in the odontoblasts. In this study, the co-expression and physical interaction between DSP and gelatinases were proved by double immunofluorescence and in situ proximity ligation assay (PLA). Intracellular enzymatic activity of gelatinases was verified by gelatin zymography and in situ zymography. To confirm whether DSP was cleaved by active gelatinases intracellularly, lysates of wild-type (WT) odontoblastic cells treated with a MMP2 inhibitor or a MMP9 inhibitor or a MMP general inhibitor and of Mmp9-/- odontoblastic cells were analyzed by western blotting. Compared with the WT odontoblastic cells without inhibitor treatment, all these groups exhibited significantly higher ratios of high molecular weight to low molecular weight band density. FURIN was verified to be co-localized and physically interacted with MMP9 by double immunofluorescence and in situ PLA. The ratio of proMMP9 to activated MMP9 inside the odontoblastic cells were increased when function of endogenous FURIN was inhibited. And overexpressed proMMP9 was intracellularly cleaved by FURIN in the HEK293E cells, which was completely blocked by the mutation of proMMP9 with R96TPR99 substituted by A96AAA99. Taken together, these results indicate that DSP is intracellularly processed by gelatinases, and FURIN is involved in the intracellular activation of proMMP9 through cleavage of its R96TPR99 motif.
Collapse
Affiliation(s)
- Xiaohui Gou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yifan Xue
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huiwen Zheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guobin Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuo Chen
- Department of Developmental Dentistry, University of Texas Health Science Center, San Antonio, TX, United States
| | - Zhi Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guohua Yuan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
24
|
Xia X, Ruan Y, Li B, Yu Y, Kong X, Zhuang P, Wu H. The Long Non-coding RNA lnc-DMP1 Regulates Dmp1 Expression Through H3K27Ac Modification. Front Genet 2020; 11:233. [PMID: 32256524 PMCID: PMC7093497 DOI: 10.3389/fgene.2020.00233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 02/27/2020] [Indexed: 12/19/2022] Open
Abstract
Several long non-coding RNAs (lncRNAs) have been reported regulate the expression of neighbor protein-coding genes at post-transcriptional, transcriptional and epigenetic levels. Dmp1 (Dentin matrix protein 1), encoding a non-collagenous extracellular matrix protein, plays an important role in dentin and bone mineralization. However, the transcriptional regulation of lncRNA on Dmp1 has not been reported. In this study, we identified a novel lncRNA named lnc-DMP1, which is near the Dmp1 gene region and undergoes remarkable changes during mandible development. lnc-DMP1 is co-localized and significantly expressed correlation with Dmp1 in embryonic and postnatal mouse mandibles. In MC3T3-E1 cells, lnc-DMP1 positively regulates DMP1 expression and skeletal mineralization. Furthermore, lnc-DMP1 induces the promoter activity of Dmp1 by modulating H3K27Ac enrichment in the Dmp1 promoter. In conclusion, our results indicate that lnc-DMP1 is a novel lncRNA near the Dmp1 gene region and regulates Dmp1 expression by modulating the H3K27 acetylation level of Dmp1 promoter.
Collapse
Affiliation(s)
- Xin Xia
- Department of Stomatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi Ruan
- Department of Stomatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Boya Li
- Department of Stomatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yansong Yu
- Department of Stomatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiangbo Kong
- Department of Stomatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peilin Zhuang
- Department of Stomatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hong Wu
- Department of Stomatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
25
|
Shaddox L, Letra A. Then and Now-A Look Inside the Lives of 11 Women Presidents of the IADR. Adv Dent Res 2020; 30:95-118. [PMID: 31746650 DOI: 10.1177/0022034519877394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Extraordinary women scientists-past, current, and elected presidents of the International Association for Dental Research (IADR)-showcase pathways for success and leadership. In this series of autobiographical essays, these women of various cultural backgrounds with diverse areas of research describe their journeys in the passionate pursuit of excellence, despite the frequent obstacles and challenges. Through interviews and in their own words, we recap highlights of their dental research journeys and inspirations, their career trajectories toward the IADR presidency, and the benefits and challenges that they faced in their careers and personal lives. The purpose of this special issue is to honor these women, their life journeys, and how they have contributed to oral health research.
Collapse
Affiliation(s)
- L Shaddox
- Division of Periodontology, Department of Oral Health Practice, University of Kentucky, Lexington, KY, USA
| | - A Letra
- Department of Diagnostic and Biomedical Sciences, Center for Craniofacial Research, School of Dentistry, University of Texas Health Science Center at Houston, TX, USA
| |
Collapse
|
26
|
Retana-Lobo C, Guerreiro-Tanomaru JM, Tanomaru-Filho M, Mendes de Souza BD, Reyes-Carmona J. Non-Collagenous Dentin Protein Binding Sites Control Mineral Formation during the Biomineralisation Process in Radicular Dentin. MATERIALS 2020; 13:ma13051053. [PMID: 32120926 PMCID: PMC7084694 DOI: 10.3390/ma13051053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 11/25/2022]
Abstract
The biomineralisation of radicular dentin involves complex molecular signalling. Providing evidence of protein binding sites for calcium ions and mineral precipitation is essential for a better understanding of the remineralisation process. This study aimed to evaluate the functional relationship of metalloproteinases (MMPs) and non-collagenous proteins (NCPs) with mineral initiation and maturation during the biomineralisation of radicular dentin. A standardized demineralisation procedure was performed to radicular dentin slices. Samples were remineralised in a PBS-bioactive material system for different periods of time. Assessments of ion exchange, Raman analysis, and energy dispersive X-ray analysis (EDAX) with a scanning electron microscope (SEM) were used to evaluate the remineralisation process. Immunohistochemistry and zymography were performed to analyse NCPs and MMPs expression. SEM evaluation showed that the mineral nucleation and growth occurs, exclusively, on the demineralised radicular dentin surface. Raman analysis of remineralised dentin showed intense peaks at 955 and 1063 cm−1, which can be attributed to carbonate apatite formation. Immunohistochemistry of demineralised samples revealed the presence of DMP1-CT, mainly in intratubular dentin, whereas DSPP in intratubular and intertubular dentin. DMP1-CT and DSPP binding sites control carbonate apatite nucleation and maturation guiding the remineralisation of radicular dentin.
Collapse
Affiliation(s)
- Cristina Retana-Lobo
- LICIFO—Laboratory of Research in Dental Sciences, Department of Endodontics, Faculty of Dentistry, University of Costa Rica, 11502 SJO, Costa Rica;
| | - Juliane Maria Guerreiro-Tanomaru
- Department of Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, 14801385, Araraquara, SP, Brazil; (J.M.G.-T.); (M.T.-F.)
| | - Mario Tanomaru-Filho
- Department of Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, 14801385, Araraquara, SP, Brazil; (J.M.G.-T.); (M.T.-F.)
| | | | - Jessie Reyes-Carmona
- LICIFO—Laboratory of Research in Dental Sciences, Department of Endodontics, Faculty of Dentistry, University of Costa Rica, 11502 SJO, Costa Rica;
- Correspondence: or ; Tel.: +506-2511-8100
| |
Collapse
|
27
|
Zhang M, Ni S, Zhang X, Lu J, Gao S, Yang Y, Wang Z, Sun H, Li Y. Dexamethasone-loaded hollow hydroxyapatite microsphere promotes odontogenic differentiation of human dental pulp cells in vitro. Odontology 2019; 108:222-230. [PMID: 31598795 DOI: 10.1007/s10266-019-00459-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 09/08/2019] [Indexed: 12/28/2022]
Abstract
A sustained-release system was established by synthesis of dexamethasone-loaded hollow hydroxyapatite microspheres (DHHAM). The in vitro effect of DHHAM on odontogenic differentiation of human dental pulp cells (hDPCs) was evaluated. Hollow hydroxyapatite microspheres (HHAM) are successfully manufactured using simple biomimetic one-step strategy in the presence of glycine and sodium dodecyl sulfonate. Dexamethasone (DEX) was loaded to the system after the formation of HHAM. The drug encapsulation capacity of DEX in HHAM is 40.3% and its loading efficiency is 16.7%. The cumulative release of DEX in vitro is 55% up to 35 days. Results of Real-time Polymerase Chain Reaction (Real-time PCR), alkaline phosphatase (ALP) activity and Alizarin Red S staining revealed that DHHAM can obviously promote bio-mineralization of hDPCs in the absence of osteogenic medium and enhance the gene expression of ALP, Runt-related transcription factor 2 (RUNX2), osteocalcin, dentin sialophosphoprotein (DSPP) and dentin matrix protein 1 (DMP1). The data suggest that sustained release of DEX from DHHAM could efficiently enhance odontogenic differentiation of hDPCs.
Collapse
Affiliation(s)
- Menglin Zhang
- Department of Pediatric Dentistry, School of Stomatology, Jilin University, Changchun, 130021, China
| | - Shilei Ni
- Department of Pathology, School of Stomatology, Jilin University, Changchun, 130021, China
| | - Xue Zhang
- Department of Pediatric Dentistry, School of Stomatology, Jilin University, Changchun, 130021, China
| | - Jinjin Lu
- Department of Pediatric Dentistry, School of Stomatology, Jilin University, Changchun, 130021, China
| | - Siyu Gao
- Department of Pediatric Dentistry, School of Stomatology, Jilin University, Changchun, 130021, China
| | - Yalan Yang
- Department of Pediatric Dentistry, School of Stomatology, Jilin University, Changchun, 130021, China
| | - Zhe Wang
- Department of Pediatric Dentistry, School of Stomatology, Jilin University, Changchun, 130021, China
| | - Hongchen Sun
- School of Stomatology, China Medical University, Shenyang, 110001, China
| | - Yi Li
- Department of Pediatric Dentistry, School of Stomatology, Jilin University, Changchun, 130021, China.
| |
Collapse
|
28
|
Vijaykumar A, Ghassem-Zadeh S, Vidovic-Zdrilic I, Komitas K, Adameyko I, Krivanek J, Fu Y, Maye P, Mina M. Generation and characterization of DSPP-Cerulean/DMP1-Cherry reporter mice. Genesis 2019; 57:e23324. [PMID: 31271259 PMCID: PMC6939995 DOI: 10.1002/dvg.23324] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/24/2022]
Abstract
To gain a better understanding of the progression of progenitor cells in the odontoblast lineage, we have examined and characterized the expression of a series of GFP reporters during odontoblast differentiation. However, previously reported GFP reporters (pOBCol2.3-GFP, pOBCol3.6-GFP, and DMP1-GFP), similar to the endogenous proteins, are also expressed by bone-forming cells, which made it difficult to delineate the two cell types in various in vivo and in vitro studies. To overcome these difficulties we generated DSPP-Cerulean/DMP1-Cherry transgenic mice using a bacterial recombination strategy with the mouse BAC clone RP24-258g7. We have analyzed the temporal and spatial expression of both transgenes in tooth and bone in vivo and in vitro. This transgenic animal enabled us to visualize the interactions between odontoblasts and surrounding tissues including dental pulp, ameloblasts and cementoblasts. Our studies showed that DMP1-Cherry, similar to Dmp1, was expressed in functional and fully differentiated odontoblasts as well as osteoblasts, osteocytes and cementoblasts. Expression of DSPP-Cerulean transgene was limited to functional and fully differentiated odontoblasts and correlated with the expression of Dspp. This transgenic animal can help in the identification and isolation of odontoblasts at later stages of differentiation and help in better understanding of developmental disorders in dentin and odontoblasts.
Collapse
Affiliation(s)
- Anushree Vijaykumar
- Department of Craniofacial Sciences School of Dental Medicine, University of Connecticut, Farmington, Connecticut
| | - Sean Ghassem-Zadeh
- Department of Craniofacial Sciences School of Dental Medicine, University of Connecticut, Farmington, Connecticut
| | - Ivana Vidovic-Zdrilic
- Department of Craniofacial Sciences School of Dental Medicine, University of Connecticut, Farmington, Connecticut
| | - Karren Komitas
- Department of Craniofacial Sciences School of Dental Medicine, University of Connecticut, Farmington, Connecticut
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Jan Krivanek
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Yu Fu
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut, Farmington, Connecticut
| | - Peter Maye
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut, Farmington, Connecticut
| | - Mina Mina
- Department of Craniofacial Sciences School of Dental Medicine, University of Connecticut, Farmington, Connecticut
| |
Collapse
|
29
|
Park S, Lee Y, Lee D, Park J, Kim R, Shon W. CPNE7 Induces Biological Dentin Sealing in a Dentin Hypersensitivity Model. J Dent Res 2019; 98:1239-1244. [DOI: 10.1177/0022034519869577] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Dentin hypersensitivity commonly occurs due to opened dentinal tubules for many reasons. In our previous study, copine 7 (CPNE7) could induce dentin formation for an indirect pulp-capping model in vivo. This study aims to investigate the formation of tertiary dentin when CPNE7 is applied to intentionally exposed dentin with nothing over it in vivo, whether it affects microleakage of the teeth, and the penetration ability of CPNE7 molecules through dentinal tubules in vitro. Cervical dentin areas of 6 maxillary incisors of 5 beagles were exposed to a class V–like lesion, and 1 side of 3 maxillary incisors was adapted with recombinant CPNE7 protein for 5 min as the experimental group. The other side was the control group, and there was no treatment of ethylenediaminetetraacetic acid (EDTA) and CPNE7 after preparation. The defects were exposed without any restorations, and all beagles were sacrificed after 4 wk. The fluid penetration of exposed dentin areas was investigated by a microleakage-testing device and confocal laser scanning microscope. Tertiary dentin formation was confirmed with histological scanning electronic microscopic analysis. Tertiary dentin formation reduces dentinal fluid flow due to occluded tubules or discontinuity with primary or secondary dentin. The in vivo hypersensitivity model with the anterior teeth of beagle dogs showed newly formed tertiary dentin at the dentin-pulp boundary in recombinant CPNE7–treated teeth when compared with the untreated control group in histologic analysis. Scanning electronic microscopic analysis revealed occluded sites with mineral deposition of intratubular dentin. In the permeability test, the mean microleakage value of the CPNE7-treated group was significantly lower than that of the control group ( P < 0.05). The tubular penetration of rhodamine B–combined CPNE7 was confirmed under confocal laser scanning microscope. CPNE7 induces formation of tertiary dentin through shallowly exposed dentinal tubules, which decreases dentin permeability.
Collapse
Affiliation(s)
- S.H. Park
- Department of Conservative Dentistry, Dental Research Institute and School of Dentistry, Seoul National University, Jongno-gu, Seoul, South Korea
| | - Y.S. Lee
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology–Developmental Biology, Dental Research Institute and School of Dentistry, Seoul National University, Jongno-gu, Seoul, South Korea
| | - D.S. Lee
- Department of Oral Histology–Developmental Biology, Dental Research Institute and School of Dentistry, Seoul National University, Jongno-gu, Seoul, South Korea
| | - J.C. Park
- Department of Oral Histology–Developmental Biology, Dental Research Institute and School of Dentistry, Seoul National University, Jongno-gu, Seoul, South Korea
| | - R. Kim
- Division of Constitutive and Regenerative Sciences, UCLA School of Dentistry, Los Angeles, CA, USA
| | - W.J. Shon
- Department of Conservative Dentistry, Dental Research Institute and School of Dentistry, Seoul National University, Jongno-gu, Seoul, South Korea
| |
Collapse
|
30
|
Liang T, Zhang H, Xu Q, Wang S, Qin C, Lu Y. Mutant Dentin Sialophosphoprotein Causes Dentinogenesis Imperfecta. J Dent Res 2019; 98:912-919. [PMID: 31173534 PMCID: PMC6616118 DOI: 10.1177/0022034519854029] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dentin sialophosphoprotein (DSPP) is an extracellular matrix protein highly expressed by odontoblasts in teeth. DSPP mutations in humans may cause dentinogenesis imperfecta (DGI), an autosomal dominant dentin disorder. We recently generated a mouse model (named "DsppP19L/+ mice") that expressed a mutant DSPP in which the proline residue at position 19 was replaced by a leucine residue. We found that the DsppP19L/+ and DsppP19L/P19L mice at a younger age displayed a tooth phenotype resembling human DGI type III characterized by enlarged dental pulp chambers, while the teeth of older DsppP19L/+ and DsppP19L/P19L mice had smaller dental pulp chambers mimicking DGI type II. The teeth of DsppP19L/+ and DsppP19L/P19L mice had a narrower pulp chamber roof predentin layer, thinner pulp chamber roof dentin, and thicker pulp chamber floor dentin. In addition, these mice also had increased enamel attrition, accompanied by excessive deposition of peritubular dentin. Immunohistochemistry, in situ hybridization, and real-time polymerase chain reaction analyses showed that the odontoblasts in both DsppP19L/+ and DsppP19L/P19L mice had reduced DSPP expression, compared to the wild-type mice. We also observed that the levels of DSPP expression were much higher in the roof-forming odontoblasts than in the floor-forming odontoblasts in the wild-type mice and mutant mice. Moreover, immunohistochemistry showed that while the immunostaining signals of dentin sialoprotein (N-terminal fragment of DSPP) were decreased in the dentin matrix, they were remarkably increased in the odontoblasts of the DsppP19L/+ and DsppP19L/P19L mice. Consistently, our in vitro studies showed that the secretion of the mutant DSPP was impaired and accumulated within endoplasmic reticulum. These findings suggest that the dental phenotypes of the mutant mice were associated with the intracellular retention of the mutant DSPP in the odontoblasts of the DSPP-mutant mice.
Collapse
Affiliation(s)
- T. Liang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - H. Zhang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Q. Xu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - S. Wang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - C. Qin
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Y. Lu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| |
Collapse
|
31
|
El Nawam H, El Backly R, Zaky A, Abdallah A. Low-level laser therapy affects dentinogenesis and angiogenesis of in vitro 3D cultures of dentin-pulp complex. Lasers Med Sci 2019; 34:1689-1698. [DOI: 10.1007/s10103-019-02804-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/07/2019] [Indexed: 01/09/2023]
|
32
|
Abstract
This chapter describes methods related to the diagnosis of genetic dental diseases. Based on the present knowledge, clinical phenotyping and next-generation sequencing techniques are discussed. Methods necessary for Sanger sequencing, multiplex ligation-dependent probe amplification, and epigenetic modification methods are detailed. In addition, protocols for cell culture establishment and characterization from patients with inherited dental anomalies are described.
Collapse
|
33
|
The functional significance of dentin sialoprotein-phosphophoryn and dentin sialoprotein. Int J Oral Sci 2018; 10:31. [PMID: 30393383 PMCID: PMC6215839 DOI: 10.1038/s41368-018-0035-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 07/15/2018] [Accepted: 08/06/2018] [Indexed: 11/11/2022] Open
Abstract
Phosphophoryn (PP) and dentin sialoprotein (DSP) are the most dominant non-collagenous proteins in dentin. PP is an extremely acidic protein that can function as a mineral nucleator for dentin mineralization. DSP was first identified in 1981, yet its functional significance is still controversial. Historically, these two proteins were considered to be independently synthesized and secreted by dental pulp cells into the developing dentin matrix. However, with the identification of the DSP coding sequence in 1994, followed 2 years later by the finding that the PP coding sequence was located immediately downstream from the DSP sequence, it became immediately clear that DSP and PP proteins were derived from a single DSP-PP (i.e., dentin sialophosphoprotein, DSPP) transcript. Since DSPP cDNA became available, tremendous progress has been made in studying DSP-PP mRNA distribution and DSP generation from the DSP-PP precursor protein at specific cleavage sites by protease tolloid-related-1 (TLR1) or bone morphogenetic protein 1 (BMP1). The functions of DSP-PP and DSP were investigated via DSP-PP knockout (KO) and DSP knockin in DSP-PP KO mice. In addition, a number of in vitro studies aimed to elucidate DSPP and DSP function in dental pulp cells. Along with phosphophoryn (PP), dental sialoprotein (DSP) is the dominant non-collagen protein in dentin, and in vitro studies have demonstrated that DSP is involved in inducing the differentiation of dental pulp cells into odontoblast-like cells, which form dentin. PP is known to be involved in the mineralization of dentin, but the functional significance of DSP had been controversial. Helena Ritchie of the University of Michigan School of Dentistry conducted a review of studies investigating the derivation, function and distribution of PP and DSP. It was originally thought that PP and DSP were synthesized independently; later, it became evident that they derive from a single DSP-PP gene. Wider DSP-PP distribution in various tissues, including kidney and salivary glands, and DSP or PP expression in non-mineralized tissues suggest that the proteins may have functions other than mineralization.
Collapse
|
34
|
Yamakoshi Y, Simmer JP. Structural features, processing mechanism and gene splice variants of dentin sialophosphoprotein. JAPANESE DENTAL SCIENCE REVIEW 2018; 54:183-196. [PMID: 30302137 PMCID: PMC6175968 DOI: 10.1016/j.jdsr.2018.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/12/2018] [Accepted: 03/22/2018] [Indexed: 12/03/2022] Open
Abstract
Dentin sialophosphoprotein (DSPP) plays an important role in the formation of dentin. Understanding its structure and function would provide important insights into the regulation of dentin mineralization. For the past 15 years, we have been studying DSPP-derived proteins isolated from pig dentin. Porcine DSPP is synthesized and secreted by odontoblasts and processed into three proteins, i.e., dentin sialoprotein (DSP), dentin glycoprotein (DGP), and dentin phosphoprotein (DPP), by bone morphogenetic protein 1 and matrix metalloproteinase-20 and -2. DSP is a proteoglycan that forms covalent dimers, DGP is a phosphorylated glycoprotein, and DPP is a highly phosphorylated intrinsically disordered protein with genetic polymorphisms. Furthermore, DPP is not detected in dental pulp. This is possibly due to the existence of two mRNA variants of the DSPP gene: one that encodes the DSP region alone and another that encodes full-length DSPP. The mRNA variant encoding DSP alone is expressed in dental pulp and odontoblasts, but the variant encoding full-length DSPP is predominantly expressed in odontoblasts and barely in dental pulp.
Collapse
Affiliation(s)
- Yasuo Yamakoshi
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - James P. Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Place, Ann Arbor, 48103, USA
| |
Collapse
|
35
|
Functionalized epigallocatechin gallate copolymer inhibit dentin matrices degradation: Mechanical, solubilized telopeptide and proteomic assays. Dent Mater 2018; 34:1625-1633. [DOI: 10.1016/j.dental.2018.08.297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/06/2018] [Accepted: 08/27/2018] [Indexed: 01/02/2023]
|
36
|
Kumar A, Kumar V, Rattan V, Jha V, Bhattacharyya S. Secretome proteins regulate comparative osteogenic and adipogenic potential in bone marrow and dental stem cells. Biochimie 2018; 155:129-139. [PMID: 30367923 DOI: 10.1016/j.biochi.2018.10.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Dental stem cells (DMSC) have been studied extensively since their early discovery. However, the data regarding osteogenic potential of DMSC with other cell types is sparse and the secretome proteins underlying these differences have not been explored. In this study, we have compared the osteogenic and adipogenic potential of DMSC with Bone Marrow Stem cells (BMSC) and reported the contribution of secretome proteins in controlling their differentiation. METHODS Osteogenic potential of these stem cells was compared by mineralization assay, alkaline phosphatase (ALP) assay, immunofluorescence of dentine sialo phosphoprotein (DSPP) & qPCR for osteogenic genes. Adipogenic potential was compared by Oil Red O staining and qPCR for PPAR-γ, leptin & adipsin. Proteomic analysis of secretome was performed by employing WATERS nano Lc-MS/MS system. RESULTS We observed a higher osteogenic potential in DMSC, especially dental pulp stem cells (DPSC) as compared to BMSC population but adipogenic potential was found to be better in BMSC as compared to DMSC. Deeper investigations into secretome of these cells by Lc-MS/MS revealed the presence of proteins pertaining to osteogenic and adipogenic lineage. Presence of some important proteins regulating osteogenic (DSPP, BMP7, DDR2, USP9X) and adipogenic differentiation (NCOA2, PEG10, LPA) in secretome of BMSC and DMSC reflected the role of paracrine factors during differentiation. CONCLUSION Our study provides first evidence regarding regulation of osteogenic/adipogenic potential by secretome proteins in DMSC and BMSC. DMSC especially DPSC and its secretome show an inherent tendency for higher osteogenic differentiation and lower adipogenic differentiation, these may be potential candidates for effective future therapy in osteoporosis where disturbance of osteocyte/adipocyte homeostasis is reported.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Biophysics, PGIMER, Chandigarh, India; Department of Ophthalmology, University of Pittsburgh, USA
| | - Vinod Kumar
- Department of Nephrology, PGIMER, Chandigarh, India
| | - Vidya Rattan
- Unit of Oral and Maxillofacial Surgery, Oral Health Science Centre, PGIMER, Chandigarh, India
| | - Vivekananda Jha
- Department of Nephrology, PGIMER, Chandigarh, India; The George Institute for Global Health, India
| | | |
Collapse
|
37
|
Moon CY, Nam OH, Kim M, Lee HS, Kaushik SN, Cruz Walma DA, Jun HW, Cheon K, Choi SC. Effects of the nitric oxide releasing biomimetic nanomatrix gel on pulp-dentin regeneration: Pilot study. PLoS One 2018; 13:e0205534. [PMID: 30308037 PMCID: PMC6181396 DOI: 10.1371/journal.pone.0205534] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/26/2018] [Indexed: 12/26/2022] Open
Abstract
Successful disinfection alongside complete endodontic tissue regeneration and revascularization are the most desired clinical outcomes of regenerative endodontics. Despite reported clinical successes, significant limitations to the current regenerative endodontic procedure (REP) have been elucidated. To improve the current REP, an antibiotics and nitric oxide (NO) releasing biomimetic nanomatrix gel was developed. The study evaluates antibacterial effects of an antibiotics and NO releasing biomimetic nanomatrix gel on multispecies endodontic bacteria. Antibiotics, ciprofloxacin (CF) and metronidazole (MN) were mixed and encapsulated within the NO releasing biomimetic nanomatrix gel. The gel was synthesized and self-assembled from peptide amphiphiles containing various functional groups. Antibacterial effects of the antibiotics and NO releasing biomimetic nanomatrix gel were evaluated using bacterial viability assays involving endodontic microorganisms including clinical samples. Pulp-dentin regeneration was evaluated via animal-model experiments. The antibiotics and NO releasing biomimetic nanomatrix gel demonstrated a concentration dependent antibacterial effect. In addition, NO alone demonstrated a concentration dependent antibacterial effect on endodontic microorganism. An in vivo analysis demonstrated the antibiotics and NO releasing biomimetic nanomatrix gel promoted tooth revascularization with maturation of root canals. An optimal concentration of and NO releasing nanomatrix gel is suggested for its potential as a root treatment material for REP and an appropriate protocol for human trials. Further investigation is required to obtain a larger sample size and decide upon ideal growth factor incorporation.
Collapse
Affiliation(s)
- Chan-Yang Moon
- Department of Pediatric Dentistry, Kyung Hee University, Seoul, Korea
| | - Ok Hyung Nam
- Department of Pediatric Dentistry, Kyung Hee University, Seoul, Korea
| | - Misun Kim
- Department of Pediatric Dentistry, Kyung Hee University, Seoul, Korea
| | - Hyo-Seol Lee
- Department of Pediatric Dentistry, Kyung Hee University, Seoul, Korea
| | - Sagar N. Kaushik
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - David A. Cruz Walma
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ho-Wook Jun
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Kyounga Cheon
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail: (SCC); (KC)
| | - Sung Chul Choi
- Department of Pediatric Dentistry, Kyung Hee University, Seoul, Korea
- * E-mail: (SCC); (KC)
| |
Collapse
|
38
|
Li WX, Peng H, Yang L, Hao QQ, Sun W, Ji F, Guo WW, Yang SM. Familial nonsyndromic hearing loss with incomplete partition type II caused by novel DSPP gene mutations. Acta Otolaryngol 2018; 138:685-690. [PMID: 29741433 DOI: 10.1080/00016489.2018.1459832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
BACKGROUND Familial nonsyndromic hearing loss (NSHL) with incomplete partition type II (IP-II) is a very rare condition. AIMS/OBJECTIVES To determine the audiological feature, inheritance patterns and genetic etiology of familial NSHL with IP-II in a Chinese family with eight family members. MATERIAL AND METHODS Clinical data were collected from all eight family members, selected deafness genes were sequenced in proband and whole genome sequencing of seven family members was performed. RESULTS The proband were a pair of male nonidentical twins (III:1, III:2). Three patients in this family, including the twins and their father (II:1), were diagnosed with bilateral NSHL with IP-II, and no mutation was found in the genes of SLC26A4, GJB2, GJB3, mitochondrial 12S rRNA, and MITF. Whole genome sequencing data indicated de novo mutations of the gene DSPP, c.3085A > G and c.3087C > T, which resulted in p.N1029D and co-segregated with deafness phenotype, were the underlying genetic etiology. CONCLUSION AND SIGNIFICANCE Familial NSHL with IP-II is extremely rare. In this family, de novo DSPP gene mutations, were considered to be the most probable genetic etiology. And this is the first report to reveal DSPP gene mutations leading to familial NSHL with IP-II.
Collapse
Affiliation(s)
- Wan-Xin Li
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Peng
- Department of Otolaryngology-Head and Neck Surgery, Guangdong No. 2 Provincial People’s Hospital affiliated Southern Medical University, Guangzhou, China
| | - Le Yang
- Department of Otolaryngology-Head and Neck Surgery, Guangdong No. 2 Provincial People’s Hospital affiliated Southern Medical University, Guangzhou, China
| | - Qing-Qing Hao
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Wei Sun
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, the State University of New York at Buffalo, Buffalo, NY, USA
| | - Fei Ji
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Wei-Wei Guo
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Shi-Ming Yang
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
39
|
Jiang C, Zurick K, Qin C, Bernards MT. Probing the influence of SIBLING proteins on collagen-I fibrillogenesis and denaturation. Connect Tissue Res 2018; 59:274-286. [PMID: 28910556 PMCID: PMC6112244 DOI: 10.1080/03008207.2017.1379514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bone tissue is comprised of collagen, non-collagenous proteins, and hydroxyapatite and the SIBLING (small integrin binding, N-linked glycoprotein) family of proteins is the primary group of non-collagenous proteins. By replicating the native interactions between collagen and the SIBLING proteins at the interface of an implant, it is believed that a bone scaffold will more easily integrate with the surrounding tissue. In this work, bone sialoprotein, osteopontin (OPN), dentin sialoprotein (DSP), dentin phosphoprotein (DPP), C-terminal fragment of dentin matrix protein 1 (DMP1-C), and proteoglycan versions of DSP (DSP-PG) and DMP1 (DMP1-PG) were tested individually to determine their roles in collagen fibrillogenesis and the prevention of denaturation. It was shown that DSP and DPP slowed down fibrillogenesis, while other SIBLINGs had limited impact. In addition, the denaturation time was faster in the presence of DSP and OPN, indicating a negative impact. The role of calcium ions in these processes was also investigated. The presence of calcium ions sped up fibrillogenesis in all scenarios tested, but it had a negative impact by reducing the extent. Calcium also sped up the denaturation in most cases, with the exception of DMP1-C and DSP where the opposite was seen. Calcium had a similar effect on the proteoglycan variants in the fibrillogenesis process, but had no impact on the denaturation process in the presence of these two. It is believed that incorporating DMP1-C or DSP on the surface of a bone implant may improve the collagen interactions with the implant, thereby facilitating improved osteointegration.
Collapse
Affiliation(s)
- Chengyu Jiang
- Departments of Chemical Engineering and University of Missouri, Columbia, MO 65211
| | - Kevin Zurick
- Departments of Chemical Engineering and University of Missouri, Columbia, MO 65211
| | - Chunlin Qin
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246
| | - Matthew T. Bernards
- Departments of Chemical Engineering and University of Missouri, Columbia, MO 65211,Bioengineering University of Missouri, Columbia, MO 65211,Corresponding Author: Matthew T., Current Address: Chemical & Materials Engineering Department, University of Idaho, Bernards Moscow, ID 83844.
| |
Collapse
|
40
|
Transgenic expression of dentin phosphoprotein (DPP) partially rescued the dentin defects of DSPP-null mice. PLoS One 2018; 13:e0195854. [PMID: 29672573 PMCID: PMC5908185 DOI: 10.1371/journal.pone.0195854] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/31/2018] [Indexed: 11/19/2022] Open
Abstract
Mutations in the dentin sialophosphoprotein (DSPP) gene cause dentinogenesis imperfecta. After synthesis, DSPP is proteolytically processed into NH2- and COOH-terminal fragments. The NH2-terminal fragment of DSPP is highly glycosylated but not phosphorylated, whereas the COOH-terminal fragment (named "dentin phosphoprotein" or "DPP") is highly phosphorylated but not glycosylated. These two fragments are believed to perform distinct roles in dentin formation. To analyze the functions of DPP in dentinogenesis, we created "Dspp-/-;DPP Tg mice", which expressed transgenic DPP driven by a Type I collagen promoter but lacked the endogenous Dspp gene. We characterized the dentin of the Dspp-/-;DPP Tg mice using X-ray radiography, histology, scanning electron microscopy, double fluorochrome labeling, immunohistochemistry and in situ hybridization. Micro-computed tomography analyses revealed that at postnatal 6 months, the transgenic expression of DPP increased the dentin thickness of the Dspp-null mice by 97.1% and restored the dentin material density by 29.5%. Histological analyses showed that the Dspp-null mice manifested an abnormal widening of the predentin while the predentin in Dspp-/-;DPP Tg mice was narrower than in the Dspp-null mice. Scanning electron microscopy analyses showed that the dentinal tubules in the Dspp-/-;DPP Tg mice were better organized than in the Dspp-null mice. The double fluorochrome labeling analyses demonstrated that the dentin mineral deposition rate in the Dspp-/-;DPP Tg mice was significantly improved compared to that in the Dspp-null mice. These findings indicate that the transgenic expression of DPP partially rescued the dentin defects of the DSPP-null mice, suggesting that DPP may promote dentin formation and that the coordinated actions between DPP and the NH2-terminal fragment of DSPP may be necessary for dentinogenesis.
Collapse
|
41
|
Effect of Polyhydroxybutyrate/Chitosan/Bioglass nanofiber scaffold on proliferation and differentiation of stem cells from human exfoliated deciduous teeth into odontoblast-like cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:128-139. [PMID: 29752081 DOI: 10.1016/j.msec.2018.03.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 03/16/2018] [Accepted: 03/28/2018] [Indexed: 01/07/2023]
Abstract
Scaffolds and their characteristics play a central role in tissue engineering. The purpose of this study was to determine the effects of Polyhydroxybutyrate (PHB)/Chitosan/nano-bioglass (nBG) nanofiber scaffold made using the electrospinning method, on the proliferation and differentiation of stem cells obtained from human exfoliated deciduous teeth into odontoblast-like cells. In this experimental study, the pulps of the molten deciduous teeth were isolated, thereafter, the stem cells from human exfoliated deciduous teeth (SHED) were extracted and then the 3-(4,5-dimethylthiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine the cell viability percentage. The expression of some stem cell genes was studied by flowcytometry. These cells were then subjected to odontoblast by using the bone morphogenetic proteins-2 (BMP2) growth factor in the differentiation medium and for the expression of their specific genes. Primers of collagen type-I, dentin sialophosphoprotein (DSPP) and alkaline phosphatase (ALP) were used and the percentage of differentiation to odontoblast cells in induction scaffolds was investigated using real-time PCR and immunohistochemistry methods. The results revealed a 6-fold increase in the expression of DSPP genes and collagen type-I, and a 2-fold increase in the expression of ALP in scaffold with BMP2 group compared to the scaffold as control group which according to the immunohistochemical test results, showed the extracted SHED to have been differentiated into dentin odontoblast-like cells. As a result, this scaffold can be used as a suitable substrate to apply in dentin tissue engineering.
Collapse
|
42
|
da Rosa WLO, Piva E, da Silva AF. Disclosing the physiology of pulp tissue for vital pulp therapy. Int Endod J 2018; 51:829-846. [DOI: 10.1111/iej.12906] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 01/30/2018] [Indexed: 12/23/2022]
Affiliation(s)
- W. L. O. da Rosa
- Department of Restorative Dentistry; School of Dentistry; Federal University of Pelotas; Pelotas Brazil
| | - E. Piva
- Department of Restorative Dentistry; School of Dentistry; Federal University of Pelotas; Pelotas Brazil
| | - A. F. da Silva
- Department of Restorative Dentistry; School of Dentistry; Federal University of Pelotas; Pelotas Brazil
| |
Collapse
|
43
|
Porntaveetus T, Osathanon T, Nowwarote N, Pavasant P, Srichomthong C, Suphapeetiporn K, Shotelersuk V. Dental properties, ultrastructure, and pulp cells associated with a novel DSPP
mutation. Oral Dis 2018; 24:619-627. [DOI: 10.1111/odi.12801] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/28/2017] [Accepted: 10/30/2017] [Indexed: 12/12/2022]
Affiliation(s)
- T Porntaveetus
- Craniofacial Genetics and Stem Cells Research Group; Faculty of Dentistry; Chulalongkorn University; Bangkok Thailand
- Department of Physiology; Faculty of Dentistry; Chulalongkorn University; Bangkok Thailand
| | - T Osathanon
- Department of Physiology; Faculty of Dentistry; Chulalongkorn University; Bangkok Thailand
- Mineralized Tissue Research Unit and Department of Anatomy; Faculty of Dentistry; Chulalongkorn University; Bangkok Thailand
| | - N Nowwarote
- Mineralized Tissue Research Unit and Department of Anatomy; Faculty of Dentistry; Chulalongkorn University; Bangkok Thailand
| | - P Pavasant
- Mineralized Tissue Research Unit and Department of Anatomy; Faculty of Dentistry; Chulalongkorn University; Bangkok Thailand
| | - C Srichomthong
- Center of Excellence for Medical Genetics; Department of Pediatrics; Faculty of Medicine; Chulalongkorn University; Bangkok Thailand
- Excellence Center for Medical Genetics; King Chulalongkorn Memorial Hospital; the Thai Red Cross Society; Bangkok Thailand
| | - K Suphapeetiporn
- Center of Excellence for Medical Genetics; Department of Pediatrics; Faculty of Medicine; Chulalongkorn University; Bangkok Thailand
- Excellence Center for Medical Genetics; King Chulalongkorn Memorial Hospital; the Thai Red Cross Society; Bangkok Thailand
| | - V Shotelersuk
- Center of Excellence for Medical Genetics; Department of Pediatrics; Faculty of Medicine; Chulalongkorn University; Bangkok Thailand
- Excellence Center for Medical Genetics; King Chulalongkorn Memorial Hospital; the Thai Red Cross Society; Bangkok Thailand
| |
Collapse
|
44
|
Mucuk G, Sepet E, Erguven M, Ekmekcı O, Bılır A. 1,25-Dihydroxyvitamin D 3 stimulates odontoblastic differentiation of human dental pulp-stem cells in vitro. Connect Tissue Res 2017; 58:531-541. [PMID: 27905856 DOI: 10.1080/03008207.2016.1264395] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND 1,25-Dihydroxyvitamin D3 (1,25-OH D3) plays an important role in mineralized tissue metabolism, including teeth. However, few studies have addressed its role in odontoblastic differentiation of human dental pulp-stem cells (hDPSCs). AIM This study aimed to understand the influence of various concentrations of 1,25-OH D3 on the proliferation capacity and early dentinogenesis responses of hDPSCs. MATERIALS AND METHODS hDPSCs were obtained from the impacted third molar teeth. Monolayer cultured cells were incubated with a differentiation medium containing different concentrations of 1,25-OH D3 (0.001, 0.01, and 0.1 µM). All groups were evaluated by S-phase rate [immunohistochemical (IHC) bromodeoxyuridine (BrdU) staining], STRO-1 and dentin sialoprotein (DSP)+ levels (IHC), and alkaline phosphatase (ALP, enzyme-linked immunosorbent assay (ELISA)) levels. RESULTS The number of cells that entered the S-phase was determined to be the highest and lowest in the control and 0.001 µM 1,25-OH D3 groups, respectively. The 0.1 µM vitamin D3 group had the highest increase in DSP+ levels. The highest Stro-1 levels were detected in the control and 0.1 µM 1,25-OH D3 groups, respectively. The 0.1 µM 1,25-OH D3 induced a mild increase in ALP activity. CONCLUSIONS This study demonstrated that 1,25-OH D3 stimulated odontoblastic differentiation of hDPSCs in vitro in a dose-dependent manner. The high DSP + cell number and a mild increase in ALP activity suggest that DPSCs treated with 0.1 μM 1,25-OH D3 are in the later stage of odontoblastic differentiation. The results confirm that 1,25-OH D3-added cocktail medium provides a sufficient microenvironment for the odontoblastic differentiation of hDPSCs in vitro.
Collapse
Affiliation(s)
- Goksen Mucuk
- a Pediatric Dentistry Department, Faculty of Dentistry , Istanbul University , Istanbul , Turkey
| | - Elif Sepet
- a Pediatric Dentistry Department, Faculty of Dentistry , Istanbul University , Istanbul , Turkey
| | - Mine Erguven
- b Medical Biochemistry Department, Faculty of Medicine , Istanbul Aydın University , Istanbul , Turkey
| | - Ozlem Ekmekcı
- c Biochemistry Department, Cerrahpasa Faculty of Medicine , Istanbul University , Istanbul , Turkey
| | - Ayhan Bılır
- d Histology and Embryology Department, Istanbul Faculty of Medicine , Istanbul Aydın University , Istanbul , Turkey
| |
Collapse
|
45
|
Abbey SR, Eckhard U, Solis N, Marino G, Matthew I, Overall CM. The Human Odontoblast Cell Layer and Dental Pulp Proteomes and N-Terminomes. J Dent Res 2017; 97:338-346. [PMID: 29035686 DOI: 10.1177/0022034517736054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The proteome and N-terminome of the human odontoblast cell layer were identified for the first time by shotgun proteomic and terminal amine isotopic labeling of substrates (TAILS) N-terminomic analyses, respectively, and compared with that of human dental pulp stroma from 26 third molar teeth. After reverse-phase liquid chromatography-tandem mass spectrometry, >170,000 spectra from the shotgun and TAILS analyses were matched by 4 search engines to 4,888 and 12,063 peptides in the odontoblast cell layer and pulp stroma, respectively. Within these peptide groups, 1,543 and 5,841 protein N-termini, as well as 895 and 2,423 unique proteins, were identified with a false discovery rate of ≤1%. Thus, the human dental pulp proteome was expanded by 974 proteins not previously identified among the 4,123 proteins in our 2015 dental pulp study. Further, 222 proteins of the odontoblast cell layer were not found in the pulp stroma, suggesting many of these proteins are synthesized only by odontoblasts. When comparing the proteomes of older and younger donors, differences were more apparent in the odontoblast cell layer than in the dental pulp stroma. In the odontoblast cell layer proteome, we found proteomic evidence for dentin sialophosphoprotein, which is cleaved into dentin sialoprotein and dentin phosphoprotein. By exploring the proteome of the odontoblast cell layer and expanding the known dental pulp proteome, we found distinct proteome differences compared with each other and with dentin. Moreover, between 61% and 66% of proteins also occurred as proteoforms commencing with a neo-N-terminus not annotated in UniProt. Hence, TAILS increased proteome coverage and revealed considerable proteolytic processing, by identifying stable proteoforms in these dynamic dental tissues. All mass spectrometry raw data have been deposited to ProteomeXchange with the identifier <PXD006557>, with the accompanying metadata at Mendeley Data ( https://data.mendeley.com/datasets/b57zfh6wmy/1 ).
Collapse
Affiliation(s)
- S R Abbey
- 1 Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - U Eckhard
- 1 Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada.,2 Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - N Solis
- 1 Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada.,2 Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - G Marino
- 1 Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada.,2 Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - I Matthew
- 1 Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - C M Overall
- 1 Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada.,2 Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,3 Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
46
|
BMP-2 induced Dspp transcription is mediated by Dlx3/Osx signaling pathway in odontoblasts. Sci Rep 2017; 7:10775. [PMID: 28883412 PMCID: PMC5589848 DOI: 10.1038/s41598-017-10908-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/16/2017] [Indexed: 01/18/2023] Open
Abstract
Dentin sialophosphoprotein (Dspp) as a differentiation marker of odontoblasts is regulated by BMP-2. However, the intimate mechanism is still unknown. Transcription factors Dlx3 and Osx are essential for odontoblasts differentiation. We hypothesized that BMP-2 regulation of Dspp transcription was mediated by Dlx3 and/or Osx in odontoblasts. In the present investigation, we found that BMP-2 stimulated expression and nuclear translocation of Dlx3 and Osx in odontoblasts both in vitro and in vivo. Osx was a downstream target of Dlx3 and both of them stimulated Dsp expression. Both Dlx3 and Osx were able to activate Dspp promoter from nucleotides (nt) -318 to +54 by transfections of luciferase reports containing different lengths of mouse Dspp promoters. The binding of Dlx3 and Osx with nt -318 to +54 of Dspp promoter was verified by chromatin immunoprecipitation in vivo. Two Dlx3 binding sites and one Osx binding site on Dspp promoter were found by EMSA. Furthermore, the exact biological function of these binding sites was confirmed by site-directed mutagenesis. At last, the protein-protein interaction between Dlx3 and Osx in odontoblasts was detected by co-immunoprecipitation. In conclusion, in this study we found a novel signaling pathway in which BMP-2 activates Dspp gene transcription via Dlx3/Osx pathway.
Collapse
|
47
|
Hashmi B, Mammoto T, Weaver J, Ferrante T, Jiang A, Jiang E, Feliz J, Ingber DE. Mechanical induction of dentin-like differentiation by adult mouse bone marrow stromal cells using compressive scaffolds. Stem Cell Res 2017; 24:55-60. [PMID: 28841424 DOI: 10.1016/j.scr.2017.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/19/2017] [Accepted: 08/13/2017] [Indexed: 12/28/2022] Open
Abstract
Tooth formation during embryogenesis is controlled through a complex interplay between mechanical and chemical cues. We have previously shown that physical cell compaction of dental mesenchyme cells during mesenchymal condensation is responsible for triggering odontogenic differentiation during embryogenesis, and that expression of Collagen VI stabilizes this induction. In addition, we have shown that synthetic polymer scaffolds that artificially induce cell compaction can induce embryonic mandible mesenchymal cells to initiate tooth differentiation both in vitro and in vivo. As embryonic cells would be difficult to use for regenerative medicine applications, here we explored whether compressive scaffolds coated with Collagen VI can be used to induce adult bone marrow stromal cells (BMSCs) to undergo an odontogenic lineage switch. These studies revealed that when mouse BMSCs are compressed using these scaffolds they increase expression of critical markers of tooth differentiation in vitro, including the key transcription factors Pax9 and Msx1. Implantation under the kidney capsule of contracting scaffolds bearing these cells in mice also resulted in local mineralization, calcification and production of dentin-like tissue. These findings show that these chemically-primed compressive scaffolds can be used to induce adult BMSCs to undergo a lineage switch and begin to form dentin-like tissue, thus raising the possibility of using adult BMSCs for future tooth regeneration applications.
Collapse
Affiliation(s)
- Basma Hashmi
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Tadanori Mammoto
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - James Weaver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Thomas Ferrante
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Amanda Jiang
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Elisabeth Jiang
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Juani Feliz
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Donald E Ingber
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02138, USA.
| |
Collapse
|
48
|
Sun S, Wang GL, Huang Y, Diwu HL, Luo YC, Su J, Xiao YH. The effects of 2-hydroxyethyl methacrylate on matrix metalloproteinases 2 and 9 in human pulp cells and odontoblast-like cells in vitro. Int Endod J 2017; 51 Suppl 2:e157-e166. [PMID: 28667765 DOI: 10.1111/iej.12812] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 06/27/2017] [Indexed: 12/17/2022]
Abstract
AIM To assess the effects of 2-hydroxyethyl methacrylate (HEMA) on proliferation and migration of human pulp cells, as well as on matrix metalloproteinase (MMP-2 and MMP-9) expression in human odontoblast-like cells, contributing to the goal of determining the relationship between resin materials and MMP activity in pulp-dentine complexes. METHODOLOGY Dental pulp cell cultures were established from pulp tissue of human teeth extracted for orthodontic purposes. Pulp cell differentiation was characterized in the presence of dentine sialophosphoprotein, bone sialoprotein and alkaline phosphatase by reverse transcription polymerase chain reaction. MMP activity was assessed by gelatine zymography with media containing HEMA. Cell viability was evaluated using methyl thiazolyl tetrazolium assay for 24-72 h. Cell migration was tested using Transwell migration assay. Western blotting was used to visualize MMP expression with the nontoxic HEMA concentrations (0-400 μg mL-1 ) for 48 h. RESULTS Pulp cell proliferation decreased with HEMA exposure in a time- and concentration-dependent manner. HEMA concentrations ≤400 μg mL-1 did not induce changes in cell viability at 48 h (P < 0.05). Pulp cells were induced to differentiate into odontoblast-like cells in media containing 5 mg mL-1 ascorbic acid and 10 mmol L-1 β-sodium glycerophosphate for 3-4 weeks. After incubation with HEMA, dose-dependent inhibition was observed; HEMA had a strong inhibitory effect on MMP activity. Compared with the control group, cell migration and MMP expression were inhibited significantly with increasing HEMA concentration at noncytotoxic doses (P < 0.05). CONCLUSIONS Cell viability was not affected at HEMA concentrations ≤400 μg mL-1 . Within this range, HEMA inhibited MMP-2 and MMP-9 expression and activity, which may protect against type I collagen degradation effectively during dentine adhesive procedures.
Collapse
Affiliation(s)
- S Sun
- Department of Stomatology, Kunming General Hospital of Chengdu Military Command, Teaching Hospital of Kunming Medical University, Kunming, China.,Department of Stomatology, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, China
| | - G-L Wang
- Molecular Pharmacology Laboratory, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Y Huang
- Molecular Pharmacology Laboratory, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - H-L Diwu
- Department of Stomatology, Kunming General Hospital of Chengdu Military Command, Teaching Hospital of Kunming Medical University, Kunming, China
| | - Y-C Luo
- Department of Stomatology, Kunming General Hospital of Chengdu Military Command, Teaching Hospital of Kunming Medical University, Kunming, China
| | - J Su
- Department of Stomatology, Kunming General Hospital of Chengdu Military Command, Teaching Hospital of Kunming Medical University, Kunming, China
| | - Y-H Xiao
- Department of Stomatology, Kunming General Hospital of Chengdu Military Command, Teaching Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
49
|
Effects of pulpotomy using mineral trioxide aggregate on prostaglandin transporter and receptors in rat molars. Sci Rep 2017; 7:6870. [PMID: 28761141 PMCID: PMC5537257 DOI: 10.1038/s41598-017-07167-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/26/2017] [Indexed: 11/09/2022] Open
Abstract
Mineral trioxide aggregate (MTA) is a commonly used dental pulp-capping material with known effects in promoting reparative dentinogenesis. However, the mechanism by which MTA induces dentine repair remains unclear. The aim of the present study was to investigate the role of prostaglandin E2 (PGE2) in dentine repair by examining the localisation and mRNA expression levels of its transporter (Pgt) and two of its receptors (Ep2 and Ep4) in a rat model of pulpotomy with MTA capping. Ep2 expression was detected in odontoblasts, endothelial cells, and nerve fibres in normal and pulpotomised tissues, whereas Pgt and Ep4 were immunolocalised only in the odontoblasts. Moreover, mRNA expression of Slco2a1 (encoding Pgt), Ptger2 (encoding Ep2), and Ptger4 (encoding Ep4) was significantly upregulated in pulpotomised dental pulp and trigeminal ganglia after MTA capping. Our results provide insights into the functions of PGE2 via Pgt and Ep receptors in the healing dentine/pulp complex and may be helpful in developing new therapeutic targets for dental disease.
Collapse
|
50
|
Zhu YQ, Song RM, Ritchie HH. Differential expression between "DSP-only" and DSP-PP 523 transcripts in rat molar teeth. Arch Oral Biol 2017; 82:33-37. [PMID: 28595095 DOI: 10.1016/j.archoralbio.2017.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 04/16/2017] [Accepted: 04/28/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To compare the expression patterns of two multiple transcripts derived from DSP-PP gene during tooth development. One is DSP-only transcript (i.e. does not encode PP) and the other is DSP-PP523 transcript, a main DSP-PP transcript. DESIGN Unique antisense and sense riboprobes were generated from DSP-only and DSPPP523 cDNAs for in situ studies to examine DSP-only and DSP-PP523 transcript expression in developing molars. Paraffin-embedded sections (5-7μ m) from embryonic 20day, postnatal 2, 3 and 6days were deparaffined and hydrated. Tissues were prehybridized, then hybridized with DSP-only and DSP-PP523 anti-sense (AS) or sense (S) Digoxigenin labeled-riboprobes overnight, and washed. Anti-Digoxigenin antibodies conjugated to alkaline phosphatase were used to detect the presence of bound riboprobes by color reaction with NBT/BCIP. Stro-1 antibody was used for immunohistochemical analysis of Stro-1 protein expression in rat molars. RESULTS We found that unlike the DSP-PP523 transcript, the DSP-only transcript does not express in the entire polarized mature odontoblasts but is expressed in the areas subjacent to the mature odontoblast layer. In addition, DSP-only transcript is expressed in the dental pulp. Interestingly, Stro-1 protein, a stem cell marker, was also identified in the areas subjacentto odontoblasts and in dental pulp. CONCLUSION Differential expression of DSP-only and DSP-PP523 transcripts suggest that these two kinds of transcripts may play different roles during dentinogenesis. DSP-PP523 transcript is expressed in mature odontoblasts, which actively participates in dentin formation. DSP-only transcript might have a different function.
Collapse
Affiliation(s)
- Ya-Qin Zhu
- Department of General Dentistry, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Ryan M Song
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | - Helena H Ritchie
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA.
| |
Collapse
|