1
|
Zou W, Rohatgi N, Brestoff JR, Li Y, Barve RA, Tycksen E, Kim Y, Silva MJ, Teitelbaum SL. Ablation of Fat Cells in Adult Mice Induces Massive Bone Gain. Cell Metab 2020; 32:801-813.e6. [PMID: 33027637 PMCID: PMC7642038 DOI: 10.1016/j.cmet.2020.09.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/29/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022]
Abstract
Adipocytes control bone mass, but the mechanism is unclear. To explore the effect of postnatal adipocyte elimination on bone cells, we mated mice expressing an inducible primate diphtheria toxin receptor (DTR) to those bearing adiponectin (ADQ)-Cre. DTR activation eliminates peripheral and marrow adipocytes in these DTRADQ mice. Within 4 days of DTR activation, the systemic bone mass of DTRADQ mice began to increase due to stimulated osteogenesis, with a 1,000% expansion by 10-14 days post-DTR treatment. This adipocyte ablation-mediated enhancement of skeletal mass reflected bone morphogenetic protein (BMP) receptor activation following the elimination of its inhibitors, associated with simultaneous epidermal growth factor (EGF) receptor signaling. DTRADQ-induced osteosclerosis is not due to ablation of peripheral adipocytes but likely reflects the elimination of marrow ADQ-expressing cells. Thus, anabolic drugs targeting BMP receptor inhibitors with short-term EGF receptor activation may be a means of profoundly increasing skeletal mass to prevent or reverse pathological bone loss.
Collapse
Affiliation(s)
- Wei Zou
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nidhi Rohatgi
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jonathan R Brestoff
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yongjia Li
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ruteja A Barve
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eric Tycksen
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yung Kim
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew J Silva
- Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven L Teitelbaum
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
2
|
Taylor S, Markesbery M, Harding P. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) and proteolytic processing by a disintegrin and metalloproteinases (ADAM): A regulator of several pathways. Semin Cell Dev Biol 2014; 28:22-30. [DOI: 10.1016/j.semcdb.2014.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/25/2014] [Accepted: 03/03/2014] [Indexed: 12/11/2022]
|
3
|
Heparin-binding epidermal growth factor-like growth factor/diphtheria toxin receptor in normal and neoplastic hematopoiesis. Toxins (Basel) 2013; 5:1180-1201. [PMID: 23888518 PMCID: PMC3717776 DOI: 10.3390/toxins5061180] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Heparin-binding EGF-like growth factor (HB-EGF) belongs to the EGF family of growth factors. It is biologically active either as a molecule anchored to the membrane or as a soluble form released by proteolytic cleavage of the extracellular domain. HB-EGF is involved in relevant physiological and pathological processes spanning from proliferation and apoptosis to morphogenesis. We outline here the main activities of HB-EGF in connection with normal or neoplastic differentiative or proliferative events taking place primitively in the hematopoietic microenvironment.
Collapse
|
4
|
Ota I, Higashiyama S, Masui T, Yane K, Hosoi H, Matsuura N. Heparin-binding EGF-like growth factor enhances the activity of invasion and metastasis in thyroid cancer cells. Oncol Rep 2013; 30:1593-600. [PMID: 23917679 PMCID: PMC3810215 DOI: 10.3892/or.2013.2659] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/18/2013] [Indexed: 12/16/2022] Open
Abstract
Thyroid cancer sometimes contains poorly differentiated components, which have the potential of invasion and metastasis. We evaluated the possible roles of heparin-binding EGF-like growth factor (HB-EGF), a member of the epidermal growth factor (EGF) family, in cell growth and invasion of thyroid cancer cells, and demonstrated that HB-EGF is not only a potent mitogen but also a chemotactic factor in the thyroid cancer cells 8305C and SW579. The HB-EGF-mediated chemotaxis was inhibited by neutralizing antibody against the EGF receptor (EGFR/HER1/ErbB1) or tyrphostin AG1478, a specific inhibitor of the EGFR tyrosine kinase. The HB-EGF mRNA and protein expression was also analyzed using RT-PCR and immunofluorescence methods, respectively. In addition, in clinical immunohistochemical study, increased expression of HB-EGF and its receptors, HER1 and EGFR4 (HER4/ErbB4), was observed in thyroid carcinoma cells. Our findings suggest that HB-EGF acts as a potent paracrine and/or autocrine chemotactic factor as well as a mitogen that mediates HER1 and/or HER4 in the invasion and metastasis of thyroid carcinoma cells, including poorly differentiated papillary carcinomas or undifferentiated/anaplastic carcinomas. These data may aid in the development of novel therapeutic strategies for thyroid cancer.
Collapse
Affiliation(s)
- Ichiro Ota
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Kashihara, Nara, Japan.
| | | | | | | | | | | |
Collapse
|
5
|
Takemura T, Yoshida Y, Kiso S, Saji Y, Ezaki H, Hamano M, Kizu T, Egawa M, Chatani N, Furuta K, Kamada Y, Iwamoto R, Mekada E, Higashiyama S, Hayashi N, Takehara T. Conditional knockout of heparin-binding epidermal growth factor-like growth factor in the liver accelerates carbon tetrachloride-induced liver injury in mice. Hepatol Res 2013; 43:384-93. [PMID: 22882498 DOI: 10.1111/j.1872-034x.2012.01074.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
AIM We previously demonstrated that heparin-binding epidermal growth factor-like growth factor (HB-EGF) is induced in response to several liver injuries. Because the HB-EGF knockout (KO) mice die in utero or immediately after birth due to cardiac defects, the loss of function study in vivo is limited. Here, we generated liver-specific HB-EGF conditional knockout mice using the interferon-inducible Mx-1 promoter driven cre recombinase transgene and investigated its role during acute liver injury. METHODS We induced acute liver injury by a single i.p. injection of carbon tetrachloride (CCl4 ) in HB-EGF KO mice and wild-type mice and liver damage was assessed by biochemical and immunohistochemical analysis. We also used AML12 mouse hepatocyte cell lines to examine the molecular mechanism of HB-EGF-dependent anti-apoptosis and wound-healing process of the liver in vitro. RESULTS HB-EGF KO mice exhibited a significant increase of alanine aminotransferase level and also showed a significant increase in the number of apoptotic hepatocytes assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling staining at 24 h after CCl4 injection. We also demonstrated that HB-EGF treatment inhibited tumor necrosis factor-α-induced apoptosis of AML12 mouse hepatocytes and promoted the wound-healing response of these cells. CONCLUSION This study showed that HB-EGF plays a protective role during acute liver injury.
Collapse
Affiliation(s)
- Takayo Takemura
- Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Osaka Department of Biochemistry and Molecular Genetics, Ehime University, Graduate School of Medicine Department of Cell Growth and Tumor Regulation, Proteo-Medicine Research Center (ProMRes), Ehime University, Ehime Kansai-Rosai Hospital, Hyogo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Identification of the cancer cell proliferation and survival functions of proHB-EGF by using an anti-HB-EGF antibody. PLoS One 2013; 8:e54509. [PMID: 23349913 PMCID: PMC3549951 DOI: 10.1371/journal.pone.0054509] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 12/12/2012] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a member of the epidermal growth factor family. The membrane-bound proHB-EGF is known to be a precursor of the soluble form of HB-EGF (sHB-EGF), which promotes cell proliferation and survival. While the functions of sHB-EGF have been extensively studied, it is not yet fully understood if proHB-EGF is also involved in cellular signaling events. In this study, we utilized the anti-HB-EGF monoclonal antibodies Y-142 and Y-073, which have differential specificities toward proHB-EGF, in order to elucidate proHB-EGF functions in cancer cells. EXPERIMENTAL DESIGN The biological activities of proHB-EGF were assessed in cell proliferation, caspase activation, and juxtacrine activity assays by using a 3D spheroid culture of NUGC-3 cells. RESULTS Y-142 and Y-073 exhibited similar binding and neutralizing activities for sHB-EGF. However, only Y-142 bound to proHB-EGF. We could detect the function of endogenously expressed proHB-EGF in a 3D spheroid culture. Blocking proHB-EGF with Y-142 reduced spheroid formation, suppressed cell proliferation, and increased caspase activation in the 3D spheroid culture of NUGC-3 cells. CONCLUSIONS Our results show that proHB-EGF acts as a cell proliferation and cell survival factor in cancer cells. The results suggest that proHB-EGF may play an important role in tumor progression.
Collapse
|
7
|
Nakamura H, Aoki H, Hino O, Moriyama M. HCV core protein promotes heparin binding EGF-like growth factor expression and activates Akt. Hepatol Res 2011; 41:455-62. [PMID: 21418450 DOI: 10.1111/j.1872-034x.2011.00792.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AIMS Persistent hepatitis C virus (HCV) infection is a major cause of chronic liver dysfunction and is closely associated with the development of human hepatocellular carcinoma (HCC). Among HCV components, core protein is implicated in cell growth regulation, and we previously demonstrated that HCV core protein interacted with 14-3-3 protein and activated the kinase Raf-1 and mitogen-activated protein kinase (MAPK)/extracellular regulated kinase (ERK) pathway. In the present study, we investigated the expression levels and function of downstream molecules in the MAPK/ERK signaling pathway in cells expressing HCV core protein. METHOD Heparin-binding EGF-like growth factor (HB-EGF) mRNA, in HepG2 cells stably expressing HCV core protein, was detected by RT-PCR. The soluble HB-EGF in culture media was measured by heparin agarose chromatography/Western blot analysis. Immunodetection of Akt and IKK and IB, in HeLa cells and HepG2 cells expressing HCV core protein, were performed with neutralizing antibody for HB-EGF, phospatidylinositol-3-kinase [PI(3)K] inhibitor and dominant-negative mutant of Ras (DN-Ras). RESULTS HB-EGF expression was significantly elevated in cells expressing HCV core protein. HCV core protein activated Akt through the Ras/PI(3)K pathway by autocrine secretion of HB-EGF. Also, HCV core protein activated IKK through Ras/PI(3)K/Akt pathway by autocrine secretion of HB-EGF. As the Ras/PI(3)K/Akt pathway is critical in anti-apoptotic HB-EGF signaling, we examined the possible role of this pathway in cells expressing HCV core protein. In addition, we investigated the relationship between IB kinases (IKK) and Akt in cells expressing HCV core protein, since IKKs are known to be activated by HCV core protein and by Akt in the presence of potent mitogen. We showed that HCV core protein promoted autocrine secretion of HB-EGF and activated Akt through the Ras/PI(3)K pathway. This model indicates a new approach to mechanism of proliferation and anti-apoptosis in HCC. CONCLUSION HCV core protein is a potent activator of mitogenic and anti-apoptotic signaling involved in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Hitomi Nakamura
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine Department of Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|
8
|
Stoll SW, Johnson JL, Bhasin A, Johnston A, Gudjonsson JE, Rittié L, Elder JT. Metalloproteinase-mediated, context-dependent function of amphiregulin and HB-EGF in human keratinocytes and skin. J Invest Dermatol 2010; 130:295-304. [PMID: 19609315 PMCID: PMC2795126 DOI: 10.1038/jid.2009.211] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Human keratinocytes (KCs) express multiple EGF receptor (EGFR) ligands; however, their functions in specific cellular contexts remain largely undefined. To address this issue, first we measured mRNA and protein levels for multiple EGFR ligands in KCs and skin. Amphiregulin (AREG) was by far the most abundant EGFR ligand in cultured KCs, with >19 times more mRNA and >7.5 times more shed protein than any other family member. EGFR ligand expression in normal skin was low (<8 per thousand of RPLP0/36B4); however, HB-EGF and AREG mRNAs were strongly induced in human skin organ culture. KC migration in scratch wound assays was highly metalloproteinase (MP)- and EGFR dependent, and was markedly inhibited by EGFR ligand antibodies. However, lentivirus-mediated expression of soluble HB-EGF, but not soluble AREG, strongly enhanced KC migration, even in the presence of MP inhibitors. Lysophosphatidic acid (LPA)-induced ERK phosphorylation was also strongly EGFR and MP dependent and markedly inhibited by neutralization of HB-EGF. In contrast, autocrine KC proliferation and ERK phosphorylation were selectively blocked by neutralization of AREG. These data show that distinct EGFR ligands stimulate KC behavior in different cellular contexts, and in an MP-dependent fashion.
Collapse
Affiliation(s)
- Stefan W Stoll
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Imhof I, Gasper WJ, Derynck R. Association of tetraspanin CD9 with transmembrane TGF{alpha} confers alterations in cell-surface presentation of TGF{alpha} and cytoskeletal organization. J Cell Sci 2008; 121:2265-74. [PMID: 18544636 DOI: 10.1242/jcs.021717] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Ligand presentation is a major determinant of receptor activation. The epidermal growth factor receptor (EGFR), a tyrosine kinase receptor, is activated by growth factors of the transforming growth factor alpha (TGFalpha) family. The tetraspanin CD9 interacts with transmembrane TGFalpha and decreases its ectodomain shedding to release soluble TGFalpha. Here we report that CD9 has a role in the maturation of transmembrane TGFalpha and its stabilization at the cell surface, and in the cell-surface distribution in polarized epithelial cells. Furthermore, coexpression of CD9 and TGFalpha confers changes in cytoskeletal organization with a decrease in actin stress fibers and focal adhesions, and changes in RhoA and Rac1 GTPase activity. These alterations are reversed by blocking EGFR signaling. Finally, we demonstrate changes in cell adhesion and migration resulting from coexpression of TGFalpha with CD9. These results provide insight into the role of CD9 in the presentation of TGFalpha in epithelial and carcinoma cells, whose physiology is driven by ligand-induced EGFR activation.
Collapse
Affiliation(s)
- Isabella Imhof
- Department of Cell and Tissue Biology, Program in Cell Biology, University of California-San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
10
|
Hollborn M, Iandiev I, Seifert M, Schnurrbusch UEK, Wolf S, Wiedemann P, Bringmann A, Kohen L. Expression of HB-EGF by retinal pigment epithelial cells in vitreoretinal proliferative disease. Curr Eye Res 2006; 31:863-74. [PMID: 17050278 DOI: 10.1080/02713680600888807] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The heparin-binding epidermal growth factor-like growth factor (HB-EGF) has been implicated in wound-healing processes of various tissues. However, it is not known whether HB-EGF may represent a factor implicated in overstimulated wound-healing processes of the retina during proliferative retinopathies. Therefore, we investigated whether human retinal pigment epithelial (RPE) cells, which are crucially involved in proliferative retinopathies, express and respond to HB-EGF. RPE cells express mRNAs for various members of the EGF-related growth factor family, among them for HB-EGF, as well as for the EGF receptors ErbB1, -2, -3, and -4. The gene expression of HB-EGF is stimulated in the presence of transforming and basic fibroblast growth factors and by oxidative stress and is suppressed during chemical hypoxia. Exogenous HB-EGF stimulates proliferation and migration of RPE cells and the gene and protein expression of the vascular endothelial growth factor (VEGF). HB-EGF activates at least three signal transduction pathways in RPE cells including the extracellular signal-regulated kinases (involved in the proliferation-stimulating action of HB-EGF), p38 (mediates the effects on chemotaxis and secretion of VEGF), and the phosphatidylinositol-3 kinase (necessary for the stimulation of chemotaxis). In epiretinal membranes of patients with proliferative retinopathies, HB-EGF immunoreactivity was partially colocalized with the RPE cell marker, cytokeratins; this observation suggests that RPE cell-derived HB-EGF may represent one factor that drives the uncontrolled wound-healing process of the retina. The stimulating effect on the secretion of VEGF may suggest that HB-EGF is also implicated in the pathological angiogenesis of the retina.
Collapse
Affiliation(s)
- Margrit Hollborn
- Department of Ophthalmology and Eye Clinic, University of Leipzig, Leipzig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Shishido Y, Tanaka T, Piao YS, Araki K, Takei N, Higashiyama S, Nawa H. Activity-dependent shedding of heparin-binding EGF-like growth factor in brain neurons. Biochem Biophys Res Commun 2006; 348:963-70. [PMID: 16901467 DOI: 10.1016/j.bbrc.2006.07.129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 07/23/2006] [Indexed: 01/08/2023]
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is initially produced as a membrane-anchored precursor (pro-HB-EGF) and subsequently liberated from the cell membrane through ectodomain shedding. Here, we characterized the molecular regulation of pro-HB-EGF shedding in the central nervous system. Cultured neocortical or hippocampal neurons were transfected with the alkaline-phosphatase-tagged pro-HB-EGF gene and stimulated with various neurotransmitters. Both kainate and N-methyl-D-aspartate, but not agonists for metabotropic glutamate receptors, promoted pro-HB-EGF shedding and HB-EGF release, which were attenuated by an exocytosis blocker and metalloproteinase inhibitors. In the brain of transgenic mice over-expressing human pro-HB-EGF, kainate-induced seizure activity decreased content of pro-HB-EGF-like immunoreactivity and conversely increased levels of soluble HB-EGF. There was concomitant phosphorylation of EGF receptors (ErbB1) following seizures, suggesting that seizure activities liberated HB-EGF and activated neighboring ErbB1 receptors. Therefore, we propose that glutamatergic neurotransmission in the central nervous system plays a crucial role in regulating ectodomain shedding of pro-HB-EGF.
Collapse
Affiliation(s)
- Yuji Shishido
- Division of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Sanderson MP, Dempsey PJ, Dunbar AJ. Control of ErbB signaling through metalloprotease mediated ectodomain shedding of EGF-like factors. Growth Factors 2006; 24:121-36. [PMID: 16801132 DOI: 10.1080/08977190600634373] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Epidermal growth factor (EGF)-like proteins comprise a group of structurally similar growth factors, which contain a conserved six-cysteine residue motif called the EGF-domain. EGF-like factors are synthesized as transmembrane precursors, which can undergo proteolytic cleavage at the cell surface to release a mature soluble ectodomain; a process often referred to as "ectodomain shedding". Ectodomain shedding of EGF-like factors has been linked to multiple zinc-binding metalloproteases of the matrix metalloprotease (MMP) and a disintegrin and metalloprotease (ADAM) families. Shedding can be activated by a variety of pharmacological and physiological stimuli and these activation events have been linked to the enhancement of metalloprotease activity, possibly via the action of intracellular signaling modules. Once shed from the cell surface, EGF-like factors bind to a family of four cell surface receptors named ErbB-1, -2, -3 and -4. Heterodimerization or homodimerization of these receptors following ligand binding drives intracellular signal transduction cascades, which eventuate in diverse cell fates including proliferation, differentiation, migration and inhibition of apoptosis. In addition to its role in driving normal developmental processes, a wealth of evidence now exists showing that de-regulated ErbB signaling is associated with the formation of tumors in a variety of tissues and that ectodomain shedding of EGF-like factors plays a critical event in this process. Thus, knowledge of the molecular mechanisms by which EGF-like factors are shed from the cell surface and the nature of the proteases and cellular signals that govern this process is crucial to understanding ErbB receptor signaling and potentially also in the development of novel cancer therapeutics targeting the ErbB pathway. This review focuses on the structure and function of EGF-like factors, and the mechanisms that govern the shedding of these transmembrane molecules from the cell surface.
Collapse
Affiliation(s)
- Michael P Sanderson
- Tumor Immunology Programme, German Cancer Research Centre, Heidelberg, Germany
| | | | | |
Collapse
|
13
|
Docherty NG, O'Sullivan OE, Healy DA, Murphy M, O'neill AJ, Fitzpatrick JM, Watson RWG. TGF-beta1-induced EMT can occur independently of its proapoptotic effects and is aided by EGF receptor activation. Am J Physiol Renal Physiol 2005; 290:F1202-12. [PMID: 16368739 DOI: 10.1152/ajprenal.00406.2005] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Apoptosis and epithelial-mesenchymal transdifferentiation (EMT) occur in stressed tubular epithelial cells and contribute to renal fibrosis. Transforming growth factor (TGF)-beta(1) promotes these responses and we examined whether the processes were interdependent in vitro. Direct (caspase inhibition) and indirect [epidermal growth factor (EGF) receptor stimulation] strategies were used to block apoptosis during TGF-beta(1) stimulation, and the subsequent effect on EMT was assessed. HK-2 cells were exposed to TGF-beta(1) with or without preincubation with ZVAD-FMK (pan-caspase inhibitor) or concomitant treatment with EGF plus or minus preincubation with LY-294002 (PI3-kinase inhibitor). Cells were then assessed for apoptosis and proliferation by flow cytometry, crystal violet assay, and Western blotting. Markers of EMT were assessed by microscopy, immunofluorescence, real-time RT-PCR, Western blotting, PAI-1 reporter assay, and collagen gel contraction assay. TGF-beta(1) caused apoptosis and priming for staurosporine-induced apoptosis. This was blocked by ZVAD-FMK. However, ZVAD-FMK did not prevent EMT following TGF-beta(1) treatment. EGF inhibited apoptosis and facilitated TGF-beta(1) induction of EMT by increasing proliferation and accentuating E-cadherin loss. Additionally, EGF significantly enhanced TGF-beta(1)-induced collagen I gel contraction. EGF increased Akt phosphorylation during EMT, and the prosurvival effect of this was confirmed using LY-294002, which reduced EGF-induced Akt phosphorylation and reversed its antiapoptotic and proproliferatory effects. TGF-beta(1) induces EMT independently of its proapoptotic effects. TGF-beta(1) and EGF together lead to EMT. EGF increases proliferation and resistance to apoptosis during EMT in a PI3-K Akt-dependent manner. In vivo, EGF receptor activation may assist in the selective survival of a transdifferentiated, profibrotic cell type.
Collapse
Affiliation(s)
- Neil G Docherty
- Conway Institute, Univ. College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | |
Collapse
|
14
|
Mehta VB, Besner GE. Heparin-binding epidermal growth factor-like growth factor inhibits cytokine-induced NF-kappa B activation and nitric oxide production via activation of the phosphatidylinositol 3-kinase pathway. THE JOURNAL OF IMMUNOLOGY 2005; 175:1911-8. [PMID: 16034135 DOI: 10.4049/jimmunol.175.3.1911] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
NO produced by inducible NO synthase (iNOS) has been implicated in various pathophysiological processes including inflammation. Therefore, inhibitors of NO synthesis or iNOS gene expression have been considered as potential anti-inflammatory agents. We have previously demonstrated that heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF) decreases proinflammatory cytokine IL-8 and NO production in cytokine-stimulated intestinal epithelial cells by interfering with the NF-kappaB signaling pathway. However, the upstream signaling mechanisms involved in these responses have not yet been defined. In this report, we show that in intestinal epithelial cells, HB-EGF triggered PI3K-dependent phosphorylation of Akt. Inhibition of PI3K reversed the ability of HB-EGF to block NF-kappaB activation, expression of iNOS, and NO production. Small interfering RNA of PI3K also reversed the inhibitory effect of HB-EGF on iNOS expression. Alternatively, transient expression of constitutively active PI3K decreased NO production by approximately 2-fold more than treatment with HB-EGF alone. This PI3K effect was HB-EGF dependent. Thus, activation of PI3K is essential but not sufficient for decreased NO synthesis. PI3K and HB-EGF act synergistically to decrease NO synthesis. Neither overexpression or inhibition of MEK, Ras, or Akt affected HB-EGF-mediated inhibition of NF-kappaB activation. These data demonstrate that HB-EGF decreases proinflammatory cytokine-stimulated NF-kappaB activation and NO production via activation of the PI3K signaling pathway. These results also suggest that inhibition of NF-kappaB and activation of the PI3K-dependent signaling cascade by HB-EGF may represent key signals responsible for the anti-inflammatory effects of HB-EGF.
Collapse
Affiliation(s)
- Veela B Mehta
- Department of Pediatric Surgery, Children's Hospital, and Children's Research Institute, Center for Cellular and Vascular Biology, Columbus, OH 43205, USA
| | | |
Collapse
|
15
|
Akayama Y, Takekida S, Ohara N, Tateiwa H, Chen W, Nakabayashi K, Maruo T. Gene expression and immunolocalization of heparin-binding epidermal growth factor-like growth factor and human epidermal growth factor receptors in human corpus luteum. Hum Reprod 2005; 20:2708-14. [PMID: 15979989 DOI: 10.1093/humrep/dei162] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The objective of this study was to elucidate gene expression and immunolocalization of heparin-binding epidermal growth factor-like growth factor (HB-EGF) and human epidermal growth factor receptor (HER) family in the human ovary during luteal growth and regression. METHODS Ovaries obtained from pre-menopausal women were used for immunohistochemistry and semiquantitative RT-PCR analysis. RESULTS Immunoreactive HB-EGF was not detected in follicles or oocyte, while HB-EGF became apparent in granulosa luteal cells in the early luteal phase, and most abundant in the mid-luteal phase, but less abundant in the late luteal phase. Immunostaining for HER1 was very weak in granulosa luteal cells in the early and mid-luteal phases, and was not detected in the late luteal phase. Immunoreactive HER4 was abundant in the early luteal phase and became less abundant in the mid-luteal phase, whereas it was negative in the late luteal phase. Semiquantitative RT-PCR analysis revealed that HB-EGF and HER1 mRNA levels were high in the mid-luteal phase, whereas HER4 mRNA expression was high in the early luteal phase. CONCLUSIONS HB-EGF may play a vital role in regulating luteal growth in a juxtacrine manner and through activating HER4 signalling.
Collapse
Affiliation(s)
- Yuki Akayama
- Department of Obstetrics and Gynecology, Kobe University Graduate School of Medicine, Chuo-Ku, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Dong J, Opresko LK, Chrisler W, Orr G, Quesenberry RD, Lauffenburger DA, Wiley HS. The membrane-anchoring domain of epidermal growth factor receptor ligands dictates their ability to operate in juxtacrine mode. Mol Biol Cell 2005; 16:2984-98. [PMID: 15829568 PMCID: PMC1142441 DOI: 10.1091/mbc.e04-11-0994] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
All ligands of the epidermal growth factor (EGF) receptor (EGFR) are synthesized as membrane-anchored precursors. Previous work has suggested that some ligands, such as EGF, must be proteolytically released to be active, whereas others, such as heparin-binding EGF-like growth factor (HB-EGF) can function while still anchored to the membrane (i.e., juxtacrine signaling). To explore the structural basis for these differences in ligand activity, we engineered a series of membrane-anchored ligands in which the core, receptor-binding domain of EGF was combined with different domains of both EGF and HB-EGF. We found that ligands having the N-terminal extension of EGF could not bind to the EGFR, even when released from the membrane. Ligands lacking an N-terminal extension, but possessing the membrane-anchoring domain of EGF, still required proteolytic release for activity, whereas ligands with the membrane-anchoring domain of HB-EGF could elicit full biological activity while still membrane anchored. Ligands containing the HB-EGF membrane anchor, but lacking an N-terminal extension, activated EGFR during their transit through the Golgi apparatus. However, cell-mixing experiments and fluorescence resonance energy transfer studies showed that juxtacrine signaling typically occurred in trans at the cell surface, at points of cell-cell contact. Our data suggest that the membrane-anchoring domain of ligands selectively controls their ability to participate in juxtacrine signaling and thus, only a subclass of EGFR ligands can act in a juxtacrine mode.
Collapse
Affiliation(s)
- Jianying Dong
- Department of Pathology, Division of Cell Biology and Immunology, University of Utah, Salt Lake City, UT 84133, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Wang J, Ohara N, Takekida S, Xu Q, Maruo T. Comparative effects of heparin-binding epidermal growth factor-like growth factor on the growth of cultured human uterine leiomyoma cells and myometrial cells. Hum Reprod 2005; 20:1456-65. [PMID: 15760954 DOI: 10.1093/humrep/deh842] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The objective of this study was to investigate the comparative effects of heparin-binding epidermal growth factor-like growth factor (HB-EGF) on the growth of cultured human leiomyoma cells and myometrial cells. METHODS Isolated cells were subcultured in Phenol Red-free Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum for 120 h and then stepped down to serum-free conditions for an additional 24 and 48 h in the presence or absence of graded concentrations of HB-EGF (0.1, 1, 10 and 100 ng/ml). These cells were used for immunocytochemical analysis for Ki67, western blot analysis for proliferating cell nuclear antigen (PCNA) and human EGF receptor (HER1), and TdT (terminal deoxynucleotidyl transferase)-mediated dUDP nick-end labelling (TUNEL) assay. RESULTS Treatment with HB-EGF at concentrations >1 ng/ml significantly increased the Ki67-positive rate of cultured leiomyoma cells and myometrial cells. Treatment with HB-EGF also resulted in a dose-dependent increase in PCNA expression in both cells compared with untreated control cultures. A significant increase in PCNA expression in cultured myometrial cells was noted following treatment with HB-EGF at concentrations >1 ng/ml, whereas an increase in PCNA expression in cultured leiomyoma cells was noted following treatment with HB-EGF at concentrations >10 ng/ml. HER1 expression was significantly higher in untreated myometrial cells than in untreated leiomyoma cells. A significant increase in HER1 expression in myometrial cells was observed when treated with HB-EGF at concentrations >10 ng/ml, whereas a significant increase in HER1 expression in leiomyoma cells was noted only by the treatment with HB-EGF at concentrations >100 ng/ml. Treatment with HB-EGF decreased the TUNEL-positive rate of those cells with no significant differences between the two cell types. CONCLUSIONS The results obtained suggest that HB-EGF plays a role in stimulating the proliferation of leiomyoma cells and myometrial cells and in inhibiting apoptosis of those cells through augmentation of HER1 expression. Since the proliferative potential of myometrial cells responded better to HB-EGF than that of leiomyoma cells, HB-EGF may play a more vital role in myometrial growth than leiomyoma growth.
Collapse
Affiliation(s)
- Jiayin Wang
- Department of Obstetrics and Gynecology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan
| | | | | | | | | |
Collapse
|
18
|
Ongusaha PP, Kwak JC, Zwible AJ, Macip S, Higashiyama S, Taniguchi N, Fang L, Lee SW. HB-EGF is a potent inducer of tumor growth and angiogenesis. Cancer Res 2004; 64:5283-90. [PMID: 15289334 DOI: 10.1158/0008-5472.can-04-0925] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) has been shown to stimulate the growth of a variety of cells in an autocrine or paracrine manner. Although HB-EGF is widely expressed in tumors compared with normal tissue, its contribution to tumorigenicity is unknown. HB-EGF can be produced as a membrane-anchored form (pro-HB-EGF) and later processed to a soluble form (s-HB-EGF), although a significant amount of pro-HB-EGF remains uncleaved on the cell surface. To understand the roles of two forms of HB-EGF in promoting tumor growth, we have studied the effects of HB-EGF expression in the process of tumorigenesis using in vitro and in vivo systems. We demonstrate here that in EJ human bladder cancer cells containing a tetracycline-regulatable s-HB-EGF or pro-HB-EGF expression system, s-HB-EGF expression increased their transformed phenotypes, including growth rate, colony-forming ability, and activation of cyclin D1 promoter, as well as induction of vascular endothelial growth factor in vitro. Moreover, s-HB-EGF or wild-type HB-EGF induced the expression and activities of the metalloproteases, MMP-9 and MMP-3, leading to enhanced cell migration. In vivo studies also demonstrated that tumor cells expressing s-HB-EGF or wild-type HB-EGF significantly enhanced tumorigenic potential in athymic nude mice and exerted an angiogenic effect, increasing the density and size of tumor blood vessels. However, cells expressing solely pro-HB-EGF did not exhibit any significant tumorigenic potential. These findings establish s-HB-EGF as a potent inducer of tumor growth and angiogenesis and suggest that therapeutic intervention aimed at the inhibition of s-HB-EGF functions may be useful in cancer treatment.
Collapse
Affiliation(s)
- Pat P Ongusaha
- Cancer Biology Program, Hematology and Oncology Division, Beth Israel Deaconess Medical Center and Harvard Medical School, 4 Blackfan Circle, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Mehta VB, Besner GE. Inhibition of NF-kappa B activation and its target genes by heparin-binding epidermal growth factor-like growth factor. THE JOURNAL OF IMMUNOLOGY 2004; 171:6014-22. [PMID: 14634113 DOI: 10.4049/jimmunol.171.11.6014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many cells upon injury mount extensive, compensatory responses that increase cell survival; however, the intracellular signals that regulate these responses are not completely understood. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) has been implicated as a cytoprotective agent. We have previously demonstrated that pretreatment of human intestinal epithelial cells with HB-EGF significantly decreased cytokine-induced activation of inducible NO synthase mRNA expression and NO production and protected the cells from apoptosis and necrosis. However, the mechanisms by which HB-EGF exerts these effects are not known. Here we show that cytokine exposure (IL-1beta and IFN-gamma) induced NF-kappaB activation and IL-8 and NO production in DLD-1 cells. Transient expression of a dominant negative form of IkappaBalpha decreased NO production, suggesting that the cytokines stimulated NO production in part through activation of NF-kappaB. HB-EGF dramatically suppressed NF-kappaB activity and IL-8 release and decreased NO production in cells pretreated with HB-EGF. HB-EGF blocked NF-kappaB activation by inhibiting IkappaB kinase activation and IkappaB phosphorylation and degradation, thus interfering with NF-kappaB nuclear translocation, DNA-binding activity, and NF-kappaB-dependent transcriptional activity. The data demonstrate that HB-EGF decreases inflammatory cytokine and NO production by interfering with the NF-kappaB signaling pathway. Inhibition of NF-kappaB may represent one of the mechanisms by which HB-EGF exerts its potent anti-inflammatory and cytoprotective effects.
Collapse
Affiliation(s)
- Veela B Mehta
- Department of Pediatric Surgery, Children's Research Institute, and Ohio State University, Columbus, OH 43205, USA
| | | |
Collapse
|
20
|
El-Assal ON, Besner GE. Heparin-binding epidermal growth factor-like growth factor and intestinal ischemia-reperfusion injury. Semin Pediatr Surg 2004; 13:2-10. [PMID: 14765365 DOI: 10.1053/j.sempedsurg.2003.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intestinal ischemia/reperfusion (I/R) injury affects patients of different ages, especially premature babies and the elderly. The outcome after intestinal I/R is often dismal, which may be attributed to loss of the barrier and immune functions of the intestines, as well as development of secondary injury in remote organs. The available treatment for advanced gut ischemia mandates extensive resection, which may cause growth retardation in infants and nutritional problems in the elderly. Throughout the past decade we have been investigating the potential therapeutic role of heparin-binding epidermal growth factor-like factor (HB-EGF) in intestinal I/R. The mitogenic and chemoattractant functions of HB-EGF formed the initial rationale for our investigations. In addition, HB-EGF is a potent antiapoptotic protein that enables cells and tissues exposed to different apoptotic stimuli to survive hypoxic, oxidative, and nutritional stresses. HB-EGF is known to have a vital role in wound healing and postischemic regeneration in different organs. In the current review, we summarize the results of our findings of the beneficial effects of HB-EGF in intestinal I/R, supported by additional evidence from the literature and an explanation of different possible mechanisms of its actions. Collectively, the data strongly suggest a potential therapeutic role for the use of HB-EGF to treat intestinal ischemic diseases such as I/R and necrotizing enterocolitis.
Collapse
Affiliation(s)
- Osama N El-Assal
- Department of Surgery, Children's Hospital and The Ohio State University College of Medicine and Public Health, Columbus, OH 43205, USA
| | | |
Collapse
|
21
|
Banyard J, Bao L, Zetter BR. Type XXIII collagen, a new transmembrane collagen identified in metastatic tumor cells. J Biol Chem 2003; 278:20989-94. [PMID: 12644459 DOI: 10.1074/jbc.m210616200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified a transmembrane collagen, collagen XXIII, in rat prostate carcinoma cells. Differential display of mRNA expression in prostate carcinoma sublines with varying metastatic potential revealed overexpression of this transcript in the metastatic AT6.1 subline. cDNA cloning identified a 2733-bp transcript from AT6.1 RNA, encoding a protein of 532 amino acids, together with a 3067-bp human homologue, resulting in a 540-amino acid protein. Collagen XXIII is predicted to be a type II membrane protein consisting of an amino-terminal cytoplasmic domain, a transmembrane region, and three collagenous domains flanked by short noncollagenous domains. Collagen XXIII is a new member of the transmembrane collagen family, showing structural homology with the transmembrane collagens XIII and XXV. We present evidence that collagen XXIII is expressed as a approximately 75-kDa protein at the cell surface and that it can be cleaved by furin protease activity. Cleavage results in a approximately 60-kDa soluble protein that forms a multimeric complex and exhibits a low affinity interaction with heparin.
Collapse
Affiliation(s)
- Jacqueline Banyard
- Program in Vascular Biology and Department of Surgery, Children's Hospital/Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
22
|
Miyamoto Y, Koh YH, Park YS, Fujiwara N, Sakiyama H, Misonou Y, Ookawara T, Suzuki K, Honke K, Taniguchi N. Oxidative stress caused by inactivation of glutathione peroxidase and adaptive responses. Biol Chem 2003; 384:567-74. [PMID: 12751786 DOI: 10.1515/bc.2003.064] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Reactive oxygen species (ROS) are generated as by-products of cellular metabolism, primarily in the mitochondria. When the cellular production of ROS exceeds the cell's antioxidant capacity, cellular macromolecules such as lipids, proteins and DNA can be damaged. Because of this, 'oxidative stress' is thought to contribute to aging and pathogenesis of a variety of human diseases. However, in the last 10-15 years, a considerable body of evidence has accumulated that ROS serve as subcellular messengers, and play a role in gene regulation and signal transduction pathways, which may be involved in defensive mechanisms against oxidative stress. This review focuses on oxidative stress caused by the inactivation of glutathione peroxidase (GPx), a major peroxide scavenging enzyme. GPx is inactivated by a variety of physiological substances, including nitric oxide and carbonyl compounds in vitro and in cell culture. Decreased GPx activity has also been reported in tissues where oxidative stress occurs in several pathological animal models. The accumulation of increased levels of peroxide resulting from inactivation of GPx may act as a second messenger and regulate expression of anti-apoptotic genes and the GPx itself to protect against cell damage. These findings suggest that GPx undergoes inactivation under various conditions such as nitroxidative stress and glycoxidative stress, and that these changes are a common feature of various types of oxidative stress which may be associated with the modification of redox regulation and cellular function.
Collapse
Affiliation(s)
- Yasuhide Miyamoto
- Department of Biochemistry, Osaka University Medical School, Osaka, 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Means AL, Ray KC, Singh AB, Washington MK, Whitehead RH, Harris RC, Wright CVE, Coffey RJ, Leach SD. Overexpression of heparin-binding EGF-like growth factor in mouse pancreas results in fibrosis and epithelial metaplasia. Gastroenterology 2003; 124:1020-36. [PMID: 12671899 DOI: 10.1053/gast.2003.50150] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is expressed in both normal pancreatic islets and in pancreatic cancers, but its role in pancreatic physiology and disease is not known. This report examines the effects of HB-EGF overexpression in mouse pancreas. METHODS Transgenic mice were established using a tissue-specific promoter to express an HB-EGF complementary DNA in pancreatic beta cells, effectively elevating HB-EGF protein 3-fold over endogenous levels. RESULTS Mice overexpressing HB-EGF in pancreatic islets showed both endocrine and exocrine pancreatic defects. Initially, islets from transgenic mice failed to segregate alpha, beta, delta, and PP cells appropriately within islets, and had impaired separation from ducts and acini. Increased stroma was detected within transgenic islets, expanding with age to cause fibrosis of both endocrine and exocrine compartments. In addition to these structural abnormalities, subsets of transgenic mice developed profound hyperglycemia and/or proliferation of metaplastic ductal epithelium. Both conditions were associated with severe stromal expansion, suggesting a role for islet/stromal interaction in the onset of the pancreatic disease initiated by HB-EGF. Supporting this conclusion, primary mouse fibroblasts adhered to transgenic islets when the 2 tissues were cocultured in vitro, but did not interact with nontransgenic islets. CONCLUSIONS An elevation in HB-EGF protein in pancreatic islets led to altered interactions among islet cells and among islets, stromal tissues, and ductal epithelium. Many of the observed phenotypes appeared to involve altered cell adhesion. These data support a role for islet factors in the development of both endocrine and exocrine disease.
Collapse
Affiliation(s)
- Anna L Means
- Department of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Nolan TM, DiGirolamo N, Sachdev NH, Hampartzoumian T, Coroneo MT, Wakefield D. The role of ultraviolet irradiation and heparin-binding epidermal growth factor-like growth factor in the pathogenesis of pterygium. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:567-74. [PMID: 12547714 PMCID: PMC1851157 DOI: 10.1016/s0002-9440(10)63850-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ultraviolet (UV) light is one of the major factors implicated in the pathogenesis of pterygium. The mechanism by which UV light induces this disease remains elusive. The aim of this study was to evaluate the effects of UVB irradiation on the expression of growth factors in cultured pterygium epithelial cells and to demonstrate their distribution within pterygium. We cultured pterygial epithelial cells from pterygium explants and these cells were exposed to 20 mJ/cm(2) of UVB. Total RNA was extracted at 0, 6, and 12 hours after irradiation. (32)P-labeled cDNA was synthesized and analyzed using microarray technology to determine the differential expression of 268 growth factor and cytokine related genes. Semiquantitative reverse transcriptase-polymerase chain reaction was used to corroborate this data. Conditioned media derived from cells exposed to UVB irradiation was analyzed for protein expression by enzyme-linked immunosorbent assay. Immunohistochemistry was used to evaluate the distribution of heparin-binding epidermal growth factor-like growth factor (HB-EGF) in pterygium tissue. Analysis of the hybridization signals revealed that the genes encoding HB-EGF, fibroblast growth factor 3, and cytotoxic trail ligand receptor were consistently elevated at 6 and 12 hours after UVB treatment. HB-EGF mRNA was elevated 6.8-fold at 6 hours after irradiation and was augmented in culture supernatants after the same treatment. Furthermore, HB-EGF reactivity was identified in the epithelium and vasculature of pterygium by immunohistochemistry. HB-EGF was present in normal limbal epithelium, although it was not induced in cultured limbal epithelial cells by UV irradiation. HB-EGF is a potent mitogen, localized in pterygium tissue, and significantly induced by UVB in pterygium-derived epithelial cells. We postulate that this growth factor is a major driving force in the development of pterygia and a means by which UV irradiation causes the pathogenesis of pterygium.
Collapse
Affiliation(s)
- Timothy M Nolan
- Inflammation Research Unit, School of Medical Sciences, University of New South Wales, Sydney
| | | | | | | | | | | |
Collapse
|
25
|
Dysfunction of antioxidative enzymes and redox regulation under nitrosative stress and glycoxidative stress. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0531-5131(02)00966-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Oka M, Tagoku K, Russell TL, Nakano Y, Hamazaki T, Meyer EM, Yokota T, Terada N. CD9 is associated with leukemia inhibitory factor-mediated maintenance of embryonic stem cells. Mol Biol Cell 2002; 13:1274-81. [PMID: 11950938 PMCID: PMC102268 DOI: 10.1091/mbc.02-01-0600] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mouse embryonic stem (ES) cells can proliferate indefinitely in an undifferentiated state in the presence of leukemia inhibitory factor (LIF), or differentiate into all three germ layers upon removal of this factor. To determine cellular factors associated with self-renewal of undifferentiated ES cells, we used polymerase chain reaction-assisted cDNA subtraction to screen genes that are expressed in undifferentiated ES cells and down-regulated after incubating these cells in a differentiation medium without LIF for 48 h. The mRNA expression of a tetraspanin transmembrane protein, CD9, was high in undifferentiated ES cells and decreased shortly after cell differentiation. An immunohistochemical analysis confirmed that plasma membrane-associated CD9 was expressed in undifferentiated ES cells but low in the differentiated cells. Addition of LIF to differentiating ES cells reinduced mRNA expression of CD9, and CD9 expression was accompanied with a reappearance of undifferentiated ES cells. Furthermore, activation of STAT3 induced the expression of CD9, indicating the LIF/STAT3 pathway is critical for maintaining CD9 expression. Finally, addition of anti-CD9 antibody blocked ES cell colony formation and reduced cell viability. These results indicate that CD9 may play a role in LIF-mediated maintenance of undifferentiated ES cells.
Collapse
Affiliation(s)
- Masahiro Oka
- Department of Pathology, Program in Stem Cell Biology, Shands Cancer Center, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Umeda Y, Miyazaki Y, Shiinoki H, Higashiyama S, Nakanishi Y, Hieda Y. Involvement of heparin-binding EGF-like growth factor and its processing by metalloproteinases in early epithelial morphogenesis of the submandibular gland. Dev Biol 2001; 237:202-11. [PMID: 11518516 DOI: 10.1006/dbio.2001.0351] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In the present study, the role of a member of the epidermal growth factor (EGF) family, heparin-binding EGF-like growth factor (HB-EGF), in organ development was investigated by using developing mouse submandibular gland (SMG), in which the EGF receptor signaling and heparan sulfate chains have been implicated. HB-EGF mRNA was detected in developing SMG by RT-PCR analysis and was expressed mainly in epithelium and weakly in mesenchyme of the embryonic SMG. Epithelial morphogenesis was inhibited by a synthetic peptide corresponding to the heparin-binding domain of HB-EGF and by anti-HB-EGF neutralizing antibody. An in vitro assay using an EGF receptor ligand-dependent cell line, EP170.7 cells, allowed us to detect the growth factor activity in SMG-conditioned media, which was significantly reduced by anti-HB-EGF antibody. Furthermore, treatment of SMG rudiments with the hydroxamate-based metalloproteinase inhibitor OSU8-1, which inhibits processing of EGFR ligands including HB-EGF, markedly diminished the growth factor activity in conditioned media and resulted in almost complete inhibition of SMG morphogenesis. The inhibitory effects on morphogenesis were reversed, though partially, by adding the soluble form of HB-EGF. Our results provide the first evidence that HB-EGF is a crucial regulator of epithelial morphogenesis during organ development, highlighting the importance of its processing by metalloproteinases.
Collapse
Affiliation(s)
- Y Umeda
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Lin J, Hutchinson L, Gaston SM, Raab G, Freeman MR. BAG-1 is a novel cytoplasmic binding partner of the membrane form of heparin-binding EGF-like growth factor: a unique role for proHB-EGF in cell survival regulation. J Biol Chem 2001; 276:30127-32. [PMID: 11340068 DOI: 10.1074/jbc.m010237200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several cell functions related to growth and survival regulation have been attributed specifically to the membrane form of heparin-binding EGF-like growth factor (proHB-EGF), rather than to the diffusible, processed HB-EGF isoform. These findings suggest the existence of a functional binding partner specifically for the membrane form of the growth factor. In this study we have identified the prosurvival cochaperone, BAG-1, as a protein that interacts with the cytoplasmic tail domain of proHB-EGF. Interaction between BAG-1 and the 24-amino acid proHB-EGF cytoplasmic tail was initially identified in a yeast two-hybrid screen and was confirmed in mammalian cells. The proHB-EGF tail bound BAG-1 in an hsp70-independent manner and within a 97-amino acid segment that includes the ubiquitin homology domain in BAG-1 but does not include the hsp70 binding site. Effects of BAG-1 and proHB-EGF co-expression were demonstrated in cell adhesion and cell survival assays and in quantitative assays of regulated secretion of soluble HB-EGF. Because the BAG-1 binding site is not present on the mature, diffusible form of the growth factor, these findings suggest a new mechanism by which proHB-EGF, in isolation from the diffusible form, can mediate cell signaling events. In addition, because effects of BAG-1 on regulated secretion of soluble HB-EGF were also identified, this interaction has the potential to alter the signaling capabilities of both the membrane-anchored and the diffusible forms of the growth factor.
Collapse
Affiliation(s)
- J Lin
- Urologic Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
29
|
Koh YH, Suzuki K, Che W, Park YS, Miyamoto Y, Higashiyama S, Taniguchi N. Inactivation of glutathione peroxidase by NO leads to the accumulation of H2O2 and the induction of HB-EGF via c-Jun NH2-terminal kinase in rat aortic smooth muscle cells. FASEB J 2001; 15:1472-4. [PMID: 11387261 DOI: 10.1096/fj.00-0572fje] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Y H Koh
- Department of Biochemistry, Osaka University Medical School, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Fang L, Li G, Liu G, Lee SW, Aaronson SA. p53 induction of heparin-binding EGF-like growth factor counteracts p53 growth suppression through activation of MAPK and PI3K/Akt signaling cascades. EMBO J 2001; 20:1931-9. [PMID: 11296226 PMCID: PMC125417 DOI: 10.1093/emboj/20.8.1931] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Tumor suppressor p53 induction in response to cellular stresses activates the mitogen-activated protein kinase (MAPK) cascade through pathways involving Ras and RAF: p53's ability to activate this pathway is dependent on p53-mediated transcription. In order to investigate potential p53 target gene(s) involved, we utilized expression array analysis and identified heparin-binding epidermal growth factor-like growth factor (HB-EGF) as being markedly up-regulated by p53. In response to DNA damage, HB-EGF was induced in wild-type, but not in mutant p53-containing cells, implying its p53 dependence. HB-EGF neutralizing antibody and inhibitors of EGF receptor signaling abrogated p53-induced MAPK activation. Expression of HB-EGF was shown to protect cells from H(2)O(2)-induced apoptosis through MAPK activation. Additionally, the PI3K/Akt pathway was activated in response to p53 signaling through HB-EGF induction, and inhibition of MAPK and Akt activation after DNA damage decreased cell survival in wild-type p53-containing cells. All these findings point to a novel aspect of p53 function. Namely, p53-induced growth factors such as HB-EGF, which activate MAPK and Akt signaling, may be involved in a compensatory mechanism to alleviate adverse effects of cellular stresses.
Collapse
Affiliation(s)
| | - Guangnan Li
- Derald H.Ruttenberg Cancer Center and
Department of Pharmacology, Mount Sinai School of Medicine, New York, NY 10029 and Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine and Harvard Medical School, Boston, MA 02115, USA Corresponding authors e-mail: or
| | | | - Sam W. Lee
- Derald H.Ruttenberg Cancer Center and
Department of Pharmacology, Mount Sinai School of Medicine, New York, NY 10029 and Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine and Harvard Medical School, Boston, MA 02115, USA Corresponding authors e-mail: or
| | - Stuart A. Aaronson
- Derald H.Ruttenberg Cancer Center and
Department of Pharmacology, Mount Sinai School of Medicine, New York, NY 10029 and Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine and Harvard Medical School, Boston, MA 02115, USA Corresponding authors e-mail: or
| |
Collapse
|
31
|
Martínez-Lacaci I, De Santis M, Kannan S, Bianco C, Kim N, Wallace-Jones B, Wechselberger C, Ebert AD, Salomon DS. Regulation of heparin-binding EGF-like growth factor expression in Ha-ras transformed human mammary epithelial cells. J Cell Physiol 2001; 186:233-42. [PMID: 11169460 DOI: 10.1002/1097-4652(200002)186:2<233::aid-jcp1017>3.0.co;2-l] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) mRNA and protein expression is induced by EGF in MCF-10A nontransformed and Ha-ras transfected human mammary epithelial cells. The anti-EGF receptor (EGFR) blocking monoclonal antibody (MAb) 225 and the EGFR tyrosine kinase inhibitor PD153035 were able to inhibit the induction of HB-EGF mRNA levels in MCF-10A cells. However, the Ha-ras transformed MCF-10A cells were more refractory to inhibition by these agents and only a combination of the 225 MAb and PD153035 was able to significantly abrogate HB-EGF induction by EGF. The anti-erbB2 MAb L26 which interferes with heterodimer formation was able to block HB-EGF induction in response to EGF in MCF-10A cells and in the Ha-ras transformed cells only when used in combination with either the 225 MAb or PD153035. The MEK inhibitor PD90859 completely blocked EGF induction of HB-EGF mRNA levels in the nontransformed and Ha-ras transformed MCF-10A cells, which indicates that MAPK is involved in the signaling pathway of HB-EGF induction by EGF. An increase in the levels of HB-EGF may, therefore, be an important contributor to oncogenic transformation that is caused by Ha-ras overexpression in mammary epithelial cells. J. Cell. Physiol. 186:233-242, 2001. Published 2001 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- I Martínez-Lacaci
- Tumor Growth Factor Section, Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Activated receptor tyrosine kinase (RTK) receptors are rapidly internalized and eventually delivered to the lysosomes. Although ligand-induced endocytosis was originally thought to be a mechanism of receptor inactivation, many studies suggest that receptors remain active within endosomes. This review discusses the role that internalized signaling complexes may play in different RTK systems including recent data on how ubiquitination may regulate this process. In general, it appears that some receptor systems have evolved to enhance endosomal signaling, as is the case for TrkA and NGF. In contrast, the insulin receptor system appears to limit the extent of endosomal signaling. The EGFR system is the intermediate example. In this case, some signals are specifically generated from the cell surface while others appear to be generated from within endosomes. This may act as a mechanism to produce ligand-specific signals. Thus, trafficking could play diverse roles in receptor signaling, depending on the specific cell and tissue type.
Collapse
Affiliation(s)
- H S Wiley
- Environmental and Health Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | | |
Collapse
|
33
|
Abstract
Heparin-binding EGF-like growth factor (HB-EGF), which belongs to the EGF-family growth factors, is synthesized as a membrane-anchored form (proHB-EGF). Proteolytic cleavage of proHB-EGF at the extracellular domain yields the soluble form of HB-EGF (sHB-EGF). ProHB-EGF is not only the precursor molecule for sHB-EGF but also a biologically active molecule itself. Recent studies indicate that proHB-EGF has unique properties distinct from the soluble form. ProHB-EGF forms a complex with membrane proteins including a tetramembrane spanning protein: CD9, an adhesion molecule integrin: alpha3beta1, and heparan sulfate proteoglycans. The complex is localized at the cell-cell contact site, suggesting that proHB-EGF may function in cell-to-cell signaling by a juxtacrine mechanism. In an in vitro model system, proHB-EGF showed growth inhibitory activity, while sHB-EGF was growth stimulatory. Ectodomain shedding, conversion of the membrane-anchored form into the soluble form, is regulated by multiple signaling pathways. All these characteristics imply that proHB-EGF and sHB-EGF are used in different ways. In vivo functions of sHB-EGF and proHB-EGF have been largely undefined, but recent studies implicate them in a variety of physiological processes including blastocyst implantation and wound healing.
Collapse
Affiliation(s)
- R Iwamoto
- Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Osaka, Japan
| | | |
Collapse
|
34
|
Tokumaru S, Higashiyama S, Endo T, Nakagawa T, Miyagawa JI, Yamamori K, Hanakawa Y, Ohmoto H, Yoshino K, Shirakata Y, Matsuzawa Y, Hashimoto K, Taniguchi N. Ectodomain shedding of epidermal growth factor receptor ligands is required for keratinocyte migration in cutaneous wound healing. J Cell Biol 2000; 151:209-20. [PMID: 11038170 PMCID: PMC2192647 DOI: 10.1083/jcb.151.2.209] [Citation(s) in RCA: 242] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2000] [Accepted: 08/21/2000] [Indexed: 11/22/2022] Open
Abstract
Keratinocyte proliferation and migration are essential to cutaneous wound healing and are, in part, mediated in an autocrine fashion by epidermal growth factor receptor (EGFR)-ligand interactions. EGFR ligands are initially synthesized as membrane-anchored forms, but can be processed and shed as soluble forms. We provide evidence here that wound stimuli induce keratinocyte shedding of EGFR ligands in vitro, particularly the ligand heparin-binding EGF-like growth factor (HB-EGF). The resulting soluble ligands stimulated transient activation of EGFR. OSU8-1, an inhibitor of EGFR ligand shedding, abrogated the wound-induced activation of EGFR and caused suppression of keratinocyte migration in vitro. Soluble EGFR-immunoglobulin G-Fcgamma fusion protein, which is able to neutralize all EGFR ligands, also suppressed keratinocyte migration in vitro. The application of OSU8-1 to wound sites in mice greatly retarded reepithelialization as the result of a failure in keratinocyte migration, but this effect could be overcome if recombinant soluble HB-EGF was added along with OSU8-1. These findings indicate that the shedding of EGFR ligands represents a critical event in keratinocyte migration, and suggest their possible use as an effective clinical treatment in the early phases of wound healing.
Collapse
Affiliation(s)
- S Tokumaru
- Department of Biochemistry, Osaka University Medical School, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Dixit R, Nasrallah ME, Nasrallah JB. Post-transcriptional maturation of the S receptor kinase of Brassica correlates with co-expression of the S-locus glycoprotein in the stigmas of two Brassica strains and in transgenic tobacco plants. PLANT PHYSIOLOGY 2000; 124:297-311. [PMID: 10982444 PMCID: PMC59144 DOI: 10.1104/pp.124.1.297] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2000] [Accepted: 05/19/2000] [Indexed: 05/05/2023]
Abstract
The S-locus-encoded S receptor kinase (SRK) is an intrinsic plasma membrane protein that is viewed as the primary stigma determinant of specificity in the self-incompatibility response of Brassica spp. We analyzed two self-compatible mutant strains that express low levels of the S-locus glycoprotein (SLG), a cell wall-localized protein also encoded at the S locus that is coordinately expressed with SRK. We found that mutant stigmas synthesized wild-type levels of SRK transcripts but failed to produce SRK protein at any of the developmental stages analyzed. Furthermore, SRK was shown to form aberrant high-molecular mass aggregates when expressed alone in transgenic tobacco (Nicotiana tabacum) plants. This aggregation was prevented in tobacco plants that co-expressed SRK and SLG, but not in tobacco plants that co-expressed SRK and SLR1, an SLG-related secreted protein not encoded at the S locus. In analyses of protein extracts under reducing and non-reducing conditions, evidence of intermolecular association was obtained only for SLG, a fraction of which formed disulfide-linked oligomers and was membrane associated. The data indicate that, at least in plants carrying the S haplotypes we analyzed, SRK is an inherently unstable protein and that SLG facilitates its accumulation to physiologically relevant levels in Brassica stigmas.
Collapse
Affiliation(s)
- R Dixit
- Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
36
|
Yang H, Jiang D, Li W, Liang J, Gentry LE, Brattain MG. Defective cleavage of membrane bound TGFalpha leads to enhanced activation of the EGF receptor in malignant cells. Oncogene 2000; 19:1901-14. [PMID: 10773880 DOI: 10.1038/sj.onc.1203513] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transforming growth factor alpha (TGFalpha) is widely expressed in malignant as well as normal cells and is involved in regulating cell growth and differentiation. Although processing of TGFalpha has been extensively studied in normal cells, there is little information regarding TGFalpha cleavage in malignant cells. Therefore, we compared the processing of TGFalpha in two human colon carcinoma cell lines. We found that there was a defective cleavage pattern for the TGFalpha precursor resulting in retention of partially processed TGFalpha on the cell surface of both the HCT116a2alphaS3 and CBS4alphaS2 cell lines. This raised the possibility that signaling from the resulting defective cleavage species could differ from that of soluble TGFalpha. The membrane-associated TGFalpha induced higher phosphorylation of EGFR on the cell surface of adjacent cells than equivalent levels of mature TGFalpha. The interaction of membrane bound TGFalpha precursor with the EGFR caused a slower internalization of activated EGFR relative to the internalization of the soluble TGFalpha/EGFR complexes. In addition, the tethered TGFalpha was resistant to the ability of protein-tyrosine phosphatases (PTPs) to reduce EGFR tyrosine phosphorylation, also contributing to higher activation of EGFR. The enhanced activation of EGFR by the tethered form of TGFalpha was reflected by higher activation of Grb2, SHC and Erk downstream mediators of EGF receptor signaling. The higher activation of EGFR by membrane tethered TGFalpha indicates that defective TGFalpha processing provides a mechanism whereby malignant cells can obtain a growth advantage over normal cells.
Collapse
Affiliation(s)
- H Yang
- Department of Surgery, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78284-7840, USA
| | | | | | | | | | | |
Collapse
|
37
|
Jayne DG, Perry SL, Morrison E, Farmery SM, Guillou PJ. Activated mesothelial cells produce heparin-binding growth factors: implications for tumour metastases. Br J Cancer 2000; 82:1233-8. [PMID: 10735511 PMCID: PMC2363354 DOI: 10.1054/bjoc.1999.1068] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Curative surgery for gastrointestinal malignancy is commonly thwarted by local tumour recurrence. The heparin-binding growth factors, basic fibroblast growth factor (bFGF), heparin-binding epidermal growth factor-like growth factor (HB-EGF) and vascular epidermal growth factor (VEGF) are all implicated in the metastatic process, but whether or not these essential growth factors are produced by the activated peritoneum is unknown. This study reveals that peritoneal mesothelial cells constitutively express mRNA for bFGF, HB-EGF and two VEGF spliced variants, VEGF121 and VEGF165. Mesothelial activation with interleukin (IL)-1b or tumour necrosis factor (TNF)-a produced an up-regulation of mRNA for HB-EGF and VEGF, but not bFGF expression. IL-6 failed to stimulate growth factor expression, whereas IL-2 produced a marked suppression in HB-EGF and bFGF, but not VEGF expression. Mesothelial cells were shown to predominantly express mRNA for the intermediate affinity (bg(c)) IL-2 receptor. Cytokine-induced growth factor up-regulation was confirmed at the protein level using Western blotting of mesothelial cell lysates for HB-EGF and culture supernatant enzyme-linked immunosorbent assay for VEGF. The production of these growth factors by human mesothelial cells may play a significant role in post-operative peritoneal tumour recurrence. Their common heparin-binding property offers a potential therapeutic target for manipulating the growth factor environment of the human peritoneum.
Collapse
Affiliation(s)
- D G Jayne
- Professorial Surgical Unit, St James's University Hospital, Leeds, UK
| | | | | | | | | |
Collapse
|
38
|
Nguyen HT, Bride SH, Badawy AB, Adam RM, Lin J, Orsola A, Guthrie PD, Freeman MR, Peters CA. Heparin-binding EGF-like growth factor is up-regulated in the obstructed kidney in a cell- and region-specific manner and acts to inhibit apoptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 156:889-98. [PMID: 10702406 PMCID: PMC1876861 DOI: 10.1016/s0002-9440(10)64958-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The expression of certain growth factors in the epidermal growth factor (EGF) family is altered in response to renal injury. Recent studies have demonstrated that heparin binding EGF-like growth factor (HB-EGF) expression may be cytoprotective in response to apoptotic signals. The purpose of this study was to investigate the potential role of HB-EGF in the upper urinary tract following unilateral ureteral obstruction. We present evidence that: i) ureteral obstruction induced cell-specific but transient activation of HB-EGF gene expression; ii) HB-EGF expression in renal epithelial cells increased under conditions where mechanical deformation, such as that caused by hydronephrotic distension, induces apoptosis, but HB-EGF expression did not increase in renal pelvis smooth muscle cells under identical conditions; and iii) enforced expression of HB-EGF served to protect renal epithelial cells from stretch-induced apoptosis. These results suggest a potential mechanism by which the kidney protects itself from apoptosis triggered by urinary tract obstruction.
Collapse
Affiliation(s)
- H T Nguyen
- Urologic Laboratory, Department of Urology, Children's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Shi W, Fan H, Shum L, Derynck R. The tetraspanin CD9 associates with transmembrane TGF-alpha and regulates TGF-alpha-induced EGF receptor activation and cell proliferation. J Cell Biol 2000; 148:591-602. [PMID: 10662783 PMCID: PMC2174814 DOI: 10.1083/jcb.148.3.591] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/1999] [Accepted: 01/05/2000] [Indexed: 12/11/2022] Open
Abstract
Transforming growth factor-alpha (TGF-alpha) is a member of the EGF growth factor family. Both transmembrane TGF-alpha and the proteolytically released soluble TGF-alpha can bind to the EGF/TGF-alpha tyrosine kinase receptor (EGFR) and activate the EGFR-induced signaling pathways. We now demonstrate that transmembrane TGF-alpha physically interacts with CD9, a protein with four membrane spanning domains that is frequently coexpressed with TGF-alpha in carcinomas. This interaction was mediated through the extracellular domain of transmembrane TGF-alpha. CD9 expression strongly decreased the growth factor- and PMA- induced proteolytic conversions of transmembrane to soluble TGF-alpha and strongly enhanced the TGF- alpha-induced EGFR activation, presumably in conjunction with increased expression of transmembrane TGF-alpha. In juxtacrine assays, the CD9-induced EGFR hyperactivation by transmembrane TGF-alpha resulted in increased proliferation. In contrast, CD9 coexpression with transmembrane TGF-alpha decreased the autocrine growth stimulatory effect of TGF-alpha in epithelial cells. This decrease was associated with increased expression of the cdk inhibitor, p21(CIP1). These data reveal that the association of CD9 with transmembrane TGF-alpha regulates ligand-induced activation of the EGFR, and results in altered cell proliferation.
Collapse
Affiliation(s)
- Wen Shi
- Department of Growth and Development, Programs in Cell Biology and Developmental Biology, University of California at San Francisco, San Francisco, California 94143
- Department of Anatomy, Programs in Cell Biology and Developmental Biology, University of California at San Francisco, San Francisco, California 94143
| | - Huizhou Fan
- Department of Growth and Development, Programs in Cell Biology and Developmental Biology, University of California at San Francisco, San Francisco, California 94143
- Department of Anatomy, Programs in Cell Biology and Developmental Biology, University of California at San Francisco, San Francisco, California 94143
| | - Lillian Shum
- Department of Growth and Development, Programs in Cell Biology and Developmental Biology, University of California at San Francisco, San Francisco, California 94143
- Department of Anatomy, Programs in Cell Biology and Developmental Biology, University of California at San Francisco, San Francisco, California 94143
| | - Rik Derynck
- Department of Growth and Development, Programs in Cell Biology and Developmental Biology, University of California at San Francisco, San Francisco, California 94143
- Department of Anatomy, Programs in Cell Biology and Developmental Biology, University of California at San Francisco, San Francisco, California 94143
| |
Collapse
|
40
|
Dong J, Wiley HS. Trafficking and proteolytic release of epidermal growth factor receptor ligands are modulated by their membrane-anchoring domains. J Biol Chem 2000; 275:557-64. [PMID: 10617651 DOI: 10.1074/jbc.275.1.557] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ligands that bind to the epidermal growth factor (EGF) receptor are initially synthesized as integral membrane proteins that are released from the cell surface by regulated proteolysis. To study the role of the membrane-anchoring domain in ligand release, we made two artificial ligands. The first possessed the membrane-anchoring domain from EGF whereas the second had the corresponding domain from heparin binding EGF-like growth factor (HB-EGF). Both ligands lacked amino-terminal extensions, and were epitope-tagged at the carboxyl terminus. Following stable expression in human mammary epithelial cells, their cellular localization and rate of proteolytic release were examined. We found that constructs with the membrane-anchoring domain from EGF were found primarily at the cell surface and displayed a relatively high rate of constitutive release. Constructs with the HB-EGF membrane-anchoring domain displayed a higher internalized fraction and a very low rate of constitutive release. The two ligand constructs also displayed different patterns of stimulated release. Proteolysis of the chimera with the HB-EGF membrane-anchoring domain was stimulated by activation of protein kinase C, but release of EGF from constructs with the EGF membrane-anchoring domain was insensitive to this. Calcium ionophores, calmodulin antagonists, and tyrosine phosphatase inhibitors stimulated the release of both ligands. Furthermore, the release of the two constructs showed different sensitivity to metalloprotease inhibitors. Despite a large fold-increase in ligand proteolysis following cell stimulation, only a small fraction of total cell-associated ligand was released per hour. Our results show that the membrane-anchoring domain of EGF-like ligands can specify both their localization and proteolytic processing. The structures of the membrane-anchoring region of this class of ligands can thus regulate their activity.
Collapse
Affiliation(s)
- J Dong
- Department of Pathology, Division of Cell Biology, University of Utah, Salt Lake City, Utah 84132, USA
| | | |
Collapse
|
41
|
Horikawa M, Higashiyama S, Nomura S, Kitamura Y, Ishikawa M, Taniguchi N. Upregulation of endogenous heparin-binding EGF-like growth factor and its role as a survival factor in skeletal myotubes. FEBS Lett 1999; 459:100-4. [PMID: 10508925 DOI: 10.1016/s0014-5793(99)01213-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To investigate the role of heparin-binding EGF-like growth factor (HB-EGF) in skeletal muscle, we studied its function in skeletal myotubes in vitro using mouse C2C12 cells. Expression levels of membrane-anchored HB-EGF (proHB-EGF) protein were increased specifically during their differentiation among epidermal growth factor receptor (EGFR) ligands. Production levels of EGFR on the cell surface were constant. Tyrosine phosphorylation of EGFR, however, was constitutively increased during differentiation. Quenching of endogenous HB-EGF significantly rendered myotubes sensitive to apoptotic cell death induced by hypoxic stress, suggesting that proHB-EGF in the skeletal muscle is specifically upregulated to function as a survival factor.
Collapse
Affiliation(s)
- M Horikawa
- Department of Biochemistry, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Iwamoto R, Handa K, Mekada E. Contact-dependent growth inhibition and apoptosis of epidermal growth factor (EGF) receptor-expressing cells by the membrane-anchored form of heparin-binding EGF-like growth factor. J Biol Chem 1999; 274:25906-12. [PMID: 10464334 DOI: 10.1074/jbc.274.36.25906] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) transduces mitogenic signals through the EGF receptor (EGFR). There are two forms of HB-EGF, the membrane-anchored form (pro-HB-EGF) and the soluble form (sHB-EGF). We studied the biological activity of pro-HB-EGF by using a model in which pro-HB-EGF-expressing effector cells was co-cultured with EGFR-expressing target cells. The DER cell, an EGFR-expressing derivative of the interleukin-3-dependent hematopoietic 32D cell line, grows well in the presence of EGF or sHB-EGF without IL-3. When DER cells were co-cultured on a monolayer of Vero-H cells overexpressing pro-HB-EGF, growth inhibition and subsequent apoptosis were induced in the DER cells even in the presence of excess amounts of EGF or sHB-EGF. Such growth inhibition of DER cells was abrogated when specific antagonists for pro-HB-EGF were added in the culture medium or when direct contact of DER cells with Vero-H cells was prevented, indicating that pro-HB-EGF is involved in this inhibitory effect. Pro-HB-EGF-induced apoptosis of DER cells was also observed even in the presence of IL-3. This rules out the possibility of simple competition between soluble EGFR ligands and pro-HB-EGF. Moreover, 32D cells expressing EGFR mutant composed of the extracellular and the transmembrane domain of EGFR and the cytoplasmic domain of erythropoietin receptor did not undergo apoptosis by co-culture with Vero-H cells, indicating that the inhibitory signal induced by pro-HB-EGF-expressing Vero-H cells is mediated to DER cells via EGFR and that the cytoplasmic domain of EGFR is essential for pro-HB-EGF-induced apoptosis. From these results, we concluded that pro-HB-EGF has unique biological activity through cell-cell contact that is distinct from the activity of sHB-EGF.
Collapse
Affiliation(s)
- R Iwamoto
- Institute of Life Science, Kurume University, Kurume, Fukuoka 839-0861, Japan
| | | | | |
Collapse
|
43
|
Kamimura H, Konda Y, Yokota H, Takenoshita S, Nagamachi Y, Kuwano H, Takeuchi T. Kex2 family endoprotease furin is expressed specifically in pit-region parietal cells of the rat gastric mucosa. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:G183-90. [PMID: 10409166 DOI: 10.1152/ajpgi.1999.277.1.g183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
The proprotein-processing endoprotease furin is localized in the gastric epithelial cells of the pit region in the rat gastric gland. The gastric pit is composed of several cell types, including gastric surface mucosal (GSM) cells and parietal cells. Furin converts many growth- or differentiation-related proproteins to their active forms. We examined identification of furin-positive cells by immunostaining of rat gastric mucosa and regulators of the furin expression by measuring the furin promoter activity by luciferase assay. Furin-positive cells were stained for H(+)-K(+)-ATPase, indicating that they are parietal cells. Furin-positive parietal cells were not stained for transforming growth factor-alpha (TGF-alpha) but were surrounded by TGF-alpha-positive GSM cells. In contrast, parietal cells below the proliferative zone were positive for TGF-alpha but not for furin. Furin-positive parietal cells expressed a high level of epidermal growth factor receptor (EGFR). TGF-alpha stimulated the furin promoter activity highly in a mouse GSM cell line GSM06. Thus we suggest that the parietal cells of the pit region have furin-mediated functions that can be stimulated by EGFR signaling.
Collapse
Affiliation(s)
- H Kamimura
- Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
De Luca A, Casamassimi A, Selvam MP, Losito S, Ciardiello F, Agrawal S, Salomon DS, Normanno N. EGF-related peptides are involved in the proliferation and survival of MDA-MB-468 human breast carcinoma cells. Int J Cancer 1999; 80:589-94. [PMID: 9935161 DOI: 10.1002/(sici)1097-0215(19990209)80:4<589::aid-ijc17>3.0.co;2-d] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A majority of human breast carcinomas co-express the epidermal growth factor (EGF)-like peptides CRIPTO (CR), amphiregulin (AR) and transforming growth factor alpha (TGF-alpha). MDA-MB-468 breast carcinoma cells express CR, AR and TGFalpha, while SK-BR-3 cells express CR and TGF-alpha. Anti-sense phosphorothioate oligodeoxynucleotides (AS S-oligos) directed against either CR or TGF-alpha inhibit the proliferation of both cell lines. A 40-50% growth inhibition was observed at a 2-microM concentration of each AS S-oligo. Treatment with the AR AS S-oligo also resulted in a significant inhibition of MDA-MB-468 anchorage dependent growth (ADG). No significant growth inhibition was observed when MDA-MB-468 or SK-BR-3 cells were treated with a mis-sense S-oligo. The AS S-oligos inhibited the expression of AR, CR or TGF-alpha proteins and mRNAs, as assessed by immuno-cytochemistry and semi-quantitative RT-PCR. An additive growth-inhibitory effect was observed when MDA-MB-468 cells were treated with a combination of EGF-related AS S-oligos. Indeed, treatment of MDA-MB-468 cells with a combination of AR, CR and TGF-alpha AS S-oligos resulted in about 70% growth inhibition at a concentration of 0.7 microM each. Finally, treatment of MDA-MB-468 cells with a combination either of the 3 AS S-oligos or of an EGF receptor-blocking antibody (MAb 225) and either CR, AR or TGFalpha AS S-oligos resulted in a significant increase in DNA fragmentation. Our data suggest that the EGF-related peptides are involved in the proliferation and survival of breast carcinoma cells.
Collapse
Affiliation(s)
- A De Luca
- Oncologia Sperimentale D, ITN-Fondazione Pascale, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Miyazaki Y, Shinomura Y, Tsutsui S, Zushi S, Higashimoto Y, Kanayama S, Higashiyama S, Taniguchi N, Matsuzawa Y. Gastrin induces heparin-binding epidermal growth factor-like growth factor in rat gastric epithelial cells transfected with gastrin receptor. Gastroenterology 1999; 116:78-89. [PMID: 9869605 DOI: 10.1016/s0016-5085(99)70231-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Parietal cells express heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF). However, it is unknown whether HB-EGF mediates the trophic action of gastrin. The purpose of this study was to determine whether gastrin modulates the expression of HB-EGF, which mediates the proliferative effects of gastrin on gastric epithelial cells. METHODS RGM1 cells, a rat gastric epithelial cell line, were transfected with a human gastrin receptor complementary DNA. Gastrin induction of messenger RNAs (mRNAs) for EGF-related polypeptides was assayed by Northern blotting. Processing of cell surface-associated proHB-EGF and secretion of HB-EGF were determined by flow cytometry and Western blotting, respectively. Tyrosine phosphorylation of the EGF receptor was assayed by immunoprecipitation and Western blotting with an antiphosphotyrosine antibody. Cell growth was evaluated by [3H]thymidine incorporation. RESULTS Gastrin induced expression of HB-EGF mRNA, processing of proHB-EGF, release of HB-EGF into the medium, and tyrosine phosphorylation of the EGF receptor. The growth-stimulatory effects of gastrin were partly inhibited by anti-rat HB-EGF serum and completely blocked by AG1478, an EGF receptor-specific tyrphostin. CONCLUSIONS The findings suggest that HB-EGF at least partially mediates the proliferative effects of gastrin on gastric epithelial cells.
Collapse
Affiliation(s)
- Y Miyazaki
- Department of Internal Medicine and Molecular Science, Graduate School of Medicine, Osaka University, Osaka, Japan. miyazaki@imed2,med.osaka-u.ac.jp
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Izumi Y, Hirata M, Hasuwa H, Iwamoto R, Umata T, Miyado K, Tamai Y, Kurisaki T, Sehara-Fujisawa A, Ohno S, Mekada E. A metalloprotease-disintegrin, MDC9/meltrin-gamma/ADAM9 and PKCdelta are involved in TPA-induced ectodomain shedding of membrane-anchored heparin-binding EGF-like growth factor. EMBO J 1998; 17:7260-72. [PMID: 9857183 PMCID: PMC1171072 DOI: 10.1093/emboj/17.24.7260] [Citation(s) in RCA: 416] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ectodomains of many proteins located at the cell surface are shed upon cell stimulation. One such protein is the heparin-binding EGF-like growth factor (HB-EGF) that exists in a membrane-anchored form which is converted to a soluble form upon cell stimulation with TPA, an activator of protein kinase C (PKC). We show that PKCdelta binds in vivo and in vitro to the cytoplasmic domain of MDC9/meltrin-gamma/ADAM9, a member of the metalloprotease-disintegrin family. Furthermore, the presence of constitutively active PKCdelta or MDC9 results in the shedding of the ectodomain of proHB-EGF, whereas MDC9 mutants lacking the metalloprotease domain, as well as kinase-negative PKCdelta, suppress the TPA-induced shedding of the ectodomain. These results suggest that MDC9 and PKCdelta are involved in the stimulus-coupled shedding of the proHB-EGF ectodomain.
Collapse
Affiliation(s)
- Y Izumi
- Department of Molecular Biology, Yokohama City University School of Medicine 3-9, Fuku-ura, Kanagawa-ku, Yokohama 236-0004, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Freeman MR, Paul S, Kaefer M, Ishikawa M, Adam RM, Renshaw AA, Elenius K, Klagsbrun M. Heparin-binding EGF-like growth factor in the human prostate: synthesis predominantly by interstitial and vascular smooth muscle cells and action as a carcinoma cell mitogen. J Cell Biochem 1998; 68:328-38. [PMID: 9518259 DOI: 10.1002/(sici)1097-4644(19980301)68:3<328::aid-jcb4>3.0.co;2-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is an activating ligand for the EGF receptor (HER1/ErbB1) and the high-affinity receptor for diphtheria toxin (DT) in its transmembrane form (proHB-EGF). HB-EGF was immunolocalized within human benign and malignant prostatic tissues, using monospecific antibodies directed against the mature protein and against the cytoplasmic domain of proHB-EGF. Prostate carcinoma cells, normal glandular epithelial cells, undifferentiated fibroblasts, and inflammatory cells were not decorated by the anti-HB-EGF antibodies; however, interstitial and vascular smooth muscle cells were highly reactive, indicating that the smooth muscle compartments are the major sites of synthesis and localization of HB-EGF within the prostate. In marked contrast to prostatic epithelium, proHB-EGF was immunolocalized to seminal vesicle epithelium, indicating differential regulation of HB-EGF synthesis within various epithelia of the reproductive tract. HB-EGF was not overexpressed in this series of cancer tissues, in comparison to the benign tissues. In experiments with LNCaP human prostate carcinoma cells, HB-EGF was similar in potency to epidermal growth factor (EGF) in stimulating cell growth. Exogenous HB-EGF and EGF each activated HER1 and HER3 receptor tyrosine kinases and induced tyrosine phosphorylation of cellular proteins to a similar extent. LNCaP cells expressed detectable but low levels of HB-EGF mRNA; however, proHB-EGF was detected at the cell surface indirectly by demonstration of specific sensitivity to DT. HB-EGF is the first HER1 ligand to be identified predominantly as a smooth muscle cell product in the human prostate. Further, the observation that HB-EGF is similar to EGF in mitogenic potency for human prostate carcinoma cells suggests that it may be one of the hypothesized stromal mediators of prostate cancer growth.
Collapse
Affiliation(s)
- M R Freeman
- Department of Urology, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
HB-EGF is a heparin-binding member of the EGF family that was initially identified in the conditioned medium of human macrophages. Soluble mature HB-EGF is proteolytically processed from a larger membrane-anchored precursor and is a potent mitogen and chemotactic factor for fibroblasts, smooth muscle cells but not endothelial cells. HB-EGF activates two EGF receptor subtypes, HER1 and HER4 and binds to cell surface HSPG. The transmembrane form of HB-EGF is a juxtacrine growth and adhesion factor and is uniquely the receptor for diphtheria toxin. HB-EGF gene expression is highly regulated, for example by cytokines, growth factors, and transcription factors such as MyoD. HB-EGF has been implicated as a participant in a variety of normal physiological processes such as blastocyst implantation and wound healing, and in pathological processes such as tumor growth, SMC hyperplasia and atherosclerosis.
Collapse
Affiliation(s)
- G Raab
- Department of Surgery, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|