1
|
Batran RZ, Ebaid MS, Nasralla SN, Son NT, Ha NX, Abdelsattar Ibrahim HA, Alkabbani MA, Kasai Y, Imagawa H, Al-Sanea MM, Ibrahim TM, Elshamy AI, Bekhit AA, Eldehna WM, Sabt A. Synthesis and mechanistic insights of Coumarinyl-Indolinone hybrids as potent inhibitors of Leishmania major. Eur J Med Chem 2025; 288:117392. [PMID: 39999741 DOI: 10.1016/j.ejmech.2025.117392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
Leishmaniasis, recognized as a neglected tropical disease, is a major global health issue that impacts millions of individuals across the globe. The limitations of existing treatments underscore the urgent need for novel antileishmanial drugs. In response, this study synthesized and evaluated fifteen hybrid compounds (7a-c, 10a-j, and 13a-b) combining 4-hydroxycoumarin and pyrazolyl indolin-2-one motifs for their in vitro antileishmanial efficacy towards Leishmania major. These molecules demonstrated remarkable activity against the promastigote form, with IC50 values ranging from 1.21 to 7.21 μM, surpassing the reference drug miltefosine (IC50 = 7.83 μM). Assessment against the intracellular amastigote form revealed efficient inhibitory action (IC50: 2.41-9.44 μM vs. 8.07 μM for miltefosine). Compounds 7a and 7b exhibited exceptional antileishmanial activity against both forms while maintaining favorable safety profiles. Mechanistic studies indicated that the most effective compounds act through an antifolate mechanism, targeting pteridine reductase 1 (PTR1) and dihydrofolate reductase-thymidylate synthase (DHFR-TS). Molecular docking and dynamics simulations of compounds 7a and 7b revealed strong in-silico binding and stable dynamics against PTR1, suggesting a high potential for enzyme inhibition. These findings present a promising new class of antileishmanial agents targeting the folate pathway.
Collapse
Affiliation(s)
- Rasha Z Batran
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Center, Dokki, Cairo, 12622, Egypt
| | - Manal S Ebaid
- Department of Chemistry, College of Science, Northern Border University, Arar, Saudi Arabia.
| | - Sherry N Nasralla
- Pharmacy Program, Allied Health Department, College of Health Sciences, University of Bahrain, P.O. Box 32038, Bahrain
| | - Ninh The Son
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoim, 10000, Viet Nam
| | - Nguyen Xuan Ha
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, 10000, Hanoim, Viet Nam
| | | | - Mahmoud Abdelrahman Alkabbani
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian-Russian University, 11829, Badr City, Cairo, Egypt
| | - Yusuke Kasai
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Hiroshi Imagawa
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Mohammad M Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, 72388, Sakaka, Aljouf, Saudi Arabia
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt
| | - Abdelsamed I Elshamy
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Center, Dokki, Cairo, 12622, Egypt; Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Adnan A Bekhit
- Pharmacy Program, Allied Health Department, College of Health Sciences, University of Bahrain, P.O. Box 32038, Bahrain; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521, Alexandria, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., 21648, Alexandria, Egypt.
| | - Ahmed Sabt
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Center, Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
2
|
Boualli A, Laamari Y, Bimoussa A, Ejaz SA, Attaullah HM, Riahi A, Robert A, Daran JC, Al Nasr IS, Koko WS, Khan TA, Biersack B, Auhmani A, Itto MYA. Design, Hemisynthesis, Characterization, Molecular Docking, and Dynamics Evaluation of Novel Totarol-1,2,3-Triazole Derivatives as Leishmaniasis and Toxoplasmosis Agents. Chem Biol Drug Des 2025; 105:e70042. [PMID: 39945775 DOI: 10.1111/cbdd.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/15/2024] [Accepted: 12/27/2024] [Indexed: 03/20/2025]
Abstract
Tropical parasitic diseases like leishmaniasis pose significant public health challenges, impacting millions of individuals globally. Current drug treatments for these diseases have notable drawbacks and side effects, underscoring the pressing need for new medications with improved selectivity and reduced toxicity. Through structural modifications of both natural and synthetic compounds using click chemistry, researchers have been able to produce derivatives showing promising activity against these parasites. In this study, 21 novel 1,2,3-triazole analogues of totarol were synthesized using O-propargylated totarol derivatives and substituted arylazide. These compounds were characterized through various analytical techniques, including 1H NMR, 13C NMR, and HRMS. An x-ray crystallographic study of compounds 4 and 6 was carried out to fully establish the structure of the newly prepared totarol derivatives. All synthesized compounds were then screened in vitro for their antileishmanial activities against Leishmania major promastigotes, amastigotes, and Toxoplasma gondii tachyzoites Out of the tested analogues, six compounds (7c, 8b-e, and 9 g) displayed antileishmanial activity against L. major amastigotes with IC50 17.3, 14.2, 13.1 18.2 13.2 and 17.3 μg mL-1 respectively, while only 8e gave antileishmanial activity against both promastigotes and amastigotes with IC50 11.7 and 13.2 μg mL-1 respectively. Additionally, the presence of a nitro group was correlated with enhanced antileishmanial activity. Moreover, a molecular docking study was conducted, focusing on 8e, the most active antileishmanial compound, to elucidate its putative binding pattern at the active site of the selected leishmanial trypanothione reductase target.
Collapse
Affiliation(s)
- Ayoub Boualli
- Laboratory of Molecular Chemistry, unit of Organic Synthesis and Molecular Physico-Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, Université Cadi Ayyad, Marrakech, Morocco
| | - Yassine Laamari
- Laboratory of Molecular Chemistry, unit of Organic Synthesis and Molecular Physico-Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, Université Cadi Ayyad, Marrakech, Morocco
| | - Abdoullah Bimoussa
- Laboratory of Molecular Chemistry, unit of Organic Synthesis and Molecular Physico-Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, Université Cadi Ayyad, Marrakech, Morocco
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hafiz Muhammad Attaullah
- Department of Pharmaceutical Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Abdelkhalek Riahi
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312 Bât. Euro- pol'Agro - Moulin de la Housse UFR Sciences, Reims, France
| | - Anthony Robert
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312 Bât. Euro- pol'Agro - Moulin de la Housse UFR Sciences, Reims, France
| | - Jean-Claude Daran
- Laboratoire de Chimie de Coordination, CNRS UPR8241, 205 route de Narbonne, Toulouse, France
| | - Ibrahim S Al Nasr
- Department of Biology, College of Science, Qassim University, Buraydah, Qassim, Saudi Arabia
| | - Waleed S Koko
- Department of Biology, College of Science, Qassim University, Buraydah, Qassim, Saudi Arabia
| | - Tariq A Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Qassim, Saudi Arabia
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University of Bayreuth, Bayreuth, Germany
| | - Aziz Auhmani
- Laboratory of Molecular Chemistry, unit of Organic Synthesis and Molecular Physico-Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, Université Cadi Ayyad, Marrakech, Morocco
| | - My Youssef Ait Itto
- Laboratory of Molecular Chemistry, unit of Organic Synthesis and Molecular Physico-Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, Université Cadi Ayyad, Marrakech, Morocco
| |
Collapse
|
3
|
Hadi A, Yaqoob M, Hussain F, Al-Kahraman YMSA, Jan MS, Mahmood A, Shier T, Rashid U. Antileishmanial potential of thiourea-based derivatives: design, synthesis and biological activity. RSC Adv 2024; 14:37131-37141. [PMID: 39569119 PMCID: PMC11575720 DOI: 10.1039/d4ra04965a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
Leishmaniasis is a neglected tropical disease caused by protozoan parasites and transmitted to humans by the sandfly vector. Currently, the disease has limited therapeutic alternatives. Thiourea derivatives were designed, synthesized, and screened for antileishmanial activity. The synthesized compounds 4g, 20a, and 20b demonstrated significant in vitro potency against L. major, L. tropica, and L. donovani promastigotes with IC50 values at low submicromolar concentrations. Compound 4g showed the highest activity against the amastigotes of L. major. In enzyme inhibition assays, compounds 4g, 20a, and 20b demonstrated good inhibitory potential against L. major dihydrofolate reductase (DHFR) and pteridine reductase 1 (PTR1). Reversal of the antileishmanial effect by adding folic acid revealed that the compounds 4g, 20a, and 20b act through an antifolate mechanism. Cytotoxicity data on normal human embryonic kidney cells (HEK-293) showed that the synthesized compounds displayed better safety profiles. Docking experiments on the enzymes L. major DHFR and PTR1 demonstrated the significant interactions with the active pocket residues of the target enzymes.
Collapse
Affiliation(s)
- Abdul Hadi
- Department of Pharmacy, COMSATS University Islamabad Abbottabad Campus 22060 KPK Pakistan
- Faculty of Pharmacy and Health Sciences, University of Balochistan Quetta 08770 Pakistan
- Department of Medicinal Chemistry, University of Minnesota Minneapolis USA
| | - Muhammad Yaqoob
- Department of Chemistry, COMSATS University Islamabad Abbottabad Campus 22060 KPK Pakistan
| | - Fahad Hussain
- Department of Chemistry, COMSATS University Islamabad Abbottabad Campus 22060 KPK Pakistan
| | | | - Muhammad Saeed Jan
- Department of Pharmacy, Bacha Khan University 24420 Charsadda KPK Pakistan
| | - Abid Mahmood
- Department of Pharmaceutical Chemistry, Government College University Faisalabad Pakistan
| | - Thomas Shier
- Department of Medicinal Chemistry, University of Minnesota Minneapolis USA
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad Abbottabad Campus 22060 KPK Pakistan
| |
Collapse
|
4
|
Yousuf M, Zafar H, Atia-Tul-Wahab, Yousuf S, Rahman N, Ghoran SH, Ahmed A, Choudhary MI. Identification of new potential inhibitors of pteridine reductase-1 (PTR1) via biophysical and biochemical mechanism-based approaches: Step towards the treatment of Leishmaniasis. Int J Biol Macromol 2024; 282:137198. [PMID: 39489241 DOI: 10.1016/j.ijbiomac.2024.137198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 09/30/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Leishmaniasis is a parasitic disease, which spreads from the bite of an infected Phlebotomine fly to human hosts. The disease is characterized by a number of clinical manifestations, such as ulcerative lesions at the site of sandfly bite (cutaneous form), inflammation of mucosal membranes (mucosal leishmaniasis) or the deadly visceral form. This study was aimed to target pteridine reductase-1 (PTR1), a member of short chain dehydrogenases, which accounts for the reduction of conjugated and unconjugated pterins in Leishmania parasite. The ptr1-pET28a+-tev construct was expressed using BL21 (DE3) cells, followed by two tandem purification steps including affinity and gel permeation chromatography. In the next phase, functional studies of PTR1 were performed via screening of an in-house library of 500 compounds. The biochemical-mechanism based assay of PTR1 identified 11 hits that were also found to be non-cytotoxic against human fibroblast cell line (BJ) (except compound 6), and thus further studied via computational technique and saturation transfer difference-nuclear magnetic resonance (STD-NMR) spectroscopy. These high throughput techniques identified six compounds 2, 4, 5, 7, 9, and 11 as active, which were then assessed via in-vitro assay. Among them, compounds 2, 4, and 7 showed substantial leishmanicidal activity, comparable to the standard drug, miltefosine (IC50 value: 31.8 ± 0.2 μM). These results narrowed down the search to 3 compounds as potential leads, with prominent protein-ligand interaction profiles. Hence, the respective compounds can be further assessed for their therapeutic potential against leishmaniasis.
Collapse
Affiliation(s)
- Muhammad Yousuf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Humaira Zafar
- Dr. Panjwani Center for Molecular and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Atia-Tul-Wahab
- Dr. Panjwani Center for Molecular and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Sammer Yousuf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Noor Rahman
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Salar Hafez Ghoran
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Aftab Ahmed
- School of Pharmacy, Chapman University, 9401 Jeronimo Road, Irvine, CA 92618, USA.
| | - M Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Dr. Panjwani Center for Molecular and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
5
|
González-Matos M, Aguado ME, Izquierdo M, Monzote L, González-Bacerio J. Compounds with potentialities as novel chemotherapeutic agents in leishmaniasis at preclinical level. Exp Parasitol 2024; 260:108747. [PMID: 38518969 DOI: 10.1016/j.exppara.2024.108747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Leishmaniasis are neglected infectious diseases caused by kinetoplastid protozoan parasites from the genus Leishmania. These sicknesses are present mainly in tropical regions and almost 1 million new cases are reported each year. The absence of vaccines, as well as the high cost, toxicity or resistance to the current drugs determines the necessity of new treatments against these pathologies. In this review, several compounds with potentialities as new antileishmanial drugs are presented. The discussion is restricted to the preclinical level and molecules are organized according to their chemical nature, source and molecular targets. In this manner, we present antimicrobial peptides, flavonoids, withanolides, 8-aminoquinolines, compounds from Leish-Box, pyrazolopyrimidines, and inhibitors of tubulin polymerization/depolymerization, topoisomerase IB, proteases, pteridine reductase, N-myristoyltransferase, as well as enzymes involved in polyamine metabolism, response against oxidative stress, signaling pathways, and sterol biosynthesis. This work is a contribution to the general knowledge of these compounds as antileishmanial agents.
Collapse
Affiliation(s)
- Maikel González-Matos
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Mirtha Elisa Aguado
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Maikel Izquierdo
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Lianet Monzote
- Department of Parasitology, Center for Research, Diagnosis and Reference, Tropical Medicine Institute "Pedro Kourí", Autopista Novia Del Mediodía Km 6½, La Lisa, La Habana, Cuba.
| | - Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba; Department of Biochemistry, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba.
| |
Collapse
|
6
|
Ullah W, Wu WF, Malak N, Nasreen N, Swelum AA, Marcelino LA, Niaz S, Khan A, Ben Said M, Chen CC. Computational investigation of turmeric phytochemicals targeting PTR1 enzyme of Leishmania species. Heliyon 2024; 10:e27907. [PMID: 38533011 PMCID: PMC10963314 DOI: 10.1016/j.heliyon.2024.e27907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
In this study, we used in silico techniques to identify available parasite treatments, representing a promising therapeutic avenue. Building upon our computational initiatives aimed at discovering natural inhibitors for various target enzymes from parasites causing neglected tropical diseases (NTDs), we present novel findings on three turmeric-derived phytochemicals as inhibitors of Leishmania pteridine reductase I (PTR1) through in silico methodologies. PTR1, a crucial enzyme in the unique folate metabolism of trypanosomatid parasites, holds established therapeutic significance. Employing MOE software, a molecular docking analysis assesses the efficacy of turmeric phytochemicals against Leishmania PTR1. Validation of the docking protocol is confirmed with an RMSD value of 2. Post-docking, compounds displaying notable interactions with critical residues and binding affinities ranging between -6 and -8 kcal/mol are selected for interaction pattern exploration. Testing twelve turmeric phytochemicals, including curcumin, zingiberene, curcumol, curcumenol, eugenol, bisdemethoxycurcumin, tetrahydrocurcumin, tryethylcurcumin, turmerones, turmerin, demethoxycurcumin, and turmeronols, revealed binding affinities ranging from -5.5 to -8 kcal/mol. Notably, curcumin, demethoxycurcumin, and bisdemethoxycurcumin exhibit binding affinities within -6.5 to -8 kcal/mol and establish substantial interactions with catalytic residues. These phytochemicals hold promise as lead structures for rational drug design targeting Leishmania spp. PTR in future applications. This work underscores the potential of these identified phytochemicals in the development of more effective inhibitors, demonstrating their relevance in addressing neglected tropical diseases caused by parasites.
Collapse
Affiliation(s)
- Wasia Ullah
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Wen-Feng Wu
- Department of Radiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 600, Taiwan
| | - Nosheen Malak
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Nasreen Nasreen
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Ayman A. Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 1451, Saudi Arabia
| | - Liliana Aguilar Marcelino
- National Center for Disciplinary Research in Animal Health and Safety (INIFAP), Km 11 Federal Road Cuernavaca-Cuautla, 62550, Jiutepec, Morelos, Mexico
| | - Sadaf Niaz
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Adil Khan
- Department of Zoology, Bacha Khan University Charsadda, Charsadda, 24420, Pakistan
- Department of Biology, Mount Allison University, Sackville, E4L 1G7, New Brunswick, Canada
| | - Mourad Ben Said
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, 2010, Tunisia
- Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Manouba, 2010, Tunisia
| | - Chien-Chin Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 600, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, 717, Taiwan
- Ph.D. Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| |
Collapse
|
7
|
Muñoz-Vega MC, López-Hernández S, Sierra-Chavarro A, Scotti MT, Scotti L, Coy-Barrera E, Herrera-Acevedo C. Machine-Learning- and Structure-Based Virtual Screening for Selecting Cinnamic Acid Derivatives as Leishmania major DHFR-TS Inhibitors. Molecules 2023; 29:179. [PMID: 38202763 PMCID: PMC10779987 DOI: 10.3390/molecules29010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
The critical enzyme dihydrofolate reductase-thymidylate synthase in Leishmania major (LmDHFR-TS) serves a dual-purpose role and is essential for DNA synthesis, a cornerstone of the parasite's reproductive processes. Consequently, the development of inhibitors against LmDHFR-TS is crucial for the creation of novel anti-Leishmania chemotherapies. In this study, we employed an in-house database containing 314 secondary metabolites derived from cinnamic acid that occurred in the Asteraceae family. We conducted a combined ligand/structure-based virtual screening to identify potential inhibitors against LmDHFR-TS. Through consensus analysis of both approaches, we identified three compounds, i.e., lithospermic acid (237), diarctigenin (306), and isolappaol A (308), that exhibited a high probability of being inhibitors according to both approaches and were consequently classified as promising hits. Subsequently, we expanded the binding mode examination of these compounds within the active site of the test enzyme through molecular dynamics simulations, revealing a high degree of structural stability and minimal fluctuations in its tertiary structure. The in silico predictions were then validated through in vitro assays to examine the inhibitory capacity of the top-ranked naturally occurring compounds against LmDHFR-TS recombinant protein. The test compounds effectively inhibited the enzyme with IC50 values ranging from 6.1 to 10.1 μM. In contrast, other common cinnamic acid derivatives (i.e., flavonoid glycosides) from the Asteraceae family, such as hesperidin, isovitexin 4'-O-glucoside, and rutin, exhibited low activity against this target. The selective index (SI) for all tested compounds was determined using HsDHFR with moderate inhibitory effect. Among these hits, lignans 306 and 308 demonstrated the highest selectivity, displaying superior SI values compared to methotrexate, the reference inhibitor of DHFR-TS. Therefore, continued research into the anti-leishmanial potential of these C6C3-hybrid butyrolactone lignans may offer a brighter outlook for combating this neglected tropical disease.
Collapse
Affiliation(s)
- Maria Camila Muñoz-Vega
- Department of Chemical Engineering, Universidad ECCI, Bogotá, Distrito Capital 111311, Colombia; (M.C.M.-V.); (S.L.-H.); (A.S.-C.)
- Laboratorio de Investigación en Biocatálisis y Biotransformaciones (LIBB), Grupo de Investigación en Ingeniería de los Procesos Agroalimentarios y Biotecnológicos (GIPAB), Departamento de Química Universidad del Valle, Cali 760042, Colombia
| | - Sofía López-Hernández
- Department of Chemical Engineering, Universidad ECCI, Bogotá, Distrito Capital 111311, Colombia; (M.C.M.-V.); (S.L.-H.); (A.S.-C.)
| | - Adrián Sierra-Chavarro
- Department of Chemical Engineering, Universidad ECCI, Bogotá, Distrito Capital 111311, Colombia; (M.C.M.-V.); (S.L.-H.); (A.S.-C.)
| | - Marcus Tullius Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (M.T.S.); (L.S.)
| | - Luciana Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (M.T.S.); (L.S.)
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia;
| | - Chonny Herrera-Acevedo
- Department of Chemical Engineering, Universidad ECCI, Bogotá, Distrito Capital 111311, Colombia; (M.C.M.-V.); (S.L.-H.); (A.S.-C.)
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (M.T.S.); (L.S.)
| |
Collapse
|
8
|
Mohamed MAA, Kadry AM, Bekhit SA, Abourehab MAS, Amagase K, Ibrahim TM, El-Saghier AMM, Bekhit AA. Spiro heterocycles bearing piperidine moiety as potential scaffold for antileishmanial activity: synthesis, biological evaluation, and in silico studies. J Enzyme Inhib Med Chem 2023; 38:330-342. [PMID: 36444862 PMCID: PMC11003478 DOI: 10.1080/14756366.2022.2150763] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022] Open
Abstract
New spiro-piperidine derivatives were synthesised via the eco-friendly ionic liquids in a one-pot fashion. The in vitro antileishmanial activity against Leishmania major promastigote and amastigote forms highlighted promising antileishmanial activity for most of the derivatives, with superior activity compared to miltefosine. The most active compounds 8a and 9a exhibited sub-micromolar range of activity, with IC50 values of 0.89 µM and 0.50 µM, respectively, compared to 8.08 µM of miltefosine. Furthermore, the antileishmanial activity reversal of these compounds via folic and folinic acids displayed comparable results to the positive control trimethoprim. This emphasises that their antileishmanial activity is through the antifolate mechanism via targeting DHFR and PTR1. The most active compounds showed superior selectivity and safety profile compared to miltefosine against VERO cells. Moreover, the docking experiments of 8a and 9a against Lm-PTR1 rationalised the observed in vitro activities. Molecular dynamics simulations confirmed a stable and high potential binding to Lm-PTR1.
Collapse
Affiliation(s)
| | - Asmaa M. Kadry
- Chemistry Department, Faculty of Science, Sohag University, Sohag, Egypt
| | - Salma A. Bekhit
- High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | | | - Kikuko Amagase
- Laboratory of Pharmacology & Pharmacotherapeutics, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Tamer M. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | | | - Adnan A. Bekhit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Allied Health Department, College of Health and Sport Sciences, University of Bahrain, Sakhir, Kingdom of Bahrain
| |
Collapse
|
9
|
Possart K, Herrmann FC, Jose J, Schmidt TJ. In Silico and In Vitro Search for Dual Inhibitors of the Trypanosoma brucei and Leishmania major Pteridine Reductase 1 and Dihydrofolate Reductase. Molecules 2023; 28:7526. [PMID: 38005256 PMCID: PMC10673058 DOI: 10.3390/molecules28227526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The parasites Trypanosoma brucei (Tb) and Leishmania major (Lm) cause the tropical diseases sleeping sickness, nagana, and cutaneous leishmaniasis. Every year, millions of humans, as well as animals, living in tropical to subtropical climates fall victim to these illnesses' health threats. The parasites' frequent drug resistance and widely spread natural reservoirs heavily impede disease prevention and treatment. Due to pteridine auxotrophy, trypanosomatid parasites have developed a peculiar enzyme system consisting of dihydrofolate reductase-thymidylate synthase (DHFR-TS) and pteridine reductase 1 (PTR1) to support cell survival. Extending our previous studies, we conducted a comparative study of the T. brucei (TbDHFR, TbPTR1) and L. major (LmDHFR, LmPTR1) enzymes to identify lead structures with a dual inhibitory effect. A pharmacophore-based in silico screening of three natural product databases (approximately 4880 compounds) was performed to preselect possible inhibitors. Building on the in silico results, the inhibitory potential of promising compounds was verified in vitro against the recombinant DHFR and PTR1 of both parasites using spectrophotometric enzyme assays. Twelve compounds were identified as dual inhibitors against the Tb enzymes (0.2 μM < IC50 < 85.1 μM) and ten against the respective Lm enzymes (0.6 μM < IC50 < 84.5 μM). These highly promising results may represent the starting point for the future development of new leads and drugs utilizing the trypanosomatid pteridine metabolism as a target.
Collapse
Affiliation(s)
- Katharina Possart
- University of Muenster, Institute for Pharmaceutical Biology and Phytochemistry (IPBP), PharmaCampus, Corrensstrasse 48, D-48149 Muenster, Germany; (K.P.); (F.C.H.)
| | - Fabian C. Herrmann
- University of Muenster, Institute for Pharmaceutical Biology and Phytochemistry (IPBP), PharmaCampus, Corrensstrasse 48, D-48149 Muenster, Germany; (K.P.); (F.C.H.)
| | - Joachim Jose
- University of Muenster, Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus, Corrensstrasse 48, D-48149 Muenster, Germany;
| | - Thomas J. Schmidt
- University of Muenster, Institute for Pharmaceutical Biology and Phytochemistry (IPBP), PharmaCampus, Corrensstrasse 48, D-48149 Muenster, Germany; (K.P.); (F.C.H.)
| |
Collapse
|
10
|
Panecka-Hofman J, Poehner I. Structure and dynamics of pteridine reductase 1: the key phenomena relevant to enzyme function and drug design. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:521-532. [PMID: 37608196 PMCID: PMC10618315 DOI: 10.1007/s00249-023-01677-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023]
Abstract
Pteridine reductase 1 (PTR1) is a folate and pterin pathway enzyme unique for pathogenic trypanosomatids. As a validated drug target, PTR1 has been the focus of recent research efforts aimed at finding more effective treatments against human parasitic diseases such as leishmaniasis or sleeping sickness. Previous PTR1-centered structural studies highlighted the enzyme characteristics, such as flexible regions around the active site, highly conserved structural waters, and species-specific differences in pocket properties and dynamics, which likely impacts the binding of natural substrates and inhibitors. Furthermore, several aspects of the PTR1 function, such as the substrate inhibition phenomenon and the level of ligand binding cooperativity in the enzyme homotetramer, likely related to the global enzyme dynamics, are poorly known at the molecular level. We postulate that future drug design efforts could greatly benefit from a better understanding of these phenomena through studying both the local and global PTR1 dynamics. This review highlights the key aspects of the PTR1 structure and dynamics relevant to structure-based drug design that could be effectively investigated by modeling approaches. Particular emphasis is given to the perspective of molecular dynamics, what has been accomplished in this area to date, and how modeling could impact the PTR1-targeted drug design in the future.
Collapse
Affiliation(s)
- Joanna Panecka-Hofman
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland.
| | - Ina Poehner
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70211, Kuopio, Finland
| |
Collapse
|
11
|
Ibrahim TM, Abada G, Dammann M, Maklad RM, Eldehna WM, Salem R, Abdelaziz MM, El-Domany RA, Bekhit AA, Beockler FM. Tetrahydrobenzo[h]quinoline derivatives as a novel chemotype for dual antileishmanial-antimalarial activity graced with antitubercular activity: Design, synthesis and biological evaluation. Eur J Med Chem 2023; 257:115534. [PMID: 37269671 DOI: 10.1016/j.ejmech.2023.115534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
Derivatives with tetrahydrobenzo[h]quinoline chemotype were synthesized via one-pot reactions and evaluated for their antileishmanial, antimalarial and antitubercular activities. Based on a structure-guided approach, they were designed to possess antileishmanial activity through antifolate mechanism, via targeting Leishmania major pteridine reductase 1 (Lm-PTR1). The in vitro antipromastigote and antiamastigote activity are promising for all candidates and superior to the reference miltefosine, in a low or sub micromolar range of activity. Their antifolate mechanism was confirmed via the ability of folic and folinic acids to reverse the antileishmanial activity of these compounds, comparably to Lm-PTR1 inhibitor trimethoprim. Molecular dynamics simulations confirmed a stable and high potential binding of the most active candidates against leishmanial PTR1. For the antimalarial activity, most of the compounds exhibited promising antiplasmodial effect against P. berghei with suppression percentage of up to 97.78%. The most active compounds were further screened in vitro against the chloroquine resistant strain P. falciparum, (RKL9) and showed IC50 value range of 0.0198-0.096 μM, compared to IC50 value of 0.19420 μM for chloroquine sulphate. Molecular docking of the most active compounds against the wild-type and quadruple mutant pf DHFR-TS structures rationalized the in vitro antimalarial activity. Some candidates showed good antitubercular activity against sensitive Mycobacterium tuberculosis in a low micromolar range of MIC, compared to 0.875 μM of isoniazid. The top active ones were further tested against a multidrug-resistant strain (MDR) and extensively drug-resistant strain (XDR) of Mycobacterium tuberculosis. Interestingly, the in vitro cytotoxicity test of the best candidates displayed high selectivity indices emphasizing their safety on mammalian cells. Generally, this work introduces a fruitful matrix for new dual acting antileishmanial-antimalarial chemotype graced with antitubercular activity. This would help in tackling drug-resistance issues in treating some Neglected Tropical Diseases.
Collapse
Affiliation(s)
- Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt; Laboratory for Molecular Design and Pharmaceutical Biophysics, Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076, Tuebingen, Germany; Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt.
| | - Ghada Abada
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Marcel Dammann
- Laboratory for Molecular Design and Pharmaceutical Biophysics, Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076, Tuebingen, Germany
| | - Raed M Maklad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt; Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Rofaida Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Marwa M Abdelaziz
- The Regional Center for Mycology & Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Ramadan A El-Domany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Adnan A Bekhit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Pharmacy Program, Allied Health Department, College of Health and Sport Sciences, University of Bahrain, P.O. Box 32038, Bahrain
| | - Frank M Beockler
- Laboratory for Molecular Design and Pharmaceutical Biophysics, Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076, Tuebingen, Germany
| |
Collapse
|
12
|
do Carmo Maquiaveli C, da Silva ER, Hild de Jesus B, Oliveira Monteiro CE, Rodrigues Navarro T, Pereira Branco LO, Souza dos Santos I, Figueiredo Reis N, Portugal AB, Mendes Wanderley JL, Borges Farias A, Correia Romeiro N, de Lima EC. Design and Synthesis of New Anthranyl Phenylhydrazides: Antileishmanial Activity and Structure-Activity Relationship. Pharmaceuticals (Basel) 2023; 16:1120. [PMID: 37631035 PMCID: PMC10458276 DOI: 10.3390/ph16081120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Leishmaniasis is a neglected tropical disease affecting millions of people worldwide. A centenary approach to antimonial-based drugs was first initiated with the synthesis of urea stibamine by Upendranath Brahmachari in 1922. The need for new drug development led to resistance toward antimoniates. New drug development to treat leishmaniasis is urgently needed. In this way, searching for new substances with antileishmanial activity, we synthesized ten anthranyl phenylhydrazide and three quinazolinone derivatives and evaluated them against promastigotes and the intracellular amastigotes of Leishmania amazonensis. Three compounds showed good activity against promastigotes 1b, 1d, and 1g, with IC50 between 1 and 5 μM. These new phenylhydrazides were tested against Leishmania arginase, but they all failed to inhibit this parasite enzyme, as we have shown in a previous study. To explain the possible mechanism of action, we proposed the enzyme PTR1 as a new target for these compounds based on in silico analysis. In conclusion, the new anthranyl hydrazide derivatives can be a promising scaffold for developing new substances against the protozoa parasite.
Collapse
Affiliation(s)
- Claudia do Carmo Maquiaveli
- Laboratório de Farmacologia e Bioquímica (LFBq), Departamento de Medicina Veterinária, Universidade de São Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Av. Duque de Caxias Norte 225, Pirassununga 13635-900, SP, Brazil
| | - Edson Roberto da Silva
- Laboratório de Farmacologia e Bioquímica (LFBq), Departamento de Medicina Veterinária, Universidade de São Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Av. Duque de Caxias Norte 225, Pirassununga 13635-900, SP, Brazil
| | - Barbara Hild de Jesus
- Laboratório de Farmacologia e Bioquímica (LFBq), Departamento de Medicina Veterinária, Universidade de São Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Av. Duque de Caxias Norte 225, Pirassununga 13635-900, SP, Brazil
| | - Caio Eduardo Oliveira Monteiro
- Laboratório de Farmacologia e Bioquímica (LFBq), Departamento de Medicina Veterinária, Universidade de São Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Av. Duque de Caxias Norte 225, Pirassununga 13635-900, SP, Brazil
| | - Tiago Rodrigues Navarro
- Laboratório de Catálise e Síntese de Substâncias Bioativas, Instituto Multidisciplinar de Química, CM UFRJ-Macaé, Universidade Federal do Rio de Janeiro, Macaé CEP 27971-525, RJ, Brazil
| | - Luiz Octavio Pereira Branco
- Laboratório de Catálise e Síntese de Substâncias Bioativas, Instituto Multidisciplinar de Química, CM UFRJ-Macaé, Universidade Federal do Rio de Janeiro, Macaé CEP 27971-525, RJ, Brazil
| | - Isabela Souza dos Santos
- Laboratório de Catálise e Síntese de Substâncias Bioativas, Instituto Multidisciplinar de Química, CM UFRJ-Macaé, Universidade Federal do Rio de Janeiro, Macaé CEP 27971-525, RJ, Brazil
| | - Nanashara Figueiredo Reis
- Laboratório de Catálise e Síntese de Substâncias Bioativas, Instituto Multidisciplinar de Química, CM UFRJ-Macaé, Universidade Federal do Rio de Janeiro, Macaé CEP 27971-525, RJ, Brazil
| | - Arieli Bernardo Portugal
- Laboratório de Imunoparasitologia, Instituto de Ciências Médicas, Centro Multidisciplinar UFRJ, Macaé CEP 27979-000, RJ, Brazil
- Programa de Pós Graduação em Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes CEP 28013-602, RJ, Brazil
| | - João Luiz Mendes Wanderley
- Laboratório de Imunoparasitologia, Instituto de Ciências Médicas, Centro Multidisciplinar UFRJ, Macaé CEP 27979-000, RJ, Brazil
| | - André Borges Farias
- Unidad Académica de Yucatán, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Mérida 97302, Yucatán, Mexico
- Integrated Laboratory of Scientific Computing (LICC), Federal University of Rio de Janeiro (UFRJ)—Campus Macaé, Aluízio Silva Gomes Avenue 50, Granjas Cavaleiros, Macaé 27930-560, RJ, Brazil
| | - Nelilma Correia Romeiro
- Integrated Laboratory of Scientific Computing (LICC), Federal University of Rio de Janeiro (UFRJ)—Campus Macaé, Aluízio Silva Gomes Avenue 50, Granjas Cavaleiros, Macaé 27930-560, RJ, Brazil
| | - Evanoel Crizanto de Lima
- Laboratório de Catálise e Síntese de Substâncias Bioativas, Instituto Multidisciplinar de Química, CM UFRJ-Macaé, Universidade Federal do Rio de Janeiro, Macaé CEP 27971-525, RJ, Brazil
| |
Collapse
|
13
|
Silva JV, Sueyoshi S, Snape TJ, Lal S, Giarolla J. Pteridine reductase (PTR1): initial structure-activity relationships studies of potential leishmanicidal arylindole derivatives compounds. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:661-687. [PMID: 37606690 DOI: 10.1080/1062936x.2023.2247331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/08/2023] [Indexed: 08/23/2023]
Abstract
Leishmaniasis is a public health concern, especially in Brazil and India. The drugs available for therapy are old, cause toxicity and have reports of resistance. Therefore, this paper aimed to carry out initial structure-activity relationships (applying molecular docking and dynamic simulations) of arylindole scaffolds against the pteridine reductase (PTR1), which is essential target for the survival of the parasite. Thus, we used a series of 43 arylindole derivatives as a privileged skeleton, which have been evaluated previously for different biological actions. Compound 7 stood out among its analogues presenting the best results of average number of interactions with binding site (2.00) and catalytic triad (1.00). Additionally, the same compound presented the best binding free energy (-32.33 kcal/mol) in dynamic simulations. Furthermore, with computational studies, it was possible to comprehend and discuss the influences of the substituent sizes, positions of substitutions in the aromatic ring and electronic influences. Therefore, this study can be a starting point for the structural improvements needed to obtain a good leishmanicidal drug.
Collapse
Affiliation(s)
- J V Silva
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - S Sueyoshi
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - T J Snape
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - S Lal
- Amity Institute of Pharmacy, Amity University, Gurugram, India
| | - J Giarolla
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Bigot S, Leprohon P, Ouellette M. Delving in folate metabolism in the parasite Leishmania major through a chemogenomic screen and methotrexate selection. PLoS Negl Trop Dis 2023; 17:e0011458. [PMID: 37384801 DOI: 10.1371/journal.pntd.0011458] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/12/2023] [Indexed: 07/01/2023] Open
Abstract
Most of our understanding of folate metabolism in the parasite Leishmania is derived from studies of resistance to the antifolate methotrexate (MTX). A chemical mutagenesis screen of L. major Friedlin and selection for resistance to MTX led to twenty mutants with a 2- to 400-fold decrease in MTX susceptibility in comparison to wild-type cells. The genome sequence of the twenty mutants highlighted recurrent mutations (SNPs, gene deletion) in genes known to be involved in folate metabolism but also in novel genes. The most frequent events occurred at the level of the locus coding for the folate transporter FT1 and included gene deletion and gene conversion events, as well as single nucleotide changes. The role of some of these FT1 point mutations in MTX resistance was validated by gene editing. The gene DHFR-TS coding for the dihydrofolate reductase-thymidylate synthase was the second locus with the most mutations and gene editing confirmed a role in resistance for some of these. The pteridine reductase gene PTR1 was mutated in two mutants. The episomal overexpression of the mutated versions of this gene, but also of DHFR-TS, led to parasites several fold more resistant to MTX than those overexpressing the wild-type versions. Genes with no known link with folate metabolism and coding for a L-galactolactone oxidase or for a methyltransferase were mutated in specific mutants. Overexpression of the wild-type versions of these genes in the appropriate mutants reverted their resistance. Our Mut-seq approach provided a holistic view and a long list of candidate genes potentially involved in folate and antifolate metabolism in Leishmania.
Collapse
Affiliation(s)
- Sophia Bigot
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Quebec City, Québec, Canada
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Quebec City, Québec, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Quebec City, Québec, Canada
| |
Collapse
|
15
|
Hassan NW, Sabt A, El-Attar MA, Ora M, Bekhit AEDA, Amagase K, Bekhit AA, Belal A, Elzahhar PA. Modulating leishmanial pteridine metabolism machinery via some new coumarin-1,2,3-triazoles: Design, synthesis and computational studies. Eur J Med Chem 2023; 253:115333. [PMID: 37031526 DOI: 10.1016/j.ejmech.2023.115333] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/11/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023]
Abstract
In accordance with WHO statistics, leishmaniasis is one of the top neglected tropical diseases, affecting around 700 000 to one million people per year. To that end, a new series of coumarin-1,2,3-triazole hybrid compounds was designed and synthesized. All new compounds exerted higher activity than miltefosine against L. major promastigotes and amastigotes. Seven compounds showed single digit micromolar IC50 values whereas three compounds (13c, 14b and 14c) displayed submicromolar potencies. A mechanistic study to elucidate the antifolate-dependent activity of these compounds revealed that folic and folinic acids abrogated their antileishmanial effects. These compounds exhibited high safety margins in normal VERO cells, expressed as high selectivity indices. Docking simulation studies on the folate pathway enzymes pteridine reductase and DHFR-TS imparted strong theoretical support to the observed biological activities. Besides, docking experiments on human DHFR revealed minimal binding interactions thereby highlighting the selectivity of these compounds. Predicted in silico physicochemical and pharmacokinetic parameters were adequate. In view of this, the structural characteristics of these compounds demonstrated their suitability as antileishmanial lead compounds.
Collapse
|
16
|
Herrera-Acevedo C, de Menezes RPB, de Sousa NF, Scotti L, Scotti MT, Coy-Barrera E. Kaurane-Type Diterpenoids as Potential Inhibitors of Dihydrofolate Reductase-Thymidylate Synthase in New World Leishmania Species. Antibiotics (Basel) 2023; 12:antibiotics12040663. [PMID: 37107025 PMCID: PMC10135059 DOI: 10.3390/antibiotics12040663] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/14/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
The bifunctional enzyme Dihydrofolate reductase-thymidylate synthase (DHFR-TS) plays a crucial role in the survival of the Leishmania parasite, as folates are essential cofactors for purine and pyrimidine nucleotide biosynthesis. However, DHFR inhibitors are largely ineffective in controlling trypanosomatid infections, largely due to the presence of Pteridine reductase 1 (PTR1). Therefore, the search for structures with dual inhibitory activity against PTR1/DHFR-TS is crucial in the development of new anti-Leishmania chemotherapies. In this research, using the Leishmania major DHFR-TS recombinant protein, enzymatic inhibitory assays were performed on four kauranes and two derivatives that had been previously tested against LmPTR1. The structure 302 (6.3 µM) and its derivative 302a (4.5 µM) showed the lowest IC50 values among the evaluated molecules. To evaluate the mechanism of action of these structures, molecular docking calculations and molecular dynamics simulations were performed using a DHFR-TS hybrid model. Results showed that hydrogen bond interactions are critical for the inhibitory activity against LmDHFR-TS, as well as the presence of the p-hydroxyl group of the phenylpropanoid moiety of 302a. Finally, additional computational studies were performed on DHFR-TS structures from Leishmania species that cause cutaneous and mucocutaneous leishmaniasis in the New World (L. braziliensis, L. panamensis, and L. amazonensis) to explore the targeting potential of these kauranes in these species. It was demonstrated that structures 302 and 302a are multi-Leishmania species compounds with dual DHFR-TS/PTR1 inhibitory activity.
Collapse
Affiliation(s)
- Chonny Herrera-Acevedo
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil (M.T.S.)
- Department of Chemical Engineering, Universidad ECCI, Bogotá, Distrito Capital 111311, Colombia
| | - Renata Priscila Barros de Menezes
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil (M.T.S.)
| | - Natália Ferreira de Sousa
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil (M.T.S.)
| | - Luciana Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil (M.T.S.)
| | - Marcus Tullius Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil (M.T.S.)
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
- Correspondence:
| |
Collapse
|
17
|
Istanbullu H, Bayraktar G, Karakaya G, Akbaba H, Perk NE, Cavus I, Podlipnik C, Yereli K, Ozbilgin A, Debelec Butuner B, Alptuzun V. Design, synthesis, in vitro - In vivo biological evaluation of novel thiazolopyrimidine compounds as antileishmanial agent with PTR1 inhibition. Eur J Med Chem 2023; 247:115049. [PMID: 36577215 DOI: 10.1016/j.ejmech.2022.115049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
The leishmaniasis are a group of vector-borne diseases caused by a protozoan parasite from the genus Leishmania. In this study, a series of thiazolopyrimidine derivatives were designed and synthesized as novel antileishmanial agents with LmPTR1 inhibitory activity. The final compounds were evaluated for their in vitro antipromastigote activity, LmPTR1 and hDHFR enzyme inhibitory activities, and cytotoxicity on RAW264.7 and L929 cell lines. Based on the bioactivity results, three compounds, namely L24f, L24h and L25c, were selected for evaluation of their in vivo efficacy on CL and VL models in BALB/c mice. Among them, two promising compounds, L24h and L25c, showed in vitro antipromastigote activity against L. tropica with the IC50 values of 0.04 μg/ml and 6.68 μg/ml; against L. infantum with the IC50 values of 0.042 μg/ml and 6.77 μg/ml, respectively. Moreover, the title compounds were found to have low in vitro cytotoxicity on L929 and RAW264.7 cell lines with the IC50 14.08 μg/ml and 21.03 μg/ml, and IC50 15.02 μg/ml and 8.75 μg/ml, respectively. LmPTR1 enzyme inhibitory activity of these compounds was determined as 257.40 μg/ml and 59.12 μg/ml and their selectivity index (SI) over hDHFR was reported as 42.62 and 7.02, respectively. In vivo studies presented that L24h and L25c have a significant antileishmanial activity against footpad lesion development of CL and at weight measurement of VL group in comparison to the reference compound, Glucantime®. Also, docking studies were carried out with selected compounds and other potential Leishmania targets to detect the putative targets of the title compounds. Taken together, all these findings provide an important novel lead structure for the antileishmanial drug development.
Collapse
Affiliation(s)
- Huseyin Istanbullu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University, Cigli, Izmir, Turkey.
| | - Gulsah Bayraktar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| | - Gulsah Karakaya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University, Cigli, Izmir, Turkey
| | - Hasan Akbaba
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| | - Nami Ege Perk
- Department of Parasitology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| | - Ibrahim Cavus
- Department of Parasitology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| | - Crtomir Podlipnik
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Kor Yereli
- Department of Parasitology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| | - Ahmet Ozbilgin
- Department of Parasitology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| | - Bilge Debelec Butuner
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| | - Vildan Alptuzun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
18
|
Sabt A, Eldehna WM, Ibrahim TM, Bekhit AA, Batran RZ. New antileishmanial quinoline linked isatin derivatives targeting DHFR-TS and PTR1: Design, synthesis, and molecular modeling studies. Eur J Med Chem 2023; 246:114959. [PMID: 36493614 DOI: 10.1016/j.ejmech.2022.114959] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/13/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
In a search for new drug candidates for one of the neglected tropical diseases, leishmaniasis, twenty quinoline-isatin hybrids were synthesized and tested for their in vitro antileishmanial activity against Leishmaniamajor strain. All the synthesized compounds showed promising in vitro activity against the promastigote form in a low micromolar range (IC50 = 0.5084-5.9486 μM) superior to the reference miltefosine (IC50 = 7.8976 μM). All the target compounds were then tested against the intracellular amastigote form and showed promising inhibition effects (IC50 = 0.60442-8.2948 μM versus 8.08 μM for miltefosine). Compounds 4e, 4b and 4f were shown to possess the highest antileishmanial activity against both promastigote and amastigote forms. The most active compounds were proven to exhibit their significant antileishmanial effects through antifolate mechanism, targeting DHFR-TS and PTR1. To evaluate the safety profile of the most active derivatives 4e, 4b and 4f, the in vitro cytotoxicity test was carried out and displayed higher selectivity indices than the reference miltefosine. Molecular docking within putative target protein PTR1 confirmed the high potentiality of the most active compounds 4e, 4b and 4f to block the catalytic activity of Lm-PTR1.
Collapse
Affiliation(s)
- Ahmed Sabt
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt; School of Biotechnology, Badr University in Cairo, Badr City, 11829, Egypt
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt; Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| | - Adnan A Bekhit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Pharmacy Program, Allied Health Department, College of Health Sciences, University of Bahrain, P.O. Box 32038, Bahrain
| | - Rasha Z Batran
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
19
|
Boakye A, Gasu EN, Mensah JO, Borquaye LS. Computational studies on potential small molecule inhibitors of Leishmania pteridine reductase 1. J Biomol Struct Dyn 2023; 41:12128-12141. [PMID: 36632757 DOI: 10.1080/07391102.2023.2166119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/01/2023] [Indexed: 01/13/2023]
Abstract
Leishmaniasis is a neglected tropical disease of major public health concern. Challenges with current therapeutics have led to the exploration of plant medicine for potential antileishmanial agents. Despite the promising activity of some antileishmanial natural products, their protein targets have not been explored. The relevance of folate metabolism in the Leishmania parasite's existence presents crucial targets for the development of antileishmanial chemotherapy. Pteridine reductase 1 (PTR1), a crucial enzyme involved in DNA biosynthesis, is a validated target of the Leishmania parasite. Unearthing inhibitors of this enzyme is therefore an active research area. The goal of this work is to unearth small molecule inhibitors of PTR1 using molecular docking and molecular dynamic simulations. Thus, the interactions between selected antileishmanial natural products and PTR1 were examined. The binding affinities obtained from molecular docking ranged from -6.2 to -9.8 kcal/mol. When compared to the natural PTR1 substrate biopterin, compounds such as anonaine, chimanine D, corynantheine, grifolin, licochalcone A, piperogalin and xylopine produced better binding affinities, making interactions catalytic residues - Tyr194, Asp181, Phe113, Arg17 and Ser111. The PTR1- xylopine, -piperogalin, -grifolin, and -licochalcone A complexes exhibited remarkable stability under dynamic conditions during the entire 200 ns simulation period. The overall binding free energy of grifolin, piperogalin, and licochalcone A were observed to be -105.711, -103.567, and -105.646 kJ/mol respectively. The binding of these complexes was observed to be favorable and spontaneous and as such capable of inhibiting Leishmania PTR1. They could therefore be considered as candidates in the development of antileishmanial chemotherapy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aaron Boakye
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Edward Ntim Gasu
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Central Laboratory, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Lawrence Sheringham Borquaye
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Central Laboratory, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
20
|
Lye LF, Owens KL, Jang S, Marcus JE, Brettmann EA, Beverley SM. An RNA Interference (RNAi) Toolkit and Its Utility for Functional Genetic Analysis of Leishmania ( Viannia). Genes (Basel) 2022; 14:93. [PMID: 36672832 PMCID: PMC9858808 DOI: 10.3390/genes14010093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
RNA interference (RNAi) is a powerful tool whose efficacy against a broad range of targets enables functional genetic tests individually or systematically. However, the RNAi pathway has been lost in evolution by a variety of eukaryotes including most Leishmania sp. RNAi was retained in species of the Leishmania subgenus Viannia, and here we describe the development, optimization, and application of RNAi tools to the study of L. (Viannia) braziliensis (Lbr). We developed vectors facilitating generation of long-hairpin or "stem-loop" (StL) RNAi knockdown constructs, using GatewayTM site-specific recombinase technology. A survey of applications of RNAi in L. braziliensis included genes interspersed within multigene tandem arrays such as quinonoid dihydropteridine reductase (QDPR), a potential target or modulator of antifolate sensitivity. Other tests include genes involved in cell differentiation and amastigote proliferation (A600), and essential genes of the intraflagellar transport (IFT) pathway. We tested a range of stem lengths targeting the L. braziliensis hypoxanthine-guanine phosphoribosyl transferase (HGPRT) and reporter firefly luciferase (LUC) genes and found that the efficacy of RNAi increased with stem length, and fell off greatly below about 128 nt. We used the StL length dependency to establish a useful 'hypomorphic' approach not possible with other gene ablation strategies, with shorter IFT140 stems yielding viable cells with compromised flagellar morphology. We showed that co-selection for RNAi against adenine phosphoryl transferase (APRT1) using 4-aminopyrazolpyrimidine (APP) could increase the efficacy of RNAi against reporter constructs, a finding that may facilitate improvements in future work. Thus, for many genes, RNAi provides a useful tool for studying Leishmania gene function with some unique advantages.
Collapse
Affiliation(s)
| | | | | | | | | | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
21
|
Bekhit AA, Lodebo ET, Hymete A, Ragab HM, Bekhit SA, Amagase K, Batubara A, Abourehab MAS, Bekhit AEDA, Ibrahim TM. New pyrazolylpyrazoline derivatives as dual acting antimalarial-antileishamanial agents: synthesis, biological evaluation and molecular modelling simulations. J Enzyme Inhib Med Chem 2022; 37:2320-2333. [PMID: 36036155 PMCID: PMC9427035 DOI: 10.1080/14756366.2022.2117316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Promising inhibitory activities of the parasite multiplication were obtained upon evaluation of in vivo antimalarial activities of new pyrazolylpyrazoline derivatives against Plasmodium berghei infected mice. Further evaluation of 5b and 6a against chloroquine-resistant strain (RKL9) of P. falciparum showed higher potency than chloroquine. In vitro antileishmanial activity testing against Leishmania aethiopica promastigote and amastigote forms indicated that 5b, 6a and 7b possessed promising activity compared to miltefosine and amphotericin B deoxycholate. Moreover, antileishmanial activity reversal of the active compounds via folic and folinic acids showed comparable results to the positive control trimethoprim, indicating an antifolate mechanism via targeting leishmanial DHFR and PTR1. The compounds were non-toxic at 125, 250 and 500 mg/kg. In addition, docking of the most active compound against putative malarial target Pf-DHFR-TS and leishmanial PTR1 rationalised the observed activities. Molecular dynamics simulations confirmed a stable and high potential binding of 7a against leishmanial PTR1.
Collapse
Affiliation(s)
- Adnan A Bekhit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.,Pharmacy Program, Allied Health Department, College of Health and Sport Sciences, University of Bahrain, Zallaq, Kingdom of Bahrain.,Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, Addis Ababa University, Addis Ababa, Ethiopia
| | - Eskedar T Lodebo
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, Addis Ababa University, Addis Ababa, Ethiopia.,Department of Chemistry, Kotebe Metropolitan University, Addis Ababa, Ethiopia
| | - Ariaya Hymete
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, Addis Ababa University, Addis Ababa, Ethiopia
| | - Hanan M Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Salma A Bekhit
- High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Kikuko Amagase
- Laboratory of Pharmacology & Pharmacotherapeutics, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Afnan Batubara
- Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qurra University, Makkah, Saudi Arabia
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | | | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| |
Collapse
|
22
|
Preliminary Structure-Activity Relationship Study of the MMV Pathogen Box Compound MMV675968 (2,4-Diaminoquinazoline) Unveils Novel Inhibitors of Trypanosoma brucei brucei. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196574. [PMID: 36235118 PMCID: PMC9571290 DOI: 10.3390/molecules27196574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
Abstract
New drugs are urgently needed for the treatment of human African trypanosomiasis (HAT). In line with our quest for novel inhibitors of trypanosomes, a small library of analogs of the antitrypanosomal hit (MMV675968) available at MMV as solid materials was screened for antitrypanosomal activity. In silico exploration of two potent antitrypanosomal structural analogs (7-MMV1578647 and 10-MMV1578445) as inhibitors of dihydrofolate reductase (DHFR) was achieved, together with elucidation of other antitrypanosomal modes of action. In addition, they were assessed in vitro for tentative inhibition of DHFR in a crude trypanosome extract. Their ADMET properties were also predicted using dedicated software. Overall, the two diaminoquinazoline analogs displayed approximately 40-fold and 60-fold more potency and selectivity in vitro than the parent hit, respectively (MMV1578445 (10): IC50 = 0.045 µM, SI = 1737; MMV1578467 (7): IC50 = 0.06 µM; SI = 412). Analogs 7 and 10 were also strong binders of the DHFR enzyme in silico, in all their accessible protonation states, and interacted with key DHFR ligand recognition residues Val32, Asp54, and Ile160. They also exhibited significant activity against trypanosome protein isolate. MMV1578445 (10) portrayed fast and irreversible trypanosome growth arrest between 4–72 h at IC99. Analogs 7 and 10 induced in vitro ferric iron reduction and DNA fragmentation or apoptosis induction, respectively. The two potent analogs endowed with predicted suitable physicochemical and ADMET properties are good candidates for further deciphering their potential as starting points for new drug development for HAT.
Collapse
|
23
|
Panecka-Hofman J, Poehner I, Wade R. Anti-trypanosomatid structure-based drug design - lessons learned from targeting the folate pathway. Expert Opin Drug Discov 2022; 17:1029-1045. [PMID: 36073204 DOI: 10.1080/17460441.2022.2113776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Trypanosomatidic parasitic infections of humans and animals caused by Trypanosoma brucei, Trypanosoma cruzi, and Leishmania species pose a significant health and economic burden in developing countries. There are few effective and accessible treatments for these diseases, and the existing therapies suffer from problems such as parasite resistance and side effects. Structure-based drug design (SBDD) is one of the strategies that has been applied to discover new compounds targeting trypanosomatid-borne diseases. AREAS COVERED We review the current literature (mostly over the last 5 years, searched in PubMed database on Nov 11th 2021) on the application of structure-based drug design approaches to identify new anti-trypanosomatidic compounds that interfere with a validated target biochemical pathway, the trypanosomatid folate pathway. EXPERT OPINION The application of structure-based drug design approaches to perturb the trypanosomatid folate pathway has successfully provided many new inhibitors with good selectivity profiles, most of which are natural products or their derivatives or have scaffolds of known drugs. However, the inhibitory effect against the target protein(s) often does not translate to anti-parasitic activity. Further progress is hampered by our incomplete understanding of parasite biology and biochemistry, which is necessary to complement SBDD in a multiparameter optimization approach to discovering selective anti-parasitic drugs.
Collapse
Affiliation(s)
- Joanna Panecka-Hofman
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5a, 02-097 Warsaw, Poland
| | - Ina Poehner
- School of Pharmacy, University of Eastern Finland, Kuopio, Yliopistonranta 1C, PO Box 1627, FI-70211 Kuopio, Finland
| | - Rebecca Wade
- Center for Molecular Biology (ZMBH), Heidelberg University, Im Neuenheimer Feld 282, Heidelberg 69120, Germany.,Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, Heidelberg 69118, Germany.,DKFZ-ZMBH Alliance and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 205, Heidelberg 69120, Germany
| |
Collapse
|
24
|
Singh S, Prajapati VK. Exploring actinomycetes natural products to identify potential multi-target inhibitors against Leishmania donovani. 3 Biotech 2022; 12:235. [PMID: 35999912 PMCID: PMC9392678 DOI: 10.1007/s13205-022-03304-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/09/2022] [Indexed: 12/16/2022] Open
Abstract
Visceral leishmaniasis (VL) is a neglected tropical disease that mainly affects the poor population of the Indian, African, and South American subcontinent. The increasing resistance to antimonial and miltefosine and frequent toxicity of amphotericin B drives an urgent need to develop an anti-leishmanial drug with excellent efficacy and safety profile. In this study, three sequential docking protocols (HTVS, SP, and XP) were performed to screen the secondary metabolites (n = 6519) from the actinomycetes source against five key proteins involved in the metabolic pathway of Leishmania donovani. Those proteins were adenine phosphoribosyltransferase (PDB ID: 1QB7), trypanothione reductase (PDB ID: 2JK6), N-myristoyl transferase (PDB ID: 2WUU), pteridine reductase (PDB ID: 2XOX), and MAP kinase (PDB ID: 4QNY). Although the binding energy of top ligands was predicted using the MM-GBSA module of the Schrödinger suite. SP and XP docking mode resulted in 55 multi-targeted ligands against L donovani. MM-GBSA analysis selected the top 18 ligands with good-binding affinity and the binding-free energy for four proteins, as mentioned earlier, when compared with the miltefosine, paromomycin, and a reference ligand selected for each target. Finally, molecular dynamics simulation, post-MD-binding-free energy (MM-PBSA), and principal component analysis (PCA) proposed three best ligands (Adenosine pentaphosphate, Atetra P, and GDP-4-keto-6-deoxymannose) qualifying the above screening parameters and confirmed as a potential drug candidate to fight against Leishmania donovani parasites.
Collapse
Affiliation(s)
- Satyendra Singh
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817 India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817 India
| |
Collapse
|
25
|
Salari S, Bamorovat M, Sharifi I, Almani PGN. Global distribution of treatment resistance gene markers for leishmaniasis. J Clin Lab Anal 2022; 36:e24599. [PMID: 35808933 PMCID: PMC9396204 DOI: 10.1002/jcla.24599] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/19/2022] [Accepted: 06/28/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Pentavalent antimonials (Sb(V)) such as meglumine antimoniate (Glucantime®) and sodium stibogluconate (Pentostam®) are used as first-line treatments for leishmaniasis, either alone or in combination with second-line drugs such as amphotericin B (Amp B), miltefosine (MIL), methotrexate (MTX), or cryotherapy. Therapeutic aspects of these drugs are now challenged because of clinical resistance worldwide. METHODS We reviewedthe recent original studies were assessed by searching in electronic databases such as Scopus, Pubmed, Embase, and Web of Science. RESULTS Studies on molecular biomarkers involved in drug resistance are essential for monitoring the disease. We reviewed genes and mechanisms of resistance to leishmaniasis, and the geographical distribution of these biomarkers in each country has also been thoroughly investigated. CONCLUSION Due to the emergence of resistant genes mainly in anthroponotic Leishmania species such as L. donovani and L. tropica, as the causative agents of ACL and AVL, respectively, selection of an appropriate treatment modality is essential. Physicians should be aware of the presence of such resistance for the selection of proper treatment modalities in endemic countries.
Collapse
Affiliation(s)
- Samira Salari
- Medical Mycology and Bacteriology Research CenterKerman University of Medical SciencesKermanIran
| | - Mehdi Bamorovat
- Leishmaniasis Research CenterKerman University of Medical SciencesKermanIran
| | - Iraj Sharifi
- Leishmaniasis Research CenterKerman University of Medical SciencesKermanIran
| | | |
Collapse
|
26
|
Synthesis of Some Novel 8-(4-Alkylpiperazinyl) Caffeine Derivatives as Potent Anti-Leishmania Agents. Bioorg Chem 2022; 128:106062. [DOI: 10.1016/j.bioorg.2022.106062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/25/2022] [Accepted: 07/24/2022] [Indexed: 02/06/2023]
|
27
|
Dello Iacono L, Di Pisa F, Mangani S. Crystal structure of the ternary complex of Leishmania major pteridine reductase 1 with the cofactor NADP +/NADPH and the substrate folic acid. Acta Crystallogr F Struct Biol Commun 2022; 78:170-176. [PMID: 35400669 PMCID: PMC8996148 DOI: 10.1107/s2053230x22002795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 11/10/2022] Open
Abstract
Pteridine reductase 1 (PTR1) is a key enzyme of the folate pathway in protozoan parasites of the genera Leishmania and Trypanosoma and is a valuable drug target for tropical diseases. This enzyme is able to catalyze the NADPH-dependent reduction of both conjugated (folate) and unconjugated (biopterin) pterins to their tetrahydro forms, starting from oxidized- or dihydro-state substrates. The currently available X-ray structures of Leishmania major PTR1 (LmPTR1) show the enzyme in its unbound, unconjugated substrate-bound (with biopterin derivatives) and inhibitor-bound forms. However, no structure has yet been determined of LmPTR1 bound to a conjugated substrate. Here, the high-resolution crystal structure of LmPTR1 in complex with folic acid is presented and the intermolecular forces that drive the binding of the substrate in the catalytic pocket are described. By expanding the collection of LmPTR1 structures in complex with process intermediates, additional insights into the active-site rearrangements that occur during the catalytic process are provided. In contrast to previous structures with biopterin derivatives, a small but significant difference in the orientation of Asp181 and Tyr194 of the catalytic triad is found. This feature is shared by PTR1 from T. brucei (TbPTR1) in complex with the same substrate molecule and may be informative in deciphering the importance of such residues at the beginning of the catalytic process.
Collapse
Affiliation(s)
- Lucia Dello Iacono
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Flavio Di Pisa
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
28
|
Ramesh D, Sarkar D, Joji A, Singh M, Mohanty AK, G Vijayakumar B, Chatterjee M, Sriram D, Muthuvel SK, Kannan T. First-in-class pyrido[2,3-d]pyrimidine-2,4(1H,3H)-diones against leishmaniasis and tuberculosis: Rationale, in vitro, ex vivo studies and mechanistic insights. Arch Pharm (Weinheim) 2022; 355:e2100440. [PMID: 35106845 DOI: 10.1002/ardp.202100440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 11/06/2022]
Abstract
Pyrido[2,3-d]pyrimidine-2,4(1H,3H)-diones were synthesized, for the first time, from indole chalcones and 6-aminouracil, and their ability to inhibit leishmaniasis and tuberculosis (Tb) infections was evaluated. The in vitro antileishmanial activity against promastigotes of Leishmania donovani revealed exceptional activities of compounds 3, 12 and 13, with IC50 values ranging from 10.23 ± 1.50 to 15.58 ± 1.67 µg/ml, which is better than the IC50 value of the standard drug pentostam of 500 μg/ml. The selectivity of the compounds towards Leishmania parasites was evaluated via ex vivo studies in Swiss albino mice. The efficiency of these compounds against Tb infection was then evaluated using the in vitro anti-Tb microplate Alamar Blue assay. Five compounds, 3, 7, 8, 9 and 12, showed MIC100 values against the Mycobacterium tuberculosis H37 Rv strain at 25 µg/ml, and compound 20 yielded an MIC100 value of 50 µg/ml. Molecular modelling of these compounds highlighted interactions with binding sites of dihydrofolate reductase, pteridine reductase and thymidylate kinase, thus establishing the rationale of their pharmacological activity against both pathogens, which is consistent with the in vitro results. From the above results, it is clear that compounds 3 and 12 are promising lead candidates for Leishmania and Mycobacterium infections and may be promising for coinfections.
Collapse
Affiliation(s)
- Deepthi Ramesh
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry, India
| | - Deblina Sarkar
- Department of Pharmacology, Institute of Post Graduate Medical Education & Research (IPGME&R), Kolkata, West Bengal, India
| | - Annu Joji
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry, India
| | - Monica Singh
- Department of Pharmacy, Birla Institute of Technology & Science Pilani, Hyderabad, India
| | - Amaresh K Mohanty
- Department of Bioinformatics, Pondicherry University, Kalapet, Puducherry, India
| | | | - Mitali Chatterjee
- Department of Pharmacology, Institute of Post Graduate Medical Education & Research (IPGME&R), Kolkata, West Bengal, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology & Science Pilani, Hyderabad, India
| | - Suresh K Muthuvel
- Department of Bioinformatics, Pondicherry University, Kalapet, Puducherry, India
| | | |
Collapse
|
29
|
Possart K, Herrmann FC, Jose J, Costi MP, Schmidt TJ. Sesquiterpene Lactones with Dual Inhibitory Activity against the Trypanosoma brucei Pteridine Reductase 1 and Dihydrofolate Reductase. Molecules 2021; 27:149. [PMID: 35011381 PMCID: PMC8747069 DOI: 10.3390/molecules27010149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022] Open
Abstract
The parasite Trypanosoma brucei (T. brucei) is responsible for human African trypanosomiasis (HAT) and the cattle disease "Nagana" which to this day cause severe medical and socio-economic issues for the affected areas in Africa. So far, most of the available treatment options are accompanied by harmful side effects and are constantly challenged by newly emerging drug resistances. Since trypanosomatids are auxotrophic for folate, their pteridine metabolism provides a promising target for an innovative chemotherapeutic treatment. They are equipped with a unique corresponding enzyme system consisting of the bifunctional dihydrofolate reductase-thymidylate synthase (TbDHFR-TS) and the pteridine reductase 1 (TbPTR1). Previously, gene knockout experiments with PTR1 null mutants have underlined the importance of these enzymes for parasite survival. In a search for new chemical entities with a dual inhibitory activity against the TbPTR1 and TbDHFR, a multi-step in silico procedure was employed to pre-select promising candidates against the targeted enzymes from a natural product database. Among others, the sesquiterpene lactones (STLs) cynaropicrin and cnicin were identified as in silico hits. Consequently, an in-house database of 118 STLs was submitted to an in silico screening yielding 29 further virtual hits. Ten STLs were subsequently tested against the target enzymes in vitro in a spectrophotometric inhibition assay. Five compounds displayed an inhibition over 50% against TbPTR1 as well as three compounds against TbDHFR. Cynaropicrin turned out to be the most interesting hit since it inhibited both TbPTR1 and TbDHFR, reaching IC50 values of 12.4 µM and 7.1 µM, respectively.
Collapse
Affiliation(s)
- Katharina Possart
- Institute of Pharmaceutical Biology and Phytochemistry (IPBP), University of Muenster, PharmaCampus, Corrensstrasse 48, D-48149 Muenster, Germany; (K.P.); (F.C.H.)
| | - Fabian C. Herrmann
- Institute of Pharmaceutical Biology and Phytochemistry (IPBP), University of Muenster, PharmaCampus, Corrensstrasse 48, D-48149 Muenster, Germany; (K.P.); (F.C.H.)
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, University of Muenster, PharmaCampus, Corrensstrasse 48, D-48149 Muenster, Germany;
| | - Maria P. Costi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy;
| | - Thomas J. Schmidt
- Institute of Pharmaceutical Biology and Phytochemistry (IPBP), University of Muenster, PharmaCampus, Corrensstrasse 48, D-48149 Muenster, Germany; (K.P.); (F.C.H.)
| |
Collapse
|
30
|
Sakyi PO, Amewu RK, Devine RNOA, Bienibuor AK, Miller WA, Kwofie SK. Unravelling the myth surrounding sterol biosynthesis as plausible target for drug design against leishmaniasis. J Parasit Dis 2021; 45:1152-1171. [PMID: 34790000 PMCID: PMC8556451 DOI: 10.1007/s12639-021-01390-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
The mortality rate of leishmaniasis is increasing at an alarming rate and is currently second to malaria amongst the other neglected tropical diseases. Unfortunately, many governments and key stakeholders are not investing enough in the development of new therapeutic interventions. The available treatment options targeting different pathways of the parasite have seen inefficiencies, drug resistance, and toxic side effects coupled with longer treatment durations. Numerous studies to understand the biochemistry of leishmaniasis and its pathogenesis have identified druggable targets including ornithine decarboxylase, trypanothione reductase, and pteridine reductase, which are relevant for the survival and growth of the parasites. Another plausible target is the sterol biosynthetic pathway; however, this has not been fully investigated. Sterol biosynthesis is essential for the survival of the Leishmania species because its inhibition could lead to the death of the parasites. This review seeks to evaluate how critical the enzymes involved in sterol biosynthetic pathway are to the survival of the leishmania parasite. The review also highlights both synthetic and natural product compounds with their IC50 values against selected enzymes. Finally, recent advancements in drug design strategies targeting the sterol biosynthesis pathway of Leishmania are discussed.
Collapse
Affiliation(s)
- Patrick O. Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, PMB LG 56, Legon, Accra, Ghana
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Box 214, Sunyani, Ghana
| | - Richard K. Amewu
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, PMB LG 56, Legon, Accra, Ghana
| | - Robert N. O. A. Devine
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Box 214, Sunyani, Ghana
| | - Alfred K. Bienibuor
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Box 214, Sunyani, Ghana
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153 USA
- Department of Molecular Pharmacology and Neuroscience, Loyola University Medical Center, Maywood, IL 60153 USA
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, IL 19104 USA
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
31
|
Mech D, Kurowska A, Trotsko N. The Bioactivity of Thiazolidin-4-Ones: A Short Review of the Most Recent Studies. Int J Mol Sci 2021; 22:11533. [PMID: 34768964 PMCID: PMC8584074 DOI: 10.3390/ijms222111533] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 01/28/2023] Open
Abstract
Thiazolidin-4-ones is an important heterocyclic ring system of a pharmacophore and a privileged scaffold in medicinal chemistry. This review is focused on the latest scientific reports regarding biological activities of thiazolidin-4-ones published in 2020 and 2021. The review covers recent information about antioxidant, anticancer, anti-inflammatory, analgesic, anticonvulsant, antidiabetic, antiparasitic, antimicrobial, antitubercular and antiviral properties of thiazolidin-4-ones. Additionally, the influence of different substituents in molecules on their biological activity was discussed in this paper. Thus, this study may help to optimize the structure of thiazolidin-4-one derivatives as more efficient drug agents. Presented information may be used as a practical hint for rational design of new small molecules with biological activity, especially among thiazolidin-4-ones.
Collapse
Affiliation(s)
| | | | - Nazar Trotsko
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (D.M.); (A.K.)
| |
Collapse
|
32
|
Tassone G, Landi G, Linciano P, Francesconi V, Tonelli M, Tagliazucchi L, Costi MP, Mangani S, Pozzi C. Evidence of Pyrimethamine and Cycloguanil Analogues as Dual Inhibitors of Trypanosoma brucei Pteridine Reductase and Dihydrofolate Reductase. Pharmaceuticals (Basel) 2021; 14:636. [PMID: 34209148 PMCID: PMC8308740 DOI: 10.3390/ph14070636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Trypanosoma and Leishmania parasites are the etiological agents of various threatening neglected tropical diseases (NTDs), including human African trypanosomiasis (HAT), Chagas disease, and various types of leishmaniasis. Recently, meaningful progresses in the treatment of HAT, due to Trypanosoma brucei (Tb), have been achieved by the introduction of fexinidazole and the combination therapy eflornithine-nifurtimox. Nevertheless, due to drug resistance issues and the exitance of animal reservoirs, the development of new NTD treatments is still required. For this purpose, we explored the combined targeting of two key folate enzymes, dihydrofolate reductase (DHFR) and pteridine reductase 1 (PTR1). We formerly showed that the TbDHFR inhibitor cycloguanil (CYC) also targets TbPTR1, although with reduced affinity. Here, we explored a small library of CYC analogues to understand how their substitution pattern affects the inhibition of both TbPTR1 and TbDHFR. Some novel structural features responsible for an improved, but preferential, ability of CYC analogues to target TbPTR1 were disclosed. Furthermore, we showed that the known drug pyrimethamine (PYR) effectively targets both enzymes, also unveiling its binding mode to TbPTR1. The structural comparison between PYR and CYC binding modes to TbPTR1 and TbDHFR provided key insights for the future design of dual inhibitors for HAT therapy.
Collapse
Affiliation(s)
- Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (G.L.); (S.M.)
| | - Giacomo Landi
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (G.L.); (S.M.)
| | - Pasquale Linciano
- Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy; (P.L.); (L.T.); (M.P.C.)
| | - Valeria Francesconi
- Department of Pharmacy, University of Genoa, Viale Benedetto XV n.3, 16132 Genoa, Italy; (V.F.); (M.T.)
| | - Michele Tonelli
- Department of Pharmacy, University of Genoa, Viale Benedetto XV n.3, 16132 Genoa, Italy; (V.F.); (M.T.)
| | - Lorenzo Tagliazucchi
- Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy; (P.L.); (L.T.); (M.P.C.)
| | - Maria Paola Costi
- Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy; (P.L.); (L.T.); (M.P.C.)
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (G.L.); (S.M.)
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (G.L.); (S.M.)
| |
Collapse
|
33
|
Al Nasr IS, Hanachi R, Said RB, Rahali S, Tangour B, Abdelwahab SI, Farasani A, M E Taha M, Bidwai A, Koko WS, Khan TA, Schobert R, Biersack B. p-Trifluoromethyl- and p-pentafluorothio-substituted curcuminoids of the 2,6-di[(E)-benzylidene)]cycloalkanone type: Syntheses and activities against Leishmania major and Toxoplasma gondii parasites. Bioorg Chem 2021; 114:105099. [PMID: 34174635 DOI: 10.1016/j.bioorg.2021.105099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/21/2021] [Accepted: 06/15/2021] [Indexed: 11/18/2022]
Abstract
A series of the title curcuminoids with structural variance in the heteroatom of the cycloalkanone and the p-substituents of the phenyl rings were tested for their activities against Leishmania major and Toxoplasma gondii parasites. The majority of them showed high activities against both parasite forms with EC50 values in the sub-micromolar concentration range. Bis(p-pentafluorothio)-substituted 3,5-di[(E)-benzylidene]piperidin-4-one 1b was not just noticeable antiparasitic, but also exhibited a considerable selectivity for L. major promastigotes over normal Vero cells. While derivatives differing only in the p-phenyl substituents being CF3 or SF5 showed similar antiparasitic activities, the cyclic ketone hub was more decisive both for the anti-parasitic activities and the selectivities for the parasites vs. normal cells. QSAR calculations confirmed the observed structure-activity relations and suggested structural variations for a further improvement of the antiparasitic activity. Docking studies based on DFT calculations revealed L. major pteridine reductase 1 as a likely molecular target protein of the title compounds.
Collapse
Affiliation(s)
- Ibrahim S Al Nasr
- Department of Biology, College of Science and Arts, Qassim University, Unaizah 51911, Saudi Arabia; Department of Science Laboratories, College of Science and Arts, Qassim University, King Abdelaziz Road, Ar Rass 51921, Saudi Arabia
| | - Riadh Hanachi
- Laboratoire de Caractérisations, Applications et Modélisations des Matériaux, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis 2092, Tunisia
| | - Ridha B Said
- Laboratoire de Caractérisations, Applications et Modélisations des Matériaux, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis 2092, Tunisia; Department of Chemistry, College of Science and Arts in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Seyfeddine Rahali
- Department of Chemistry, College of Science and Arts in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia; IPEIEM, Research Unit on Fundamental Sciences and Didactics, Université de Tunis El Manar, Tunis 2092, Tunisia
| | - Bahoueddine Tangour
- IPEIEM, Research Unit on Fundamental Sciences and Didactics, Université de Tunis El Manar, Tunis 2092, Tunisia
| | | | - Abdullah Farasani
- Medical Research Center, Jazan University, Jazan 45142, Saudi Arabia; College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Manal M E Taha
- Substance Abuse Research Center, Jazan University, Jazan 45142, Saudi Arabia
| | - Anil Bidwai
- College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Waleed S Koko
- Department of Science Laboratories, College of Science and Arts, Qassim University, King Abdelaziz Road, Ar Rass 51921, Saudi Arabia
| | - Tariq A Khan
- Department of Clinical Nutrition, College of Applied Health Sciences, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Rainer Schobert
- Organic Chemistry Laboratory, University Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany.
| |
Collapse
|
34
|
Combined gene deletion of dihydrofolate reductase-thymidylate synthase and pteridine reductase in Leishmania infantum. PLoS Negl Trop Dis 2021; 15:e0009377. [PMID: 33905412 PMCID: PMC8104401 DOI: 10.1371/journal.pntd.0009377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/07/2021] [Accepted: 04/11/2021] [Indexed: 12/13/2022] Open
Abstract
Our understanding of folate metabolism in Leishmania has greatly benefited from studies of resistance to the inhibitor methotrexate (MTX). Folates are reduced in Leishmania by the bifunctional dihydrofolate reductase thymidylate synthase (DHFR-TS) and by pteridine reductase (PTR1). To further our understanding of folate metabolism in Leishmania, a Cos-seq genome-wide gain of function screen was performed against MTX and against the two thymidylate synthase (TS) inhibitors 5-fluorouracil and pemetrexed. The screen revealed DHFR-TS and PTR1 but also the nucleoside transporter NT1 and one hypothetical gene derived from chromosome 31. For MTX, the concentration of folate in the culture medium affected the enrichment pattern for genes retrieved by Cos-seq. We generated a L. infantum DHFR-TS null mutant that was thymidine auxotroph, a phenotype that could be rescued by the addition of thymidine or by transfection of the flavin dependent bacterial TS gene ThyX. In these DHFR-TS null mutants it was impossible to obtain a chromosomal null mutant of PTR1 except if DHFR-TS or PTR1 were provided episomally. The transfection of ThyX however did not allow the elimination of PTR1 in a DHFR-TS null mutant. Leishmania can survive without copies of either DHFR-TS or PTR1 but not without both. Provided that our results observed with the insect stage parasites are also replicated with intracellular parasites, it would suggest that antifolate therapy in Leishmania would only work if both DHFR-TS and PTR1 would be targeted simultaneously. The protozoan parasite Leishmania is auxotroph for folate and unconjugated pterins and salvages both from the mammalian host. Two enzymes of the folate metabolism pathway, namely the bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) and the pteridine reductase 1 (PTR1), are being evaluated for drug discovery and repurposing of existing anti-metabolites. Despite their apparent potential, development of DHFR-TS and PTR1 targeted chemotherapy against Leishmania is still awaiting. Here we revisited folate metabolism at the genomic level and report on the identification of known resistance genes alongside some new ones. Through gene disruption studies we found that L. infantum DHFR-TS null mutants are thymidine auxotroph and that these can be rescued by the bacterial flavin dependent thymidylate synthase ThyX. We also found that PTR1 is essential in the absence of a functional DHFR-TS even in the presence of ThyX or thymidine supplementation, indicating the essential role of reduced pterins or folate beyond thymidine synthesis. This study indicates that simultaneous targeting of DHFR-TS and PTR1 will be required for the development of anti-folate chemotherapy against Leishmania.
Collapse
|
35
|
Abdelfattah MAO, Ibrahim MA, Abdullahi HL, Aminu R, Saad SB, Krstin S, Wink M, Sobeh M. Eugenia uniflora and Syzygium samarangense extracts exhibit anti-trypanosomal activity: Evidence from in-silico molecular modelling, in vitro, and in vivo studies. Biomed Pharmacother 2021; 138:111508. [PMID: 33756157 DOI: 10.1016/j.biopha.2021.111508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 12/29/2022] Open
Abstract
The parasite Trypanosoma brucei is the main cause of the sleeping sickness threatening millions of populations in many African countries. The parasitic infection is currently managed by some synthetic medications, most of them suffer limited activity spectrum and/or serious adverse effects. Some studies have pointed out the promising therapeutic potential of the plant extracts rich in polyphenols to curb down parasitic infections caused by T. brucei and other trypanosomes. In this work, the main components dominating Eugenia uniflora and Syzygium samarangense plant extracts were virtually screened, through docking, as inhibitors of seven T. brucei enzymes validated as potential drug targets. The in vitro and in vivo anti-T. brucei activities of the extracts in two treatment doses were evaluated. Moreover, the extract effects on the packed cell volume level, liver, and kidney functions were assessed. Five compounds showed strong docking and minimal binding energy to five target enzymes simultaneously and three other compounds were able to bind strongly to at least four of the target enzymes. These compounds represent lead hits to develop novel trypanocidal agents of natural origin. Both extracts showed moderate in vitro anti-trypanosomal activity. Infected animal groups treated over 5 days with the studied extracts showed an appreciable in vivo anti-trypanosomal activity and ameliorated in a dose dependent manner the anaemia, liver, and kidney damages induced by the infection. In conclusion, Eugenia uniflora and Syzygium samarangense could serve as appealing sources to treat trypanosomes infections.
Collapse
Affiliation(s)
| | | | | | - Raphael Aminu
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Saad Bello Saad
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Sonja Krstin
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Mansour Sobeh
- AgroBiosciences Research Division, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150 Ben-Guerir, Morocco.
| |
Collapse
|
36
|
Sezavar M, Sharifi I, Ghasemi Nejad Almani P, Kazemi B, Davoudi N, Salari S, Salarkia E, Khosravi A, Bamorovat M. The potential therapeutic role of PTR1 gene in non-healing anthroponotic cutaneous leishmaniasis due to Leishmania tropica. J Clin Lab Anal 2021; 35:e23670. [PMID: 33283321 PMCID: PMC7957997 DOI: 10.1002/jcla.23670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Drug resistance is a common phenomenon frequently observed in countries where leishmaniasis is endemic. Due to the production of the pteridine reductase enzyme (PTR1), drugs lose their efficacy, and consequently, the patient becomes unresponsive to treatment. This study aimed to compare the in vitro effect of meglumine antimoniate (MA) on non- healing Leishmania tropica isolates and on MA transfected non-healing one to PTR1. METHODS Two non-healing and one healing isolates of L. tropica were collected from patients who received two courses or one cycle of intralesional MA along with biweekly liquid nitrogen cryotherapy or systemic treatment alone, respectively. After confirmation of L. tropica isolates by polymerase chain reaction (PCR), the recombinant plasmid pcDNA-rPTR (antisense) was transfected via electroporation and cultured on M199. Isolates in form of promastigotes were treated with different concentrations of MA and read using an enzyme-linked immunosorbent assay (ELISA) reader and the half inhibitory concentration (IC50 ) value was calculated. The amastigotes were grown in mouse macrophages and were similarly treated with various concentrations of MA. The culture glass slides were stained, and the mean number of intramacrophage amastigotes and infected macrophages were assessed in triplicate for both stages. RESULTS All three transfected isolates displayed a reduction in optical density compared with the promastigotes in respective isolates, although there was no significant difference between non-healing and healing isolates. In contrast, in the clinical form (amastigotes), there was a significant difference between non-healing and healing isolates (p < 0.05). CONCLUSION The results indicated that the PTR1 gene reduced the efficacy of the drug, and its inhibition by antisense and could improve the treatment of non-healing cases. These findings have future implications in the prophylactic and therapeutic modality of non- healing Leishmania isolates to drug.
Collapse
Affiliation(s)
- Monireh Sezavar
- Department of Experimental SciencesFaculty of Allied medicineAlborz University of Medical SciencesKarajIran
| | - Iraj Sharifi
- Leishmaniasis Research CentreKerman University of Medical SciencesKermanIran
| | | | - Bahram Kazemi
- Cellular and Molecular Biology, Research CentreShahid Beheshti University of Medical SciencesTehranIran
- Biotechnology Department, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesIran
| | - Noushin Davoudi
- Department of BiotechnologyPasteur Institute of IranTehranIran
| | - Samira Salari
- Medical Mycology and Bacteriology Research CenterKerman University of Medical SciencesKermanIran
| | - Ehsan Salarkia
- Leishmaniasis Research CentreKerman University of Medical SciencesKermanIran
| | - Ahmad Khosravi
- Leishmaniasis Research CentreKerman University of Medical SciencesKermanIran
| | - Mehdi Bamorovat
- Leishmaniasis Research CentreKerman University of Medical SciencesKermanIran
| |
Collapse
|
37
|
Bibi M, Qureshi NA, Sadiq A, Farooq U, Hassan A, Shaheen N, Asghar I, Umer D, Ullah A, Khan FA, Salman M, Bibi A, Rashid U. Exploring the ability of dihydropyrimidine-5-carboxamide and 5-benzyl-2,4-diaminopyrimidine-based analogues for the selective inhibition of L. major dihydrofolate reductase. Eur J Med Chem 2020; 210:112986. [PMID: 33187806 DOI: 10.1016/j.ejmech.2020.112986] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 11/20/2022]
Abstract
To tackle leishmaniasis, search for efficient therapeutic drug targets should be pursued. Dihydrofolate reductase (DHFR) is considered as a key target for the treatment of leishmaniasis. In current study, we are interested in the design and synthesis of selective antifolates targeting DHFR from L. major. We focused on the development of new antifolates based on 3,4-dihydropyrimidine-2-one and 5-(3,5-dimethoxybenzyl)pyrimidine-2,4-diamine motif. Structure activity relationship (SAR) studies were performed on 4-phenyl ring of dihydropyrimidine (26-30) template. While for 5-(3,5-dimethoxybenzyl)pyrimidine-2,4-diamine, the impact of different amino acids (valine, tryptophan, phenylalanine, and glutamic acid) and two carbon linkers were explored (52-59). The synthesized compounds were assayed against LmDHFR. Compound 59 with the IC50 value of 0.10 μM appeared as potent inhibitors of L. major. Selectivity for parasite DHFR over human DHFR was also determined. Derivatives 55-59 demonstrated excellent selectivity for LmDHFR. Highest selectivity for LmDHFR was shown by compounds 56 (SI = 84.5) and 58 (SI = 87.5). Compounds Antileishmanial activity against L. major and L. donovani promastigotes was also performed. To explore the interaction pattern of the synthesized compounds with biological macromolecules, the docking studies were carried out against homology modelled LmDHFR and hDHFR targets.
Collapse
Affiliation(s)
- Maria Bibi
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | | | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000, Dir (L), KP, Pakistan
| | - Umar Farooq
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Abbas Hassan
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Nargis Shaheen
- Department of Animal Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Irfa Asghar
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Duaa Umer
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Azmat Ullah
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Farhan A Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Muhammad Salman
- Department of Microbiology, National Institute of Health (NIH), Islamabad, 45320, Pakistan
| | - Ahtaram Bibi
- Department of Chemistry, Faculty of Physical Sciences, Kohat University of Science and Technology, 26000, Kohat, KP, Pakistan
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan.
| |
Collapse
|
38
|
Istanbullu H, Bayraktar G, Akbaba H, Cavus I, Coban G, Debelec Butuner B, Kilimcioglu AA, Ozbilgin A, Alptuzun V, Erciyas E. Design, synthesis, and in vitro biological evaluation of novel thiazolopyrimidine derivatives as antileishmanial compounds. Arch Pharm (Weinheim) 2020; 353:e1900325. [DOI: 10.1002/ardp.201900325] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/21/2020] [Accepted: 05/11/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Huseyin Istanbullu
- Department of Pharmaceutical Chemistry, Faculty of PharmacyIzmir Katip Celebi University Cigli Izmir Turkey
| | - Gulsah Bayraktar
- Department of Pharmaceutical Chemistry, Faculty of PharmacyEge University Bornova Izmir Turkey
| | - Hasan Akbaba
- Department of Pharmaceutical Biotechnology, Faculty of PharmacyEge University Bornova Izmir Turkey
| | - Ibrahim Cavus
- Department of ParasitologyManisa Celal Bayar University Manisa Turkey
| | - Gunes Coban
- Department of Pharmaceutical Chemistry, Faculty of PharmacyEge University Bornova Izmir Turkey
| | - Bilge Debelec Butuner
- Department of Pharmaceutical Biotechnology, Faculty of PharmacyEge University Bornova Izmir Turkey
| | | | - Ahmet Ozbilgin
- Department of ParasitologyManisa Celal Bayar University Manisa Turkey
| | - Vildan Alptuzun
- Department of Pharmaceutical Chemistry, Faculty of PharmacyEge University Bornova Izmir Turkey
| | - Ercin Erciyas
- Department of Pharmaceutical Chemistry, Faculty of PharmacyEge University Bornova Izmir Turkey
| |
Collapse
|
39
|
Labine M, DePledge L, Feirer N, Greenwich J, Fuqua C, Allen KD. Enzymatic and Mutational Analysis of the PruA Pteridine Reductase Required for Pterin-Dependent Control of Biofilm Formation in Agrobacterium tumefaciens. J Bacteriol 2020; 202:JB.00098-20. [PMID: 32482721 PMCID: PMC8404713 DOI: 10.1128/jb.00098-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/22/2020] [Indexed: 11/20/2022] Open
Abstract
Pterins are ubiquitous biomolecules with diverse functions including roles as cofactors, pigments, and redox mediators. Recently, a novel pterin-dependent signaling pathway that controls biofilm formation was identified in the plant pathogen, Agrobacterium tumefaciens A key player in this pathway is a pteridine reductase termed PruA, where its enzymatic activity has been shown to control surface attachment and limit biofilm formation. Here, we biochemically characterize PruA to investigate the catalytic properties and substrate specificity of this pteridine reductase. PruA demonstrates maximal catalytic efficiency with dihydrobiopterin and comparable activities with the stereoisomers dihydromonapterin and dihydroneopterin. Since A. tumefaciens does not synthesize or utilize biopterins, the likely physiological substrate is dihydromonapterin or dihydroneopterin, or both. Notably, PruA does not exhibit pteridine reductase activity with dihydrofolate or fully oxidized pterins. Site-directed mutagenesis studies of a conserved tyrosine residue, the key component of a putative catalytic triad, indicate that this tyrosine is not directly involved in PruA catalysis but may be important for substrate or cofactor binding. Additionally, mutagenesis of the arginine residue in the N-terminal TGX3RXG motif significantly reduces the catalytic efficiency of PruA, supporting its proposed role in pterin binding and catalysis. Finally, we report the enzymatic characterization of PruA homologs from Pseudomonas aeruginosa and Brucella abortus, thus expanding the roles and potential significance of pteridine reductases in diverse bacteria.Importance Biofilms are complex multicellular communities that are formed by diverse bacteria. In the plant pathogen, Agrobacterium tumefaciens, the transition from a free-living motile state to a non-motile biofilm state is governed by a novel signaling pathway involving small molecules called pterins. The involvement of pterins in biofilm formation is unexpected and prompts many questions about the molecular details of this pathway. This work biochemically characterizes the PruA pteridine reductase involved in the signaling pathway to reveal its enzymatic properties and substrate preference, thus providing important insight into pterin biosynthesis and its role in A. tumefaciens biofilm control. Additionally, the enzymatic characteristics of related pteridine reductases from mammalian pathogens are examined to uncover potential roles of these enzymes in other bacteria.
Collapse
Affiliation(s)
- Monica Labine
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Lisa DePledge
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA, USA
| | - Nathan Feirer
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | | | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Kylie D Allen
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
40
|
Antileishmanial activity evaluation of thiazolidine-2,4-dione against Leishmania infantum and Leishmania braziliensis. Parasitol Res 2020; 119:2263-2274. [PMID: 32462293 DOI: 10.1007/s00436-020-06706-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/05/2020] [Indexed: 01/04/2023]
Abstract
Leishmaniasis is responsible for approximately 65,000 annual deaths. Despite the mortality data, drugs available for the treatment of patients are insufficient and have moderate therapeutic efficacy in addition to serious adverse effects, which makes the development of new drugs urgent. To achieve this goal, the integration of kinetic and DSF assays against parasitic validated targets, along with phenotypic assays, can help the identification and optimization of bioactive compounds. Pteridine reductase 1 (PTR1), a validated target in Leishmania sp., is responsible for the reduction of folate and biopterin to tetrahydrofolate and tetrahydrobiopterin, respectively, both of which are essential for cell growth. In addition to the in vitro evaluation of 16 thiazolidine-2,4-dione derivatives against Leishmania major PTR1 (LmPTR1), using the differential scanning fluorimetry (ThermoFluor®), phenotypic assays were employed to evaluate the compound effect over Leishmania braziliensis (MHOM/BR/75/M2903) and Leishmania infantum (MHOM/BR/74/PP75) promastigotes viability. The ThermoFluor® results show that thiazolidine-2,4-dione derivatives have micromolar affinity to the target and equivalent activity on Leishmania cells. 2b is the most potent compound against L. infantum (EC50 = 23.45 ± 4.54 μM), whereas 2a is the most potent against L. braziliensis (EC50 = 44.16 ± 5.77 μM). This result suggests that lipophilic substituents on either-meta and/or-para positions of the benzylidene ring increase the potency against L. infantum. On the other hand, compound 2c (CE50 = 49.22 ± 7.71 μM) presented the highest selectivity index.
Collapse
|
41
|
Crentsil JA, Yamthe LRT, Anibea BZ, Broni E, Kwofie SK, Tetteh JKA, Osei-Safo D. Leishmanicidal Potential of Hardwickiic Acid Isolated From Croton sylvaticus. Front Pharmacol 2020; 11:753. [PMID: 32523532 PMCID: PMC7261830 DOI: 10.3389/fphar.2020.00753] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/06/2020] [Indexed: 01/31/2023] Open
Abstract
Leishmania is a parasitic protozoon responsible for the neglected tropical disease Leishmaniasis. Approximately, 350 million people are susceptible and close to 70,000 death cases globally are reported annually. The lack of effective leishmanicides, the emergence of drug resistance and toxicity concerns necessitate the pursuit for effective antileishmanial drugs. Natural compounds serve as reservoirs for discovering new drugs due to their chemical diversity. Hardwickiic acid (HA) isolated from the stembark of Croton sylvaticus was evaluated for its leishmanicidal potential against Leishmania donovani and L. major promastigotes. The susceptibility of the promastigotes to HA was determined using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide/phenazine methosulfate colorimetric assay with Amphotericin B serving as positive control. HA showed a significant antileishmanial activity on L. donovani promastigotes with an IC50 value of 31.57± 0.06 µM with respect to the control drug, amphotericin B with IC50 of 3.35 ± 0.14 µM). The cytotoxic activity was observed to be CC50 = 247.83 ± 6.32 µM against 29.99 ± 2.82 µM for curcumin, the control, resulting in a selectivity index of SI = 7.85. Molecular modeling, docking and dynamics simulations of selected drug targets corroborated the observed antileishmanial activity of HA. Novel insights into the mechanisms of binding were obtained for trypanothione reductase (TR), pteridine reductase 1 (PTR1), and glutamate cysteine ligase (GCL). The binding affinity of HA to the drug targets LmGCL, LmPTR1, LdTR, LmTR, LdGCL, and LdPTR1 were obtained as -8.0, -7.8, -7.6, -7.5, -7.4 and -7.1 kcal/mol, respectively. The role of Lys16, Ser111, and Arg17 as critical residues required for binding to LdPTR1 was reinforced. HA was predicted as a Caspase-3 stimulant and Caspase-8 stimulant, implying a possible role in apoptosis, which was shown experimentally that HA induced parasite death by loss of membrane integrity. HA was also predicted as antileishmanial molecule corroborating the experimental activity. Therefore, HA is a promising antileishmanial molecule worthy of further development as a biotherapeutic agent.
Collapse
Affiliation(s)
- Justice Afrifa Crentsil
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences (CBAS), University of Ghana, Accra, Ghana
| | - Lauve Rachel Tchokouaha Yamthe
- Institute for Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon.,Department of Parasitology, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.,Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Barbara Zenabu Anibea
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences (CBAS), University of Ghana, Accra, Ghana
| | - Emmanuel Broni
- Department of Biomedical Engineering, School of Engineering Sciences, CBAS, University of Ghana, Accra, Ghana
| | - Samuel Kojo Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, CBAS, University of Ghana, Accra, Ghana.,West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, CBAS, University of Ghana, Accra, Ghana.,Department of Medicine, Loyola University Medical Center, Maywood, IL, United States.,Department of Physics and Engineering Science, Coastal Carolina University, Conway, SC, United States
| | - John Kweku Amissah Tetteh
- Department of Immunology, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Dorcas Osei-Safo
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences (CBAS), University of Ghana, Accra, Ghana
| |
Collapse
|
42
|
Scotti MT, Monteiro AFM, de Oliveira Viana J, Bezerra Mendonça Junior FJ, Ishiki HM, Tchouboun EN, De Araújo RSA, Scotti L. Recent Theoretical Studies Concerning Important Tropical Infections. Curr Med Chem 2020; 27:795-834. [DOI: 10.2174/0929867326666190711121418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/20/2018] [Accepted: 04/12/2019] [Indexed: 01/02/2023]
Abstract
Neglected Tropical Diseases (NTDs) form a group of diseases that are strongly associated
with poverty, flourish in impoverished environments, and thrive best in tropical areas,
where they tend to present overlap. They comprise several diseases, and the symptoms
vary dramatically from disease to disease, often causing from extreme pain, and untold misery
that anchors populations to poverty, permanent disability, and death. They affect more than 1
billion people worldwide; mostly in poor populations living in tropical and subtropical climates.
In this review, several complementary in silico approaches are presented; including
identification of new therapeutic targets, novel mechanisms of activity, high-throughput
screening of small-molecule libraries, as well as in silico quantitative structure-activity relationship
and recent molecular docking studies. Current and active research against Sleeping
Sickness, American trypanosomiasis, Leishmaniasis and Schistosomiasis infections will hopefully
lead to safer, more effective, less costly and more widely available treatments against
these parasitic forms of Neglected Tropical Diseases (NTDs) in the near future.
Collapse
Affiliation(s)
- Marcus Tullius Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | - Alex France Messias Monteiro
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | - Jéssika de Oliveira Viana
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | | | - Hamilton M. Ishiki
- University of Western Sao Paulo (Unoeste), Presidente Prudente, SP, Brazil
| | | | - Rodrigo Santos A. De Araújo
- Laboratory of Synthesis and Drug Delivery, Department of Biological Science, State University of Paraiba, Joao Pessoa, PB, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| |
Collapse
|
43
|
Linciano P, Cullia G, Borsari C, Santucci M, Ferrari S, Witt G, Gul S, Kuzikov M, Ellinger B, Santarém N, Cordeiro da Silva A, Conti P, Bolognesi ML, Roberti M, Prati F, Bartoccini F, Retini M, Piersanti G, Cavalli A, Goldoni L, Bertozzi SM, Bertozzi F, Brambilla E, Rizzo V, Piomelli D, Pinto A, Bandiera T, Costi MP. Identification of a 2,4-diaminopyrimidine scaffold targeting Trypanosoma brucei pteridine reductase 1 from the LIBRA compound library screening campaign. Eur J Med Chem 2020; 189:112047. [PMID: 31982652 DOI: 10.1016/j.ejmech.2020.112047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/31/2019] [Accepted: 01/06/2020] [Indexed: 12/21/2022]
Abstract
The LIBRA compound library is a collection of 522 non-commercial molecules contributed by various Italian academic laboratories. These compounds have been designed and synthesized during different medicinal chemistry programs and are hosted by the Italian Institute of Technology. We report the screening of the LIBRA compound library against Trypanosoma brucei and Leishmania major pteridine reductase 1, TbPTR1 and LmPTR1. Nine compounds were active against parasitic PTR1 and were selected for cell-based parasite screening, as single agents and in combination with methotrexate (MTX). The most interesting TbPTR1 inhibitor identified was 4-(benzyloxy)pyrimidine-2,6-diamine (LIB_66). Subsequently, six new LIB_66 derivatives were synthesized to explore its Structure-Activity-Relationship (SAR) and absorption, distribution, metabolism, excretion and toxicity (ADMET) properties. The results indicate that PTR1 has a preference to bind inhibitors, which resemble its biopterin/folic acid substrates, such as the 2,4-diaminopyrimidine derivatives.
Collapse
Affiliation(s)
- Pasquale Linciano
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Gregorio Cullia
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133, Milan, Italy
| | - Chiara Borsari
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Matteo Santucci
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Stefania Ferrari
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Gesa Witt
- Fraunhofer Institute for Molecular Biology and Applied Ecology - ScreeningPort, Hamburg, Germany
| | - Sheraz Gul
- Fraunhofer Institute for Molecular Biology and Applied Ecology - ScreeningPort, Hamburg, Germany
| | - Maria Kuzikov
- Fraunhofer Institute for Molecular Biology and Applied Ecology - ScreeningPort, Hamburg, Germany
| | - Bernhard Ellinger
- Fraunhofer Institute for Molecular Biology and Applied Ecology - ScreeningPort, Hamburg, Germany
| | - Nuno Santarém
- Institute for Molecular and Cell Biology, 4150-180 Porto, Portugal and Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, 4150-180, Porto, Portugal
| | - Anabela Cordeiro da Silva
- Institute for Molecular and Cell Biology, 4150-180 Porto, Portugal and Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, 4150-180, Porto, Portugal; Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - Paola Conti
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133, Milan, Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126, Bologna, Italy
| | - Marinella Roberti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126, Bologna, Italy
| | - Federica Prati
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126, Bologna, Italy
| | - Francesca Bartoccini
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, I-16163, Genova, Italy
| | - Michele Retini
- Department of Biomolecular Sciences, Section of Chemistry, University of Urbino "Carlo Bo", Piazza Rinascimento 6, 61029, Urbino, Italy
| | - Giovanni Piersanti
- Department of Biomolecular Sciences, Section of Chemistry, University of Urbino "Carlo Bo", Piazza Rinascimento 6, 61029, Urbino, Italy
| | - Andrea Cavalli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126, Bologna, Italy; Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, I-16163, Genova, Italy
| | - Luca Goldoni
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, I-16163, Genova, Italy
| | - Sine Mandrup Bertozzi
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, I-16163, Genova, Italy
| | - Fabio Bertozzi
- PharmaChemistry Line, Istituto Italiano di Tecnologia, Via Morego 30, I-16163, Genova, Italy
| | - Enzo Brambilla
- PharmaChemistry Line, Istituto Italiano di Tecnologia, Via Morego 30, I-16163, Genova, Italy
| | - Vincenzo Rizzo
- PharmaChemistry Line, Istituto Italiano di Tecnologia, Via Morego 30, I-16163, Genova, Italy
| | - Daniele Piomelli
- Departments of Anatomy and Neurobiology, Pharmacology and Biological Chemistry, University of California, Irvine, 92697-4625, USA
| | - Andrea Pinto
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, 20133, Milan, Italy
| | - Tiziano Bandiera
- PharmaChemistry Line, Istituto Italiano di Tecnologia, Via Morego 30, I-16163, Genova, Italy
| | - Maria Paola Costi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy.
| |
Collapse
|
44
|
Teixeira BVF, Teles ALB, da Silva SG, Brito CCB, de Freitas HF, Pires ABL, Froes TQ, Castilho MS. Dual and selective inhibitors of pteridine reductase 1 (PTR1) and dihydrofolate reductase-thymidylate synthase (DHFR-TS) from Leishmania chagasi. J Enzyme Inhib Med Chem 2019; 34:1439-1450. [PMID: 31409157 PMCID: PMC6713189 DOI: 10.1080/14756366.2019.1651311] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
Leishmaniasis is a tropical disease found in more than 90 countries. The drugs available to treat this disease have nonspecific action and high toxicity. In order to develop novel therapeutic alternatives to fight this ailment, pteridine reductase 1 (PTR1) and dihydrofolate reductase-thymidylate synthase (DHF-TS) have been targeted, once Leishmania is auxotrophic for folates. Although PTR1 and DHFR-TS from other protozoan parasites have been studied, their homologs in Leishmania chagasi have been poorly characterized. Hence, this work describes the optimal conditions to express the recombinant LcPTR1 and LcDHFR-TS enzymes, as well as balanced assay conditions for screening. Last but not the least, we show that 2,4 diaminopyrimidine derivatives are low-micromolar competitive inhibitors of both enzymes (LcPTR1 Ki = 1.50-2.30 µM and LcDHFR Ki = 0.28-3.00 µM) with poor selectivity index. On the other hand, compound 5 (2,4-diaminoquinazoline derivative) is a selective LcPTR1 inhibitor (Ki = 0.47 µM, selectivity index = 20).
Collapse
Affiliation(s)
| | - André Lacerda Braga Teles
- Programa de Pós-Graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual da Bahia, Salvador, BA, Brazil
- Departamento de Ciências da Vida, Universidade do Estado da Bahia, Salvador, BA, Brazil
| | | | | | - Humberto Fonseca de Freitas
- Programa de Pós-Graduação em Farmácia, Universidade Federal da Bahia, Salvador, BA, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil
| | | | - Thamires Quadros Froes
- Programa de Pós-Graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil
| | - Marcelo Santos Castilho
- Programa de Pós-Graduação em Farmácia, Universidade Federal da Bahia, Salvador, BA, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil
| |
Collapse
|
45
|
Kapil S, Singh PK, Kashyap A, Silakari O. Structure based designing of benzimidazole/benzoxazole derivatives as anti-leishmanial agents. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2019; 30:919-933. [PMID: 31702401 DOI: 10.1080/1062936x.2019.1684357] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Folates are essential biomolecules required to carry out many crucial processes in leishmania parasite. Dihydrofolate reductase-thymidylate synthase (DHFR-TS) and pteridine reductase 1 (PTR1) involved in folate biosynthesis in leishmania have been established as suitable targets for development of chemotherapy against leishmaniasis. In the present study, various computational tools such as homology modelling, pharmacophore modelling, docking, molecular dynamics and molecular mechanics have been employed to design dual DHFR-TS and PTR1 inhibitors. Two designed molecules, i.e. 2-(4-((4-nitrobenzyl)oxy)phenyl)-1H-benzo[d]imidazole and 2-(4-((2,4-dichlorobenzyl)oxy)phenyl)-1H-benzo[d]oxazolemolecules were synthesized. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay was performed to evaluate in vitro activity of molecules against promastigote form of Leishmania donovani using Miltefosine as standard. 2-(4-((4-nitrobenzyl)oxy)phenyl)-1H-benzo[d]imidazole and 2-(4-((2,4-dichlorobenzyl)oxy)phenyl)-1H-benzo[d]oxazolemolecules were found to be moderately active with showed IC50 = 68 ± 2.8 µM and 57 ± 4.2 µM, respectively.
Collapse
Affiliation(s)
- S Kapil
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - P K Singh
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - A Kashyap
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - O Silakari
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| |
Collapse
|
46
|
Valente M, Vidal AE, González-Pacanowska D. Targeting Kinetoplastid and Apicomplexan Thymidylate Biosynthesis as an Antiprotozoal Strategy. Curr Med Chem 2019; 26:4262-4279. [PMID: 30259810 DOI: 10.2174/0929867325666180926154329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/23/2018] [Accepted: 09/14/2018] [Indexed: 02/04/2023]
Abstract
Kinetoplastid and apicomplexan parasites comprise a group of protozoans responsible for human diseases, with a serious impact on human health and the socioeconomic growth of developing countries. Chemotherapy is the main option to control these pathogenic organisms and nucleotide metabolism is considered a promising area for the provision of antimicrobial therapeutic targets. Impairment of thymidylate (dTMP) biosynthesis severely diminishes the viability of parasitic protozoa and the absence of enzymatic activities specifically involved in the formation of dTMP (e.g. dUTPase, thymidylate synthase, dihydrofolate reductase or thymidine kinase) results in decreased deoxythymidine triphosphate (dTTP) levels and the so-called thymineless death. In this process, the ratio of deoxyuridine triphosphate (dUTP) versus dTTP in the cellular nucleotide pool has a crucial role. A high dUTP/dTTP ratio leads to uracil misincorporation into DNA, the activation of DNA repair pathways, DNA fragmentation and eventually cell death. The essential character of dTMP synthesis has stimulated interest in the identification and development of drugs that specifically block the biochemical steps involved in thymine nucleotide formation. Here, we review the available literature in relation to drug discovery studies targeting thymidylate biosynthesis in kinetoplastid (genera Trypanosoma and Leishmania) and apicomplexan (Plasmodium spp and Toxoplasma gondii) protozoans. The most relevant findings concerning novel inhibitory molecules with antiparasitic activity against these human pathogens are presented herein.
Collapse
Affiliation(s)
- María Valente
- Instituto de Parasitologia y Biomedicina "Lopez-Neyra", Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Antonio E Vidal
- Instituto de Parasitologia y Biomedicina "Lopez-Neyra", Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Dolores González-Pacanowska
- Instituto de Parasitologia y Biomedicina "Lopez-Neyra", Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
47
|
Capelli-Peixoto J, Mule SN, Tano FT, Palmisano G, Stolf BS. Proteomics and Leishmaniasis: Potential Clinical Applications. Proteomics Clin Appl 2019; 13:e1800136. [PMID: 31347770 DOI: 10.1002/prca.201800136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 07/02/2019] [Indexed: 02/06/2023]
Abstract
Leishmaniases are diseases caused by protozoan parasites of the genus Leishmania. They are endemic in 98 countries, affect around 12 million people worldwide and may present several distinct clinical forms. Unfortunately, there are only a few drugs available for treatment of leishmaniasis, which are toxic and not always effective. Different parasite species and different clinical forms require optimization of the treatment or more specific therapies, which are not available. The emergence of resistance is also a matter of concern. Besides, diagnosis can sometimes be complicated due to atypical manifestations and associations with other pathologies. In this review, proteomic data are presented and discussed in terms of their application in important issues in leishmaniasis such as parasite resistance to chemotherapy, diagnosis of active disease in patients and dogs, markers for different clinical forms, identification of virulence factors, and their potential use in vaccination. It is shown that proteomics has contributed to the discovery of potential biomarkers for prognosis, diagnosis, therapeutics, monitoring of disease progression, treatment follow-up and identification of vaccine candidates for specific diseases. However, the authors believe its capabilities have not yet been fully explored for routine clinical analysis for several reasons, which will be presented in this review.
Collapse
Affiliation(s)
- Janaína Capelli-Peixoto
- Leishmaniasis laboratory, Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | - Simon Ngao Mule
- GlycoProteomics laboratory, Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | - Fabia Tomie Tano
- Leishmaniasis laboratory, Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics laboratory, Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | - Beatriz Simonsen Stolf
- Leishmaniasis laboratory, Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
48
|
Eldehna WM, Almahli H, Ibrahim TM, Fares M, Al-Warhi T, Boeckler FM, Bekhit AA, Abdel-Aziz HA. Synthesis, in vitro biological evaluation and in silico studies of certain arylnicotinic acids conjugated with aryl (thio)semicarbazides as a novel class of anti-leishmanial agents. Eur J Med Chem 2019; 179:335-346. [PMID: 31260888 DOI: 10.1016/j.ejmech.2019.06.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 11/29/2022]
Abstract
Herein we introduce new compounds as conjugates of arylnicotinic acids with aryl (thio)semicarbazide derivatives. Based on a structure-guided approach, they were designed to possess anti-leishmanial activity through anti-folate mechanism, via targeting Leishmania major pteridine reductase 1 (Lm-PTR1). The in vitro anti-promastigote and anti-amastigote activity were promising for many thiosemicarbazide derivatives and superior to the reference miltefosine. The most active compounds 8i and 8j exhibited their anti-amastigote activity with IC50 values of 4.2 and 3.3 μM, respectively, compared to reference miltefosine (IC50 value of 7.3). Their anti-folate mechanism was confirmed via the ability of folic and folinic acids to reverse the anti-leishmanial activity of these compounds, comparably to Lm-PTR1 inhibitor trimethoprim. Interestingly, the in vitro cytotoxicity test of the most active compounds displayed higher selectivity indices than that of miltefosine emphasizing their safety on mammalian cells. Furthermore, the docking experiments on Lm-PTR1 as a putative target rationalized the in vitro anti-leishmanial activity. The in silico predictions exhibited promising pharmacokinetics and drug-likeness profiles of the most active compounds. Generally, this work introduces a fruitful matrix for new anti-leishmanial chemotype which would extend the chemical space for the anti-leishmanial activity.
Collapse
Affiliation(s)
- Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Hadia Almahli
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt; Molecular Design and Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076, Tuebingen, Germany.
| | - Mohamed Fares
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt; School of Chemistry, University of Wollongong, Wollongong, 2522, New South Wales, Australia
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Frank M Boeckler
- Molecular Design and Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076, Tuebingen, Germany
| | - Adnan A Bekhit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Pharmacy Program, Allied Health Department, College of Health Sciences, University of Bahrain, P.O. Box 32038, Kingdom of Bahrain
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo, 12622, Egypt
| |
Collapse
|
49
|
Linciano P, Pozzi C, Iacono LD, di Pisa F, Landi G, Bonucci A, Gul S, Kuzikov M, Ellinger B, Witt G, Santarem N, Baptista C, Franco C, Moraes CB, Müller W, Wittig U, Luciani R, Sesenna A, Quotadamo A, Ferrari S, Pöhner I, Cordeiro-da-Silva A, Mangani S, Costantino L, Costi MP. Enhancement of Benzothiazoles as Pteridine Reductase-1 Inhibitors for the Treatment of Trypanosomatidic Infections. J Med Chem 2019; 62:3989-4012. [DOI: 10.1021/acs.jmedchem.8b02021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Pasquale Linciano
- Dipartimento di Scienze della Vita, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Cecilia Pozzi
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Lucia dello Iacono
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Flavio di Pisa
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Giacomo Landi
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Alessio Bonucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Sheraz Gul
- Fraunhofer Institute for Molecular Biology and Applied Ecology Screening Port, 22525 Hamburg, Germany
| | - Maria Kuzikov
- Fraunhofer Institute for Molecular Biology and Applied Ecology Screening Port, 22525 Hamburg, Germany
| | - Bernhard Ellinger
- Fraunhofer Institute for Molecular Biology and Applied Ecology Screening Port, 22525 Hamburg, Germany
| | - Gesa Witt
- Fraunhofer Institute for Molecular Biology and Applied Ecology Screening Port, 22525 Hamburg, Germany
| | - Nuno Santarem
- Institute for Molecular and Cell Biology, 4150-180 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto and Institute for Molecular and Cell Biology, 4150-180 Porto, Portugal
| | - Catarina Baptista
- Institute for Molecular and Cell Biology, 4150-180 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto and Institute for Molecular and Cell Biology, 4150-180 Porto, Portugal
| | - Caio Franco
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisaem Energia e Materiais (CNPEM), 13083-100 Campinas, São Paulo, Brazil
| | - Carolina B. Moraes
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisaem Energia e Materiais (CNPEM), 13083-100 Campinas, São Paulo, Brazil
| | | | | | - Rosaria Luciani
- Dipartimento di Scienze della Vita, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Antony Sesenna
- Dipartimento di Scienze della Vita, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Antonio Quotadamo
- Dipartimento di Scienze della Vita, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Stefania Ferrari
- Dipartimento di Scienze della Vita, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | | | - Anabela Cordeiro-da-Silva
- Institute for Molecular and Cell Biology, 4150-180 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto and Institute for Molecular and Cell Biology, 4150-180 Porto, Portugal
| | - Stefano Mangani
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Luca Costantino
- Dipartimento di Scienze della Vita, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Maria Paola Costi
- Dipartimento di Scienze della Vita, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| |
Collapse
|
50
|
Kimuda MP, Laming D, Hoppe HC, Tastan Bishop Ö. Identification of Novel Potential Inhibitors of Pteridine Reductase 1 in Trypanosoma brucei via Computational Structure-Based Approaches and in Vitro Inhibition Assays. Molecules 2019; 24:molecules24010142. [PMID: 30609681 PMCID: PMC6337619 DOI: 10.3390/molecules24010142] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 11/16/2022] Open
Abstract
Pteridine reductase 1 (PTR1) is a trypanosomatid multifunctional enzyme that provides a mechanism for escape of dihydrofolate reductase (DHFR) inhibition. This is because PTR1 can reduce pterins and folates. Trypanosomes require folates and pterins for survival and are unable to synthesize them de novo. Currently there are no anti-folate based Human African Trypanosomiasis (HAT) chemotherapeutics in use. Thus, successful dual inhibition of Trypanosoma brucei dihydrofolate reductase (TbDHFR) and Trypanosoma brucei pteridine reductase 1 (TbPTR1) has implications in the exploitation of anti-folates. We carried out molecular docking of a ligand library of 5742 compounds against TbPTR1 and identified 18 compounds showing promising binding modes. The protein-ligand complexes were subjected to molecular dynamics to characterize their molecular interactions and energetics, followed by in vitro testing. In this study, we identified five compounds which showed low micromolar Trypanosome growth inhibition in in vitro experiments that might be acting by inhibition of TbPTR1. Compounds RUBi004, RUBi007, RUBi014, and RUBi018 displayed moderate to strong antagonism (mutual reduction in potency) when used in combination with the known TbDHFR inhibitor, WR99210. This gave an indication that the compounds might inhibit both TbPTR1 and TbDHFR. RUBi016 showed an additive effect in the isobologram assay. Overall, our results provide a basis for scaffold optimization for further studies in the development of HAT anti-folates.
Collapse
Affiliation(s)
- Magambo Phillip Kimuda
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa.
- College of Veterinary Medicine, Animal Resources and Biosecurity (COVAB), Makerere University, P.O. Box 7062, Kampala 00256, Uganda.
| | - Dustin Laming
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa.
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown 6140, South Africa.
| | - Heinrich C Hoppe
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa.
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown 6140, South Africa.
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa.
| |
Collapse
|