1
|
Zhu K, Yue J, Yen A. Depleting interferon regulatory factor-1(IRF-1) with CRISPR/Cas9 attenuates inducible oxidative metabolism without affecting RA-induced differentiation in HL-60 human AML cells. FASEB Bioadv 2020; 2:354-364. [PMID: 32617521 PMCID: PMC7325585 DOI: 10.1096/fba.2020-00004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 01/27/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022] Open
Abstract
The known collaboration between all-transretinoic acid and interferon motivates this study of the dependence of RA-induced leukemic cell differentiation on interferon regulatory factor-1 (IRF-1), a transcription factor that is the main mediator of interferon effects. In the HL-60 acute myeloid leukemia (AML) model that represents a rare RA-responsive subtype of AML, IRF-1 is not expressed until RA induces its prominent expression, and ectopic IRF-1 expression enhances RA-induced differentiation, motivating interest in how IRF-1 is putatively needed for RA response. Accordingly, we created CRISPR/Cas9-mediated IRF-1 knockout HL-60 cells. Contrary to expectation, loss of IRF-1 did not diminish RA-induced cellular signaling that propels differentiation, and RA-induced cell differentiation markers, including CD38 and CD11b expression and G1/G0cell cycle arrest, were unaffected. However, elimination of IRF-1 inhibited RA-induced p47phox expression and inducible oxidative metabolism detected by reactive oxygen species (ROS), suggesting IRF-1 is essential for mature granulocytic inducible oxidative metabolism. In the case of 1,25-Dihydroxyvitamin D3-induced differentiation to monocytes, IRF-1 loss did not affect D3-induced expression of CD38, CD11b, and CD14, and G1/0 arrest; but inhibited ROS production. Our data suggest that IRF-1 is inessential for differentiation but upregulates p47phox expression for mature-cell ROS production.
Collapse
Affiliation(s)
- Kaiyuan Zhu
- Department of Biomedical SciencesCornell UniversityIthacaNYUSA
- City University of Hong Kong ShenZhen Research InstituteShenZhenChina
- Department of Biomedical SciencesCity University of Hong KongHong KongChina
| | - Jianbo Yue
- City University of Hong Kong ShenZhen Research InstituteShenZhenChina
- Department of Biomedical SciencesCity University of Hong KongHong KongChina
| | - Andrew Yen
- Department of Biomedical SciencesCornell UniversityIthacaNYUSA
| |
Collapse
|
2
|
Kong M, Chen X, Lv F, Ren H, Fan Z, Qin H, Yu L, Shi X, Xu Y. Serum response factor (SRF) promotes ROS generation and hepatic stellate cell activation by epigenetically stimulating NCF1/2 transcription. Redox Biol 2019; 26:101302. [PMID: 31442911 PMCID: PMC6831835 DOI: 10.1016/j.redox.2019.101302] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 12/25/2022] Open
Abstract
Activation of hepatic stellate cells (HSC) is a hallmark event in liver fibrosis. Accumulation of reactive oxygen species (ROS) serves as a driving force for HSC activation. The regulatory subunits of the NOX complex, NCF1 (p47phox) and NCF2 (p67phox), are up-regulated during HSC activation contributing to ROS production and liver fibrosis. The transcriptional mechanism underlying NCF1/2 up-regulation is not clear. In the present study we investigated the role of serum response factor (SRF) in HSC activation focusing on the transcriptional regulation of NCF1/2. We report that compared to wild type littermates HSC-conditional SRF knockout (CKO) mice exhibited a mortified phenotype of liver fibrosis induced by thioacetamide (TAA) injection or feeding with a methionine-and-choline deficient diet (MCD). More importantly, SRF deletion attenuated ROS levels in HSCs in vivo. Similarly, SRF knockdown in cultured HSCs suppressed ROS production in vitro. Further analysis revealed that SRF deficiency resulted in repression of NCF1/NCF2 expression. Mechanistically, SRF regulated epigenetic transcriptional activation of NCF1/NCF2 by interacting with and recruiting the histone acetyltransferase KAT8 during HSC activation. In conclusion, we propose that SRF integrates transcriptional activation of NCF1/NCF2 and ROS production to promote liver fibrosis.
Collapse
Affiliation(s)
- Ming Kong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xuyang Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Fangqiao Lv
- Department of Cell Biology and the Municipal Laboratory of Liver Protection and Regulation of Regeneration, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Haozhen Ren
- Department of Hepato-biliary Surgery and Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhiwen Fan
- Department of Hepato-biliary Surgery and Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Hao Qin
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Liming Yu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xiaolei Shi
- Department of Hepato-biliary Surgery and Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China; Institute of Biomedical Research, Liaocheng University, Liaocheng, China.
| |
Collapse
|
3
|
Hu C, Wang G, Yin W, Zhou Y, Hou J, Wang X, Chen W, Yuan J. Central obesity transition increased urinary levels of 8-hydroxydeoxyguanosine in male adults: A 3-year follow up study. Metabolism 2019; 91:53-60. [PMID: 30513280 DOI: 10.1016/j.metabol.2018.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/19/2018] [Accepted: 11/27/2018] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Association of oxidative DNA damage with gain in anthropometric indices has not been fully elucidated. METHODS In this study, participants (n = 1151) were derived from the baseline visit of Wuhan residents in the Wuhan-Zhuhai Cohort Study. The participants finished the physical examinations at both baseline and 3-year follow up. Urinary levels of 8-hydroxydeoxyguanosine (8-OHdG) were measured by gradient-elution high performance liquid chromatography method and then calibrated by urinary creatinine (Cr) values. RESULTS Generalized linear models showed that after adjusted for confounding factors, baseline central obesity individuals with a ≥2.5% hip circumference (HC) loss or >5% HC gain had a 0.290 μmol/mol Cr (95% confidence interval (CI): 0.108, 0.472) or 0.553 μmol/mol Cr (95% CI: 0.273, 0.833) increase in urinary 8-OHdG levels compared with those with a -2.5%-2.5% HC gain (both P < 0.05). Moreover, compared with non-central obesity at both baseline and 3-year follow-up, we observed that central obese men at both baseline and 3-year follow-up had a 0.46 μmol/mol Cr (95% CI: 0.16, 0.75) increased in urinary 8-OHdG levels. CONCLUSIONS HC gain showed dose-dependent associations with urinary 8-OHdG levels. Moreover, male central obesity at both baseline and 3-year follow-up had an increased risk for urinary 8-OHdG levels.
Collapse
Affiliation(s)
- Chen Hu
- Department of Occupational and Environmental Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Guiyang Wang
- Department of Occupational and Environmental Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Wenjun Yin
- Department of Occupational and Environmental Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Yun Zhou
- Department of Occupational and Environmental Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Jian Hou
- Department of Occupational and Environmental Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Xian Wang
- Department of Occupational and Environmental Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Weihong Chen
- Department of Occupational and Environmental Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Jing Yuan
- Department of Occupational and Environmental Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China.
| |
Collapse
|
4
|
Wang SM, Lim SW, Wang YH, Lin HY, Lai MD, Ko CY, Wang JM. Astrocytic CCAAT/Enhancer-binding protein delta contributes to reactive oxygen species formation in neuroinflammation. Redox Biol 2018; 16:104-112. [PMID: 29499563 PMCID: PMC5953220 DOI: 10.1016/j.redox.2018.02.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 12/31/2022] Open
Abstract
Excessive reactive oxygen species (ROS) can form an oxidative stress and an associated neuroinflammation. However, the contribution of astrocytes to ROS formation, the cause of the resistance of astrocytes to oxidative stress, and the consequences on neurons remain largely uninvestigated. The transcription factor CCAAT/enhancer-binding protein delta (CEBPD) is highly expressed in astrocytes and has been suggested to contribute to the progress of Alzheimer's disease (AD). In this study, we found that ROS formation and expression of p47phox and p67phox, subunits of NADPH oxidase, were increased in AppTg mice but attenuated in AppTg/Cebpd-/- mice. Cebpd can up-regulate p47phox and p67phox transcription via a direct binding on their promoters, which results in an increase in intracellular oxidative stress. In addition, Cebpd also up-regulated Cu/Zn superoxide dismutase (Sod1) in astrocytes. Inactivation of Sod1 increased the sensitization to oxidative stress, which provides a reason for the resistance of astrocytes in an oxidative stress environment. Taken together, the study first revealed and dissected the involvement of astrocytic Cebpd in the promotion of oxidative stress and the contribution of CEBPD to the resistance of astrocytes in an oxidative stress environment.
Collapse
Affiliation(s)
- Shao-Ming Wang
- Institute of Basic Medical Sciences, College of Medicine, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan; Center for Neurotrauma and Neuroregeneration, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Sher-Wei Lim
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Departments of Neurosurgery, Chi-Mei Medical Center, Tainan 722, Taiwan; Department of Nursing, Min-Hwei College of Health Care Management, Tainan 736, Taiwan
| | - Ya-Han Wang
- Department of Life Science, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Hong-Yi Lin
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Ming-Derg Lai
- Institute of Basic Medical Sciences, College of Medicine, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Chiung-Yuan Ko
- Center for Neurotrauma and Neuroregeneration, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| | - Ju-Ming Wang
- Institute of Basic Medical Sciences, College of Medicine, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan; Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan; Graduate Institute of Medical Sciences, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
5
|
Reduced PU.1 expression underlies aberrant neutrophil maturation and function in β-thalassemia mice and patients. Blood 2017; 129:3087-3099. [PMID: 28325862 DOI: 10.1182/blood-2016-07-730135] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 02/28/2017] [Indexed: 01/13/2023] Open
Abstract
β-Thalassemia is associated with several abnormalities of the innate immune system. Neutrophils in particular are defective, predisposing patients to life-threatening bacterial infections. The molecular and cellular mechanisms involved in impaired neutrophil function remain incompletely defined. We used the Hbbth3/+ β-thalassemia mouse and hemoglobin E (HbE)/β-thalassemia patients to investigate dysregulated neutrophil activity. Mature neutrophils from Hbbth3/+ mice displayed a significant reduction in chemotaxis, opsonophagocytosis, and production of reactive oxygen species, closely mimicking the defective immune functions observed in β-thalassemia patients. In Hbbth3/+ mice, the expression of neutrophil CXCR2, CD11b, and reduced NAD phosphate oxidase components (p22phox, p67phox, and gp91phox) were significantly reduced. Morphological analysis of Hbbth3/+ neutrophils showed that a large percentage of mature phenotype neutrophils (Ly6GhiLy6Clow) appeared as band form cells, and a striking expansion of immature (Ly6GlowLy6Clow) hyposegmented neutrophils, consisting mainly of myelocytes and metamyelocytes, was noted. Intriguingly, expression of an essential mediator of neutrophil terminal differentiation, the ets transcription factor PU.1, was significantly decreased in Hbbth3/+ neutrophils. In addition, in vivo infection with Streptococcus pneumoniae failed to induce PU.1 expression or upregulate neutrophil effector functions in Hbbth3/+ mice. Similar changes to neutrophil morphology and PU.1 expression were observed in splenectomized and nonsplenectomized HbE/β-thalassemia patients. This study provides a mechanistic insight into defective neutrophil maturation in β-thalassemia patients, which contributes to deficiencies in neutrophil effector functions.
Collapse
|
6
|
Chen GF, Sudhahar V, Youn SW, Das A, Cho J, Kamiya T, Urao N, McKinney RD, Surenkhuu B, Hamakubo T, Iwanari H, Li S, Christman JW, Shantikumar S, Angelini GD, Emanueli C, Ushio-Fukai M, Fukai T. Copper Transport Protein Antioxidant-1 Promotes Inflammatory Neovascularization via Chaperone and Transcription Factor Function. Sci Rep 2015; 5:14780. [PMID: 26437801 PMCID: PMC4594038 DOI: 10.1038/srep14780] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/07/2015] [Indexed: 01/24/2023] Open
Abstract
Copper (Cu), an essential micronutrient, plays a fundamental role in inflammation and angiogenesis; however, its precise mechanism remains undefined. Here we uncover a novel role of Cu transport protein Antioxidant-1 (Atox1), which is originally appreciated as a Cu chaperone and recently discovered as a Cu-dependent transcription factor, in inflammatory neovascularization. Atox1 expression is upregulated in patients and mice with critical limb ischemia. Atox1-deficient mice show impaired limb perfusion recovery with reduced arteriogenesis, angiogenesis, and recruitment of inflammatory cells. In vivo intravital microscopy, bone marrow reconstitution, and Atox1 gene transfer in Atox1−/− mice show that Atox1 in endothelial cells (ECs) is essential for neovascularization and recruitment of inflammatory cells which release VEGF and TNFα. Mechanistically, Atox1-depleted ECs demonstrate that Cu chaperone function of Atox1 mediated through Cu transporter ATP7A is required for VEGF-induced angiogenesis via activation of Cu enzyme lysyl oxidase. Moreover, Atox1 functions as a Cu-dependent transcription factor for NADPH oxidase organizer p47phox, thereby increasing ROS-NFκB-VCAM-1/ICAM-1 expression and monocyte adhesion in ECs inflamed with TNFα in an ATP7A-independent manner. These findings demonstrate a novel linkage between Atox1 and NADPH oxidase involved in inflammatory neovascularization and suggest Atox1 as a potential therapeutic target for treatment of ischemic disease.
Collapse
Affiliation(s)
- Gin-Fu Chen
- Departments of Medicine (Section of Cardiology) and Pharmacology, University of Illinois at Chicago, Chicago, IL
| | - Varadarajan Sudhahar
- Departments of Medicine (Section of Cardiology) and Pharmacology, University of Illinois at Chicago, Chicago, IL.,Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL.,Jesse Brown Veterans Affairs Medical Center, Chicago, IL
| | - Seock-Won Youn
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL.,Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL
| | - Archita Das
- Departments of Medicine (Section of Cardiology) and Pharmacology, University of Illinois at Chicago, Chicago, IL.,Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL
| | - Jaehyung Cho
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL
| | - Tetsuro Kamiya
- Departments of Medicine (Section of Cardiology) and Pharmacology, University of Illinois at Chicago, Chicago, IL.,Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL
| | - Norifumi Urao
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL
| | - Ronald D McKinney
- Departments of Medicine (Section of Cardiology) and Pharmacology, University of Illinois at Chicago, Chicago, IL.,Department of Pharmacology, University of Illinois at Chicago, Chicago, IL.,Jesse Brown Veterans Affairs Medical Center, Chicago, IL
| | - Bayasgalan Surenkhuu
- Departments of Medicine (Section of Cardiology) and Pharmacology, University of Illinois at Chicago, Chicago, IL
| | - Takao Hamakubo
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | - Hiroko Iwanari
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | - Senlin Li
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - John W Christman
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine The Ohio State University Wexner Medical Center, OH
| | - Saran Shantikumar
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol
| | - Gianni D Angelini
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol.,National Heart and Lung Institute, Imperial College of London, London, UK
| | - Costanza Emanueli
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol.,National Heart and Lung Institute, Imperial College of London, London, UK
| | - Masuko Ushio-Fukai
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL.,Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL
| | - Tohru Fukai
- Departments of Medicine (Section of Cardiology) and Pharmacology, University of Illinois at Chicago, Chicago, IL.,Department of Pharmacology, University of Illinois at Chicago, Chicago, IL.,Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL.,Jesse Brown Veterans Affairs Medical Center, Chicago, IL
| |
Collapse
|
7
|
Albuali WH. Evaluation of oxidant-antioxidant status in overweight and morbidly obese Saudi children. World J Clin Pediatr 2014; 3:6-13. [PMID: 25254179 PMCID: PMC4145643 DOI: 10.5409/wjcp.v3.i1.6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 01/07/2014] [Accepted: 01/20/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the antioxidant enzymes and oxidative products in overweight and obese Saudi children before the onset of metabolic complications.
METHODS: The study was carried out on 231 Saudi children. They were classified into three groups: uncomplicated overweight, uncomplicated morbid obesity, and the matched age group as control. All subjects underwent anthropometric measurements and activities of superoxide dismutase, catalase, glutathione peroxidase (GSH-Px), glutathione reductase, the concentrations of reduced GSH, malondialdehyde (MDA) oxidized low-density lipoprotein (ox-LDL) and advanced oxidation protein products (AOPPs) were measured in the blood of these groups.
RESULTS: Overweight and obese children had a significantly higher body mass index, while obese children only had a significantly higher waist-to-hip ratio compared to that of the control group. The enzyme activities under study were significantly elevated in the overweight group, although they were significantly reduced among obese children. The concentration of GSH was reduced in both the overweight and obese groups. The mean values of ox-LDL, MDA and AOPP were non-significantly increased in overweight children, while they were significantly elevated in obese children compared to that of normal weight children. A significant disturbance of oxidant-antioxidant status was observed in severely morbid children.
CONCLUSION: The increase of oxidative stress in obese children is associated with the increase in AOPPs and MDA which reflects an imbalance between reactive oxygen species production and antioxidant defense.
Collapse
|
8
|
Kang WS, Kwon JS, Kim HB, Jeong HY, Kang HJ, Jeong MH, Cho JG, Park JC, Kim YS, Ahn Y. A macrophage-specific synthetic promoter for therapeutic application of adiponectin. Gene Ther 2014; 21:353-62. [PMID: 24500526 PMCID: PMC3975813 DOI: 10.1038/gt.2014.3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 11/19/2013] [Accepted: 12/16/2013] [Indexed: 11/09/2022]
Abstract
Foam cell formation from macrophage is a major cause of atherosclerosis. An efficient macrophage-specific promoter is required for the targeting to macrophages. In this study, we develop a macrophage-specific synthetic promoter for the therapeutic application of adiponectin (APN), an antiatherogenic gene. Synthetic promoter-146 (SP146), registered on the NCBI website (http://www.ncbi.nlm.nih.gov/nuccore/DQ107383), was tested for promoter activities in two non-macrophage cell lines (293 T, HeLa) and a macrophage cell line (RAW264.7, bone marrow-derived macrophages). To enforce macrophage specificity, partial elements of p47(phox) including the PU.1 site with various lengths (-C1, -C2 and -C3) were inserted next to the synthetic promoters. SP146-C1 showed the highest specificity and efficacy in RAW264.7 cells and was selected for development of an APN-carrying macrophage-specific promoter. Green fluorescent protein (GFP)- or APN-expressing lentivirus under SP146-C1 (Lenti-SP-GFP or Lenti-SP-APN, respectively) showed the highest expression efficacy in RAW264.7 cells compared with the non-macrophage cell lines. APN overexpression in RAW264.7 cells successfully inhibited intracellular lipid accumulation, and atherosclerotic lesions and lipid accumulation were significantly reduced by Lenti-SP-APN in ApoE-/- atherosclerosis mice. In conclusion, the synthetic promoter SP146-C1, combined with a p47(phox) promoter element, was successfully developed to target macrophage, and macrophage-specific introduction of APN under SP146-C1 was shown to ameliorate the atherosclerotic pathology.
Collapse
Affiliation(s)
- W S Kang
- 1] Research Laboratory of Cardiovascular Regeneration, Chonnam National University Hospital, Gwangju, Korea [2] Center of Molecular Medicine, Graduate School, Chonnam National University, Gwangju, Korea
| | - J S Kwon
- 1] Research Laboratory of Cardiovascular Regeneration, Chonnam National University Hospital, Gwangju, Korea [2] Heart Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - H B Kim
- Research Laboratory of Cardiovascular Regeneration, Chonnam National University Hospital, Gwangju, Korea
| | - H-Y Jeong
- Research Laboratory of Cardiovascular Regeneration, Chonnam National University Hospital, Gwangju, Korea
| | - H J Kang
- Research Laboratory of Cardiovascular Regeneration, Chonnam National University Hospital, Gwangju, Korea
| | - M H Jeong
- 1] Heart Research Center, Chonnam National University Hospital, Gwangju, Korea [2] Department of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| | - J G Cho
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| | - J C Park
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| | - Y S Kim
- 1] Research Laboratory of Cardiovascular Regeneration, Chonnam National University Hospital, Gwangju, Korea [2] Heart Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Y Ahn
- 1] Research Laboratory of Cardiovascular Regeneration, Chonnam National University Hospital, Gwangju, Korea [2] Heart Research Center, Chonnam National University Hospital, Gwangju, Korea [3] Department of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| |
Collapse
|
9
|
Zhou R, Lin ZH, Jiang CS, Gong JX, Chen LL, Guo YW, Shen X. Marine natural product des-O-methyllasiodiplodin effectively lowers the blood glucose level in db/db mice via ameliorating inflammation. Acta Pharmacol Sin 2013; 34:1325-36. [PMID: 23852084 DOI: 10.1038/aps.2013.47] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 04/02/2013] [Indexed: 12/22/2022]
Abstract
AIM des-O-methyllasiodiplodin (DML) from Cerbera manghas has shown antagonistic activity against mineralocorticoid receptor (MR). Considering the involvement of MR in the insulin tolerance, we attempted to investigate the potential of DML in the treatment of type 2 diabetes mellitus (T2DM). METHODS Surface plasmon resonance (SPR) technology and reporter gene-based assays were used to study protein-small molecule interactions. HepG2 and 3T3-L1 cells were treated with H2O2 (0.2 mmol/L) or aldosterone (10 nmol/L) for 24 h. The expression of MR in the cells was downregulated with siRNA. The anti-inflammatory effect of the compound was evaluated, respectively. db/db mice were administered DML (30 mg·kg(-1)·d(-1)) for 4 weeks. Serum biochemical parameters and insulin sensitivity were examined. The expression levels of pro-inflammatory cytokines (MCP-1, TNF-α and IL-6) and ROS-related genes (NADPH p47 subunit and transcriptional factor PU.1) in adipose tissues and livers were analyzed using real-time RT-PCR. RESULTS In HepG2 and 3T3-L1 cells, both H2O2 and aldosterone markedly stimulates the expression of MCP-1, TNFα, IL-6, p47 and PU.1 genes. Co-treatment with DML (10 μmol/L) significantly reduced the H2O2- or aldosterone-induced expression of these genes. SPR-based assay confirmed the antagonistic activity of DML against the interaction between SRC-1 and MR-LBD. Furthermore, DML decreased aldosterone-induced MR transcriptional activity in a dose-dependent manner. Downregulation of MR with siRNA in the cells prevented or significantly attenuated aldosterone-stimulated expression of these genes, whereas DML did no longer affect the expression of these genes except that of IL-6. Oral administration of DML effectively reduced the levels of blood glucose and glycosylated hemoglobin (HbA1c) in db/db mice. The treatment also rectified the expression of pro-inflammatory factor and ROS-related genes in db/db mice. CONCLUSION DML effectively lowers the blood glucose level in db/db mice possibly via ameliorating the expression of obesity-related pro-inflammatory cytokines, highlighting the potential of the marine natural product as a drug lead for the treatment of metabolic disorders.
Collapse
|
10
|
Wada T, Sunaga H, Ohkawara R, Shimba S. Aryl hydrocarbon receptor modulates NADPH oxidase activity via direct transcriptional regulation of p40phox expression. Mol Pharmacol 2013; 83:1133-40. [PMID: 23478803 DOI: 10.1124/mol.112.083303] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A member of the NADPH oxidase subunits, p40(phox) plays an important role in the regulation of NADPH oxidase activity and the subsequent production of reactive oxygen species (ROS). In this study, we show that mouse p40(phox) is a novel transcriptional target of the aryl hydrocarbon receptor (AhR), known as a dioxin receptor or xenobiotic receptor, in the liver. Treatment of mice with 3-methylcholanthrene (3MC) increased p40(phox) gene expression in the liver, but this induction of p40(phox) gene expression was diminished by the deletion of the AhR gene in the liver. Consistent with the in vivo results, the expression of the p40(phox) gene was increased in 3MC-treated Hepa1c1c7 cells in an AhR-dependent manner. In addition, promoter analysis established p40(phox) as a transcriptional target of AhR. Studies using the RNA-interference technique revealed that p40(phox) is involved in the increase of NADPH oxidase activity and the subsequent ROS production in AhR-activated Hepa1c1c7 cells. Consequently, the results obtained here may provide a novel molecular mechanism for ROS production after exposure to dioxins.
Collapse
Affiliation(s)
- Taira Wada
- Department of Health Science, School of Pharmacy, Nihon University, Funabashi, Chiba, Japan
| | | | | | | |
Collapse
|
11
|
Xiao W, Peng Y, Liu Y, Li Z, Li S, Zheng X. HSCARG inhibits NADPH oxidase activity through regulation of the expression of p47phox. PLoS One 2013; 8:e59301. [PMID: 23527155 PMCID: PMC3602244 DOI: 10.1371/journal.pone.0059301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 02/14/2013] [Indexed: 12/20/2022] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase catalyzes the transfer of electrons from NADPH to O2, which is the main source of reactive oxygen species (ROS) in nonphagocytic cells. Excess ROS are toxic; therefore, keeping ROS in homeostasis in cells can protect cells from oxidative damage. It is meaningful to further understand the molecular mechanism by which ROS homeostasis is mediated. Human protein HSCARG is a newly identified oxidative sensor and a negative regulator of NF-κB. Here, we find that HSCARG represses the cellular ROS generation through inhibiting mRNA and protein expression of p47phox, a subunit of NADPH oxidase. In contrast, shRNA-mediated HSCARG knockdown increases endogenous p47phox expression level. And HSCARG has no obvious effect on ROS production in p47phox-depleted cells. Furthermore, HSCARG regulates p47phox through inhibition of NF-κB activity. Our findings identify HSCARG as a novel regulator in regulation of the activity of NADPH oxidase and ROS homeostasis.
Collapse
Affiliation(s)
- Weichun Xiao
- State Key Lab of Protein and Plant Gene Research, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Yanyan Peng
- State Key Lab of Protein and Plant Gene Research, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Yong Liu
- State Key Lab of Protein and Plant Gene Research, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Zhi Li
- State Key Lab of Protein and Plant Gene Research, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Senlin Li
- Department of Medicine, University of Texas Health Science Center and South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, Texas, United States of America
| | - Xiaofeng Zheng
- State Key Lab of Protein and Plant Gene Research, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
- * E-mail:
| |
Collapse
|
12
|
Regulation of human formyl peptide receptor 1 synthesis: role of single nucleotide polymorphisms, transcription factors, and inflammatory mediators. PLoS One 2011; 6:e28712. [PMID: 22174875 PMCID: PMC3235167 DOI: 10.1371/journal.pone.0028712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 11/14/2011] [Indexed: 01/19/2023] Open
Abstract
The gene encoding the human formyl peptide receptor 1 (FPR1) is heterogeneous, containing numerous single nucleotide polymorphisms (SNPs). Here, we examine the effect of these SNPs on gene transcription and protein translation. We also identify gene promoter sequences and putative FPR1 transcription factors. To test the effect of codon bias and codon pair bias on FPR1 expression, four FPR1 genetic variants were expressed in human myeloid U937 cells fused to a reporter gene encoding firefly luciferase. No significant differences in luciferase activity were detected, suggesting that the translational regulation and protein stability of FPR1 are modulated by factors other than the SNP codon bias and the variant amino acid properties. Deletion and mutagenesis analysis of the FPR1 promoter showed that a CCAAT box is not required for gene transcription. A −88/41 promoter construct resulted in the strongest transcriptional activity, whereas a −72/41 construct showed large reduction in activity. The region between −88 and −72 contains a consensus binding site for the transcription factor PU.1. Mutagenesis of this site caused significant reduction in reporter gene expression. The PU.1 binding was confirmed in vivo by chromatin immunoprecipitation, and the binding to nucleotides −84 to −76 (TTCCTATTT) was confirmed in vitro by an electrophoretic mobility shift assay. Thus, similar to many other myeloid genes, FPR1 promoter activity requires PU.1. Two single nucleotide polymorphisms at −56 and −54 did not significantly affect FPR1 gene expression, despite differences in binding of transcription factor IRF1 in vitro. Inflammatory mediators such as interferon-γ, tumor necrosis factor-α, and lipopolysaccharide did not increase FPR1 promoter activity in myeloid cells, whereas differentiation induced by DMSO and retinoic acid enhanced the activity. This implies that the expression of FPR1 in myeloid cells is developmentally regulated, and that the differentiated cells are equipped for immediate response to microbial infections.
Collapse
|
13
|
Xu JH, Wang T, Wang XG, Wu XP, Zhao ZZ, Zhu CG, Qiu HL, Xue L, Shao HJ, Guo MX, Li WX. PU.1 can regulate the ZNF300 promoter in APL-derived promyelocytes HL-60. Leuk Res 2010; 34:1636-46. [PMID: 20471086 DOI: 10.1016/j.leukres.2010.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 03/14/2010] [Accepted: 04/13/2010] [Indexed: 01/17/2023]
Abstract
ZNF300, which plays the role in human embryonic development and some diseases, is a typical KRAB/C2H2 zinc finger gene expressed only in higher mammalians. Our data showed that expression of ZNF300 changed significantly in various leukemia blasts in the bone marrow aspirates of newly diagnosed leukemia patients. To investigate the potential relationship between expression of ZNF300 and the progression of leukemia development and hematopoietic differentiation, we cloned and characterized the putative human ZNF300 gene promoter and identified its transcription start sites (TSSs). Deletion and mutagenesis analysis demonstrated that a myeloid-specific transcription factor PU.1 binding site was responsible for myeloid-specific regulation of ZNF300 promoter activity. Furthermore, electrophoretic mobility shift and chromatin immunoprecipitation assays revealed that PU.1 bound to the PU.1 binding site within ZNF300 promoter region in vitro and in vivo. Overexpression of PU.1 elevated ZNF300 promoter activity, whereas silencing of PU.1 expression significantly reduced the activity in myeloid-derived HL-60 cell but not in T-cell Jurkat. In vitro induced HL-60 cells into CD11b expressing cells by DMSO demonstrated that ZNF300 was upregulated along with upregulation of PU.1 expression. These results demonstrated that ZNF300 was activated by PU.1 and suggested that the regulation may be involved in the progression of leukemia development and hematopoietic differentiation.
Collapse
Affiliation(s)
- Jun-Hua Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Luojia Hill, Wuchang, Wuhan, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Pinel-Marie ML, Sparfel L, Desmots S, Fardel O. Aryl hydrocarbon receptor-dependent induction of the NADPH oxidase subunit NCF1/p47 phox expression leading to priming of human macrophage oxidative burst. Free Radic Biol Med 2009; 47:825-34. [PMID: 19559082 DOI: 10.1016/j.freeradbiomed.2009.06.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 06/10/2009] [Accepted: 06/18/2009] [Indexed: 10/20/2022]
Abstract
Polycyclic aromatic hydrocarbons such as benzo(a)pyrene (BaP) are toxic environmental contaminants known to regulate gene expression through activation of the aryl hydrocarbon receptor (AhR). In the present study, we demonstrated that acute treatment by BaP markedly increased expression of the NADPH oxidase subunit gene neutrophil cytosolic factor 1 (NCF1)/p47(phox) in primary human macrophages; NCF1 was similarly up-regulated in alveolar macrophages from BaP-instilled rats. NCF1 induction in BaP-treated human macrophages was prevented by targeting AhR, through its chemical inhibition or small interference RNA-mediated down-modulation of its expression. BaP moreover induced activity of the NCF1 promoter sequence, containing a consensus AhR-related xenobiotic-responsive element (XRE), and electrophoretic mobility shift assays and chromatin immunoprecipitation experiments indicated that BaP-triggered binding of AhR to this XRE. Finally, we showed that BaP exposure resulted in p47(phox) protein translocation to the plasma membrane and in potentiation of phorbol myristate acetate (PMA)-induced superoxide anion production in macrophages. This BaP priming effect toward NADPH oxidase activity was inhibited by the NADPH oxidase specific inhibitor apocynin and the chemical AhR inhibitor alpha-naphtoflavone. These results indicated that BaP induced NCF1/p47(phox) expression and subsequently enhanced superoxide anion production in PMA-treated human macrophages, in an AhR-dependent manner; such an NCF1/NADPH oxidase regulation by polycyclic aromatic hydrocarbons may participate in deleterious effects toward human health triggered by these environmental contaminants, including atherosclerosis and smoking-related diseases.
Collapse
Affiliation(s)
- Marie-Laure Pinel-Marie
- INSERM U620-EA4427 SeRAIC, IFR140, Université de Rennes I, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | | | | | | |
Collapse
|
15
|
Abstract
The endothelial cell layer plays a major role in the development and progression of atherosclerosis. Endothelial NO synthase (eNOS) produces nitric oxide (NO) from L-arginine. NO can rapidly react with reactive oxygen species to form peroxynitrite. This reduces NO availability, impairs vasodilatation, and mediates proinflammatory and prothrombotic processes such as leukocyte adhesion and platelet aggregation. In the vessel wall, specific NAD(P)H oxidase complexes are major sources of reactive oxygen species. These NAD(P)H oxidases can transfer electrons across membranes to oxygen and generate superoxide anions. The short-lived superoxide anion rapidly dismutates to hydrogen peroxide, which can further increase the production of reactive oxygen species. This can lead to uncoupling of eNOS switching enzymatic activity from NO to superoxide production. This review describes the structure and regulation of different NAD(P)H oxidase complexes. We will also focus on NO/superoxide anion balance as modulated by hemodynamic forces, vasoconstrictors, and oxidized low-density lipoprotein. We will then summarize the recent advances defining the role of nitric oxide and NAD(P)H oxidase-derived reactive oxygen species in the development and progression of atherosclerosis. In conclusion, novel mechanisms affecting the vascular NO/superoxide anion balance will allow the development of therapeutic strategies in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Gregor Muller
- Department of Vascular Endothelium and Microcirculation, University of Technology Dresden, Dresden, Germany
| | | |
Collapse
|
16
|
Hirata A, Maeda N, Hiuge A, Hibuse T, Fujita K, Okada T, Kihara S, Funahashi T, Shimomura I. Blockade of mineralocorticoid receptor reverses adipocyte dysfunction and insulin resistance in obese mice. Cardiovasc Res 2009; 84:164-72. [PMID: 19505930 DOI: 10.1093/cvr/cvp191] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
AIMS In obesity, chronic low-grade inflammation and overproduction of reactive oxygen species (ROS) in fat contribute to the development of metabolic syndrome. Suppression of inflammation and ROS production in fat may attenuate the metabolic syndrome. Activation of mineralocorticoid receptor (MR) promotes inflammation in heart, kidney, and vasculature via ROS generation. However, the significance of MR in fat remains elusive. Here we investigated whether MR blockade attenuates obesity-related insulin resistance and improves adipocyte dysfunction. METHODS AND RESULTS Obese ob/ob and db/db mice were treated with eplerenone, a MR antagonist, for 3 weeks. 3T3-L1 adipocytes were treated with aldosterone or H2O2, with and without eplerenone or MR-siRNA. High levels of MR mRNA were detected in adipose tissue of obese ob/ob and db/db mice. Eplerenone treatment significantly reduced insulin resistance, suppressed macrophage infiltration and ROS production in adipose tissues, and corrected the mRNA levels of obesity-related genes in obese mice. In 3T3-L1 adipocytes, aldosterone and H2O2 increased intracellular ROS levels and MR blockade inhibited such increases. H2O2 and aldosterone resulted in dysregulation of mRNAs of various genes related to ROS and cytokines, whereas MR blockade corrected such changes. CONCLUSION MR blockade attenuates obesity-related insulin resistance partly through reduction of fat ROS production, inflammatory process, and induction of cytokines.
Collapse
Affiliation(s)
- Ayumu Hirata
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2-B5 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Anderson EJ, Lustig ME, Boyle KE, Woodlief TL, Kane DA, Lin CT, Price JW, Kang L, Rabinovitch PS, Szeto HH, Houmard JA, Cortright RN, Wasserman DH, Neufer PD. Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J Clin Invest 2009; 119:573-81. [PMID: 19188683 DOI: 10.1172/jci37048] [Citation(s) in RCA: 973] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 12/10/2008] [Indexed: 12/11/2022] Open
Abstract
High dietary fat intake leads to insulin resistance in skeletal muscle, and this represents a major risk factor for type 2 diabetes and cardiovascular disease. Mitochondrial dysfunction and oxidative stress have been implicated in the disease process, but the underlying mechanisms are still unknown. Here we show that in skeletal muscle of both rodents and humans, a diet high in fat increases the H(2)O(2)-emitting potential of mitochondria, shifts the cellular redox environment to a more oxidized state, and decreases the redox-buffering capacity in the absence of any change in mitochondrial respiratory function. Furthermore, we show that attenuating mitochondrial H(2)O(2) emission, either by treating rats with a mitochondrial-targeted antioxidant or by genetically engineering the overexpression of catalase in mitochondria of muscle in mice, completely preserves insulin sensitivity despite a high-fat diet. These findings place the etiology of insulin resistance in the context of mitochondrial bioenergetics by demonstrating that mitochondrial H(2)O(2) emission serves as both a gauge of energy balance and a regulator of cellular redox environment, linking intracellular metabolic balance to the control of insulin sensitivity.
Collapse
Affiliation(s)
- Ethan J Anderson
- Metabolic Institute for the Study of Diabetes and Obesity, East Carolina University, Greenville, North Carolina 27834, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Luengo-Blanco M, Prando C, Bustamante J, Aragão-Filho WC, Pereira PVS, Rehder J, Padden C, Casanova JL, Newburger PE, Condino-Neto A. Essential role of nuclear factor-kappaB for NADPH oxidase activity in normal and anhidrotic ectodermal dysplasia leukocytes. Blood 2008; 112:1453-60. [PMID: 18523147 PMCID: PMC2515116 DOI: 10.1182/blood-2007-07-099267] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 04/01/2008] [Indexed: 12/23/2022] Open
Abstract
This work investigated the functional role of nuclear factor-kappaB (NF-kappaB) in respiratory burst activity and in expression of the human phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase genes CYBB, CYBA, NCF1, and NCF2. U937 cells with a stably transfected repressor of NF-kappaB (IkappaBalpha-S32A/S36A) demonstrated significantly lower superoxide release and lower CYBB and NCF1 gene expression compared with control U937 cells. We further tested Epstein-Barr virus (EBV)-transformed B cells from patients with anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID), an inherited disorder of NF-kappaB function. Superoxide release and CYBB gene expression by EDA-ID cells were significantly decreased compared with healthy cells and similar to cells from patients with X-linked chronic granulomatous disease (X91(0) CGD). NCF1 gene expression in EDA-ID S32I cells was decreased compared with healthy control cells and similar to that in autosomal recessive (A47(0)) CGD cells. Gel shift assays demonstrated loss of recombinant human p50 binding to a NF-kappaB site 5' to the CYBB gene in U937 cells treated with NF-kappaB inhibitors, repressor-transfected U937 cells, and EDA-ID patients' cells. Zymosan phagocytosis was not affected by transfection of U937 cells with the NF-kappaB repressor. These studies show that NF-kappaB is necessary for CYBB and NCF1 gene expression and activation of the phagocyte NADPH oxidase in this model system.
Collapse
Affiliation(s)
- Marcos Luengo-Blanco
- Department of Pediatrics and Pharmacology, Center for Investigation in Pediatrics, State University of Campinas Medical School, Campinas, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Valente AJ, Zhou Q, Lu Z, He W, Qiang M, Ma W, Li G, Wang L, Banfi B, Steger K, Krause KH, Clark RA, Li S. Regulation of NOX1 expression by GATA, HNF-1alpha, and Cdx transcription factors. Free Radic Biol Med 2008; 44:430-43. [PMID: 18005670 DOI: 10.1016/j.freeradbiomed.2007.10.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2007] [Revised: 10/05/2007] [Accepted: 10/06/2007] [Indexed: 11/20/2022]
Abstract
NOX1, a member of the NOX family of NADPH oxidases, is expressed primarily in colon epithelium, where it may function in host defense and growth regulation. We investigated factors responsible for its transcriptional regulation in vitro and its expression in vivo. Analysis of promoter constructs in the CaCo2 cell line identified a complex element between -422 and -291 critical for promoter activity. This element contained four sites that bound GATA-4, -5, and -6 in vitro with varied affinities. One site also bound the caudal-related homeodomain proteins Cdx1 and Cdx2, whereas another also bound hepatocyte nuclear factor-1alpha (HNF-1alpha). GATA-6, HNF-1alpha, and Cdx2 also bound to this region in the intact chromatin of CaCo2 cells. These factors demonstrated cooperativity when transactivating the NOX1 promoter. NOX1 mRNA was detected in human colon epithelial cells along the crypt-villus axis. A gradient of NOX1 mRNA expression was seen in the colons of normal as well as germ-free mice, with significantly higher levels in distal compared with proximal segments. The expression gradients of NOX1 mRNA in the colon paralleled those of GATA-6, HNF-1alpha, and Cdx1. These data indicate that developmental, tissue-restricted transcription factors play a key role in NOX1 regulation in vivo.
Collapse
Affiliation(s)
- Anthony J Valente
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Huang W, Horvath E, Eklund EA. PU.1, Interferon Regulatory Factor (IRF) 2, and the Interferon Consensus Sequence-binding Protein (ICSBP/IRF8) Cooperate to Activate NF1 Transcription in Differentiating Myeloid Cells. J Biol Chem 2007; 282:6629-43. [PMID: 17200120 DOI: 10.1074/jbc.m607760200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nf1 (neurofibromin 1) is a Ras-GAP protein that regulates cytokine-induced proliferation of myeloid cells. In previous studies, we found that the interferon consensus sequence-binding protein (ICSBP; also referred to as interferon regulatory factor 8) activates transcription of the gene encoding Nf1 (the NF1 gene) in differentiating myeloid cells. We also found that NF1 activation requires cytokine-stimulated phosphorylation of a conserved tyrosine residue in the interferon regulatory factor (IRF) domain of ICSBP/IRF8. In this study, we found that ICSBP/IRF8 cooperates with PU.1 and interferon regulatory factor 2 to activate a composite ets/IRF-cis element in the NF1 promoter. We found that PU.1 binds directly to the NF1-cis element, and DNA-bound PU.1 interacts with IRF2, recruiting IRF2 to the cis element. This interaction requires cytokine-induced phosphorylation of specific serine residues in the PU.1 PEST domain and of a conserved tyrosine residue in the IRF domain of IRF2. We found that ICSBP/IRF8 interaction with the NF1-cis element requires pre-binding of PU.1 and IRF2. The conserved IRF domain tyrosine in ICSBP/IRF8 is required for interaction with the DNA-bound PU.1-IRF2 heterodimer. NF1 deficiency in myeloid progenitor cells results in cytokine hypersensitivity and myeloproliferation. Therefore, these studies identify a target gene for the previously observed tumor-suppressor effect of PU.1. Additionally, these studies identify a tumor-suppressor function for the "oncogenic" transcription factor, IRF2.
Collapse
Affiliation(s)
- Weiqi Huang
- The Feinberg School of Medicine and The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
21
|
Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007; 87:245-313. [PMID: 17237347 DOI: 10.1152/physrev.00044.2005] [Citation(s) in RCA: 5054] [Impact Index Per Article: 280.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
For a long time, superoxide generation by an NADPH oxidase was considered as an oddity only found in professional phagocytes. Over the last years, six homologs of the cytochrome subunit of the phagocyte NADPH oxidase were found: NOX1, NOX3, NOX4, NOX5, DUOX1, and DUOX2. Together with the phagocyte NADPH oxidase itself (NOX2/gp91(phox)), the homologs are now referred to as the NOX family of NADPH oxidases. These enzymes share the capacity to transport electrons across the plasma membrane and to generate superoxide and other downstream reactive oxygen species (ROS). Activation mechanisms and tissue distribution of the different members of the family are markedly different. The physiological functions of NOX family enzymes include host defense, posttranlational processing of proteins, cellular signaling, regulation of gene expression, and cell differentiation. NOX enzymes also contribute to a wide range of pathological processes. NOX deficiency may lead to immunosuppresion, lack of otoconogenesis, or hypothyroidism. Increased NOX activity also contributes to a large number or pathologies, in particular cardiovascular diseases and neurodegeneration. This review summarizes the current state of knowledge of the functions of NOX enzymes in physiology and pathology.
Collapse
Affiliation(s)
- Karen Bedard
- Biology of Ageing Laboratories, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
22
|
He W, Qiang M, Ma W, Valente AJ, Quinones MP, Wang W, Reddick RL, Xiao Q, Ahuja SS, Clark RA, Freeman GL, Li S. Development of a synthetic promoter for macrophage gene therapy. Hum Gene Ther 2006; 17:949-59. [PMID: 16972763 DOI: 10.1089/hum.2006.17.949] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Macrophages have the potential to deliver therapeutic genes to many target tissues. Macrophage-specific synthetic promoters (SPs) generated by random ligation of myeloid/macrophage cis elements had activity up to 100-fold that of a native macrophage promoter in macrophage cell lines, but were minimally active in nonmyeloid cells. Mouse bone marrow cells (BMCs) transduced ex vivo with lentivectors expressing green fluorescent protein (GFP) driven either by an SP (SP-GFP) or a cytomegalovirus (CMV) promoter (CMV-GFP) were used for syngeneic transplantation of lethally irradiated mice. Blood leukocytes showed stable GFP expression for up to 15 months after transplantation. SP-GFP expression was selective for CD11b+ macrophages, whereas CMV-GFP expression was observed in erythrocytes, as well as in both CD11b+ and CD11b- leukocytes. Furthermore, SP-GFP expression was much stronger than CMV-GFP expression in CD11b+ macrophages. apoE-/- BMCs transduced with the lentiviral vector encoding human apoE were used to transplant apoE-/- mice. Macrophage expression of apoE from 10 to 26 weeks of age significantly reduced atherosclerotic lesions in recipient apoE-/- mice. Thus, the novel SPs, especially when combined with lentivectors, are useful for macrophage-specific delivery of therapeutic genes.
Collapse
Affiliation(s)
- Weijing He
- Department of Medicine, University of Texas Health Science Center at San Antonio, and South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kurata A, Nishizawa H, Kihara S, Maeda N, Sonoda M, Okada T, Ohashi K, Hibuse T, Fujita K, Yasui A, Hiuge A, Kumada M, Kuriyama H, Shimomura I, Funahashi T. Blockade of Angiotensin II type-1 receptor reduces oxidative stress in adipose tissue and ameliorates adipocytokine dysregulation. Kidney Int 2006; 70:1717-24. [PMID: 16985520 DOI: 10.1038/sj.ki.5001810] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dysregulated production of adipocytokines may be involved in the development of atherosclerotic cardiovascular disease in metabolic syndrome and chronic kidney disease (CKD) associated with metabolic syndrome. The aim of this study was to determine the effects of treatment with angiotensin II (Ang II) type-1 receptor blocker (ARB) on the regulation of adipocytokines. Olmesartan, an ARB, significantly blunted the age- and body weight-associated falls in plasma adiponectin both in genetically and diet-induced obese mice, without affecting body weight, but had no effect on plasma adiponectin levels in lean mice. Olmesartan also ameliorated dysregulation of adipocytokines in obesity, such as tumor necrosis factor-alpha, plasminogen activator inhibitor-1, monocyte chemotactic protein-1, and serum amyloid A3. Olmesartan significantly reduced reactive oxygen species originating from accumulated fat and attenuated the expression of nicotinamide adenine dinucleotide phospho hydrogenase oxidase subunits in adipose tissue. In cultured adipocytes, olmesartan acted as an antioxidant and improved adipocytokine dysregulation. Our results indicate that blockade of Ang II receptor ameliorates adipocytokine dysregulation and that such action is mediated, at least in part, by targeting oxidative stress in obese adipose tissue. Ang II signaling and subsequent oxidative stress in adipose tissue may be potential targets for the prevention of atherosclerotic cardiovascular disease in metabolic syndrome and also in metabolic syndrome-based CKD.
Collapse
Affiliation(s)
- A Kurata
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
He W, Qiang M, Ma W, Valente AJ, Quinones MP, Wang W, Reddick RL, Xiao Q, Ahuja SS, Clark RA, Freeman GL, Li S. Development of a Synthetic Promoter for Macrophage Gene Therapy. Hum Gene Ther 2006. [DOI: 10.1089/hum.2006.17.ft-240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
25
|
Anrather J, Racchumi G, Iadecola C. NF-kappaB regulates phagocytic NADPH oxidase by inducing the expression of gp91phox. J Biol Chem 2006; 281:5657-67. [PMID: 16407283 DOI: 10.1074/jbc.m506172200] [Citation(s) in RCA: 316] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The superoxide-generating phagocytic NADPH oxidase is an important component of the innate immune response against microbial agents, and is involved in shaping the cellular response to a variety of physiological and pathological signals. One of the downstream targets of NADPH oxidase-derived radicals is the ubiquitous transcription factor NF-kappaB, which controls the expression of a large array of genes involved in immune function and cell survival. Here we show that NF-kappaB itself is a key factor in controlling NADPH oxidase expression and function. In monocytic and microglial cell lines, the expression of the NADPH oxidase subunit gp91(phox) was induced by lipopolysaccharide/interferon gamma treatment and was inhibited in cells constitutively expressing IkappaBalpha. Furthermore, inducible reactive oxygen species production was inhibited in IkappaBalpha overexpressing cells. gp91(phox) expression was very low in RelA(-/-) fibroblasts and could be induced by reconstituting these cells with p65/RelA. Thus, gp91(phox) expression is dependent on the presence of p65/RelA. We also found that gp91(phox) transcription is dependent on NF-kappaB and we identified two potential cis-acting elements in the murine gp91(phox) promoter that control NF-kappaB-dependent regulation. The findings raise the possibility of a positive feedback loop in which NF-kappaB activation by oxidative stress leads to further radical production via NADPH oxidase.
Collapse
Affiliation(s)
- Josef Anrather
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021, USA.
| | | | | |
Collapse
|
26
|
Suzuki K, Adachi R, Hirayama A, Watanabe H, Otani S, Watanabe Y, Kasahara T. Indirubin, a Chinese anti-leukaemia drug, promotes neutrophilic differentiation of human myelocytic leukaemia HL-60 cells. Br J Haematol 2005; 130:681-90. [PMID: 16115123 DOI: 10.1111/j.1365-2141.2005.05655.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Indirubin, a purple vegetable dye, is a traditional Chinese medicine for myelocytic leukaemia. Indirubin inhibits cyclin-dependent protein kinases (CDKs) and is present in human urine and serum. When indirubin was present during the neutrophilic differentiation of human myelocytic leukaemia HL-60 cells, it augmented superoxide production triggered by opsonized zymosan (OZ) by the terminally differentiated HL-60 cells. It also augmented the calcium response to OZ stimulation, and HL-60 cell chemotaxis evoked by interleukin-8 (IL-8, CXCL8) and formylpeptide. In addition, indirubin induced marked IL-8 release by the cells during differentiation and the cells differentiated with indirubin had typical neutrophilic properties, deformed nuclei and granules. Use of stable cloned HL-60 cells that contained a reporter vector for monitoring the activity of the transcription factor PU.1, which acts specifically at the stage of promyelocyte differentiation into neutrophils and monocytes, revealed that indirubin has a potent promoting activity on intracellular PU.1. Indirubin enhanced the expression of typical neutrophil proteins, including granulocyte-colony stimulating factor receptor, the beta2-integrin subunit CD18, the NADPH-oxidase subunit p47phox, and the IL-8 receptor CXCR1, all are controlled by PU.1. Indirubin also inhibited CDK2-dependent phosphorylation of retinoblastoma protein during neutrophilic differentiation. These results suggest that indirubin augments the neutrophilic differentiation of human myelocytic leukaemia HL-60 cells through inhibition of CDK2 and activation of PU.1.
Collapse
|
27
|
Gangenahalli GU, Gupta P, Saluja D, Verma YK, Kishore V, Chandra R, Sharma RK, Ravindranath T. Stem Cell Fate Specification: Role of Master Regulatory Switch Transcription Factor PU.1 in Differential Hematopoiesis. Stem Cells Dev 2005; 14:140-52. [PMID: 15910240 DOI: 10.1089/scd.2005.14.140] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PU.1 is a versatile hematopoietic cell-specific ETS-family transcriptional regulator required for the development of both the inborn and the adaptive immunity, owing to its potential ability to regulate the expression of multiple genes specific for different lineages during normal hematopoiesis. It functions in a cell-autonomous manner to control the proliferation and differentiation, predominantly of lymphomyeloid progenitors, by binding to the promoters of many myeloid genes including the macrophage colony-stimulating factor (M-CSF) receptor, granulocyte-macrophage (GM)-CSF receptor alpha, and CD11b. In B cells, it regulates the immunoglobulin lambda 2-4 and kappa 3' enhancers, and J chain promoters. Besides lineage development, PU.1 also directs homing and long-term engraftment of hematopoietic progenitors to the bone marrow. PU.1 gene disruption causes a cell-intrinsic defect in hematopoietic progenitor cells, recognized by an aberrant myeloid and B lymphoid development. It also immortalizes erythroblasts when overexpressed in many cell lines. Although a number of reviews have been published on its functional significance, in the following review we attempted to consolidate information about the differential participation and role of transcription factor PU.1 at various stages of hematopoietic development beginning from stem cell proliferation, lineage commitment and terminal differentiation into distinct blood cell types, and leukemogenesis.
Collapse
Affiliation(s)
- Gurudutta U Gangenahalli
- Stem Cell Gene Therapy Research Group, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi-110054, India.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Thomas V, Samanta S, Wu C, Berliner N, Fikrig E. Anaplasma phagocytophilum modulates gp91phox gene expression through altered interferon regulatory factor 1 and PU.1 levels and binding of CCAAT displacement protein. Infect Immun 2005; 73:208-18. [PMID: 15618156 PMCID: PMC538944 DOI: 10.1128/iai.73.1.208-218.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Infection of neutrophil precursors with Anaplasma phagocytophilum, the causative agent of human granulocytic ehrlichiosis, results in downregulation of the gp91(phox) gene, a key component of NADPH oxidase. We now show that repression of gp91(phox) gene transcription is associated with reduced expression of interferon regulatory factor 1 (IRF-1) and PU.1 in nuclear extracts of A. phagocytophilum-infected cells. Loss of PU.1 and IRF-1 correlated with increased binding of the repressor, CCAAT displacement protein (CDP), to the promoter of the gp91(phox) gene. Reduced protein expression of IRF-1 was observed with or without gamma interferon (IFN-gamma) stimulation, and the defect in IFN-gamma signaling was associated with diminished binding of phosphorylated Stat1 to the Stat1 binding element of the IRF-1 promoter. The diminished levels of activator proteins and enhanced binding of CDP account for the transcriptional inhibition of the gp91(phox) gene during A. phagocytophilum infection, providing evidence of the first molecular mechanism that a pathogen uses to alter the regulation of genes that contribute to an effective respiratory burst.
Collapse
Affiliation(s)
- Venetta Thomas
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, S525A, 300 Cedar St., P.O. Box 208031, New Haven, CT 06520-8031, USA
| | | | | | | | | |
Collapse
|
29
|
Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 2005. [PMID: 15599400 DOI: 10.1172/jci200421625] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Obesity is a principal causative factor in the development of metabolic syndrome. Here we report that increased oxidative stress in accumulated fat is an important pathogenic mechanism of obesity-associated metabolic syndrome. Fat accumulation correlated with systemic oxidative stress in humans and mice. Production of ROS increased selectively in adipose tissue of obese mice, accompanied by augmented expression of NADPH oxidase and decreased expression of antioxidative enzymes. In cultured adipocytes, elevated levels of fatty acids increased oxidative stress via NADPH oxidase activation, and oxidative stress caused dysregulated production of adipocytokines (fat-derived hormones), including adiponectin, plasminogen activator inhibitor-1, IL-6, and monocyte chemotactic protein-1. Finally, in obese mice, treatment with NADPH oxidase inhibitor reduced ROS production in adipose tissue, attenuated the dysregulation of adipocytokines, and improved diabetes, hyperlipidemia, and hepatic steatosis. Collectively, our results suggest that increased oxidative stress in accumulated fat is an early instigator of metabolic syndrome and that the redox state in adipose tissue is a potentially useful therapeutic target for obesity-associated metabolic syndrome.
Collapse
Affiliation(s)
- Shigetada Furukawa
- Department of Medicine and Pathophysiology, Graduate School of Medicine, Department of Organismal Biosystems, Graduate School of Frontier Biosciences, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 2005. [PMID: 15599400 DOI: 10.1172/jci21625, 10.1172/jci200421625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Obesity is a principal causative factor in the development of metabolic syndrome. Here we report that increased oxidative stress in accumulated fat is an important pathogenic mechanism of obesity-associated metabolic syndrome. Fat accumulation correlated with systemic oxidative stress in humans and mice. Production of ROS increased selectively in adipose tissue of obese mice, accompanied by augmented expression of NADPH oxidase and decreased expression of antioxidative enzymes. In cultured adipocytes, elevated levels of fatty acids increased oxidative stress via NADPH oxidase activation, and oxidative stress caused dysregulated production of adipocytokines (fat-derived hormones), including adiponectin, plasminogen activator inhibitor-1, IL-6, and monocyte chemotactic protein-1. Finally, in obese mice, treatment with NADPH oxidase inhibitor reduced ROS production in adipose tissue, attenuated the dysregulation of adipocytokines, and improved diabetes, hyperlipidemia, and hepatic steatosis. Collectively, our results suggest that increased oxidative stress in accumulated fat is an early instigator of metabolic syndrome and that the redox state in adipose tissue is a potentially useful therapeutic target for obesity-associated metabolic syndrome.
Collapse
Affiliation(s)
- Shigetada Furukawa
- Department of Medicine and Pathophysiology, Graduate School of Medicine, Department of Organismal Biosystems, Graduate School of Frontier Biosciences, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 2005; 114:1752-61. [PMID: 15599400 PMCID: PMC535065 DOI: 10.1172/jci21625] [Citation(s) in RCA: 3795] [Impact Index Per Article: 189.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Accepted: 10/19/2004] [Indexed: 12/11/2022] Open
Abstract
Obesity is a principal causative factor in the development of metabolic syndrome. Here we report that increased oxidative stress in accumulated fat is an important pathogenic mechanism of obesity-associated metabolic syndrome. Fat accumulation correlated with systemic oxidative stress in humans and mice. Production of ROS increased selectively in adipose tissue of obese mice, accompanied by augmented expression of NADPH oxidase and decreased expression of antioxidative enzymes. In cultured adipocytes, elevated levels of fatty acids increased oxidative stress via NADPH oxidase activation, and oxidative stress caused dysregulated production of adipocytokines (fat-derived hormones), including adiponectin, plasminogen activator inhibitor-1, IL-6, and monocyte chemotactic protein-1. Finally, in obese mice, treatment with NADPH oxidase inhibitor reduced ROS production in adipose tissue, attenuated the dysregulation of adipocytokines, and improved diabetes, hyperlipidemia, and hepatic steatosis. Collectively, our results suggest that increased oxidative stress in accumulated fat is an early instigator of metabolic syndrome and that the redox state in adipose tissue is a potentially useful therapeutic target for obesity-associated metabolic syndrome.
Collapse
Affiliation(s)
- Shigetada Furukawa
- Department of Medicine and Pathophysiology, Graduate School of Medicine, Department of Organismal Biosystems, Graduate School of Frontier Biosciences, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 2005. [PMID: 15599400 DOI: 10.1172/jci200421625.1752] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Obesity is a principal causative factor in the development of metabolic syndrome. Here we report that increased oxidative stress in accumulated fat is an important pathogenic mechanism of obesity-associated metabolic syndrome. Fat accumulation correlated with systemic oxidative stress in humans and mice. Production of ROS increased selectively in adipose tissue of obese mice, accompanied by augmented expression of NADPH oxidase and decreased expression of antioxidative enzymes. In cultured adipocytes, elevated levels of fatty acids increased oxidative stress via NADPH oxidase activation, and oxidative stress caused dysregulated production of adipocytokines (fat-derived hormones), including adiponectin, plasminogen activator inhibitor-1, IL-6, and monocyte chemotactic protein-1. Finally, in obese mice, treatment with NADPH oxidase inhibitor reduced ROS production in adipose tissue, attenuated the dysregulation of adipocytokines, and improved diabetes, hyperlipidemia, and hepatic steatosis. Collectively, our results suggest that increased oxidative stress in accumulated fat is an early instigator of metabolic syndrome and that the redox state in adipose tissue is a potentially useful therapeutic target for obesity-associated metabolic syndrome.
Collapse
Affiliation(s)
- Shigetada Furukawa
- Department of Medicine and Pathophysiology, Graduate School of Medicine, Department of Organismal Biosystems, Graduate School of Frontier Biosciences, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Reactive oxygen species (ROS) initiate activation of the transcription factor NF-kappaB in a variety of cell systems. Perhaps the most potent biological source of ROS is the NADPH oxidase of phagocytic cells, a multi-component system that catalyzes the formation of superoxide anion. Although phagocytes use this oxidase to kill ingested microorganisms, the products also mediate a broad range of biological oxidation reactions and some evidence exists for activation of NF-kappaB through this mechanism. Moreover, the components of the phagocyte NADPH oxidase are present in certain non-phagocytic cells and recently discovered homologues of the catalytic component gp91(phox) are expressed in a number of tissues. We explored the hypothesis that the products of NADPH oxidases cause the activation of NF-kappaB. K562 human erythrokeukemia cells transfected with constructs for expression of gp91(phox), plus other essential NADPH oxidase components generated substantial amounts of superoxide when activated with phorbol ester, lesser amounts with arachidonic acid exposure, and none with TNFalpha. Gel shift assays demonstrated induction of NF-kappaB in K562 cells exposed to TNFalpha and specificity was shown by oligonucleotide competition. Supershift assays demonstrated the presence in nuclear complexes of the NF-kappaB components p65/RelA and p50. Nuclear complexes of identical electrophoretic mobility were induced in phorbol ester-stimulated K562 cells that expressed the complete NADPH oxidase system, but not in cells lacking one of the essential oxidase components. K562 cells were relatively resistant to NF-kappaB induction by exogenous peroxide, but certain other cell types (HEK293 and HeLaS3) demonstrated such induction upon exposure to reagent hydrogen peroxide or glucose oxidase plus glucose and this was blocked by catalase. Finally, we found a biphasic pattern of gp91(phox) expression in rat liver during aging. High levels observed in young animals decreased in middle age, but increased again in old age. Collectively, these studies demonstrate the potential for NADPH-dependent induction of NF-kappaB and raise the possibility of a role for this pathway in the biology of aging.
Collapse
Affiliation(s)
- Robert A Clark
- Department of Medicine, University of Texas Health Science Center and South Texas Veterans Health Care System, San Antonio, TX 78229-3900, USA.
| | | |
Collapse
|
34
|
Mazzi P, Donini M, Margotto D, Wientjes F, Dusi S. IFN-gamma induces gp91phox expression in human monocytes via protein kinase C-dependent phosphorylation of PU.1. THE JOURNAL OF IMMUNOLOGY 2004; 172:4941-7. [PMID: 15067074 DOI: 10.4049/jimmunol.172.8.4941] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We previously reported that the stimulation of human blood monocytes with IFN-gamma induces the binding of PU.1 to the gp91(phox) promoter and the consequent expression of gp91(phox). In this study, we show that the effect of IFN-gamma is reproduced by the serine phosphatase inhibitor, okadaic acid, and this suggests that serine kinases could be involved in gp91(phox) expression. We also show that IFN-gamma induces the serine/threonine phosphorylation of PU.1 in cultured monocytes. This phosphorylation, as well as the IFN-gamma-induced PU.1 binding and gp91(phox) protein synthesis, is slightly affected by the casein kinase II inhibitor, daidzein, but is abrogated by the protein kinase C (PKC) -alpha and -beta inhibitor, Go6976, and by synthetic peptides with sequences based on the endogenous pseudosubstrate region of the classical PKC alpha and beta isoforms. In contrast, peptides reproducing the pseudosubstrate region of PKC epsilon were without effect. Moreover, we found that the treatment of monocytes with IFN-gamma induces the nuclear translocation and the activation of PKC alpha and beta I, but not of PKC beta II, and that the IFN-gamma-induced phosphorylation of PU.1 was greatly reduced by LY333531, a selective inhibitor of PKC beta isoforms. Finally, nuclear run-on assays demonstrated that while the PKC inhibitors, Go6976 and LY333531, decrease the IFN-gamma-induced gp91(phox) transcription, the serine phosphatase inhibitor, okadaic acid, enhances the gp91(phox) gene transcription. Our results indicate that in cultured monocytes, IFN-gamma induces the binding of PU.1 to the gp91(phox) promoter and the expression of gp91(phox) by phosphorylation of PU.1 via activation of PKC alpha and/or beta I.
Collapse
Affiliation(s)
- Paola Mazzi
- Department of Pathology, Section of General Pathology, University of Verona, Verona, Italy
| | | | | | | | | |
Collapse
|
35
|
Quinn MT, Gauss KA. Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases. J Leukoc Biol 2004; 76:760-81. [PMID: 15240752 DOI: 10.1189/jlb.0404216] [Citation(s) in RCA: 345] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neutrophils play an essential role in the body's innate defense against pathogens and are one of the primary mediators of the inflammatory response. To defend the host, neutrophils use a wide range of microbicidal products, such as oxidants, microbicidal peptides, and lytic enzymes. The generation of microbicidal oxidants by neutrophils results from the activation of a multiprotein enzyme complex known as the reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which is responsible for transferring electrons from NADPH to O2, resulting in the formation of superoxide anion. During oxidase activation, cytosolic oxidase proteins translocate to the phagosome or plasma membrane, where they assemble around a central membrane-bound component known as flavocytochrome b. This process is highly regulated, involving phosphorylation, translocation, and multiple conformational changes. Originally, it was thought that the NADPH oxidase was restricted to phagocytes and used solely in host defense. However, recent studies indicate that similar NADPH oxidase systems are present in a wide variety of nonphagocytic cells. Although the nature of these nonphagocyte NADPH oxidases is still being defined, it is clear that they are functionally distinct from the phagocyte oxidases. It should be noted, however, that structural features of many nonphagocyte oxidase proteins do seem to be similar to those of their phagocyte counterparts. In this review, key structural and functional features of the neutrophil NADPH oxidase and its protein components are described, including a consideration of transcriptional and post-translational regulatory features. Furthermore, relevant details about structural and functional features of various nonphagocyte oxidase proteins will be included for comparison.
Collapse
Affiliation(s)
- Mark T Quinn
- Department of Veterinary Molecular Biology, Montana State University, Bozeman 59717-3610, USA.
| | | |
Collapse
|
36
|
Berasi SP, Xiu M, Yee AS, Paulson KE. HBP1 repression of the p47phox gene: cell cycle regulation via the NADPH oxidase. Mol Cell Biol 2004; 24:3011-24. [PMID: 15024088 PMCID: PMC371097 DOI: 10.1128/mcb.24.7.3011-3024.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2003] [Revised: 10/08/2003] [Accepted: 12/30/2003] [Indexed: 11/20/2022] Open
Abstract
Several studies have linked the production of reactive oxygen species (ROS) by the NADPH oxidase to cellular growth control. In many cases, activation of the NADPH oxidase and subsequent ROS generation is required for growth factor signaling and mitogenesis in nonimmune cells. In this study, we demonstrate that the transcriptional repressor HBP1 (HMG box-containing protein 1) regulates the gene for the p47phox regulatory subunit of the NADPH oxidase. HBP1 represses growth regulatory genes (e.g., N-Myc, c-Myc, and cyclin D1) and is an inhibitor of G(1) progression. The promoter of the p47phox gene contains six tandem high-affinity HBP1 DNA-binding elements at positions -1243 to -1318 bp from the transcriptional start site which were required for repression. Furthermore, HBP1 repressed the expression of the endogenous p47phox gene through sequence-specific binding. With HBP1 expression and the subsequent reduction in p47phox gene expression, intracellular superoxide production was correspondingly reduced. Using both the wild type and a dominant-negative mutant of HBP1, we demonstrated that the repression of superoxide production through the NADPH oxidase contributed to the observed cell cycle inhibition by HBP1. Together, these results indicate that HBP1 may contribute to the regulation of NADPH oxidase-dependent superoxide production through transcriptional repression of the p47phox gene. This study defines a transcriptional mechanism for regulating intracellular ROS levels and has implications in cell cycle regulation.
Collapse
Affiliation(s)
- Stephen P Berasi
- Department of Biochemistry, Tufts University School of Medicine, School of Nutrition, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
37
|
Koyama N, Hoelzer D, Ottmann OG. Regulation of human IL-18 gene expression: interaction of PU.1 with GC-box binding protein is involved in human IL-18 expression in myeloid cells. Eur J Immunol 2004; 34:817-826. [PMID: 14991611 DOI: 10.1002/eji.200324420] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interleukin-18 (IL-18) is a pro-inflammatory cytokine which participates in host defense against a variety of infections as well as in chronic inflammation including autoimmune diseases. However, little is known about human IL-18 regulation at the gene level. We have previously demonstrated that sodium butyrate, a bacterial fermentation product, induces IL-18 production via the proximal region of the promoter. In this study we investigated the molecular mechanisms for basal and sodium butyrate-induced expression of IL-18 in human myeloid cells. Two regulatory regions, a consensus binding site for PU.1 and a GC-rich region, are required for basal IL-18 promoter activity in human myeloid cells. PU.1 bound to the PU.1 consensus binding site in electrophoretic mobility shift assays, and overexpression of PU.1 led to activation of the IL-18 promoter through this site. Mutation analysis revealed that the GC-rich region, but not PU.1 site, participates in sodium butyrate-induced transactivation. Furthermore, DNA pull-down experiments and the critical spacing of the two binding sites suggest that formation of a protein complex involving both cis elements and the respective binding proteins might be crucial for human IL-18 expression.
Collapse
Affiliation(s)
- Noriko Koyama
- Department of Hematology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Dieter Hoelzer
- Department of Hematology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Oliver G Ottmann
- Department of Hematology, Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
38
|
Partington GA, Fuller K, Chambers TJ, Pondel M. Mitf-PU.1 interactions with the tartrate-resistant acid phosphatase gene promoter during osteoclast differentiation. Bone 2004; 34:237-45. [PMID: 14962802 DOI: 10.1016/j.bone.2003.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2003] [Revised: 10/10/2003] [Accepted: 11/03/2003] [Indexed: 10/26/2022]
Abstract
It has been postulated that the transcription factors micropthalmia associated factor (Mitf) and PU.1 interact with the tartrate-resistant acid phosphatase (TRAP) gene promoter and activate TRAP gene expression in osteoclasts. However, studies on the interaction of these factors with the TRAP promoter employing nuclear extracts from osteoclasts and osteoclast precursors have not been reported. We therefore treated murine mononuclear phagocyte cells with various cytokines to generate cultures of osteoclasts and macrophagic cells with high or low potential to form osteoclasts. The presence of Mitf and PU.1 in nuclear extracts from these cultures and the ability of these factors to bind to the TRAP promoter was then assessed. We demonstrate that Mitf and a related factor, TFE3, are present in nuclear extracts from all cultures and bind the TRAP promoter. While PU.1 is present in nuclear extracts from all cultures, it does not significantly interact with a putative binding site in the TRAP promoter. These results suggest Mitf and PU.1 interactions with the TRAP promoter are not responsible for the specific activation of TRAP gene expression in osteoclasts.
Collapse
Affiliation(s)
- G A Partington
- Department of Cellular and Molecular Medicine, St. George's Hospital Medical School, London SW17 0RE, UK
| | | | | | | |
Collapse
|
39
|
Watanabe H, Adachi R, Kusui K, Hirayama A, Kasahara T, Suzuki K. Bisphenol A significantly enhances the neutrophilic differentiation of promyelocytic HL-60 cells. Int Immunopharmacol 2003; 3:1601-8. [PMID: 14555285 DOI: 10.1016/s1567-5769(03)00182-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bisphenol A (BPA) is a well-known endocrine disruptor. However, little information is available on its immunological effects. To investigate the effect of BPA on leukocyte differentiation, we investigated its action on the neutrophilic differentiation of HL-60 cells induced by dimethylsulfoxide and granulocyte colony-stimulating factor (G-CSF) for 6 days. At low concentrations (10(-10)-10(-8) M), BPA significantly increased the superoxide production by differentiated HL-60 cells stimulated with opsonized zymosan (OZ) by about 20%, and expression of CD18, a component of the OZ-receptor, was increased to a similar extent by 10(-9) M BPA. To investigate the effect of BPA on the activity of PU.1, a transcription factor specific for granulocytic differentiation, we established a stable clone that expressed luciferase as a reporter of PU.1 activity. PU.1 activity increased during the neutrophilic differentiation of HL-60 cells, reaching a peak on day 3 and decreasing thereafter. Nanomolar BPA augmented the PU.1 activity on day 3 by about 60%. On the other hand, tamoxifen, a competitive inhibitor of estrogen receptors, did not suppress the effect of BPA on the differentiation of HL-60 cells. These results suggest that BPA exerts an enhancing effect on the neutrophilic maturation of leukocytes through an estrogen receptor-independent pathway. Long-term exposure to BPA might significantly affect the innate immunity of mammals, even at low doses.
Collapse
Affiliation(s)
- Hidemi Watanabe
- National Institute of Health Sciences, 18-1 Kamiyoga 1-chome, Setagaya, Tokyo 158-8501, Japan.
| | | | | | | | | | | |
Collapse
|
40
|
Marden C, Cunninghame Graham D, Thrasher A, Casimir C. A functional ISRE is required for myeloid transcription of the p47phox gene. ACTA ACUST UNITED AC 2003; 1630:117-22. [PMID: 14654241 DOI: 10.1016/j.bbaexp.2003.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Expression of p47(phox), a component of the phagocytic NADPH oxidase, is both tissue-specific and developmentally regulated. We have investigated transcription from the p47(phox) gene promoter by reporter gene analysis of myeloid PLB985 cells stably transfected with a series of p47(phox) promoter constructs. Stable transfection with constructs containing up to 3100 bp of proximal promoter sequence demonstrated that as little as 144 bp of proximal promoter sequence was able to direct significant reporter gene activity in myeloid cells, but not in HeLa cells. Mutation of a previously uncharacterised interferon-stimulated response element (ISRE) consensus located at positions -104 to-116, or of an established binding site for the Ets family transcription factor, PU.1 (located at positions -39 to -44), abolished transcription in stably transfected myeloid cells. Electrophoretic mobility shift analysis (EMSA) with myeloid cell nuclear extracts demonstrated that an oligonucleotide containing the p47(phox) ISRE consensus was able to compete binding at another bona fide ISRE. Complexes formed on the p47(phox) ISRE itself were competed by other ISRE consensus sequences. We conclude that transcription of p47(phox) in myeloid cells requires a functional ISRE in addition to the previously identified PU.1 binding site.
Collapse
Affiliation(s)
- Chloe Marden
- Department of Haematology, Imperial College of Science, Technology and Medicine, St Mary's Campus, Norfolk Place, London, UK
| | | | | | | |
Collapse
|
41
|
Abstract
Based on knockout models, the transcription factor PU.1 has been shown to be important for the maturation of neutrophils. As the list of genes PU.1 directly regulates in neutrophils is still quite limited, defining PU.1 target genes for this lineage will provide valuable insight into how this factor regulates neutrophil development and terminal function. Using the combined techniques of representational difference analysis and a cDNA library screen, we identified four genes that were differentially expressed in the PU.1-expressing 503PU myeloid cell line but not the PU.1 null parent cell line 503. Two of these genes, glutathione peroxidase (GPx) and serine leukoprotease inhibitor, are involved in protecting neutrophils from the products they make to destroy pathogens and were analyzed further to determine if PU.1 directly regulates their expression. These studies showed that PU.1 directly regulated the expression of only the GPx gene through binding sites in the promoter and a 3' regulatory region. Thus, PU.1 not only regulates the expression of molecules involved in the production of reactive oxygen species but also a gene that protects the neutrophils from these same destructive enzymes.
Collapse
Affiliation(s)
- Stacy L Throm
- Department of Microbiology and Immunology, Indiana University School of Medicine, and the Walther Cancer Institute, Indianapolis, IN 46202, USA
| | | |
Collapse
|
42
|
Marden CM, Stefanidis D, Cunninghame-Graham DS, Casimir CM. Differentiation-dependent up-regulation of p47(phox) gene transcription is associated with changes in PU.1 phosphorylation and increased binding affinity. Biochem Biophys Res Commun 2003; 305:193-202. [PMID: 12732216 DOI: 10.1016/s0006-291x(03)00727-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The p47(phox) gene encodes a cytosolic component of the phagocytic NADPH oxidase complex. Expression of p47(phox) is both tissue-specific and developmentally regulated. Stable transfection of the myeloid cell lines PLB985 and HL60, with reporter gene constructs containing as little as 58 bp of proximal promoter sequence, was capable of directing significant reporter gene activity in myeloid cells, which increased significantly on induction of myeloid differentiation. EMSA analysis of a binding site for the Ets family member, PU.1, located at positions -39 to -44 revealed that the pattern of complex formation changed significantly on induction of myeloid differentiation. All EMSA complexes were competed by a functional PU.1 binding site and could be supershifted in the presence of polyclonal anti-PU.1 antibody. Reaction of EMSA complexes with anti-phosphoserine antibody, treatment with phosphatase, or Western blotting of proteins captured on the PU.1 binding site, was used to demonstrate that the changes in PU.1 complex formation dependent on myeloid differentiation were associated with increased levels of PU.1 phosphorylation. Furthermore, the more highly phosphorylated forms of PU.1 were shown to have a greater affinity for the p47(phox) PU.1 consensus binding site. Up-regulated transcriptional activity in response to myeloid differentiation can therefore be correlated with increased levels of PU.1 phosphorylation and a greater binding affinity.
Collapse
Affiliation(s)
- Chloe M Marden
- Department of Haematology, Faculty of Medicine, Imperial College of Science Technology and Medicine, Norfolk Place, London, UK
| | | | | | | |
Collapse
|
43
|
Poon GMK, Macgregor RB. Base coupling in sequence-specific site recognition by the ETS domain of murine PU.1. J Mol Biol 2003; 328:805-19. [PMID: 12729756 DOI: 10.1016/s0022-2836(03)00362-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ETS domain of murine PU.1 tolerates a large number of DNA cognates bearing a central consensus 5'-GGAA-3' that is flanked by a diverse combination of bases on both sides. Previous attempts to define the sequence selectivity of this DNA binding domain by combinatorial methods have not successfully predicted observed patterns among in vivo promoter sequences in the genome, and have led to the hypothesis that energetic coupling occurs among the bases in the flanking sequences. To test this hypothesis, we determined, using thermodynamic cycles, the complex stabilities and base coupling energies of the PU.1 ETS domain for a set of 26 cognate variants (based on the lambdaB site of the Ig(lambda)2-4 enhancer, 5'-AATAAAAGGAAGTGAAACCAA-3') in which flanking sequences up to three bases upstream and/or two bases downstream of the core consensus are substituted. We observed that both cooperative and anticooperative coupling occurs commonly among the flanking sequences at all the positions investigated. This phenomenon extends at least three bases in the 5' side and is, at least on our experimental data, due exclusively to pairwise interactions between the flanking bases, and not changes in the local environment of the DNA groove floor. Energetic coupling also occurs between the flanking sides across the core consensus, suggesting long-range conformational effects along the DNA target and/or in the protein. Our data provide an energetic explanation for the pattern of flanking bases observed among in vivo promoter sequences and reconcile the apparent discrepancies raised by the combinatorial experiments. We also discuss the significance of base coupling in light of an indirect readout mechanism in ETS/DNA site recognition.
Collapse
Affiliation(s)
- Gregory M K Poon
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ont., Canada
| | | |
Collapse
|
44
|
Bush TS, St Coeur M, Resendes KK, Rosmarin AG. GA-binding protein (GABP) and Sp1 are required, along with retinoid receptors, to mediate retinoic acid responsiveness of CD18 (beta 2 leukocyte integrin): a novel mechanism of transcriptional regulation in myeloid cells. Blood 2003; 101:311-7. [PMID: 12485937 DOI: 10.1182/blood.v101.1.311] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD18 (beta(2) leukocyte integrin) is transcriptionally regulated in myeloid cells, but the mechanisms that increase its expression in response to retinoic acid (RA) have not been defined. The CD18 promoter was activated by RA treatment in stably transfected U937 myeloid cells. We identified a retinoic acid response element (RARE) that lies nearly 900 nucleotides upstream of the CD18 transcriptional start site that was bound by the RA receptors, retinoic acid receptor (RAR) and retinoic X receptor (RXR). This RARE accounted for one half of the RA responsiveness of CD18. However, unexpectedly, one half of the dynamic response to RA was mediated by the 96-nucleotide CD18 minimal promoter, which lacks a recognizable RARE. Binding sites for the ets transcription factor, GA-binding protein (GABP), and Sp1 were required for full RA responsiveness of both the CD18 minimal promoter and the full-length promoter. The ets sites conferred RA responsiveness on an otherwise unresponsive heterologous promoter, and RA responsiveness was directly related to the number of ets sites. The transcriptional coactivator p300/CBP physically interacted with GABP in vivo, and p300 increased the responsiveness of the CD18 promoter to RA. These studies demonstrate a novel role for non-RAR transcription factors in mediating RA activation in myeloid cells. They support the concept that transcription factors other than RARs are required for RA-activated gene expression. We hypothesize that a multiprotein complex--an enhanceosome--that includes GABP, other transcription factors, and coactivators, dynamically regulates CD18 expression in myeloid cells.
Collapse
Affiliation(s)
- Thomas S Bush
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | | | | | | |
Collapse
|
45
|
Li SL, Valente AJ, Qiang M, Schlegel W, Gamez M, Clark RA. Multiple PU.1 sites cooperate in the regulation of p40(phox) transcription during granulocytic differentiation of myeloid cells. Blood 2002; 99:4578-87. [PMID: 12036891 DOI: 10.1182/blood.v99.12.4578] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The p40(phox) protein, a regulatory component of the phagocyte NADPH oxidase, is preferentially expressed in cells of myeloid lineage. We investigated transcriptional regulation of the p40(phox) gene in HL-60 myeloid cells. Deletion analysis of approximately 6 kb of the 5'-flanking sequence of the gene demonstrated that the proximal 106 base pair of the promoter exhibited maximum reporter activity. This region contains 3 potential binding sites for PU.1, a myeloid-restricted member of the ets family of transcription factors. Mutation or deletion of each PU.1 site decreased promoter activity, and the level of activity mediated by each site correlated with its binding avidity for PU.1, as determined by gel shift competition assays. Mutation of all 3 sites abolished promoter activity in myeloid cells. PU.1-dependent expression was also observed in the Raji B-cell line, whereas the moderate level of promoter reporter activity in the nonmyeloid HeLa cell line was independent of PU.1. Chromatin immunoprecipitation assay demonstrated occupation of the PU.1 sites by PU.1 in vivo in HL-60 cells. Cotransfection of the pGL3-p40-106 reporter construct with a dominant-negative PU.1 mutant dramatically reduced promoter activity, whereas the overexpression of PU.1 increased promoter activity. Promoter activity and transcript levels of p40(phox) increased in HL-60 cells during dimethyl sulfoxide-induced differentiation toward the granulocyte phenotype, and this was associated with increased cellular levels of PU.1 protein. Our findings demonstrate that PU.1 binding at multiple sites is required for p40(phox) gene transcription in myeloid cells and that granulocytic differentiation is associated with the coordinated up-regulation of PU.1 and p40(phox) expression.
Collapse
Affiliation(s)
- Sen-Lin Li
- Department of Medicine, University of Texas Health Science Center and the South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, 78229-3900, USA
| | | | | | | | | | | |
Collapse
|
46
|
Shimizu T, Kodama R, Tsunawaki S, Takeda K. GM-CSF induces expression of gp91phox and stimulates retinoic acid-induced p47phox expression in human myeloblastic leukemia cells. Eur J Haematol 2002; 68:382-8. [PMID: 12225397 DOI: 10.1034/j.1600-0609.2002.01627.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
All-trans retinoic acid (ATRA) combined with granulocyte macrophage colony-stimulating factor (GM-CSF) synergistically increases superoxide-generating activity in human myeloblastic leukemia ML-1 cells. ATRA is known to increase the expression of some NADPH components; however, little is known about the effect of GM-CSF on the expression of these components. We examined the expression of NADPH oxidase components in ML-1 cells treated with ATRA, GM-CSF, or a combination of ATRA and GM-CSF. Expression of p47phox and gp91phox proteins increased markedly after treatment with both reagents. p47phox expression was increased by ATRA alone, and the expression was increased synergistically by the combination of ATRA with GM-CSF. gp91phox was increased by ATRA or GM-CSF alone. The expression of p47phox and gp91phox mRNA underwent similar changes to those seen in protein level. These results indicate that GM-CSF induces expression of gp91phox and enhances ATRA-induced p47phox expression. We speculate that the remarkable induction of gp91phox and p47phox protein is associated with an increase in superoxide-generating activity due to the synergistic effect of ATRA plus GM-CSF.
Collapse
Affiliation(s)
- Takahisa Shimizu
- Department of Hygiene Chemistry, Faculty of Pharmaceutical Sciences, Science University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
47
|
Abstract
Myeloid blood cells comprise an important component of the immune system. Proper control of both lineage- and stage-specific gene expression is required for normal myeloid cell development and function. In recent years, a relatively small number of critical transcriptional regulators have been identified that serve important roles both in myeloid cell development and regulation of lineage-restricted gene expression in mature myeloid cells. This review summarizes our current understanding of the regulation of lineage- and stage-restricted transcription during myeloid cell differentiation, how critical transcriptional regulators control myeloid cell development, and how perturbations in transcription factor function results in the development of leukemia.
Collapse
Affiliation(s)
- David G Skalnik
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
48
|
Gauss KA, Bunger PL, Quinn MT. AP‐1 is essential for p67
phox
promoter activity. J Leukoc Biol 2002. [DOI: 10.1189/jlb.71.1.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Katherine A. Gauss
- Department of Veterinary Molecular Biology, Montana State University, Bozeman
| | - Peggy L. Bunger
- Department of Veterinary Molecular Biology, Montana State University, Bozeman
| | - Mark T. Quinn
- Department of Veterinary Molecular Biology, Montana State University, Bozeman
| |
Collapse
|
49
|
Inoue Y, Yagisawa M, Saeki K, Imajoh-Ohmi S, Kanegasaki S, Yuo A. Induction of phagocyte oxidase components during human myeloid differentiation: independent protein expression and discrepancy with the function. Biosci Biotechnol Biochem 2001; 65:2581-4. [PMID: 11791740 DOI: 10.1271/bbb.65.2581] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We investigated the content of four components of the O2(-)-producing enzyme (p47, p67, p22, and gp91) and the O2(-)-producing capacity in human myeloid cell lines. The content of the four components of the phagocyte oxidase was minimal before differentiation induction. During differentiation, expression of p22 and gp91 was at consistently low levels, even when the O2(-)-producing capacity was equivalent to that of normal neutrophils. On the other hand, p47 was consistently and rapidly induced to the level comparable to normal neutrophils. The results indicate that low expression of p22 and gp91 is sufficient to obtain normal O2- production, and that p47 might play an important regulatory role in the functional differentiation.
Collapse
Affiliation(s)
- Y Inoue
- Department of Hematology, Research Institute, International Medical Center of Japan, Tokyo
| | | | | | | | | | | |
Collapse
|
50
|
Li SL, Valente AJ, Wang L, Gamez MJ, Clark RA. Transcriptional regulation of the p67phox gene: role of AP-1 in concert with myeloid-specific transcription factors. J Biol Chem 2001; 276:39368-78. [PMID: 11483614 DOI: 10.1074/jbc.m106111200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We have investigated the myeloid-specific transcriptional regulation of p67(phox), an essential component of phagocyte respiratory burst NADPH oxidase. Analysis was carried out on the p67(phox) 5'-flanking region from -3669 to -4 (relative to ATG), including the first exon and intron and part of the second exon. The construct extending from -985 to -4 produced the highest luciferase activity in myeloid HL-60 cells but was not active in HeLa or Jurkat cells, indicating myeloid-specific expression. Four active elements were identified: Sp1/Sp3 at -694, PU.1 at -289, AP-1 at -210, and PU.1/HAF1 at -182, the latter three being in the first intron. These cis elements bound their cognate transacting factors both in vitro and in vivo. Mutation of the Sp1, PU.1, or PU.1/HAF1 site each decreased promoter activity by 35-50%. Mutations in all three sites reduced promoter activity by 90%. However, mutation of the AP-1 site alone nearly abolished promoter activity. The AP-1 site bound Jun and Fos proteins from HL-60 cell nuclear extract. Co-expression with Jun B in AP-1-deficient cells increased promoter activity by 3-fold. These data show that full p67(phox) promoter activity requires cooperation between myeloid-specific and nonmyeloid transcription factors, with AP-1 being the most critical for function.
Collapse
Affiliation(s)
- S L Li
- Department of Medicine, University of Texas Health Science Center and South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, Texas 78229-3900, USA
| | | | | | | | | |
Collapse
|