1
|
Marzulli M, Hall BL, Zhang M, Goins WF, Cohen JB, Glorioso JC. Novel mutations in U L24 and gH rescue efficient infection of an HSV vector retargeted to TrkA. Mol Ther Methods Clin Dev 2023; 30:208-220. [PMID: 37519407 PMCID: PMC10384243 DOI: 10.1016/j.omtm.2023.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
Transductional targeting of herpes simplex virus (HSV)-based gene therapy vectors offers the potential for improved tissue-specific delivery and can be achieved by modification of the viral entry machinery to incorporate ligands that bind the desired cell surface proteins. The interaction of nerve growth factor (NGF) with tropomyosin receptor kinase A (TrkA) is essential for survival of sensory neurons during development and is involved in chronic pain signaling. We targeted HSV infection to TrkA-bearing cells by replacing the signal peptide and HVEM binding domain of glycoprotein D (gD) with pre-pro-NGF. This TrkA-targeted virus (KNGF) infected cells via both nectin-1 and TrkA. However, infection through TrkA was inefficient, prompting a genetic search for KNGF mutants showing enhanced infection following repeat passage on TrkA-expressing cells. These studies revealed unique point mutations in envelope glycoprotein gH and in UL24, a factor absent from mature particles. Together these mutations rescued efficient infection of TrkA-expressing cells, including neurons, and facilitated the production of a completely retargeted KNGF derivative. These studies provide insight into HSV vector improvements that will allow production of replication-defective TrkA-targeted HSV for delivery to the peripheral nervous system and may be applied to other retargeted vector studies in the central nervous system.
Collapse
Affiliation(s)
- Marco Marzulli
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bonnie L. Hall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mingdi Zhang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - William F. Goins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Justus B. Cohen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph C. Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Paoletti F, Merzel F, Cassetta A, Ogris I, Covaceuszach S, Grdadolnik J, Lamba D, Golič Grdadolnik S. Endogenous modulators of neurotrophin signaling: Landscape of the transient ATP-NGF interactions. Comput Struct Biotechnol J 2021; 19:2938-2949. [PMID: 34136093 PMCID: PMC8164016 DOI: 10.1016/j.csbj.2021.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/02/2022] Open
Abstract
High-resolution solution NMR structure of rhNGF has been determined. Quinary interactions characterize ATP binding to rhNGF. SPR, ITC and STD-NMR reveal ATP binding to rhNGF with mM affinity. NMR and MD analysis pinpoint to the presence of two binding sites of ATP on rhNGF. Stoichiometry of ATP-Mg2+ or Zn2+-rhNGF mixtures affects KD affinity to TrkA/p75NTR.
The Nerve Growth Factor (NGF) neurotrophin acts in the maintenance and growth of neuronal populations. Despite the detailed knowledge of NGF’s role in neuron physiology, the structural and mechanistic determinants of NGF bioactivity modulated by essential endogenous ligands are still lacking. We present the results of an integrated structural and advanced computational approach to characterize the extracellular ATP-NGF interaction. We mapped by NMR the interacting surface and ATP orientation on NGF and revealed the functional role of this interaction in the binding to TrkA and p75NTR receptors by SPR. The role of divalent ions was explored in conjunction with ATP. Our results pinpoint ATP as a likely transient molecular modulator of NGF signaling, in health and disease states.
Collapse
Key Words
- ARIA, Ambiguous Restraints for Iterative Assignment
- ATP modulation
- BDNF, Brain Derived Neurotrophic Factor
- CARA, Computer Aided Resonance Assignment
- CS-E, Chrondroitin Sulfate E
- CSP, Chemical Shift Perturbation
- DSF, Differential Scanning Fluorimetry
- EI-MS, Electron Ionization Mass Spectrometry
- Endogenous ligands
- FGF2, Fibroblast Growth Factor 2
- FT-IR, Fourier Transform Infrared Spectroscopy
- HBD, Heparin Binding Domain
- HSQC, Heteronuclear Single Quantum Coherence
- ITC, Isothermal Titration Calorimetry
- MALDI-TOF MS, Matrix Assisted Laser Desorption Ionization-Time Of Flight Mass Spectrometry
- MD, Molecular Dynamics
- MS, Mass Spectrometry
- NGF interactions
- NGF, Nerve Growth Factor
- NMR, Nuclear Magnetic Resonance
- NOE, Nuclear Overhouser Effect
- NOESY, Nuclear Overhauser Effect Spectroscopy
- NT, NeuroTrophin
- Neurotrophins
- P20, Polysorbate 20
- PME, Particle Mesh Ewald
- RMSD, Root Mean Square Deviation
- SAR, Structure-Activity Relationship
- SPR, Surface Plasmon Resonance
- STD, Saturation-Transfer Difference
- TrkA, Tyrosine Kinase Receptor A
- TrkA, p75NTR receptors
- p75NTR, p75 NeuroTrophin Receptor
- proNGF, proNGF – NGF precursor
- rh-proNGF, recombinant human proNGF – NGF precursor
- rhNGF, recombinant human NGF
- rmNGF, recombinant mouse NGF
Collapse
Affiliation(s)
- Francesca Paoletti
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Franci Merzel
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Alberto Cassetta
- Institute of Crystallography - C.N.R.- Trieste Outstation. Area Science Park - Basovizza, S.S.14 - Km. 163.5, I-34149 Trieste, Italy
| | - Iza Ogris
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Sonia Covaceuszach
- Institute of Crystallography - C.N.R.- Trieste Outstation. Area Science Park - Basovizza, S.S.14 - Km. 163.5, I-34149 Trieste, Italy
| | - Jože Grdadolnik
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Doriano Lamba
- Institute of Crystallography - C.N.R.- Trieste Outstation. Area Science Park - Basovizza, S.S.14 - Km. 163.5, I-34149 Trieste, Italy.,Interuniversity Consortium "Biostructures and Biosystems National Institute", Viale delle Medaglie d'Oro 305, I-00136 Roma, Italy
| | - Simona Golič Grdadolnik
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| |
Collapse
|
3
|
Unveiling functional motions based on point mutations in biased signaling systems: A normal mode study on nerve growth factor bound to TrkA. PLoS One 2020; 15:e0231542. [PMID: 32497034 PMCID: PMC7272051 DOI: 10.1371/journal.pone.0231542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/26/2020] [Indexed: 11/19/2022] Open
Abstract
Many receptors elicit signal transduction by activating multiple intracellular pathways. This transduction can be triggered by a non-specific ligand, which simultaneously activates all the signaling pathways of the receptors. However, the binding of one biased ligand preferentially trigger one pathway over another, in a process called biased signaling. The identification the functional motions related to each of these distinct pathways has a direct impact on the development of new effective and specific drugs. We show here how to detect specific functional motions by considering the case of the NGF/TrkA-Ig2 complex. NGF-mediated TrkA receptor activation is dependent on specific structural motions that trigger the neuronal growth, development, and survival of neurons in nervous system. The R221W mutation in the ngf gene impairs nociceptive signaling. We discuss how the large-scale structural effects of this mutation lead to the suppression of collective motions necessary to induce TrkA activation of nociceptive signaling. Our results suggest that subtle changes in the NGF interaction network due to the point mutation are sufficient to inhibit the motions of TrkA receptors putatively linked to nociception. The methodological approach presented in this article, based jointly on the normal mode analysis and the experimentally observed functional alterations due to point mutations provides an essential tool to reveal the structural changes and motions linked to the disease, which in turn could be necessary for a drug design study.
Collapse
|
4
|
Triaca V, Fico E, Sposato V, Caioli S, Ciotti MT, Zona C, Mercanti D, La Mendola D, Satriano C, Rizzarelli E, Tirassa P, Calissano P. hNGF Peptides Elicit the NGF-TrkA Signalling Pathway in Cholinergic Neurons and Retain Full Neurotrophic Activity in the DRG Assay. Biomolecules 2020; 10:biom10020216. [PMID: 32024191 PMCID: PMC7072391 DOI: 10.3390/biom10020216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 12/18/2022] Open
Abstract
In the last decade, Nerve Growth Factor (NGF)-based clinical approaches have lacked specific and efficient Tyrosine Kinase A (TrkA) agonists for brain delivery. Nowadays, the characterization of novel small peptidomimetic is taking centre stage in preclinical studies, in order to overcome the main size-related limitation in brain delivery of NGF holoprotein for Central Nervous System (CNS) pathologies. Here we investigated the NGF mimetic properties of the human NGF 1–14 sequence (hNGF1–14) and its derivatives, by resorting to primary cholinergic and dorsal root ganglia (DRG) neurons. Briefly, we observed that: 1) hNGF1–14 peptides engage the NGF pathway through TrkA phosphorylation at tyrosine 490 (Y490), and activation of ShcC/PI3K and Plc-γ/MAPK signalling, promoting AKT-dependent survival and CREB-driven neuronal activity, as seen by levels of the immediate early gene c-Fos, of the cholinergic marker Choline Acetyltransferase (ChAT), and of Brain Derived Neurotrophic Factor (BDNF); 2) their NGF mimetic activity is lost upon selective TrkA inhibition by means of GW441756; 3) hNGF1–14 peptides are able to sustain DRG survival and differentiation in absence of NGF. Furthermore, the acetylated derivative Ac-hNGF1–14 demonstrated an optimal NGF mimetic activity in both neuronal paradigms and an electrophysiological profile similar to NGF in cholinergic neurons. Cumulatively, the findings here reported pinpoint the hNGF1–14 peptide, and in particular its acetylated derivative, as novel, specific and low molecular weight TrkA specific agonists in both CNS and PNS primary neurons.
Collapse
Affiliation(s)
- Viviana Triaca
- Institute of Biochemistry and Cell Biology, National Research Council (CNR-IBBC), International Campus A. Buzzati Traverso, Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
- Correspondence: ; Tel.: +39-06-90091357
| | - Elena Fico
- Institute of Biochemistry and Cell Biology, National Research Council (CNR-IBBC), at Department of Sense Organs, University of Rome “ La Sapienza”, Viale del Policlinico 155, 00161 Rome, Italy; (E.F.); (M.T.C.); (D.M.); (P.T.)
| | - Valentina Sposato
- European Brain Research Institute (EBRI Foundation), Viale Regina Elena 295, 00161 Rome, Italy; (V.S.); (P.C.)
| | - Silvia Caioli
- IRCCS S. Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; (S.C.); (C.Z.)
| | - Maria Teresa Ciotti
- Institute of Biochemistry and Cell Biology, National Research Council (CNR-IBBC), at Department of Sense Organs, University of Rome “ La Sapienza”, Viale del Policlinico 155, 00161 Rome, Italy; (E.F.); (M.T.C.); (D.M.); (P.T.)
| | - Cristina Zona
- IRCCS S. Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; (S.C.); (C.Z.)
- Department of Systems Medicine, University of Rome “TorVergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Delio Mercanti
- Institute of Biochemistry and Cell Biology, National Research Council (CNR-IBBC), at Department of Sense Organs, University of Rome “ La Sapienza”, Viale del Policlinico 155, 00161 Rome, Italy; (E.F.); (M.T.C.); (D.M.); (P.T.)
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, 56126 Pisa, Italy;
| | - Cristina Satriano
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (C.S.); (E.R.)
| | - Enrico Rizzarelli
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (C.S.); (E.R.)
- Institute of Crystallography, National Research Council (CNR-IC), Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology, National Research Council (CNR-IBBC), at Department of Sense Organs, University of Rome “ La Sapienza”, Viale del Policlinico 155, 00161 Rome, Italy; (E.F.); (M.T.C.); (D.M.); (P.T.)
| | - Pietro Calissano
- European Brain Research Institute (EBRI Foundation), Viale Regina Elena 295, 00161 Rome, Italy; (V.S.); (P.C.)
| |
Collapse
|
5
|
Travaglia A, Pietropaolo A, Di Martino R, Nicoletti VG, La Mendola D, Calissano P, Rizzarelli E. A small linear peptide encompassing the NGF N-terminus partly mimics the biological activities of the entire neurotrophin in PC12 cells. ACS Chem Neurosci 2015; 6:1379-92. [PMID: 25939060 DOI: 10.1021/acschemneuro.5b00069] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ever since the discovery of its neurite growth promoting activity in sympathetic and sensory ganglia, nerve growth factor (NGF) became the prototype of the large family of neurotrophins. The use of primary cultures and clonal cell lines has revealed several distinct actions of NGF and other neurotrophins. Among several models of NGF activity, the clonal cell line PC12 is the most widely employed. Thus, in the presence of NGF, through the activation of the transmembrane protein TrkA, these cells undergo a progressive mitotic arrest and start to grow electrically excitable neuritis. A vast number of studies opened intriguing aspects of NGF mechanisms of action, its biological properties, and potential use as therapeutic agents. In this context, identifying and utilizing small portions of NGF is of great interest and involves several human diseases including Alzheimer's disease. Here we report the specific action of the peptide encompassing the 1-14 sequence of the human NGF (NGF(1-14)), identified on the basis of scattered indications present in literature. The biological activity of NGF(1-14) was tested on PC12 cells, and its binding with TrkA was predicted by means of a computational approach. NGF(1-14) does not elicit the neurite outgrowth promoting activity, typical of the whole protein, and it only has a moderate action on PC12 proliferation. However, this peptide exerts, in a dose and time dependent fashion, an effective and specific NGF-like action on some highly conserved and biologically crucial intermediates of its intracellular targets such as Akt and CREB. These findings indicate that not all TrkA pathways must be at all times operative, and open the possibility of testing each of them in relation with specific NGF needs, biological actions, and potential therapeutic use.
Collapse
Affiliation(s)
- Alessio Travaglia
- Center for Neural Science, New York University, 4 Washington Place, New York, New York 10003, United States
| | - Adriana Pietropaolo
- Dipartimento di Scienze della Salute, Università di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Rossana Di Martino
- Istituto di Bioimmagini e Fisiologia Molecolare (IBFM)-CNR, C.da Pietrapollastra-Pisciotto, Cefalù, Palermo 90015, Italy
| | - Vincenzo G. Nicoletti
- Dipartimento di Scienze Biomediche e Biotecnologiche - Sezione di Biochimica Medica, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
- Istituto Nazionale Biostrutture e Biosistemi (INBB) − Sezione Biomolecole, Consorzio Interuniversitario, Viale Medaglie d’Oro 305, 00136 Roma, Italy
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Pietro Calissano
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano, 64-65, 00143 Rome, Italy
| | | |
Collapse
|
6
|
Zhao X, Zhou Y, Weissmiller AM, Pearn ML, Mobley WC, Wu C. Real-time imaging of axonal transport of quantum dot-labeled BDNF in primary neurons. J Vis Exp 2014:51899. [PMID: 25286194 PMCID: PMC4828072 DOI: 10.3791/51899] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BDNF plays an important role in several facets of neuronal survival, differentiation, and function. Structural and functional deficits in axons are increasingly viewed as an early feature of neurodegenerative diseases, including Alzheimer's disease (AD) and Huntington's disease (HD). As yet unclear is the mechanism(s) by which axonal injury is induced. We reported the development of a novel technique to produce biologically active, monobiotinylated BDNF (mBtBDNF) that can be used to trace axonal transport of BDNF. Quantum dot-labeled BDNF (QD-BDNF) was produced by conjugating quantum dot 655 to mBtBDNF. A microfluidic device was used to isolate axons from neuron cell bodies. Addition of QD-BDNF to the axonal compartment allowed live imaging of BDNF transport in axons. We demonstrated that QD-BDNF moved essentially exclusively retrogradely, with very few pauses, at a moving velocity of around 1.06 μm/sec. This system can be used to investigate mechanisms of disrupted axonal function in AD or HD, as well as other degenerative disorders.
Collapse
Affiliation(s)
- Xiaobei Zhao
- Department of Neurosciences, University of California, San Diego
| | - Yue Zhou
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University
| | | | - Matthew L Pearn
- Department of Anesthesiology, University of California, San Diego; VA San Diego Healthcare System
| | - William C Mobley
- Department of Neurosciences, University of California, San Diego
| | - Chengbiao Wu
- Department of Neurosciences, University of California, San Diego;
| |
Collapse
|
7
|
Hasche A, Ferenz KB, Rose K, König S, Humpf HU, Klumpp S, Krieglstein J. Binding of ATP to nerve growth factor: characterization and relevance for bioactivity. Neurochem Int 2009; 56:276-84. [PMID: 19897001 DOI: 10.1016/j.neuint.2009.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 10/20/2009] [Accepted: 10/28/2009] [Indexed: 11/15/2022]
Abstract
Growth factors and their mechanisms of action have been studied extensively. However, it remained widely unrecognized that binding of ATP to growth factors is a prerequisite for their bioactivity. Here we demonstrated the binding of ATP to nerve growth factor (NGF) as well as its relevance for neuroprotection. By using mass spectrometry-based methodology we identified one or two molecules of ATP as being bound to NGF. To test neuroprotective activity of NGF we used primary cultures of rat cortical neurons damaged by staurosporine. ATP was indispensable for the neuroprotective effect of NGF. When the ATP concentration in the culture medium was reduced below approximately 2 nM by adding alkaline phosphatase (AP) or ATPase the neuroprotective activity of NGF was abolished. Site-directed mutagenesis within the heparin-binding domain (HBD) of NGF abolished ATP-binding and the neuroprotective effect. Thus, NGF has to bind ATP to be capable of protecting neurons.
Collapse
Affiliation(s)
- Anja Hasche
- Institut für Pharmazeutische und Medizinische Chemie, Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Analysis of the structure of nerve growth factor (NGF)-tyrosine kinase receptor A (TrkA) complex, site-directed mutagenesis studies and results from chemical modification of amino acid residues have identified loop 1, loop 4, and the N-terminal region of the NGF molecule as the most relevant for its biological activity. We synthesized several peptides mimicking the two loops (1 and 4) linked together with an appropriate spacer, with or without the N-terminal region. Two peptides named NL1L4 and L1L4 demonstrated good NGF agonist activity at a concentration as low as 3 mum. They induced differentiation of chick dorsal root ganglia and stimulated tyrosine phosphorylation of TrkA, but not TrkB, receptor. In addition L1L4 was able to induce differentiation of PC12 cells. More interestingly, the peptide with the highest "in vitro" activity (L1L4) was shown to reduce neuropathic behavior and restore neuronal function in a rat model of peripheral neuropathic pain, thereby suggesting a potential therapeutic role for this NGF-mimetic peptide.
Collapse
|
9
|
Fayard B, Loeffler S, Weis J, Vögelin E, Krüttgen A. The secreted brain-derived neurotrophic factor precursor pro-BDNF binds to TrkB and p75NTR but not to TrkA or TrkC. J Neurosci Res 2005; 80:18-28. [PMID: 15704182 DOI: 10.1002/jnr.20432] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) binds to two cell surface receptors: TrkB receptors that promote neuronal survival and differentiation and p75NTR that induces apoptosis or survival. BDNF, as well as the other members of the neurotrophin family, is synthesized as a larger precursor, pro-BDNF, which undergoes posttranslational modifications and proteolytic processing by furin or related proteases. Both mature neurotrophins and uncleaved proneurotrophins are secreted from cells. The bioactivities of proneurotrophins could differ from those of mature, cleaved neurotrophins; therefore, we wanted to test whether pro-BDNF would differ from mature BDNF in its neurotrophin receptor binding and activation. A furin-resistant pro-BDNF, secreted from COS-7 cells, bound to TrkB-Fc and p75NTR-Fc, but not to TrkA-Fc or TrkC-Fc. Likewise, pro-BDNF elicited prototypical TrkB responses in biological assays, such as TrkB tyrosine phosphorylation, activation of ERK1/2, and neurite outgrowth. Moreover, mutation of the R103 residue of pro-BDNF abrogated its binding to TrkB-Fc but not to p75NTR-Fc. Taken together, these data indicate that pro-BDNF binds to and activates TrkB and could be involved in TrkB-mediated neurotrophic activity in vivo.
Collapse
Affiliation(s)
- B Fayard
- Division of Neuropathology, Institute of Pathology, University of Bern, Bern, Switzerland.
| | | | | | | | | |
Collapse
|
10
|
Fahnestock M, Yu G, Michalski B, Mathew S, Colquhoun A, Ross GM, Coughlin MD. The nerve growth factor precursor proNGF exhibits neurotrophic activity but is less active than mature nerve growth factor. J Neurochem 2004; 89:581-92. [PMID: 15086515 DOI: 10.1111/j.1471-4159.2004.02360.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nerve growth factor (NGF) promotes neuronal survival and differentiation and stimulates neurite outgrowth. NGF is synthesized as a precursor, proNGF, which undergoes post-translational processing to generate mature beta-NGF. It has been assumed that, in vivo, NGF is largely processed into the mature form and that mature NGF accounts for the biological activity. However, we recently showed that proNGF is abundant in CNS tissues whereas mature NGF is undetectable, suggesting that proNGF has biological functions beyond its role as a precursor. To determine whether proNGF exhibits biological activity, we mutagenized the precursor-processing site and expressed unprocessed, cleavage-resistant proNGF protein in insect cells. Survival and neurite outgrowth assays on murine superior cervical ganglion neurons and PC12 cells indicated that proNGF exhibits neurotrophic activity similar to mature 2.5S NGF, but is approximately fivefold less active. ProNGF binds to the high-affinity receptor, TrkA, as determined by cross-linking to PC12 cells, and is also slightly less active than mature NGF in promoting phosphorylation of TrkA and its downstream signaling effectors, Erk1/2, in PC12 and NIH3T3-TrkA cells. These data, coupled with our previous report that proNGF is the major form of NGF in the CNS, suggest that proNGF could be responsible for much of the biological activity normally attributed to mature NGF in vivo.
Collapse
Affiliation(s)
- Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
11
|
Kapur TA, Shoichet MS. Chemically-bound nerve growth factor for neural tissue engineering applications. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2004; 14:383-94. [PMID: 12747676 DOI: 10.1163/156856203321478883] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In order to promote regeneration after spinal cord injury, growth factors have been applied in vivo to rescue ailing neurons and provide a path finding signal for regenerating neurites. We previously demonstrated that soluble growth factor concentration gradients can guide axons over long distances, but this model is inherently limited to in vitro applications. To translate the use of growth factor gradients to an implantible device for in vivo studies, we developed a photochemical method to bind nerve growth factor (NGF) to microporous poly(2-hydroxyethylmethacrylate) (PHEMA) gels and tested bioactivity in vitro. A cell adhesive photoreactive poly(allylamine) (PAA) was synthesized and characterized. This photoreactive PAA was applied to the surface of the PHEMA gels to provide both a cell adhesive layer and a photoreactive handle for further NGF immobilization. Using a direct ELISA technique, the amount of NGF immobilized on the surface of PHEMA after UV exposure was determined to be 5.65 +/- 0.82 ng/cm2 or 3.4% of the originally applied NGF. A cell-based assay was performed to determine the bioactivity of the immobilized NGF. Using pheochromocytoma (PC-12) cells, 30 +/- 7% of the cell population responded to bound NGF, a response statistically similar to that of cells cultured on collagen in the presence of 40 ng/ml soluble NGF of 39 +/- 12%. These results demonstrate that PHEMA with photochemically bound NGF is bioactive. This photochemical technique may be useful to spatially control the amount of NGF bound to PHEMA using light and thus build a stable concentration gradient.
Collapse
Affiliation(s)
- Terri Adams Kapur
- Department of Chemical Engineering and Applied Chemistry University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
| | | |
Collapse
|
12
|
Affiliation(s)
- Mookda Pattarawarapan
- Texas A & M University, Department of Chemistry, PO Box 30012, College Station, Texas 77841-3012, USA
| | | |
Collapse
|
13
|
Fahnestock M, Yu G, Coughlin MD. ProNGF: a neurotrophic or an apoptotic molecule? PROGRESS IN BRAIN RESEARCH 2004; 146:101-10. [PMID: 14699959 DOI: 10.1016/s0079-6123(03)46007-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nerve growth factor (NGF) acts on various classes of central and peripheral neurons to promote cell survival, stimulate neurite outgrowth and modulate differentiation. NGF is synthesized as a precursor, proNGF, which undergoes processing to generate mature NGF. It has been assumed, based on studies in the mouse submandibular gland, that NGF in vivo is largely mature NGF, and that mature NGF accounts for the molecule's biological activity. However, recently we have shown that proNGF is abundant in central nervous system tissues whereas mature NGF is undetectable, suggesting that proNGF may have a function distinct from its role as a precursor. A recent report that proNGF has apoptotic activity contrasts with other data demonstrating that proNGF has neurotrophic activity. This chapter will review the structure and processing of NGF and what is known about the biological activity of proNGF. Possible reasons for the discrepancies in recent reports are discussed.
Collapse
Affiliation(s)
- Margaret Fahnestock
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada.
| | | | | |
Collapse
|
14
|
Vesa J, Krüttgen A, Cosgaya JM, Shooter EM. Palmitoylation of the p75 neurotrophin receptor has no effect on its interaction with TrkA or on TrkA-mediated down-regulation of cell adhesion molecules. J Neurosci Res 2000; 62:225-33. [PMID: 11020215 DOI: 10.1002/1097-4547(20001015)62:2<225::aid-jnr7>3.0.co;2-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The short- and long-term effects of nerve growth factor (NGF) were studied on fibroblast cell lines stably expressing both TrkA and either wild-type p75 or a mutant that lacks the palmitoylation site of p75. The lack of palmitoylation had no effect on the ability of p75 to enhance the short-term NGF-induced tyrosine phosphorylation of TrkA over a wide range of NGF concentrations. Long-term treatment of the cell lines with NGF led to loss of cell adhesion to the culture dishes that increased with increasing concentrations of NGF and increased expression of TrkA. Treatment of the cell lines with mutant NGFs that bound selectively to TrkA or p75 alone revealed that cell detachment was mediated solely through TrkA. Increased cell detachment correlated with a decrease in the expression levels of fibronectin and cadherin, cell surface molecules involved in cell adhesion. The loss of cell adhesion with the cell line expressing the palmitoylation-deficient p75 were identical to those expressing wild type, as was anticipated from the lack of involvement of p75 in this process.
Collapse
Affiliation(s)
- J Vesa
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305-5125, USA
| | | | | | | |
Collapse
|
15
|
Xie Y, Tisi MA, Yeo TT, Longo FM. Nerve growth factor (NGF) loop 4 dimeric mimetics activate ERK and AKT and promote NGF-like neurotrophic effects. J Biol Chem 2000; 275:29868-74. [PMID: 10896671 DOI: 10.1074/jbc.m005071200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous work indicating that nerve growth factor (NGF) protein loops 2 and 4 interact with TrkA receptors raise the possibility that small molecule mimetics corresponding to TrkA-interacting domains that have NGF agonist activity can be developed. We applied our previously developed strategy of dimeric peptidomimetics to address the hypothesis that loop 4 small molecule dimeric mimetics would activate TrkA-related signal transduction and mimic NGF neurotrophic effects in a structure-specific manner. A loop 4 cyclized peptide dimer demonstrated NGF-like neurotrophic activity, whereas peptides with scrambled sequence, added or substituted residues, or cyclized in monomeric form were inactive. Activity was blocked by the TrkA inhibitors K252a and AG879 but not by NGF p75 receptor blocking antibody. Dimeric, but not monomeric, peptides partially blocked NGF activity. This profile was consistent with that of a NGF partial agonist. ERK and AKT phosphorylation was stimulated only by biologically active peptides and was blocked by K252a. The ERK inhibitor U0126 blocked the neurite- but not the survival-promoting activity of both NGF and active peptide. These studies support the proof of concept that small molecule NGF loop 4 mimetics can activate NGF signaling pathways and can mimic death-preventing and neurite-promoting effects of NGF. This finding will guide the rational design of NGF single-domain mimetics and contribute to elucidating NGF signal transduction mechanisms.
Collapse
Affiliation(s)
- Y Xie
- Department of Neurology, Veterans Affairs Medical Center and University of California, San Francisco, California 94121, USA
| | | | | | | |
Collapse
|
16
|
Coulibaly S, Besenfelder U, Fleischmann M, Zinovieva N, Grossmann A, Wozny M, Bartke I, Tögel M, Müller M, Brem G. Human nerve growth factor beta (hNGF-beta): mammary gland specific expression and production in transgenic rabbits. FEBS Lett 1999; 444:111-6. [PMID: 10037158 DOI: 10.1016/s0014-5793(98)01728-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transgenic rabbits carrying gene constructs encoding human nerve growth factor beta (hNGF-beta) cDNA were generated. Expression of hNGF-beta mRNA was restricted to the mammary gland of lactating rabbits. Western Blot analysis revealed a polypeptide of 13.2 kDa in the milk of transgenic animals. hNGF-beta was purified from the milk by a two-step chromatographic procedure. Electrospray mass spectroscopy analysis of purified hNGF-beta depicted a molecular weight of 13,261 Da per subunit. The biological activity of the hNGF-beta was tested using PC12W2 cells and cultures of dorsal root ganglion neurons from chicken embryos. Crude defatted milk from transgenic animals and purified hNGF-beta demonstrated full biological activity when compared to commercial recombinant hNGF-beta.
Collapse
Affiliation(s)
- S Coulibaly
- Ludwig Boltzmann Institute for Immuno-, Cyto- and Molecular Genetic Research, Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Saragovi HU, Zheng W, Maliartchouk S, DiGugliemo GM, Mawal YR, Kamen A, Woo SB, Cuello AC, Debeir T, Neet KE. A TrkA-selective, fast internalizing nerve growth factor-antibody complex induces trophic but not neuritogenic signals. J Biol Chem 1998; 273:34933-40. [PMID: 9857023 DOI: 10.1074/jbc.273.52.34933] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nerve growth factor (NGF) is a neurotrophin that induces neuritogenic and trophic signals by binding to TrkA and/or p75 receptors. We report a comparative study of the binding, internalization, and biological activity of NGF versus that of NGF in association with an anti-NGF monoclonal antibody (mAb NGF30), directed against the C termini of NGF. NGF.mAb complexes do not bind p75 effectively but bind TrkA with high affinity. After binding, NGF. mAb complexes stimulate internalization faster and to a larger degree than NGF. NGF.mAb-induced activation of TrkA, Shc, and MAPK is transient compared with NGF-induced activation; yet NGF and NGF. mAb afford identical trophic responses. In contrast, NGF induces Suc-1-associated neurotrophic activating protein phosphorylation and neuritogenic differentiation, but NGF.mAb does not. Thus, an absolute separation of trophic and neuritogenic function is seen for NGF.mAb, suggesting that biological response modifiers of neurotrophins can afford ligands with selected activities.
Collapse
Affiliation(s)
- H U Saragovi
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec H3G 1Y6, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Beglova N, LeSauteur L, Ekiel I, Saragovi HU, Gehring K. Solution structure and internal motion of a bioactive peptide derived from nerve growth factor. J Biol Chem 1998; 273:23652-8. [PMID: 9726969 DOI: 10.1074/jbc.273.37.23652] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The conformation and internal dynamics of a bioactive cyclic peptide, N-acetyl-YCTDEKQCY, derived from the C-D loop of beta-nerve growth factor (beta-NGF) were analyzed by solution NMR spectroscopy. NMR experimental data were used to calculate an ensemble of peptide structures. All of the structures had a beta-turn at residues Asp4-Gln7 but could be divided into two families according the presence or absence of a hydrogen bond at Gln7. Comparison of the calculated structures with the corresponding C-D loops from the x-ray structures of the NGF revealed striking similarity. The orientation of Glu5, Lys6, and Gln7 side chains in the NGF mimetic was very similar to the C-D loop of NGF. These residues are known to participate in interactions with the TrkA receptor. Relaxation measurements of the peptidomimetic alpha-carbons at 13C natural abundance and calculated dynamic parameters suggest that the loop region of peptide is well structured but that residues Thr3, Asp4, Glu5, and Lys6 undergo slow conformational exchange. These results suggest that conformational similarity and possibly peptide dynamics are responsible for the bioactivity of the peptide.
Collapse
Affiliation(s)
- N Beglova
- Department of Biochemistry and Montreal Joint Centre for Structural Biology, McGill University, 3655 Drummond St., Montréal, Québec H3G 1Y6, Canada
| | | | | | | | | |
Collapse
|
19
|
Krüttgen A, Möller JC, Heymach JV, Shooter EM. Neurotrophins induce release of neurotrophins by the regulated secretory pathway. Proc Natl Acad Sci U S A 1998; 95:9614-9. [PMID: 9689129 PMCID: PMC21387 DOI: 10.1073/pnas.95.16.9614] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Recent studies have established that neurotrophin synthesis and secretion are regulated by activity and that these factors are involved in activity-dependent processes in the nervous system. Neurotrophins also are known to induce increases in intracellular calcium, a trigger for regulated secretion. This finding raises the possibility that neurotrophins themselves may stimulate regulated secretion of neurotrophins. To address this question, we studied the release of neurotrophins from transfected PC12 cells, a widely used model for neuronal secretion and neurotrophin signal transduction. We found that neurotrophins induced the regulated secretion of brain-derived neurotrophic factor, neurotrophin-3 (NT-3), and neurotrophin-4/5. The effect of brain-derived neurotrophic factor on release of NT-3 could be abolished by REX, a p75 blocking antibody, but not by K252a, an inhibitor of neurotrophin tyrosine kinase receptor (Trk) signaling. The nerve growth factor effect on release of NT-3 could be blocked only by simultaneous application of REX and K252a, suggesting that they are mediated by TrkA as well as p75. Our data show that neurotrophins are able to induce the regulated secretion of neurotrophins and suggest a signal-transducing role for both TrkA and p75 in this process. The neurotrophin-induced release of neurotrophins may be relevant for activity-dependent processes such as synaptic plasticity and memory formation.
Collapse
Affiliation(s)
- A Krüttgen
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305-5125, USA
| | | | | | | |
Collapse
|