1
|
Volloch V, Rits-Volloch S. Alzheimer's Is a Multiform Disease of Sustained Neuronal Integrated Stress Response Driven by the C99 Fragment Generated Independently of AβPP; Proteolytic Production of Aβ Is Suppressed in AD-Affected Neurons: Evolution of a Theory. Int J Mol Sci 2025; 26:4252. [PMID: 40362488 PMCID: PMC12073115 DOI: 10.3390/ijms26094252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/23/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
The present Perspective analyzes the remarkable evolution of the Amyloid Cascade Hypothesis 2.0 (ACH2.0) theory of Alzheimer's disease (AD) since its inception a few years ago, as reflected in the diminishing role of amyloid-beta (Aβ) in the disease. In the initial iteration of the ACH2.0, Aβ-protein-precursor (AβPP)-derived intraneuronal Aβ (iAβ), accumulated to neuronal integrated stress response (ISR)-eliciting levels, triggers AD. The neuronal ISR, in turn, activates the AβPP-independent production of its C99 fragment that is processed into iAβ, which drives the disease. The second iteration of the ACH2.0 stemmed from the realization that AD is, in fact, a disease of the sustained neuronal ISR. It introduced two categories of AD-conventional and unconventional-differing mainly in the manner of their causation. The former is caused by the neuronal ISR triggered by AβPP-derived iAβ, whereas in the latter, the neuronal ISR is elicited by stressors distinct from AβPP-derived iAβ and arising from brain trauma, viral and bacterial infections, and various types of inflammation. Moreover, conventional AD always contains an unconventional component, and in both forms, the disease is driven by iAβ generated independently of AβPP. In its third, the current, iteration, the ACH2.0 posits that proteolytic production of Aβ is suppressed in AD-affected neurons and that the disease is driven by C99 generated independently of AβPP. Suppression of Aβ production in AD seems an oxymoron: Aβ is equated with AD, and the later is inconceivable without the former in an ingrained Amyloid Cascade Hypothesis (ACH)-based notion. But suppression of Aβ production in AD-affected neurons is where the logic leads, and to follow it we only need to overcome the inertia of the preexisting assumptions. Moreover, not only is the generation of Aβ suppressed, so is the production of all components of the AβPP proteolytic pathway. This assertion is not a quantum leap (unless overcoming the inertia counts as such): the global cellular protein synthesis is severely suppressed under the neuronal ISR conditions, and there is no reason for constituents of the AβPP proteolytic pathway to be exempted, and they, apparently, are not, as indicated by the empirical data. In contrast, tau protein translation persists in AD-affected neurons under ISR conditions because the human tau mRNA contains an internal ribosomal entry site in its 5'UTR. In current mouse models, iAβ derived from AβPP expressed exogenously from human transgenes elicits the neuronal ISR and thus suppresses its own production. Its levels cannot principally reach AD pathology-causing levels regardless of the number of transgenes or the types of FAD mutations that they (or additional transgenes) carry. Since the AβPP-independent C99 production pathway is inoperative in mice, the current transgenic models have no potential for developing the full spectrum of AD pathology. What they display are only effects of the AβPP-derived iAβ-elicited neuronal ISR. The paper describes strategies to construct adequate transgenic AD models. It also details the utilization of human neuronal cells as the only adequate model system currently available for conventional and unconventional AD. The final alteration of the ACH2.0, introduced in the present Perspective, is that AβPP, which supports neuronal functionality and viability, is, after all, potentially produced in AD-affected neurons, albeit not conventionally but in an ISR-driven and -compatible process. Thus, the present narrative begins with the "omnipotent" Aβ capable of both triggering and driving the disease and ends up with this peptide largely dislodged from its pedestal and retaining its central role in triggering the disease in only one, although prevalent (conventional), category of AD (and driving it in none). Among interesting inferences of the present Perspective is the determination that "sporadic AD" is not sporadic at all ("non-familial" would be a much better designation). The term has fatalistic connotations, implying that the disease can strike at random. This is patently not the case: The conventional disease affects a distinct subpopulation, and the basis for unconventional AD is well understood. Another conclusion is that, unless prevented, the occurrence of conventional AD is inevitable given a sufficiently long lifespan. This Perspective also defines therapeutic directions not to be taken as well as auspicious ways forward. The former category includes ACH-based drugs (those interfering with the proteolytic production of Aβ and/or depleting extracellular Aβ). They are legitimate (albeit inefficient) preventive agents for conventional AD. There is, however, a proverbial snowball's chance in hell of them being effective in symptomatic AD, lecanemab, donanemab, and any other "…mab" or "…stat" notwithstanding. They comprise Aβ-specific antibodies, inhibitors of beta- and gamma-secretase, and modulators of the latter. In the latter category, among ways to go are the following: (1) Depletion of iAβ, which, if sufficiently "deep", opens up a tantalizing possibility of once-in-a-lifetime preventive transient treatment for conventional AD and aging-associated cognitive decline, AACD. (2) Composite therapy comprising the degradation of C99/iAβ and concurrent inhibition of the neuronal ISR. A single transient treatment could be sufficient to arrest the progression of conventional AD and prevent its recurrence for life. Multiple recurrent treatments would achieve the same outcome in unconventional AD. Alternatively, the sustained reduction/removal of unconventional neuronal ISR-eliciting stressors through the elimination of their source would convert unconventional AD into conventional one, preventable/treatable by a single transient administration of the composite C99/iAβ depletion/ISR suppression therapy. Efficient and suitable ISR inhibitors are available, and it is explicitly clear where to look for C99/iAβ-specific targeted degradation agents-activators of BACE1 and, especially, BACE2. Directly acting C99/iAβ-specific degradation agents such as proteolysis-targeting chimeras (PROTACs) and molecular-glue degraders (MGDs) are also viable options. (3) A circumscribed shift (either upstream or downstream) of the position of transcription start site (TSS) of the human AβPP gene, or, alternatively, a gene editing-mediated excision or replacement of a small, defined segment of its portion encoding 5'-untranslated region of AβPP mRNA; targeting AβPP RNA with anti-antisense oligonucleotides is another possibility. If properly executed, these RNA-based strategies would not interfere with the protein-coding potential of AβPP mRNA, and each would be capable of both preventing and stopping the AβPP-independent generation of C99 and thus of either preventing AD or arresting the progression of the disease in its conventional and unconventional forms. The paper is interspersed with "validation" sections: every conceptually significant notion is either validated by the existing data or an experimental procedure validating it is proposed.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Volloch V, Rits-Volloch S. Production of Amyloid-β in the Aβ-Protein-Precursor Proteolytic Pathway Is Discontinued or Severely Suppressed in Alzheimer's Disease-Affected Neurons: Contesting the 'Obvious'. Genes (Basel) 2025; 16:46. [PMID: 39858593 PMCID: PMC11764795 DOI: 10.3390/genes16010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025] Open
Abstract
A notion of the continuous production of amyloid-β (Aβ) via the proteolysis of Aβ-protein-precursor (AβPP) in Alzheimer's disease (AD)-affected neurons constitutes both a cornerstone and an article of faith in the Alzheimer's research field. The present Perspective challenges this assumption. It analyses the relevant empirical data and reaches an unexpected conclusion, namely that in AD-afflicted neurons, the production of AβPP-derived Aβ is either discontinued or severely suppressed, a concept that, if proven, would fundamentally change our understanding of the disease. This suppression, effectively self-suppression, occurs in the context of the global inhibition of the cellular cap-dependent protein synthesis as a consequence of the neuronal integrated stress response (ISR) elicited by AβPP-derived intraneuronal Aβ (iAβ; hence self-suppression) upon reaching certain levels. Concurrently with the suppression of the AβPP proteolytic pathway, the neuronal ISR activates in human neurons, but not in mouse neurons, the powerful AD-driving pathway generating the C99 fragment of AβPP independently of AβPP. The present study describes molecular mechanisms potentially involved in these phenomena, propounds novel approaches to generate transgenic animal models of AD, advocates for the utilization of human neuronal cells-based models of the disease, makes verifiable predictions, suggests experiments designed to validate the proposed concept, and considers its potential research and therapeutic implications. Remarkably, it opens up the possibility that the conventional production of AβPP, BACE enzymes, and γ-secretase components is also suppressed under the neuronal ISR conditions in AD-affected neurons, resulting in the dyshomeostasis of AβPP. It follows that whereas conventional AD is triggered by AβPP-derived iAβ accumulated to the ISR-eliciting levels, the disease, in its both conventional and unconventional (triggered by the neuronal ISR-eliciting stressors distinct from iAβ) forms, is driven not (or not only) by iAβ produced in the AβPP-independent pathway, as we proposed previously, but mainly, possibly exclusively, by the C99 fragment generated independently of AβPP and not cleaved at the γ-site due to the neuronal ISR-caused deficiency of γ-secretase (apparently, the AD-driving "substance X" predicted in our previous study), a paradigm consistent with a dictum by George Perry that Aβ is "central but not causative" in AD. The proposed therapeutic strategies would not only deplete the driver of the disease and abrogate the AβPP-independent production of C99 but also reverse the neuronal ISR and ameliorate the AβPP dyshomeostasis, a potentially significant contributor to AD pathology.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Volloch V, Rits-Volloch S. Quintessential Synergy: Concurrent Transient Administration of Integrated Stress Response Inhibitors and BACE1 and/or BACE2 Activators as the Optimal Therapeutic Strategy for Alzheimer's Disease. Int J Mol Sci 2024; 25:9913. [PMID: 39337400 PMCID: PMC11432332 DOI: 10.3390/ijms25189913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
The present study analyzes two potential therapeutic approaches for Alzheimer's disease (AD). One is the suppression of the neuronal integrated stress response (ISR). Another is the targeted degradation of intraneuronal amyloid-beta (iAβ) via the activation of BACE1 (Beta-site Aβ-protein-precursor Cleaving Enzyme) and/or BACE2. Both approaches are rational. Both are promising. Both have substantial intrinsic limitations. However, when combined in a carefully orchestrated manner into a composite therapy they display a prototypical synergy and constitute the apparently optimal, potentially most effective therapeutic strategy for AD.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Volloch V, Rits-Volloch S. ACH2.0/E, the Consolidated Theory of Conventional and Unconventional Alzheimer's Disease: Origins, Progression, and Therapeutic Strategies. Int J Mol Sci 2024; 25:6036. [PMID: 38892224 PMCID: PMC11172602 DOI: 10.3390/ijms25116036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
The centrality of amyloid-beta (Aβ) is an indisputable tenet of Alzheimer's disease (AD). It was initially indicated by the detection (1991) of a mutation within Aβ protein precursor (AβPP) segregating with the disease, which served as a basis for the long-standing Amyloid Cascade Hypothesis (ACH) theory of AD. In the intervening three decades, this notion was affirmed and substantiated by the discovery of numerous AD-causing and AD-protective mutations with all, without an exception, affecting the structure, production, and intraneuronal degradation of Aβ. The ACH postulated that the disease is caused and driven by extracellular Aβ. When it became clear that this is not the case, and the ACH was largely discredited, a new theory of AD, dubbed ACH2.0 to re-emphasize the centrality of Aβ, was formulated. In the ACH2.0, AD is caused by physiologically accumulated intraneuronal Aβ (iAβ) derived from AβPP. Upon reaching the critical threshold, it triggers activation of the autonomous AβPP-independent iAβ generation pathway; its output is retained intraneuronally and drives the AD pathology. The bridge between iAβ derived from AβPP and that generated independently of AβPP is the neuronal integrated stress response (ISR) elicited by the former. The ISR severely suppresses cellular protein synthesis; concurrently, it activates the production of a small subset of proteins, which apparently includes components necessary for operation of the AβPP-independent iAβ generation pathway that are absent under regular circumstances. The above sequence of events defines "conventional" AD, which is both caused and driven by differentially derived iAβ. Since the ISR can be elicited by a multitude of stressors, the logic of the ACH2.0 mandates that another class of AD, referred to as "unconventional", has to occur. Unconventional AD is defined as a disease where a stressor distinct from AβPP-derived iAβ elicits the neuronal ISR. Thus, the essence of both, conventional and unconventional, forms of AD is one and the same, namely autonomous, self-sustainable, AβPP-independent production of iAβ. What distinguishes them is the manner of activation of this pathway, i.e., the mode of causation of the disease. In unconventional AD, processes occurring at locations as distant from and seemingly as unrelated to the brain as, say, the knee can potentially trigger the disease. The present study asserts that these processes include traumatic brain injury (TBI), chronic traumatic encephalopathy, viral and bacterial infections, and a wide array of inflammatory conditions. It considers the pathways which are common to all these occurrences and culminate in the elicitation of the neuronal ISR, analyzes the dynamics of conventional versus unconventional AD, shows how the former can morph into the latter, explains how a single TBI can hasten the occurrence of AD and why it takes multiple TBIs to trigger the disease, and proposes the appropriate therapeutic strategies. It posits that yet another class of unconventional AD may occur where the autonomous AβPP-independent iAβ production pathway is initiated by an ISR-unrelated activator, and consolidates the above notions in a theory of AD, designated ACH2.0/E (for expanded ACH2.0), which incorporates the ACH2.0 as its special case and retains the centrality of iAβ produced independently of AβPP as the driving agent of the disease.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Volloch V, Rits-Volloch S. On the Inadequacy of the Current Transgenic Animal Models of Alzheimer's Disease: The Path Forward. Int J Mol Sci 2024; 25:2981. [PMID: 38474228 PMCID: PMC10932000 DOI: 10.3390/ijms25052981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
For at least two reasons, the current transgenic animal models of Alzheimer's disease (AD) appear to be patently inadequate. They may be useful in many respects, the AD models; however, they are not. First, they are incapable of developing the full spectrum of the AD pathology. Second, they respond spectacularly well to drugs that are completely ineffective in the treatment of symptomatic AD. These observations indicate that both the transgenic animal models and the drugs faithfully reflect the theory that guided the design and development of both, the amyloid cascade hypothesis (ACH), and that both are inadequate because their underlying theory is. This conclusion necessitated the formulation of a new, all-encompassing theory of conventional AD-the ACH2.0. The two principal attributes of the ACH2.0 are the following. One, in conventional AD, the agent that causes the disease and drives its pathology is the intraneuronal amyloid-β (iAβ) produced in two distinctly different pathways. Two, following the commencement of AD, the bulk of Aβ is generated independently of Aβ protein precursor (AβPP) and is retained inside the neuron as iAβ. Within the framework of the ACH2.0, AβPP-derived iAβ accumulates physiologically in a lifelong process. It cannot reach levels required to support the progression of AD; it does, however, cause the disease. Indeed, conventional AD occurs if and when the levels of AβPP-derived iAβ cross the critical threshold, elicit the neuronal integrated stress response (ISR), and trigger the activation of the AβPP-independent iAβ generation pathway; the disease commences only when this pathway is operational. The iAβ produced in this pathway reaches levels sufficient to drive the AD pathology; it also propagates its own production and thus sustains the activity of the pathway and perpetuates its operation. The present study analyzes the reason underlying the evident inadequacy of the current transgenic animal models of AD. It concludes that they model, in fact, not Alzheimer's disease but rather the effects of the neuronal ISR sustained by AβPP-derived iAβ, that this is due to the lack of the operational AβPP-independent iAβ production pathway, and that this mechanism must be incorporated into any successful AD model faithfully emulating the disease. The study dissects the plausible molecular mechanisms of the AβPP-independent iAβ production and the pathways leading to their activation, and introduces the concept of conventional versus unconventional Alzheimer's disease. It also proposes the path forward, posits the principles of design of productive transgenic animal models of the disease, and describes the molecular details of their construction.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Volloch V, Rits-Volloch S. Next Generation Therapeutic Strategy for Treatment and Prevention of Alzheimer's Disease and Aging-Associated Cognitive Decline: Transient, Once-in-a-Lifetime-Only Depletion of Intraneuronal Aβ ( iAβ) by Its Targeted Degradation via Augmentation of Intra- iAβ-Cleaving Activities of BACE1 and/or BACE2. Int J Mol Sci 2023; 24:17586. [PMID: 38139415 PMCID: PMC10744314 DOI: 10.3390/ijms242417586] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Although the long-standing Amyloid Cascade Hypothesis (ACH) has been largely discredited, its main attribute, the centrality of amyloid-beta (Aβ) in Alzheimer's disease (AD), remains the cornerstone of any potential interpretation of the disease: All known AD-causing mutations, without a single exception, affect, in one way or another, Aβ. The ACH2.0, a recently introduced theory of AD, preserves this attribute but otherwise differs fundamentally from the ACH. It posits that AD is a two-stage disorder where both stages are driven by intraneuronal (rather than extracellular) Aβ (iAβ) albeit of two distinctly different origins. The first asymptomatic stage is the decades-long accumulation of Aβ protein precursor (AβPP)-derived iAβ to the critical threshold. This triggers the activation of the self-sustaining AβPP-independent iAβ production pathway and the commencement of the second, symptomatic AD stage. Importantly, Aβ produced independently of AβPP is retained intraneuronally. It drives the AD pathology and perpetuates the operation of the pathway; continuous cycles of the iAβ-stimulated propagation of its own AβPP-independent production constitute an engine that drives AD, the AD Engine. It appears that the dynamics of AβPP-derived iAβ accumulation is the determining factor that either drives Aging-Associated Cognitive Decline (AACD) and triggers AD or confers the resistance to both. Within the ACH2.0 framework, the ACH-based drugs, designed to lower levels of extracellular Aβ, could be applicable in the prevention of AD and treatment of AACD because they reduce the rate of accumulation of AβPP-derived iAβ. The present study analyzes their utility and concludes that it is severely limited. Indeed, their short-term employment is ineffective, their long-term engagement is highly problematic, their implementation at the symptomatic stages of AD is futile, and their evaluation in conventional clinical trials for the prevention of AD is impractical at best, impossible at worst, and misleading in between. In contrast, the ACH2.0-guided Next Generation Therapeutic Strategy for the treatment and prevention of both AD and AACD, namely the depletion of iAβ via its transient, short-duration, targeted degradation by the novel ACH2.0-based drugs, has none of the shortcomings of the ACH-based drugs. It is potentially highly effective, easily evaluable in clinical trials, and opens up the possibility of once-in-a-lifetime-only therapeutic intervention for prevention and treatment of both conditions. It also identifies two plausible ACH2.0-based drugs: activators of physiologically occurring intra-iAβ-cleaving capabilities of BACE1 and/or BACE2.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
7
|
Volloch V, Rits-Volloch S. Principles of Design of Clinical Trials for Prevention and Treatment of Alzheimer's Disease and Aging-Associated Cognitive Decline in the ACH2.0 Perspective: Potential Outcomes, Challenges, and Solutions. J Alzheimers Dis Rep 2023; 7:921-955. [PMID: 37849639 PMCID: PMC10578334 DOI: 10.3233/adr-230037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/31/2023] [Indexed: 10/19/2023] Open
Abstract
With the Amyloid Cascade Hypothesis (ACH) largely discredited, the ACH2.0 theory of Alzheimer's disease (AD) has been recently introduced. Within the framework of the ACH2.0, AD is triggered by amyloid-β protein precursor (AβPP)-derived intraneuronal Aβ (iAβ) and is driven by iAβ produced in the AβPP-independent pathway and retained intraneuronally. In this paradigm, the depletion of extracellular Aβ or suppression of Aβ production by AβPP proteolysis, the two sources of AβPP-derived iAβ, would be futile in symptomatic AD, due to its reliance on iAβ generated independently of AβPP, but effective in preventing AD and treating Aging-Associated Cognitive Decline (AACD) driven, in the ACH2.0 framework, by AβPP-derived iAβ. The observed effect of lecanemab and donanemab, interpreted in the ACH2.0 perspective, supports this notion and mandates AD-preventive clinical trials. Such trials are currently in progress. They are likely, however, to fail or to yield deceptive results if conducted conventionally. The present study considers concepts of design of clinical trials of lecanemab, donanemab, or any other drug, targeting the influx of AβPP-derived iAβ, in prevention of AD and treatment of AACD. It analyzes possible outcomes and explains why selection of high-risk asymptomatic participants seems reasonable but is not. It argues that outcomes of such AD preventive trials could be grossly misleading, discusses inevitable potential problems, and proposes feasible solutions. It advocates the initial evaluation of this type of drugs in clinical trials for treatment of AACD. Whereas AD protective trials of these drugs are potentially of an impractical length, AACD clinical trials are expected to yield unequivocal results within a relatively short duration. Moreover, success of the latter, in addition to its intrinsic value, would constitute a proof of concept for the former. Furthermore, this study introduces concepts of the active versus passive iAβ depletion, contends that targeted degradation of iAβ is the best therapeutic strategy for both prevention and treatment of AD and AACD, proposes potential iAβ-degrading drugs, and describes their feasible and unambiguous evaluation in clinical trials.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Volloch V, Rits-Volloch S. The Amyloid Cascade Hypothesis 2.0 for Alzheimer's Disease and Aging-Associated Cognitive Decline: From Molecular Basis to Effective Therapy. Int J Mol Sci 2023; 24:12246. [PMID: 37569624 PMCID: PMC10419172 DOI: 10.3390/ijms241512246] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
With the long-standing amyloid cascade hypothesis (ACH) largely discredited, there is an acute need for a new all-encompassing interpretation of Alzheimer's disease (AD). Whereas such a recently proposed theory of AD is designated ACH2.0, its commonality with the ACH is limited to the recognition of the centrality of amyloid-β (Aβ) in the disease, necessitated by the observation that all AD-causing mutations affect, in one way or another, Aβ. Yet, even this narrow commonality is superficial since AD-causing Aβ of the ACH differs distinctly from that specified in the ACH2.0: Whereas in the former, the disease is caused by secreted extracellular Aβ, in the latter, it is triggered by Aβ-protein-precursor (AβPP)-derived intraneuronal Aβ (iAβ) and driven by iAβ generated independently of AβPP. The ACH2.0 envisions AD as a two-stage disorder. The first, asymptomatic stage is a decades-long accumulation of AβPP-derived iAβ, which occurs via internalization of secreted Aβ and through intracellular retention of a fraction of Aβ produced by AβPP proteolysis. When AβPP-derived iAβ reaches critical levels, it activates a self-perpetuating AβPP-independent production of iAβ that drives the second, devastating AD stage, a cascade that includes tau pathology and culminates in neuronal loss. The present study analyzes the dynamics of iAβ accumulation in health and disease and concludes that it is the prime factor driving both AD and aging-associated cognitive decline (AACD). It discusses mechanisms potentially involved in AβPP-independent generation of iAβ, provides mechanistic interpretations for all principal aspects of AD and AACD including the protective effect of the Icelandic AβPP mutation, the early onset of FAD and the sequential manifestation of AD pathology in defined regions of the affected brain, and explains why current mouse AD models are neither adequate nor suitable. It posits that while drugs affecting the accumulation of AβPP-derived iAβ can be effective only protectively for AD, the targeted degradation of iAβ is the best therapeutic strategy for both prevention and effective treatment of AD and AACD. It also proposes potential iAβ-degrading drugs.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Volloch V, Rits-Volloch S. Effect of Lecanemab in Early Alzheimer's Disease: Mechanistic Interpretation in the Amyloid Cascade Hypothesis 2.0 Perspective. J Alzheimers Dis 2023:JAD230164. [PMID: 37212119 DOI: 10.3233/jad-230164] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In clinical trials, lecanemab showed statistically significant yet marginal slowdown of Alzheimer's disease (AD)-associated cognitive decline. This could be due to its sub-optimal design and/or deployment; alternatively, its limited efficiency could be intrinsic. Distinguishing between the two is of great importance considering the acute need of efficient AD therapy and tremendous resources being invested in its pursuit. The present study analyzes the mode of operation of lecanemab within the framework of recently proposed Amyloid Cascade Hypothesis 2.0 and concludes that the second is correct. It suggests that substantial improvement of the efficiency of lecanemab in symptomatic AD is unlikely and proposes the alternative therapeutic strategy.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Volloch V, Rits-Volloch S. The Amyloid Cascade Hypothesis 2.0: Generalization of the Concept. J Alzheimers Dis Rep 2023; 7:21-35. [PMID: 36777328 PMCID: PMC9912825 DOI: 10.3233/adr-220079] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/09/2022] [Indexed: 12/31/2022] Open
Abstract
Recently, we proposed the Amyloid Cascade Hypothesis 2.0 (ACH2.0), a reformulation of the ACH. In the former, in contrast to the latter, Alzheimer's disease (AD) is driven by intraneuronal amyloid-β (iAβ) and occurs in two stages. In the first, relatively benign stage, Aβ protein precursor (AβPP)-derived iAβ activates, upon reaching a critical threshold, the AβPP-independent iAβ-generating pathway, triggering a devastating second stage resulting in neuronal death. While the ACH2.0 remains aligned with the ACH premise that Aβ is toxic, the toxicity is exerted because of intra- rather than extracellular Aβ. In this framework, a once-in-a-lifetime-only iAβ depletion treatment via transient activation of BACE1 and/or BACE2 (exploiting their Aβ-cleaving activities) or by any means appears to be the best therapeutic strategy for AD. Whereas the notion of differentially derived iAβ being the principal moving force at both AD stages is both plausible and elegant, a possibility remains that the second AD stage is enabled by an AβPP-derived iAβ-activated self-sustaining mechanism producing a yet undefined deleterious "substance X" (sX) which anchors the second AD stage. The present study generalizes the ACH2.0 by incorporating this possibility and shows that, in this scenario, the iAβ depletion therapy may be ineffective at symptomatic AD stages but fully retains its preventive potential for both AD and the aging-associated cognitive decline, which is defined in the ACH2.0 framework as the extended first stage of AD.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA,Correspondence to: Vladimir Volloch, Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA. and Sophia Rits-Volloch, Division of Molecular Medicine, Children’s Hospital, Boston, MA, USA. E-mail:
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA, USA,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Baumann K, Šneiderienė G, Sanguanini M, Schneider M, Rimon O, González Díaz A, Greer H, Thacker D, Linse S, Knowles TPJ, Vendruscolo M. A Kinetic Map of the Influence of Biomimetic Lipid Model Membranes on Aβ 42 Aggregation. ACS Chem Neurosci 2022; 14:323-329. [PMID: 36574473 PMCID: PMC9853501 DOI: 10.1021/acschemneuro.2c00765] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The aggregation of the amyloid β (Aβ) peptide is one of the molecular hallmarks of Alzheimer's disease (AD). Although Aβ deposits have mostly been observed extracellularly, various studies have also reported the presence of intracellular Aβ assemblies. Because these intracellular Aβ aggregates might play a role in the onset and progression of AD, it is important to investigate their possible origins at different locations of the cell along the secretory pathway of the amyloid precursor protein, from which Aβ is derived by proteolytic cleavage. Senile plaques found in AD are largely composed of the 42-residue form of Aβ (Aβ42). Intracellularly, Aβ42 is produced in the endoplasmatic reticulum (ER) and Golgi apparatus. Since lipid bilayers have been shown to promote the aggregation of Aβ, in this study, we measure the effects of the lipid membrane composition on the in vitro aggregation kinetics of Aβ42. By using large unilamellar vesicles to model cellular membranes at different locations, including the inner and outer leaflets of the plasma membrane, late endosomes, the ER, and the Golgi apparatus, we show that Aβ42 aggregation is inhibited by the ER and Golgi model membranes. These results provide a preliminary map of the possible effects of the membrane composition in different cellular locations on Aβ aggregation and suggest the presence of an evolutionary optimization of the lipid composition to prevent the intracellular aggregation of Aβ.
Collapse
Affiliation(s)
- Kevin
N. Baumann
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CambridgeCB2 1EW, U.K.
| | - Greta Šneiderienė
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CambridgeCB2 1EW, U.K.
| | - Michele Sanguanini
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CambridgeCB2 1EW, U.K.
| | - Matthias Schneider
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CambridgeCB2 1EW, U.K.
| | - Oded Rimon
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CambridgeCB2 1EW, U.K.
| | - Alicia González Díaz
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CambridgeCB2 1EW, U.K.
| | - Heather Greer
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CambridgeCB2 1EW, U.K.
| | - Dev Thacker
- Department
of Biochemistry and Structural Biology, Lund University, LundSE22100, Sweden
| | - Sara Linse
- Department
of Biochemistry and Structural Biology, Lund University, LundSE22100, Sweden
| | - Tuomas P. J. Knowles
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CambridgeCB2 1EW, U.K.,Cavendish
Laboratory, University of Cambridge, CambridgeCB3 0HE, U.K.
| | - Michele Vendruscolo
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CambridgeCB2 1EW, U.K.,
| |
Collapse
|
12
|
Volloch V, Rits-Volloch S. The Amyloid Cascade Hypothesis 2.0: On the Possibility of Once-in-a-Lifetime-Only Treatment for Prevention of Alzheimer’s Disease and for Its Potential Cure at Symptomatic Stages. J Alzheimers Dis Rep 2022; 6:369-399. [PMID: 36072366 PMCID: PMC9397896 DOI: 10.3233/adr-220031] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/08/2022] [Indexed: 11/15/2022] Open
Abstract
We posit that Alzheimer’s disease (AD) is driven by amyloid-β (Aβ) generated in the amyloid-β protein precursor (AβPP) independent pathway activated by AβPP-derived Aβ accumulated intraneuronally in a life-long process. This interpretation constitutes the Amyloid Cascade Hypothesis 2.0 (ACH2.0). It defines a tandem intraneuronal-Aβ (iAβ)-anchored cascade occurrence: intraneuronally-accumulated, AβPP-derived iAβ triggers relatively benign cascade that activates the AβPP-independent iAβ-generating pathway, which, in turn, initiates the second, devastating cascade that includes tau pathology and leads to neuronal loss. The entire output of the AβPP-independent iAβ-generating pathway is retained intraneuronally and perpetuates the pathway’s operation. This process constitutes a self-propagating, autonomous engine that drives AD and ultimately kills its host cells. Once activated, the AD Engine is self-reliant and independent from Aβ production in the AβPP proteolytic pathway; operation of the former renders the latter irrelevant to the progression of AD and brands its manipulation for therapeutic purposes, such as BACE (beta-site AβPP-cleaving enzyme) inhibition, as futile. In the proposed AD paradigm, the only valid direct therapeutic strategy is targeting the engine’s components, and the most effective feasible approach appears to be the activation of BACE1 and/or of its homolog BACE2, with the aim of exploiting their Aβ-cleaving activities. Such treatment would collapse the iAβ population and ‘reset’ its levels below those required for the operation of the AD Engine. Any sufficiently selective iAβ-depleting treatment would be equally effective. Remarkably, this approach opens the possibility of a short-duration, once-in-a-lifetime-only or very infrequent, preventive or curative therapy for AD; this therapy would be also effective for prevention and treatment of the ‘common’ pervasive aging-associated cognitive decline. The ACH2.0 clarifies all ACH-unresolved inconsistencies, explains the widespread ‘resilience to AD’ phenomenon, predicts occurrences of a category of AD-afflicted individuals without excessive Aβ plaque load and of a novel type of familial insusceptibility to AD; it also predicts the lifespan-dependent inevitability of AD in humans if untreated preventively. The article details strategy and methodology to generate an adequate AD model and validate the hypothesis; the proposed AD model may also serve as a research and drug development platform.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Galvin J, Curran E, Arteaga F, Goossens A, Aubuchon-Endsley N, McMurray MA, Moore J, Hansen KC, Chial HJ, Potter H, Brodsky JL, Coughlan CM. Proteasome activity modulates amyloid toxicity. FEMS Yeast Res 2022; 22:foac004. [PMID: 35150241 PMCID: PMC8906389 DOI: 10.1093/femsyr/foac004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/14/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is responsible for 60%-80% of identified cases of dementia. While the generation and accumulation of amyloid precursor protein (APP) fragments is accepted as a key step in AD pathogenesis, the precise role of these fragments remains poorly understood. To overcome this deficit, we induced the expression of the soluble C-terminal fragment of APP (C99), the rate-limiting peptide for the generation of amyloid fragments, in yeast that contain thermosensitive mutations in genes encoding proteasome subunits. Our previous work with this system demonstrated that these proteasome-deficient yeast cells, expressing C99 when proteasome activity was blunted, generated amyloid fragments similar to those observed in AD patients. We now report the phenotypic repercussions of inducing C99 expression in proteasome-deficient cells. We show increased levels of protein aggregates, cellular stress and chaperone expression, electron-dense accumulations in the nuclear envelope/ER, abnormal DNA condensation, and an induction of apoptosis. Taken together, these findings suggest that the generation of C99 and its associated fragments in yeast cells with compromised proteasomal activity results in phenotypes that may be relevant to the neuropathological processes observed in AD patients. These data also suggest that this yeast model should be useful for testing therapeutics that target AD-associated amyloid, since it allows for the assessment of the reversal of the perturbed cellular physiology observed when degradation pathways are dysfunctional.
Collapse
Affiliation(s)
- John Galvin
- Department of Biological Sciences, University of Denver , Denver CO 80208, United States
| | - Elizabeth Curran
- Department of Biological Sciences, University of Denver , Denver CO 80208, United States
| | - Francisco Arteaga
- Department of Biological Sciences, University of Denver , Denver CO 80208, United States
| | - Alicia Goossens
- Department of Biological Sciences, University of Denver , Denver CO 80208, United States
| | - Nicki Aubuchon-Endsley
- Department of Biological Sciences, University of Denver , Denver CO 80208, United States
| | - Michael A McMurray
- Department of Cell and Developmental Biology, Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Jeffrey Moore
- Department of Cell and Developmental Biology, Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Heidi J Chial
- University of Colorado Alzheimer's and Cognition Center (CUACC), Department of Neurology, School of Medicine, Anschutz Medical Campus, Aurora 80045, United States
| | - Huntington Potter
- University of Colorado Alzheimer's and Cognition Center (CUACC), Department of Neurology, School of Medicine, Anschutz Medical Campus, Aurora 80045, United States
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Christina M Coughlan
- University of Colorado Alzheimer's and Cognition Center (CUACC), Department of Neurology, School of Medicine, Anschutz Medical Campus, Aurora 80045, United States
| |
Collapse
|
14
|
Rimal S, Li Y, Vartak R, Geng J, Tantray I, Li S, Huh S, Vogel H, Glabe C, Grinberg LT, Spina S, Seeley WW, Guo S, Lu B. Inefficient quality control of ribosome stalling during APP synthesis generates CAT-tailed species that precipitate hallmarks of Alzheimer's disease. Acta Neuropathol Commun 2021; 9:169. [PMID: 34663454 PMCID: PMC8522249 DOI: 10.1186/s40478-021-01268-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 11/25/2022] Open
Abstract
Amyloid precursor protein (APP) metabolism is central to Alzheimer's disease (AD) pathogenesis, but the key etiological driver remains elusive. Recent failures of clinical trials targeting amyloid-β (Aβ) peptides, the proteolytic fragments of amyloid precursor protein (APP) that are the main component of amyloid plaques, suggest that the proteostasis-disrupting, key pathogenic species remain to be identified. Previous studies suggest that APP C-terminal fragment (APP.C99) can cause disease in an Aβ-independent manner. The mechanism of APP.C99 pathogenesis is incompletely understood. We used Drosophila models expressing APP.C99 with the native ER-targeting signal of human APP, expressing full-length human APP only, or co-expressing full-length human APP and β-secretase (BACE), to investigate mechanisms of APP.C99 pathogenesis. Key findings are validated in mammalian cell culture models, mouse 5xFAD model, and postmortem AD patient brain materials. We find that ribosomes stall at the ER membrane during co-translational translocation of APP.C99, activating ribosome-associated quality control (RQC) to resolve ribosome collision and stalled translation. Stalled APP.C99 species with C-terminal extensions (CAT-tails) resulting from inadequate RQC are prone to aggregation, causing endolysosomal and autophagy defects and seeding the aggregation of amyloid β peptides, the main component of amyloid plaques. Genetically removing stalled and CAT-tailed APP.C99 rescued proteostasis failure, endolysosomal/autophagy dysfunction, neuromuscular degeneration, and cognitive deficits in AD models. Our finding of RQC factor deposition at the core of amyloid plaques from AD brains further supports the central role of defective RQC of ribosome collision and stalled translation in AD pathogenesis. These findings demonstrate that amyloid plaque formation is the consequence and manifestation of a deeper level proteostasis failure caused by inadequate RQC of translational stalling and the resultant aberrantly modified APP.C99 species, previously unrecognized etiological drivers of AD and newly discovered therapeutic targets.
Collapse
Affiliation(s)
- Suman Rimal
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yu Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Rasika Vartak
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ji Geng
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ishaq Tantray
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Shuangxi Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sungun Huh
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Charles Glabe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Lea T Grinberg
- Memory and Aging Center, Department of Neurology and Department of Pathology, University of California, San Francisco, CA, 94158, USA
| | - Salvatore Spina
- Memory and Aging Center, Department of Neurology and Department of Pathology, University of California, San Francisco, CA, 94158, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology and Department of Pathology, University of California, San Francisco, CA, 94158, USA
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences, Programs in Human Genetics and Biological Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
15
|
Volloch V, Olsen B, Rits S. Alzheimer's Disease is Driven by Intraneuronally Retained Beta-Amyloid Produced in the AD-Specific, βAPP-Independent Pathway: Current Perspective and Experimental Models for Tomorrow. ANNALS OF INTEGRATIVE MOLECULAR MEDICINE 2020; 2:90-114. [PMID: 32617536 PMCID: PMC7331974 DOI: 10.33597/aimm.02-1007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A view of the origin and progression of Alzheimer's disease, AD, prevailing until now and formalized as the Amyloid Cascade Hypothesis theory, maintains that the disease is initiated by overproduction of beta-amyloid, Aβ, which is generated solely by the Aβ precursor protein, βAPP, proteolytic pathway and secreted from the cell. Consequent extracellular accumulation of Aβ triggers a cascade of molecular and cellular events leading to neurodegeneration that starts early in life, progresses as one prolonged process, builds up for decades, and culminates in symptomatic manifestations of the disease late in life. In this paradigm, a time window for commencement of therapeutic intervention is small and accessible only early in life. The outlook introduced in the present study is fundamentally different. It posits that the βAPP proteolytic/secretory pathway of Aβ production causes AD in humans no more than it does in either short- or long-lived non-human mammals that share this pathway with humans, accumulate beta-amyloid as they age, but do not develop the disease. Alzheimer's disease, according to this outlook, is driven by an additional powerful AD-specific pathway of Aβ production that operates in affected humans, is completely independent of the βAPP precursor, and is not available in non-human mammals. The role of the βAPP proteolytic pathway in the disease in humans is activation of this additional AD-specific Aβ production pathway. This occurs through accumulation of intracellular Aβ, primarily via ApoE-assisted cellular uptake of secreted beta-amyloid, but also through retention of a fraction of Aβ produced in the βAPP proteolytic pathway. With time, accumulated intracellular Aβ triggers mitochondrial dysfunction. In turn, cellular stresses associated with mitochondrial dysfunction, including ER stress, activate a second, AD-specific, Aβ production pathway: Asymmetric RNA-dependent βAPP mRNA amplification; animal βAPP mRNA is ineligible for this process. In this pathway, every conventionally produced βAPP mRNA molecule serves potentially as a template for production of severely 5'-truncated mRNA encoding not the βAPP but its C99 fragment (hence "asymmetric"), the immediate precursor of Aβ. Thus produced, N-terminal signal peptide-lacking C99 is processed not in the secretory pathway on the plasma membrane, but at the intracellular membrane sites, apparently in a neuron-specific manner. The resulting Aβ is, therefore, not secreted but is retained intraneuronally and accumulates rapidly within the cell. Increased levels of intracellular Aβ augment mitochondrial dysfunction, which, in turn, sustains the activity of the βAPP mRNA amplification pathway. These self-propagating mutual Aβ overproduction/mitochondrial dysfunction feedback cycles constitute a formidable two-stroke engine, an engine that drives Alzheimer's disease. The present outlook envisions Alzheimer's disorder as a two-stage disease. The first stage is a slow process of intracellular beta-amyloid accumulation. It results neither in significant neurodegenerative damage, nor in manifestation of the disease. The second stage commences with the activation of the βAPP mRNA amplification pathway shortly before symptomatic onset of the disease, sharply increases the rate of Aβ generation and the extent of its intraneuronal accumulation, produces significant damages, triggers AD symptoms, and is fast. In this paradigm, the time window of therapeutic intervention is wide open, and preventive treatment can be initiated any time, even late in life, prior to commencement of the second stage of the disease. Moreover, there are good reasons to believe that with a drug blocking the βAPP mRNA amplification pathway, it would be possible not only to preempt the disease but also to stop and to reverse it even when early AD symptoms have already manifested. There are numerous experimental models of AD, all based on a notion of the exceptionality of βAPP proteolytic/secretory pathway in Aβ production in the disease. However, with no drug even remotely effective in Alzheimer's disease, a long list of candidate drugs that succeeded remarkably in animal models, yet failed utterly in human clinical trials of potential AD drugs, attests to the inadequacy of currently employed AD models. The concept of a renewable supply of beta-amyloid, produced in the βAPP mRNA amplification pathway and retained intraneuronally in Alzheimer's disease, explains spectacular failures of both BACE inhibition and Aβ-immunotherapy in human clinical trials. This concept also forms the basis of a new generation of animal and cell-based experimental models of AD, described in the present study. These models incorporate Aβ- or C99-encoding mRNA amplification pathways of Aβ production, as well as intracellular retention of their product, and can support not only further investigation of molecular mechanisms of AD but also screening for and testing of candidate drugs aimed at therapeutic targets suggested by the present study.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, USA
| | - Bjorn Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, USA
| | - Sophia Rits
- Division of Molecular Medicine, Children’s Hospital, Boston, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, USA
| |
Collapse
|
16
|
Volloch V, Rits-Volloch S. News from Mars: Two-Tier Paradox, Intracellular PCR, Chimeric Junction Shift, Dark Matter mRNA and Other Remarkable Features of Mammalian RNA-Dependent mRNA Amplification. Implications for Alzheimer's Disease, RNA-Based Vaccines and mRNA Therapeutics. ACTA ACUST UNITED AC 2019; 2:131-173. [PMID: 33942036 DOI: 10.33597/aimm.02-1009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Molecular Biology, a branch of science established to examine the flow of information from "letters" encrypted into DNA structure to functional proteins, was initially defined by a concept of DNA-to-RNA-to-Protein information movement, a notion termed the Central Dogma of Molecular Biology. RNA-dependent mRNA amplification, a novel mode of eukaryotic protein-encoding RNA-to-RNA-to-Protein genomic information transfer, constitutes the extension of the Central Dogma in the context of mammalian cells. It was shown to occur in cellular circumstances requiring exceptionally high levels of production of specific polypeptides, e.g. globin chains during erythroid differentiation or defined secreted proteins in the context of extracellular matrix deposition. Its potency is reflected in the observed cellular levels of the resulting amplified mRNA product: At the peak of the erythroid differentiation, for example, the amount of globin mRNA produced in the amplification pathway is about 1500-fold higher than the amount of its conventionally generated counterpart in the same cells. The cellular enzymatic machinery at the core of this process, RNA-dependent RNA polymerase activity (RdRp), albeit in a non-conventional form, was shown to be constitutively and ubiquitously present, and RNA-dependent RNA synthesis (RdRs) appeared to regularly occur, in mammalian cells. Under most circumstances, the mammalian RdRp activity produces only short antisense RNA transcripts. Generation of complete antisense RNA transcripts and amplification of mRNA molecules require the activation of inducible components of the mammalian RdRp complex. The mechanism of such activation is not clear. The present article suggests that it is triggered by a variety of cellular stresses and occurs in the context of stress responses in general and within the framework of the integrated stress response (ISR) in particular. In this process, various cellular stresses activate, in a stress type-specific manner, defined members of the mammalian translation initiation factor 2α, eIF2α, kinase family: PKR, GCN2, PERK and HRI. Any of these kinases, in an activated form, phosphorylates eIF2α. This results in suppression of global cellular protein synthesis but also in activation of expression of select group of transcription factors including ATF4, ATF5 and CHOP. These transcription factors either function as inducible components of the RdRp complex or enable their expression. The assembly of the competent RdRp complex activates mammalian RNA-dependent mRNA amplification, which appears to be a two-tier process. Tier One is a "chimeric" pathway, named so because it results in an amplified chimeric mRNA molecule containing a fragment of the antisense RNA strand at its 5' terminus. Tier Two further amplifies one of the two RNA end products of the chimeric pathway and constitutes the physiologically occurring intracellular polymerase chain reaction, iPCR. Depending on the structure of the initial mRNA amplification progenitor, the chimeric pathway, Tier One, may result in multiple outcomes including chimeric mRNA that produces either a polypeptide identical to the original, conventional mRNA progenitor-encoded protein or only its C-terminal fragment, CTF. The chimeric RNA end product of Tier One may also produce a polypeptide that is non-contiguously encoded in the genome, activate translation from an open reading frame, which is "silent" in a conventionally transcribed mRNA, or initiate an abortive translation. In sharp contrast, regardless of the outcome of Tier One, the mRNA end product of Tier Two of mammalian mRNA amplification, the iPCR pathway, always produces a polypeptide identical to a conventional mRNA progenitor-encoded protein. This discordance is referred to as the Two-Tier Paradox and discussed in detail in the present article. On the other hand, both Tiers are similar in that they result in heavily modified mRNA molecules resistant to reverse transcription, undetectable by reverse transcription-based methods of sequencing and therefore constituting a proverbial "Dark Matter" mRNA, despite being highly ubiquitous. It appears that in addition to their other functions, the modifications of the amplified mRNA render it compatible, unlike the bulk of cellular mRNA, with phosphorylated eIF2α in translation, implying that in addition to being extraordinarily abundant due to the method of its generation, amplified mRNA is also preferentially translated under the ISR conditions, thus augmenting the efficiency of the amplification process. The vital importance of powerful mechanisms of amplification of protein-encoding genomic information in normal physiology is self-evident. Their malfunctions or misuse appear to be associated with two types of abnormalities, the deficiency of a protein normally produced by these mechanisms and the mRNA amplification-mediated overproduction of a protein normally not generated by such a process. Certain classes of beta-thalassemia exemplify the first type, whereas the second type is represented by overproduction of beta-amyloid in Alzheimer's disease. Moreover, the proposed mechanism of Alzheimer's disease allows a crucial and verifiable prediction, namely that the disease-causing intraneuronally retained variant of beta-amyloid differs from that produced conventionally by βAPP proteolysis in that it contains the additional methionine or acetylated methionine at its N-terminus. Because of its extraordinary evidential value as a natural reporter of the mRNA amplification pathway, this feature, if proven, would, arguably, constitute the proverbial Holy Grail not only for Alzheimer's disease but also for the mammalian RNA-dependent mRNA amplification field in general. Both examples are discussed in detail in the present article, which summarizes and systematizes our current understanding of the field and describes two categories of reporter constructs, one for the chimeric Tier of mRNA amplification, another for the iPCR pathway; both reporter types are essential for elucidating underlying molecular mechanisms. It also suggests, in light of the recently demonstrated feasibility of RNA-based vaccines, that the targeted intracellular amplification of exogenously introduced amplification-eligible antigen-encoding mRNAs via the induced or naturally occurring RNA-dependent mRNA amplification pathway could be of substantial benefit in triggering a fast and potent immune response and instrumental in the development of future vaccines. Similar approaches can also be effective in achieving efficient and sustained expression of exogenous mRNA in mRNA therapeutics.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children's Hospital, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, USA
| |
Collapse
|
17
|
Volloch V, Olsen B, Rits S. Alzheimer's Disease Prevention and Treatment: Case for Optimism. ACTA ACUST UNITED AC 2019; 2:115-130. [PMID: 33043322 DOI: 10.33597/aimm.02-1008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A paradigm shift is under way in the Alzheimer's field. A view of Alzheimer's disease, AD, prevailing until now, the old paradigm, maintains that it is initiated and driven by the overproduction and extracellular accumulation of beta-amyloid, Aβ; a peptide assumed to be derived, both in health and disease, solely by proteolysis of its large precursor, βAPP. In AD, according to this view, Aβ overproduction-associated neurodegeneration begins early, accumulates throughout the lifespan, and manifests symptomatically late in life. A number of drugs, designed within the framework of exceptionality of the βAPP proteolytic/secretory pathway in Aβ production in Alzheimer's disease, achieved spectacular successes in treatment, even the reversal, of AD symptoms in animal models. Without exception, they all exhibited equally spectacular failures in human clinical trials. This paradigm provides few causes for optimism with regard to prevention and treatment of AD. In its context, the disease is considered untreatable in the symptomatic phase; even prodromal cases are assumed too advanced for treatment because Aβ-triggered damages have been accumulating for preceding decades, presumably starting in the early twenties and, to be effective, this is when therapeutic intervention should commence and continue for life. The new paradigm does not dispute the seminal role of Aβ in AD but posits that beta-amyloid produced in the βAPP proteolytic/secretory pathway causes AD in humans no more than it does in non-human mammals that share this pathway with humans, accumulate Aβ as they age, but do not develop the disease. Alzheimer's disease, according to this outlook, is driven by the AD-specific pathway of Aβ production, independent of βAPP and absent in animals. Its activation, late in life, occurs through accumulation, via both cellular uptake of secreted Aβ and neuronal retention of a fraction of beta-amyloid produced in the βAPP proteolytic pathway, of intraneuronal Aβ, which triggers mitochondrial dysfunction. Cellular stresses associated with mitochondrial dysfunction, or, probably, the integrated stress response, ISR, elicited by it, activate an AD-specific Aβ production pathway. In it, every conventionally produced βAPP mRNA molecule potentially serves repeatedly as a template for production of severely 5'-truncated mRNA encoding C99 fragment of βAPP, the immediate precursor of Aβ that is processed in a non-secretory pathway, apparently in a neuron-specific manner. The resulting intraneuronally retained Aβ augments mitochondrial dysfunction, which, in turn, sustains the activity of the βAPP mRNA amplification pathway. These self-propagating Aβ overproduction/mitochondrial dysfunction mutual feedback cycles constitute the engine that drives AD and ultimately triggers neuronal death. In this paradigm, preventive treatment can be initiated any time prior to commencement of βAPP mRNA amplification. Moreover, there are good reasons to believe that with a drug blocking the amplification pathway, it would be possible not only to preempt the disease but also stop and reverse it even when early AD symptoms are already manifested. Thus, the new paradigm introduces a novel theory of Alzheimer's disease. It explains the observed discordances, determines defined therapeutic targets, provides blueprints for a new generation of conceptually distinct AD models and specifies design of a reporter for the mRNA amplification pathway. Most importantly, it offers detailed guidance and tangible hope for prevention of the disease and its treatment at the early symptomatic stages.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, USA
| | - Bjorn Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, USA
| | - Sophia Rits
- Division of Molecular Medicine, Children's Hospital, Boston, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, USA
| |
Collapse
|
18
|
Kreiner G. What have we learned recently from transgenic mouse models about neurodegeneration? The most promising discoveries of this millennium. Pharmacol Rep 2018; 70:1105-1115. [DOI: 10.1016/j.pharep.2018.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 09/05/2018] [Accepted: 09/10/2018] [Indexed: 12/14/2022]
|
19
|
Ameen-Ali KE, Wharton SB, Simpson JE, Heath PR, Sharp P, Berwick J. Review: Neuropathology and behavioural features of transgenic murine models of Alzheimer's disease. Neuropathol Appl Neurobiol 2018; 43:553-570. [PMID: 28880417 DOI: 10.1111/nan.12440] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/04/2017] [Indexed: 12/11/2022]
Abstract
Our understanding of the underlying biology of Alzheimer's disease (AD) has been steadily progressing; however, this is yet to translate into a successful treatment in humans. The use of transgenic mouse models has helped to develop our understanding of AD, not only in terms of disease pathology, but also with the associated cognitive impairments typical of AD. Plaques and neurofibrillary tangles are often among the last pathological changes in AD mouse models, after neuronal loss and gliosis. There is a general consensus that successful treatments need to be applied before the onset of these pathologies and associated cognitive symptoms. This review discusses the different types of AD mouse models in terms of the temporal progression of the disease, how well they replicate the pathological changes seen in human AD and their cognitive defects. We provide a critical assessment of the behavioural tests used with AD mice to assess cognitive changes and decline, and discuss how successfully they correlate with cognitive impairments in humans with AD. This information is an important tool for AD researchers when deciding on appropriate mouse models, and when selecting measures to assess behavioural and cognitive change.
Collapse
Affiliation(s)
- K E Ameen-Ali
- Department of Psychology, University of Sheffield, Sheffield, UK
| | - S B Wharton
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - J E Simpson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - P R Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - P Sharp
- Department of Psychology, University of Sheffield, Sheffield, UK
| | - J Berwick
- Department of Psychology, University of Sheffield, Sheffield, UK
| |
Collapse
|
20
|
Dolfe L, Tambaro S, Tigro H, Del Campo M, Hoozemans JJM, Wiehager B, Graff C, Winblad B, Ankarcrona M, Kaldmäe M, Teunissen CE, Rönnbäck A, Johansson J, Presto J. The Bri2 and Bri3 BRICHOS Domains Interact Differently with Aβ 42 and Alzheimer Amyloid Plaques. J Alzheimers Dis Rep 2018; 2:27-39. [PMID: 30480246 PMCID: PMC6159705 DOI: 10.3233/adr-170051] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia and there is no successful treatment available. Evidence suggests that fibril formation of the amyloid β-peptide (Aβ) is a major underlying cause of AD, and treatment strategies that reduce the toxic effects of Aβ amyloid are sought for. The BRICHOS domain is found in several proteins, including Bri2 (also called integral membrane protein 2B (ITM2B)), mutants of which are associated with amyloid and neurodegeneration, and Bri3 (ITM2C). We have used mouse hippocampal neurons and brain tissues from mice and humans and show Bri3 deposits dispersed on AD plaques. In contrast to what has been shown for Bri2, Bri3 immunoreactivity is decreased in AD brain homogenates compared to controls. Both Bri2 and Bri3 BRICHOS domains interact with Aβ40 and Aβ42 present in neurons and reduce Aβ42 amyloid fibril formation in vitro, but Bri3 BRICHOS is less efficient. These results indicate that Bri2 and Bri3 BRICHOS have different roles in relation to Aβ aggregation.
Collapse
Affiliation(s)
- Lisa Dolfe
- Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Helene Tigro
- School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Marta Del Campo
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Jeroen J M Hoozemans
- Neurochemistry Lab, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, The Netherlands
| | - Birgitta Wiehager
- Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Caroline Graff
- Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden.,Genetic Unit, Theme Aging, Karolinska University Hospital, Sweden
| | - Bengt Winblad
- Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Maria Ankarcrona
- Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Margit Kaldmäe
- School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Charlotte E Teunissen
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Annica Rönnbäck
- Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Jan Johansson
- Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden.,School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Jenny Presto
- Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
21
|
Ribarič S. Peptides as Potential Therapeutics for Alzheimer's Disease. Molecules 2018; 23:E283. [PMID: 29385735 PMCID: PMC6017258 DOI: 10.3390/molecules23020283] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/22/2022] Open
Abstract
Intracellular synthesis, folding, trafficking and degradation of proteins are controlled and integrated by proteostasis. The frequency of protein misfolding disorders in the human population, e.g., in Alzheimer's disease (AD), is increasing due to the aging population. AD treatment options are limited to symptomatic interventions that at best slow-down disease progression. The key biochemical change in AD is the excessive accumulation of per-se non-toxic and soluble amyloid peptides (Aβ(1-37/44), in the intracellular and extracellular space, that alters proteostasis and triggers Aβ modification (e.g., by reactive oxygen species (ROS)) into toxic intermediate, misfolded soluble Aβ peptides, Aβ dimers and Aβ oligomers. The toxic intermediate Aβ products aggregate into progressively less toxic and less soluble protofibrils, fibrils and senile plaques. This review focuses on peptides that inhibit toxic Aβ oligomerization, Aβ aggregation into fibrils, or stabilize Aβ peptides in non-toxic oligomers, and discusses their potential for AD treatment.
Collapse
Affiliation(s)
- Samo Ribarič
- Institute of Pathophysiology, Faculty of Medicine, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
22
|
Kizil C. Mechanisms of Pathology-Induced Neural Stem Cell Plasticity and Neural Regeneration in Adult Zebrafish Brain. CURRENT PATHOBIOLOGY REPORTS 2018; 6:71-77. [PMID: 29938129 PMCID: PMC5978899 DOI: 10.1007/s40139-018-0158-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Purpose of the Review The purpose of this study is to review the current knowledge on the damage-induced molecular programs that underlie the regenerative ability in zebrafish brain. Recent Findings Neural stem cells are the reservoir for new neurons during development and regeneration of the vertebrate brains. Pathological conditions such as neurodegenerative diseases hamper neural stem cell plasticity and neurogenic outcome in humans, whereas adult zebrafish brain can enhance proliferation and neurogenic capacity of its neural stem cells despite the incipient pathology. Evidence suggests that zebrafish uses damage-induced molecular programs to enable neural stem cells to efficiently initiate regeneration. Since this aptitude may be harnessed for regenerative therapies in human brain, understanding the molecular programs regulating neural stem cell proliferation and quiescence in zebrafish is of utmost importance for clinical efforts. Summary Specific molecular programs that are different than those in the homeostatic conditions regulate adult zebrafish neural stem cell plasticity and the regenerative capacity after injury and neurodegeneration. These programs can serve as candidates for stem cell-based regenerative therapies in humans.
Collapse
Affiliation(s)
- Caghan Kizil
- 1German Centre for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Arnoldstrasse 18, 01307 Dresden, Germany.,2Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| |
Collapse
|
23
|
Bhattarai P, Thomas AK, Zhang Y, Kizil C. The effects of aging on Amyloid-β42-induced neurodegeneration and regeneration in adult zebrafish brain. NEUROGENESIS 2017; 4:e1322666. [PMID: 28656156 DOI: 10.1080/23262133.2017.1322666] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 10/19/2022]
Abstract
Alzheimer disease is the most prevalent neurodegenerative disease and is associated with aggregation of Amyloid-β42 peptides. In mammals, Amyloid-β42 causes impaired neural stem/progenitor cell (NSPC) proliferation and neurogenesis, which exacerbate with aging. The molecular programs necessary to enhance NSPC proliferation and neurogenesis in our brains to mount successful regeneration are largely unknown. Therefore, to identify the molecular basis of effective brain regeneration, we previously established an Amyloid-β42 model in adult zebrafish that displayed Alzheimer-like phenotypes reminiscent of humans. Interestingly, zebrafish exhibited enhanced NSPC proliferation and neurogenesis after microinjection of Amyloid-β42 peptide. Here, we compare old and young fish to address the effects of aging on regenerative ability after Amyloid-β42 deposition. We found that aging does not affect the rate of NSPC proliferation but reduces the neurogenic response and microglia/macrophage activation after microinjection of Amyloid-β42 in zebrafish, suggesting an important link between aging, neuroinflammation, regenerative neurogenesis and neural stem cell plasticity.
Collapse
Affiliation(s)
- Prabesh Bhattarai
- German Centre for Neurodegenerative Diseases (DZNE) Dresden within Helmholtz Association, Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Alvin Kuriakose Thomas
- B CUBE, Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Yixin Zhang
- B CUBE, Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Caghan Kizil
- German Centre for Neurodegenerative Diseases (DZNE) Dresden within Helmholtz Association, Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
24
|
Gleevec shifts APP processing from a β-cleavage to a nonamyloidogenic cleavage. Proc Natl Acad Sci U S A 2017; 114:1389-1394. [PMID: 28115709 DOI: 10.1073/pnas.1620963114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Neurotoxic amyloid-β peptides (Aβ) are major drivers of Alzheimer's disease (AD) and are formed by sequential cleavage of the amyloid precursor protein (APP) by β-secretase (BACE) and γ-secretase. Our previous study showed that the anticancer drug Gleevec lowers Aβ levels through indirect inhibition of γ-secretase activity. Here we report that Gleevec also achieves its Aβ-lowering effects through an additional cellular mechanism. It renders APP less susceptible to proteolysis by BACE without inhibiting BACE enzymatic activity or the processing of other BACE substrates. This effect closely mimics the phenotype of APP A673T, a recently discovered mutation that protects carriers against AD and age-related cognitive decline. In addition, Gleevec induces formation of a specific set of APP C-terminal fragments, also observed in cells expressing the APP protective mutation and in cells exposed to a conventional BACE inhibitor. These Gleevec phenotypes require an intracellular acidic pH and are independent of tyrosine kinase inhibition, given that a related compound lacking tyrosine kinase inhibitory activity, DV2-103, exerts similar effects on APP metabolism. In addition, DV2-103 accumulates at high concentrations in the rodent brain, where it rapidly lowers Aβ levels. This study suggests that long-term treatment with drugs that indirectly modulate BACE processing of APP but spare other BACE substrates and achieve therapeutic concentrations in the brain might be effective in preventing or delaying the onset of AD and could be safer than nonselective BACE inhibitor drugs.
Collapse
|
25
|
Walter J. Twenty Years of Presenilins--Important Proteins in Health and Disease. Mol Med 2015; 21 Suppl 1:S41-8. [PMID: 26605647 DOI: 10.2119/molmed.2015.00163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive decline in cognitive functions associated with depositions of aggregated proteins in the form of extracellular plaques and neurofibrillary tangles in the brain. Extracellular plaques contain characteristic fibrils of amyloid β peptides (Aβ); tangles consist of paired helical filaments of the microtubuli-associated protein tau. Although AD manifests predominantly at ages above 65 years, rare cases show a much earlier onset of disease symptoms with very similar neuropathological characteristics. In 1995, two homologous genes were identified, in which mutations are associated with dominantly inherited familial forms of early onset AD. The genes therefore were dubbed presenilins (PS) and encode polytopic transmembrane proteins. At this time the role of these proteins in the pathogenesis of AD and their biological function in general were completely unknown. However, individuals carrying PS mutations showed alterations in the composition of different length variants of Aβ peptides in blood and cerebrospinal fluid, which indicated the potential involvement of presenilins in the metabolism of Aβ. After 20 years of intense research, the roles of presenilins in Aβ generation as well as important functions in biological processes have been identified. Presenilins represent the catalytic components of protease complexes that directly cleave the amyloid precursor protein (APP) but also many other proteins with important physiological functions. Here, the progress in presenilin research from basic characterization of their cellular functions to the targeting in clinical trials for AD therapy, and potential future directions, will be discussed.
Collapse
Affiliation(s)
- Jochen Walter
- Department of Neurology, University of Bonn, Bonn, Germany
| |
Collapse
|
26
|
Fang D, Wang Y, Zhang Z, Du H, Yan S, Sun Q, Zhong C, Wu L, Vangavaragu JR, Yan S, Hu G, Guo L, Rabinowitz M, Glaser E, Arancio O, Sosunov AA, McKhann GM, Chen JX, Yan SS. Increased neuronal PreP activity reduces Aβ accumulation, attenuates neuroinflammation and improves mitochondrial and synaptic function in Alzheimer disease's mouse model. Hum Mol Genet 2015; 24:5198-210. [PMID: 26123488 DOI: 10.1093/hmg/ddv241] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/22/2015] [Indexed: 12/23/2022] Open
Abstract
Accumulation of amyloid-β (Aβ) in synaptic mitochondria is associated with mitochondrial and synaptic injury. The underlying mechanisms and strategies to eliminate Aβ and rescue mitochondrial and synaptic defects remain elusive. Presequence protease (PreP), a mitochondrial peptidasome, is a novel mitochondrial Aβ degrading enzyme. Here, we demonstrate for the first time that increased expression of active human PreP in cortical neurons attenuates Alzheimer disease's (AD)-like mitochondrial amyloid pathology and synaptic mitochondrial dysfunction, and suppresses mitochondrial oxidative stress. Notably, PreP-overexpressed AD mice show significant reduction in the production of proinflammatory mediators. Accordingly, increased neuronal PreP expression improves learning and memory and synaptic function in vivo AD mice, and alleviates Aβ-mediated reduction of long-term potentiation (LTP). Our results provide in vivo evidence that PreP may play an important role in maintaining mitochondrial integrity and function by clearance and degradation of mitochondrial Aβ along with the improvement in synaptic and behavioral function in AD mouse model. Thus, enhancing PreP activity/expression may be a new therapeutic avenue for treatment of AD.
Collapse
Affiliation(s)
- Du Fang
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Yongfu Wang
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Zhihua Zhang
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA, School of Life Sciences, Beijing Normal University, Beijing 100871, China
| | - Heng Du
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Shiqiang Yan
- Taub Institute for Research on Alzheimer's disease and the Aging Brain, New York, NY 10032, USA
| | - Qinru Sun
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Changjia Zhong
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Long Wu
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Jhansi Rani Vangavaragu
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Shijun Yan
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Gang Hu
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Lan Guo
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Molly Rabinowitz
- Taub Institute for Research on Alzheimer's disease and the Aging Brain, New York, NY 10032, USA
| | - Elzbieta Glaser
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer's disease and the Aging Brain, New York, NY 10032, USA
| | - Alexander A Sosunov
- Department of Neurosurgery, Physicians & Surgeons College of Columbia University, New York, NY 10032, USA and
| | - Guy M McKhann
- Department of Neurosurgery, Physicians & Surgeons College of Columbia University, New York, NY 10032, USA and
| | - John Xi Chen
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Shirley ShiDu Yan
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA,
| |
Collapse
|
27
|
Lamoke F, Mazzone V, Persichini T, Maraschi A, Harris MB, Venema RC, Colasanti M, Gliozzi M, Muscoli C, Bartoli M, Mollace V. Amyloid β peptide-induced inhibition of endothelial nitric oxide production involves oxidative stress-mediated constitutive eNOS/HSP90 interaction and disruption of agonist-mediated Akt activation. J Neuroinflammation 2015; 12:84. [PMID: 25935150 PMCID: PMC4438457 DOI: 10.1186/s12974-015-0304-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/21/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Amyloid β (Aβ)-induced vascular dysfunction significantly contributes to the pathogenesis of Alzheimer's disease (AD). Aβ is known to impair endothelial nitric oxide synthase (eNOS) activity, thus inhibiting endothelial nitric oxide production (NO). METHOD In this study, we investigated Aβ-effects on heat shock protein 90 (HSP90) interaction with eNOS and Akt in cultured vascular endothelial cells and also explored the role of oxidative stress in this process. RESULTS Treatments of endothelial cells (EC) with Aβ promoted the constitutive association of HSP90 with eNOS but abrogated agonist (vascular endothelial growth factor (VEGF))-mediated HSP90 interaction with Akt. This effect resulted in blockade of agonist-mediated phosphorylation of Akt and eNOS at serine 1179. Furthermore, Aβ stimulated the production of reactive oxygen species in endothelial cells and concomitant treatments of the cells with the antioxidant N-acetyl-cysteine (NAC) prevented Aβ effects in promoting HSP90/eNOS interaction and rescued agonist-mediated Akt and eNOS phosphorylation. CONCLUSIONS The obtained data support the hypothesis that oxidative damage caused by Aβ results in altered interaction of HSP90 with Akt and eNOS, therefore promoting vascular dysfunction. This mechanism, by contributing to Aβ-mediated blockade of nitric oxide production, may significantly contribute to the cognitive impairment seen in AD patients.
Collapse
Affiliation(s)
- Folami Lamoke
- Department of Ophthalmology, Georgia Regents University, Health Sciences Campus, 1120 15th St., Augusta, GA, 30912, USA.
| | - Valeria Mazzone
- Department of Biology, University of Rome 'Roma Tre', Via Ostiense, 169, Rome, 00154, Italy.
| | - Tiziana Persichini
- Department of Biology, University of Rome 'Roma Tre', Via Ostiense, 169, Rome, 00154, Italy.
| | - Annamaria Maraschi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Cusano Milanino 20095, Milan, Italy.
| | - Michael Brennan Harris
- Department of Kinesiology, College of William and Mary, 200 Stadium Dr., Williamsburg, VA, 23186, USA.
| | - Richard C Venema
- Vascular Biology Center, Georgia Regents University, 1120 15th St., Augusta, GA, 30912, USA.
| | - Marco Colasanti
- Department of Biology, University of Rome 'Roma Tre', Via Ostiense, 169, Rome, 00154, Italy.
| | - Micaela Gliozzi
- IRC-FSH, Department of Health Sciences, University of Catanzaro 'Magna Graecia', Catanzaro Complesso 'Ninì Barbieri', Roccelletta di Borgia, 88021, Italy.
| | - Carolina Muscoli
- IRC-FSH, Department of Health Sciences, University of Catanzaro 'Magna Graecia', Catanzaro Complesso 'Ninì Barbieri', Roccelletta di Borgia, 88021, Italy. .,IRCCS San Raffaele Pisana, Via di Val Cannuta, 247, 00166, Rome, Italy.
| | - Manuela Bartoli
- Department of Ophthalmology, Georgia Regents University, Health Sciences Campus, 1120 15th St., Augusta, GA, 30912, USA.
| | - Vincenzo Mollace
- IRC-FSH, Department of Health Sciences, University of Catanzaro 'Magna Graecia', Catanzaro Complesso 'Ninì Barbieri', Roccelletta di Borgia, 88021, Italy. .,IRCCS San Raffaele Pisana, Via di Val Cannuta, 247, 00166, Rome, Italy.
| |
Collapse
|
28
|
Jung ES, Hong H, Kim C, Mook-Jung I. Acute ER stress regulates amyloid precursor protein processing through ubiquitin-dependent degradation. Sci Rep 2015; 5:8805. [PMID: 25740315 PMCID: PMC5390087 DOI: 10.1038/srep08805] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/05/2015] [Indexed: 12/15/2022] Open
Abstract
Beta-amyloid (Aβ), a major pathological hallmark of Alzheimer's disease (AD), is derived from amyloid precursor protein (APP) through sequential cleavage by β-secretase and γ-secretase enzymes. APP is an integral membrane protein, and plays a key role in the pathogenesis of AD; however, the biological function of APP is still unclear. The present study shows that APP is rapidly degraded by the ubiquitin-proteasome system (UPS) in the CHO cell line in response to endoplasmic reticulum (ER) stress, such as calcium ionophore, A23187, induced calcium influx. Increased levels of intracellular calcium by A23187 induces polyubiquitination of APP, causing its degradation. A23187-induced reduction of APP is prevented by the proteasome inhibitor MG132. Furthermore, an increase in levels of the endoplasmic reticulum-associated degradation (ERAD) marker, E3 ubiquitin ligase HRD1, proteasome activity, and decreased levels of the deubiquitinating enzyme USP25 were observed during ER stress. In addition, we found that APP interacts with USP25. These findings suggest that acute ER stress induces degradation of full-length APP via the ubiquitin-proteasome proteolytic pathway.
Collapse
Affiliation(s)
- Eun Sun Jung
- Department of Biochemistry &Biomedical Science, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - HyunSeok Hong
- Medifron DBT, Inc., Gyeongi, 425-838, Republic of Korea
| | - Chaeyoung Kim
- Department of Biochemistry &Biomedical Science, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Inhee Mook-Jung
- Department of Biochemistry &Biomedical Science, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| |
Collapse
|
29
|
Planchard MS, Exley SE, Morgan SE, Rangachari V. Dopamine-induced α-synuclein oligomers show self- and cross-propagation properties. Protein Sci 2014; 23:1369-79. [PMID: 25044276 DOI: 10.1002/pro.2521] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/11/2014] [Indexed: 12/22/2022]
Abstract
Amyloid aggregates of α-synuclein (αS) protein are the predominant species present within the intracellular inclusions called Lewy bodies in Parkinson's disease (PD) patients. Among various aggregates, the low-molecular weight ones broadly ranging between 2 and 30 mers are known to be the primary neurotoxic agents responsible for the impairment of neuronal function. Recent research has indicated that the neurotransmitter dopamine (DA) is one of the key physiological agents promoting and augmenting αS aggregation, which is thought to be a significant event in PD pathologenesis. Specifically, DA is known to induce the formation of soluble oligomers of αS, which in turn are responsible for inducing several important cellular changes leading to cellular toxicity. In this report, we present the generation, isolation, and biophysical characterization of five different dopamine-derived αS oligomers (DSOs) ranging between 3 and 15 mers, corroborating previously published reports. More importantly, we establish that these DSOs are also capable of replication by self-propagation, which leads to the replication of DSOs upon interaction with αS monomers, a process similar to that observed in mammilian prions. In addition, DSOs are also able to cross-propagate amyloid-β (Aβ) aggregates involved in Alzheimer's disease (AD). Interestingly, while self-propagation of DSOs occur with no net gain in protein structure, cross-propagation proceeds with an overall gain in β-sheet conformation. These results implicate the involvement of DSOs in the progression of PD, and, in part, provide a molecular basis for the observed co-existence of AD-like pathology among PD patients.
Collapse
Affiliation(s)
- Matthew S Planchard
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi, 39406
| | | | | | | |
Collapse
|
30
|
Brännström K, Öhman A, Nilsson L, Pihl M, Sandblad L, Olofsson A. The N-terminal Region of Amyloid β Controls the Aggregation Rate and Fibril Stability at Low pH Through a Gain of Function Mechanism. J Am Chem Soc 2014; 136:10956-64. [DOI: 10.1021/ja503535m] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Anders Öhman
- Department
of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 85 Umeå, Sweden
| | | | | | | | | |
Collapse
|
31
|
Focusing the amyloid cascade hypothesis on N-truncated Abeta peptides as drug targets against Alzheimer's disease. Acta Neuropathol 2014; 127:787-801. [PMID: 24803226 PMCID: PMC4024135 DOI: 10.1007/s00401-014-1287-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/25/2014] [Accepted: 04/25/2014] [Indexed: 02/07/2023]
Abstract
Although N-truncated Aβ variants are known to be the main constituent of amyloid plaques in the brains of patients with Alzheimer’s disease, their potential as targets for pharmacological intervention has only recently been investigated. In the last few years, the Alzheimer field has experienced a paradigm shift with the ever increasing understanding that targeting amyloid plaques has not led to a successful immunotherapy. On the other hand, there can be no doubt that the amyloid cascade hypothesis is central to the etiology of Alzheimer’s disease, raising the question as to why it is apparently failing to translate into the clinic. In this review, we aim to refocus the amyloid hypothesis integrating N-truncated Aβ peptides based on mounting evidence that they may represent better targets than full-length Aβ. In addition to Aβ peptides starting with an Asp at position 1, a variety of different N-truncated Aβ peptides have been identified starting with amino residue Ala-2, pyroglutamylated Glu-3, Phe-4, Arg-5, His-6, Asp-7, Ser-8, Gly-9, Tyr-10 and pyroglutamylated Glu-11. Certain forms of N-truncated species are better correlates for early pathological changes found pre-symptomatically more often than others. There is also evidence that, together with full-length Aβ, they might be physiologically detectable and are naturally secreted by neurons. Others are known to form soluble aggregates, which have neurotoxic properties in transgenic mouse models. It has been clearly demonstrated by several groups that some N-truncated Aβs dominate full-length Aβ in the brains of Alzheimer’s patients. We try to address which of the N-truncated variants may be promising therapeutic targets and which enzymes might be involved in the generation of these peptides
Collapse
|
32
|
McCord MC, Aizenman E. The role of intracellular zinc release in aging, oxidative stress, and Alzheimer's disease. Front Aging Neurosci 2014; 6:77. [PMID: 24860495 PMCID: PMC4028997 DOI: 10.3389/fnagi.2014.00077] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 04/02/2014] [Indexed: 01/26/2023] Open
Abstract
Brain aging is marked by structural, chemical, and genetic changes leading to cognitive decline and impaired neural functioning. Further, aging itself is also a risk factor for a number of neurodegenerative disorders, most notably Alzheimer’s disease (AD). Many of the pathological changes associated with aging and aging-related disorders have been attributed in part to increased and unregulated production of reactive oxygen species (ROS) in the brain. ROS are produced as a physiological byproduct of various cellular processes, and are normally detoxified by enzymes and antioxidants to help maintain neuronal homeostasis. However, cellular injury can cause excessive ROS production, triggering a state of oxidative stress that can lead to neuronal cell death. ROS and intracellular zinc are intimately related, as ROS production can lead to oxidation of proteins that normally bind the metal, thereby causing the liberation of zinc in cytoplasmic compartments. Similarly, not only can zinc impair mitochondrial function, leading to excess ROS production, but it can also activate a variety of extra-mitochondrial ROS-generating signaling cascades. As such, numerous accounts of oxidative neuronal injury by ROS-producing sources appear to also require zinc. We suggest that zinc deregulation is a common, perhaps ubiquitous component of injurious oxidative processes in neurons. This review summarizes current findings on zinc dyshomeostasis-driven signaling cascades in oxidative stress and age-related neurodegeneration, with a focus on AD, in order to highlight the critical role of the intracellular liberation of the metal during oxidative neuronal injury.
Collapse
Affiliation(s)
- Meghan C McCord
- Department of Neurobiology, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| | - Elias Aizenman
- Department of Neurobiology, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| |
Collapse
|
33
|
Bustamante HA, Rivera-Dictter A, Cavieres VA, Muñoz VC, González A, Lin Y, Mardones GA, Burgos PV. Turnover of C99 is controlled by a crosstalk between ERAD and ubiquitin-independent lysosomal degradation in human neuroglioma cells. PLoS One 2013; 8:e83096. [PMID: 24376644 PMCID: PMC3869756 DOI: 10.1371/journal.pone.0083096] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 11/06/2013] [Indexed: 12/28/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by the buildup of amyloid-β peptides (Aβ) aggregates derived from proteolytic processing of the β-amyloid precursor protein (APP). Amyloidogenic cleavage of APP by β-secretase/BACE1 generates the C-terminal fragment C99/CTFβ that can be subsequently cleaved by γ-secretase to produce Aβ. Growing evidence indicates that high levels of C99/CTFβ are determinant for AD. Although it has been postulated that γ-secretase-independent pathways must control C99/CTFβ levels, the contribution of organelles with degradative functions, such as the endoplasmic reticulum (ER) or lysosomes, is unclear. In this report, we investigated the turnover and amyloidogenic processing of C99/CTFβ in human H4 neuroglioma cells, and found that C99/CTFβ is localized at the Golgi apparatus in contrast to APP, which is mostly found in endosomes. Conditions that localized C99/CTFβ to the ER resulted in its degradation in a proteasome-dependent manner that first required polyubiquitination, consistent with an active role of the ER associated degradation (ERAD) in this process. Furthermore, when proteasomal activity was inhibited C99/CTFβ was degraded in a chloroquine (CQ)-sensitive compartment, implicating lysosomes as alternative sites for its degradation. Our results highlight a crosstalk between degradation pathways within the ER and lysosomes to avoid protein accumulation and toxicity.
Collapse
Affiliation(s)
- Hianara A. Bustamante
- Department of Physiology, School of Medicine and Centro de Investigación Sur-Austral en Enfermedades del Sistema Nervioso, Universidad Austral de Chile, Valdivia, Chile
| | - Andrés Rivera-Dictter
- Department of Physiology, School of Medicine and Centro de Investigación Sur-Austral en Enfermedades del Sistema Nervioso, Universidad Austral de Chile, Valdivia, Chile
| | - Viviana A. Cavieres
- Department of Physiology, School of Medicine and Centro de Investigación Sur-Austral en Enfermedades del Sistema Nervioso, Universidad Austral de Chile, Valdivia, Chile
| | - Vanessa C. Muñoz
- Department of Physiology, School of Medicine and Centro de Investigación Sur-Austral en Enfermedades del Sistema Nervioso, Universidad Austral de Chile, Valdivia, Chile
| | - Alexis González
- Department of Physiology, School of Medicine and Centro de Investigación Sur-Austral en Enfermedades del Sistema Nervioso, Universidad Austral de Chile, Valdivia, Chile
| | - Yimo Lin
- Department of Physiology, School of Medicine and Centro de Investigación Sur-Austral en Enfermedades del Sistema Nervioso, Universidad Austral de Chile, Valdivia, Chile
| | - Gonzalo A. Mardones
- Department of Physiology, School of Medicine and Centro de Investigación Sur-Austral en Enfermedades del Sistema Nervioso, Universidad Austral de Chile, Valdivia, Chile
| | - Patricia V. Burgos
- Department of Physiology, School of Medicine and Centro de Investigación Sur-Austral en Enfermedades del Sistema Nervioso, Universidad Austral de Chile, Valdivia, Chile
- * E-mail:
| |
Collapse
|
34
|
Chiu MJ, Yang SY, Horng HE, Yang CC, Chen TF, Chieh JJ, Chen HH, Chen TC, Ho CS, Chang SF, Liu HC, Hong CY, Yang HC. Combined plasma biomarkers for diagnosing mild cognition impairment and Alzheimer's disease. ACS Chem Neurosci 2013; 4:1530-6. [PMID: 24090201 DOI: 10.1021/cn400129p] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A highly sensitive immunoassay, the immunomagnetic reduction, is used to measure several biomarkers for plasma that is related to Alzheimer's disease (AD). These biomarkers include Aβ-40, Aβ-42, and tau proteins. The samples are composed of four groups: healthy controls (n=66), mild cognitive impairment (MCI, n=22), very mild dementia (n=23), and mild-to-serve dementia, all due to AD (n=22). It is found that the concentrations of both Aβ-42 and tau protein for the healthy controls are significantly lower than those of all of the other groups. The sensitivity and the specificity of plasma Aβ-42 and tau protein in differentiating MCI from AD are all around 0.9 (0.88-0.97). However, neither plasma Aβ-42 nor tau-protein concentration is an adequate parameter to distinguish MCI from AD. A parameter is proposed, which is the product of plasma Aβ-42 and tau-protein levels, to differentiate MCI from AD. The sensitivity and specificity are found to be 0.80 and 0.82, respectively. It is concluded that the use of combined plasma biomarkers not only allows the differentiation of the healthy controls and patients with AD in both the prodromal phase and the dementia phase, but it also allows AD in the prodromal phase to be distinguished from that in the dementia phase.
Collapse
Affiliation(s)
- Ming-Jang Chiu
- Department
of Neurology, National Taiwan University
Hospital, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Graduate
Institute of Brain and Mind Sciences, College
of Medicine, National Taiwan University, Taipei 100, Taiwan
- Department
of Psychology, National Taiwan University, Taipei 100, Taiwan
- Graduate
Institute of Biomedical Engineering and Bioinformatics, National Taiwan University, Taipei 116, Taiwan
| | - Shieh-Yueh Yang
- Institute
of Electro-optical Science and Technology, National Taiwan Normal University, Taipei 116, Taiwan
- MagQu Co., Ltd., Xindian District, New Taipei
City 231, Taiwan
| | - Herng-Er Horng
- Institute
of Electro-optical Science and Technology, National Taiwan Normal University, Taipei 116, Taiwan
| | - Che-Chuan Yang
- MagQu Co., Ltd., Xindian District, New Taipei
City 231, Taiwan
| | - Ta-Fu Chen
- Department
of Neurology, National Taiwan University
Hospital, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Jen-Je Chieh
- Institute
of Electro-optical Science and Technology, National Taiwan Normal University, Taipei 116, Taiwan
| | - Hsin-Hsien Chen
- Institute
of Electro-optical Science and Technology, National Taiwan Normal University, Taipei 116, Taiwan
| | - Ting-Chi Chen
- MagQu Co., Ltd., Xindian District, New Taipei
City 231, Taiwan
| | - Chia-Shin Ho
- MagQu Co., Ltd., Xindian District, New Taipei
City 231, Taiwan
| | - Shuo-Fen Chang
- MagQu Co., Ltd., Xindian District, New Taipei
City 231, Taiwan
| | - Hao Chun Liu
- Institute
of Electro-optical Science and Technology, National Taiwan Normal University, Taipei 116, Taiwan
| | - Chin-Yih Hong
- Graduate
Institute of Bio-medical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Hong-Chang Yang
- Department
of Electro-optical Engineering, Kun Shan University, Yongkang District, Tainan City 710, Taiwan
| |
Collapse
|
35
|
Pandey NK, Ghosh S, Dasgupta S. Fructose restrains fibrillogenesis in human serum albumin. Int J Biol Macromol 2013; 61:424-32. [DOI: 10.1016/j.ijbiomac.2013.08.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/07/2013] [Accepted: 08/08/2013] [Indexed: 11/17/2022]
|
36
|
Luan K, Rosales JL, Lee KY. Viewpoint: Crosstalks between neurofibrillary tangles and amyloid plaque formation. Ageing Res Rev 2013; 12:174-81. [PMID: 22728532 DOI: 10.1016/j.arr.2012.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/17/2012] [Accepted: 06/06/2012] [Indexed: 12/29/2022]
Abstract
Since its discovery, the hallmarks of Alzheimer's disease (AD) brain have been recognised as the formation of amyloid plaques and neurofibrillary tangles (NFTs). Mounting evidence has suggested the active interplay between the two pathways. Studies have shown that β-amyloid (Aβ) can be internalized and generated intracellularly, accelerating NFT formation. Conversely, tau elements in NFTs are observed to affect Aβ and amyloid plaque formation. Yet the precise mechanisms which link the pathologies of the two brain lesions remain elusive. In this review, we discuss recent evidence that support five putative mechanisms by which crosstalk occurs between amyloid plaque and NFT formation in AD pathogenesis. Understanding the crosstalks in the formation of AD pathologies could provide new clues for the development of novel therapeutic strategies to delay or halt the progression of AD.
Collapse
Affiliation(s)
- Kailie Luan
- Department of Cell Biology and Anatomy, Southern Alberta Cancer Research and Hotchkiss Brain Institutes, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
37
|
Critical role of intraneuronal Aβ in Alzheimer's disease: technical challenges in studying intracellular Aβ. Life Sci 2012; 91:1153-8. [PMID: 22727791 DOI: 10.1016/j.lfs.2012.06.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 05/15/2012] [Accepted: 05/31/2012] [Indexed: 01/22/2023]
Abstract
AIMS Multiple lines of evidence have implicated β-amyloid (Aβ) in the pathogenesis of Alzheimer's disease (AD). However, the mechanism(s) whereby Aβ is involved in the disease process remains unclear. The dominant hypothesis in AD has been that Aβ initiates the disease via toxicity from secreted, extracellular Aβ aggregates. More recently, an alternative hypothesis has emerged focusing on a pool of Aβ that accumulates early on within AD vulnerable neurons of the brain. Although the topic of intraneuronal Aβ has been of major interest in the field, technical difficulties in detecting intraneuronal Aβ have also made this topic remarkably controversial. Here we review evidence pointing to the critical role of intraneuronal Aβ in AD and provide insights both into challenges faced in detecting intracellular Aβ and the prion-like properties of Aβ. MAIN METHODS Immunoprecipitation and Western blot are used for Aβ detection. KEY FINDINGS We highlight that a standard biochemical method can underestimate intraneuronal Aβ and that extracellular Aβ can up-regulate intracellular Aβ. We also show that detergent can remove intraneuronal Aβ. SIGNIFICANCE There is a growing awareness that intraneuronal Aβ is a key pathogenic pool of Aβ involved in causing synapse dysfunction. Difficulties in detecting intraneuronal Aβ are an insufficient reason for ignoring this critical pool of Aβ.
Collapse
|
38
|
Tiffany-Castiglioni E, Qian Y. ER chaperone–metal interactions: Links to protein folding disorders. Neurotoxicology 2012; 33:545-57. [DOI: 10.1016/j.neuro.2012.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 02/07/2012] [Accepted: 02/07/2012] [Indexed: 01/09/2023]
|
39
|
Ribarič S. The pharmacological properties and therapeutic use of apomorphine. Molecules 2012; 17:5289-309. [PMID: 22565480 PMCID: PMC6268166 DOI: 10.3390/molecules17055289] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/22/2012] [Accepted: 04/25/2012] [Indexed: 12/12/2022] Open
Abstract
Apomorphine (APO) is an aporphine derivative used in human and veterinary medicine. APO activates D1, D2S, D2L, D3, D4, and D5 receptors (and is thus classified as a non-selective dopamine agonist), serotonin receptors (5HT1A, 5HT2A, 5HT2B, and 5HT2C), and α-adrenergic receptors (α1B, α1D, α2A, α2B, and α2C). In veterinary medicine, APO is used to induce vomiting in dogs, an important early treatment for some common orally ingested poisons (e.g., anti-freeze or insecticides). In human medicine, it has been used in a variety of treatments ranging from the treatment of addiction (i.e., to heroin, alcohol or cigarettes), for treatment of erectile dysfunction in males and hypoactive sexual desire disorder in females to the treatment of patients with Parkinson's disease (PD). Currently, APO is used in patients with advanced PD, for the treatment of persistent and disabling motor fluctuations which do not respond to levodopa or other dopamine agonists, either on its own or in combination with deep brain stimulation. Recently, a new and potentially important therapeutic role for APO in the treatment of Alzheimer’s disease has been suggested; APO seems to stimulate Aβ catabolism in an animal model and cell culture, thus reducing the rate of Aβ oligomerisation and consequent neural cell death.
Collapse
Affiliation(s)
- Samo Ribarič
- Institute of Pathophysiology, Medical Faculty, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
40
|
Winkler E, Kamp F, Scheuring J, Ebke A, Fukumori A, Steiner H. Generation of Alzheimer disease-associated amyloid β42/43 peptide by γ-secretase can be inhibited directly by modulation of membrane thickness. J Biol Chem 2012; 287:21326-34. [PMID: 22532566 DOI: 10.1074/jbc.m112.356659] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pathogenic generation of amyloid β-peptide (Aβ) by sequential cleavage of β-amyloid precursor protein (APP) by β- and γ-secretases is widely believed to causally underlie Alzheimer disease (AD). β-Secretase initially cleaves APP thereby generating a membrane-bound APP C-terminal fragment, from which γ-secretase subsequently liberates 37-43-amino acid long Aβ species. Although the latter cleavages are intramembranous and although lipid alterations have been implicated in AD, little is known of how the γ-secretase-mediated release of the various Aβ species, in particular that of the pathogenic longer variants Aβ(42) and Aβ(43), is affected by the lipid environment. Using a cell-free system, we have directly and systematically investigated the activity of γ-secretase reconstituted in defined model membranes of different thicknesses. We found that bilayer thickness is a critical parameter affecting both total activity as well as cleavage specificity of γ-secretase. Whereas the generation of the pathogenic Aβ(42/43) species was markedly attenuated in thick membranes, that of the major and rather benign Aβ(40) species was enhanced. Moreover, the increased production of Aβ(42/43) by familial AD mutants of presenilin 1, the catalytic subunit of γ-secretase, could be substantially lowered in thick membranes. Our data demonstrate an effective modulation of γ-secretase activity by membrane thickness, which may provide an approach to lower the generation of the pathogenic Aβ(42/43) species.
Collapse
Affiliation(s)
- Edith Winkler
- Adolf Butenandt Institute, Biochemistry, Ludwig Maximilians University Munich, Schillerstrasse 44, 80336 Munich, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Rijal Upadhaya A, Capetillo-Zarate E, Kosterin I, Abramowski D, Kumar S, Yamaguchi H, Walter J, Fändrich M, Staufenbiel M, Thal DR. Dispersible amyloid β-protein oligomers, protofibrils, and fibrils represent diffusible but not soluble aggregates: their role in neurodegeneration in amyloid precursor protein (APP) transgenic mice. Neurobiol Aging 2012; 33:2641-60. [PMID: 22305478 DOI: 10.1016/j.neurobiolaging.2011.12.032] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 12/27/2011] [Accepted: 12/28/2011] [Indexed: 01/15/2023]
Abstract
Soluble amyloid β-protein (Aβ) aggregates have been identified in the Alzheimer's disease (AD) brain. Dispersed Aβ aggregates in the brain parenchyma are different from soluble, membrane-associated and plaque-associated solid aggregates. They are in mixture with the extra- or intracellular fluid but can be separated from soluble proteins by ultracentrifugation. To clarify the role of dispersible Aβ aggregates for neurodegeneration we analyzed 2 different amyloid precursor protein (APP)-transgenic mouse models. APP23 mice overexpress human mutant APP with the Swedish mutation. APP51/16 mice express high levels of human wild type APP. Both mice develop Aβ-plaques. Dendritic degeneration, neuron loss, and loss of asymmetric synapses were seen in APP23 but not in APP51/16 mice. The soluble and dispersible fractions not separated from one another were received as supernatant after centrifugation of native forebrain homogenates at 14,000 × g. Subsequent ultracentrifugation separated the soluble, i.e., the supernatant, from the dispersible fraction, i.e., the resuspended pellet. The major biochemical difference between APP23 and APP51/16 mice was that APP23 mice exhibited higher levels of dispersible Aβ oligomers, protofibrils and fibrils precipitated with oligomer (A11) and protofibril/fibril (B10AP) specific antibodies than APP51/16 mice. These differences, rather than soluble Aβ and Aβ plaque pathology were associated with dendritic degeneration, neuron, and synapse loss in APP23 mice in comparison with APP51/16 mice. Immunoprecipitation of dispersible Aβ oligomers, protofibrils, and fibrils revealed that they were associated with APP C-terminal fragments (APP-CTFs). These results indicate that dispersible Aβ oligomers, protofibrils, and fibrils represent an important pool of Aβ aggregates in the brain that critically interact with membrane-associated APP C-terminal fragments. The concentration of dispersible Aβ aggregates, thereby, presumably determines its toxicity.
Collapse
Affiliation(s)
- Ajeet Rijal Upadhaya
- Laboratory of Neuropathology, Institute of Pathology, Center for Clinical Research at the University of Ulm, Ulm, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Grimm MOW, Rothhaar TL, Grösgen S, Burg VK, Hundsdörfer B, Haupenthal VJ, Friess P, Kins S, Grimm HS, Hartmann T. Trans fatty acids enhance amyloidogenic processing of the Alzheimer amyloid precursor protein (APP). J Nutr Biochem 2011; 23:1214-23. [PMID: 22209004 DOI: 10.1016/j.jnutbio.2011.06.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 06/22/2011] [Accepted: 06/29/2011] [Indexed: 01/20/2023]
Abstract
Hydrogenation of oils and diary products of ruminant animals leads to an increasing amount of trans fatty acids in the human diet. Trans fatty acids are incorporated in several lipids and accumulate in the membrane of cells. Here we systematically investigate whether the regulated intramembrane proteolysis of the amyloid precursor protein (APP) is affected by trans fatty acids compared to the cis conformation. Our experiments clearly show that trans fatty acids compared to cis fatty acids increase amyloidogenic and decrease nonamyloidogenic processing of APP, resulting in an increased production of amyloid beta (Aβ) peptides, main components of senile plaques, which are a characteristic neuropathological hallmark for Alzheimer's disease (AD). Moreover, our results show that oligomerization and aggregation of Aβ are increased by trans fatty acids. The mechanisms identified by this in vitro study suggest that the intake of trans fatty acids potentially increases the AD risk or causes an earlier onset of the disease.
Collapse
Affiliation(s)
- Marcus O W Grimm
- Deutsches Institut für DemenzPrävention (DIDP), Neurodegeneration and Neurobiology, 66421 Homburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
CD45 deficiency drives amyloid-β peptide oligomers and neuronal loss in Alzheimer's disease mice. J Neurosci 2011; 31:1355-65. [PMID: 21273420 DOI: 10.1523/jneurosci.3268-10.2011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Converging lines of evidence indicate dysregulation of the key immunoregulatory molecule CD45 (also known as leukocyte common antigen) in Alzheimer's disease (AD). We report that transgenic mice overproducing amyloid-β peptide (Aβ) but deficient in CD45 (PSAPP/CD45(-/-) mice) faithfully recapitulate AD neuropathology. Specifically, we find increased abundance of cerebral intracellular and extracellular soluble oligomeric and insoluble Aβ, decreased plasma soluble Aβ, increased abundance of microglial neurotoxic cytokines tumor necrosis factor-α and interleukin-1β, and neuronal loss in PSAPP/CD45(-/-) mice compared with CD45-sufficient PSAPP littermates (bearing mutant human amyloid precursor protein and mutant human presenilin-1 transgenes). After CD45 ablation, in vitro and in vivo studies demonstrate an anti-Aβ phagocytic but proinflammatory microglial phenotype. This form of microglial activation occurs with elevated Aβ oligomers and neural injury and loss as determined by decreased ratio of anti-apoptotic Bcl-xL to proapoptotic Bax, increased activated caspase-3, mitochondrial dysfunction, and loss of cortical neurons in PSAPP/CD45(-/-) mice. These data show that deficiency in CD45 activity leads to brain accumulation of neurotoxic Aβ oligomers and validate CD45-mediated microglial clearance of oligomeric Aβ as a novel AD therapeutic target.
Collapse
|
44
|
Moghekar A, Rao S, Li M, Ruben D, Mammen A, Tang X, O'Brien RJ. Large quantities of Abeta peptide are constitutively released during amyloid precursor protein metabolism in vivo and in vitro. J Biol Chem 2011; 286:15989-97. [PMID: 21454701 DOI: 10.1074/jbc.m110.191262] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The metabolism of the amyloid precursor protein (APP) has been extensively investigated because its processing generates the amyloid-β-peptide (Aβ), which is a likely cause of Alzheimer disease. Much prior research has focused on APP processing using transgenic constructs and heterologous cell lines. Work to date in native neuronal cultures suggests that Aβ is produced in very large amounts. We sought to investigate APP metabolism and Aβ production simultaneously under more physiological conditions in vivo and in vitro using cultured rat cortical neurons and live pigs. We found in cultured neurons that both APP and Aβ are secreted rapidly and at extremely high rates into the extracellular space (2-4 molecules/neuron/s for Aβ). Little APP is degraded outside of the pathway that leads to extracellular release. Two metabolic pools of APP are identified, one that is metabolized extremely rapidly (t1/2;) = 2.2 h), and another, surface pool, composed of both synaptic and extrasynaptic elements, that turns over very slowly. Aβ release and accumulation in the extracellular medium can be accounted for stoichiometrically by the extracellular release of β-cleaved forms of the APP ectodomain. Two α-cleavages of APP occur for every β-cleavage. Consistent with the results seen in cultured neurons, an extremely high rate of Aβ production and secretion from the brain was seen in juvenile pigs. In summary, our experiments show an enormous and rapid production and extracellular release of Aβ and the soluble APP ectodomain. A small, slowly metabolized, surface pool of full-length APP is also identified.
Collapse
Affiliation(s)
- Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Mohamed A, Posse de Chaves E. Aβ internalization by neurons and glia. Int J Alzheimers Dis 2011; 2011:127984. [PMID: 21350608 PMCID: PMC3042623 DOI: 10.4061/2011/127984] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Accepted: 12/23/2010] [Indexed: 11/20/2022] Open
Abstract
In the brain, the amyloid β peptide (Aβ) exists extracellularly and inside neurons. The intracellular accumulation of Aβ in Alzheimer's disease brain has been questioned for a long time. However, there is now sufficient strong evidence indicating that accumulation of Aβ inside neurons plays an important role in the pathogenesis of Alzheimer's disease. Intraneuronal Aβ originates from intracellular cleavage of APP and from Aβ internalization from the extracellular milieu. We discuss here the different molecular mechanisms that are responsible for Aβ internalization in neurons and the links between Aβ internalization and neuronal dysfunction and death. A brief description of Aβ uptake by glia is also presented.
Collapse
Affiliation(s)
- Amany Mohamed
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | | |
Collapse
|
46
|
Santana S, Recuero M, Bullido MJ, Valdivieso F, Aldudo J. Herpes simplex virus type I induces the accumulation of intracellular β-amyloid in autophagic compartments and the inhibition of the non-amyloidogenic pathway in human neuroblastoma cells. Neurobiol Aging 2011; 33:430.e19-33. [PMID: 21272962 DOI: 10.1016/j.neurobiolaging.2010.12.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 11/09/2010] [Accepted: 12/14/2010] [Indexed: 11/17/2022]
Abstract
Mounting evidence suggests that herpes simplex virus type 1 (HSV-1) is involved in the pathogenesis of Alzheimer's disease (AD). Epidemiological analyses have shown that HSV-1 is a risk factor for AD in people with at least 1 type 4 allele of the apolipoprotein E gene. Recent studies have also suggested that HSV-1 contributes to the appearance of the biochemical anomalies characteristic of AD brains. In addition, autophagic activity appears to be reduced with aging, and the final stages of autophagy in neurodegenerative process appear to be impaired. The present work reports that HSV-1 provokes the strong intracellular accumulation of both the main species of β-amyloid (Aβ) in the autophagic compartments and that it is associated with a marked inhibition of Aβ secretion. Autophagosomes containing Aβ failed to fuse with lysosomes in HSV-1-infected cells, indicating the impaired degradation of Aβ localized in the autophagic vesicles. In addition, HSV-1 infection was associated with the inhibition of the nonamyloidogenic pathway of amyloid precursor protein (APP) processing without significantly affecting the activity of the secretases involved in the amyloidogenic pathway. Taken together, these data suggest that HSV-1 infection modulates autophagy and amyloid precursor protein processing, contributing to the accumulation of Aβ characteristic of AD.
Collapse
Affiliation(s)
- Soraya Santana
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.), Madrid, Spain
| | | | | | | | | |
Collapse
|
47
|
Lim YA, Rhein V, Baysang G, Meier F, Poljak A, Raftery MJ, Guilhaus M, Ittner LM, Eckert A, Götz J. Abeta and human amylin share a common toxicity pathway via mitochondrial dysfunction. Proteomics 2010; 10:1621-33. [PMID: 20186753 DOI: 10.1002/pmic.200900651] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are leading causes of morbidity and mortality in the elderly. Both diseases are characterized by amyloid deposition in target tissues: aggregation of amylin in T2DM is associated with loss of insulin-secreting beta-cells, while amyloid beta (A beta) aggregation in AD brain is associated with neuronal loss. Here, we used quantitative iTRAQ proteomics as a discovery tool to show that both A beta and human amylin (HA) deregulate identical proteins, a quarter of which are mitochondrial, supporting the notion that mitochondrial dysfunction is a common target in these two amyloidoses. A functional validation revealed that mitochondrial complex IV activity was significantly reduced after treatment with either HA or A beta, as was mitochondrial respiration. In comparison, complex I activity was reduced only after treatment with HA. A beta and HA, but not the non-amyloidogenic rat amylin, induced significant increases in the generation of ROS. Co-incubation of HA and A beta did not produce an augmented effect in ROS production, again suggesting common toxicity mechanisms. In conclusion, our data suggest that A beta and HA both exert toxicity, at least in part, via mitochondrial dysfunction, thus restoring their function may be beneficial for both AD and T2DM.
Collapse
Affiliation(s)
- Yun-An Lim
- Alzheimer's & Parkinson's Disease Laboratory, Brain & Mind Research Institute, University of Sydney, Camperdown, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Gouras GK, Tampellini D, Takahashi RH, Capetillo-Zarate E. Intraneuronal beta-amyloid accumulation and synapse pathology in Alzheimer's disease. Acta Neuropathol 2010; 119:523-41. [PMID: 20354705 PMCID: PMC3183823 DOI: 10.1007/s00401-010-0679-9] [Citation(s) in RCA: 288] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 03/23/2010] [Accepted: 03/23/2010] [Indexed: 01/01/2023]
Abstract
The aberrant accumulation of aggregated beta-amyloid peptides (Abeta) as plaques is a hallmark of Alzheimer's disease (AD) neuropathology and reduction of Abeta has become a leading direction of emerging experimental therapies for the disease. The mechanism(s) whereby Abeta is involved in the pathophysiology of the disease remain(s) poorly understood. Initially fibrils, and subsequently oligomers of extracellular Abeta have been viewed as the most important pathogenic form of Abeta in AD. More recently, the intraneuronal accumulation of Abeta has been described in the brain, although technical considerations and its relevance in AD have made this a controversial topic. Here, we review the emerging evidence linking intraneuronal Abeta accumulation to the development of synaptic pathology and plaques in AD, and discuss the implications of intraneuronal beta-amyloid for AD pathology, biology, diagnosis and therapy.
Collapse
Affiliation(s)
- Gunnar K Gouras
- Department for Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA.
| | | | | | | |
Collapse
|
49
|
Steele JW, Kim SH, Cirrito JR, Verges DK, Restivo JL, Westaway D, Fraser P, Hyslop PSG, Sano M, Bezprozvanny I, Ehrlich ME, Holtzman DM, Gandy S. Acute dosing of latrepirdine (Dimebon), a possible Alzheimer therapeutic, elevates extracellular amyloid-beta levels in vitro and in vivo. Mol Neurodegener 2009; 4:51. [PMID: 20017949 PMCID: PMC2806870 DOI: 10.1186/1750-1326-4-51] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 12/17/2009] [Indexed: 11/15/2022] Open
Abstract
Background Recent reports suggest that latrepirdine (Dimebon™, dimebolin), a retired Russian antihistamine, improves cognitive function in aged rodents and in patients with mild to moderate Alzheimer's disease (AD). However, the mechanism(s) underlying this benefit remain elusive. AD is characterized by extracellular accumulation of the amyloid-β (Aβ) peptide in the brain, and Aβ-lowering drugs are currently among the most popular anti-amyloid agents under development for the treatment of AD. In the current study, we assessed the effect of acute dosing of latrepirdine on levels of extracellular Aβ using in vitro and in vivo experimental systems. Results We evaluated extracellular levels of Aβ in three experimental systems, under basal conditions and after treatment with latrepirdine. Mouse N2a neuroblastoma cells overexpressing Swedish APP were incubated for 6 hr in the presence of either vehicle or vehicle + latrepirdine (500pM-5 μM). Synaptoneurosomes were isolated from TgCRND8 mutant APP-overexpressing transgenic mice and incubated for 0 to 10 min in the absence or presence of latrepirdine (1 μM or 10 μM). Drug-naïve Tg2576 Swedish mutant APP overexpressing transgenic mice received a single intraperitoneal injection of either vehicle or vehicle + latrepirdine (3.5 mg/kg). Picomolar to nanomolar concentrations of acutely administered latrepirdine increased the extracellular concentration of Aβ in the conditioned media from Swedish mutant APP-overexpressing N2a cells by up to 64% (p = 0.01), while a clinically relevant acute dose of latrepirdine administered i.p. led to an increase in the interstitial fluid of freely moving APP transgenic mice by up to 40% (p = 0.01). Reconstitution of membrane protein trafficking and processing is frequently inefficient, and, consistent with this interpretation, latrepirdine treatment of isolated TgCRND8 synaptoneurosomes involved higher concentrations of drug (1-10 μM) and led to more modest increases in extracellular Aβx-42 levels (+10%; p = 0.001); of note, however, was the observation that extracellular Aβx-40 levels did not change. Conclusions Here, we report the surprising association of acute latrepirdine dosing with elevated levels of extracellular Aβ as measured in three independent neuron-related or neuron-derived systems, including the hippocampus of freely moving Tg2576 mice. Given the reported association of chronic latrepirdine treatment with improvement in cognitive function, the effects of chronic latrepirdine treatment on extracellular Aβ levels must now be determined.
Collapse
Affiliation(s)
- John W Steele
- Departments of Neurology, Psychiatry and Alzheimer's Disease Research Center, Mount Sinai School of Medicine, New York, NY, 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
The effect of exogenous cholesterol and lipid-modulating agents on enterocytic amyloid-beta abundance. Br J Nutr 2008; 101:340-7. [PMID: 18631412 DOI: 10.1017/s0007114508012269] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Dietary cholesterol may influence Alzheimer's disease risk, because it regulates the synthesis of amyloid-beta. It was recently demonstrated in enterocytes of wild-type mice that intracellular amyloid-beta expression is enhanced in response to a high-fat diet made up of SFA and cholesterol. Intestinally derived amyloid-beta may be associated with postprandial lipoproteins in response to dietary fats and could be a key regulator in chylomicron metabolism. The present study was designed to investigate the role of cholesterol in modulating amyloid-beta abundance in enterocytes. Wild-type mice were fed a low-fat diet supplemented with 2 % (w/w) cholesterol. The effects of cholesterol absorption inhibition and cholesterol biosynthesis inhibition utilising ezetimibe and atorvastatin, respectively, were also studied. Quantitative immunohistochemistry was utilised to determine enterocytic amyloid-beta homeostasis. We found that enterocytic amyloid-beta concentration was significantly attenuated in mice fed the 2 % (w/w) cholesterol diet. However, blocking cholesterol absorption reversed the cholesterol-feeding effect. Consistent with a suppressive effect of cholesterol on enterocytic amyloid-beta abundance, atorvastatin, an inhibitor of cholesterol biosynthesis, enhanced amyloid-beta. However, providing exogenous cholesterol abolished the atorvastatin-induced effect. In contrast to the suppression of enterocytic amyloid-beta by dietary cholesterol, mice fed a diet enriched in SFA had markedly greater abundance. Collectively, the findings suggest that exogenous and endogenous cholesterol reduce amyloid-beta concentration in enterocytes by suppressing production, or enhancing secretion associated with postprandial lipoproteins. Intestinally derived amyloid-beta will contribute to the pool of plasma protein and may influence cerebral amyloid homeostasis by altering the bi-directional transfer across the blood-brain barrier.
Collapse
|