1
|
Martin CE, Phippen NJ, Keyvani Chahi A, Tilak M, Banerjee SL, Lu P, New LA, Williamson CR, Platt MJ, Simpson JA, Krendel M, Bisson N, Gingras AC, Jones N. Complementary Nck1/2 Signaling in Podocytes Controls α Actinin-4-Mediated Actin Organization, Adhesion, and Basement Membrane Composition. J Am Soc Nephrol 2022; 33:1546-1567. [PMID: 35906089 PMCID: PMC9342632 DOI: 10.1681/asn.2021101343] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/26/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Maintenance of the kidney filtration barrier requires coordinated interactions between podocytes and the underlying glomerular basement membrane (GBM). GBM ligands bind podocyte integrins, which triggers actin-based signaling events critical for adhesion. Nck1/2 adaptors have emerged as essential regulators of podocyte cytoskeletal dynamics. However, the precise signaling mechanisms mediated by Nck1/2 adaptors in podocytes remain to be fully elucidated. METHODS We generated podocytes deficient in Nck1 and Nck2 and used transcriptomic approaches to profile expression differences. Proteomic techniques identified specific binding partners for Nck1 and Nck2 in podocytes. We used cultured podocytes and mice deficient in Nck1 and/or Nck2, along with podocyte injury models, to comprehensively verify our findings. RESULTS Compound loss of Nck1/2 altered expression of genes involved in actin binding, cell adhesion, and extracellular matrix composition. Accordingly, Nck1/2-deficient podocytes showed defects in actin organization and cell adhesion in vitro, with podocyte detachment and altered GBM morphology present in vivo. We identified distinct interactomes for Nck1 and Nck2 and uncovered a mechanism by which Nck1 and Nck2 cooperate to regulate actin bundling at focal adhesions via α actinin-4. Furthermore, loss of Nck1 or Nck2 resulted in increased matrix deposition in vivo, with more prominent defects in Nck2-deficient mice, consistent with enhanced susceptibility to podocyte injury. CONCLUSION These findings reveal distinct, yet complementary, roles for Nck proteins in regulating podocyte adhesion, controlling GBM composition, and sustaining filtration barrier integrity.
Collapse
Affiliation(s)
- Claire E Martin
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Noah J Phippen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Ava Keyvani Chahi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Manali Tilak
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Sara L Banerjee
- Division of Oncology, Centre de Recherche du Centre Hospitalier Universitaire de Quebec-Laval University, Quebec City, Quebec, Canada.,Centre de Recherche sur le Cancer de l'Université Laval, Quebec City, Quebec, Canada
| | - Peihua Lu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Laura A New
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Casey R Williamson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Mathew J Platt
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, Ontario, Canada
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, Ontario, Canada
| | - Mira Krendel
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Nicolas Bisson
- Division of Oncology, Centre de Recherche du Centre Hospitalier Universitaire de Quebec-Laval University, Quebec City, Quebec, Canada.,Centre de Recherche sur le Cancer de l'Université Laval, Quebec City, Quebec, Canada.,PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, Quebec, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
2
|
Biscontin A, Zarantonello L, Russo A, Costa R, Montagnese S. Toward a Molecular Approach to Chronotype Assessment. J Biol Rhythms 2022; 37:272-282. [PMID: 35583112 DOI: 10.1177/07487304221099365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of the present study was to develop a Polygenic Score-based model for molecular chronotype assessment. Questionnaire-based phenotypical chronotype assessment was used as a reference. In total, 54 extremely morning/morning (MM/M; 35 females, 39.7 ± 3.8 years) and 44 extremely evening/evening (EE/E; 20 females, 27.3 ± 7.7 years) individuals donated a buccal DNA sample for genotyping by sequencing of the entire genetic variability of 19 target genes known to be involved in circadian rhythmicity and/or sleep duration. Targeted genotyping was performed using the single primer enrichment technology and a specifically designed panel of 5526 primers. Among 2868 high-quality polymorphisms, a cross-validation approach lead to the identification of 83 chronotype predictive variants, including previously known and also novel chronotype-associated polymorphisms. A large (35 single-nucleotide polymorphisms [SNPs]) and also a small (13 SNPs) panel were obtained, both with an estimated predictive validity of approximately 80%. Potential mechanistic hypotheses for the role of some of the newly identified variants in modulating chronotype are formulated. Once validated in independent populations encompassing the whole range of chronotypes, the identified panels might become useful within the setting of both circadian public health initiatives and precision medicine.
Collapse
Affiliation(s)
| | | | - Antonella Russo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Rodolfo Costa
- Department of Biology, University of Padova, Padova, Italy.,Institute of Neuroscience, National Research Council, Padova, Italy.,Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | | |
Collapse
|
3
|
Haider N, Dusseault J, Larose L. Nck1 Deficiency Impairs Adipogenesis by Activation of PDGFRα in Preadipocytes. iScience 2018; 6:22-37. [PMID: 30240612 PMCID: PMC6137712 DOI: 10.1016/j.isci.2018.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/22/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023] Open
Abstract
Obesity results from an excessive expansion of white adipose tissue (WAT), which is still poorly understood from an etiologic-mechanistic perspective. Here, we report that Nck1, a Src homology domain-containing adaptor, is upregulated during WAT expansion and in vitro adipogenesis. In agreement, Nck1 mRNA correlates positively with peroxisome proliferator-activated receptor (PPAR) γ and adiponectin mRNAs in the WAT of obese humans, whereas Nck1-deficient mice display smaller WAT depots with reduced number of adipocyte precursors and accumulation of extracellular matrix. Furthermore, silencing Nck1 in 3T3-L1 preadipocytes increases the proliferation and expression of genes encoding collagen, whereas it decreases the expression of adipogenic markers and impairs adipogenesis. Silencing Nck1 in 3T3-L1 preadipocytes also promotes the expression of platelet-derived growth factor (PDGF)-A and platelet-derived growth factor receptor (PDGFR) α activation and signaling. Preventing PDGFRα activation using imatinib, or through PDGF-A or PDGFRα deficiency, inhibits collagen expression in Nck1-deficient preadipocytes. Finally, imatinib rescues differentiation of Nck1-deficient preadipocytes. Altogether, our findings reveal that Nck1 modulates WAT development through PDGFRα-dependent remodeling of preadipocytes.
Collapse
Affiliation(s)
- Nida Haider
- Division of Experimental Medicine, Department of Medicine, McGill University and The Research Institute of McGill University Health Centre, Glen Site, Bloc E, Rm E02-7244, 1001 Decarie Boulevard, Montreal, QC H4A 3J1 Canada
| | - Julie Dusseault
- Division of Experimental Medicine, Department of Medicine, McGill University and The Research Institute of McGill University Health Centre, Glen Site, Bloc E, Rm E02-7244, 1001 Decarie Boulevard, Montreal, QC H4A 3J1 Canada
| | - Louise Larose
- Division of Experimental Medicine, Department of Medicine, McGill University and The Research Institute of McGill University Health Centre, Glen Site, Bloc E, Rm E02-7244, 1001 Decarie Boulevard, Montreal, QC H4A 3J1 Canada.
| |
Collapse
|
4
|
Kefalas G, Jouvet N, Baldwin C, Estall JL, Larose L. Peptide-based sequestration of the adaptor protein Nck1 in pancreatic β cells enhances insulin biogenesis and protects against diabetogenic stresses. J Biol Chem 2018; 293:12516-12524. [PMID: 29941454 DOI: 10.1074/jbc.ra118.002728] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 06/16/2018] [Indexed: 01/14/2023] Open
Abstract
One feature of diabetes is the failure of pancreatic β cells to produce insulin, but the molecular mechanisms leading to this failure remain unclear. Increasing evidence supports a role for protein kinase R-like endoplasmic reticulum kinase (PERK) in the development and function of healthy pancreatic β cells. Previously, our group identified the adaptor protein Nck1 as a negative regulator of PERK. Indeed, we demonstrated that Nck1, by directly binding PERK autophosphorylated on Tyr561, limits PERK activation and signaling. Accordingly, we found that stable depletion of Nck1 in β cells promotes PERK activation and signaling, increases insulin biosynthesis, and improves cell viability in response to diabetes-related stresses. Herein, we explored the therapeutic potential of abrogating the interaction between Nck and PERK to improve β-cell function and survival. To do so, we designed and used a peptide containing the minimal PERK sequence involved in binding Nck1 conjugated to the cell-permeable protein transduction domain from the HIV protein TAT. In the current study, we confirm that the synthetic TAT-Tyr(P)561 phosphopeptide specifically binds the SH2 domain of Nck and prevents Nck interaction with PERK, thereby promoting basal PERK activation. Moreover, we report that treatment of β cells with TAT-Tyr(P)561 inhibits glucolipotoxicity-induced apoptosis, whereas it enhances insulin production and secretion. Taken together, our results support the potential of sequestering Nck using a synthetic peptide to enhance basal PERK activation and create more robust β cells.
Collapse
Affiliation(s)
- George Kefalas
- From the Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,the Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada, and
| | - Nathalie Jouvet
- the Institut de Recherches Cliniques de Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Cindy Baldwin
- From the Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,the Institut de Recherches Cliniques de Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Jennifer L Estall
- the Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada, and .,the Institut de Recherches Cliniques de Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Louise Larose
- From the Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada, .,the Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada, and
| |
Collapse
|
5
|
Turco M, Biscontin A, Corrias M, Caccin L, Bano M, Chiaromanni F, Salamanca M, Mattei D, Salvoro C, Mazzotta G, De Pittà C, Middleton B, Skene DJ, Montagnese S, Costa R. Diurnal preference, mood and the response to morning light in relation to polymorphisms in the human clock gene PER3. Sci Rep 2017; 7:6967. [PMID: 28761043 PMCID: PMC5537342 DOI: 10.1038/s41598-017-06769-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/16/2017] [Indexed: 12/23/2022] Open
Abstract
PER3 gene polymorphisms have been associated with differences in human sleep-wake phenotypes, and sensitivity to light. The aims of this study were to assess: i) the frequency of allelic variants at two PER3 polymorphic sites (rs57875989 length polymorphism: PER3 4, PER3 5; rs228697 SNP: PER3 C, PER3 G) in relation to sleep-wake timing; ii) the effect of morning light on behavioural/circadian variables in PER3 4 /PER3 4 and PER3 5 /PER3 5 homozygotes. 786 Caucasian subjects living in Northern Italy donated buccal DNA and completed diurnal preference, sleep quality/timing and sleepiness/mood questionnaires. 19 PER3 4 /PER3 4 and 11 PER3 5 /PER3 5 homozygotes underwent morning light administration, whilst monitoring sleep-wake patterns and the urinary 6-sulphatoxymelatonin (aMT6s) rhythm. No significant relationship was observed between the length polymorphism and diurnal preference. By contrast, a significant association was observed between the PER3 G variant and morningness (OR = 2.10), and between the PER3 G-PER3 4 haplotype and morningness (OR = 2.19), for which a mechanistic hypothesis is suggested. No significant differences were observed in sleep timing/aMT6s rhythms between PER3 5 /PER3 5 and PER3 4 /PER3 4 subjects at baseline. After light administration, PER3 4 /PER3 4 subjects advanced their aMT6s acrophase (p < 0.05), and showed a trend of advanced sleep-wake timing. In conclusion, significant associations were observed between PER3 polymorphic variants/their combinations and both diurnal preference and the response to light.
Collapse
Affiliation(s)
- M Turco
- Department of Medicine, University of Padova, Padova, Italy
| | - A Biscontin
- Department of Biology, University of Padova, Padova, Italy
| | - M Corrias
- Department of Medicine, University of Padova, Padova, Italy.,Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - L Caccin
- Department of Biology, University of Padova, Padova, Italy
| | - M Bano
- Department of Medicine, University of Padova, Padova, Italy
| | - F Chiaromanni
- Department of Medicine, University of Padova, Padova, Italy
| | - M Salamanca
- Department of Medicine, University of Padova, Padova, Italy
| | - D Mattei
- Department of Medicine, University of Padova, Padova, Italy
| | - C Salvoro
- Department of Biology, University of Padova, Padova, Italy
| | - G Mazzotta
- Department of Biology, University of Padova, Padova, Italy
| | - C De Pittà
- Department of Biology, University of Padova, Padova, Italy
| | - B Middleton
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - D J Skene
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - S Montagnese
- Department of Medicine, University of Padova, Padova, Italy
| | - R Costa
- Department of Biology, University of Padova, Padova, Italy.
| |
Collapse
|
6
|
New LA, Martin CE, Scott RP, Platt MJ, Keyvani Chahi A, Stringer CD, Lu P, Samborska B, Eremina V, Takano T, Simpson JA, Quaggin SE, Jones N. Nephrin Tyrosine Phosphorylation Is Required to Stabilize and Restore Podocyte Foot Process Architecture. J Am Soc Nephrol 2016; 27:2422-35. [PMID: 26802179 DOI: 10.1681/asn.2015091048] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/17/2015] [Indexed: 11/03/2022] Open
Abstract
Podocytes are specialized epithelial cells of the kidney blood filtration barrier that contribute to permselectivity via a series of interdigitating actin-rich foot processes. Positioned between adjacent projections is a unique cell junction known as the slit diaphragm, which is physically connected to the actin cytoskeleton via the transmembrane protein nephrin. Evidence indicates that tyrosine phosphorylation of the intracellular tail of nephrin initiates signaling events, including recruitment of cytoplasmic adaptor proteins Nck1 and Nck2 that regulate actin cytoskeletal dynamics. Nephrin tyrosine phosphorylation is altered in human and experimental renal diseases characterized by pathologic foot process remodeling, prompting the hypothesis that phosphonephrin signaling directly influences podocyte morphology. To explore this possibility, we generated and analyzed knockin mice with mutations that disrupt nephrin tyrosine phosphorylation and Nck1/2 binding (nephrin(Y3F/Y3F) mice). Homozygous nephrin(Y3F/Y3F) mice developed progressive proteinuria accompanied by structural changes in the filtration barrier, including podocyte foot process effacement, irregular thickening of the glomerular basement membrane, and dilated capillary loops, with a similar but later onset phenotype in heterozygous animals. Furthermore, compared with wild-type mice, nephrin(Y3F/Y3F) mice displayed delayed recovery in podocyte injury models. Profiling of nephrin tyrosine phosphorylation dynamics in wild-type mice subjected to podocyte injury indicated site-specific differences in phosphorylation at baseline, injury, and recovery, which correlated with loss of nephrin-Nck1/2 association during foot process effacement. Our results define an essential requirement for nephrin tyrosine phosphorylation in stabilizing podocyte morphology and suggest a model in which dynamic changes in phosphotyrosine-based signaling confer plasticity to the podocyte actin cytoskeleton.
Collapse
Affiliation(s)
- Laura A New
- Departments of Molecular and Cellular Biology and
| | | | - Rizaldy P Scott
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Feinberg Cardiovascular Research Institute and Division of Nephrology and Hypertension, Northwestern University, Chicago, Illinois; and
| | - Mathew J Platt
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | | | | | - Peihua Lu
- Departments of Molecular and Cellular Biology and
| | | | - Vera Eremina
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Tomoko Takano
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Jeremy A Simpson
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Susan E Quaggin
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Feinberg Cardiovascular Research Institute and Division of Nephrology and Hypertension, Northwestern University, Chicago, Illinois; and
| | - Nina Jones
- Departments of Molecular and Cellular Biology and
| |
Collapse
|
7
|
Chen J, Leskov IL, Yurdagul A, Thiel B, Kevil CG, Stokes KY, Orr AW. Recruitment of the adaptor protein Nck to PECAM-1 couples oxidative stress to canonical NF-κB signaling and inflammation. Sci Signal 2015; 8:ra20. [PMID: 25714462 DOI: 10.1126/scisignal.2005648] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oxidative stress stimulates nuclear factor κB (NF-κB) activation and NF-κB-dependent proinflammatory gene expression in endothelial cells during several pathological conditions, including ischemia/reperfusion injury. We found that the Nck family of adaptor proteins linked tyrosine kinase signaling to oxidative stress-induced activation of NF-κB through the classic IκB kinase-dependent pathway. Depletion of Nck prevented oxidative stress induced by exogenous hydrogen peroxide or hypoxia/reoxygenation injury from activating NF-κB in endothelial cells, increasing the abundance of the proinflammatory molecules ICAM-1 (intracellular adhesion molecule-1) and VCAM-1 (vascular cell adhesion molecule-1) and recruiting leukocytes. Nck depletion also attenuated endothelial cell expression of genes encoding proinflammatory factors but not those encoding antioxidants. Nck promoted oxidative stress-induced activation of NF-κB by coupling the tyrosine phosphorylation of PECAM-1 (platelet endothelial cell adhesion molecule-1) to the activation of p21-activated kinase, which mediates oxidative stress-induced NF-κB signaling. Consistent with this mechanism, treatment of mice subjected to ischemia/reperfusion injury in the cremaster muscle with a Nck inhibitory peptide blocked leukocyte adhesion and emigration and the accompanying vascular leak. Together, these data identify Nck as an important mediator of oxidative stress-induced inflammation and a potential therapeutic target for ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Jie Chen
- Department of Pathology, Louisiana State University (LSU) Health Sciences Center Shreveport, Shreveport, LA 71130, USA
| | - Igor L Leskov
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center Shreveport, Shreveport, LA 71130, USA
| | - Arif Yurdagul
- Department Cell Biology and Anatomy, LSU Health Sciences Center Shreveport, Shreveport, LA 71130, USA
| | - Bonnie Thiel
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Christopher G Kevil
- Department of Pathology, Louisiana State University (LSU) Health Sciences Center Shreveport, Shreveport, LA 71130, USA. Department of Molecular and Cellular Physiology, LSU Health Sciences Center Shreveport, Shreveport, LA 71130, USA. Department Cell Biology and Anatomy, LSU Health Sciences Center Shreveport, Shreveport, LA 71130, USA
| | - Karen Y Stokes
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center Shreveport, Shreveport, LA 71130, USA
| | - A Wayne Orr
- Department of Pathology, Louisiana State University (LSU) Health Sciences Center Shreveport, Shreveport, LA 71130, USA. Department Cell Biology and Anatomy, LSU Health Sciences Center Shreveport, Shreveport, LA 71130, USA.
| |
Collapse
|
8
|
Lettau M, Kabelitz D, Janssen O. SDF1α-induced interaction of the adapter proteins Nck and HS1 facilitates actin polymerization and migration in T cells. Eur J Immunol 2014; 45:551-61. [PMID: 25359136 DOI: 10.1002/eji.201444473] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 10/07/2014] [Accepted: 10/24/2014] [Indexed: 12/22/2022]
Abstract
Noncatalytic region of tyrosine kinase (Nck) is an adapter protein that comprises one SH2 (Src homology) domain and three SH3 domains. Nck links receptors and receptor-associated tyrosine kinases or adapter proteins to proteins that regulate the actin cytoskeleton. Whereas the SH2 domain binds to phosphorylated receptors or associated phosphoproteins, individual interactions of the SH3 domains with proline-based recognition motifs result in the formation of larger protein complexes. In T cells, changes in cell polarity and morphology during T-cell activation and effector function require the T-cell receptor-mediated recruitment and activation of actin-regulatory proteins to initiate cytoskeletal reorganization at the immunological synapse. We previously identified the adapter protein HS1 as a putative Nck-interacting protein. We now demonstrate that the SH2 domain of Nck specifically interacts with HS1 upon phosphorylation of its tyrosine residue 378. We report that in human T cells, ligation of the chemokine receptor CXCR4 by stromal cell-derived factor 1α (SDF1α) induces a rapid and transient phosphorylation of tyrosine 378 of HS1 resulting in an increased association with Nck. Consequently, siRNA-mediated downregulation of HS1 and/or Nck impairs SDF1α-induced actin polymerization and T-cell migration.
Collapse
Affiliation(s)
- Marcus Lettau
- Institute of Immunology, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | | |
Collapse
|
9
|
Hida A, Kitamura S, Katayose Y, Kato M, Ono H, Kadotani H, Uchiyama M, Ebisawa T, Inoue Y, Kamei Y, Okawa M, Takahashi K, Mishima K. Screening of clock gene polymorphisms demonstrates association of a PER3 polymorphism with morningness-eveningness preference and circadian rhythm sleep disorder. Sci Rep 2014; 4:6309. [PMID: 25201053 PMCID: PMC4158573 DOI: 10.1038/srep06309] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/19/2014] [Indexed: 01/01/2023] Open
Abstract
A system of self-sustained biological clocks controls the 24-h rhythms of behavioral and physiological processes such as the sleep-wake cycle. The circadian clock system is regulated by transcriptional and translational negative feedback loops of multiple clock genes. Polymorphisms in circadian clock genes have been associated with morningness-eveningness (diurnal) preference, familial advanced sleep phase type (ASPT), and delayed sleep phase type (DSPT). We genotyped single-nucleotide polymorphisms in circadian clock genes in 182 DSPT individuals, 67 free-running type (FRT) individuals, and 925 controls. The clock gene polymorphisms were tested for associations with diurnal preference and circadian rhythm sleep disorder (CRSD) phenotypes. The PER3 polymorphism (rs228697) was significantly associated with diurnal preference and the FRT phenotype. The minor allele of rs228697 was more prevalent in evening types than in morning types (sex-adjusted odds ratio (OR), 2.483, Bonferroni-corrected P = 0.012) and in FRT individuals compared with the controls (age- and sex-adjusted OR, 2.021, permutated P = 0.017). Our findings support the notion that PER3 polymorphisms could be a potential genetic marker for an individual's circadian and sleep phenotypes.
Collapse
Affiliation(s)
- Akiko Hida
- Department of Psychophysiology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8553, Japan
| | - Shingo Kitamura
- Department of Psychophysiology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8553, Japan
| | - Yasuko Katayose
- Department of Psychophysiology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8553, Japan
| | - Mie Kato
- Department of Psychophysiology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8553, Japan
| | - Hiroko Ono
- Department of Psychophysiology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8553, Japan
| | - Hiroshi Kadotani
- Department of Psychiatry, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Makoto Uchiyama
- Department of Psychiatry, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan
| | - Takashi Ebisawa
- Department of Psychiatry, Tokyo Metropolitan Police Hospital, Nakano, Tokyo 164-8541, Japan
| | - Yuichi Inoue
- Department of Somnology, Tokyo Medical University, Shinjuku, Tokyo 160-8402, Japan
- Yoyogi Sleep Disorder Center, Shibuya, Tokyo 151-0053, Japan
| | - Yuichi Kamei
- Department of Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan
| | - Masako Okawa
- Japan Foundation for Neuroscience and Mental Health, Kodaira, Tokyo 187-8551, Japan
| | - Kiyohisa Takahashi
- Japan Foundation for Neuroscience and Mental Health, Kodaira, Tokyo 187-8551, Japan
| | - Kazuo Mishima
- Department of Psychophysiology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8553, Japan
| |
Collapse
|
10
|
Lettau M, Kliche S, Kabelitz D, Janssen O. The adapter proteins ADAP and Nck cooperate in T cell adhesion. Mol Immunol 2014; 60:72-9. [PMID: 24769494 DOI: 10.1016/j.molimm.2014.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 03/24/2014] [Accepted: 03/31/2014] [Indexed: 10/25/2022]
Abstract
Nck adapter proteins link receptor and receptor-associated tyrosine kinases with proteins implicated in the regulation of the actin cytoskeleton. Nck is involved in a multitude of receptor-initiated signaling pathways and its physiological role thus covers aspects of tissue development and homeostasis, malignant transformation/invasiveness of tumour cells and also immune cell function. In T cells, changes of cell polarity and morphology associated with cellular activation and effector function crucially rely on the T cell receptor-mediated recruitment and activation of different actin-regulatory proteins to orchestrate and drive cytoskeletal reorganization at the immunological synapse. In a former approach to determine the interactome of Nck in human T cells, we identified the adapter protein ADAP as a Nck-interacting protein. This adhesion and degranulation-promoting adapter protein had already been implicated in the inside-out activation of integrins. Employing co-immunoprecipitations, we demonstrate that both Nck family members Nck1 and Nck2 coprecipitate with ADAP. Specifically, Nck interacts via its Src homology 2 domain with phosphorylated tyrosine Y595DDV and Y651DDV sites of ADAP. Moreover, we show that endogenous ADAP is phosphorylated in primary human T cell blasts and thus associates with Nck. At the functional level, ADAP and Nck adapter proteins cooperatively facilitate T cell adhesion to the LFA-1 ligand ICAM-1. Our data indicate that the ADAP/Nck complex might provide a means to link integrin activation with the actin cytoskeleton.
Collapse
Affiliation(s)
- Marcus Lettau
- Institute of Immunology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Bldg 17, D-24105 Kiel, Germany.
| | - Stefanie Kliche
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | - Dieter Kabelitz
- Institute of Immunology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Bldg 17, D-24105 Kiel, Germany.
| | - Ottmar Janssen
- Institute of Immunology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Bldg 17, D-24105 Kiel, Germany.
| |
Collapse
|
11
|
Yamani L, Latreille M, Larose L. Interaction of Nck1 and PERK phosphorylated at Y⁵⁶¹ negatively modulates PERK activity and PERK regulation of pancreatic β-cell proinsulin content. Mol Biol Cell 2013; 25:702-11. [PMID: 24371088 PMCID: PMC3937095 DOI: 10.1091/mbc.e13-09-0511] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
PERK is phosphorylated at Y561 in the juxtamembrane domain, and the adaptor protein Nck1, by directly interacting with phospho-Y561 PERK, negatively regulates PERK activity. Strong evidence is given supporting the biological relevance of Nck1 regulation of PERK function in modulating pancreatic β-cell proinsulin content. PERK, the PKR-like endoplasmic reticulum (ER) kinase, is an ER transmembrane serine/threonine protein kinase activated during ER stress. In this study, we provide evidence that the Src-homology domain–containing adaptor Nck1 negatively regulates PERK. We show that Nck directly binds to phosphorylated Y561 in the PERK juxtamembrane domain through its SH2 domain. We demonstrate that mutation of Y561 to a nonphosphorylatable residue (Y561F) promotes PERK activity, suggesting that PERK phosphorylation at Y561 (pY561PERK) negatively regulates PERK. In agreement, we show that pY561PERK delays PERK activation and signaling during ER stress. Compatible with a role for PERK in pancreatic β-cells, we provide strong evidence that Nck1 contributes to PERK regulation of pancreatic β-cell proteostasis. In fact, we demonstrated that down-regulation of Nck1 in mouse insulinoma MIN6 cells results in faster dephosphorylation of pY561PERK, which correlates with enhanced PERK activation, increased insulin biosynthesis, and PERK-dependent increase in proinsulin content. Furthermore, we report that pancreatic islets in whole-body Nck1-knockout mice contain more insulin than control littermates. Together our data strongly suggest that Nck1 negatively regulates PERK by interacting with PERK and protecting PERK from being dephosphorylated at its inhibitory site pY561 and in this way affects pancreatic β-cell proinsulin biogenesis.
Collapse
Affiliation(s)
- Lama Yamani
- Polypeptide Laboratory, Department of Medicine, and Health Centre Research Institute, McGill University, Montreal, QC H3A 2B2, Canada
| | | | | |
Collapse
|
12
|
Casein kinase iγ2 impairs fibroblasts actin stress fibers formation and delays cell cycle progression in g1. Int J Cell Biol 2012; 2012:684684. [PMID: 22496693 PMCID: PMC3312262 DOI: 10.1155/2012/684684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/01/2011] [Accepted: 12/05/2011] [Indexed: 11/25/2022] Open
Abstract
Actin cytoskeleton remodeling is under the regulation of multiple proteins with various activities. Here, we demonstrate that the γ2 isoform of Casein Kinase I (CKIγ2) is part of a novel molecular path regulating the formation of actin stress fibers. We show that overexpression of CKIγ2 in fibroblasts alters cell morphology by impairing actin stress fibers formation. We demonstrate that this is concomitant with increased phosphorylation of the CDK inhibitor p27Kip and lower levels of activated RhoA, and is dependent on CKIγ2 catalytic activity. Moreover, we report that roscovitine, a potent inhibitor of cyclin-dependent kinases, including Cdk5, decreases p27Kip protein levels and restores actin stress fibers formation in CKIγ2 overexpressing cells, suggesting the existence of a CKIγ2-Cdk5-p27Kip-RhoA pathway in regulating actin remodeling. On the other hand, we also show that in a manner independent of its catalytic activity, CKIγ2 delays cell cycle progression through G1. Collectively our findings reveal that CKIγ2 is a novel player in the control of actin cytoskeleton dynamics and cell proliferation.
Collapse
|
13
|
Labelle-Côté M, Dusseault J, Ismaïl S, Picard-Cloutier A, Siegel PM, Larose L. Nck2 promotes human melanoma cell proliferation, migration and invasion in vitro and primary melanoma-derived tumor growth in vivo. BMC Cancer 2011; 11:443. [PMID: 21992144 PMCID: PMC3198724 DOI: 10.1186/1471-2407-11-443] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 10/12/2011] [Indexed: 12/19/2022] Open
Abstract
Background Nck1 and Nck2 adaptor proteins are involved in signaling pathways mediating proliferation, cytoskeleton organization and integrated stress response. Overexpression of Nck1 in fibroblasts has been shown to be oncogenic. Through the years this concept has been challenged and the consensus is now that overexpression of either Nck cooperates with strong oncogenes to transform cells. Therefore, variations in Nck expression levels in transformed cells could endorse cancer progression. Methods Expression of Nck1 and Nck2 proteins in various cancer cell lines at different stages of progression were analyzed by western blots. We created human primary melanoma cell lines overexpressing GFP-Nck2 and investigated their ability to proliferate along with metastatic characteristics such as migration and invasion. By western blot analysis, we compared levels of proteins phosphorylated on tyrosine as well as cadherins and integrins in human melanoma cells overexpressing or not Nck2. Finally, in mice we assessed tumor growth rate of human melanoma cells expressing increasing levels of Nck2. Results We found that expression of Nck2 is consistently increased in various metastatic cancer cell lines compared with primary counterparts. Particularly, we observed significant higher levels of Nck2 protein and mRNA, as opposed to no change in Nck1, in human metastatic melanoma cell lines compared with non-metastatic melanoma and normal melanocytes. We demonstrated the involvement of Nck2 in proliferation, migration and invasion in human melanoma cells. Moreover, we discovered that Nck2 overexpression in human primary melanoma cells correlates with higher levels of proteins phosphorylated on tyrosine residues, assembly of Nck2-dependent pY-proteins-containing molecular complexes and downregulation of cadherins and integrins. Importantly, we uncovered that injection of Nck2-overexpressing human primary melanoma cells into mice increases melanoma-derived tumor growth rate. Conclusions Collectively, our data indicate that Nck2 effectively influences human melanoma phenotype progression. At the molecular level, we propose that Nck2 in human primary melanoma promotes the formation of molecular complexes regulating proliferation and actin cytoskeleton dynamics by modulating kinases or phosphatases activities that results in increased levels of proteins phosphorylated on tyrosine residues. This study provides new insights regarding cancer progression that could impact on the therapeutic strategies targeting cancer.
Collapse
Affiliation(s)
- Mélissa Labelle-Côté
- 1Programmes de biologie moléculaire, Faculté de Médecine, Université deMontréal, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
14
|
Lettau M, Pieper J, Gerneth A, Lengl-Janssen B, Voss M, Linkermann A, Schmidt H, Gelhaus C, Leippe M, Kabelitz D, Janssen O. The adapter protein Nck: role of individual SH3 and SH2 binding modules for protein interactions in T lymphocytes. Protein Sci 2010; 19:658-69. [PMID: 20082308 DOI: 10.1002/pro.334] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nck is a ubiquitously expressed, primarily cytosolic adapter protein consisting of one SH2 domain and three SH3 domains. It links receptor and nonreceptor tyrosine kinases to actin cytoskeleton reorganizing proteins. In T lymphocytes, Nck is a crucial component of signaling pathways for T cell activation and effector function. It recruits actin remodeling proteins to T cell receptor (TCR)-associated activation clusters and thereby initiates changes in cell polarity and morphology. Moreover, Nck is crucial for the TCR-induced mobilization of secretory vesicles to the cytotoxic immunological synapse. To identify the interactome of Nck in human T cells, we performed a systematic screen for interaction partners in untreated or pervanadate-treated cells. We used GST fusion proteins containing full length Nck, the combined SH3 domains or the individual SH3 and SH2 domains to precipitate putative Nck interactors from cellular lysates. Protein bands were excised from gels, processed by tryptic in-gel digestion and analyzed by mass spectrometry. Using this approach, we confirmed previously established interactions (e.g., with Slp76, CD3 epsilon, WASP, and WIPF1) and identified several novel putative Nck-binding proteins. We subsequently verified the SH2 domain binding to the actin-binding protein HIP55 and to FYB/ADAP, and the SH3-mediated binding to the nuclear proteins SFPQ/NONO. Using laser scanning microscopy, we provide new evidence for a nuclear localization of Nck in human T cells. Our data highlight the fundamental role of Nck in the TCR-to-cytoskeleton crosstalk and point to yet unknown nuclear functions of Nck also in T lymphocytes.
Collapse
Affiliation(s)
- Marcus Lettau
- Molecular Immunology, Institute for Immunology, Christian-Albrechts University, D-24105 Kiel, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kim MJ, Go YS, Lee SB, Kim YS, Shin JS, Min MK, Hwang I, Suh MC. Seed-expressed casein kinase I acts as a positive regulator of the SeFAD2 promoter via phosphorylation of the SebHLH transcription factor. PLANT MOLECULAR BIOLOGY 2010; 73:425-37. [PMID: 20349267 DOI: 10.1007/s11103-010-9630-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 03/11/2010] [Indexed: 05/09/2023]
Abstract
Microsomal oleic acid desaturase (FAD2) catalyzes the first committed step of the biosynthesis of polyunsaturated fatty acids via extra-plastidial desaturation of oleic acid to linoleic acid. In the regulatory mechanism controlling seed-specific SeFAD2 expression, trans-activation of the seed-specific SeFAD2 promoter is mediated by the SebHLH transcription factor (Kim et al. in Plant Mol Biol 64:453-466, 2007). In this study, a protein interacting with SebHLH was isolated from yeast two-hybrid analysis. The protein shares approximately 80% sequence identity with other putative casein kinases and was named SeCKI (Sesame Casein Kinase I). SeCKI transcripts were predominantly expressed in developing sesame seeds and were induced approximately threefold by exogenous application of ABA. eGFP:SeCKI fusion protein was localized to the nucleus. The SeCKI protein specifically bound to SebHLH. The SeCKI protein was autophosphorylated in a calcium-independent manner and transphosphorylated the SebHLH protein. Both the SebHLH and the SeCKI genes or both the SebHLH and mutated SemCKI (K182G) genes, under the control of CaMV 35S promoter, and the GUS reporter gene driven by SeFAD2 promoter containing E- and G-Box motifs were co-expressed in developing sesame seeds. This co-expression revealed that SeCKI enhanced the SebHLH-mediated transactivation of the SeFAD2 gene promoter via phosphorylation of the SebHLH transcription factor.
Collapse
Affiliation(s)
- Mi Jung Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Zhu J, Attias O, Aoudjit L, Jiang R, Kawachi H, Takano T. p21-Activated kinases regulate actin remodeling in glomerular podocytes. Am J Physiol Renal Physiol 2010; 298:F951-61. [DOI: 10.1152/ajprenal.00536.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The tyrosine phosphorylation of nephrin is reported to regulate podocyte morphology via the Nck adaptor proteins. The Pak family of kinases are regulators of the actin cytoskeleton and are recruited to the plasma membrane via Nck. Here, we investigated the role of Pak in podocyte morphology. Pak1/2 were expressed in cultured podocytes. In mouse podocytes, Pak2 was predominantly phosphorylated, concentrated at the tips of the cellular processes, and its expression and/or phosphorylation were further increased when differentiated. Overexpression of rat nephrin in podocytes increased Pak1/2 phosphorylation, which was abolished when the Nck binding sites were mutated. Furthermore, dominant-negative Nck constructs blocked the Pak1 phosphorylation induced by antibody-mediated cross linking of nephrin. Transient transfection of constitutively kinase-active Pak1 into differentiated mouse podocytes decreased stress fibers, increased cortical F-actin, and extended the cellular processes, whereas kinase-dead mutant, kinase inhibitory construct, and Pak2 knockdown by shRNA had the opposite effect. In a rat model of puromycin aminonucleoside nephrosis, Pak1/2 phosphorylation was decreased in glomeruli, concomitantly with a decrease of nephrin tyrosine phosphorylation. These results suggest that Pak contributes to remodeling of the actin cytoskeleton in podocytes. Disturbed nephrin-Nck-Pak interaction may contribute to abnormal morphology of podocytes and proteinuria.
Collapse
Affiliation(s)
- Jianxin Zhu
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada; and
| | - Ortal Attias
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada; and
| | - Lamine Aoudjit
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada; and
| | - Ruihua Jiang
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada; and
| | - Hiroshi Kawachi
- Department of Cell Biology, Institute of Nephrology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomoko Takano
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada; and
| |
Collapse
|
17
|
Lettau M, Pieper J, Janssen O. Nck adapter proteins: functional versatility in T cells. Cell Commun Signal 2009; 7:1. [PMID: 19187548 PMCID: PMC2661883 DOI: 10.1186/1478-811x-7-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 02/02/2009] [Indexed: 01/16/2023] Open
Abstract
Nck is a ubiquitously expressed adapter protein that is almost exclusively built of one SH2 domain and three SH3 domains. The two isoproteins of Nck are functionally redundant in many aspects and differ in only few amino acids that are mostly located in the linker regions between the interaction modules. Nck proteins connect receptor and non-receptor tyrosine kinases to the machinery of actin reorganisation. Thereby, Nck regulates activation-dependent processes during cell polarisation and migration and plays a crucial role in the signal transduction of a variety of receptors including for instance PDGF-, HGF-, VEGF- and Ephrin receptors. In most cases, the SH2 domain mediates binding to the phosphorylated receptor or associated phosphoproteins, while SH3 domain interactions lead to the formation of larger protein complexes. In T lymphocytes, Nck plays a pivotal role in the T cell receptor (TCR)-induced reorganisation of the actin cytoskeleton and the formation of the immunological synapse. However, in this context, two different mechanisms and adapter complexes are discussed. In the first scenario, dependent on an activation-induced conformational change in the CD3epsilon subunits, a direct binding of Nck to components of the TCR/CD3 complex was shown. In the second scenario, Nck is recruited to the TCR complex via phosphorylated Slp76, another central constituent of the membrane proximal activation complex. Over the past years, a large number of putative Nck interactors have been identified in different cellular systems that point to diverse additional functions of the adapter protein, e.g. in the control of gene expression and proliferation.
Collapse
Affiliation(s)
- Marcus Lettau
- University Hospital Schleswig-Holstein Campus Kiel, Institute of Immunology, Molecular Immunology, Arnold-Heller-Str 3, Bldg 17, D-24105 Kiel, Germany.
| | | | | |
Collapse
|
18
|
Cardin E, Larose L. Nck-1 interacts with PKR and modulates its activation by dsRNA. Biochem Biophys Res Commun 2008; 377:231-5. [PMID: 18835251 DOI: 10.1016/j.bbrc.2008.09.112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 09/23/2008] [Indexed: 11/19/2022]
Abstract
Activation of the double-stranded RNA (dsRNA)-activated protein kinase PKR results in inhibition of general translation through phosphorylation of the eukaryotic initiation factor 2 alpha-subunit on serine 51 (eIF2alphaSer51). Previously, we have reported that the adaptor protein Nck-1 modulates eIF2alphaSer51 phosphorylation by a subset of eIF2alpha kinases, including PKR. Herein, we demonstrate that Nck-1 prevents efficient activation of PKR by dsRNA, revealing that Nck-1 acts at the level of PKR. In agreement, Nck-1 impairs p38MAPK activation and attenuates cell death induced by dsRNA, in addition to diminish eIF2alphaSer51 phosphorylation. Our data show that the inhibitory effect of Nck-1 on PKR is reversible, as it could be overcome by increasing levels of dsRNA. Interestingly, we found that Nck-1 interacts with the inactive form of PKR, independently of its Src homology domains. Furthermore, we uncovered that Nck-1 is substrate of PKR in vitro. All together, our data provide the first evidence identifying Nck-1 as a novel endogenous regulator of PKR and support the notion that Nck-1-PKR interaction could be a way to limit PKR activation.
Collapse
Affiliation(s)
- Eric Cardin
- Experimental Medicine Department, Polypeptide Laboratory, McGill University, Montreal, Que, Canada
| | | |
Collapse
|
19
|
Cardin E, Latreille M, Khoury C, Greenwood MT, Larose L. Nck-1 selectively modulates eIF2alphaSer51 phosphorylation by a subset of eIF2alpha-kinases. FEBS J 2007; 274:5865-75. [PMID: 17944934 DOI: 10.1111/j.1742-4658.2007.06110.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphorylation of the alpha-subunit of the eukaryotic initiation factor 2 (eIF2) on Ser51 is an early event associated with the down-regulation of protein synthesis at the level of translation and initiation of a transcriptional program. This constitutes a potent mechanism to overcome various stress conditions. In mammals, four eIF2alpha-kinases [PKR-like endoplasmic reticulum kinase (PERK), dsRNA-activated protein kinase (PKR), heme regulated inhibitor (HRI) and general control nonderepressible-2 (GCN2)], activated following specific stresses, have been shown to be involved in this process. In this article, we report that the ubiquitously expressed adaptor protein Nck, composed only of Src homology domains and classically implicated in cell signaling by activated plasma membrane receptor tyrosine kinases, modulates eIF2alpha-kinase-mediated eIF2alphaSer51 phosphorylation in a specific manner. Our results show that Nck not only prevents eIF2alpha phosphorylation upon PERK activation, as reported previously, but also reduces eIF2alpha phosphorylation in conditions leading to PKR and HRI activation. By contrast, the overexpression of Nck in mammalian cells fails to attenuate eIF2alphaSer51 phosphorylation in response to amino acid starvation, a stress well known to activate GCN2. This observation is further confirmed by showing that Nck fails to alter eIF2alphaSer51 phosphorylation in Saccharomyces cerevisiae, for which the sole eIF2alpha-kinase is Gcn2p. Our results suggest the existence of a novel mechanism that specifically modulates the phosphorylation of eIF2alpha on Ser51 under various stress conditions.
Collapse
Affiliation(s)
- Eric Cardin
- Polypeptide Laboratory, Department of Experimental Medicine, McGill University, Montreal, Canada
| | | | | | | | | |
Collapse
|
20
|
Denning KM, Smyth PC, Cahill SF, Finn SP, Conlon E, Li J, Flavin RJ, Aherne ST, Guenther SM, Ferlinz A, O'Leary JJ, Sheils OM. A molecular expression signature distinguishing follicular lesions in thyroid carcinoma using preamplification RT-PCR in archival samples. Mod Pathol 2007; 20:1095-102. [PMID: 17660800 DOI: 10.1038/modpathol.3800943] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Follicular variant of papillary thyroid carcinoma is a lesion that frequently causes difficulties from a diagnostic perspective in the laboratory. The purpose of this study was to interrogate a cohort of archival thyroid lesions using gene expression analysis of a panel of markers proposed to have utility as adjunctive markers in the diagnosis of thyroid neoplasia and follicular variant of papillary thyroid carcinoma in particular. Laser Capture Microdissection was used to procure pure cell populations for extraction. In addition a novel, multiplex preamplification technique was used to facilitate analysis of multiple targets. The panel comprised: HLA-DMA, HLA-DBQ1, CD74, CSNK1G2, IRF3, KRAS2, LYN, MT1K, MT1X, RAB23, TGFB1 and TOP2A, with CDKN1B as an endogenous control. Expression profiles for each target were generated using TaqMan Real-Time PCR. HLA-DMA, HLA-DQB1, MT1X, CSNK1G2 and RAB23 were found to be differentially expressed (P<0.05) when comparing follicular adenoma and follicular variant of papillary thyroid carcinoma. Comparison of follicular adenoma and follicular thyroid carcinoma groups showed significant differential expression for MT1K, MT1X and RAB23 (P<0.05). Comparison of the papillary thyroid carcinoma group (classic and follicular variants) and the follicular adenoma group showed differential expression for CSNK1G2, HLA-DQB1, MT1X and RAB23 (P<0.05). Finally, KRAS2 was found to be differentially expressed (P<0.05) when comparing the papillary thyroid carcinoma and follicular thyroid carcinoma groups. This panel of molecular targets discriminates between follicular adenoma, papillary thyroid carcinoma, follicular variant of papillary thyroid carcinoma and follicular thyroid carcinoma by their expression repertoires. It may have utility for broader use in the setting of fine-needle aspiration cytology and could improve the definitive diagnosis of certain categories of thyroid malignancy.
Collapse
Affiliation(s)
- Karen M Denning
- Department of Histopathology, Trinity College, University of Dublin, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Emadali A, Metrakos PP, Kalantari F, Boutros T, Boismenu D, Chevet E. Proteomic analysis of tyrosine phosphorylation during human liver transplantation. Proteome Sci 2007; 5:1. [PMID: 17199894 PMCID: PMC1769479 DOI: 10.1186/1477-5956-5-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 01/02/2007] [Indexed: 12/31/2022] Open
Abstract
Background Ischemia-reperfusion (I/R) causes a dramatic reprogramming of cell metabolism during liver transplantation and can be linked to an alteration of the phosphorylation level of several cellular proteins. Over the past two decades, it became clear that tyrosine phosphorylation plays a pivotal role in a variety of important signalling pathways and was linked to a wide spectrum of diseases. Functional profiling of the tyrosine phosphoproteome during liver transplantation is therefore of great biological significance and is likely to lead to the identification of novel targets for drug discovery and provide a basis for novel therapeutic strategies. Results Using liver biopsies collected during the early phases of organ procurement and transplantation, we aimed at characterizing the global patterns of tyrosine phosphorylation during hepatic I/R. A proteomic approach, based on the purification of tyrosine phosphorylated proteins followed by their identification using mass spectrometry, allowed us to identify Nck-1, a SH2/SH3 adaptor, as a potential regulator of I/R injury. Using immunoblot, cell fractionation and immunohistochemistry, we demonstrate that Nck-1 phosphorylation, expression and localization were affected in liver tissue upon I/R. In addition, mass spectrometry identification of Nck-1 binding partners during the course of the transplantation also suggested a dynamic interaction between Nck-1 and actin during I/R. Conclusion Taken together, our data suggest that Nck-1 may play a role in I/R-induced actin reorganization, which was previously reported to be detrimental for the hepatocytes of the transplanted graft. Nck-1 could therefore represent a target of choice for the design of new organ preservation strategies, which could consequently help to reduce post-reperfusion liver damages and improve transplantation outcomes.
Collapse
Affiliation(s)
- Anouk Emadali
- Department of Surgery, McGill University, Montreal, Quebec, Canada
- CEA/Grenoble, Grenoble, France
| | - Peter P Metrakos
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Fariba Kalantari
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Tarek Boutros
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Daniel Boismenu
- Genome Québec Innovation Centre, McGill University, Montreal, Quebec, Canada
| | - Eric Chevet
- Department of Surgery, McGill University, Montreal, Quebec, Canada
- Genome Québec Innovation Centre, McGill University, Montreal, Quebec, Canada
- Departement of Medecine, McGill University, Montreal, Quebec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Team AVENIR, INSERM E362, Université Bordeaux 2, Bordeaux, France
| |
Collapse
|
22
|
Li H, Zhu J, Aoudjit L, Latreille M, Kawachi H, Larose L, Takano T. Rat nephrin modulates cell morphology via the adaptor protein Nck. Biochem Biophys Res Commun 2006; 349:310-6. [PMID: 16934223 DOI: 10.1016/j.bbrc.2006.08.053] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 08/10/2006] [Indexed: 10/24/2022]
Abstract
Nephrin is a transmembrane molecule essential for morphology and function of kidney podocytes. We and others reported previously that the cytoplasmic domain of human and mouse nephrin interacts with the adaptor protein, Nck, in a tyrosine phosphorylation-dependent manner. In the current study, we characterized the interaction of rat nephrin with Nck and further addressed its impact on cell morphology. Rat nephrin expressed in Cos-1 cells co-immunoprecipitated with Nck in a manner dependent on the phosphorylation of Y1204 and Y1228. Nephrin from normal rat glomeruli was also tyrosine phosphorylated and associated with Nck. Overexpression of rat nephrin in HEK293T cells induced morphological changes resembling process formation, which became more distinct when the extracellular domain of nephrin was cross-linked by antibodies. The morphological changes were attenuated by expression of dominant negative constructs of Nck. In the rat model of podocyte injury and proteinuria, nephrin tyrosine phosphorylation and nephrin-Nck interaction were both reduced significantly. Taken together, we propose that Nck couples nephrin to the actin cytoskeleton in glomerular podocytes and contributes to the maintenance of normal morphology and function of podocytes.
Collapse
Affiliation(s)
- Hongping Li
- Department of Medicine, McGill University, Montreal, Que., Canada
| | | | | | | | | | | | | |
Collapse
|
23
|
Latreille M, Larose L. Nck in a Complex Containing the Catalytic Subunit of Protein Phosphatase 1 Regulates Eukaryotic Initiation Factor 2α Signaling and Cell Survival to Endoplasmic Reticulum Stress. J Biol Chem 2006; 281:26633-44. [PMID: 16835242 DOI: 10.1074/jbc.m513556200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Stress imposed on the endoplasmic reticulum (ER) induces the phosphorylation of the alpha-subunit of the eukaryotic initiation factor 2 (eIF2) on Ser51. This results in transient inhibition of general translation initiation while concomitantly activating a signaling pathway that promotes the expression of genes whose products improve ER function. Conversely, dephosphorylation of eIF2alphaSer51 is accomplished by protein phosphatase 1 (PP1c) complexes containing either the protein CReP or GADD34, which target PP1c to eIF2. Here, we demonstrate that the Src homology (SH) domain-containing adaptor Nck is a key component of a molecular complex that controls eIF2alpha phosphorylation and signaling in response to ER stress. We show that overexpression of Nck decreases basal and ER stress-induced eIF2alpha phosphorylation and the attendant induction of ATF4 and CHOP. In contrast, we demonstrate that the mouse embryonic fibroblasts lacking both isoforms of Nck (Nck1-/-Nck2-/-) show higher levels of eIF2alpha phosphorylation and premature induction of ATF4, CHOP, and GADD34 in response to ER stress and finally, are more resistant to cell death induced by prolonged ER stress conditions. We establish that a significant amount of Nck protein localizes at the ER and is in a complex with eIF2 subunits. Further analysis of this complex revealed that it also contains the Ser/Thr phosphatase PP1c, its regulatory subunit CReP, and dephosphorylates eIF2alpha on Ser51 in vitro. Overall, we demonstrate that Nck as a component of the CReP/PP1c holophosphatase complex contributes to maintain eIF2alpha in a hypophosphorylated state. In this manner, Nck modulates translation and eIF2alpha signaling in response to ER stress.
Collapse
Affiliation(s)
- Mathieu Latreille
- Polypeptide Hormone Laboratory, Department of Medicine, McGill University, Montreal, Quebec H3A 2B2, Canada
| | | |
Collapse
|
24
|
Lettau M, Qian J, Linkermann A, Latreille M, Larose L, Kabelitz D, Janssen O. The adaptor protein Nck interacts with Fas ligand: Guiding the death factor to the cytotoxic immunological synapse. Proc Natl Acad Sci U S A 2006; 103:5911-6. [PMID: 16595635 PMCID: PMC1458672 DOI: 10.1073/pnas.0508562103] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Fas ligand (FasL) is a key death factor of cytotoxic T lymphocytes and natural killer cells. It is stored intracellularly as a transmembrane protein of secretory lysosomes. Upon activation, these vesicles are transported to the cytotoxic immunological synapse (IS), and FasL becomes exposed to the cell surface to trigger cell death through ligation of its receptor Fas (CD95) on the target cell. We propose that the FasL-associated adaptor protein Nck is involved in the actin-dependent transport of FasL-bearing secretory lysosomes to the IS. Nck binds to the proline-rich portion of FasL and alters its subcellular distribution when coexpressed in 293T cells. In T lymphocytes, endogenous Nck partially colocalizes with lysosome-associated FasL. When T cell clones or lines are exposed to target cells, both proteins and other components of secretory lysosomes (i.e., granzyme B or cathepsin D) are transported to the cell-cell interface. The present data suggest that T cell receptor engagement provokes a rapid, tyrosine kinase- and actin-dependent transport of Nck-associated FasL-carrying lysosomes to the contact area. Our observations support the previous notion that the unique cytoplasmic tail of FasL is crucial for its directed transport to the cell surface and into the assembling cytotoxic IS.
Collapse
Affiliation(s)
- Marcus Lettau
- *Institute for Immunology, University Hospital Schleswig–Holstein Campus Kiel, 24105 Kiel, Germany; and
| | - Jing Qian
- *Institute for Immunology, University Hospital Schleswig–Holstein Campus Kiel, 24105 Kiel, Germany; and
| | - Andreas Linkermann
- *Institute for Immunology, University Hospital Schleswig–Holstein Campus Kiel, 24105 Kiel, Germany; and
| | - Mathieu Latreille
- Polypeptide Laboratory, McGill University, Montreal, QC, Canada H3A 2B2
| | - Louise Larose
- Polypeptide Laboratory, McGill University, Montreal, QC, Canada H3A 2B2
| | - Dieter Kabelitz
- *Institute for Immunology, University Hospital Schleswig–Holstein Campus Kiel, 24105 Kiel, Germany; and
| | - Ottmar Janssen
- *Institute for Immunology, University Hospital Schleswig–Holstein Campus Kiel, 24105 Kiel, Germany; and
- To whom correspondence should be addressed at: Institute for Immunology, University Hospital Schleswig–Holstein Campus Kiel, Michaelisstrasse 5, 24105 Kiel, Germany. E-mail:
| |
Collapse
|
25
|
Delom F, Chevet E. In vitro mapping of calnexin interaction with ribosomes. Biochem Biophys Res Commun 2006; 341:39-44. [PMID: 16414013 DOI: 10.1016/j.bbrc.2005.12.149] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Accepted: 12/23/2005] [Indexed: 10/25/2022]
Abstract
Calnexin is an endoplasmic reticulum (ER) resident type I integral membrane phosphoprotein. This protein is actively involved in the ER glycoprotein quality control through its luminal domain. In addition, although calnexin also interacts with membrane-bound ribosomes, the nature of this interaction remains poorly characterized. Herein, using in vitro approaches, we demonstrate that calnexin cytosolic domain directly interacts with, at least 5 ribosomal proteins. Furthermore, we characterize more specifically its interaction with the ribosomal protein L4 and that L4 binds to the 19 carboxy terminal amino acids of calnexin. We suggest that the direct interaction of calnexin with membrane-bound ribosomes may represent a regulatory mechanism for its lectin-like chaperone function.
Collapse
Affiliation(s)
- Frédéric Delom
- Department of Surgery, McGill University, Montreal, PQ, Canada
| | | |
Collapse
|
26
|
Linkermann A, Qian J, Lettau M, Kabelitz D, Janssen O. Considering Fas ligand as a target for therapy. Expert Opin Ther Targets 2005; 9:119-34. [PMID: 15757486 DOI: 10.1517/14728222.9.1.119] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
About a decade ago, the death factor Fas ligand (FasL) was identified as the natural trigger of Fas/CD95-dependent apoptosis and as an inducer of Fas-dependent activation-induced cell death. Meanwhile, it is known that this molecule not only contributes to target cell lysis in the immune system but also to the establishment of immune privilege and tumour survival. Because delivering a specific antiproliferative signal to T lymphocytes is of major biomedical interest, the FasL/Fas system has gained much attention over the last few years. However, only recently it became evident that the biology of FasL is more complex than initially anticipated. FasL displays a complex pattern of inducible and constitutive expression associated with a number of different functions as a death factor or a co-stimulatory/accessory molecule in lymphocyte activation. Thus, side effects are likely to occur following systemic administration of, for example, anti-FasL medication, not only because of the constitutive FasL expression on cells within immune privileged tissues and vascular endothelium. In addition, FasL comes in different forms: as a surface molecule, as a protease-shed soluble variant or secreted in vesicles. Because increased levels of soluble FasL (sFasL) have been determined in various immunological and non-immunological diseases, it has been suggested that sFasL might serve as a prognostic or diagnostic marker even though the pathophysiological cause for its enhanced production is hardly known in most cases. This review summarises the current facts and ideas about the clinical and pharmacological potential of FasL and sFasL as targets for therapeutic interventions.
Collapse
Affiliation(s)
- Andreas Linkermann
- Medical Center Schleswig-Holstein Campus Kiel, Institute of Immunology, Michaelisstr. 5, D-24105 Kiel, Germany
| | | | | | | | | |
Collapse
|
27
|
Van Der Heide LP, Hoekman MFM, Smidt MP. The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem J 2004; 380:297-309. [PMID: 15005655 PMCID: PMC1224192 DOI: 10.1042/bj20040167] [Citation(s) in RCA: 536] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Revised: 03/03/2004] [Accepted: 03/09/2004] [Indexed: 12/15/2022]
Abstract
FoxO (forkhead box O; forkhead members of the O class) are transcription factors that function under the control of insulin/insulin-like signalling. FoxO factors have been associated with a multitude of biological processes, including cell-cycle, cell death, DNA repair, metabolism and protection from oxidative stress. Central to the regulation of FoxO factors is a shuttling system, which confines FoxO factors to either the nucleus or the cytosol. Shuttling of FoxO requires protein phosphorylation within several domains, and association with 14-3-3 proteins and the nuclear transport machinery. Description of the FoxO-shuttling mechanism contributes to the understanding of FoxO function in relation to signalling and gene regulation.
Collapse
Affiliation(s)
- Lars P Van Der Heide
- Department of Pharmacology and Anatomy, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | | | | |
Collapse
|
28
|
Nguyên DT, Kebache S, Fazel A, Wong HN, Jenna S, Emadali A, Lee EH, Bergeron JJM, Kaufman RJ, Larose L, Chevet E. Nck-dependent activation of extracellular signal-regulated kinase-1 and regulation of cell survival during endoplasmic reticulum stress. Mol Biol Cell 2004; 15:4248-60. [PMID: 15201339 PMCID: PMC515356 DOI: 10.1091/mbc.e03-11-0851] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Revised: 05/21/2004] [Accepted: 06/07/2004] [Indexed: 11/11/2022] Open
Abstract
In response to stress, the endoplasmic reticulum (ER) signaling machinery triggers the inhibition of protein synthesis and up-regulation of genes whose products are involved in protein folding, cell cycle exit, and/or apoptosis. We demonstrate that the misfolding agents azetidine-2-carboxylic acid (Azc) and tunicamycin initiate signaling from the ER, resulting in the activation of Jun-N-terminal kinase, p44(MAPK)/extracellular signal-regulated kinase-1 (ERK-1), and p38(MAPK) through IRE1alpha-dependent mechanisms. To characterize the ER proximal signaling events involved, immuno-isolated ER membranes from rat fibroblasts treated with ER stress inducers were used to reconstitute the activation of the stress-activated protein kinase/mitogen-activate protein kinase (MAPK) pathways in vitro. This allowed us to demonstrate a role for the SH2/SH3 domain containing adaptor Nck in ERK-1 activation after Azc treatment. We also show both in vitro and in vivo that under basal conditions ER-associated Nck represses ERK-1 activation and that upon ER stress this pool of Nck dissociates from the ER membrane to allow ERK-1 activation. Moreover, under the same conditions, Nck-null cells elicit a stronger ERK-1 activation in response to Azc stress, thus, correlating with an enhanced survival phenotype. These data delineate a novel mechanism for the regulation of ER stress signaling to the MAPK pathway and demonstrate a critical role for Nck in ER stress and cell survival.
Collapse
Affiliation(s)
- Duc Thang Nguyên
- Department of Surgery, McGill University, Montreal, Quebec, H3A 1A1 Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mishra SK, Yang Z, Mazumdar A, Talukder AH, Larose L, Kumar R. Metastatic tumor antigen 1 short form (MTA1s) associates with casein kinase I-gamma2, an estrogen-responsive kinase. Oncogene 2004; 23:4422-9. [PMID: 15077195 DOI: 10.1038/sj.onc.1207569] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 01/12/2004] [Accepted: 01/27/2004] [Indexed: 11/09/2022]
Abstract
Recent studies have shown that metastasis-associated protein-1 short form (MTA1s) - metastatic tumor antigen 1 short form sequesters estrogen receptor-alpha (ER-alpha) in the cytoplasm of breast cancer cells. Using a yeast two-hybrid screening to clone MTA1s-interacting proteins, we identified casein kinase I-gamma 2 (CKI-gamma2, a ubiquitously expressed cytoplasmic kinase) as an MTA1s-binding protein. We show that MTA1s interacts with CKI-gamma2 both in vitro and in vivo and colocalizes in the cytoplasm. In addition, we found that CKI-gamma2 can phosphorylate MTA1s, but not ER, in an antiestrogen-dependent manner and that estrogen stimulates CKI-gamma2 activity that could be effectively blocked by a specific inhibitor of CKI. CKI-gamma2 could further potentiate the ER corepressive function of MTA1s. Kinase dead CK1-gamma2 could not repress estrogen-induced ER transactivation functions. Results from mutagenesis studies suggest that substitution of the serine residue at 321 to alanine, which is a possible CKI-gamma2 phopshorylation site in MTA1s, results in a significant reduction in the ability of MTA1s to repress ER transactivation. These findings identified MTA1s as a target of CKI-gamma2, and provided new evidence to suggest that CKI-gamma2 phosphorylates and modulates the functions of MTA1s, and that these extranuclear effects of estrogen might have important implications in regulating the functions of MTA1s in human mammary epithelial and cancer cells.
Collapse
Affiliation(s)
- Sandip K Mishra
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
30
|
Kebache S, Cardin E, Nguyên DT, Chevet E, Larose L. Nck-1 Antagonizes the Endoplasmic Reticulum Stress-induced Inhibition of Translation. J Biol Chem 2004; 279:9662-71. [PMID: 14676213 DOI: 10.1074/jbc.m310535200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic cells have developed specific mechanisms to overcome environmental stress. Here we show that the Src homology 2/3 (SH2/SH3) domain-containing protein Nck-1 prevents the unfolded protein response normally induced by pharmacological endoplasmic reticulum (ER) stress agents. Overexpression of Nck-1 enhances protein translation, whereas it abrogates eukaryotic initiation factor 2alpha (eIF2alpha) phosphorylation and inhibition of translation in response to tunicamycin or thapsigargin treatment. Nck-1 overexpression also attenuates induction of the ER chaperone, the immunoglobulin heavy chain-binding protein (BiP), and impairs cell survival in response to thapsigargin. We provided evidence that in these conditions, the effects of Nck on the unfolded protein response (UPR) involve its second SH3 domain and a calyculin A-sensitive phosphatase activity. In addition, we demonstrated that protein translation is reduced in mouse embryonic fibroblasts lacking both Nck isoforms and is enhanced in similar cells expressing high levels of Nck-1. In these various mouse embryonic fibroblasts, we also provided evidence that Nck modulates the activation of the ER resident eIF2alpha kinase PERK and consequently the phosphorylation of eIF2alpha on Ser-51 in response to stress. Our study establishes that Nck is required for optimal protein translation and demonstrates that, in addition to its adaptor function in mediating signaling from the plasma membrane, Nck also mediates signaling from the ER membrane compartment.
Collapse
Affiliation(s)
- Sem Kebache
- Polypeptide Laboratory, Division of Endocrinology, Department of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Quebec H3A 2B2, Canada
| | | | | | | | | |
Collapse
|
31
|
Okamura A, Iwata N, Nagata A, Tamekane A, Shimoyama M, Gomyo H, Yakushijin K, Urahama N, Hamaguchi M, Fukui C, Chihara K, Ito M, Matsui T. Involvement of casein kinase Iepsilon in cytokine-induced granulocytic differentiation. Blood 2004; 103:2997-3004. [PMID: 15070676 DOI: 10.1182/blood-2003-08-2768] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Two closely related casein kinase I (CKI) isoforms, CKIdelta and CKIepsilon, are ubiquitously expressed in many human tissues, but their specific biologic function remains to be clarified. Here, we provide the first evidence that CKIepsilon is involved in hematopoietic cell differentiation. CKIepsilon, but not CKIdelta, was down-regulated along with human granulocytic differentiation. The specific down-regulation was observed in granulocyte colony-stimulating factor (G-CSF)-induced cell differentiation of murine interleukin-3 (IL-3)-dependent myeloid progenitor 32D cells. Introduction of wild-type (WT)-CKIepsilon into 32D cells inhibited the G-CSF-induced cell differentiation, whereas kinase-negative (KN)-CKIepsilon promoted the differentiation. Neither WT- nor KN-CKIepsilon affected IL-3-dependent cell growth. Moreover, introduction of WT- or KN-CKIdelta did not affect the cytokine-induced cell growth and differentiation. While G-CSF-induced activation of signal transducers and activators of transcription 3 (STAT3) was sustained by KN-CKIepsilon, STAT3 activation was attenuated by WT-CKIepsilon. This may be explained by the fact that the suppressor of cytokine signaling 3 (SOCS3) was stabilized by its physical association with CKIepsilon. Such stabilization by CKIepsilon was also seen in IL-3-induced beta-catenin. The stabilization of downstream components of cytokine and Wnt signaling by CKIepsilon might be critical for integration of several intracellular signaling pathways to a cell-specific biologic response in hematopoietic cell self-renewal.
Collapse
Affiliation(s)
- Atsuo Okamura
- Hematology/Oncology, Department of Medicine, Kobe University School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The CD95 ligand is involved as a death factor in the regulation of activation-induced cell death, establishment of immune privilege and tumor cell survival. In addition, CD95L may serve as a costimulatory molecule for T-cell activation. Alterations in expression or shedding of membrane and soluble CD95L are associated with numerous diseases, and underscore the pathophysiological relevance of the CD95/CD95L system. In most cases, the causal link between altered CD95L expression and pathophysiology is unknown. Given the potency of the molecule to regulate death and survival of many different cell types, the control of CD95L production, transport, storage, shedding and inactivation is of tremendous biological and clinical interest. This review summarizes the current knowledge, hypotheses and controversies about CD95L as a multifunctional ligand and receptor. It considers the different roles of membrane and soluble forms of CD95L and the complex networks of intracellular dynamics of protein trafficking, as well as the potential bidirectional signal transduction capacity of CD95L, with a focus on molecular interactions that have been worked out over the past years.
Collapse
Affiliation(s)
- O Janssen
- Institute for Immunology, Medical Center Schleswig-Holstein, Campus Kiel, Michaelisstrasse 5, D-24105 Kiel, Germany.
| | | | | | | |
Collapse
|
33
|
Abstract
Since the ligand for the death factor CD95 (CD95L) was identified almost a decade ago, it has been established that this molecule (CD95L, FasL, Apo-1L, CD178, TNFSF6, APT1LG1) has multiple immunoregulatory and pathophysiologically relevant functions. CD95L does not only act as a death factor when externalized with secretory lysosomes on cytotoxic T and NK cells or when expressed on CD4(+) T cells in the course of activation-induced cell death, it is also a key molecule for the establishment of immune privilege or tumor cell survival and may serve as a costimulatory molecule during T cell activation. Moreover, alterations of expression or shedding of different forms of CD95L are associated with many diseases including various malignancies, HIV infection, autoimmune disorders (systemic lupus erythematodes, rheumatoid arthritis), acute myocardial infarction, traumatic injury and many others. In most cases, however, the physiological link between altered CD95L expression and pathophysiology is unknown. Given the potency of the molecule to regulate death and survival of many different cell types, the control of CD95L production, transport, storage, shedding and release is of tremendous biological and clinical interest. This commentary aims at briefly summarizing the current knowledge, hypotheses and controversies about CD95L as a multifunctional ligand and receptor. It touches upon the complex networks of intracellular dynamics of protein transport and trafficking and the potential bidirectional signal transduction capacity of CD95L with a focus on molecular interactions that have been worked out over the past years.
Collapse
Affiliation(s)
- Andreas Linkermann
- Institute for Immunology, Medical Center Schleswig-Holstein, Campus Kiel, Michaelisstr. 5, D-24105 Kiel, Germany
| | | | | |
Collapse
|
34
|
Li X, Meriane M, Triki I, Shekarabi M, Kennedy TE, Larose L, Lamarche-Vane N. The adaptor protein Nck-1 couples the netrin-1 receptor DCC (deleted in colorectal cancer) to the activation of the small GTPase Rac1 through an atypical mechanism. J Biol Chem 2002; 277:37788-97. [PMID: 12149262 DOI: 10.1074/jbc.m205428200] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Netrins are a family of secreted proteins that guide the migration of cells and axonal growth cones during development. DCC (deleted in colorectal cancer) is a receptor for netrin-1 implicated in mediating these responses. Here, we show that DCC interacts constitutively with the SH3/SH2 adaptor Nck in commissural neurons. This interaction is direct and requires the SH3 but not SH2 domains of Nck-1. Moreover, both DCC and Nck-1 associate with the actin cytoskeleton, and this association is mediated by DCC. A dominant negative Nck-1 inhibits the ability of DCC to induce neurite outgrowth in N1E-115 cells and to activate Rac1 in fibroblasts in response to netrin-1. These studies provide evidence for an important role of mammalian Nck-1 in a novel signaling pathway from an extracellular guidance cue to changes in the actin-based cytoskeleton responsible for axonal guidance.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 2B2, Canada
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
SH2/SH3 domain-containing adapter proteins, such as the Nck family, play a major role in regulating tyrosine kinase signalling. They serve to recruit proline-rich effector molecules to tyrosine-phosphorylated kinases or their substrates. Initially, it was not clear why cells from nematodes to vertebrates contain redundant and closely related SH2/SH3 adapters, such as Grb2, Crk and Nck. Recent evidence suggests that their biological roles are clearly different, whereas, for example, Grb2 connects activated receptor tyrosine kinases to Sos and Ras, leading to cell proliferation. The proteins of Nck family are implicated in organisation of actin cytoskeleton, cell movement or axon guidance in flies. In this review, the author attempts to summarise signalling pathways in which Nck plays a critical role.
Collapse
Affiliation(s)
- László Buday
- Department of Medical Chemistry, Semmelweis University Medical School, 9 Puskin Str., 1088, Budapest, Hungary.
| | | | | |
Collapse
|
36
|
Dubois T, Howell S, Zemlickova E, Aitken A. Identification of casein kinase Ialpha interacting protein partners. FEBS Lett 2002; 517:167-71. [PMID: 12062430 DOI: 10.1016/s0014-5793(02)02614-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Casein kinase Ialpha (CKIalpha) belongs to a family of serine/threonine protein kinases involved in membrane trafficking, RNA processing, mitotic spindle formation and cell cycle progression. In this report, we identified several CKIalpha interacting proteins including RCC1, high mobility group proteins 1 and 2 (HMG1, HMG2), Erf, centaurin-alpha1, synaptotagmin IX and CPI-17 that were isolated from brain as CKIalpha co-purifying proteins. Actin, importin-alpha(1), importin-beta, PP2Ac, centaurin-alpha1, and HMG1 were identified by affinity chromatography using a peptide column comprising residues 214-233 of CKIalpha. We have previously shown that centaurin-alpha1 represents a CKIalpha partner both in vitro and in vivo. The nuclear protein regulator of chromosome condensation 1 (RCC1) is a guanosine nucleotide exchange factor for Ran which is involved in nuclear transport and mitotic spindle formation. Here we show that CKIalpha and RCC1 interact in brain and in cultured cells. However, the interaction does not involve residues 217-233 of CKIalpha which are proposed from X-ray structures to represent an anchoring site for CKI partners. Formation of the RCC1/CKIalpha complex is consistent with the association of the kinase with mitotic spindles. In conclusion, we have identified a number of novel CKIalpha protein partners and their relations to CKI are discussed.
Collapse
Affiliation(s)
- Thierry Dubois
- The University of Edinburgh, Division of Biomedical and Clinical Laboratory Sciences, Hugh Robson Building, George Square, Edinburgh, UK.
| | | | | | | |
Collapse
|
37
|
Kebache S, Zuo D, Chevet E, Larose L. Modulation of protein translation by Nck-1. Proc Natl Acad Sci U S A 2002; 99:5406-11. [PMID: 11959995 PMCID: PMC122782 DOI: 10.1073/pnas.082483399] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In mammals, Nck represented by two genes, is a 47-kDa SH2/SH3 domain-containing protein lacking intrinsic enzymatic function. Here, we reported that the first and the third SH3 domains of Nck-1 interact with the C-terminal region of the beta subunit of the eukaryotic initiation factor 2 (eIF2 beta). Binding of eIF2 beta was specific to the SH3 domains of Nck-1, and in vivo, the interaction Nck/eIF2 beta was demonstrated by reciprocal coimmunoprecipitations. In addition, Nck was detected in a molecular complex with eIF2 beta in an enriched ribosomal fraction, whereas no other SH2/SH3 domain-containing adapters were found. Cell fractionation studies demonstrated that the presence of Nck in purified ribosomal fractions was enhanced after insulin stimulation, suggesting that growth factors dynamically regulate translocation of Nck to ribosomes. In HEK293 cells, we observed that transient overexpression of Nck-1 significantly enhanced Cap-dependent and -independent protein translation. This effect of Nck-1 required the integrity of its first and third SH3 domains originally found to interact with eIF2 beta. Finally, in vitro, Nck-1 also increased protein translation, revealing a direct role for Nck-1 in this process. Our study demonstrates that in addition to mediate receptor tyrosine kinase signaling, Nck-1 modulates protein translation potentially through its direct interaction with an intrinsic component of the protein translation machinery.
Collapse
Affiliation(s)
- Sem Kebache
- Departments of Medicine and Surgery, Polypeptide Laboratory, Division of Endocrinology, McGill University, Montreal, QC, Canada H3A 2B2
| | | | | | | |
Collapse
|
38
|
Dubois T, Kerai P, Zemlickova E, Howell S, Jackson TR, Venkateswarlu K, Cullen PJ, Theibert AB, Larose L, Roach PJ, Aitken A. Casein kinase I associates with members of the centaurin-alpha family of phosphatidylinositol 3,4,5-trisphosphate-binding proteins. J Biol Chem 2001; 276:18757-64. [PMID: 11278595 DOI: 10.1074/jbc.m010005200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian casein kinases I (CKI) belong to a family of serine/threonine protein kinases involved in diverse cellular processes including cell cycle progression, membrane trafficking, circadian rhythms, and Wnt signaling. Here we show that CKIalpha co-purifies with centaurin-alpha(1) in brain and that they interact in vitro and form a complex in cells. In addition, we show that the association is direct and occurs through the kinase domain of CKI within a loop comprising residues 217-233. These residues are well conserved in all members of the CKI family, and we show that centaurin-alpha(1) associates in vitro with all mammalian CKI isoforms. To date, CKIalpha represents the first protein partner identified for centaurin-alpha(1). However, our data suggest that centaurin-alpha(1) is not a substrate for CKIalpha and has no effect on CKIalpha activity. Centaurin-alpha(1) has been identified as a phosphatidylinositol 3,4,5-trisphosphate-binding protein. Centaurin-alpha(1) contains a cysteine-rich domain that is shared by members of a newly identified family of ADP-ribosylation factor guanosine trisphosphatase-activating proteins. These proteins are involved in membrane trafficking and actin cytoskeleton rearrangement, thus supporting a role for CKIalpha in these biological events.
Collapse
Affiliation(s)
- T Dubois
- University of Edinburgh, Division of Biomedical and Clinical Laboratory Sciences, Hugh Robson Building, George Square, Edinburgh EH8 9XD
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Moreno-Bueno G, Calés C, Behrens MM, Fernández-Renart M. Isolation and characterization of casein kinase I from Dictyostelium discoideum. Biochem J 2000; 349:527-37. [PMID: 10880352 PMCID: PMC1221176 DOI: 10.1042/0264-6021:3490527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present study, the molecular cloning and characterization of a 49-kDa form of casein kinase (CK)I from Dictyostelium discoideum is reported. The predicted amino acid sequence shares 70% identity with the catalytic domain of the mammalian delta and epsilon isoforms, Drosophila CKIepsilon and Schizosaccharomyces pombe Hhp1, and 63% identity with Hrr25, a 57-kDa form of yeast CK involved in DNA repair. D. discoideum CKI (DdCKI) was expressed in vegetative asynchronous cells as well as in differentiated cells, as detected by Northern-blot analysis. The level of DdCKI expression did not change during the cell cycle. Antibodies raised against a truncated version of the protein recognized a 49-kDa protein from D. discoideum extracts. Protein expression paralleled the pattern found for the RNA. The expression of DdCKI in Escherichia coli resulted in an active enzyme that autophosphorylated and phosphorylated casein. Immunofluorescence assays showed that DdCKI was localized in the cytoplasm and nuclei of Dictyostelium cells. The lack of disruptants of the CKI gene suggests that this protein is essential for the vegetative growth of D. discoideum. Overexpression of DdCKI resulted in cells with increased resistance to hydroxyurea, suggesting a potential role for this kinase in DNA repair.
Collapse
Affiliation(s)
- G Moreno-Bueno
- Instituto de Investigaciones Biomédicas 'Alberto Sols', UAM-CSIC, C/ Arturo Duperier 4, 28029 Madrid, Spain
| | | | | | | |
Collapse
|
40
|
Bioukar EB, Marricco NC, Zuo D, Larose L. Serine phosphorylation of the ligand-activated beta-platelet-derived growth factor receptor by casein kinase I-gamma2 inhibits the receptor's autophosphorylating activity. J Biol Chem 1999; 274:21457-63. [PMID: 10409710 DOI: 10.1074/jbc.274.30.21457] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Platelet-derived growth factor (PDGF) receptors (PDGFRs) are membrane protein-tyrosine kinases that, upon activation, become tyrosine-phosphorylated and associate with numerous SH2 domain-containing molecules involved in mediating signal transduction. In Rat-2 fibroblasts, we have characterized the phosphorylation of the beta-PDGFR following its activation by PDGF. In contrast to tyrosine phosphorylation, which was transient and returned to near basal levels by 30 min, PDGF-stimulated Ser/Thr phosphorylation of the beta-PDGFR was increased by 5 min and remained elevated after 30 min. In vivo, after 5 min of PDGF stimulation, serine phosphorylation of the beta-PDGFR was greatly reduced by CKI-7, a specific inhibitor of casein kinase I (CKI). In vitro, recombinant CKI-gamma2 phosphorylated the ligand-activated beta-PDGFR on serine residues in a CKI-7-sensitive manner and resulted in a marked inhibition of the receptor's autophosphorylating activity. Furthermore, in Rat-2 fibroblasts, expression of hemagglutinin epitope-tagged active CKI-gamma2 resulted in a dramatic decrease in the tyrosine phosphorylation state of the beta-PDGFR in response to PDGF, consistent with receptor inactivation. Our data suggest that upon PDGF stimulation, CKI-gamma2 is activated and/or translocated in proximity to the beta-PDGFR, whereby it phosphorylates the beta-PDGFR on serine residues and negatively regulates its tyrosine kinase activity, leading to receptor inactivation.
Collapse
Affiliation(s)
- E B Bioukar
- Polypeptide Laboratory, Department of Experimental Medicine, McGill University, Montreal, Quebec H3A 2B2, Canada
| | | | | | | |
Collapse
|
41
|
Buday L. Membrane-targeting of signalling molecules by SH2/SH3 domain-containing adaptor proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1422:187-204. [PMID: 10393272 DOI: 10.1016/s0304-4157(99)00005-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
SH2/SH3 domain-containing adaptor proteins play a critical role in regulating tyrosine kinase signalling pathways. The major function of these adaptors, such as Grb2, Nck, and Crk, is to recruit proline-rich effector molecules to tyrosine-phosphorylated kinases or their substrates. In recent years dozens of novel proteins have emerged that are capable of associating with the SH2 and the SH3 domains of adaptors. In this review, the author attempts to summarise these novel binding partners of Grb2, Nck, and Crk, and to discuss current controversies regarding function and regulation of protein multicomplexes held together by SH2/SH3 adaptor molecules at the plasma membrane.
Collapse
Affiliation(s)
- L Buday
- Department of Medical Chemistry, Semmelweis University Medical School, 9 Puskin Street, 1088, Budapest, Hungary.
| |
Collapse
|
42
|
Braverman LE, Quilliam LA. Identification of Grb4/Nckbeta, a src homology 2 and 3 domain-containing adapter protein having similar binding and biological properties to Nck. J Biol Chem 1999; 274:5542-9. [PMID: 10026169 DOI: 10.1074/jbc.274.9.5542] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adapter proteins made up of Src homology (SH) domains mediate multiple cellular signaling events initiated by receptor protein tyrosine kinases. Here we report that Grb4 is an adapter protein closely related to but distinct from Nck that is made up of three SH3 domains and one SH2 domain. Northern analysis indicated that both genes are expressed in multiple tissues. Both Nck and Grb4 proteins could associate with receptor tyrosine kinases and the SH3-binding proteins PAK, Sos1, and PRK2, and they synergized with v-Abl and Sos to induce gene expression via the transcription factor Elk-1. Although neither protein was transforming on its own, both Nck and Grb4 cooperated with v-Abl to transform NIH 3T3 cells and influenced the morphology and anchorage-dependent growth of wild type Ras-transformed cells. Nck and Grb4 therefore appear to be functionally redundant.
Collapse
Affiliation(s)
- L E Braverman
- Department of Biochemistry and Molocular Biology and Walther Oncology Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | |
Collapse
|
43
|
Tu Y, Li F, Wu C. Nck-2, a novel Src homology2/3-containing adaptor protein that interacts with the LIM-only protein PINCH and components of growth factor receptor kinase-signaling pathways. Mol Biol Cell 1998; 9:3367-82. [PMID: 9843575 PMCID: PMC25640 DOI: 10.1091/mbc.9.12.3367] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/1998] [Accepted: 09/21/1998] [Indexed: 01/13/2023] Open
Abstract
Many of the protein-protein interactions that are essential for eukaryotic intracellular signal transduction are mediated by protein binding modules including SH2, SH3, and LIM domains. Nck is a SH3- and SH2-containing adaptor protein implicated in coordinating various signaling pathways, including those of growth factor receptors and cell adhesion receptors. We report here the identification, cloning, and characterization of a widely expressed, Nck-related adaptor protein termed Nck-2. Nck-2 comprises primarily three N-terminal SH3 domains and one C-terminal SH2 domain. We show that Nck-2 interacts with PINCH, a LIM-only protein implicated in integrin-linked kinase signaling. The PINCH-Nck-2 interaction is mediated by the fourth LIM domain of PINCH and the third SH3 domain of Nck-2. Furthermore, we show that Nck-2 is capable of recognizing several key components of growth factor receptor kinase-signaling pathways including EGF receptors, PDGF receptor-beta, and IRS-1. The association of Nck-2 with EGF receptors was regulated by EGF stimulation and involved largely the SH2 domain of Nck-2, although the SH3 domains of Nck-2 also contributed to the complex formation. The association of Nck-2 with PDGF receptor-beta was dependent on PDGF activation and was mediated solely by the SH2 domain of Nck-2. Additionally, we have detected a stable association between Nck-2 and IRS-1 that was mediated primarily via the second and third SH3 domain of Nck-2. Thus, Nck-2 associates with PINCH and components of different growth factor receptor-signaling pathways via distinct mechanisms. Finally, we provide evidence indicating that a fraction of the Nck-2 and/or Nck-1 proteins are associated with the cytoskeleton. These results identify a novel Nck-related SH2- and SH3-domain-containing protein and suggest that it may function as an adaptor protein connecting the growth factor receptor-signaling pathways with the integrin-signaling pathways.
Collapse
Affiliation(s)
- Y Tu
- Department of Cell Biology and The Cell Adhesion and Matrix Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019, USA
| | | | | |
Collapse
|
44
|
Gross SD, Anderson RA. Casein kinase I: spatial organization and positioning of a multifunctional protein kinase family. Cell Signal 1998; 10:699-711. [PMID: 9884021 DOI: 10.1016/s0898-6568(98)00042-4] [Citation(s) in RCA: 248] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The casein kinase I family of serine/threonine protein kinases is highly conserved from yeast to humans. Until only recently, both the function and regulation of these enzymes remained poorly uncharacterised in that they appeared to be constitutively active and were capable of phosphorylating an untold number of other proteins. While relatively little was known regarding the exact function of the higher eukaryotic isoforms, the casein kinase I (CKI) isoforms from yeast have been genetically linked to vesicular trafficking, DNA repair, cell cycle progression and cytokinesis. All five S. cerevisiae isoforms are known to be associated with discrete cellular compartments and this localization has been shown to be absolutely essential for their respective functions. New evidence now suggests that the CKI isoforms in more complex systems also exhibit non-homogeneous subcellular distributions that may prove vital to defining the function and regulation of these enzymes. In particular, CKIalpha, the most-characterized vertebrate isoform, is associated with cytosolic vesicles, the mitotic spindle and structures within the nucleus. Functions associated with these localizations coincide with those previously reported in yeast, suggesting a conservation of function. Other reports have indicated that each of the remaining CKI isoforms have the capacity to make associations with components of several signal transduction pathways, thereby channeling CKI function toward specific regulatory events. This review will examine what is now known about the higher eukaryotic CKI family members from the perspective localization as a means of gaining a better understanding of the function and regulation of these kinases.
Collapse
Affiliation(s)
- S D Gross
- Department of Pharmacology, Howard Hughes Medical Institute, University of Colorado Health Sciences Center, Denver 80262, USA
| | | |
Collapse
|
45
|
Abstract
Casein kinase 2 is present in the brain, including the hippocampus. It is associated with long-term potentiation and is known to be involved in phosphorylation of proteins potentially important for neuroplasticity, but regulation of its activity in neuronal cells is not yet known. In the present work, it was found that brain-derived neurotrophic factor and neurotrophin-4 control the activity of casein kinase 2 in hippocampal slices of adult rat. It is shown that: (i) treatment of slices for 4 h with the neurotrophins results in a five-fold increase in the activity of cytosolic casein kinase 2; (ii) this effect does not require protein synthesis. In addition, using calcium chelators, phospholipase inhibitors and protein kinase inhibitors, evidence is provided that: (i) neurotrophin-induced activation of casein kinase 2 is dependent on the availability of intracellular calcium due to stimulation of phospholipase C; (ii) both a tyrosine kinase(s) and a serine/threonine kinase(s) convey the signal of calcium. Since there is now accumulating evidence for involvement of brain-derived neurotrophic factor, intracellular calcium, tyrosine kinases and serine/threonine kinases in the regulation of synaptic plasticity, it is suggested that the signalling cascade detected here might contribute to control of synaptic strength in the hippocampus.
Collapse
Affiliation(s)
- P R Blanquet
- Unité de Recherche de Physiopharmacologie du Système Nerveux, U-161 INSERM, Paris, France
| |
Collapse
|
46
|
Chen M, She H, Davis EM, Spicer CM, Kim L, Ren R, Le Beau MM, Li W. Identification of Nck family genes, chromosomal localization, expression, and signaling specificity. J Biol Chem 1998; 273:25171-8. [PMID: 9737977 DOI: 10.1074/jbc.273.39.25171] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Already a dozen molecules share binding to the Src homology (SH) 3 domains of human Nck, an SH3-SH3-SH3-SH2 adapter protein. We reason that there may be multiple gene members of Nck to accommodate the large binding repertoires. Here we report identification of novel human and mouse Nck genes and rename them as the Nckalpha and Nckbeta genes (including the human Nckalpha, human Nckbeta, mouse Nckalpha, and mouse Nckbeta genes). Nckalpha and Nckbeta share 68% amino acid identity, whereas the two Nckalpha and two Nckbeta across the species show 96% identity to each other. The human Nckbeta gene is mapped to 2q12, whereas the human Nckalpha gene has previously been mapped at 3q21. Antibodies specifically against Nckalpha and Nckbeta detect Nckalpha and Nckbeta with an identical molecular mass in the same cells of various origins. Ectopically expressed Nckbeta, but not its SH2 domain mutant, strongly inhibits epidermal growth factor- and platelet-derived growth factor-stimulated DNA synthesis. Consistently, epidermal growth factor receptor and platelet-derived growth factor receptor preferentially interact with Nckbeta over Nckalpha in vitro. This study indicates that Nck is a multiple gene family and that each gene may have its own signaling specificity. Because previous anti-Nck (human Nckalpha) antibodies cross-react with Nckbeta, reassessment of those studies with specific Nck genes would be necessary.
Collapse
Affiliation(s)
- M Chen
- Department of Biochemistry and Molecular Biology, the Department of Medicine, the University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Antón IM, Lu W, Mayer BJ, Ramesh N, Geha RS. The Wiskott-Aldrich syndrome protein-interacting protein (WIP) binds to the adaptor protein Nck. J Biol Chem 1998; 273:20992-5. [PMID: 9694849 DOI: 10.1074/jbc.273.33.20992] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nck is a ubiquitous adaptor molecule composed of three Src homology 3 (SH3) domains followed by a single SH2 domain. Nck links, via its SH2 domain, tyrosine-phosphorylated receptors to effector proteins that contain SH3-binding proline-rich sequences. In this report, we demonstrate that recombinant Nck precipitates endogenous WIP, a novel proline-rich protein that interacts with the Wiskott-Aldrich syndrome protein (WASP), from BJAB cell lysates. Nck binds through its second SH3 domain to WIP, and Nck binds to WIP at a site (amino acids 321-415) that differs from the WASP-binding site (amino acids 416-488). WIP has been shown to associate with the actin polymerization regulatory protein profilin and to induce actin polymerization and cytoskeletal reorganization in lymphoid cells. We demonstrate the presence of profilin in Nck precipitates suggesting that Nck may couple extracellular signals to the cytoskeleton via its interaction with WIP and profilin.
Collapse
Affiliation(s)
- I M Antón
- Division, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
48
|
Ryan PJ, Paterno GD, Gillespie LL. Identification of phosphorylated proteins associated with the fibroblast growth factor receptor type I during early Xenopus development. Biochem Biophys Res Commun 1998; 244:763-7. [PMID: 9535739 DOI: 10.1006/bbrc.1998.8326] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Signaling through the FGF receptor (FGFR) is required for mesoderm induction in Xenopus. Some of the downstream signaling molecules implicated in this developmental process include Ras, Raf and MAP kinase. In a previous report, we demonstrated that PLC gamma 1, Grb-2, SOS and Nck were associated with activated FGFR1s in a signaling complex in Xenopus blastulae. In addition, several unidentified phosphotyrosylproteins were present in the FGFR1 complex. Here we identify three of these proteins as Ras-GAP, the p85 of P13'K and SHP2, while demonstrating that c-Src and She were not associated with the FGFR1. Furthermore, we show that three additional phosphotyrosylproteins from the FGFR1 complex specifically bound to the adaptor molecule Nck.
Collapse
Affiliation(s)
- P J Ryan
- Terry Fox Cancer Research Laboratories, Division of Basic Medical Sciences, Memorial University of Newfoundland, St. John's, Canada
| | | | | |
Collapse
|
49
|
Kitabayashi AN, Kusuda J, Hirai M, Hashimoto K. Cloning and chromosomal mapping of human casein kinase I gamma 2 (CSNK1G2). Genomics 1997; 46:133-7. [PMID: 9403068 DOI: 10.1006/geno.1997.4991] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A clone of immature cDNA for human casein kinase I gamma 2 (CSNK1G2) was isolated by screening the human testis cDNA library with a PCR-amplified probe (about 400 bp) representing the kinase domain of rat casein kinase I gamma 2 (CKI gamma 2). Comparison of the entire sequence with that of rat CKI gamma 2 showed that the cDNA contained the complete coding sequence of CKI gamma 2 as well as an intron-like sequence of 1006 bp, part of which was homologous to the Alu sequence. To obtain an insertion-free CSNK1G2 cDNA, PCR cloning was performed based on the above sequence. The amplified 1687-bp fragment was subcloned and sequenced. The predicted amino acid sequence consisted of 416 residues, 94% of which were identical to that of the rat homologue. Although there are two Src homology 3 (SH3) domain-binding motifs (Pro-X-X-Pro consensus), Pro-Lys-Val-Pro and Pro-Ser-Glu-Pro in the C-terminal region of rat CKI gamma 2, only the latter was conserved in the human counterpart. This finding suggests that the latter motif is important for binding to the signal transduction adaptor protein Nck (NCK). The human CSNK1G2 gene was mapped to chromosome 19p13.3 by fluorescence in situ hybridization and PCR analysis of the human/rodent hybrid cell panel.
Collapse
Affiliation(s)
- A N Kitabayashi
- Division of Genetic Resources, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | |
Collapse
|
50
|
Dubois T, Rommel C, Howell S, Steinhussen U, Soneji Y, Morrice N, Moelling K, Aitken A. 14-3-3 is phosphorylated by casein kinase I on residue 233. Phosphorylation at this site in vivo regulates Raf/14-3-3 interaction. J Biol Chem 1997; 272:28882-8. [PMID: 9360956 DOI: 10.1074/jbc.272.46.28882] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
14-3-3 proteins mediate interactions between proteins involved in signal transduction and cell cycle regulation. Phosphorylation of target proteins as well as 14-3-3 are important for protein-protein interactions. Here, we describe the purification of a protein kinase from porcine brain that phosphorylates 14-3-3 zeta on Thr-233. This protein kinase has been identified as casein kinase Ialpha (CKIalpha) by peptide mapping analysis and sequencing. Among mammalian 14-3-3, only 14-3-3 tau possesses a phosphorylatable residue at the same position (Ser-233), and we show that this residue is also phosphorylated by CKI. In addition, we show that 14-3-3 zeta is exclusively phosphorylated on Thr-233 in human embryonic kidney 293 cells. The residue 233 is located within a region shown to be important for the association of 14-3-3 to target proteins. We showed previously that, in 293 cells, only the unphosphorylated form of 14-3-3 zeta associates with the regulatory domain of c-Raf. We have now shown that in vivo phosphorylation of 14-3-3 zeta at the CKIalpha site (Thr-233) negatively regulates its binding to c-Raf, and may be important in Raf-mediated signal transduction.
Collapse
Affiliation(s)
- T Dubois
- Division of Protein Structure, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|