1
|
Han Z, Lin Y, Guo X, Xu J, Gao X, Yang R, Zhao Y, Gui M, Zhang L, Guo Y, Chen Z. "Osteo-Organogenesis Niche" Hyaluronic Acid Engineered Materials Directing Re-Osteo-Organogenesis via Manipulating Macrophage CD44-MAPK/ERK-ETV1/5-MRC1 Axis. Adv Healthc Mater 2024; 13:e2403122. [PMID: 39440638 DOI: 10.1002/adhm.202403122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/06/2024] [Indexed: 10/25/2024]
Abstract
The strategy of re-organogenesis provides an optimal framework for restoring complex organ structures and functions in adult damage. While the focus has often been on restoring organogenesis stem cells, there is limited investigations of reverting the environmental niche to support this approach. The guiding principle of "Nature selects the fittest to survive" drives the intricate dynamic changes in cellular events within the niche environment, especially through immune surveillance. The extracellular matrix (ECM) serves as the "self-associated molecular patterns" of the niche, containing extensive data on cell-niche reaction data and acting as the active tuner of immune surveillance. In this study, hyaluronic acid (HA) is identified as a unique component of the ECM in cranial osteo-organogenesis. Mechanistically, HA activates the Cluster of Differentiation 44 (CD44)-Mitogen-Activated Protein Kinase (MAPK)/Extracellular Signal-Regulated Kinase (ERK)-Ets Variant 1/5 (ETV1/5)- Mannose Receptor C-Type 1 (MRC1) axis in macrophages, establishing a distinct immune surveillance during osteo-organogenesis. Furthermore, HA is utilized as a novel engineered material for an "Osteo-organogenesis niche", restoring immune surveillance and synergistically regulating stem cells to achieve re-osteo-organogenesis in cranial defects of rats. Taken together, the study unveils a previously unknown strategy for leveraging re-organogenesis by utilizing "organogenesis niche" ECM engineered materials to manipulate immune surveillance, thereby comprehensively regulating stem cells and other tissue cells effectively for re-organogenesis.
Collapse
Affiliation(s)
- Zongpu Han
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Yixiong Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Xinyu Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Jieyun Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Xiaomeng Gao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Ruihan Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Yuan Zhao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Mixiao Gui
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Linjun Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Yuanlong Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Zetao Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| |
Collapse
|
2
|
Mao M, Ahrens L, Luka J, Contreras F, Kurkina T, Bienstein M, Sárria Pereira de Passos M, Schirinzi G, Mehn D, Valsesia A, Desmet C, Serra MÁ, Gilliland D, Schwaneberg U. Material-specific binding peptides empower sustainable innovations in plant health, biocatalysis, medicine and microplastic quantification. Chem Soc Rev 2024; 53:6445-6510. [PMID: 38747901 DOI: 10.1039/d2cs00991a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Material-binding peptides (MBPs) have emerged as a diverse and innovation-enabling class of peptides in applications such as plant-/human health, immobilization of catalysts, bioactive coatings, accelerated polymer degradation and analytics for micro-/nanoplastics quantification. Progress has been fuelled by recent advancements in protein engineering methodologies and advances in computational and analytical methodologies, which allow the design of, for instance, material-specific MBPs with fine-tuned binding strength for numerous demands in material science applications. A genetic or chemical conjugation of second (biological, chemical or physical property-changing) functionality to MBPs empowers the design of advanced (hybrid) materials, bioactive coatings and analytical tools. In this review, we provide a comprehensive overview comprising naturally occurring MBPs and their function in nature, binding properties of short man-made MBPs (<20 amino acids) mainly obtained from phage-display libraries, and medium-sized binding peptides (20-100 amino acids) that have been reported to bind to metals, polymers or other industrially produced materials. The goal of this review is to provide an in-depth understanding of molecular interactions between materials and material-specific binding peptides, and thereby empower the use of MBPs in material science applications. Protein engineering methodologies and selected examples to tailor MBPs toward applications in agriculture with a focus on plant health, biocatalysis, medicine and environmental monitoring serve as examples of the transformative power of MBPs for various industrial applications. An emphasis will be given to MBPs' role in detecting and quantifying microplastics in high throughput, distinguishing microplastics from other environmental particles, and thereby assisting to close an analytical gap in food safety and monitoring of environmental plastic pollution. In essence, this review aims to provide an overview among researchers from diverse disciplines in respect to material-(specific) binding of MBPs, protein engineering methodologies to tailor their properties to application demands, re-engineering for material science applications using MBPs, and thereby inspire researchers to employ MBPs in their research.
Collapse
Affiliation(s)
- Maochao Mao
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Leon Ahrens
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Julian Luka
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Francisca Contreras
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Tetiana Kurkina
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Marian Bienstein
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | | | | | - Dora Mehn
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Andrea Valsesia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Cloé Desmet
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | | | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| |
Collapse
|
3
|
Phosphorylation of IGFBP-3 by Casein Kinase 2 Blocks Its Interaction with Hyaluronan, Enabling HA-CD44 Signaling Leading to Increased NSCLC Cell Survival and Cisplatin Resistance. Cells 2023; 12:cells12030405. [PMID: 36766747 PMCID: PMC9913475 DOI: 10.3390/cells12030405] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/15/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Cisplatin is a platinum agent used in the treatment of non-small cell lung cancer (NSCLC). Much remains unknown regarding the basic operative mechanisms underlying cisplatin resistance in NSCLC. In this study, we found that phosphorylation of IGFBP-3 by CK2 (P-IGFBP-3) decreased its binding to hyaluronan (HA) but not to IGF-1 and rendered the protein less effective at reducing cell viability or increasing apoptosis than the non-phosphorylated protein with or without cisplatin in the human NSCLC cell lines, A549 and H1299. Our data suggest that blocking CD44 signaling augmented the effects of cisplatin and that IGFBP-3 was more effective at inhibiting HA-CD44 signaling than P-IGFBP-3. Blocking CK2 activity and HA-CD44 signaling increased cisplatin sensitivity and more effectively blocked the PI3K and AKT activities and the phospho/total NFκB ratio and led to increased p53 activation in A549 cells. Increased cell sensitivity to cisplatin was observed upon co-treatment with inhibitors targeted against PI3K, AKT, and NFκB while blocking p53 activity decreased A549 cell sensitivity to cisplatin. Our findings shed light on a novel mechanism employed by CK2 in phosphorylating IGFBP-3 and increasing cisplatin resistance in NSCLC. Blocking phosphorylation of IGFBP-3 by CK2 may be an effective strategy to increase NSCLC sensitivity to cisplatin.
Collapse
|
4
|
Askari H, Sadeghinejad M, Fancher IS. Mechanotransduction and the endothelial glycocalyx: Interactions with membrane and cytoskeletal proteins to transduce force. CURRENT TOPICS IN MEMBRANES 2023; 91:43-60. [PMID: 37080680 DOI: 10.1016/bs.ctm.2023.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The endothelial glycocalyx is an extracellular matrix that coats the endothelium and extends into the lumen of blood vessels, acting as a barrier between the vascular wall and blood flowing through the vessel. This positioning of the glycocalyx permits a variety of its constituents, including the major endothelial proteoglycans glypican-1 and syndecan-1, as well as the major glycosaminoglycans heparan sulfate and hyaluronic acid, to contribute to the processes of mechanosensation and subsequent mechanotransduction following such stimuli as elevated shear stress. To coordinate the vast array of processes that occur in response to physical force, the glycocalyx interacts with a plethora of membrane and cytoskeletal proteins to carry out specific signaling pathways resulting in a variety of responses of endothelial cells and, ultimately, blood vessels to mechanical force. This review focuses on proposed glycocalyx-protein relationships whereby the endothelial glycocalyx interacts with a variety of membrane and cytoskeletal proteins to transduce force into a myriad of chemical signaling pathways. The established and proposed interactions at the molecular level are discussed in context of how the glycocalyx regulates membrane/cytoskeletal protein function in the many processes of endothelial mechanotransduction.
Collapse
|
5
|
Patel S, Patel A, Nair A, Shah K, Shah K, Tanavde V, Rawal R. Salinomycin mediated therapeutic targeting of circulating stem like cell population in oral cancer. J Biomol Struct Dyn 2022; 40:11141-11153. [PMID: 34308783 DOI: 10.1080/07391102.2021.1957018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CD44+ circulating tumor stem cells (CTSCs) have been significantly associated with aggressiveness, resistance and poor prognosis of oral cancer patients. Thus, targeted elimination of these CTSCs could be a new conceptual framework for enhancing the therapeutic outcome of patients. Docking of potential investigational molecules and simulation results identified Salinomycin as a potential lead compound that could effectively inhibit CD44 receptor. To assess the cytotoxic effect, immuno-magnetically sorted circulatory CD44+ cells were subjected to increasing concentrations of 5FU, Cisplatin and Salinomycin. Salinomycin demonstrated significant cytotoxic effect towards the CD44+ subpopulation in a dose and time dependent manner. Further the effect of these compounds was investigated on apoptosis, cell cycle, signaling pathways and gene expression profiles using MuseTM flow cytometer and Real-Time PCR. It was observed that mRNA expression patterns of CD44v6, Nanog, AKT1, CDKN2A and β-catenin of Salinomycin treated CD44+ cells. Moreover, Salinomycin significantly induced programmed cell death by inducing G2/M cell cycle arrest and inhibiting MAPK/PI3K pathways in this chemo-resistant population. Thus, this study demonstrated the potential of Salinomycin to target the chemo-resistant circulating CD44 population by attenuating its proliferation and survival.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shanaya Patel
- Biological & Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Aditi Patel
- Biological & Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Aishwarya Nair
- Biological & Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Kavan Shah
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Kanisha Shah
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Vivek Tanavde
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Rakesh Rawal
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| |
Collapse
|
6
|
CD44 Contributes to the Regulation of MDR1 Protein and Doxorubicin Chemoresistance in Osteosarcoma. Int J Mol Sci 2022; 23:ijms23158616. [PMID: 35955749 PMCID: PMC9368984 DOI: 10.3390/ijms23158616] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma is the most common type of pediatric bone tumor. Despite great advances in chemotherapy during the past decades, the survival rates of osteosarcoma patients remain unsatisfactory. Drug resistance is one of the main reasons, leading to treatment failure and poor prognosis. Previous reports correlated expression of cluster of differentiation 44 (CD44) with drug resistance and poor survival of osteosarcoma patients, however the underlying mechanisms are poorly defined. Here, we investigated the role of CD44 in the regulation of drug chemoresistance, using osteosarcoma cells isolated from mice carrying a mutation of the tumor suppressor neurofibromatosis type 2 (Nf2) gene. CD44 expression was knocked-down in the cells using CRISPR/Cas9 approach. Subsequently, CD44 isoforms and mutants were re-introduced to investigate CD44-dependent processes. Sensitivity to doxorubicin was analyzed in the osteosarcoma cells with modified CD44 expression by immunoblot, colony formation- and WST-1 assay. To dissect the molecular alterations induced by deletion of Cd44, RNA sequencing was performed on Cd44-positive and Cd44-negative primary osteosarcoma tissues isolated from Nf2-mutant mice. Subsequently, expression of candidate genes was evaluated by quantitative reverse transcription PCR (qRT-PCR). Our results indicate that CD44 increases the resistance of osteosarcoma cells to doxorubicin by up-regulating the levels of multidrug resistance (MDR) 1 protein expression, and suggest the role of proteolytically released CD44 intracellular domain, and hyaluronan interactions in this process. Moreover, high throughput sequencing analysis identified differential regulation of several apoptosis-related genes in Cd44-positive and -negative primary osteosarcomas, including p53 apoptosis effector related to PMP-22 (Perp). Deletion of Cd44 in osteosarcoma cells led to doxorubicin-dependent p53 activation and a profound increase in Perp mRNA expression. Overall, our results suggest that CD44 might be an important regulator of drug resistance and suggest that targeting CD44 can sensitize osteosarcoma to standard chemotherapy.
Collapse
|
7
|
Liao C, Wang Q, An J, Chen J, Li X, Long Q, Xiao L, Guan X, Liu J. CD44 Glycosylation as a Therapeutic Target in Oncology. Front Oncol 2022; 12:883831. [PMID: 35936713 PMCID: PMC9351704 DOI: 10.3389/fonc.2022.883831] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/10/2022] [Indexed: 11/27/2022] Open
Abstract
The interaction of non-kinase transmembrane glycoprotein CD44 with ligands including hyaluronic acid (HA) is closely related to the occurrence and development of tumors. Changes in CD44 glycosylation can regulate its binding to HA, Siglec-15, fibronectin, TM4SF5, PRG4, FGF2, collagen and podoplanin and activate or inhibit c-Src/STAT3/Twist1/Bmi1, PI3K/AKT/mTOR, ERK/NF-κB/NANOG and other signaling pathways, thereby having a profound impact on the tumor microenvironment and tumor cell fate. However, the glycosylation of CD44 is complex and largely unknown, and the current understanding of how CD44 glycosylation affects tumors is limited. These issues must be addressed before targeted CD44 glycosylation can be applied to treat human cancers.
Collapse
Affiliation(s)
- Chengcheng Liao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Qian Wang
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Life Sciences Institute, Zunyi Medical University, Zunyi, China
| | - Jiaxing An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jie Chen
- Department of Urology, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiaolan Li
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Life Sciences Institute, Zunyi Medical University, Zunyi, China
| | - Qian Long
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Linlin Xiao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- *Correspondence: Linlin Xiao, ; Xiaoyan Guan, ; Jianguo Liu,
| | - Xiaoyan Guan
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- *Correspondence: Linlin Xiao, ; Xiaoyan Guan, ; Jianguo Liu,
| | - Jianguo Liu
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- *Correspondence: Linlin Xiao, ; Xiaoyan Guan, ; Jianguo Liu,
| |
Collapse
|
8
|
Samuel G, Nazim U, Sharma A, Manuel V, Elnaggar MG, Taye A, Nasr NEH, Hofni A, Abdel Hakiem AF. Selective targeting of the novel CK-10 nanoparticles to the MDA-MB-231 breast cancer cells. J Pharm Sci 2021; 111:1197-1207. [PMID: 34929154 DOI: 10.1016/j.xphs.2021.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022]
Abstract
The main objective of this project was to formulate novel decorated amphiphilic PLGA nanoparticles aiming for the selective delivery of the novel peptide (CK-10) to the cancerous/tumor tissue. Novel modified microfluidic techniques were used to formulate the nanoparticles. This technique was modified by using of Nano Assemblr associated with salting out of the organic solvent using K2HPO4. This modification is associated with higher peptide loading efficiencies, smaller size and higher uniformity. Size, zeta potential & qualitative determination of the adsorbed targeting ligands were measured by dynamic light scattering and laser anemometry techniques using the zeta sizer. Quantitative estimation of the adsorbed targeting ligands was done by colorimetry and spectrophotometric techniques. Qualitative and quantitative uptakes of the various PLGA nanoparticles were examined by the fluorescence microscope and the flow cytometer while the cytotoxic effect of the nanoparticles was measured by the colorimetric MTT assay. PLGA/poloxamer.FA, PLGA/poloxamer.HA, and PLGA/poloxamer.Tf have breast cancer MDA. MB321 cellular uptakes 83.8, 75.43 & 69.37 % which are higher than those of the PLGA/B cyclodextrin.FA, PLGA/B cyclodextrin.HA and PLGA/B cyclodextrin.Tf 80.87, 74.47 & 64.67 %. Therefore, PLGA/poloxamer.FA and PLGA/poloxamer.HA show higher cytotoxicity than PLGA/ poloxamer.Tf with lower breast cancer MDA-MB-231 cell viabilities 30.74, 39.15 & 49.23 %, respectively. The design of novel decorated amphiphilic CK-10 loaded PLGA nanoparticles designed by the novel modified microfluidic technique succeeds in forming innovative anticancer formulations candidates for therapeutic use in aggressive breast cancers.
Collapse
Affiliation(s)
- Girgis Samuel
- School of Pharmacy, University of Sunderland, United Kingdom
| | - Uddin Nazim
- School of Pharmacy, University of Sunderland, United Kingdom
| | - Ankur Sharma
- School of Pharmacy, Sharda University, Greater Noida, Uttar Pradesh, India
| | | | - Marwa G Elnaggar
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Ashraf Taye
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, South Valley University, Qena, Egypt
| | | | - Amal Hofni
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, South Valley University, Qena, Egypt
| | - Ahmed Faried Abdel Hakiem
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, South Valley University, Qena, Egypt.
| |
Collapse
|
9
|
Takei J, Asano T, Suzuki H, Kaneko MK, Kato Y. Epitope Mapping of the Anti-CD44 Monoclonal Antibody (C 44Mab-46) Using Alanine-Scanning Mutagenesis and Surface Plasmon Resonance. Monoclon Antib Immunodiagn Immunother 2021; 40:219-226. [PMID: 34678095 DOI: 10.1089/mab.2021.0028] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CD44 is a type I transmembrane protein expressed in various kinds of normal cancer cells, including pancreatic, breast, and oral cancers. CD44 is associated with cancer progression, metastases, and treatment resistance. CD44 consists of 20 exons, and various isoforms exist due to alternative splicing of the central 10 exons. Some splicing variants show cancer-specific expression patterns and are related to prognosis of patients with cancer. Therefore, CD44 targeting therapy has been attracting attention. In a previous study, we established an anti-CD44 monoclonal antibody, C44Mab-46 (IgG1, kappa), useful for flow cytometry, Western blotting, and immunohistochemistry by immunizing mice with CD44v3-10 ectodomain. This study investigated the binding epitope of C44Mab-46 using enzyme-linked immunosorbent assay (ELISA) and the surface plasmon resonance (SPR) with the synthesized peptide. ELISA results using deletion mutants showed that C44Mab-46 reacted with the amino acids (aa) of 161-180 aa of CD44. Further examination of the C44Mab-46 epitope using ELISA with point mutants in 161-180 aa of CD44 demonstrates that the C44Mab-46 epitope comprised Thr174, Asp177, and Val178. The SPR with point mutants in 161-180 aa of CD44 demonstrated that the C44Mab-46 epitope comprises Thr174, Asp175, Asp176, Asp177, and Val178. Together, the C44Mab-46 epitope was determined to be located in exon 5 of CD44.
Collapse
Affiliation(s)
- Junko Takei
- Department of Antibody Drug Development, and Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, and Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, and Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, and Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
10
|
Asano T, Kaneko MK, Kato Y. Development of a Novel Epitope Mapping System: RIEDL Insertion for Epitope Mapping Method. Monoclon Antib Immunodiagn Immunother 2021; 40:162-167. [PMID: 34424761 DOI: 10.1089/mab.2021.0023] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
To clarify the binding region of monoclonal antibodies (mAbs) to target molecules, it is very essential to understand the pharmacological function of each mAb. Although deletion mutants and point mutants are usefully utilized for epitope mapping, we often experience the difficulty of determining the mAb epitope against membrane proteins. We aimed to develop a novel method to determine the binding region of mAbs using epitope tag system. We first checked the reactivity of an anti-CD44 mAb (C44Mab-5) to several deletion mutants of CD44. We then employed the RIEDL tag system ("RIEDL" peptide and LpMab-7 mAb). We inserted the "RIEDL" peptide into the CD44 protein from the 21st to 41st amino acid (AA). The transfectants produced were stained by LpMab-7 and C44Mab-5 in flow cytometry. C44Mab-5 did not react with 30th-361st AA of the deletion mutant of CD44. Furthermore, the reaction of C44Mab-5 to RIEDL tag-inserted CD44 from 25th to 36th AA was lost, although LpMab-7 detected most of the RIEDL tag-inserted CD44 from 21st to 41st AA. The epitope of C44Mab-5 for CD44 was determined to be the peptide from 25th to 36th AA of CD44 using RIEDL insertion for epitope mapping (REMAP) method. The REMAP method might be useful for determining the critical epitope of functional mAbs against many target molecules.
Collapse
Affiliation(s)
- Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
11
|
Mahajan K, Rojekar S, Desai D, Kulkarni S, Bapat G, Zinjarde S, Vavia P. Layer-by-Layer Assembled Nanostructured Lipid Carriers for CD-44 Receptor-Based Targeting in HIV-Infected Macrophages for Efficient HIV-1 Inhibition. AAPS PharmSciTech 2021; 22:171. [PMID: 34100170 DOI: 10.1208/s12249-021-01981-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/04/2021] [Indexed: 02/01/2023] Open
Abstract
Macrophages act as a cellular reservoir in HIV infection. Elimination of HIV from macrophages has been an unfulfilled dream due to the failure of drugs to reach them. To address this, we developed CD44 receptor-targeted, novel hyaluronic acid (HA)-coated nanostructured lipid carriers (NLCs) of efavirenz via washless layer-by-layer (LbL) assembly of HA and polyallylamine hydrochloride (PAH). NLCs were subjected to TEM analysis, size and zeta potential, in vitro release and encapsulation efficiency studies. The uptake of NLCs in THP-1 cells was studied using fluorescence microscopy and flow cytometry. The anti-HIV efficacy was evaluated using p24 antigen inhibition assay. NLCs were found to be spherical in shape with anionic zeta potential (-23.66 ± 0.87 mV) and 241.83 ± 5.38 nm particle size. NLCs exhibited prolonged release of efavirenz during in vitro drug release studies. Flow cytometry revealed 1.73-fold higher uptake of HA-coated NLCs in THP-1 cells. Cytotoxicity studies showed no significant change in cell viability in presence of NLCs as compared with the control. HA-coated NLCs distributed throughout the cell including cytoplasm, plasma membrane and nucleus, as observed during fluorescence microscopy. HA-coated NLCs demonstrated consistent and significantly higher inhibition (81.26 ± 1.70%) of p24 antigen which was 2.08-fold higher than plain NLCs. The obtained results suggested preferential uptake of HA-coated NLCs via CD44-mediated uptake. The present finding demonstrates that HA-based CD44 receptor targeting in HIV infection is an attractive strategy for maximising the drug delivery to macrophages and achieve effective viral inhibition.
Collapse
|
12
|
Lintuluoto M, Horioka Y, Hongo S, Lintuluoto JM, Fukunishi Y. Molecular Dynamics Simulation Study on Allosteric Regulation of CD44-Hyaluronan Binding as a Force Sensing Mechanism. ACS OMEGA 2021; 6:8045-8055. [PMID: 33817464 PMCID: PMC8014924 DOI: 10.1021/acsomega.0c05502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/05/2021] [Indexed: 06/01/2023]
Abstract
CD44 protein exists on surfaces of a variety of human cells, acts as a receptor for the hyaluronan (HA) molecule, and mediates cell adhesion via the HA binding in leukocyte trafficking, cell rolling, and so on. The molecular structures of both CD44 and HA are well known, and the previous work shows that the external-mechanical force induces the partially disordered (PD) conformation from the ordered (O) conformation of CD44. The PD conformation has the higher HA affinity compared to the O conformation. However, the details of force-sensing mechanics have remained unclear. This study provides new insights into allosteric regulation of HA binding by conformational shift from the O to the PD conformation of the CD44 HA binding domain by using the classical molecular dynamics simulations. The O conformation was more favorable than the PD conformation under the equilibrium state, and the O conformation showed weak HA-binding affinity. Our simulation suggests that the PD conformation induced by the external force can refold to a compact structure similar to the O conformation keeping the bound HA. This new conformation showed a higher affinity than the O and PD conformations. Our results show that the unfolding of a remote disordered region from the ligand binding site by the external force allosterically regulates the HA affinity. This study promotes understanding not only the mechanism of CD44-mediated cell rolling but also the allosteric regulation induced by the external mechanical force.
Collapse
Affiliation(s)
- Masami Lintuluoto
- Graduate
School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamohanki-cho, Sakyo, Kyoto 606-8522, Japan
| | - Yota Horioka
- Graduate
School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamohanki-cho, Sakyo, Kyoto 606-8522, Japan
| | - Saki Hongo
- Graduate
School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamohanki-cho, Sakyo, Kyoto 606-8522, Japan
| | - Juha Mikael Lintuluoto
- Graduate
School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto 615-8530, Japan
| | - Yoshifumi Fukunishi
- Cellular
and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology
(AIST), 2-3-26 Aomi, Koto-ku, Tokyo 135-0064, Japan
| |
Collapse
|
13
|
Ruiz-Moreno AJ, Reyes-Romero A, Dömling A, Velasco-Velázquez MA. In Silico Design and Selection of New Tetrahydroisoquinoline-Based CD44 Antagonist Candidates. Molecules 2021; 26:1877. [PMID: 33810348 PMCID: PMC8037692 DOI: 10.3390/molecules26071877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/13/2021] [Accepted: 03/14/2021] [Indexed: 02/07/2023] Open
Abstract
CD44 promotes metastasis, chemoresistance, and stemness in different types of cancer and is a target for the development of new anti-cancer therapies. All CD44 isoforms share a common N-terminal domain that binds to hyaluronic acid (HA). Herein, we used a computational approach to design new potential CD44 antagonists and evaluate their target-binding ability. By analyzing 30 crystal structures of the HA-binding domain (CD44HAbd), we characterized a subdomain that binds to 1,2,3,4-tetrahydroisoquinoline (THQ)-containing compounds and is adjacent to residues essential for HA interaction. By computational combinatorial chemistry (CCC), we designed 168,190 molecules and compared their conformers to a pharmacophore containing the key features of the crystallographic THQ binding mode. Approximately 0.01% of the compounds matched the pharmacophore and were analyzed by computational docking and molecular dynamics (MD). We identified two compounds, Can125 and Can159, that bound to human CD44HAbd (hCD44HAbd) in explicit-solvent MD simulations and therefore may elicit CD44 blockage. These compounds can be easily synthesized by multicomponent reactions for activity testing and their binding mode, reported here, could be helpful in the design of more potent CD44 antagonists.
Collapse
Affiliation(s)
- Angel J. Ruiz-Moreno
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico (UNAM), Ciudad de Mexico 04510, Mexico;
- Unidad Periférica de Investigación en Biomedicina Translacional, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Félix Cuevas 540, Ciudad de Mexico 03229, Mexico
- Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de Mexico 04510, Mexico
- Drug Design Group, Department of Pharmacy, University of Groningen, 9700 AD Groningen, The Netherlands;
| | - Atilio Reyes-Romero
- Drug Design Group, Department of Pharmacy, University of Groningen, 9700 AD Groningen, The Netherlands;
| | - Alexander Dömling
- Drug Design Group, Department of Pharmacy, University of Groningen, 9700 AD Groningen, The Netherlands;
| | - Marco A. Velasco-Velázquez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico (UNAM), Ciudad de Mexico 04510, Mexico;
- Unidad Periférica de Investigación en Biomedicina Translacional, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Félix Cuevas 540, Ciudad de Mexico 03229, Mexico
| |
Collapse
|
14
|
N-Glycosylation can selectively block or foster different receptor-ligand binding modes. Sci Rep 2021; 11:5239. [PMID: 33664400 PMCID: PMC7933184 DOI: 10.1038/s41598-021-84569-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/17/2021] [Indexed: 11/09/2022] Open
Abstract
While DNA encodes protein structure, glycans provide a complementary layer of information to protein function. As a prime example of the significance of glycans, the ability of the cell surface receptor CD44 to bind its ligand, hyaluronan, is modulated by N-glycosylation. However, the details of this modulation remain unclear. Based on atomistic simulations and NMR, we provide evidence that CD44 has multiple distinct binding sites for hyaluronan, and that N-glycosylation modulates their respective roles. We find that non-glycosylated CD44 favors the canonical sub-micromolar binding site, while glycosylated CD44 binds hyaluronan with an entirely different micromolar binding site. Our findings show (for the first time) how glycosylation can alter receptor affinity by shielding specific regions of the host protein, thereby promoting weaker binding modes. The mechanism revealed in this work emphasizes the importance of glycosylation in protein function and poses a challenge for protein structure determination where glycosylation is usually neglected.
Collapse
|
15
|
Essential hyaluronan structure for binding with hyaluronan-binding protein (HABP) determined by glycotechnological approach. Carbohydr Polym 2021; 251:116989. [PMID: 33142561 DOI: 10.1016/j.carbpol.2020.116989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/06/2020] [Accepted: 08/22/2020] [Indexed: 11/22/2022]
Abstract
Hyaluronan specifically binds to aggrecan globular domain 1, which is often referred to as just hyaluronan binding protein (HABP), however, the hyaluronan carbohydrate structure recognized by HABP had not been studied in detail. The aim of the present study was to investigate the important structure of hyaluronan for binding to HABP. We prepared hybrid oligosaccharides from hyaluronan and chondroitin, with or without modification of the reducing or non-reducing terminus, as tools to determine the preferred structure of hyaluronan for binding to the HABP by a competitive ELISA-like method. The non-reducing terminal structure was critical, especially, the glucuronic acid (GlcUA) and N-acetylglucosamine (GlcNAc) of the hyaluronan-unit are essential for complete HABP binding activity, and for any HABP binding activity, respectively. It is possible to replace GlcUAβ-1-3GlcNAc of the internal disaccharide units with GlcUAβ-1-3N-acetylgalactosamine (GalNAc), if the chain length is decasaccharide or larger.
Collapse
|
16
|
Dorandish S, Devos J, Clegg B, Price D, Muterspaugh R, Guthrie J, Heyl DL, Evans HG. Biochemical determinants of the IGFBP-3-hyaluronan interaction. FEBS Open Bio 2020; 10:1668-1684. [PMID: 32592613 PMCID: PMC7396449 DOI: 10.1002/2211-5463.12919] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 12/28/2022] Open
Abstract
IGFBP-3, the most abundant IGFBP and the main carrier of insulin-like growth factor I (IGF-I) in the circulation, can bind IGF-1 with high affinity, which attenuates IGF/IGF-IR interactions, thereby resulting in antiproliferative effects. The C-terminal domain of insulin-like growth factor-binding protein-3 (IGFBP-3) is known to contain an 18-basic amino acid motif capable of interacting with either humanin (HN) or hyaluronan (HA). We previously showed that the 18-amino acid IGFBP-3 peptide is capable of binding either HA or HN with comparable affinities to the full-length IGFBP-3 protein and that IGFBP-3 can compete with the HA receptor, CD44, for binding HA. Blocking the interaction between HA and CD44 reduced viability of A549 human lung cancer cells. In this study, we set out to better characterize IGFBP-3-HA interactions. We show that both stereochemistry and amino acid identity are important determinants of the interaction between the IGFBP-3 peptide and HA and for the peptide's ability to exert its cytotoxic effects. Binding of IGFBP-3 to either HA or HN was unaffected by glycosylation or reduction of IGFBP-3, suggesting that the basic 18-amino acid residue sequence of IGFBP-3 remains accessible for interaction with either HN or HA upon glycosylation or reduction of the full-length protein. Removing N-linked oligosaccharides from CD44 increased its ability to compete with IGFBP-3 for binding HA, while reduction of CD44 rendered the protein relatively ineffective at blocking IGFBP-3-HA interactions. We conclude that both deglycosylation and disulfide bond formation are important for CD44 to compete with IGFBP-3 for binding HA.
Collapse
Affiliation(s)
- Sadaf Dorandish
- Department of ChemistryEastern Michigan UniversityYpsilantiMIUSA
| | - Jonathan Devos
- Department of ChemistryEastern Michigan UniversityYpsilantiMIUSA
| | - Bradley Clegg
- Department of ChemistryEastern Michigan UniversityYpsilantiMIUSA
| | - Deanna Price
- Department of ChemistryEastern Michigan UniversityYpsilantiMIUSA
| | | | - Jeffrey Guthrie
- Department of ChemistryEastern Michigan UniversityYpsilantiMIUSA
| | - Deborah L. Heyl
- Department of ChemistryEastern Michigan UniversityYpsilantiMIUSA
| | - Hedeel Guy Evans
- Department of ChemistryEastern Michigan UniversityYpsilantiMIUSA
| |
Collapse
|
17
|
IGFBP-3 Blocks Hyaluronan-CD44 Signaling, Leading to Increased Acetylcholinesterase Levels in A549 Cell Media and Apoptosis in a p53-Dependent Manner. Sci Rep 2020; 10:5083. [PMID: 32193421 PMCID: PMC7081274 DOI: 10.1038/s41598-020-61743-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/02/2020] [Indexed: 12/19/2022] Open
Abstract
Insulin-like growth factor binding protein-3 (IGFBP-3) belongs to a family of six IGF binding proteins. We previously found that IGFBP-3 exerts its cytotoxic effects on A549 (p53 wild-type) cell survival through a mechanism that depends on hyaluronan-CD44 interactions. To shed light on the mechanism employed, we used CD44-negative normal human lung cells (HFL1), A549, and H1299 (p53-null) lung cancer cells. A synthetic IGFBP-3 peptide (215-KKGFYKKKQCRPSKGRKR-232) but not the mutant (K228AR230A), was able to bind hyaluronan more efficiently than the analogous sequences from the other IGFBPs. In a manner comparable to that of the IGFBP-3 protein, the peptide blocked hyaluronan-CD44 signaling, and more effectively inhibited viability of A549 cells than viability of either H1299 or HFL1 cell lines. Treatment with the IGFBP-3 protein or its peptide resulted in increased acetylcholinesterase concentration and activity in the A549 cell media but not in the media of either HFL1 or H1299, an effect that correlated with increased apoptosis and decreased cell viability. These effects were diminished upon the same treatment of A549 cells transfected with either p53 siRNA or acetylcholinesterase siRNA. Taken together, our results show that IGFBP-3 or its peptide blocks hyaluronan-CD44 signaling via a mechanism that depends on both p53 and acetylcholinesterase.
Collapse
|
18
|
Abstract
In the last few decades, hyaluronic acid (HA) has become increasingly employed as a biomaterial in both clinical and research applications. The abundance of HA in many tissues, together with its amenability to chemical modification, has made HA an attractive material platform for a wide range of applications including regenerative medicine, drug delivery, and scaffolds for cell culture. HA has traditionally been appreciated to modulate tissue mechanics and remodeling through its distinctive biophysical properties and ability to organize other matrix proteins. However, HA can influence cell behavior in much more direct and specific ways by engaging cellular HA receptors, which can trigger signals that influence cell survival, proliferation, adhesion, and migration. In turn, cells modify HA by regulating synthesis and degradation through a dedicated arsenal of enzymes. Optimal design of HA-based biomaterials demands full consideration of these diverse modes of regulation. This review summarizes how HA-based signaling regulates cell behavior and discusses how these signals can be leveraged to create cell-instructive biomaterials.
Collapse
Affiliation(s)
- Kayla J. Wolf
- University of California, Berkeley – University of California, San Francisco Graduate Program in Bioengineering, Berkeley, California, 94720, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, 94720, USA
| | - Sanjay Kumar
- University of California, Berkeley – University of California, San Francisco Graduate Program in Bioengineering, Berkeley, California, 94720, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California, 94720, USA
| |
Collapse
|
19
|
Cao L, Wu XM, Nie P, Chang MX. The negative regulation of piscine CD44c in viral and bacterial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 96:135-143. [PMID: 30885554 DOI: 10.1016/j.dci.2019.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
CD44 gene is a cell surface receptor which undergoes complex alternative splicing and extensive post-translational modifications. Although many studies have showed that CD44 is involved in the process of host defense, the function of piscine CD44 in antibacterial or antiviral defense response remains unclear. In the present study, we report the functional characterization of zebrafish CD44c, which is more similar to CD44b antigen isoforms rather than CD44a based on amino acid composition and phylogenetic analysis. The expression of zebrafish CD44c was inducible in response to bacterial and viral infections. During SVCV infection, the in vivo studies revealed that CD44c overexpression led to the increased virus loads and decreased survival rate. The attenuated response by zebrafish CD44c in response to SVCV infection were characterized by the impaired production of inflammatory cytokines and the impaired expressions of IFNs, IFN-stimulated genes, MHC class I and II genes. During Edwardsiella piscicida infection, the overexpression of zebrafish CD44c facilitated bacterial growth and dissemination, but did not impact on larvae survival. The detrimental role of CD44c in host defense against E. piscicida infection was supported by a decreased production of several antibacterial molecules including defbl2, defbl3, NK-lysin and RNase3. All together, these results firstly demonstrate the negative regulation of piscine CD44c in viral and bacterial infection.
Collapse
Affiliation(s)
- Lu Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Man Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; University of Chinese Academy of Sciences, Beijing, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, Hubei Province, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, Hubei Province, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
20
|
Lusche DF, Klemme MR, Soll BA, Reis RJ, Forrest CC, Nop TS, Wessels DJ, Berger B, Glover R, Soll DR. Integrin α-3 ß-1's central role in breast cancer, melanoma and glioblastoma cell aggregation revealed by antibodies with blocking activity. MAbs 2019; 11:691-708. [PMID: 30810437 DOI: 10.1080/19420862.2019.1583987] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Breast cancer, melanoma and glioblastoma cells undergo cell-mediated aggregation and aggregate coalescence in a transparent 3D Matrigel environment. Cells from normal tissue and non-tumorigenic cell lines do not exhibit these behaviors. Here, 266 monoclonal antibodies (mAbs) demonstrated to interact with a wide variety of membrane, secreted and matrix proteins, have been screened for their capacity to block these tumorigenic cell-specific behaviors in a 3D environment. Remarkably, only six of the 266 tested mAbs exhibited blocking activity, four targeting integrin ß-1, one targeting integrin α-3 and one targeting CD44. Colocalization of integrins ß-1 and α-3 in fixed cells and in live aggregates suggests that the integrin α-3 ß-1 dimer plays a central role in cancer cell aggregation in the 3D environment provided by Matrigel. Our results suggest that blocking by anti-integrin and anti-CD44 mAbs involves interference in cell-cell interactions.
Collapse
Affiliation(s)
- Daniel F Lusche
- a The Developmental Studies Hybridoma Bank, Department of Biology , University of Iowa , Iowa City , IA , USA
| | - Michael R Klemme
- a The Developmental Studies Hybridoma Bank, Department of Biology , University of Iowa , Iowa City , IA , USA
| | - Benjamin A Soll
- a The Developmental Studies Hybridoma Bank, Department of Biology , University of Iowa , Iowa City , IA , USA
| | - Ryan J Reis
- a The Developmental Studies Hybridoma Bank, Department of Biology , University of Iowa , Iowa City , IA , USA
| | - Cristopher C Forrest
- a The Developmental Studies Hybridoma Bank, Department of Biology , University of Iowa , Iowa City , IA , USA
| | - Tiffany S Nop
- a The Developmental Studies Hybridoma Bank, Department of Biology , University of Iowa , Iowa City , IA , USA
| | - Deborah J Wessels
- a The Developmental Studies Hybridoma Bank, Department of Biology , University of Iowa , Iowa City , IA , USA
| | - Brian Berger
- a The Developmental Studies Hybridoma Bank, Department of Biology , University of Iowa , Iowa City , IA , USA
| | - Rebecca Glover
- a The Developmental Studies Hybridoma Bank, Department of Biology , University of Iowa , Iowa City , IA , USA
| | - David R Soll
- a The Developmental Studies Hybridoma Bank, Department of Biology , University of Iowa , Iowa City , IA , USA
| |
Collapse
|
21
|
Muterspaugh R, Price D, Esckilsen D, McEachern S, Guthrie J, Heyl D, Evans HG. Interaction of Insulin-Like Growth Factor-Binding Protein 3 With Hyaluronan and Its Regulation by Humanin and CD44. Biochemistry 2018; 57:5726-5737. [PMID: 30184438 DOI: 10.1021/acs.biochem.8b00635] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Insulin-like growth factor-binding protein-3 (IGFBP-3) belongs to a family of IGF-binding proteins. Humanin is a peptide known to bind residues 215-232 of mature IGFBP-3 in the C-terminal region of the protein. This region of IGFBP-3 was shown earlier to bind certain glycosaminoglycans including hyaluronan (HA). Here, we characterized the binding affinities of the IGFBP-3 protein and peptide (215-KKGFYKKKQCRPSKGRKR-232) to HA and to humanin and found that HA binds with a weaker affinity to this region than does humanin. Either HA or humanin could bind to this IGFBP-3 segment, but not simultaneously. The HA receptor, CD44, blocked HA binding to IGFBP-3 but had no effect on binding of humanin to either IGFBP-3 or its peptide. Upon incubation of HA with CD44 and either IGFBP-3 protein or peptide, humanin was effective at binding and sequestering IGFBP-3 or peptide, thereby enabling access of CD44 to HA. We show that IGFBP-3 and humanin in the medium of A549 lung cancer cells can immunoprecipitate in a complex. However, the fraction of IGFBP-3 in the medium that is able to bind HA was not complexed with humanin suggesting that HA binding to the 215-232 segment renders it inaccessible for binding to humanin. Moreover, while the cytotoxic effects of IGFBP-3 on cell viability were reversed by humanin, blocking HA-CD44 interaction with an anti-CD44 antibody in combination with IGFBP-3 did not have an additive negative effect on cell viability suggesting that IGFBP-3 exerts its cytotoxic effects on cell survival through a mechanism that depends on HA-CD44 interactions.
Collapse
Affiliation(s)
- Robert Muterspaugh
- Chemistry Department , Eastern Michigan University , Ypsilanti , Michigan 48197 , United States
| | - Deanna Price
- Chemistry Department , Eastern Michigan University , Ypsilanti , Michigan 48197 , United States
| | - Daniel Esckilsen
- Chemistry Department , Eastern Michigan University , Ypsilanti , Michigan 48197 , United States
| | - Sydney McEachern
- Chemistry Department , Eastern Michigan University , Ypsilanti , Michigan 48197 , United States
| | - Jeffrey Guthrie
- Chemistry Department , Eastern Michigan University , Ypsilanti , Michigan 48197 , United States
| | - Deborah Heyl
- Chemistry Department , Eastern Michigan University , Ypsilanti , Michigan 48197 , United States
| | - Hedeel Guy Evans
- Chemistry Department , Eastern Michigan University , Ypsilanti , Michigan 48197 , United States
| |
Collapse
|
22
|
Jenkins LM, Horst B, Lancaster CL, Mythreye K. Dually modified transmembrane proteoglycans in development and disease. Cytokine Growth Factor Rev 2017; 39:124-136. [PMID: 29291930 DOI: 10.1016/j.cytogfr.2017.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Abstract
Aberrant cell signaling in response to secreted growth factors has been linked to the development of multiple diseases, including cancer. As such, understanding mechanisms that control growth factor availability and receptor-growth factor interaction is vital. Dually modified transmembrane proteoglycans (DMTPs), which are classified as cell surface macromolecules composed of a core protein decorated with covalently linked heparan sulfated (HS) and/or chondroitin sulfated (CS) glycosaminoglycan (GAG) chains, provide one type of regulatory mechanism. Specifically, DMTPs betaglycan and syndecan-1 (SDC1) play crucial roles in modulating key cell signaling pathways, such as Wnt, transforming growth factor-β and fibroblast growth factor signaling, to affect epithelial cell biology and cancer progression. This review outlines current and potential functions for betaglycan and SDC1, with an emphasis on comparing individual roles for HS and CS modified DMTPs. We highlight the mutual dependence of DMTPs' GAG chains and core proteins and provide comprehensive knowledge on how these DMTPs, through regulation of ligand availability and receptor internalization, control cell signaling pathways involved in development and disease.
Collapse
Affiliation(s)
- Laura M Jenkins
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| | - Ben Horst
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| | - Carly L Lancaster
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| | - Karthikeyan Mythreye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA; Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
23
|
Torabi F, Bogle OA, Estanyol JM, Oliva R, Miller D. Zona pellucida-binding protein 2 (ZPBP2) and several proteins containing BX7B motifs in human sperm may have hyaluronic acid binding or recognition properties. Mol Hum Reprod 2017; 23:803-816. [PMID: 29126140 PMCID: PMC5909853 DOI: 10.1093/molehr/gax053] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/10/2017] [Indexed: 02/02/2023] Open
Abstract
STUDY QUESTION Are there novel hyaladherins in human sperm? SUMMARY ANSWER Zona pellucida-binding protein 2 (ZPBP2), containing a Link-like hyaluronic acid (HA)-binding domain, and several other proteins containing BX7B motifs, such as ADAM32 and Midkine, may be novel hyaladherins with HA-binding properties. WHAT IS KNOWN ALREADY HA-binding proteins (hyaladherins), which can bind HA surrounding the cumulus-oophorus complex, are distinct from hyases such as PH 20 (SPAM1) and are expressed by mature spermatozoa. Although HABP1 and CD44 are reasonably well characterized hyaladherins and the former has been implicated in sperm-oocyte interactions, the overall significance of sperm hyaladherins for male fertility is still poorly understood. STUDY DESIGN, SIZE, DURATION This was a laboratory-based investigation into human sperm hyaladherins undertaken as part of a three year PhD programme sponsored by the EU Marie Curie Training network, Reprotrain. PARTICIPANTS/MATERIALS, SETTING, METHODS Protein homogenates of sperm obtained from young men of unknown fertility (N = 4) were partitioned into HA-binding and non-binding fractions by a protein affinity 'panning' method; their subsequent characterization was by liquid chromatography-tandem mass spectrometry (LC-MS-MS) and partitioning behaviour was confirmed by western blotting. Sequences of proteins from both fractions were submitted to PDBsum to look for orthologous entries (PDB codes) and all returned codes were queried against the matching protein using SAS (Sequences Annotated by Structure) looking for structural similarities between them. A systematic search for other common features of hyaladherins was also undertaken. MAIN RESULTS AND THE ROLE OF CHANCE The presence of BX7B sequence motifs found in several well-described hyaladherins including RHAMM was used to assess efficacy of potential hyaladherin partitioning by the HA substrate. The data showed that 50% (14/28) and 34.5% (28/81) of proteins in the bound and unbound fractions, respectively, contained these motifs (one-tailed Z-score = 1.45; P = 0.074), indicating weak discrimination by the substrate. Querying PDBsum with sequences for all bound proteins returned several PDB codes matching ZPBP2 with the HA-binding Link domain of the hyaladherin, CD44. Western blot analysis confirmed the affinity partitioning of proteins indicated by the LC-MS/MS results, with ADAM32 (containing two BX7B motifs) and ZPBP2 (containing a Link-like HA-binding domain) present only in the binding fraction. There remains the possibility that the putative hyaladherins uncovered by this study were coincidentally enriched by HA-binding. LARGE SCALE DATA The full proteomics data set is available on request. LIMITATIONS REASONS FOR CAUTION The protein extraction methods or the HA substrate used to pan them in this study were probably not ideal, as hyaladherins expected to be present in sperm homogenates (such as CD44 and RHAMM) were not detected. WIDER IMPLICATIONS OF THE FINDINGS The results provide evidence that ZPBP2, found only in the bound fraction, may have hyaladherin-like properties, which could reflect the evolutionary background context of contemporary sperm-oocyte interaction mechanisms. STUDY FUNDING AND COMPETING INTEREST(S) An EU Marie Curie Sklodowska Initial Training Network Scholarship, supporting Ms Torabi, is gratefully acknowledged. This project was also supported and funded by the Efficacy and Mechanism Evaluation Programme, a UK MRC and NIHR partnership (Grant No 11/14/ 34). There is no conflict of interest in relation to this work.
Collapse
Affiliation(s)
- F Torabi
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Labs, University of Leeds, Clarendon Way, Leeds, UK
| | - O A Bogle
- Molecular Biology of Reproduction and Development Research Group, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Faculty of Medicine, University of Barcelona, Casanova 143, Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clinic, Villarroel 170, Barcelona, Spain
| | - J M Estanyol
- Proteomics Unit, Scientific Technical Services, University of Barcelona, Casanova 143, Barcelona, Spain
| | - R Oliva
- Molecular Biology of Reproduction and Development Research Group, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Faculty of Medicine, University of Barcelona, Casanova 143, Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clinic, Villarroel 170, Barcelona, Spain
| | - D Miller
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Labs, University of Leeds, Clarendon Way, Leeds, UK
| |
Collapse
|
24
|
CD44 Signaling Mediates High Molecular Weight Hyaluronan-Induced Antihyperalgesia. J Neurosci 2017; 38:308-321. [PMID: 29175954 DOI: 10.1523/jneurosci.2695-17.2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/08/2017] [Accepted: 11/13/2017] [Indexed: 01/12/2023] Open
Abstract
We studied, in male Sprague Dawley rats, the role of the cognate hyaluronan receptor, CD44 signaling in the antihyperalgesia induced by high molecular weight hyaluronan (HMWH). Low molecular weight hyaluronan (LMWH) acts at both peptidergic and nonpeptidergic nociceptors to induce mechanical hyperalgesia that is prevented by intrathecal oligodeoxynucleotide antisense to CD44 mRNA, which also prevents hyperalgesia induced by a CD44 receptor agonist, A6. Ongoing LMWH and A6 hyperalgesia are reversed by HMWH. HMWH also reverses the hyperalgesia induced by diverse pronociceptive mediators, prostaglandin E2, epinephrine, TNFα, and interleukin-6, and the neuropathic pain induced by the cancer chemotherapy paclitaxel. Although CD44 antisense has no effect on the hyperalgesia induced by inflammatory mediators or paclitaxel, it eliminates the antihyperalgesic effect of HMWH. HMWH also reverses the hyperalgesia induced by activation of intracellular second messengers, PKA and PKCε, indicating that HMWH-induced antihyperalgesia, although dependent on CD44, is mediated by an intracellular signaling pathway rather than as a competitive receptor antagonist. Sensitization of cultured small-diameter DRG neurons by prostaglandin E2 is also prevented and reversed by HMWH. These results demonstrate the central role of CD44 signaling in HMWH-induced antihyperalgesia, and establish it as a therapeutic target against inflammatory and neuropathic pain.SIGNIFICANCE STATEMENT We demonstrate that hyaluronan (HA) with different molecular weights produces opposing nociceptive effects. While low molecular weight HA increases sensitivity to mechanical stimulation, high molecular weight HA reduces sensitization, attenuating inflammatory and neuropathic hyperalgesia. Both pronociceptive and antinociceptive effects of HA are mediated by activation of signaling pathways downstream CD44, the cognate HA receptor, in nociceptors. These results contribute to our understanding of the role of the extracellular matrix in pain, and indicate CD44 as a potential therapeutic target to alleviate inflammatory and neuropathic pain.
Collapse
|
25
|
Muramatsu K, Tajima Y, Kaneko R, Yanagita Y, Hirai H, Hiura N. Characterization of poly(L-glutamic acid)-grafted hyaluronan as a novel candidate medicine and biomedical device for intra-articular injection. J Biomed Mater Res A 2017; 105:3006-3016. [PMID: 28675666 DOI: 10.1002/jbm.a.36155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 05/30/2017] [Accepted: 06/15/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Kazuaki Muramatsu
- Division of Life Science and Engineering; School of Science and Engineering, Tokyo Denki University, Ishizaka, Hatoyama-cho, Hiki-gun; Saitama 350-0394 Japan
| | - Yuya Tajima
- Division of Life Science and Engineering; School of Science and Engineering, Tokyo Denki University, Ishizaka, Hatoyama-cho, Hiki-gun; Saitama 350-0394 Japan
| | - Rin Kaneko
- Division of Life Science and Engineering; School of Science and Engineering, Tokyo Denki University, Ishizaka, Hatoyama-cho, Hiki-gun; Saitama 350-0394 Japan
| | - Yuta Yanagita
- Division of Life Science and Engineering; School of Science and Engineering, Tokyo Denki University, Ishizaka, Hatoyama-cho, Hiki-gun; Saitama 350-0394 Japan
| | - Hiroyuki Hirai
- Division of Life Science and Engineering; School of Science and Engineering, Tokyo Denki University, Ishizaka, Hatoyama-cho, Hiki-gun; Saitama 350-0394 Japan
| | - Nana Hiura
- Division of Life Science and Engineering; School of Science and Engineering, Tokyo Denki University, Ishizaka, Hatoyama-cho, Hiki-gun; Saitama 350-0394 Japan
| |
Collapse
|
26
|
Vuorio J, Vattulainen I, Martinez-Seara H. Atomistic fingerprint of hyaluronan-CD44 binding. PLoS Comput Biol 2017; 13:e1005663. [PMID: 28715483 PMCID: PMC5549728 DOI: 10.1371/journal.pcbi.1005663] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 08/08/2017] [Accepted: 06/29/2017] [Indexed: 12/30/2022] Open
Abstract
Hyaluronan is a polyanionic, megadalton-scale polysaccharide, which initiates cell signaling by interacting with several receptor proteins including CD44 involved in cell-cell interactions and cell adhesion. Previous studies of the CD44 hyaluronan binding domain have identified multiple widespread residues to be responsible for its recognition capacity. In contrast, the X-ray structural characterization of CD44 has revealed a single binding mode associated with interactions that involve just a fraction of these residues. In this study, we show through atomistic molecular dynamics simulations that hyaluronan can bind CD44 with three topographically different binding modes that in unison define an interaction fingerprint, thus providing a plausible explanation for the disagreement between the earlier studies. Our results confirm that the known crystallographic mode is the strongest of the three binding modes. The other two modes represent metastable configurations that are readily available in the initial stages of the binding, and they are also the most frequently observed modes in our unbiased simulations. We further discuss how CD44, fostered by the weaker binding modes, diffuses along HA when attached. This 1D diffusion combined with the constrained relative orientation of the diffusing proteins is likely to influence the aggregation kinetics of CD44. Importantly, CD44 aggregation has been suggested to be a possible mechanism in CD44-mediated signaling. Hyaluronan is a natural sugar polymer in our bodies. Besides acting as a space-filling agent for example in multiple connective tissues, it also functions as a cellular cue in cancer and inflammation. Our tissues sense hyaluronan through receptors—proteins that sit at the surface of cells and grab the molecules they are expected to recognize. Although the knowledge associated with hyaluronan and its receptors is constantly accumulating, the molecular-level insight is largely missing or incomplete due to the lack of techniques able to probe the dynamics of protein–carbohydrate interactions with sufficiently high resolution. In this work, we characterize the binding of hyaluronan to its receptor CD44 with atomistic precision. We achieve this level of precision by employing atomistic molecular dynamics simulations. This computational technique allows one to follow the movement of atoms of a virtual system at scales beyond the resolution of any experimental technique. Our work specifically focuses on the different stages of hyaluronan–CD44 binding, and we observe the process to involve three different binding modes, making it more versatile than previously thought. Our insights, therefore, promote the understanding of the interplay between hyaluronan and HA, thereby fostering development of new drugs or inhibitors to malignancies, such as cancer metastasis.
Collapse
Affiliation(s)
- Joni Vuorio
- Department of Physics, Tampere University of Technology, Tampere, Finland
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, Tampere, Finland
- Department of Physics, University of Helsinki, Helsinki, Finland
- MEMPHYS - Centre for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
| | - Hector Martinez-Seara
- Department of Physics, Tampere University of Technology, Tampere, Finland
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
27
|
Patel S, Shaikh F, Devaraji V, Radadiya A, Shah K, Shah A, Rawal R. Insights into the structural perturbations of spliced variants of CD44: a modeling and simulation approach. J Biomol Struct Dyn 2016; 35:354-367. [DOI: 10.1080/07391102.2016.1142476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shanaya Patel
- Department of Medicinal Chemistry & Pharmacogenomics, The Gujarat Cancer & Research Institute, Gujarat, India
| | - Faraz Shaikh
- Department of Computer and Information Science, University of Macau, Macau, China
| | | | - Ashish Radadiya
- National Facility for Drug Discovery Complex, Department of Chemistry, Saurashtra University, Gujarat, India
| | - Kanisha Shah
- Department of Medicinal Chemistry & Pharmacogenomics, The Gujarat Cancer & Research Institute, Gujarat, India
| | | | - Rakesh Rawal
- Department of Medicinal Chemistry & Pharmacogenomics, The Gujarat Cancer & Research Institute, Gujarat, India
| |
Collapse
|
28
|
Aguirre-Alvarado C, Segura-Cabrera A, Velázquez-Quesada I, Hernández-Esquivel MA, García-Pérez CA, Guerrero-Rodríguez SL, Ruiz AJ, Rodríguez-Moreno A, Pérez-Tapia SM, Velasco-Velázquez MA. Virtual screening-driven repositioning of etoposide as CD44 antagonist in breast cancer cells. Oncotarget 2016; 7:23772-23784. [PMID: 27009862 PMCID: PMC5029662 DOI: 10.18632/oncotarget.8180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/02/2016] [Indexed: 11/25/2022] Open
Abstract
CD44 is a receptor for hyaluronan (HA) that promotes epithelial-to-mesenchymal transition (EMT), induces cancer stem cell (CSC) expansion, and favors metastasis. Thus, CD44 is a target for the development of antineoplastic agents. In order to repurpose drugs as CD44 antagonists, we performed consensus-docking studies using the HA-binding domain of CD44 and 11,421 molecules. Drugs that performed best in docking were examined in molecular dynamics simulations, identifying etoposide as a potential CD44 antagonist. Ligand competition and cell adhesion assays in MDA-MB-231 cells demonstrated that etoposide decreased cell binding to HA as effectively as a blocking antibody. Etoposide-treated MDA-MB-231 cells developed an epithelial morphology; increased their expression of E-cadherin; and reduced their levels of EMT-associated genes and cell migration. By gene expression analysis, etoposide reverted an EMT signature similarly to CD44 knockdown, whereas other topoisomerase II (TOP2) inhibitors did not. Moreover, etoposide decreased the proportion of CD44+/CD24- cells, lowered chemoresistance, and blocked mammosphere formation. Our data indicate that etoposide blocks CD44 activation, impairing key cellular functions that drive malignancy, thus rendering it a candidate for further translational studies and a potential lead compound in the development of new CD44 antagonists.
Collapse
Affiliation(s)
| | - Aldo Segura-Cabrera
- Red de Estudios Moleculares Avanzados, Instituto de Ecología (INECOL) A.C., Clúster Científico y Tecnológico Biomimic, Xalapa Veracruz, México
| | - Inés Velázquez-Quesada
- Unidad de Desarrollo e Investigación en Bioprocesos, Escuela Nacional de Ciencias Biológicas-IPN, México D.F., México
| | - Miguel A. Hernández-Esquivel
- Unidad de Desarrollo e Investigación en Bioprocesos, Escuela Nacional de Ciencias Biológicas-IPN, México D.F., México
| | | | | | - Angel J. Ruiz
- Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México D.F., México
| | | | - Sonia M. Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioprocesos, Escuela Nacional de Ciencias Biológicas-IPN, México D.F., México
| | | |
Collapse
|
29
|
Ferrari LF, Araldi D, Bogen O, Levine JD. Extracellular matrix hyaluronan signals via its CD44 receptor in the increased responsiveness to mechanical stimulation. Neuroscience 2016; 324:390-8. [PMID: 26996509 DOI: 10.1016/j.neuroscience.2016.03.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/18/2016] [Accepted: 03/14/2016] [Indexed: 01/08/2023]
Abstract
We propose that the extracellular matrix (ECM) signals CD44, a hyaluronan receptor, to increase the responsiveness to mechanical stimulation in the rat hind paw. We report that intradermal injection of hyaluronidase induces mechanical hyperalgesia, that is inhibited by co-administration of a CD44 receptor antagonist, A5G27. The intradermal injection of low (LMWH) but not high (HMWH) molecular weight hyaluronan also induces mechanical hyperalgesia, an effect that was attenuated by pretreatment with HMWH or A5G27. Pretreatment with HMWH also attenuated the hyperalgesia induced by hyaluronidase. Similarly, intradermal injection of A6, a CD44 receptor agonist, produced hyperalgesia that was inhibited by HMWH and A5G27. Inhibitors of protein kinase A (PKA) and Src, but not protein kinase C (PKC), significantly attenuated the hyperalgesia induced by both A6 and LMWH. Finally, to determine if CD44 receptor signaling is involved in a preclinical model of inflammatory pain, we evaluated the effect of A5G27 and HMWH on the mechanical hyperalgesia associated with the inflammation induced by carrageenan. Both A5G27 and HMWH attenuated carrageenan-induced mechanical hyperalgesia. Thus, while LMWH acts at its cognate receptor, CD44, to induce mechanical hyperalgesia, HMWH acts at the same receptor as an antagonist. That the local administration of HMWH or A5G27 inhibits carrageenan-induced hyperalgesia supports the suggestion that carrageenan produces changes in the ECM that contributes to inflammatory pain. These studies define a clinically relevant role for signaling by the hyaluronan receptor, CD44, in increased responsiveness to mechanical stimulation.
Collapse
Affiliation(s)
- L F Ferrari
- Departments of Medicine and Oral Surgery, and Division of Neuroscience, University of California at San Francisco, 521 Parnassus Avenue, San Francisco, CA 94143, USA.
| | - D Araldi
- Departments of Medicine and Oral Surgery, and Division of Neuroscience, University of California at San Francisco, 521 Parnassus Avenue, San Francisco, CA 94143, USA.
| | - O Bogen
- Departments of Medicine and Oral Surgery, and Division of Neuroscience, University of California at San Francisco, 521 Parnassus Avenue, San Francisco, CA 94143, USA.
| | - J D Levine
- Departments of Medicine and Oral Surgery, and Division of Neuroscience, University of California at San Francisco, 521 Parnassus Avenue, San Francisco, CA 94143, USA.
| |
Collapse
|
30
|
Abstract
Blood group antigens represent polymorphic traits inherited among individuals and populations. At present, there are 34 recognized human blood groups and hundreds of individual blood group antigens and alleles. Differences in blood group antigen expression can increase or decrease host susceptibility to many infections. Blood groups can play a direct role in infection by serving as receptors and/or coreceptors for microorganisms, parasites, and viruses. In addition, many blood group antigens facilitate intracellular uptake, signal transduction, or adhesion through the organization of membrane microdomains. Several blood groups can modify the innate immune response to infection. Several distinct phenotypes associated with increased host resistance to malaria are overrepresented in populations living in areas where malaria is endemic, as a result of evolutionary pressures. Microorganisms can also stimulate antibodies against blood group antigens, including ABO, T, and Kell. Finally, there is a symbiotic relationship between blood group expression and maturation of the gastrointestinal microbiome.
Collapse
Affiliation(s)
- Laura Cooling
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
31
|
Molecular mechanism for the action of the anti-CD44 monoclonal antibody MEM-85. J Struct Biol 2015; 191:214-23. [PMID: 26066970 DOI: 10.1016/j.jsb.2015.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/04/2015] [Accepted: 06/06/2015] [Indexed: 12/15/2022]
Abstract
The hyaluronate receptor CD44 plays role in cell adhesion and migration and is involved in tumor metastasis. The extracellular domain of CD44 comprises the hyaluronate-binding domain (HABD) and the membrane-proximal stem region; the short intracellular portion interacts with adaptor proteins and triggers signaling pathways. Binding of hyaluronate to CD44 HABD induces an allosteric conformational change, which results in CD44 shedding. A poorly characterized epitope in human CD44 HABD is recognized by the murine monoclonal antibody MEM-85, which cross-blocks hyaluronate binding to CD44 and also induces CD44 shedding. MEM-85 is of therapeutic interest, as it inhibits growth of lung cancer cells in murine models. In this work, we employed a combination of biophysical methods to determine the MEM-85 binding epitope in CD44 HABD and to provide detailed insight into the mechanism of MEM-85 action. In particular, we constructed a single-chain variable fragment (scFv) of MEM-85 as a tool for detailed characterization of the CD44 HABD-antibody complex and identified residues within CD44 HABD involved in the interaction with scFv MEM-85 by NMR spectroscopy and mutational analysis. In addition, we built a rigid body model of the CD44 HABD-scFv MEM-85 complex using a low-resolution structure obtained by small-angle X-ray scattering. The MEM-85 epitope is situated in the C-terminal part of CD44 HABD, rather than the hyaluronate-binding groove, and the binding of MEM-85 induces a structural reorganization similar to that induced by hyaluronate. Therefore, the mechanism of MEM-85 cross-blocking of hyaluronate binding is likely of an allosteric, relay-like nature.
Collapse
|
32
|
Misra S, Hascall VC, Markwald RR, Ghatak S. Interactions between Hyaluronan and Its Receptors (CD44, RHAMM) Regulate the Activities of Inflammation and Cancer. Front Immunol 2015; 6:201. [PMID: 25999946 PMCID: PMC4422082 DOI: 10.3389/fimmu.2015.00201] [Citation(s) in RCA: 571] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 04/13/2015] [Indexed: 01/04/2023] Open
Abstract
The glycosaminoglycan hyaluronan (HA), a major component of extracellular matrices, and cell surface receptors of HA have been proposed to have pivotal roles in cell proliferation, migration, and invasion, which are necessary for inflammation and cancer progression. CD44 and receptor for HA-mediated motility (RHAMM) are the two main HA-receptors whose biological functions in human and murine inflammations and tumor cells have been investigated comprehensively. HA was initially considered to be only an inert component of connective tissues, but is now known as a “dynamic” molecule with a constant turnover in many tissues through rapid metabolism that involves HA molecules of various sizes: high molecular weight HA (HMW HA), low molecular weight HA, and oligosaccharides. The intracellular signaling pathways initiated by HA interactions with CD44 and RHAMM that lead to inflammatory and tumorigenic responses are complex. Interestingly, these molecules have dual functions in inflammations and tumorigenesis. For example, the presence of CD44 is involved in initiation of arthritis, while the absence of CD44 by genetic deletion in an arthritis mouse model increases rather than decreases disease severity. Similar dual functions of CD44 exist in initiation and progression of cancer. RHAMM overexpression is most commonly linked to cancer progression, whereas loss of RHAMM is associated with malignant peripheral nerve sheath tumor growth. HA may similarly perform dual functions. An abundance of HMW HA can promote malignant cell proliferation and development of cancer, whereas antagonists to HA-CD44 signaling inhibit tumor cell growth in vitro and in vivo by interfering with HMW HA-CD44 interaction. This review describes the roles of HA interactions with CD44 and RHAMM in inflammatory responses and tumor development/progression, and how therapeutic strategies that block these key inflammatory/tumorigenic processes may be developed in rodent and human diseases.
Collapse
Affiliation(s)
- Suniti Misra
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina , Charleston, SC , USA
| | - Vincent C Hascall
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland , Ohio, OH , USA
| | - Roger R Markwald
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina , Charleston, SC , USA
| | - Shibnath Ghatak
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina , Charleston, SC , USA
| |
Collapse
|
33
|
Cieply B, Koontz C, Frisch SM. CD44S-hyaluronan interactions protect cells resulting from EMT against anoikis. Matrix Biol 2015; 48:55-65. [PMID: 25937513 PMCID: PMC4851163 DOI: 10.1016/j.matbio.2015.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/20/2015] [Accepted: 04/24/2015] [Indexed: 02/08/2023]
Abstract
The detachment of normal epithelial cells from matrix triggers an apoptotic response known as anoikis, during homeostatic turnover. Metastatic tumor cells evade anoikis, by mechanisms that are only partly characterized. In particular, the epithelial–mesenchymal transition (EMT) in a subset of invasive tumor cells confers anoikis-resistance. In some cases, EMT up-regulates the cancer stem cell marker CD44S and the enzyme hyaluronic acid synthase-2 (HAS2). CD44S is the major receptor for hyaluronan in the extracellular matrix. Herein, we demonstrate that CD44S, unlike the CD44E isoform expressed in normal epithelial cells, contributes to the protection against anoikis. This protection requires the interaction of CD44S with hyaluronan (HA). CD44S–HA interaction is proposed to play an important role in tumor metastasis through enhanced cell survival under detached conditions.
Collapse
Affiliation(s)
- Benjamin Cieply
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, United States.
| | - Colton Koontz
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, United States
| | - Steven M Frisch
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, United States.
| |
Collapse
|
34
|
Abstract
Hyaluronan (HA) is a non-sulfated glycosaminoglycan distributed throughout the extracellular matrix that plays a major role in cell adhesion, migration, and proliferation. CD44, a multifunctional cell surface glycoprotein, is a receptor for HA. In addition, CD44 is known to interact with other receptors and ligands, and to mediate a number of cellular functions as well as disease progression. Studies have shown that binding of HA to CD44 in cancer cells activates survival pathways resulting in cancer cell survival. This effect can be blocked by anti-CD44 monoclonal antibodies. A6 is a capped, eight l-amino acid peptide (Ac-KPSSPPEE-NH2) derived from the biologically active connecting peptide domain of the serine protease, human urokinase plasminogen activator (uPA). A6 neither binds to the uPA receptor (uPAR) nor interferes with uPA/uPAR binding. A6 binds to CD44 resulting in the inhibition of migration, invasion, and metastasis of tumor cells, and the modulation of CD44-mediated cell signaling. A6 has been shown to have no dose-limiting toxicity in animal studies. A6 has demonstrated efficacy and an excellent safety profile in Phase 1a, 1b, and 2 clinical trials. In animal models, A6 has also exhibited promising results for the treatment of diabetic retinopathy and wet age-related macular degeneration through the reduction of retinal vascular permeability and inhibition of choroidal neovascularization, respectively. Recently, A6 has been shown to be directly cytotoxic for B-lymphocytes obtained from patients with chronic lymphocytic leukemia expressing the kinase, ZAP-70. This review will discuss the activity of A6, A6 modulation of HA and CD44, and a novel strategy for therapeutic intervention in disease.
Collapse
|
35
|
Concise Review: Mesenchymal Stem Cells Ameliorate Tissue Injury via Secretion of Tumor Necrosis Factor-α Stimulated Protein/Gene 6. Stem Cells Int 2014; 2014:761091. [PMID: 25580135 PMCID: PMC4279254 DOI: 10.1155/2014/761091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/22/2014] [Accepted: 11/30/2014] [Indexed: 12/18/2022] Open
Abstract
Numerous reports have described therapeutic benefits in various disease models after administration of the adult stem/progenitor cells from bone marrow or other tissues referred to as mesenchymal stem cells/multipotent mesenchymal stromal cells (MSCs). They all showed that one of the important effects of MSCs is to act against excessive inflammatory responses and repair the damaged tissues. The therapeutic benefits of MSCs were initially interpreted by their migration, engraftment, and differentiation into target tissues. However, remarkable anatomical structural repairs and functional improvements were increasingly observed with a small number of or even no MSCs in the injured tissues. This suggests that most beneficial effects are largely due to paracrine secretions or cell-to-cell contacts that have multiple effects involving modulation of inflammatory and immune responses. Currently, the therapeutic benefits of MSCs are in part explained by the cells being activated by signals from injured tissues to express an anti-inflammatory protein, tumor-necrosis-factor-α-induced protein 6. This important mechanism of action has attracted increasing attention, and therefore we conducted this review to summarize the latest research.
Collapse
|
36
|
Olijnyk D, Ibrahim AM, Ferrier RK, Tsuda T, Chu ML, Gusterson BA, Stein T, Morris JS. Fibulin-2 is involved in early extracellular matrix development of the outgrowing mouse mammary epithelium. Cell Mol Life Sci 2014; 71:3811-28. [PMID: 24522256 PMCID: PMC11113845 DOI: 10.1007/s00018-014-1577-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/27/2014] [Indexed: 12/11/2022]
Abstract
Cell-matrix interactions control outgrowth of mammary epithelium during puberty and pregnancy. We demonstrate here that the glycoprotein fibulin-2 (FBLN2) is strongly associated with pubertal and early pregnant mouse mammary epithelial outgrowth. FBLN2 was specifically localized to the cap cells of the terminal end buds during puberty and to myoepithelial cells during very early pregnancy (days 2-3) even before morphological changes to the epithelium become microscopically visible, but was down-regulated thereafter. Exposure to exogenous oestrogen (E2) or E2 plus progesterone (P) increased Fbln2 mRNA expression in the pubertal gland, indicating hormonal control. FBLN2 was co-expressed and co-localised with the proteoglycan versican (VCAN) and co-localised with laminin (LN), while over-expression of FBLN2 in HC-11 cells increased cell adhesion to several extracellular matrix proteins including LN and fibronectin, but not collagens. Mammary glands from Fbln2 knockout mice showed no obvious phenotype but increased fibulin-1 (FBLN1) staining was detected, suggesting a compensatory mechanism by other fibulin family members. We hypothesise that similar to embryonic aortic smooth muscle development, FBLN2 and VCAN expression alters the cell-matrix interaction to allow mammary ductal outgrowth and development during puberty and to enable epithelial budding during pregnancy.
Collapse
Affiliation(s)
- D. Olijnyk
- Institute of Cancer Sciences, College of MVLS, University of Glasgow, Glasgow, G12 8QQ UK
| | - A. M. Ibrahim
- Institute of Cancer Sciences, College of MVLS, University of Glasgow, Glasgow, G12 8QQ UK
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613 Egypt
| | - R. K. Ferrier
- MVLS Pathology Unit Pathology Department, Southern General Hospital, Glasgow, G51 4TF UK
| | - T. Tsuda
- Nemours Biomedical Research and Nemours Cardiac Center, Alfred I. duPont Hospital for Children, Wilmington, 19803 USA
| | - M.-L. Chu
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - B. A. Gusterson
- Institute of Cancer Sciences, College of MVLS, University of Glasgow, Glasgow, G12 8QQ UK
| | - T. Stein
- Institute of Cancer Sciences, College of MVLS, University of Glasgow, Glasgow, G12 8QQ UK
| | - J. S. Morris
- School of Veterinary Medicine, College of MVLS, University of Glasgow, Bearsden Road, Glasgow, G61 1QH UK
| |
Collapse
|
37
|
Shigeishi H, Higashikawa K, Takechi M. Role of receptor for hyaluronan-mediated motility (RHAMM) in human head and neck cancers. J Cancer Res Clin Oncol 2014; 140:1629-40. [PMID: 24676428 DOI: 10.1007/s00432-014-1653-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/15/2014] [Indexed: 11/30/2022]
Abstract
The receptor for hyaluronan (HA)-mediated motility (RHAMM) is a HA-binding protein located in the cytoskeleton and centrosome. RHAMM has multiple functions that manifest with different cellular localizations, for example, modulation of growth factor receptor, regulation of cell signaling pathways, and mitotic spindle assembly. In addition, its increased expression has major roles in tumorigenesis and can induce genomic instability and cancer progression. In head and neck cancers, increased expression of RHAMM is associated with high proliferation of cancer cells and decreased survival. CD44, a cell-adhesion molecule and HA receptor, can modulate intracellular signaling by forming complexes with RHAMM to promote invasion and metastasis of cancer cells. In this review, we provide an overview of the biological functions of RHAMM in non-neoplastic cells and cancer cells, as well as its association with CD44, and also introduce studies that particularly implicate RHAMM in the pathogenesis of head and neck cancers.
Collapse
Affiliation(s)
- Hideo Shigeishi
- Department of Oral and Maxillofacial Surgery, Division of Cervico-Gnathostomatology, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan,
| | | | | |
Collapse
|
38
|
Faller CE, Guvench O. Terminal sialic acids on CD44 N-glycans can block hyaluronan binding by forming competing intramolecular contacts with arginine sidechains. Proteins 2014; 82:3079-89. [PMID: 25116630 DOI: 10.1002/prot.24668] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/25/2014] [Accepted: 08/03/2014] [Indexed: 01/29/2023]
Abstract
Specific sugar residues and their linkages form the basis of molecular recognition for interactions of glycoproteins with other biomolecules. Seemingly small changes, like the addition of a single monosaccharide in the covalently attached glycan component of glycoproteins, can greatly affect these interactions. For instance, the sialic acid capping of glycans affects protein-ligand binding involved in cell-cell and cell-matrix interactions. CD44 is a single-pass transmembrane glycoprotein whose binding with its carbohydrate ligand hyaluronan (HA), an extracellular matrix component, mediates processes such as leukocyte homing, cell adhesion, and tumor metastasis. This binding is highly regulated by glycosylation of the N-terminal extracellular hyaluronan-binding domain (HABD); specifically, sialic acid capped N-glycans of HABD inhibit ligand binding. However, the molecular mechanism behind this sialic acid mediated regulation has remained unknown. Two of the five N-glycosyation sites of HABD have been previously identified as having the greatest inhibitory effect on HA binding, but only if the glycans contain terminal sialic acid residues. These two sites, Asn25 and Asn120, were chosen for in silico glycosylation in this study. Here, from extensive standard molecular dynamics simulations and biased simulations, we propose a molecular mechanism for this behavior based on spontaneously-formed charge-paired hydrogen bonding interactions between the negatively-charged sialic acid residues and positively-charged Arg sidechains known to be critically important for binding to HA, which itself is negatively charged. Such intramolecular hydrogen bonds would preclude associations critical to hyaluronan binding. This observation suggests how CD44 and related glycoprotein binding is regulated by sialylation as cellular environments fluctuate.
Collapse
Affiliation(s)
- Christina E Faller
- Department of Pharmaceutical Sciences, University of New England College of Pharmacy, ortland, Maine, 04103
| | | |
Collapse
|
39
|
Purification, characterization and plasma half-life of PEGylated soluble recombinant non-HA-binding CD44. BioDrugs 2014; 28:393-402. [PMID: 24567264 DOI: 10.1007/s40259-014-0089-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND OBJECTIVES The aim of this study was to increase the serum half-life of recombinant CD44 hyaluronan (HA) binding domain by PEGylation. We have previously found that recombinant soluble CD44 HA binding domain (CD44HABD) and its non-HA-binding triple mutant CD44HABD(R41AY78SY79S) (CD44-3MUT) inhibits angiogenesis and subcutaneous tumor growth. However, this ~12 kDa recombinant protein displays a high serum clearance rate. METHODS Here, we report the purification of monomeric CD44-3MUT from urea solubilized inclusion bodies using weak anion exchange chromatography and gel filtration. To increase the serum residence time of CD44-3MUT we PEGylated the resulting protein using 20 kDa methoxy-PEG-propionaldehyde. RESULTS PEGylation of CD44-3MUT prolonged its in vivo serum half-life about 70-fold from 0.03 to 1.8 hours. Along with extended plasma residence time, PEGylation also increased the systemic exposure. By cell impedance assay we confirmed that PEGylated CD44-3MUT maintained its in vitro function. The results from the impedance assay additionally demonstrate that the CD44-3MUT effect on endothelial cells is mediated by vimentin. CONCLUSIONS In summary, we have developed a purification protocol for large-scale production of CD44-3MUT and generated a PEGylated form of CD44-3MUT. HA binding domain of CD44(CD44HABD) and its modified non-HA binding form (CD44-3MUT) inhibit angiogenesis and tumor growth in vivo without disturbing HA-binding functions. CD44-3MUT has been PEGylated for use as a new type of anti-angiogenic human drug. PEGylation of CD44-3MUT improved pharmacokinetic properties but retains its functional activity.
Collapse
|
40
|
Shah V, Taratula O, Garbuzenko OB, Taratula OR, Rodriguez-Rodriguez L, Minko T. Targeted nanomedicine for suppression of CD44 and simultaneous cell death induction in ovarian cancer: an optimal delivery of siRNA and anticancer drug. Clin Cancer Res 2013; 19:6193-204. [PMID: 24036854 DOI: 10.1158/1078-0432.ccr-13-1536] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE The proposed project is aimed at enhancing the efficiency of epithelial ovarian cancer treatment and reducing adverse side effects of chemotherapy using nanotechnology. Overexpression of the CD44 membrane receptor results in tumor initiation, growth, cancer stem cells' specific behavior, development of drug resistance, and metastases. We hypothesize that a developed cancer-targeted delivery system that combines CD44 siRNA with paclitaxel would successfully deliver its payload inside cancer cells, effectively induce cell death, and prevent metastases. EXPERIMENTAL DESIGN We synthesized, characterized, and tested a nanoscale-based drug delivery system (DDS) containing a modified polypropylenimine (PPI) dendrimer as a carrier; anticancer drug paclitaxel as a cell death inducer; a synthetic analog of luteinizing hormone-releasing hormone (LHRH) peptide as a tumor-targeting moiety; and siRNA targeted to CD44 mRNA. The proposed DDS was tested in vitro and in vivo using metastatic ovarian cancer cells isolated from patients with malignant ascites. RESULTS We found that in contrast with cells isolated from primary tumors, CD44 was highly overexpressed in metastatic cancer cells. Treatment with the proposed tumor-targeted nanoscale-based nucleic acid and DDS led to the suppression of CD44 mRNA and protein, efficient induction of cell death, effective tumor shrinkage, and prevention of adverse side effects on healthy organs. CONCLUSION We show a high therapeutic potential for combinatorial treatment of ovarian carcinoma with a novel DDS that effectively transports siRNA targeting to CD44 mRNA simultaneously with cytotoxic agents. Clin Cancer Res; 19(22); 6193-204. ©2013 AACR.
Collapse
Affiliation(s)
- Vatsal Shah
- Authors' Affiliations: Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway; Rutgers Cancer Institute of New Jersey and Department of Obstetrics and Gynecology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey; and Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon
| | | | | | | | | | | |
Collapse
|
41
|
Polyak D, Eldar-Boock A, Baabur-Cohen H, Satchi-Fainaro R. Polymer conjugates for focal and targeted delivery of drugs. POLYM ADVAN TECHNOL 2013. [DOI: 10.1002/pat.3158] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Dina Polyak
- Department of Physiology and Pharmacology; Sackler School of Medicine, Tel Aviv University; Tel Aviv 69978 Israel
| | - Anat Eldar-Boock
- Department of Physiology and Pharmacology; Sackler School of Medicine, Tel Aviv University; Tel Aviv 69978 Israel
| | - Hemda Baabur-Cohen
- Department of Physiology and Pharmacology; Sackler School of Medicine, Tel Aviv University; Tel Aviv 69978 Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology; Sackler School of Medicine, Tel Aviv University; Tel Aviv 69978 Israel
| |
Collapse
|
42
|
Zhang HC, Zhang F, Wu B, Han JH, Ji W, Zhou Y, Niu RF. Identification of the Interaction between P-Glycoprotein and Anxa2 in Multidrug-resistant Human Breast Cancer Cells. Cancer Biol Med 2013; 9:99-104. [PMID: 23691462 PMCID: PMC3643660 DOI: 10.3969/j.issn.2095-3941.2012.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/17/2012] [Indexed: 11/25/2022] Open
Abstract
Objective To explore the interaction of Anxa2 with P-Glycoprotein (P-gp) in the migration and invasion of the multidrug-resistant (MDR) human breast cancer cell line MCF-7/ADR. Methods A pair of short hairpin RNA (shRNA) targeting P-gp was transfected into MCF-7/ADR cells, and monoclonal cell strains were screened. The expression of P-gp was detected by Western blot. Transwell chambers were used to observe the cell migration capacity and invasion ability. The interaction between P-gp and Anxa2 was examined by immunoprecipitation and immunofluorescence confocal microscopy analyses. Results P-gp expression was significantly knocked down, and there were notable decreasing trends in the migration and invasion capability of MDR breast cancer cells (P<0.05). There was a close interaction between Anxa2 and P-gp. Conclusions MCF-7/ADR is an MDR human breast cancer cell line with high migration and invasion abilities. The knockdown of P-gp notably impaired the migration and invasion abilities of the tumor cells. The interaction of Anxa2 with P-pg may play an important role in the enhanced invasiveness of MDR human breast cancer cells.
Collapse
Affiliation(s)
- Hai-Chang Zhang
- Public Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Negi LM, Talegaonkar S, Jaggi M, Ahmad FJ, Iqbal Z, Khar RK. Role of CD44 in tumour progression and strategies for targeting. J Drug Target 2012; 20:561-73. [PMID: 22758394 DOI: 10.3109/1061186x.2012.702767] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CD44 or hyaluronan receptor is a transmembrane receptor associated with aggressive tumour growth, proliferation, and metastasis. In normal physiology, this receptor has a crucial role in cell adhesion, inflammation, and repair processes. However, many tumour cells over-express this receptor and abuse it to become progressive and perpetual units. The article comments from common functioning of the CD44 receptor, to its diabolic multi-dimensional effects in promotion of malignant cells. It also illuminates the relations of CD44 endorsed processes with other biomolecular events in cancer progression. In an end, the review focuses comprehensively at ongoing researches to exploit the CD44 over-expression as a probable target in treatment, management, and diagnosis of malignancy.
Collapse
|
44
|
Application of Collagen-Model Triple-Helical Peptide-Amphiphiles for CD44-Targeted Drug Delivery Systems. JOURNAL OF DRUG DELIVERY 2012; 2012:592602. [PMID: 23213537 PMCID: PMC3505660 DOI: 10.1155/2012/592602] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 10/03/2012] [Accepted: 10/05/2012] [Indexed: 11/26/2022]
Abstract
Cancer treatment by chemotherapy is typically accompanied by deleterious side effects, attributed to the toxic action of chemotherapeutics on proliferating cells from nontumor tissues. The cell surface proteoglycan CD44 has been recognized as a cancer stem cell marker. The present study has examined CD44 targeting as a way to selectively deliver therapeutic agents encapsulated inside colloidal delivery systems. CD44/chondroitin sulfate proteoglycan binds to a triple-helical sequence derived from type IV collagen, α1(IV)1263–1277. We have assembled a peptide-amphiphile (PA) in which α1(IV)1263–1277 was sandwiched between 4 repeats of Gly-Pro-4-hydroxyproline and conjugated to palmitic acid. The PA was incorporated into liposomes composed of DSPG, DSPC, cholesterol, and DSPE-PEG-2000 (1 : 4 : 5 : 0.5). Doxorubicin-(DOX-)loaded liposomes with and without 10% α1(IV)1263–1277 PA were found to exhibit similar stability profiles. Incubation of DOX-loaded targeted liposomes with metastatic melanoma M14#5 and M15#11 cells and BJ fibroblasts resulted in IC50 values of 9.8, 9.3, and >100 μM, respectively. Nontargeted liposomes were considerably less efficacious for M14#5 cells. In the CD44+ B16F10 mouse melanoma model, CD44-targeted liposomes reduced the tumor size to 60% of that of the untreated control, whereas nontargeted liposomes were ineffective. These results suggest that PA targeted liposomes may represent a new class of nanotechnology-based drug delivery systems.
Collapse
|
45
|
Kaur P, Rizk NM, Ibrahim S, Younes N, Uppal A, Dennis K, Karve T, Blakeslee K, Kwagyan J, Zirie M, Ressom HW, Cheema AK. iTRAQ-Based Quantitative Protein Expression Profiling and MRM Verification of Markers in Type 2 Diabetes. J Proteome Res 2012; 11:5527-39. [DOI: 10.1021/pr300798z] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Prabhjit Kaur
- Department of Oncology, Lombardi Comprehensive Cancer Center at Georgetown University Medical Center, Washington D.C., United States
| | - Nasser M. Rizk
- Department of Health Sciences, Qatar University, Doha, Qatar
| | - Sereen Ibrahim
- Department of Health Sciences, Qatar University, Doha, Qatar
| | | | - Arushi Uppal
- Department of Oncology, Lombardi Comprehensive Cancer Center at Georgetown University Medical Center, Washington D.C., United States
| | - Kevin Dennis
- Department of Oncology, Lombardi Comprehensive Cancer Center at Georgetown University Medical Center, Washington D.C., United States
| | - Tejaswita Karve
- Department of Oncology, Lombardi Comprehensive Cancer Center at Georgetown University Medical Center, Washington D.C., United States
| | | | - John Kwagyan
- Howard
University College of Medicine,
Washington, D. C., United States
| | | | - Habtom W. Ressom
- Department of Oncology, Lombardi Comprehensive Cancer Center at Georgetown University Medical Center, Washington D.C., United States
| | - Amrita K. Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center at Georgetown University Medical Center, Washington D.C., United States
| |
Collapse
|
46
|
Han H, Stapels M, Ying W, Yu Y, Tang L, Jia W, Chen W, Zhang Y, Qian X. Comprehensive characterization of the N-glycosylation status of CD44s by use of multiple mass spectrometry-based techniques. Anal Bioanal Chem 2012; 404:373-88. [PMID: 22722744 DOI: 10.1007/s00216-012-6167-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 05/29/2012] [Accepted: 05/29/2012] [Indexed: 12/22/2022]
Abstract
The CD44 family are type-1 transmembrane glycoproteins which are important in mediating the response of cells to their microenvironment, including regulation of growth, survival, differentiation, and motility. All these important functions have been reported to be regulated by N-glycosylation; however, little is known about this process. In the CD44 family, the most prolific isoform is CD44 standard type (CD44s). In this work, an integrated strategy combining stable isotope labeling, chemical derivatization, hydrophilic-interaction liquid chromatographic (HILIC) separation, and mass spectrometric (MS) identification was used to perform a comprehensive qualitative and quantitative survey of the N-glycosylation of recombinant CD44s. Specifically, the occupation ratios of the N-glycosites were first determined by MS with (18)O labeling; the results revealed five glycosites with different occupation ratios. Next, N-glycans were profiled by chemical derivatization and exoglycosidase digestion, followed by MALDI-TOF-MS and HILIC-ESI-MS-MS analysis. Interestingly, the quantitative analysis showed that non-sialylated, fucosylated complex-type glycans dominated the N-glycans of CD44s. Furthermore, the site-specific N-glycan distributions profiled by LC-ESI-MS(E) indicated that most glycosites bore complex-type glycans, except for glycosite N100, which was occupied by high-mannose-type N-glycans. This is the first comprehensive report of the N-glycosylation of CD44s. Figure Strategies for characterization of the N-glycosylation status of CD44s.
Collapse
Affiliation(s)
- Huanhuan Han
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 102206, China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hatano H, Shigeishi H, Kudo Y, Higashikawa K, Tobiume K, Takata T, Kamata N. Overexpression of receptor for hyaluronan-mediated motility (RHAMM) in MC3T3-E1 cells induces proliferation and differentiation through phosphorylation of ERK1/2. J Bone Miner Metab 2012; 30:293-303. [PMID: 21947782 DOI: 10.1007/s00774-011-0318-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 08/28/2011] [Indexed: 02/04/2023]
Abstract
Receptor for hyaluronan (HA)-mediated motility (RHAMM) was first described as a soluble HA binding protein released by sub-confluent migrating cells. We previously found that RHAMM was highly expressed and plays an important role in proliferation in the human cementifying fibroma (HCF) cell line, which we previously established. HCF is a benign fibro-osseous neoplasm of the jaw and is composed of fibrous tissue containing varying amounts of mineralized material. However, the pathogenesis of HCF is not clear. In this paper, we examined the roles of RHAMM in osteoblastic cells. We generated RHAMM-overexpressing MC3T3-E1 cells and examined the cell proliferation and differentiation of osteoblastic cells. In MC3T3-E1 cells, overexpressing RHAMM was located intracellular and activated ERK1/2. Interestingly, the ERK1/2 activated by RHAMM overexpression promoted cell proliferation and suppressed the differentiation of osteoblastic cells. Our findings strongly suggest that RHAMM may play a key role in the osteoblastic differentiation process. The rupture of balance from differentiation to proliferation induced by RHAMM overexpression may link to the pathogenesis of bone neoplasms such as HCF.
Collapse
Affiliation(s)
- Hiroko Hatano
- Department of Oral and Maxillofacial Surgery, Division of Cervico-Gnathostomatology, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
El-Dakdouki MH, Zhu DC, El-Boubbou K, Kamat M, Chen J, Li W, Huang X. Development of multifunctional hyaluronan-coated nanoparticles for imaging and drug delivery to cancer cells. Biomacromolecules 2012; 13:1144-51. [PMID: 22372739 PMCID: PMC5475368 DOI: 10.1021/bm300046h] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Currently, there is high interest in developing multifunctional theranostic platforms for cancer monitoring and chemotherapy. Herein, we report hyaluronan (HA)-coated superparamagnetic iron oxide nanoparticles (HA-SPION) as a promising system for targeted imaging and drug delivery. When incubated with cancer cells, HA-SPIONs were rapidly taken up and the internalization of HA-SPION by cancer cells was much higher than the NPs without HA coating. The high magnetic relaxivity of HA-SPION coupled with enhanced uptake enabled magnetic resonance imaging of cancer cells. Furthermore, doxorubicin (DOX) was attached onto the nanoparticles through an acid responsive linker. While HA-SPION was not toxic to cells, DOX-HA-SPION was much more potent than free DOX to kill not only drug-sensitive but also multi-drug-resistant cancer cells. This was attributed to differential uptake mechanisms and cellular distributions of free DOX and DOX-HA-SPION in cancer cells.
Collapse
Affiliation(s)
- Mohammad H. El-Dakdouki
- Department of Chemistry, Chemistry Building, Room 426, 578 South Shaw Lane, Michigan State University, East Lansing, Michigan 48824, United States
| | - David C. Zhu
- Departments of Radiology and Psychology, Michigan State University, East Lansing, Michigan 48824, United States
- Biomedical Imaging Research Center, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kheireddine El-Boubbou
- Department of Chemistry, Chemistry Building, Room 426, 578 South Shaw Lane, Michigan State University, East Lansing, Michigan 48824, United States
| | - Medha Kamat
- Department of Chemistry, Chemistry Building, Room 426, 578 South Shaw Lane, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jianjun Chen
- College of Pharmacy, University of Tennessee Health Science Center, 847 Monroe Avenue, University of Tennessee, Memphis, Tennessee 38163, United States
| | - Wei Li
- College of Pharmacy, University of Tennessee Health Science Center, 847 Monroe Avenue, University of Tennessee, Memphis, Tennessee 38163, United States
| | - Xuefei Huang
- Department of Chemistry, Chemistry Building, Room 426, 578 South Shaw Lane, Michigan State University, East Lansing, Michigan 48824, United States
- Biomedical Imaging Research Center, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
49
|
Miletti-González KE, Murphy K, Kumaran MN, Ravindranath AK, Wernyj RP, Kaur S, Miles GD, Lim E, Chan R, Chekmareva M, Heller DS, Foran D, Chen W, Reiss M, Bandera EV, Scotto K, Rodríguez-Rodríguez L. Identification of function for CD44 intracytoplasmic domain (CD44-ICD): modulation of matrix metalloproteinase 9 (MMP-9) transcription via novel promoter response element. J Biol Chem 2012; 287:18995-9007. [PMID: 22433859 DOI: 10.1074/jbc.m111.318774] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
CD44 is a multifunctional cell receptor that conveys a cancer phenotype, regulates macrophage inflammatory gene expression and vascular gene activation in proatherogenic environments, and is also a marker of many cancer stem cells. CD44 undergoes sequential proteolytic cleavages that produce an intracytoplasmic domain called CD44-ICD. However, the role of CD44-ICD in cell function is unknown. We take a major step toward the elucidation of the CD44-ICD function by using a CD44-ICD-specific antibody, a modification of a ChIP assay to detect small molecules, and extensive computational analysis. We show that CD44-ICD translocates into the nucleus, where it then binds to a novel DNA consensus sequence in the promoter region of the MMP-9 gene to regulate its expression. We also show that the expression of many other genes that contain this novel response element in their promoters is up- or down-regulated by CD44-ICD. Furthermore, hypoxia-inducible factor-1α (Hif1α)-responsive genes also have the CD44-ICD consensus sequence and respond to CD44-ICD induction under normoxic conditions and therefore independent of Hif1α expression. Additionally, CD44-ICD early responsive genes encode for critical enzymes in the glycolytic pathway, revealing how CD44 could be a gatekeeper of the Warburg effect (aerobic glycolysis) in cancer cells and possibly cancer stem cells. The link of CD44 to metabolism is novel and opens a new area of research not previously considered, particularly in the study of obesity and cancer. In summary, our results finally give a function to the CD44-ICD and will accelerate the study of the regulation of many CD44-dependent genes.
Collapse
Affiliation(s)
- Karl E Miletti-González
- Department of Obstetrics and Gynecology and Reproductive Sciences, Division of Gynecologic Oncology, University of Medicine and Dentistry of New Jersey/Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Soluble CD44 interacts with intermediate filament protein vimentin on endothelial cell surface. PLoS One 2011; 6:e29305. [PMID: 22216242 PMCID: PMC3244446 DOI: 10.1371/journal.pone.0029305] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 11/24/2011] [Indexed: 01/29/2023] Open
Abstract
CD44 is a cell surface glycoprotein that functions as hyaluronan receptor. Mouse and human serum contain substantial amounts of soluble CD44, generated either by shedding or alternative splicing. During inflammation and in cancer patients serum levels of soluble CD44 are significantly increased. Experimentally, soluble CD44 overexpression blocks cancer cell adhesion to HA. We have previously found that recombinant CD44 hyaluronan binding domain (CD44HABD) and its non-HA-binding mutant inhibited tumor xenograft growth, angiogenesis, and endothelial cell proliferation. These data suggested an additional target other than HA for CD44HABD. By using non-HA-binding CD44HABD Arg41Ala, Arg78Ser, and Tyr79Ser-triple mutant (CD443MUT) we have identified intermediate filament protein vimentin as a novel interaction partner of CD44. We found that vimentin is expressed on the cell surface of human umbilical vein endothelial cells (HUVEC). Endogenous CD44 and vimentin coprecipitate from HUVECs, and when overexpressed in vimentin-negative MCF-7 cells. By using deletion mutants, we found that CD44HABD and CD443MUT bind vimentin N-terminal head domain. CD443MUT binds vimentin in solution with a Kd in range of 12–37 nM, and immobilised vimentin with Kd of 74 nM. CD443MUT binds to HUVEC and recombinant vimentin displaces CD443MUT from its binding sites. CD44HABD and CD443MUT were internalized by wild-type endothelial cells, but not by lung endothelial cells isolated from vimentin knock-out mice. Together, these data suggest that vimentin provides a specific binding site for soluble CD44 on endothelial cells.
Collapse
|