1
|
Beneduce C, Nguyen S, Washburn N, Schaeck J, Meccariello R, Holte K, Ortiz D, Manning AM, Bosques CJ, Kurtagic E. Inhibitory Fc-Gamma IIb Receptor Signaling Induced by Multivalent IgG-Fc Is Dependent on Sialylation. Cells 2023; 12:2130. [PMID: 37681862 PMCID: PMC10486564 DOI: 10.3390/cells12172130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/05/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
Immunoglobulin (IgG) Fc glycosylation has been shown to be important for the biological activity of antibodies. Fc sialylation is important for the anti-inflammatory activity of IgGs. However, evaluating the structure-activity relationship (SAR) of antibody Fc glycosylation has been hindered using simplified in vitro models in which antibodies are often displayed in monomeric forms. Presenting antibodies in monomeric forms may not accurately replicate the natural environment of the antibodies when binding their antigen in vivo. To address these limitations, we used different Fc-containing molecules, displaying their Fc domains in monovalent and multivalent fashion. Given the inhibitory role of Fc gamma receptor IIb (FcγRIIb) in autoimmune and inflammatory diseases, we focused on evaluating the impact of Fc sialylation on the activation of FcγRIIb. We report for the first time that in human cellular systems, sialic acid mediates the induction of FcγRIIb phosphorylation by IgG-Fc when the IgG-Fc is displayed in a multivalent fashion. This effect was observed with different types of therapeutic agents such as sialylated anti-TNFα antibodies, sialylated IVIg and sialylated recombinant multivalent Fc products. These studies represent the first report of the specific effects of Fc sialylation on FcγRIIb signaling on human immune cells and may help in the characterization of the anti-inflammatory activity of Fc-containing therapeutic candidates.
Collapse
Affiliation(s)
- Christopher Beneduce
- Momenta Pharmaceuticals Inc., Cambridge, MA 02142, USA
- Janssen Research & Development, Cambridge, MA 02142, USA
| | | | - Nathaniel Washburn
- Momenta Pharmaceuticals Inc., Cambridge, MA 02142, USA
- Janssen Research & Development, Cambridge, MA 02142, USA
| | - John Schaeck
- Momenta Pharmaceuticals Inc., Cambridge, MA 02142, USA
| | - Robin Meccariello
- Momenta Pharmaceuticals Inc., Cambridge, MA 02142, USA
- Janssen Research & Development, Cambridge, MA 02142, USA
| | | | - Daniel Ortiz
- Momenta Pharmaceuticals Inc., Cambridge, MA 02142, USA
| | | | | | - Elma Kurtagic
- Momenta Pharmaceuticals Inc., Cambridge, MA 02142, USA
- Janssen Research & Development, Cambridge, MA 02142, USA
| |
Collapse
|
2
|
Barlev AN, Malkiel S, Kurata-Sato I, Dorjée AL, Suurmond J, Diamond B. FcɣRIIB regulates autoantibody responses by limiting marginal zone B cell activation. J Clin Invest 2022; 132:157250. [PMID: 35819855 PMCID: PMC9435648 DOI: 10.1172/jci157250] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
FcɣRIIB is an inhibitory receptor expressed throughout B cell development. Diminished expression or function is associated with lupus in mice and humans, in particular through an effect on autoantibody production and plasma cell differentiation. Here, we analysed the effect of B cell-intrinsic FcɣRIIB expression on B cell activation and plasma cell differentiation. Loss of FcɣRIIB on B cells (Fcgr2b cKO mice) led to a spontaneous increase in autoantibody titers. This increase was most striking for IgG3, suggestive of increased extrafollicular responses. Marginal zone (MZ) B cells had the highest expression of FcɣRIIB in both mouse and human. This high expression of FcɣRIIB was linked to increased MZ B cell activation, Erk phosphorylation, and calcium fluxin the absence of FcɣRIIB triggering. Marked increases in IgG3+ plasma cells and B cells were observed during extrafollicular plasma cell responses in Fcgr2b cKO mice. The increased IgG3 response following immunization of Fcgr2b cKO mice was lost in MZ-deficient Notch2/Fcgr2b cKO mice. Importantly, SLE patients exhibited decreased expression of FcɣRIIB, most strongly in MZ B cells. Thus, we present a model where high FcɣRIIB expression in MZ B cells prevents their hyperactivation and ensuing autoimmunity.
Collapse
Affiliation(s)
- Ashley N Barlev
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Susan Malkiel
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Izumi Kurata-Sato
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Annemarie L Dorjée
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Jolien Suurmond
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Betty Diamond
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, United States of America
| |
Collapse
|
3
|
|
4
|
Pauls SD, Ray A, Hou S, Vaughan AT, Cragg MS, Marshall AJ. FcγRIIB-Independent Mechanisms Controlling Membrane Localization of the Inhibitory Phosphatase SHIP in Human B Cells. THE JOURNAL OF IMMUNOLOGY 2016; 197:1587-96. [PMID: 27456487 DOI: 10.4049/jimmunol.1600105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/21/2016] [Indexed: 01/08/2023]
Abstract
SHIP is an important regulator of immune cell signaling that functions to dephosphorylate the phosphoinositide phosphatidylinositol 3,4,5-trisphosphate at the plasma membrane and mediate protein-protein interactions. One established paradigm for SHIP activation involves its recruitment to the phospho-ITIM motif of the inhibitory receptor FcγRIIB. Although SHIP is essential for the inhibitory function of FcγRIIB, it also has critical modulating functions in signaling initiated from activating immunoreceptors such as B cell Ag receptor. In this study, we found that SHIP is indistinguishably recruited to the plasma membrane after BCR stimulation with or without FcγRIIB coligation in human cell lines and primary cells. Interestingly, fluorescence recovery after photobleaching analysis reveals differential mobility of SHIP-enhanced GFP depending on the mode of stimulation, suggesting that although BCR and FcγRIIB can both recruit SHIP, this occurs via distinct molecular complexes. Mutagenesis of a SHIP-enhanced GFP fusion protein reveals that the SHIP-Src homology 2 domain is essential in both cases whereas the C terminus is required for recruitment via BCR stimulation, but is less important with FcγRIIB coligation. Experiments with pharmacological inhibitors reveal that Syk activity is required for optimal stimulation-induced membrane localization of SHIP, whereas neither PI3K or Src kinase activity is essential. BCR-induced association of SHIP with binding partner Shc1 is dependent on Syk, as is tyrosine phosphorylation of both partners. Our results indicate that FcγRIIB is not uniquely able to promote membrane recruitment of SHIP, but rather modulates its function via formation of distinct signaling complexes. Membrane recruitment of SHIP via Syk-dependent mechanisms may be an important factor modulating immunoreceptor signaling.
Collapse
Affiliation(s)
- Samantha D Pauls
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Arnab Ray
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada; and
| | - Sen Hou
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada; and
| | - Andrew T Vaughan
- Cancer Sciences Unit, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Mark S Cragg
- Cancer Sciences Unit, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Aaron J Marshall
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada; Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada; and
| |
Collapse
|
5
|
Xu Y, Huntington ND, Harder KW, Nandurkar H, Hibbs ML, Tarlinton DM. Phosphatidylinositol-3 kinase activity in B cells is negatively regulated by Lyn tyrosine kinase. Immunol Cell Biol 2012; 90:903-11. [PMID: 22777522 DOI: 10.1038/icb.2012.31] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phosphatidylinositol-3 kinase (PI3K) activity is essential for normal B-cell receptor (BCR)-mediated responses. To understand the mechanisms of PI3K regulation during B-cell activation, we performed a series of biochemical analysis on primary B cells, and found that activity of Src family tyrosine kinases (SFK) is crucial for the activation of PI3K following BCR ligation and this is regulated by the SFK Lyn. We show that the hyperresponsive phenotype of B cells lacking Lyn is predicated on significantly increased basal and inducible PI3K activity that correlates with the constitutive hypophosphorylation of PAG/Cbp (phosphoprotein associated with glycosphingolipid-enriched microdomains/Csk-binding protein), a concomitant reduction in bound Csk in Lyn(-/-) B cells and elevated levels of active Fyn. Regulating SFK activity may thus be a central mechanism by which Lyn regulates PI3K activity in B cells. This study defines the molecular connection between the BCR and PI3K and reveals this to be a point of Lyn-mediated regulation.
Collapse
Affiliation(s)
- Yuekang Xu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | | | | | | | | | | |
Collapse
|
6
|
Ramsey LB, Vegoe AL, Miller AT, Cooke MP, Farrar MA. Tonic BCR signaling represses receptor editing via Raf- and calcium-dependent signaling pathways. Immunol Lett 2011; 135:74-7. [PMID: 20933008 PMCID: PMC3026880 DOI: 10.1016/j.imlet.2010.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 09/27/2010] [Accepted: 09/29/2010] [Indexed: 11/20/2022]
Abstract
Light chain receptor editing is an important mechanism that prevents B cell self-reactivity. We have previously shown that tonic signaling through the BCR represses RAG expression at the immature B cell stage, and that initiation of light chain rearrangements occurs in the absence of these tonic signals in an in vitro model of B cell development. To further test our hypothesis we studied the effect of itpkb deficiency (itpkb(-/-) mice) or Raf hyper-activation (Raf-CAAX transgenic mice), two mutations that enhance BCR signaling, on receptor editing in an in vivo model. This model relies on transferring bone marrow from wild-type or mutant mice into mice expressing an anti-kappa light chain transgene. The anti-kappa transgene induces receptor editing of all kappa light chain expressing B cells, leading to a high frequency of lambda light chain expressing B cells. Anti-κ transgenic recipients of bone marrow from itpkb(-/-) or Raf-CAAX mice showed lower levels of editing to λ light chain than did non-transgenic control recipients. These results provide evidence in an in vivo model that enhanced BCR signaling at the immature B cell stage of development suppresses light chain receptor editing.
Collapse
Affiliation(s)
- Laura B. Ramsey
- Center for Immunology, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Amanda L. Vegoe
- Center for Immunology, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Andrew T. Miller
- The Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Michael P. Cooke
- The Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Michael A. Farrar
- Center for Immunology, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Abstract
The growth factor receptor-bound protein 2 (Grb2) is a ubiquitously expressed and evolutionary conserved adapter protein possessing a plethora of described interaction partners for the regulation of signal transduction. In B lymphocytes, the Grb2-mediated scaffolding function controls the assembly and subcellular targeting of activating as well as inhibitory signalosomes in response to ligation of the antigen receptor. Also, integration of simultaneous signals from B-cell coreceptors that amplify or attenuate antigen receptor signal output relies on Grb2. Hence, Grb2 is an essential signal integrator. The key question remains, however, of how pathway specificity can be maintained during signal homeostasis critically required for the balance between immune cell activation and tolerance induction. Here, we summarize the molecular network of Grb2 in B cells and introduce a proteomic approach to elucidate the interactome of Grb2 in vivo.
Collapse
Affiliation(s)
- Konstantin Neumann
- Institute of Cellular and Molecular Immunology, Georg August University of Göttingen, Göttingen, Germany
| | | | | | | |
Collapse
|
8
|
Locke NR, Patterson SJ, Hamilton MJ, Sly LM, Krystal G, Levings MK. SHIP Regulates the Reciprocal Development of T Regulatory and Th17 Cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:975-83. [DOI: 10.4049/jimmunol.0803749] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Fournier EM, Sibéril S, Costes A, Varin A, Fridman WH, Teillaud JL, Sautès-Fridman C. Activation of Human Peripheral IgM+ B Cells Is Transiently Inhibited by BCR-Independent Aggregation of FcγRIIB. THE JOURNAL OF IMMUNOLOGY 2008; 181:5350-9. [DOI: 10.4049/jimmunol.181.8.5350] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Chu SY, Vostiar I, Karki S, Moore GL, Lazar GA, Pong E, Joyce PF, Szymkowski DE, Desjarlais JR. Inhibition of B cell receptor-mediated activation of primary human B cells by coengagement of CD19 and FcgammaRIIb with Fc-engineered antibodies. Mol Immunol 2008; 45:3926-33. [PMID: 18691763 DOI: 10.1016/j.molimm.2008.06.027] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 06/18/2008] [Accepted: 06/19/2008] [Indexed: 12/23/2022]
Abstract
The humoral immune response requires antigen-specific B cell activation and subsequent terminal differentiation into plasma cells. Engagement of B cell antigen receptor (BCR) on mature B cells activates an intracellular signaling cascade, including calcium mobilization, which leads to cell proliferation and differentiation. Coengagement by immune complex of BCR with the inhibitory Fc receptor FcgammaRIIb, the only IgG receptor expressed on B cells, inhibits B cell activation signals through a negative feedback loop. We now describe antibodies that mimic the inhibitory effects of immune complex by high-affinity coengagement of FcgammaRIIb and the BCR coreceptor complex on human B cells. We engineered the Fc domain of an anti-CD19 antibody to generate variants with up to approximately 430-fold greater affinity to FcgammaRIIb. Relative to native IgG1, the FcgammaRIIb binding-enhanced (IIbE) variants strongly inhibited BCR-induced calcium mobilization and viability in primary human B cells. Inhibitory effects involved phosphorylation of SH2-containing inositol polyphosphate 5-phosphatase (SHIP), which is known to be involved in FcgammaRIIb-induced negative feedback of B cell activation by immune complex. Coengagement of BCR and FcgammaRIIb by IIbE variants also overcame the anti-apoptotic effects of BCR activation. The use of a single antibody to suppress B cell functions by coengagement of BCR and FcgammaRIIb may represent a novel approach in the treatment of B cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Seung Y Chu
- Xencor, Inc., 111 W. Lemon Avenue, Monrovia, CA 91016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sweeney MC, Wavreille AS, Park J, Butchar JP, Tridandapani S, Pei D. Decoding protein-protein interactions through combinatorial chemistry: sequence specificity of SHP-1, SHP-2, and SHIP SH2 domains. Biochemistry 2006; 44:14932-47. [PMID: 16274240 DOI: 10.1021/bi051408h] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A general, combinatorial library method for the rapid identification of high-affinity peptide ligands of protein modular domains is reported. The validity of this method has been demonstrated by determining the sequence specificity of four Src homology 2 (SH2) domains derived from protein tyrosine phosphatase SHP-1 and SHP-2 and inositol phosphatase SHIP. A phosphotyrosyl (pY) peptide library was screened against the SH2 domains, and the beads that carry high-affinity ligands of the SH2 domains were identified and peptides were sequenced by partial Edman degradation and mass spectrometry. The results reveal that the N-terminal SH2 domain of SHP-2 is capable of recognizing four different classes of pY peptides. Binding competition studies suggest that the four classes of pY peptides all bind to the same site on the SH2 domain surface. The C-terminal SH2 domains of SHP-1 and SHP-2 and the SHIP SH2 domain each bind to pY peptides of a single consensus sequence. Database searches using the consensus sequences identified most of the known as well as many potential interacting proteins of SHP-1 and/or SHP-2. Several proteins are found to bind to the SH2 domains of SHP-1 and SHP-2 through a new, nonclassical ITIM motif, (V/I/L)XpY(M/L/F)XP, which corresponds to the class IV peptides selected from the pY library. The combinatorial library method should be generally applicable to other protein domains.
Collapse
Affiliation(s)
- Michael C Sweeney
- Department of Chemistry, Ohio State Biochemistry Program, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
12
|
Kepley CL, Taghavi S, Mackay G, Zhu D, Morel PA, Zhang K, Ryan JJ, Satin LS, Zhang M, Pandolfi PP, Saxon A. Co-aggregation of FcgammaRII with FcepsilonRI on human mast cells inhibits antigen-induced secretion and involves SHIP-Grb2-Dok complexes. J Biol Chem 2004; 279:35139-49. [PMID: 15151996 DOI: 10.1074/jbc.m404318200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Signaling through the high affinity IgE receptor FcepsilonRI on human basophils and rodent mast cells is decreased by co-aggregating these receptors to the low affinity IgG receptor FcgammaRII. We used a recently described fusion protein, GE2, which is composed of key portions of the human gamma1 and the human epsilon heavy chains, to dissect the mechanisms that lead to human mast cell and basophil inhibition through co-aggregation of FcgammaRII and FcepsilonRI. Unstimulated human mast cells derived from umbilical cord blood express the immunoreceptor tyrosine-based inhibitory motif-containing receptor FcgammaRII but not FcgammaRI or FcgammaRIII. Interaction of the mast cells with GE2 alone did not cause degranulation. Co-aggregating FcepsilonRI and FcgammaRII with GE2 1) significantly inhibited IgE-mediated histamine release, cytokine production, and Ca(2+) mobilization, 2) reduced the antigen-induced morphological changes associated with mast cell degranulation, 3) reduced the tyrosine phosphorylation of several cellular substrates, and 4) increased the tyrosine phosphorylation of the adapter protein downstream of kinase 1 (p62(dok); Dok), growth factor receptor-bound protein 2 (Grb2), and SH2 domain containing inositol 5-phosphatase (SHIP). Tyrosine phosphorylation of Dok was associated with increased binding to Grb2. Surprisingly, in non-stimulated cells, there were complexes of phosphorylated SHIP-Grb2-Dok that were lost upon IgE receptor activation but retained under conditions of Fcepsilon-Fcgamma co-aggregation. Finally, studies using mast cells from Dok-1 knock-out mice showed that IgE alone triggers degranulation supporting an inhibitory role for Dok degranulation. Our results demonstrate how human FcepsilonRI-mediated responses can be inhibited by co-aggregation with FcgammaRIIB and implicate Dok, SHIP, and Grb2 as key intermediates in regulating antigen-induced mediator release.
Collapse
Affiliation(s)
- Christopher L Kepley
- Department of Internal Medicine, Virginia Commonwealth University Health Systems, Richmond, Virginia 23298, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Mongini PKA, Jackson AE, Tolani S, Fattah RJ, Inman JK. Role of Complement-Binding CD21/CD19/CD81 in Enhancing Human B Cell Protection from Fas-Mediated Apoptosis. THE JOURNAL OF IMMUNOLOGY 2003; 171:5244-54. [PMID: 14607925 DOI: 10.4049/jimmunol.171.10.5244] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Defective expression of Fas leads to B cell autoimmunity, indicating the importance of this apoptotic pathway in eliminating autoreactive B cells. However, B cells with anti-self specificities occasionally escape such regulation in individuals with intact Fas, suggesting ways of precluding this apoptosis. Here, we examine whether coligation of the B cell Ag receptor (BCR) with the complement (C3)-binding CD21/CD19/CD81 costimulatory complex can enhance the escape of human B cells from Fas-induced death. This was warranted given that BCR-initiated signals induce resistance to Fas apoptosis, some (albeit not all) BCR-triggered events are amplified by coligation of BCR and the co-stimulatory complex, and several self Ags targeted in autoimmune diseases effectively activate complement. Using a set of affinity-diverse surrogate Ags (receptor-specific mAb:dextran conjugates) with varying capacity to engage CD21, it was established that BCR:CD21 coligation lowers the BCR engagement necessary for inducing protection from Fas apoptosis. Enhanced protection was associated with altered expression of several molecules known to regulate Fas apoptosis, suggesting a unique molecular model for how BCR:CD21 coligation augments protection. BCR:CD21 coligation impairs the generation of active fragments of caspase-8 via dampened expression of membrane Fas and augmented expression of FLIP(L). This, in turn, diminishes the generation of cells that would be directly triggered to apoptosis via caspase-8 cleavage of caspase 3 (type I cells). Any attempt to use the mitochondrial apoptotic protease-activating factor 1 (Apaf-1)-dependent pathway for apoptosis (as type II cells) is further blocked because BCR:CD21 coligation promotes up-regulation of the mitochondrial antiapoptotic molecule, Bcl-2.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adjuvants, Immunologic/metabolism
- Adjuvants, Immunologic/physiology
- Adolescent
- Antibodies, Monoclonal/pharmacology
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Antigens, CD19/metabolism
- Antigens, CD19/physiology
- Apoptosis/immunology
- Apoptosis Regulatory Proteins
- B-Lymphocytes/cytology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Binding Sites/immunology
- CD40 Antigens/pharmacology
- CD40 Ligand/pharmacology
- Carrier Proteins/biosynthesis
- Caspase 8
- Caspases/biosynthesis
- Caspases/metabolism
- Cell Survival/immunology
- Cells, Cultured
- Child
- Child, Preschool
- Co-Repressor Proteins
- Complement C3/metabolism
- DNA Fragmentation/immunology
- Fas Ligand Protein
- Humans
- Intracellular Signaling Peptides and Proteins
- Ligands
- Macromolecular Substances
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/metabolism
- Membrane Proteins/metabolism
- Membrane Proteins/physiology
- Molecular Chaperones
- Nuclear Proteins/biosynthesis
- Protein Binding/immunology
- Proto-Oncogene Proteins c-bcl-2/biosynthesis
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Complement 3d/metabolism
- Receptors, Complement 3d/physiology
- TNF-Related Apoptosis-Inducing Ligand
- Tetraspanin 28
- Tumor Necrosis Factor-alpha/biosynthesis
- bcl-X Protein
- fas Receptor/biosynthesis
- fas Receptor/immunology
- fas Receptor/metabolism
- fas Receptor/physiology
Collapse
Affiliation(s)
- Patricia K A Mongini
- Department of Rheumatology, Hospital for Joint Diseases, New York, NY 10003, USA.
| | | | | | | | | |
Collapse
|
14
|
Kuroki K, Tsuchiya N, Tsao BP, Grossman JM, Fukazawa T, Hagiwara K, Kano H, Takazoe M, Iwata T, Hashimoto H, Tokunaga K. Polymorphisms of human CD19 gene: possible association with susceptibility to systemic lupus erythematosus in Japanese. Genes Immun 2002; 3 Suppl 1:S21-30. [PMID: 12215898 DOI: 10.1038/sj.gene.6363906] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2001] [Revised: 05/20/2002] [Accepted: 05/24/2002] [Indexed: 01/09/2023]
Abstract
CD19 regulates the signaling for B lymphocyte development, activation and proliferation. In mice, CD19 deficiency and overexpression were shown to result in hypogammaglobulinemia and autoantibody production, respectively. In the present study, we screened for the polymorphisms of CD19, and examined the detected polymorphisms for the association with rheumatoid arthritis (RA), Crohn's disease and systemic lupus erythematosus (SLE). Two SNPs, c.705G>T (P235P and IVS14-30C>T, were decreased (P = 0.0096 and P = 0.028, respectively), in SLE. A GT repeat polymorphism, c.*132(GT)(12-18), was detected within the 3'-untranslated region, and individuals with > or =15 times repeat was significantly increased in the independent two groups of Japanese SLE patients (P = 0.011 and P = 0.035, respectively); the overall difference between total SLE and controls was striking (P = 0.0061). No association was observed for RA and Crohn's disease. In addition, no variations other than the common polymorphisms were detected in four patients with common variable immunodeficiency, the phenotype of which resembles CD19 deficient mice. In Caucasian SLE families, this GT repeat polymorphism was rare. CD19 mRNA level in the isolated peripheral blood B lymphocytes was lower in individuals possessing (GT)(15-18) alleles compared with those without these alleles, both in controls and in SLE patients; however, the difference did not reach statistical significance. These results suggested that either the slight reduction in the CD19 mRNA level associated with the elongation of GT repeat, or an allele of another locus in linkage disequilibrium with CD19 (GT)(15-18), may be associated with susceptibility to SLE in Japanese.
Collapse
Affiliation(s)
- K Kuroki
- Department of Human Genetics, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Sen G, Wu HJ, Bikah G, Venkataraman C, Robertson DA, Snow EC, Bondada S. Defective CD19-dependent signaling in B-1a and B-1b B lymphocyte subpopulations. Mol Immunol 2002; 39:57-68. [PMID: 12213328 DOI: 10.1016/s0161-5890(02)00047-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Peritoneal and pleural cavities in mice and humans contain a unique population of B-lymphocytes called B-1 cells that are defective in B cell antigen receptor (BCR) signaling but have an increased propensity to produce autoantibodies. Several molecules such as Btk, Vav, and CD19 known to be important for BCR signaling have been shown to be critical for the development of B-1 cells from undefined precursors. Here we demonstrate that B-1 cell unresponsiveness to BCR cross-linking is in part due to defective signaling through CD19, a molecule known to modulate signaling thresholds in B cells. The defective CD19 signaling is manifested in reduced synergy between mIgM and CD19 to stimulate calcium mobilization in B-1 cells. BCR induced tyrosine phosphorylation of CD19 was transient in B-1 cells while it was prolonged in splenic B-2 cells. In both B-1 and B-2 cells BCR cross-linking induced a modest increase of CD19 associated Lyn, a Src family protein tyrosine kinase (PTK) thought to be important for CD19 phosphorylation. However, the tyrosine phosphorylated CD19 in B-1 cells binds less phosphatidylinositol 3-kinase (PI3-K) compared to B-2 cells. Most interestingly, we find that Vav-1 and Vav-2, proteins thought to be critical for CD19 signal transduction, are severely reduced in B-1 cells resulting in a complete absence of any CD19 associated Vav. Also we showed that both B-1a and B-1b B cells failed to proliferate in response to BCR cross-linking which in part appears to be due to defects in CD19 mediated amplification of BCR induced calcium mobilization.
Collapse
Affiliation(s)
- Goutam Sen
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0230, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Poe JC, Hasegawa M, Tedder TF. CD19, CD21, and CD22: multifaceted response regulators of B lymphocyte signal transduction. Int Rev Immunol 2002; 20:739-62. [PMID: 11913948 DOI: 10.3109/08830180109045588] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
B lymphocyte development and function depend upon the activity of intrinsic and B cell antigen receptor (BCR)-induced signals. These signals are interpreted, amplified, fine-tuned, or suppressed through the precise actions of specialized cell surface coreceptors, or "response regulators," that inform B cells of their extracellular environment. Important cell surface response regulators include the CD19/CD21 complex, CD22, and CD72. CD19 establishes a novel Src-family protein tyrosine kinase (PTK) amplification loop that regulates basal signaling thresholds and intensifies Src-family PTK activation following BCR ligation. In turn, CD22 limits the intensity of CD19-dependent, BCR-generated signals through the recruitment of potent phosphotyrosine and phosphoinositide phosphatases. Herein we discuss our current understanding of how CD19/CD21 and CD22 govern the emergence and intensity of BCR-mediated signals, and how alterations in these tightly controlled regulatory activities contribute to autoimmunity in mice and humans.
Collapse
MESH Headings
- Animals
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, CD19/chemistry
- Antigens, CD19/genetics
- Antigens, CD19/metabolism
- Antigens, Differentiation, B-Lymphocyte/chemistry
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Autoimmunity
- B-Lymphocytes/immunology
- Cell Adhesion Molecules
- Humans
- Lectins
- Lymphocyte Activation
- Mice
- Mice, Knockout
- Models, Immunological
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Complement 3d/chemistry
- Receptors, Complement 3d/genetics
- Receptors, Complement 3d/metabolism
- Sialic Acid Binding Ig-like Lectin 2
- Signal Transduction
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- J C Poe
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
17
|
Jacob A, Cooney D, Pradhan M, Coggeshall KM. Convergence of signaling pathways on the activation of ERK in B cells. J Biol Chem 2002; 277:23420-6. [PMID: 11976336 DOI: 10.1074/jbc.m202485200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The B cell receptor (BCR) initiates three major signaling pathways: the Ras pathway, which leads to extracellular signal-regulated kinase (ERK) activation; the phospholipase C-gamma pathway, which causes calcium mobilization; and the phosphoinositide 3-kinase (PI 3-kinase) pathway. These combine to induce different biological responses depending on the context of the BCR signal. Both the Ras and PI 3-kinase pathways are important for B cell development and activation. Several model systems show evidence of cross-regulation between these pathways. Here we demonstrate through the use of PI 3-kinase inhibitors and a dominant-negative PI 3-kinase construct that the BCR-induced phosphorylation and activation of ERK is dependent on PI 3-kinase. PI 3-kinase feeds into the Ras signaling cascade at multiple points, both upstream and downstream of Ras. We also show that ERK activation is dependent on phospholipase C-gamma, in keeping with its dependence on calcium mobilization. Last, the activation of PI 3-kinase itself is completely dependent on Ras. We conclude that the PI 3-kinase and Ras signaling cascades are intimately connected in B cells and that the activation of ERK is a signal integration point, since it requires simultaneous input from all three major signaling pathways.
Collapse
Affiliation(s)
- Anand Jacob
- Oklahoma Medical Research Foundation, Immunobiology and Cancer Program, Oklahoma City, Oklahoma 73104, USA
| | | | | | | |
Collapse
|
18
|
Kövesdi D, Koncz G, Iványi-Nagy R, Caspi Y, Ishiai M, Kurosaki T, Gergely J, Haimovich J, Sármay G. Developmental differences in B cell receptor-induced signal transduction. Cell Signal 2002; 14:563-72. [PMID: 11897497 DOI: 10.1016/s0898-6568(01)00274-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have compared early signaling events at various stages of B cell differentiation using established mouse cell lines. Clustering of pre-B cell antigen receptor (BCR) or BCR induced the tyrosine phosphorylation of various proteins in all cells, although the phosphorylation pattern differed. In spite of the pre-BCR-induced tyrosine phosphorylation, we could not detect an intracellular Ca(2+) signal in pre-B cells. However, co-clustering of the pre-BCR with CD19 did induce Ca(2+) mobilization. In contrast to the immature and mature B cells, where the B cell linker protein (BLNK) went through inducible tyrosine phosphorylation upon BCR clustering, we observed a constitutive tyrosine phosphorylation of BLNK in pre-B cell lines. Both BLNK and phospholipase C (PLC)gamma were raft associated in unstimulated pre-B cells, and this could not be enhanced by pre-BCR engagement, suggesting a ligand-independent PLC gamma-mediated signaling. Further results indicate that the cell lines representing the immature stage are more sensitive to BCR-, CD19- and type II receptors binding the Fc part of IgG (Fc gamma RIIb)-mediated signals than mature B cells.
Collapse
Affiliation(s)
- Dorottya Kövesdi
- Department of Immunology, Loránd Eötvös University, H-1117 Pázmány Péter sétány 1/C, Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Miller I, Hatzivassiliou G, Cattoretti G, Mendelsohn C, Dalla-Favera R. IRTAs: a new family of immunoglobulinlike receptors differentially expressed in B cells. Blood 2002; 99:2662-9. [PMID: 11929751 DOI: 10.1182/blood.v99.8.2662] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The IRTA1 and IRTA2 genes encode immunoglobulinlike cell surface receptors expressed in B cells and involved in chromosome 1q21 translocations in B-cell malignancy. We have now characterized and comparatively analyzed the structure and expression pattern of the entire family of IRTA genes, which includes 5 members contiguously located on chromosome 1q21. The IRTA messenger RNAs are expressed predominantly in the B-cell lineage within discrete B-cell compartments: IRTA1 is specific to the marginal zone, IRTA2 and IRTA3 are found in the germinal center light zone and in intraepithelial and interfollicular regions, and IRTA4 and IRTA5 are expressed predominantly in the mantle zone. All IRTA genes code for transmembrane receptors that are closely related to Fc receptors in their most amino-terminal extracellular domains and that possess cytoplasmic domains containing ITIM (immunotyrosine inhibition motifs)- and, possibly, ITAM (immunotyrosine activation motifs)-like motifs. These structural features suggest that the IRTA receptors may play a role in regulating activation of normal B cells and possibly in the development of neoplasia.
Collapse
Affiliation(s)
- Ira Miller
- Institute of Cancer Genetics and the Department of Pathology, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
20
|
Tu Z, Ninos JM, Ma Z, Wang JW, Lemos MP, Desponts C, Ghansah T, Howson JM, Kerr WG. Embryonic and hematopoietic stem cells express a novel SH2-containing inositol 5'-phosphatase isoform that partners with the Grb2 adapter protein. Blood 2001; 98:2028-38. [PMID: 11567986 DOI: 10.1182/blood.v98.7.2028] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SH2-containing inositol 5'-phosphatase (SHIP) modulates the activation of immune cells after recruitment to the membrane by Shc and the cytoplasmic tails of receptors. A novel SHIP isoform of approximately 104 kd expressed in primitive stem cell populations (s-SHIP) is described. It was found that s-SHIP is expressed in totipotent embryonic stem cells to the exclusion of the 145-kd SHIP isoform expressed in differentiated hematopoietic cells. s-SHIP is also expressed in primitive hematopoietic stem cells, but not in lineage-committed hematopoietic cells. In embryonic stem cells, s-SHIP partners with the adapter protein Grb2 without tyrosine phosphorylation and is present constitutively at the cell membrane. It is postulated that s-SHIP modulates the activation threshold of primitive stem cell populations.
Collapse
Affiliation(s)
- Z Tu
- Immunology Program, the H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
de Fougerolles AR, Batista F, Johnsson E, Fearon DT. IgM and stromal cell-associated heparan sulfate/heparin as complement-independent ligands for CD19. Eur J Immunol 2001; 31:2189-99. [PMID: 11449373 DOI: 10.1002/1521-4141(200107)31:7<2189::aid-immu2189>3.0.co;2-v] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The more severe phenotype of mice lacking CD19 as compared to CD21 suggests that a complement-independent ligand for the CD19/CD21 complex exists. We sought ligands for CD19 by examining binding reactions with fusion proteins comprised of the extracellular region of CD19 and the Fc region of IgG1. A fusion protein containing the third extracellular domain (D3-Fc) bound to WEHI-231 cells, and this was competed by soluble IgM. This function of IgM was confirmed by the binding of D3-Fc to beads coated with IgM. A second ligand for D3-Fc was found on stromal cells, and was shown to be heparin/heparan sulfate. These two ligands would be considered to reside on follicular dendritic cells, and may account for the observed ability of D3-Fc to bind to sites in germinal centers containing these cells.
Collapse
Affiliation(s)
- A R de Fougerolles
- Wellcome Trust Immunology Unit, Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, GB, UK
| | | | | | | |
Collapse
|
22
|
Somani AK, Yuen K, Xu F, Zhang J, Branch DR, Siminovitch KA. The SH2 domain containing tyrosine phosphatase-1 down-regulates activation of Lyn and Lyn-induced tyrosine phosphorylation of the CD19 receptor in B cells. J Biol Chem 2001; 276:1938-44. [PMID: 11042209 DOI: 10.1074/jbc.m006820200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
SHP-1 is a cytosolic tyrosine phosphatase implicated in down-regulation of B cell antigen receptor signaling. SHP-1 effects on the antigen receptor reflect its capacity to dephosphorylate this receptor as well as several inhibitory comodulators. In view of our observation that antigen receptor-induced CD19 tyrosine phosphorylation is constitutively increased in B cells from SHP-l-deficient motheaten mice, we investigated the possibility that CD19, a positive modulator of antigen receptor signaling, represents another substrate for SHP-1. However, analysis of CD19 coimmunoprecipitable tyrosine phosphatase activity in CD19 immunoprecipitates from SHP-1-deficient and wild-type B cells revealed that SHP-1 accounts for only a minor portion of CD19-associated tyrosine phosphatase activity. As CD19 tyrosine phosphorylation is modulated by the Lyn protein-tyrosine kinase, Lyn activity was evaluated in wild-type and motheaten B cells. The results revealed both Lyn as well as CD19-associated Lyn kinase activity to be constitutively and inducibly increased in SHP-1-deficient compared with wild-type B cells. The data also demonstrated SHP-1 to be associated with Lyn in stimulated but not in resting B cells and indicated this interaction to be mediated via Lyn binding to the SHP-1 N-terminal SH2 domain. These findings, together with cyanogen bromide cleavage data revealing that SHP-1 dephosphorylates the Lyn autophosphorylation site, identify Lyn deactivation/dephosphorylation as a likely mechanism whereby SHP-1 exerts its influence on CD19 tyrosine phosphorylation and, by extension, its inhibitory effect on B cell antigen receptor signaling.
Collapse
Affiliation(s)
- A K Somani
- Department of Medicine, University of Toronto, the Samuel Lunenfeld Research Institute, Mount Sinai Hospital and the University Health Network Research Institute, Toronto, Ontario M5G 1X5, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
CD19 is rapidly phosphorylated upon B-cell antigen receptor (BCR) cross-linking, leading to the recruitment of downstream signaling intermediates. A prominent feature of CD19 signaling is the binding and activation of phosphoinositide 3-kinase (P13K), which accounts for the majority of PI3K activity induced by BCR ligation. Recent findings have implicated activation of the serine/threonine kinase Akt as imparting survival signals in a PI3K-dependent fashion. Using CD19-deficient B-lymphoma cells and mouse splenic B-cells, we show that CD19 is necessary for efficient activation of Akt following cross-linking of surface immunoglobulin or Igbeta. In the absence of CD19, Akt kinase activity is reduced and transient. In addition, coligation of CD19 with surface immunoglobulin leads to augmented Akt activity in a dose-dependent manner. Thus, CD19 is a key regulator of Akt activity in B-cells; as such it may contribute to pre-BCR or BCR-mediated cell survival in vivo.
Collapse
Affiliation(s)
- D C Otero
- Division of Biology and UCSD Cancer Center, University of California, San Diego, La Jolla, California 92093-0322, USA
| | | | | |
Collapse
|
24
|
Fong DC, Brauweiler A, Minskoff SA, Bruhns P, Tamir I, Mellman I, Daeron M, Cambier JC. Mutational analysis reveals multiple distinct sites within Fc gamma receptor IIB that function in inhibitory signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:4453-62. [PMID: 11035084 DOI: 10.4049/jimmunol.165.8.4453] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The low-affinity receptor for IgG, FcgammaRIIB, functions broadly in the immune system, blocking mast cell degranulation, dampening the humoral immune response, and reducing the risk of autoimmunity. Previous studies concluded that inhibitory signal transduction by FcgammaRIIB is mediated solely by its immunoreceptor tyrosine-based inhibition motif (ITIM) that, when phosphorylated, recruits the SH2-containing inositol 5'- phosphatase SHIP and the SH2-containing tyrosine phosphatases SHP-1 and SHP-2. The mutational analysis reported here reveals that the receptor's C-terminal 16 residues are also required for detectable FcgammaRIIB association with SHIP in vivo and for FcgammaRIIB-mediated phosphatidylinositol 3-kinase hydrolysis by SHIP. Although the ITIM appears to contain all the structural information required for receptor-mediated tyrosine phosphorylation of SHIP, phosphorylation is enhanced when the C-terminal sequence is present. Additionally, FcgammaRIIB-mediated dephosphorylation of CD19 is independent of the cytoplasmic tail distal from residue 237, including the ITIM. Finally, the findings indicate that tyrosines 290, 309, and 326 are all sites of significant FcgammaRIIB1 phosphorylation following coaggregation with B cell Ag receptor. Thus, we conclude that multiple sites in FcgammaRIIB contribute uniquely to transduction of FcgammaRIIB-mediated inhibitory signals.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/physiology
- Antigens, CD19/metabolism
- Calcium/antagonists & inhibitors
- Calcium/metabolism
- Calcium Signaling/genetics
- Calcium Signaling/immunology
- Cytoplasm/immunology
- Cytoplasm/metabolism
- DNA Mutational Analysis
- Immune Tolerance/genetics
- Intracellular Signaling Peptides and Proteins
- Mice
- Mitogen-Activated Protein Kinase 1/antagonists & inhibitors
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Mitogen-Activated Protein Kinases/metabolism
- Peptide Fragments/metabolism
- Peptide Fragments/physiology
- Phosphatidylinositol Phosphates/metabolism
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases
- Phosphoric Monoester Hydrolases/metabolism
- Phosphorylation
- Protein Binding/genetics
- Protein Binding/immunology
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/metabolism
- Receptors, Antigen, B-Cell/antagonists & inhibitors
- Receptors, Antigen, B-Cell/physiology
- Receptors, IgG/genetics
- Receptors, IgG/physiology
- SH2 Domain-Containing Protein Tyrosine Phosphatases
- Signal Transduction/genetics
- Signal Transduction/immunology
- Tumor Cells, Cultured
- Tyrosine/metabolism
- src Homology Domains/genetics
- src Homology Domains/immunology
Collapse
Affiliation(s)
- D C Fong
- Department of Immunology, University of Colorado Health Sciences Center and National Jewish Medical and Research Center, Denver, CO 80262, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
March ME, Lucas DM, Aman MJ, Ravichandran KS. p135 src homology 2 domain-containing inositol 5'-phosphatase (SHIPbeta ) isoform can substitute for p145 SHIP in fcgamma RIIB1-mediated inhibitory signaling in B cells. J Biol Chem 2000; 275:29960-7. [PMID: 10900203 DOI: 10.1074/jbc.m003714200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The inositol 5'-phosphatase, SHIP (also referred to as SHIP-1 or SHIPalpha), is expressed in all cells of the hematopoietic lineage. Depending on the cell type being investigated and the state of differentiation, SHIP isoforms of several different molecular masses (170, 160, 145, 135, 125, and 110 kDa) have been seen in immunoblots. However, the function of the individual isoforms and the effect of expressing multiple isoforms simultaneously are not understood. Some of these SHIP isoforms have recently been characterized at the level of primary sequence. In this report, we investigated the function of the recently characterized 135-kDa SHIP isoform (SHIPbeta), which appears to possess the catalytic domain but lacks some of the protein-protein interaction motifs at the C terminus. By reconstituting SHIP-deficient DT40 B cells with either SHIPbeta or the better-characterized p145 SHIPalpha, we addressed the function of SHIPbeta in the complete absence of SHIPalpha. We observed that SHIPbeta had enzymatic activity comparable with SHIPalpha and that SHIPbeta was able to reconstitute F(c)gammaRIIB1-mediated inhibition of B cell receptor-induced signaling events such as calcium flux and Akt and mitogen-activated protein kinase activation. SHIPbeta was readily phosphorylated in response to B cell receptor cross-linking with the inhibitory receptor F(c)gammaRIIB1 and SHIPbeta also interacted with the adapter protein Shc. During these studies we also observed that the SHIPalpha or SHIPbeta interaction with Grb2 is not required for F(c)gammaRIIB1-mediated inhibition of calcium flux. These data suggest that SHIPbeta, which is normally expressed in B cells along with SHIPalpha, functions comparably with SHIPalpha and that these two isoforms are not likely to be antagonistic in their function in vivo.
Collapse
Affiliation(s)
- M E March
- Beirne B. Carter Center for Immunology Research and the Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
26
|
Abstract
AbstractActivation of the serine/threonine kinase Akt and the regulation of its activation are recognized as critical in controlling proliferative/survival signals via many hematopoietic receptors. In B lymphocytes, the B-cell receptor (BCR)-mediated activation of Akt is attenuated by co–cross-linking of BCR with the inhibitory receptor FcγRIIB1, and the binding of the SH2 domain-containing inositol phosphatase, SHIP, to FcγRIIB1. Because SHIP dephosphorylates phosphatidylinositol 3,4,5-trisphosphate (PIP3) and activation of Akt requires PIP3, the destruction of this phospholipid has been proposed as the mechanism for Akt inhibition. However, upstream kinases that activate Akt, such as PDK1, also require PIP3 for activation. In this report, we addressed whether SHIP inhibits Akt directly at the level of Akt recruitment to the membrane, indirectly through PDK recruitment/phosphorylation of Akt, or both. We generated stable B-cell lines expressing a regulatable, but constitutively membrane-bound Akt that still required PDK-dependent phosphorylation for activation. Several lines of evidence suggested that activation of this membrane-targeted Akt is not inhibited by FcγRIIB1/SHIP and that PDK is not a target for SHIP-mediated inhibition. These data demonstrate that SHIP inhibits Akt primarily through regulation of Akt membrane localization. We also observed during these studies that FcγRIIB1/SHIP does not inhibit p70S6k activation, even though several other PIP3-dependent events were down-regulated. Because the enhanced activation of Akt in the absence of SHIP correlates with hyperproliferation in the myeloid lineage, our data have implications for SHIP and Akt-dependent regulation of proliferation in the hematopoietic lineage.
Collapse
|
27
|
Abstract
Activation of the serine/threonine kinase Akt and the regulation of its activation are recognized as critical in controlling proliferative/survival signals via many hematopoietic receptors. In B lymphocytes, the B-cell receptor (BCR)-mediated activation of Akt is attenuated by co–cross-linking of BCR with the inhibitory receptor FcγRIIB1, and the binding of the SH2 domain-containing inositol phosphatase, SHIP, to FcγRIIB1. Because SHIP dephosphorylates phosphatidylinositol 3,4,5-trisphosphate (PIP3) and activation of Akt requires PIP3, the destruction of this phospholipid has been proposed as the mechanism for Akt inhibition. However, upstream kinases that activate Akt, such as PDK1, also require PIP3 for activation. In this report, we addressed whether SHIP inhibits Akt directly at the level of Akt recruitment to the membrane, indirectly through PDK recruitment/phosphorylation of Akt, or both. We generated stable B-cell lines expressing a regulatable, but constitutively membrane-bound Akt that still required PDK-dependent phosphorylation for activation. Several lines of evidence suggested that activation of this membrane-targeted Akt is not inhibited by FcγRIIB1/SHIP and that PDK is not a target for SHIP-mediated inhibition. These data demonstrate that SHIP inhibits Akt primarily through regulation of Akt membrane localization. We also observed during these studies that FcγRIIB1/SHIP does not inhibit p70S6k activation, even though several other PIP3-dependent events were down-regulated. Because the enhanced activation of Akt in the absence of SHIP correlates with hyperproliferation in the myeloid lineage, our data have implications for SHIP and Akt-dependent regulation of proliferation in the hematopoietic lineage.
Collapse
|
28
|
Kepley CL, Cambier JC, Morel PA, Lujan D, Ortega E, Wilson BS, Oliver JM. Negative regulation of FcepsilonRI signaling by FcgammaRII costimulation in human blood basophils. J Allergy Clin Immunol 2000; 106:337-48. [PMID: 10932079 DOI: 10.1067/mai.2000.107931] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Signaling through the antigen receptors of human B and T cells and the high-affinity IgE receptor FcepsilonRI of rodent mast cells is decreased by cross-linking these receptors to the low-affinity IgG receptor FcgammaRII. The inhibition is thought to involve the tyrosine phosphorylation of immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in the FcgammaRIIB cytoplasmic tail, creating binding sites for SH2-containing protein (Src homology domain containing protein tyrosine phosphatase 1 and 2 [SHP-1, SHP-2]) and/or lipid (SH2 domain-containing polyphosphatidyl-inositol 5-phosphatase) phosphatases that oppose activating signals from the costimulated antigen receptors. OBJECTIVE In human basophils and mast cells FcepsilonRI signaling generates mediators and cytokines responsible for allergic inflammation. We proposed to determine whether FcepsilonRI signaling is inhibited by FcgammaRII costimulation in human basophils and to explore the underlying mechanism as an approach to improving the treatment of allergic inflammation. METHODS FcgammaR expression on human basophils was examined using flow cytometry and RT-PCR analysis. FcgammaRII/FcepsilonRI costimulation was typically accomplished by priming cells with anti-dinitrophenol (DNP) IgE and anti-DNP IgG and stimulating with DNP-BSA. Phosphatases were identified by Western blotting, and their partitioning between membrane and cytosol was determined by cell fractionation. Biotinylated synthetic peptides and phosphopeptides corresponding to the FcgammaRIIB ITIM sequence were used for adsorption assays. RESULTS We report that peripheral blood basophils express FcgammaRII (in both the ITIM-containing FcgammaRIIB and the immunoreceptor tyrosine-based activation motif-containing FcgammaRIIA forms) and that costimulating FcgammaRII and FcepsilonRI inhibits basophil FcepsilonRI-mediated histamine release, IL-4 production, and Ca(2+) mobilization. The inhibition of basophil FcepsilonRI signaling by FcgammaRII/FcepsilonRI costimulation is linked to a significant decrease in Syk tyrosine phosphorylation. Human basophils express all 3 SH2-containing phosphatases. CONCLUSIONS Evidence that FcgammaRII/FcepsilonRI costimulation induces SHP-1 translocation from the cytosolic to membrane fractions of basophils and that biotinylated synthetic peptides corresponding to the phosphorylated FcgammaRIIB ITIM sequence specifically recruit SHP-1 from basophil lysates particularly implicates this protein phosphatase in the negative regulation of FcepsilonRI signaling by costimulated FcgammaRII.
Collapse
Affiliation(s)
- C L Kepley
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Aman MJ, Walk SF, March ME, Su HP, Carver DJ, Ravichandran KS. Essential role for the C-terminal noncatalytic region of SHIP in FcgammaRIIB1-mediated inhibitory signaling. Mol Cell Biol 2000; 20:3576-89. [PMID: 10779347 PMCID: PMC85650 DOI: 10.1128/mcb.20.10.3576-3589.2000] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The inositol phosphatase SHIP binds to the FcgammaRIIB1 receptor and plays a critical role in FcgammaRIIB1-mediated inhibition of B-cell proliferation and immunoglobulin synthesis. The molecular details of SHIP function are not fully understood. While point mutations of the signature motifs in the inositol phosphatase domain abolish SHIP's ability to inhibit calcium flux in B cells, little is known about the function of the evolutionarily conserved, putative noncatalytic regions of SHIP in vivo. In this study, through a systematic mutagenesis approach, we identified the inositol phosphatase domain of SHIP between amino acids 400 and 866. Through reconstitution of a SHIP-deficient B-cell line with wild-type and mutant forms of SHIP, we demonstrate that the catalytic domain alone is not sufficient to mediate FcgammaRIIB1/SHIP-dependent inhibition of B-cell receptor signaling. Expression of a truncation mutant of SHIP that has intact phosphatase activity but lacks the last 190 amino acids showed that the noncatalytic region in the C terminus is essential for inhibitory signaling. Mutation of two tyrosines within this C-terminal region, previously identified as important in binding to Shc, showed a reduced inhibition of calcium flux. However, studies with an Shc-deficient B-cell line indicated that Shc-SHIP complex formation is not required and that other proteins that bind these tyrosines may be important in FcgammaRIIB1/SHIP-mediated calcium inhibition. Interestingly, membrane targeting of SHIP lacking the C terminus is able to restore this inhibition, suggesting a role for the C terminus in localization or stabilization of SHIP interaction at the membrane. Taken together, these data suggest that the noncatalytic carboxyl-terminal 190 amino acids of SHIP play a critical role in SHIP function in B cells and may play a similar role in several other receptor systems where SHIP functions as a negative regulator.
Collapse
Affiliation(s)
- M J Aman
- Beirne B. Carter Center for Immunology Research and the Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | |
Collapse
|
30
|
Rohrschneider LR, Fuller JF, Wolf I, Liu Y, Lucas DM. Structure, function, and biology of SHIP proteins. Genes Dev 2000. [DOI: 10.1101/gad.14.5.505] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Nakamura K, Brauweiler A, Cambier JC. Effects of Src homology domain 2 (SH2)-containing inositol phosphatase (SHIP), SH2-containing phosphotyrosine phosphatase (SHP)-1, and SHP-2 SH2 decoy proteins on Fc gamma RIIB1-effector interactions and inhibitory functions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:631-8. [PMID: 10623804 DOI: 10.4049/jimmunol.164.2.631] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Coaggregation of Fc gamma RIIB1 with B cell Ag receptors (BCR) leads to inhibition of BCR-mediated signaling via recruitment of Src homology domain 2 (SH2)-containing phosphatases. In vitro peptide binding experiments using phosphotyrosine-containing sequences derived from the immunoreceptor tyrosine-based inhibitory motif (ITIM) known to mediate Fc gamma RIIB1 effects suggest that the receptor uses SH2-containing inositol phosphatase (SHIP) and SH2-containing phosphotyrosine phosphatase (SHP)-1, as well as SHP-2 as effectors. In contrast, coimmunoprecipitation studies of receptor-effector associations suggest that the predominant Fc gamma RIIB1 effector protein is SHIP. However, biologically significant interactions may be lost in such studies if reactants' dissociation rates (Kd) are high. Thus, it is unclear to what extent these assays reflect the relative recruitment of SHIP, SHP-1, and SHP-2 to the receptor in vivo. As an alternative approach to this question, we have studied the effects of ectopically expressed SHIP, SHP-1, or SHP-2 SH2-containing decoy proteins on Fc gamma RIIB1 signaling. Results demonstrate the SHIP is the predominant intracellular ligand for the phosphorylated Fc gamma RIIB1 ITIM, although the SHP-2 decoy exhibits some ability to bind Fc gamma RIIB1 and block Fc receptor function. The SHIP SH2, while not affecting Fc gamma RIIB1 tyrosyl phosphorylation, blocks receptor-mediated recruitment of SHIP, SHIP phosphorylation, recruitment of p52 Shc, phosphatidylinositol 3,4,5-trisphosphate hydrolysis, inhibition of mitogen-activated protein kinase activation, and, albeit more modestly, Fc gamma RIIB1 inhibition of Ca2+ mobilization. Taken together, results implicate ITIM interactions with SHIP as a major mechanism of Fc gamma RIIB1-mediated inhibitory signaling.
Collapse
MESH Headings
- Animals
- Calcium/antagonists & inhibitors
- Calcium/metabolism
- Cell Line
- Hydrolysis
- Intracellular Signaling Peptides and Proteins
- Lymphoma, B-Cell/enzymology
- Lymphoma, B-Cell/genetics
- Mice
- Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Mitogen-Activated Protein Kinases/metabolism
- Oligopeptides
- Peptides/genetics
- Phosphatidylinositol Phosphates/antagonists & inhibitors
- Phosphatidylinositol Phosphates/metabolism
- Phosphoric Monoester Hydrolases/antagonists & inhibitors
- Phosphoric Monoester Hydrolases/genetics
- Phosphoric Monoester Hydrolases/immunology
- Phosphorylation
- Protein Binding/immunology
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/antagonists & inhibitors
- Protein Tyrosine Phosphatases/biosynthesis
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/immunology
- Receptor Aggregation/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, IgG/antagonists & inhibitors
- Receptors, IgG/metabolism
- Receptors, IgG/physiology
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/pharmacology
- SH2 Domain-Containing Protein Tyrosine Phosphatases
- Tumor Cells, Cultured
- Tyrosine/antagonists & inhibitors
- Tyrosine/metabolism
- src Homology Domains/genetics
- src Homology Domains/immunology
Collapse
Affiliation(s)
- K Nakamura
- Division of Basic Sciences, Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | |
Collapse
|
32
|
Affiliation(s)
- K M Coggeshall
- Department of Microbiology, Ohio State University, Columbus 43210, USA.
| |
Collapse
|
33
|
Tanguay D, Pavlovic S, Piatelli MJ, Bartek J, Chiles TC. B Cell Antigen Receptor-Mediated Activation of Cyclin-Dependent Retinoblastoma Protein Kinases and Inhibition by Co-Cross-Linking with Fcγ Receptors. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.6.3160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Cross-linking the B cell Ag receptor (BCR) to surface Fc receptors for IgG (FcγR) inhibits G1-to-S progression; the mechanism by which this occurs is not completely known. We investigated the regulation of three key cell cycle regulatory components by BCR-FcγR co-cross-linking: G1-cyclins, cyclin-dependent kinases (Cdks), and the retinoblastoma gene product (Rb). Rb functions to suppress G1-to-S progression in mammalian cells. Rb undergoes cell-cycle-dependent phosphorylation, leading to its inactivation and thereby promoting S phase entry. We demonstrate in this paper for the first time that BCR-induced Rb phosphorylation is abrogated by co-cross-linking with FcγR. The activation of Cdk4/6- and Cdk2-dependent Rb protein kinases is concomitantly blocked. FcγR-mediated inhibition of Cdk2 activity results in part from an apparent failure to express Cdk2 protein. By contrast, inhibition of Cdk4/6 activities is not due to suppression of Cdk4/6 or cyclins D2/D3 expression or inhibition of Cdk-activating kinase activity. Cdk4- and Cdk6-immune complexes recovered from B cells following BCR-FcγR co-cross-linking are devoid of coprecipitated D-type cyclins, indicating that inhibition of their Rb protein kinase activities is due in part to the absence of bound D-type cyclin. Thus, BCR-derived activation signals that up-regulate D-type cyclin and Cdk4/6 protein expression remain intact; however, FcγR-mediated signals block cyclin D-Cdk4/6 assembly or stabilization. These results suggest that assembly or stabilization of D-type cyclin holoenzyme complexes 1) is an important step in the activation of Cdk4/6 by BCR signals, and 2) suffice in providing a mechanism to account for inhibition of BCR-stimulated Rb protein phosphorylation by FcγR.
Collapse
Affiliation(s)
- Debra Tanguay
- *Department of Biology, Boston College, Chestnut Hill, MA 02467; and
| | - Sandra Pavlovic
- *Department of Biology, Boston College, Chestnut Hill, MA 02467; and
| | | | - Jiri Bartek
- †Institute of Cancer Biology, Danish Cancer Society, Copenhagen, Denmark
| | - Thomas C. Chiles
- *Department of Biology, Boston College, Chestnut Hill, MA 02467; and
| |
Collapse
|
34
|
Abstract
Co-clustering of the type II receptors binding the Fc part of IgG (FcgammaRIIb) and B cell receptors results in the translocation of cytosolic, negative regulatory molecules to the phosphorylated immunoreceptor tyrosine-based inhibitory motif (P-ITIM) of the FcgammaRIIb. SH2 domain-containing protein tyrosine phosphatases (SHP-1 and SHP-2), and the polyphosphoinositol 5'-phosphatase (SHIP) have been reported earlier to bind to murine FcgammaRIIb P-ITIM. However, neither the functional substrates of these enzymes, nor the mechanism of the inhibition are fully resolved. We show here that the human FcgammaRIIb binds SHP-2 when co-clustered with the B cell receptors, whereas its synthetic P-ITIM peptide bindes SHP-2 and SHIP in lysates of the Burkitt's lymphoma cell line BL41. The P-ITIM peptide binding enhances SHP-2 activity, resulting in dephosphorylation and release of P-ITIM-bound SHIP and Shc. Moreover, P-ITIM-bound SHP-2 dephosphorylates synthetic peptides corresponding to the sites of tyrosine phosphorylation on SHIP and Shc, indicating that these proteins are its potential substrates. Thus SHP-2-induced dephosphorylation may modulate the intracellular localization and/or activity of SHIP and Shc, thereby inhibiting further activation pathways which they mediate.
Collapse
Affiliation(s)
- G Koncz
- Research Group of the Hungarian Academy of Science at the Department of Immunology, L. Eötvös University, Göd
| | | | | | | |
Collapse
|
35
|
Pearse RN, Kawabe T, Bolland S, Guinamard R, Kurosaki T, Ravetch JV. SHIP recruitment attenuates Fc gamma RIIB-induced B cell apoptosis. Immunity 1999; 10:753-60. [PMID: 10403650 DOI: 10.1016/s1074-7613(00)80074-6] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Fc gammaRIIB is an inhibitory receptor that terminates activation signals initiated by antigen cross-linking of the BCR through the recruitment of SHIP. Fc gammaRIIB can also signal independently of BCR coligation to directly mediate an apoptotic response, requiring only an intact transmembrane domain. Failure to recruit SHIP, either by deletion of SHIP or mutation of Fc gammaRIIB, results in enhanced Fc gammaRIIB-triggered apoptosis. Thus, in the germinal center, where ICs are retained by FDCs, Fc gammaRIIB may be an active determinant in the negative selection of B cells whose BCRs have reduced affinity for antigen as a result of somatic hypermutation. Selection of B cells may represent the sum of opposing signals generated by the interaction of ICs with the BCR and Fc gammaRIIB through pathways modulated by SHIP.
Collapse
Affiliation(s)
- R N Pearse
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
36
|
Jacob A, Cooney D, Tridandapani S, Kelley T, Coggeshall KM. FcgammaRIIb modulation of surface immunoglobulin-induced Akt activation in murine B cells. J Biol Chem 1999; 274:13704-10. [PMID: 10224144 DOI: 10.1074/jbc.274.19.13704] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We examined activation of the serine/threonine kinase Akt in the murine B cell line A20. Akt is activated in a phosphoinositide 3-kinase (PtdIns 3-kinase)-dependent manner upon stimulation of the antigen receptor, surface immunoglobulin (sIg). In contrast, Akt induction is reduced upon co-clustering of sIg with the B cell IgG receptor, FcgammaRIIb. Co-clustering of sIg-FcgammaRIIb transmits a dominant negative signal and is associated with reduced accumulation of the PtdIns 3-kinase product phosphatidylinositol 3,4,5-trisphosphate (PtdIns 3,4,5-P3), known to be a potent activator of Akt. PtdIns 3-kinase is activated to the same extent with and without FcgammaRIIb co-ligation, indicating conditions supporting the generation of PtdIns 3,4,5-P3. We hypothesized that the decreased Akt activity arises from the consumption of PtdIns 3,4,5-P3 by the inositol-5-phosphatase Src homology 2-containing inositol 5-phosphatase (SHIP), which has been shown by us to be tyrosine-phosphorylated and associated with FcgammaRIIb when the latter is co-ligated. In direct support of this hypothesis, we report here that Akt induction is greatly reduced in fibroblasts expressing catalytically active but not inactive SHIP. Likewise, the reduction in Akt activity upon sIg-FcgammaRIIb co-clustering is absent from avian B cells lacking expression of SHIP. These findings indicate that SHIP acts as a negative regulator of Akt activation.
Collapse
Affiliation(s)
- A Jacob
- Department of Microbiology and the Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
37
|
Harmer SL, DeFranco AL. The src homology domain 2-containing inositol phosphatase SHIP forms a ternary complex with Shc and Grb2 in antigen receptor-stimulated B lymphocytes. J Biol Chem 1999; 274:12183-91. [PMID: 10207047 DOI: 10.1074/jbc.274.17.12183] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The inositol phosphatase SHIP has been implicated in signaling events downstream of a variety of receptors and is thought to play an inhibitory role in stimulated B cells. We and others have reported that SHIP is rapidly tyrosine phosphorylated upon B cell antigen receptor (BCR) cross-linking and forms a complex with the adapter protein Shc. Here, we report that cross-linking of the BCR induces association between Grb2 and SHIP as well as association between Shc and SHIP. We made use of a Grb2-deficient B cell line to demonstrate both in vitro and in vivo that Grb2 expression is required for the efficient association between Shc and SHIP. The results indicate that SHIP, Shc, and Grb2 form a ternary complex in stimulated B cells, with Grb2 stabilizing the interaction between Shc and SHIP. The interactions between Shc, Grb2, and SHIP are therefore analogous to the interactions between Shc, Grb2, and SOS. Shc and Grb2 may help to localize SHIP to the cell membrane, regulating SHIP's inhibitory function following BCR stimulation.
Collapse
Affiliation(s)
- S L Harmer
- G. W. Hooper Foundation and the Departments of Biochemistry and Biophysics and Microbiology and Immunology, University of California, San Francisco, California 94143, USA
| | | |
Collapse
|
38
|
Hashimoto A, Hirose K, Okada H, Kurosaki T, Iino M. Inhibitory modulation of B cell receptor-mediated Ca2+ mobilization by Src homology 2 domain-containing inositol 5'-phosphatase (SHIP). J Biol Chem 1999; 274:11203-8. [PMID: 10196207 DOI: 10.1074/jbc.274.16.11203] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Src homology 2 domain-containing inositol 5'-phosphatase (SHIP) mediates inhibitory signals that attenuate intracellular Ca2+ mobilization in B cells upon B cell receptor (BCR) stimulation. To clarify the mechanisms affected by SHIP, we analyzed Ca2+ mobilization in the DT40 B cell line in which the SHIP gene was disrupted. In SHIP-deficient cells, Ca2+ transient elicited by BCR stimulation was more prolonged than that in control cells both in the presence and absence of extracellular Ca2+. Inositol 1,4, 5-trisphosphate production following BCR stimulation was enhanced in SHIP-deficient cells. In SHIP-deficient cells in comparison with the control cells, BCR stimulation in the absence of extracellular Ca2+ induced a greater degree of Ca2+ store depletion and the Ca2+ influx upon re-addition of extracellular Ca2+ was also greater. However, store-operated Ca2+ influx (SOC) elicited by thapsigargin-induced store depletion was not affected by SHIP. These results indicate that the primary target pathway of SHIP is the Ca2+ release from the stores, and that Ca2+ influx by the SOC mechanism is secondarily controlled by the level of Ca2+ in the stores without direct inhibition of SOC. In this way, SHIP may play an important role in ensuring the robust tuning of Ca2+ signaling in B cells.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Cell Line
- Chickens
- Inositol 1,4,5-Trisphosphate/biosynthesis
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases
- Phosphoric Monoester Hydrolases/metabolism
- Receptors, Antigen, B-Cell/agonists
- Receptors, Antigen, B-Cell/antagonists & inhibitors
- Receptors, Antigen, B-Cell/physiology
- Thapsigargin/pharmacology
- src Homology Domains
Collapse
Affiliation(s)
- A Hashimoto
- Department of Pharmacology, Faculty of Medicine, University of Tokyo, and CREST, Japan Science and Technology Corporation, Tokyo 113, Japan
| | | | | | | | | |
Collapse
|
39
|
Buhl AM, Cambier JC. Phosphorylation of CD19 Y484 and Y515, and Linked Activation of Phosphatidylinositol 3-Kinase, Are Required for B Cell Antigen Receptor-Mediated Activation of Bruton’s Tyrosine Kinase. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.8.4438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Bruton’s tyrosine kinase (Btk) plays a critical role in B cell Ag receptor (BCR) signaling, as indicated by the X-linked immunodeficiency and X-linked agammaglobulinemia phenotypes of mice and men that express mutant forms of the kinase. Although Btk activity can be regulated by Src-family and Syk tyrosine kinases, and perhaps by phosphatidylinositol 3,4,5-trisphosphate, BCR-coupled signaling pathways leading to Btk activation are poorly understood. In view of previous findings that CD19 is involved in BCR-mediated phosphatidylinositol 3-kinase (PI3-K) activation, we assessed its role in Btk activation. Using a CD19 reconstituted myeloma model and CD19 gene-ablated animals we found that BCR-mediated Btk activation and phosphorylation are dependent on the expression of CD19, while BCR-mediated activation of Lyn and Syk is not. Wortmannin preincubation inhibited the BCR-mediated activation and phosphorylation of Btk. Btk activation was not rescued in the myeloma by expression of a CD19 mutant in which tyrosine residues previously shown to mediate CD19 interaction with PI3-K, Y484 and Y515, were changed to phenylalanine. Taken together, the data presented indicate that BCR aggregation-driven CD19 phosphorylation functions to promote Btk activation via recruitment and activation of PI3-K. Resultant phosphatidylinositol 3,4,5-trisphosphate probably functions to localize Btk for subsequent phosphorylation and activation by Src and Syk family kinases.
Collapse
Affiliation(s)
- Anne Mette Buhl
- *Division of Basic Sciences, Department of Pediatrics, National Jewish Medical and Research Center, and
| | - John C. Cambier
- *Division of Basic Sciences, Department of Pediatrics, National Jewish Medical and Research Center, and
- †Department of Immunology, University of Colorado Health Sciences Center, Denver, CO 80206
| |
Collapse
|
40
|
Gupta N, Scharenberg AM, Fruman DA, Cantley LC, Kinet JP, Long EO. The SH2 domain-containing inositol 5'-phosphatase (SHIP) recruits the p85 subunit of phosphoinositide 3-kinase during FcgammaRIIb1-mediated inhibition of B cell receptor signaling. J Biol Chem 1999; 274:7489-94. [PMID: 10066815 DOI: 10.1074/jbc.274.11.7489] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Coligation of FcgammaRIIb1 with the B cell receptor (BCR) or FcepsilonRI on mast cells inhibits B cell or mast cell activation. Activity of the inositol phosphatase SHIP is required for this negative signal. In vitro, SHIP catalyzes the conversion of the phosphoinositide 3-kinase (PI3K) product phosphatidylinositol 3,4, 5-trisphosphate (PIP3) into phosphatidylinositol 3,4-bisphosphate. Recent data demonstrate that coligation of FcgammaRIIb1 with BCR inhibits PIP3-dependent Btk (Bruton's tyrosine kinase) activation and the Btk-dependent generation of inositol trisphosphate that regulates sustained calcium influx. In this study, we provide evidence that coligation of FcgammaRIIb1 with BCR induces binding of PI3K to SHIP. This interaction is mediated by the binding of the SH2 domains of the p85 subunit of PI3K to a tyrosine-based motif in the C-terminal region of SHIP. Furthermore, the generation of phosphatidylinositol 3,4-bisphosphate was only partially reduced during coligation of BCR with FcgammaRIIb1 despite a drastic reduction in PIP3. In contrast to the complete inhibition of Tec kinase-dependent calcium signaling, activation of the serine/threonine kinase Akt was partially preserved during BCR and FcgammaRIIb1 coligation. The association of PI3K with SHIP may serve to activate PI3K and to regulate downstream events such as B cell activation-induced apoptosis.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Antigens, CD/metabolism
- Mice
- Oncogene Protein v-akt
- Phosphatidylinositol 3-Kinases/chemistry
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphatidylinositol 4,5-Diphosphate/metabolism
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases
- Phosphoric Monoester Hydrolases/metabolism
- Phosphorylation
- Protein Binding
- Receptors, Antigen, B-Cell/antagonists & inhibitors
- Receptors, Antigen, B-Cell/metabolism
- Receptors, IgG/metabolism
- Retroviridae Proteins, Oncogenic/metabolism
- Signal Transduction
- Tyrosine/metabolism
- src Homology Domains
Collapse
Affiliation(s)
- N Gupta
- Laboratory of Immunogenetics, NIAID, National Institutes of Health, Rockville, Maryland 20852-1727, USA
| | | | | | | | | | | |
Collapse
|
41
|
Tridandapani S, Pradhan M, LaDine JR, Garber S, Anderson CL, Coggeshall KM. Protein Interactions of Src Homology 2 (SH2) Domain-Containing Inositol Phosphatase (SHIP): Association with Shc Displaces SHIP from FcγRIIb in B Cells. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.3.1408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Our recent studies revealed that the inositol phosphatase Src homology 2 (SH2) domain-containing inositol phosphatase (SHIP) is phosphorylated and associated with Shc exclusively under negative signaling conditions in B cells, which is due to recruitment of the SHIP SH2 domain to the FcγRIIb. In addition, we reported that SHIP-Shc interaction involves both SHIP SH2 and Shc phosphotyrosine binding domains. These findings reveal a paradox in which the single SH2 domain of SHIP is simultaneously engaged to two different proteins: Shc and FcγRIIb. To resolve this paradox, we examined the protein interactions of SHIP. Our results demonstrated that isolated FcγRIIb contains SHIP but not Shc; likewise, Shc isolates contain SHIP but not FcγRIIb. In contrast, SHIP isolates contain both proteins, revealing two separate pools of SHIP: one bound to FcγRIIb and one bound to Shc. Kinetic studies reveal rapid SHIP association with FcγRIIb but slower and more transient association with Shc. Affinity measurements using a recombinant SHIP SH2 domain and phosphopeptides derived from FcγRIIb (corresponding to Y273) and Shc (corresponding to Y317) revealed an approximately equal rate of binding but a 10-fold faster dissociation rate for FcγRIIb compared with Shc phosphopeptide and yielding in an affinity of 2.1 μM for FcγRIIb and 0.26 μM for Shc. These findings are consistent with a model in which SHIP transiently associates with FcγRIIb to promote SHIP phosphorylation, whereupon SHIP binds to Shc and dissociates from FcγRIIb.
Collapse
Affiliation(s)
| | | | | | - Stacey Garber
- †Internal Medicine, Ohio State University, OH 43210; and
| | | | | |
Collapse
|
42
|
|
43
|
Aman MJ, Lamkin TD, Okada H, Kurosaki T, Ravichandran KS. The inositol phosphatase SHIP inhibits Akt/PKB activation in B cells. J Biol Chem 1998; 273:33922-8. [PMID: 9852043 DOI: 10.1074/jbc.273.51.33922] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serine-threonine kinase Akt/PKB is activated downstream of phosphatidylinositol 3-kinase in response to several growth factor stimuli and has been implicated in the promotion of cell survival. Although both phosphatidylinositol 3,4,5-trisphosphate (PIP3) and phosphatidylinositol 3,4-bisphosphate (PI 3,4-P2) have been implicated in the regulation of Akt activity in vitro, the relative roles of these two phospholipids in vivo are not well understood. Co-ligation of the B cell receptor (BCR) and the inhibitory FcgammaRIIB1 on B cells results in the recruitment of the 5'-inositol phosphatase SHIP to the signaling complex. Since SHIP is known to cleave PIP3 to generate PI 3,4-P2 both in vivo and in vitro, and Akt activity has been reported to be regulated by either PIP3 or PI 3,4-P2, we hypothesized that recruitment of SHIP through FcgammaRIIB1 co-cross-linking to the BCR in B cells might regulate Akt activity. The nature of this regulation, positive or negative, might also reveal the relative contribution of PIP3 and PI 3,4-P2 to Akt activation in vivo. Here we report that Akt is activated by stimulation through the BCR in a phosphatidylinositol 3-kinase-dependent manner and that this activation is inhibited by co-cross-linking of the BCR to FcgammaRIIB1. Using mutants of FcgammaRIIB1 and SHIP-deficient B cells, we demonstrate that inhibition of Akt activity is mediated by the immune cell tyrosine-based inhibitory motif within FcgammaRIIB1 as well as SHIP. The SHIP-dependent inhibition of Akt activation also suggests that PIP3 plays a greater role in Akt activation than PI 3,4-P2 in vivo.
Collapse
Affiliation(s)
- M J Aman
- Beirne Carter Center for Immunology Research and the Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
44
|
Liu Q, Oliveira-Dos-Santos AJ, Mariathasan S, Bouchard D, Jones J, Sarao R, Kozieradzki I, Ohashi PS, Penninger JM, Dumont DJ. The inositol polyphosphate 5-phosphatase ship is a crucial negative regulator of B cell antigen receptor signaling. J Exp Med 1998; 188:1333-42. [PMID: 9763612 PMCID: PMC2212495 DOI: 10.1084/jem.188.7.1333] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Ship is an Src homology 2 domain containing inositol polyphosphate 5-phosphatase which has been implicated as an important signaling molecule in hematopoietic cells. In B cells, Ship becomes associated with Fcgamma receptor IIB (FcgammaRIIB), a low affinity receptor for the Fc portion of immunoglobulin (Ig)G, and is rapidly tyrosine phosphorylated upon B cell antigen receptor (BCR)-FcgammaRIIB coligation. The function of Ship in lymphocytes was investigated in Ship-/- recombination-activating gene (Rag)-/- chimeric mice generated from gene-targeted Ship-/- embryonic stem cells. Ship-/-Rag-/- chimeras showed reduced numbers of B cells and an overall increase in basal serum Ig. Ship-/- splenic B cells displayed prolonged Ca2+ influx, increased proliferation in vitro, and enhanced mitogen-activated protein kinase (MAPK) activation in response to BCR-FcgammaRIIB coligation. These results demonstrate that Ship plays an essential role in FcgammaRIIB-mediated inhibition of BCR signaling, and that Ship is a crucial negative regulator of Ca2+ flux and MAPK activation.
Collapse
Affiliation(s)
- Q Liu
- Amgen Institute, Toronto, Ontario, Canada M5G 2C1.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hashimoto A, Okada H, Jiang A, Kurosaki M, Greenberg S, Clark EA, Kurosaki T. Involvement of guanosine triphosphatases and phospholipase C-gamma2 in extracellular signal-regulated kinase, c-Jun NH2-terminal kinase, and p38 mitogen-activated protein kinase activation by the B cell antigen receptor. J Exp Med 1998; 188:1287-95. [PMID: 9763608 PMCID: PMC2212492 DOI: 10.1084/jem.188.7.1287] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/1998] [Revised: 07/29/1998] [Indexed: 01/07/2023] Open
Abstract
Mitogen-activated protein (MAP) kinase family members, including extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase ( JNK), and p38 MAP kinase, have been implicated in coupling the B cell antigen receptor (BCR) to transcriptional responses. However, the mechanisms that lead to the activation of these MAP kinase family members have been poorly elucidated. Here we demonstrate that the BCR-induced ERK activation is reduced by loss of Grb2 or expression of a dominant-negative form of Ras, RasN17, whereas this response is not affected by loss of Shc. The inhibition of the ERK response was also observed in phospholipase C (PLC)-gamma2-deficient DT40 B cells, and expression of RasN17 in the PLC-gamma2-deficient cells completely abrogated the ERK activation. The PLC-gamma2 dependency of ERK activation was most likely due to protein kinase C (PKC) activation rather than calcium mobilization, since loss of inositol 1,4,5-trisphosphate receptors did not affect ERK activation. Similar to cooperation of Ras with PKC activation in ERK response, both PLC-gamma2-dependent signal and GTPase are required for BCR-induced JNK and p38 responses. JNK response is dependent on Rac1 and calcium mobilization, whereas p38 response requires Rac1 and PKC activation.
Collapse
Affiliation(s)
- A Hashimoto
- Department of Molecular Genetics, Institute for Liver Research, Kansai Medical University, Moriguchi 570-8506, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Sato K, Ochi A. Superclustering of B Cell Receptor and FcγRIIB1 Activates Src Homology 2-Containing Protein Tyrosine Phosphatase-1. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.6.2716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
FcγRIIB1 (CD32) is a receptor that binds the Fc domain of Ag-complexed IgG. Coaggregation of B cell receptor (BCR) and FcγRIIB1 generates a dominant negative signal that inhibits B cell activation. In Ag-specific Id-positive B cells, the co-cross-linking of BCR and FcγRIIB1 by anti-Id Ab resulted in the association of both Src homology 2-containing protein tyrosine phosphatase (SHP-1) and Src homology 2-containing inositol phosphatase (SHIP) with the FcγRIIB1; however, only SHIP activity was detected. “Superclustering” of the BCR and FcγRIIB1 complex induced by stimulation with anti-Id Ab plus polyvalent Ag synergistically activated SHP-1. The degree of co-cross-linking between BCR and FcγRIIB1 may determine the activation status of SHP-1 and SHIP.
Collapse
Affiliation(s)
- Katsuaki Sato
- The John P. Robarts Research Institute and Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Atsuo Ochi
- The John P. Robarts Research Institute and Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
47
|
Minskoff SA, Matter K, Mellman I. Cutting Edge: FcγRII-B1 Regulates the Presentation of B Cell Receptor-Bound Antigens. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.5.2079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Fcγ receptors (FcγRII) on B lymphocytes negatively regulate B cell receptor (BCR)-dependent activation upon cross-linking of the two receptors. The mechanism reflects the ability of the FcγRII cytoplasmic tail to recruit specific phosphatases that inactivate elements of the BCR-signaling cascade. We now show that cross-linking also blocks the processing and presentation of BCR-bound Ag. This occurs because the FcγRII isoform typically expressed by B cells (FcγRII-B1) is incompetent for endocytosis. When cross-linked, FcγRII-B1 acts as a dominant negative inhibitor of BCR endocytosis. In contrast, cross-linking of endocytosis-competent FcγRII isoforms did not inhibit endocytosis or processing of BCR-bound Ag. Thus, FcγRII-B1 acts not only to prevent B cell activation under conditions of Ab excess, but also to prevent clonotypic T cell activation by inhibiting the ability of B cells to generate specific MHC class II-bound TCR ligands.
Collapse
Affiliation(s)
- Stacey A. Minskoff
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Karl Matter
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Ira Mellman
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
48
|
Nakamura K, Cambier JC. B Cell Antigen Receptor (BCR)-Mediated Formation of a SHP-2-pp120 Complex and Its Inhibition by FeγRIIB1-BCR Coligation. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.2.684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Accumulating evidence indicates that the Src homology 2-containing tyrosine phosphatase 2 (SHP-2) plays an important role in signal transduction through receptor tyrosine kinase and cytokine receptors. In most models, SHP-2 appears to be a positive mediator of signaling. However, coligation of FcγRIIB1 with B cell Ag receptors (BCR) inhibits BCR-mediated signaling by a mechanism that may involve recruitment of phosphatases SHP-1, SHP-2, and the SH2 containing inositol 5′phosphatase (SHIP) to the phosphorylated FcγRIIB1 immunoreceptor tyrosine-based inhibitory motif. The role of SHP-2 in BCR-mediated cell activation and in FcγRIIB1-mediated inhibitory signaling is unclear. In this study we assessed the association of SHP-2 with phosphotyrosine-containing cellular protein(s) before and after stimulation through these receptors. BCR stimulation induced the association of SHP-2 with a single major tyrosyl-phosphorylated molecule (pp120) that had an apparent molecular mass of 120 kDa. Coligation of FcγRIIB1 with BCR led to a rapid decrease in SHP-2 association with pp120. Analysis of the subcellular localization of pp120 showed that the complex of SHP-2 and tyrosyl-phosphorylated p120 occurs predominantly in the cytosol. Furthermore, the binding of the two molecules was mediated by the interaction of tyrosyl-phosphorylated p120 with the SHP-2 N-terminal SH2 domain. These findings indicate that SHP-2 and pp120 function in BCR signaling, and this function may be inhibited by FcγRIIB1 signaling.
Collapse
Affiliation(s)
- Kazuhiro Nakamura
- Division of Basic Sciences, Department of Pediatrics, National Jewish Medical and Research Center, and Department of Immunology, University of Colorado Health Science Center, Denver, CO 80206
| | - John C. Cambier
- Division of Basic Sciences, Department of Pediatrics, National Jewish Medical and Research Center, and Department of Immunology, University of Colorado Health Science Center, Denver, CO 80206
| |
Collapse
|
49
|
Scharenberg AM, Kinet JP. PtdIns-3,4,5-P3: a regulatory nexus between tyrosine kinases and sustained calcium signals. Cell 1998; 94:5-8. [PMID: 9674420 DOI: 10.1016/s0092-8674(00)81214-3] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- A M Scharenberg
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
50
|
Abstract
The fact that B cells undergo feedback suppression, or negative signaling, through the interaction of secreted antibody with specific antigen has been extensively documented but the mechanisms involved in the process have been elusive. Experiments over the past year using B cell deletion mutants and dominant-negative enzymes have firmly established an important role for SH2-domain-containing inositol 5-phosphatase (SHIP) in negative signaling. Negative signaling through SHIP appears to inhibit the Ras pathway through SH2 domain competition with Grb2 and Shc and may involve consumption of intracellular lipid mediators that act as allosteric enzyme activators or that promote entry of extracellular Ca2+.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Allosteric Regulation
- Animals
- B-Lymphocytes/immunology
- Calcium/physiology
- GRB2 Adaptor Protein
- Humans
- Inositol Phosphates/physiology
- Ion Transport
- Lipid Metabolism
- Models, Biological
- Phosphatidylinositol 3-Kinases/physiology
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases
- Phosphoric Monoester Hydrolases/chemistry
- Phosphoric Monoester Hydrolases/physiology
- Phosphorylation
- Protein Processing, Post-Translational
- Protein-Tyrosine Kinases/physiology
- Proteins/physiology
- Receptors, Antigen, B-Cell/physiology
- Receptors, IgG/chemistry
- Receptors, IgG/genetics
- Receptors, IgG/physiology
- Signal Transduction/physiology
- ras Proteins/physiology
- src Homology Domains
Collapse
Affiliation(s)
- K M Coggeshall
- Ohio State University, Department of Microbiology, Columbus 43210, USA.
| |
Collapse
|