1
|
Böhringer AC, Sievers CC, Burghaus M, Merzendorfer H. A G-protein coupled receptor is involved in the DUOX pathway in Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 180:104306. [PMID: 40158639 DOI: 10.1016/j.ibmb.2025.104306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/27/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
Activation of the dual oxidase (DUOX) pathway is an important intestinal defense mechanism against enteric infection triggering the formation of radical oxygen species by stimulating DUOX enzyme activity and/or gene expression. In insects, several studies have suggested that uracil released by pathogenic bacteria functions as a major trigger molecule for the activation of DUOX, which leads to the formation of antimicrobial hypochlorous acid (HOCl). While the recognition of pathogen-associated molecular patterns of microbes by pattern recognition receptors is well understood, the detection of uracil is still elusive. It has been postulated that a G-protein coupled receptor (GPCR) binds the pyrimidine uracil, which activates PLCβ signalling and further downstream events. So far, no pyrimidinergic receptor has been identified in insects, particularly none that binds uracil nucleotides or sugar derivatives. To identify potential candidates for insect pyrimidine receptors, we used a human P2Y4 receptor as a template to screen the Tribolium castaneum reference proteome. Four promising receptor candidates were identified, of which two were analyzed using RNA interference to determine their influence on uracil-induced TcDUOX expression, HOCl formation and development in control larvae and larvae that were challenged with the enteric pathogen Bacillus thuringiensis. Silencing TcGPCR41 resulted in a loss of uracil-induced TcDUOX expression and HOCl formation. Furthermore, the development of challenged larvae was affected in a manner like that observed in a TcDUOX knockdown. We conclude that the identified receptor may play a role in the uracil-dependent activation of the DUOX-pathways.
Collapse
Affiliation(s)
| | | | - Maximilian Burghaus
- University of Siegen, Department of Chemistry-Biology, 57068, Siegen, Germany
| | - Hans Merzendorfer
- University of Siegen, Department of Chemistry-Biology, 57068, Siegen, Germany.
| |
Collapse
|
2
|
Ji Y, Gao B, Zhao D, Wang Y, Zhang L, Wu H, Xie Y, Shi Q, Guo W. Involvement of Sep38β in the Insecticidal Activity of Bacillus thuringiensis against Beet Armyworm, Spodoptera exigua (Lepidoptera). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2321-2333. [PMID: 38206329 DOI: 10.1021/acs.jafc.3c06667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The p38 mitogen-activated protein kinases (MAPKs) are associated with insect immunity, tissue repair, and the insecticidal activity of Bacillus thuringiensis (Bt). Here, a p38 MAPK family gene (Sep38β) was identified from Spodoptera exigua. Among the developmental stages, the transcription level of Sep38β was the highest in egg, followed by that in prepupa and pupa. Sep38β expression peaked in Malpighian tubules and the hemolymph of fifth instar larvae. Knockdown of Sep38β or injection of SB203580 (a p38 MAPK inhibitor) significantly downregulated the SeDUOX expression and reactive oxygen species (ROS) level in the midgut, accounting for deterioration of the midgut to scavenge pathogens and enhancement of Bt insecticidal activity. In conclusion, all the results demonstrate that Sep38β regulates the immune-related ROS level in the insect midgut, which suppresses the insecticidal activity of Bt against S. exigua by 17-22%. Our study highlights that Sep38β is essential for insect immunity and the insecticidal activity of Bt to S. exigua and is a potential target for pest control.
Collapse
Affiliation(s)
- Yujie Ji
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bo Gao
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dan Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Yao Wang
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lu Zhang
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Han Wu
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yifan Xie
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qiuyu Shi
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Guo
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
3
|
Regulators and signalling in insect antimicrobial innate immunity: Functional molecules and cellular pathways. Cell Signal 2021; 83:110003. [PMID: 33836260 DOI: 10.1016/j.cellsig.2021.110003] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/29/2022]
Abstract
Insects possess an immune system that protects them from attacks by various pathogenic microorganisms that would otherwise threaten their survival. Immune mechanisms may deal directly with the pathogens by eliminating them from the host organism or disarm them by suppressing the synthesis of toxins and virulence factors that promote the invasion and destructive action of the intruder within the host. Insects have been established as outstanding models for studying immune system regulation because innate immunity can be explored as an integrated system at the level of the whole organism. Innate immunity in insects consists of basal immunity that controls the constitutive synthesis of effector molecules such as antimicrobial peptides, and inducible immunity that is activated after detection of a microbe or its product(s). Activation and coordination of innate immune defenses in insects involve evolutionary conserved immune factors. Previous research in insects has led to the identification and characterization of distinct immune signalling pathways that modulate the response to microbial infections. This work has not only advanced the field of insect immunology, but it has also rekindled interest in the innate immune system of mammals. Here we review the current knowledge on key molecular components of insect immunity and discuss the opportunities they present for confronting infectious diseases in humans.
Collapse
|
4
|
Zhang J, Tracy C, Pasare C, Zeng J, Krämer H. Hypersensitivity of Vps33B mutant flies to non-pathogenic infections is dictated by aberrant activation of p38b MAP kinase. Traffic 2020; 21:578-589. [PMID: 32677257 DOI: 10.1111/tra.12756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 11/29/2022]
Abstract
Loss of the arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome-linked Vps33B protein results in exaggerated inflammatory responses upon activation of receptors of the innate immune system in both vertebrates and flies. However, little is known about the signaling elements downstream of these receptors that are critical for the hypersensitivity of Vps33B mutants. Here, we show that p38b MAP kinase contributes to the enhanced inflammatory responses in flies lacking Vps33B. Loss of p38b mitogen-activated protein kinase (MAPK) reduces enhanced inflammatory responses and prolongs the survival of infected Vps33B deficient flies. The function of p38 MAPK is not limited to its proinflammatory effects downstream of the PGRP-LC receptor as p38 also modulates endosomal trafficking of PGRP-LC and phagocytosis of bacteria. Expression of constitutively active p38b MAPK, but not dominant negative p38b MAPK enhances accumulation of endocytosed PGRP-LC receptors or phagocytosed bacteria within cells. Moreover, p38 MAPK is required for induction of macropinocytosis, an alternate pathway for the downregulation of immune receptors. Together, our data indicate that p38 MAPK activates multiple pathways that can contribute to the dysregulation of innate immune signaling in ARC syndrome.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, USA.,Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Charles Tracy
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Chandrashekhar Pasare
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Jinsheng Zeng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Helmut Krämer
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, USA.,Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
5
|
Storey AJ, Hardman RE, Byrum SD, Mackintosh SG, Edmondson RD, Wahls WP, Tackett AJ, Lewis JA. Accurate and Sensitive Quantitation of the Dynamic Heat Shock Proteome Using Tandem Mass Tags. J Proteome Res 2020; 19:1183-1195. [PMID: 32027144 DOI: 10.1021/acs.jproteome.9b00704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cells respond to environmental perturbations and insults through modulating protein abundance and function. However, the majority of studies have focused on changes in RNA abundance because quantitative transcriptomics has historically been more facile than quantitative proteomics. Modern Orbitrap mass spectrometers now provide sensitive and deep proteome coverage, allowing direct, global quantification of not only protein abundance but also post-translational modifications (PTMs) that regulate protein activity. We implemented and validated using the well-characterized heat shock response of budding yeast, a tandem mass tagging (TMT), triple-stage mass spectrometry (MS3) strategy to measure global changes in the proteome during the yeast heat shock response over nine time points. We report that basic-pH, ultra-high performance liquid chromatography (UPLC) fractionation of tryptic peptides yields superfractions of minimal redundancy, a crucial requirement for deep coverage and quantification by subsequent LC-MS3. We quantified 2275 proteins across three biological replicates and found that differential expression peaked near 90 min following heat shock (with 868 differentially expressed proteins at 5% false discovery rate). The sensitivity of the approach also allowed us to detect changes in the relative abundance of ubiquitination and phosphorylation PTMs over time. Remarkably, relative quantification of post-translationally modified peptides revealed striking evidence of regulation of the heat shock response by protein PTMs. These data demonstrate that the high precision of TMT-MS3 enables peptide-level quantification of samples, which can reveal important regulation of protein abundance and regulatory PTMs under various experimental conditions.
Collapse
Affiliation(s)
- Aaron J Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Rebecca E Hardman
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, Arkansas 72701, United States.,Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Rick D Edmondson
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Wayne P Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Jeffrey A Lewis
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
6
|
Tian Y, Wen H, Qi X, Zhang X, Li Y. Identification of mapk gene family in Lateolabrax maculatus and their expression profiles in response to hypoxia and salinity challenges. Gene 2019; 684:20-29. [DOI: 10.1016/j.gene.2018.10.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 10/28/2022]
|
7
|
Shabir U, Ali S, Magray AR, Ganai BA, Firdous P, Hassan T, Nazir R. Fish antimicrobial peptides (AMP's) as essential and promising molecular therapeutic agents: A review. Microb Pathog 2017; 114:50-56. [PMID: 29180291 DOI: 10.1016/j.micpath.2017.11.039] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/20/2017] [Accepted: 11/23/2017] [Indexed: 01/23/2023]
Abstract
Antimicrobial peptides (AMPs) are generally considered as an essential component of innate immunity, thereby providing the first line of defense against wide range of pathogens. In addition, they can also kill the pathogens which are generally resistant to number of antibiotics, thereby providing the avenues for the development of future therapeutic agents. Fishes are constantly challenged by variety of pathogens which not only shows detrimental effect on their health but also increases risk of becoming resistant to conventional antibiotics. As fishes rely more on innate immunity, AMPs can serve as a potential defensive weapons in fishes for combating emerging devastating diseases. Generally, AMPs show multidimensional properties like rapid diffusion to the site of infection, recruitment of other immune cells to infected tissues and vigorous potential to rapidly neutralize broad range of pathogens (bacterial, fungal and viral). AMPs also exhibit diverse biological effect like endotoxin neutralization, immunomodulation and induction of angiogenesis in mammals. Due to these properties AMPs have become one of the most promising therapeutic agents to be studied. Till date, many AMPs have been isolated from the fishes but not fully characterized at molecular level. This review provides an overview of the structures, functions, and putative mechanisms of major families of fish AMPs. Further, we also highlighted how fish AMPs can be used as a novel therapeutic tool which is the theme of future research in drug development.
Collapse
Affiliation(s)
- Uzma Shabir
- Centre of Research for Development, University of Kashmir, Hazratbal, 190006, India
| | - Sajad Ali
- Centre of Research for Development, University of Kashmir, Hazratbal, 190006, India
| | - Aqib Rehman Magray
- Centre of Research for Development, University of Kashmir, Hazratbal, 190006, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Hazratbal, 190006, India.
| | - Parveena Firdous
- Centre of Research for Development, University of Kashmir, Hazratbal, 190006, India
| | - Toyeeba Hassan
- Centre of Research for Development, University of Kashmir, Hazratbal, 190006, India
| | - Ruqeya Nazir
- Centre of Research for Development, University of Kashmir, Hazratbal, 190006, India
| |
Collapse
|
8
|
Park SY, Choi J. Molecular Characterization and Expression Analysis of P38 MAPK Gene and Protein in Aquatic Midge, Chironomus riparius (Diptera: Chironomidae), Exposed to Environmental Contaminants. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 72:428-438. [PMID: 28144697 DOI: 10.1007/s00244-017-0366-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/12/2017] [Indexed: 06/06/2023]
Abstract
P38 Mitogen-activated protein kinase (MAPK), an important signaling protein involved in various cellular processes, including stress responses, has been well characterized in model organisms. P38 has been identified in a number of insects, including the genus Drosophila; however, its homologue in Chironomus riparius has not yet been identified. In this study, we identified and characterized p38 MAPK (Crp38) gene in C. riparius using a transcriptome database that was previously generated 454 GS-FLX pyrosequencing. Comparative and phylogenetic analyses were performed using the p38 homologue of other species, such as Drosophila melanogaster, Aedes aegypti, Bombyx mori, Caenorhabditis elegans, Homo sapiens, etc. Furthermore, to test its potential as a biomarker of environmental contamination, Crp38 gene expression was analyzed upon exposure to nonylphenol (NP), silver nanoparticles (AgNPs), and cadmium (Cd). Crp38 gene expression was up- or down-regulated depending on the concentration and exposure duration of chemicals. These results show the role of Crp38 gene in defense against environmental stresses, as well as its potential use as a biomarker for various environmental pollutants. We further synthesized p38 antibody based on the predicted amino acid sequence deduced from Crp38 cDNA and, using this customized antibody, examined p38 protein expression in Cd exposed C. riparius. Although transcriptional alteration was not translated to the protein level, this result showed the possible application of a protein level functional study using cDNA sequence information from next-generation sequencing database in nonmodel organisms.
Collapse
Affiliation(s)
- Sun-Young Park
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, 02504, Republic of Korea
- Risk Assessment Division, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, 02504, Republic of Korea.
| |
Collapse
|
9
|
Hayakawa M, Hayakawa H, Petrova T, Ritprajak P, Sutavani RV, Jiménez-Andrade GY, Sano Y, Choo MK, Seavitt J, Venigalla RKC, Otsu K, Georgopoulos K, Arthur JSC, Park JM. Loss of Functionally Redundant p38 Isoforms in T Cells Enhances Regulatory T Cell Induction. J Biol Chem 2016; 292:1762-1772. [PMID: 28011639 PMCID: PMC5290950 DOI: 10.1074/jbc.m116.764548] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/01/2016] [Indexed: 12/16/2022] Open
Abstract
The evolutionarily conserved protein kinase p38 mediates innate resistance to environmental stress and microbial infection. Four p38 isoforms exist in mammals and may have been co-opted for new roles in adaptive immunity. Murine T cells deficient in p38α, the ubiquitously expressed p38 isoform, showed no readily apparent cell-autonomous defects while expressing elevated amounts of another isoform, p38β. Mice with T cells simultaneously lacking p38α and p38β displayed lymphoid atrophy and elevated Foxp3+ regulatory T cell frequencies. Double deficiency of p38α and p38β in naïve CD4+ T cells resulted in an attenuation of MAPK-activated protein kinase (MK)-dependent mTOR signaling after T cell receptor engagement, and enhanced their differentiation into regulatory T cells under appropriate inducing conditions. Pharmacological inhibition of the p38-MK-mTOR signaling module produced similar effects, revealing potential for therapeutic applications.
Collapse
Affiliation(s)
- Morisada Hayakawa
- From the Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129; the Department of Biochemistry, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Hiroko Hayakawa
- From the Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129; the Department of Biochemistry, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Tsvetana Petrova
- the Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, Dundee DD1 5EH, United Kingdom
| | - Patcharee Ritprajak
- From the Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129; the Department of Microbiology and Immunology and Research Unit of Oral Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ruhcha V Sutavani
- the Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, Dundee DD1 5EH, United Kingdom
| | - Guillermina Yanek Jiménez-Andrade
- From the Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Yasuyo Sano
- From the Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Min-Kyung Choo
- From the Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
| | - John Seavitt
- From the Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Ram K C Venigalla
- MRC Protein Phosphorylation Unit, School of Life Sciences, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Kinya Otsu
- the Cardiovascular Division, King's College London, London SE5 9NU, United Kingdom
| | - Katia Georgopoulos
- From the Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
| | - J Simon C Arthur
- the Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, Dundee DD1 5EH, United Kingdom
| | - Jin Mo Park
- From the Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129.
| |
Collapse
|
10
|
Riedl CAL, Oster S, Busto M, Mackay TFC, Sokolowski MB. Natural variability in Drosophila larval and pupal NaCl tolerance. JOURNAL OF INSECT PHYSIOLOGY 2016; 88:15-23. [PMID: 26874056 PMCID: PMC4811728 DOI: 10.1016/j.jinsphys.2016.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 02/07/2016] [Accepted: 02/08/2016] [Indexed: 06/05/2023]
Abstract
The regulation of NaCl is essential for the maintenance of cellular tonicity and functionality, and excessive salt exposure has many adverse effects. The fruit fly, Drosophila melanogaster, is a good osmoregulator and some strains can survive on media with very low or high NaCl content. Previous analyses of mutant alleles have implicated various stress signaling cascades in NaCl sensitivity or tolerance; however, the genes influencing natural variability of NaCl tolerance remain for the most part unknown. Here, we use two approaches to investigate natural variation in D. melanogaster NaCl tolerance. We describe four D. melanogaster lines that were selected for different degrees of NaCl tolerance, and present data on their survival, development, and pupation position when raised on varying NaCl concentrations. After finding evidence for natural variation in salt tolerance, we present the results of Quantitative Trait Loci (QTL) mapping of natural variation in larval and pupal NaCl tolerance, and identify different genomic regions associated with NaCl tolerance during larval and pupal development.
Collapse
Affiliation(s)
- Craig A L Riedl
- Biology Dept., University of Toronto at Mississauga, 3359 Mississauga Rd., Mississauga, Ont. L5C 1J6, Canada
| | - Sara Oster
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Macarena Busto
- Biology Dept., University of Toronto at Mississauga, 3359 Mississauga Rd., Mississauga, Ont. L5C 1J6, Canada
| | - Trudy F C Mackay
- Department of Biological Sciences, Box 7614, North Carolina State University, NC 27695, USA
| | - Marla B Sokolowski
- Biology Dept., University of Toronto at Mississauga, 3359 Mississauga Rd., Mississauga, Ont. L5C 1J6, Canada; Department of Ecology and Evolutionary Biology, 25 Willcocks St., University of Toronto, Toronto, Ontario M5S 3B2, Canada.
| |
Collapse
|
11
|
Gocek E, Studzinski GP. The Potential of Vitamin D-Regulated Intracellular Signaling Pathways as Targets for Myeloid Leukemia Therapy. J Clin Med 2015; 4:504-34. [PMID: 26239344 PMCID: PMC4470153 DOI: 10.3390/jcm4040504] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 01/06/2015] [Accepted: 03/06/2015] [Indexed: 02/06/2023] Open
Abstract
The current standard regimens for the treatment of acute myeloid leukemia (AML) are curative in less than half of patients; therefore, there is a great need for innovative new approaches to this problem. One approach is to target new treatments to the pathways that are instrumental to cell growth and survival with drugs that are less harmful to normal cells than to neoplastic cells. In this review, we focus on the MAPK family of signaling pathways and those that are known to, or potentially can, interact with MAPKs, such as PI3K/AKT/FOXO and JAK/STAT. We exemplify the recent studies in this field with specific relevance to vitamin D and its derivatives, since they have featured prominently in recent scientific literature as having anti-cancer properties. Since microRNAs also are known to be regulated by activated vitamin D, this is also briefly discussed here, as are the implications of the emerging acquisition of transcriptosome data and potentiation of the biological effects of vitamin D by other compounds. While there are ongoing clinical trials of various compounds that affect signaling pathways, more studies are needed to establish the clinical utility of vitamin D in the treatment of cancer.
Collapse
Affiliation(s)
- Elzbieta Gocek
- Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland.
| | - George P Studzinski
- Department of Pathology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Ave., Newark, NJ 17101, USA.
| |
Collapse
|
12
|
Chakrabarti S, Poidevin M, Lemaitre B. The Drosophila MAPK p38c regulates oxidative stress and lipid homeostasis in the intestine. PLoS Genet 2014; 10:e1004659. [PMID: 25254641 PMCID: PMC4177744 DOI: 10.1371/journal.pgen.1004659] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 08/11/2014] [Indexed: 01/09/2023] Open
Abstract
The p38 mitogen-activated protein (MAP) kinase signaling cassette has been implicated in stress and immunity in evolutionarily diverse species. In response to a wide variety of physical, chemical and biological stresses p38 kinases phosphorylate various substrates, transcription factors of the ATF family and other protein kinases, regulating cellular adaptation to stress. The Drosophila genome encodes three p38 kinases named p38a, p38b and p38c. In this study, we have analyzed the role of p38c in the Drosophila intestine. The p38c gene is expressed in the midgut and upregulated upon intestinal infection. We showed that p38c mutant flies are more resistant to infection with the lethal pathogen Pseudomonas entomophila but are more susceptible to the non-pathogenic bacterium Erwinia carotovora 15. This phenotype was linked to a lower production of Reactive Oxygen Species (ROS) in the gut of p38c mutants, whereby the transcription of the ROS-producing enzyme Duox is reduced in p38c mutant flies. Our genetic analysis shows that p38c functions in a pathway with Mekk1 and Mkk3 to induce the phosphorylation of Atf-2, a transcription factor that controls Duox expression. Interestingly, p38c deficient flies accumulate lipids in the intestine while expressing higher levels of antimicrobial peptide and metabolic genes. The role of p38c in lipid metabolism is mediated by the Atf3 transcription factor. This observation suggests that p38c and Atf3 function in a common pathway in the intestine to regulate lipid metabolism and immune homeostasis. Collectively, our study demonstrates that p38c plays a central role in the intestine of Drosophila. It also reveals that many roles initially attributed to p38a are in fact mediated by p38c. The p38 mitogen-activated protein (MAP) kinase is a signaling pathway that is involved in both stress and immunity in various species from yeast to human. p38 kinases regulate transcription factors of the ATF family and other protein kinases that then induce cellular adaptation to stress to a wide variety of physical, chemical and biological stresses. The Drosophila genome encodes three p38 kinases named p38a, p38b and p38c. In this study, we have analyzed the role of p38c in the Drosophila intestine. The p38c gene is expressed in the digestive tract and up-regulated upon intestinal infection. We observed a lower production of Reactive Oxygen Species (ROS) in the gut of p38c mutants upon bacterial infection. Consistent with this observation, the transcription of the Duox, a gene encoding an enzyme that produces ROS, is reduced in p38c mutant flies. Our analysis shows that p38c induces the phosphorylation of Atf-2, a transcription factor that controls Duox expression. Interestingly, our study also shows that p38c and Atf3 function in a common pathway in the intestine to regulate lipid metabolism and immune homeostasis. Collectively, our study demonstrates that p38c plays a central role in the intestine of Drosophila.
Collapse
Affiliation(s)
- Sveta Chakrabarti
- Global Health Institute, Station 19, EPFL, Lausanne, Switzerland
- * E-mail: (SC); (BL)
| | - Mickaël Poidevin
- Centre de Génétique Moléculaire (CGM), CNRS, Gif-sur-Yvette, France
| | - Bruno Lemaitre
- Global Health Institute, Station 19, EPFL, Lausanne, Switzerland
- * E-mail: (SC); (BL)
| |
Collapse
|
13
|
Dusik V, Senthilan PR, Mentzel B, Hartlieb H, Wülbeck C, Yoshii T, Raabe T, Helfrich-Förster C. The MAP kinase p38 is part of Drosophila melanogaster's circadian clock. PLoS Genet 2014; 10:e1004565. [PMID: 25144774 PMCID: PMC4140665 DOI: 10.1371/journal.pgen.1004565] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 06/30/2014] [Indexed: 11/18/2022] Open
Abstract
All organisms have to adapt to acute as well as to regularly occurring changes in the environment. To deal with these major challenges organisms evolved two fundamental mechanisms: the p38 mitogen-activated protein kinase (MAPK) pathway, a major stress pathway for signaling stressful events, and circadian clocks to prepare for the daily environmental changes. Both systems respond sensitively to light. Recent studies in vertebrates and fungi indicate that p38 is involved in light-signaling to the circadian clock providing an interesting link between stress-induced and regularly rhythmic adaptations of animals to the environment, but the molecular and cellular mechanisms remained largely unknown. Here, we demonstrate by immunocytochemical means that p38 is expressed in Drosophila melanogaster's clock neurons and that it is activated in a clock-dependent manner. Surprisingly, we found that p38 is most active under darkness and, besides its circadian activation, additionally gets inactivated by light. Moreover, locomotor activity recordings revealed that p38 is essential for a wild-type timing of evening activity and for maintaining ∼ 24 h behavioral rhythms under constant darkness: flies with reduced p38 activity in clock neurons, delayed evening activity and lengthened the period of their free-running rhythms. Furthermore, nuclear translocation of the clock protein Period was significantly delayed on the expression of a dominant-negative form of p38b in Drosophila's most important clock neurons. Western Blots revealed that p38 affects the phosphorylation degree of Period, what is likely the reason for its effects on nuclear entry of Period. In vitro kinase assays confirmed our Western Blot results and point to p38 as a potential "clock kinase" phosphorylating Period. Taken together, our findings indicate that the p38 MAP Kinase is an integral component of the core circadian clock of Drosophila in addition to playing a role in stress-input pathways.
Collapse
Affiliation(s)
- Verena Dusik
- Neurobiology and Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Benjamin Mentzel
- Institute of Medical Radiation and Cell Research, University of Würzburg, Würzburg, Germany
| | - Heiko Hartlieb
- Neurobiology and Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Corinna Wülbeck
- Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Thomas Raabe
- Institute of Medical Radiation and Cell Research, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
14
|
Grossi V, Peserico A, Tezil T, Simone C. p38α MAPK pathway: a key factor in colorectal cancer therapy and chemoresistance. World J Gastroenterol 2014; 20:9744-9758. [PMID: 25110412 PMCID: PMC4123363 DOI: 10.3748/wjg.v20.i29.9744] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 03/13/2014] [Accepted: 05/19/2014] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) remains one of the most common malignancies in the world. Although surgical resection combined with adjuvant therapy is effective at the early stages of the disease, resistance to conventional therapies is frequently observed in advanced stages, where treatments become ineffective. Resistance to cisplatin, irinotecan and 5-fluorouracil chemotherapy has been shown to involve mitogen-activated protein kinase (MAPK) signaling and recent studies identified p38α MAPK as a mediator of resistance to various agents in CRC patients. Studies published in the last decade showed a dual role for the p38α pathway in mammals. Its role as a negative regulator of proliferation has been reported in both normal (including cardiomyocytes, hepatocytes, fibroblasts, hematopoietic and lung cells) and cancer cells (colon, prostate, breast, lung tumor cells). This function is mediated by the negative regulation of cell cycle progression and the transduction of some apoptotic stimuli. However, despite its anti-proliferative and tumor suppressor activity in some tissues, the p38α pathway may also acquire an oncogenic role involving cancer related-processes such as cell metabolism, invasion, inflammation and angiogenesis. In this review, we summarize current knowledge about the predominant role of the p38α MAPK pathway in CRC development and chemoresistance. In our view, this might help establish the therapeutic potential of the targeted manipulation of this pathway in clinical settings.
Collapse
|
15
|
Functional roles of p38 mitogen-activated protein kinase in macrophage-mediated inflammatory responses. Mediators Inflamm 2014; 2014:352371. [PMID: 24771982 PMCID: PMC3977509 DOI: 10.1155/2014/352371] [Citation(s) in RCA: 276] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 11/27/2013] [Accepted: 02/11/2014] [Indexed: 12/26/2022] Open
Abstract
Inflammation is a natural host defensive process that is largely regulated by macrophages during the innate immune response. Mitogen-activated protein kinases (MAPKs) are proline-directed serine and threonine protein kinases that regulate many physiological and pathophysiological cell responses. p38 MAPKs are key MAPKs involved in the production of inflammatory mediators, including tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2). p38 MAPK signaling plays an essential role in regulating cellular processes, especially inflammation. In this paper, we summarize the characteristics of p38 signaling in macrophage-mediated inflammation. In addition, we discuss the potential of using inhibitors targeting p38 expression in macrophages to treat inflammatory diseases.
Collapse
|
16
|
Independent pathways downstream of the Wnd/DLK MAPKKK regulate synaptic structure, axonal transport, and injury signaling. J Neurosci 2013; 33:12764-78. [PMID: 23904612 DOI: 10.1523/jneurosci.5160-12.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mitogen-activated protein (MAP) kinase signaling cascades orchestrate diverse cellular activities with common molecular players. To achieve specific cellular outcomes in response to specific signals, scaffolding proteins play an important role. Here we investigate the role of the scaffolding protein JNK interacting protein-1 (JIP1) in neuronal signaling by a conserved axonal MAP kinase kinase kinase, known as Wallenda (Wnd) in Drosophila and dual leucine kinase (DLK) in vertebrates and Caenorhabditis elegans. Recent studies in multiple model organisms suggest that Wnd/DLK regulates both regenerative and degenerative responses to axonal injury. Here we report a new role for Wnd in regulating synaptic structure during development, which implies that Wnd is also active in uninjured neurons. This synaptic role of Wnd can be functionally separated from the role of Wnd in axonal regeneration and injury signaling by the requirement for the JIP1 scaffold and the p38b MAP kinase. JIP1 mediates the synaptic function of Wnd via p38, which is not required for injury signaling or new axonal growth after injury. Our results indicate that Wnd regulates multiple independent pathways in Drosophila motoneurons and that JIP1 scaffolds a specific downstream cascade required for the organization of presynaptic microtubules during synaptic development.
Collapse
|
17
|
Schoborg T, Rickels R, Barrios J, Labrador M. Chromatin insulator bodies are nuclear structures that form in response to osmotic stress and cell death. ACTA ACUST UNITED AC 2013; 202:261-76. [PMID: 23878275 PMCID: PMC3718971 DOI: 10.1083/jcb.201304181] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Insulator bodies are novel nuclear stress foci that can be used as a proxy to monitor the chromatin-bound state of insulator proteins. Chromatin insulators assist in the formation of higher-order chromatin structures by mediating long-range contacts between distant genomic sites. It has been suggested that insulators accomplish this task by forming dense nuclear foci termed insulator bodies that result from the coalescence of multiple protein-bound insulators. However, these structures remain poorly understood, particularly the mechanisms triggering body formation and their role in nuclear function. In this paper, we show that insulator proteins undergo a dramatic and dynamic spatial reorganization into insulator bodies during osmostress and cell death in a high osmolarity glycerol–p38 mitogen-activated protein kinase–independent manner, leading to a large reduction in DNA-bound insulator proteins that rapidly repopulate chromatin as the bodies disassemble upon return to isotonicity. These bodies occupy distinct nuclear territories and contain a defined structural arrangement of insulator proteins. Our findings suggest insulator bodies are novel nuclear stress foci that can be used as a proxy to monitor the chromatin-bound state of insulator proteins and provide new insights into the effects of osmostress on nuclear and genome organization.
Collapse
Affiliation(s)
- Todd Schoborg
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | |
Collapse
|
18
|
McCarthy CB, Santini MS, Pimenta PFP, Diambra LA. First comparative transcriptomic analysis of wild adult male and female Lutzomyia longipalpis, vector of visceral leishmaniasis. PLoS One 2013; 8:e58645. [PMID: 23554910 PMCID: PMC3595279 DOI: 10.1371/journal.pone.0058645] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 02/05/2013] [Indexed: 01/08/2023] Open
Abstract
Leishmaniasis is a vector-borne disease with a complex epidemiology and ecology. Visceral leishmaniasis (VL) is its most severe clinical form as it results in death if not treated. In Latin America VL is caused by the protist parasite Leishmania infantum (syn. chagasi) and transmitted by Lutzomyia longipalpis. This phlebotomine sand fly is only found in the New World, from Mexico to Argentina. However, due to deforestation, migration and urbanisation, among others, VL in Latin America is undergoing an evident geographic expansion as well as dramatic changes in its transmission patterns. In this context, the first VL outbreak was recently reported in Argentina, which has already caused 7 deaths and 83 reported cases. Insect vector transcriptomic analyses enable the identification of molecules involved in the insect's biology and vector-parasite interaction. Previous studies on laboratory reared Lu. longipalpis have provided a descriptive repertoire of gene expression in the whole insect, midgut, salivary gland and male reproductive organs. Nevertheless, the study of wild specimens would contribute a unique insight into the development of novel bioinsecticides. Given the recent VL outbreak in Argentina and the compelling need to develop appropriate control strategies, this study focused on wild male and female Lu. longipalpis from an Argentine endemic (Posadas, Misiones) and a Brazilian non-endemic (Lapinha Cave, Minas Gerais) VL location. In this study, total RNA was extracted from the sand flies, submitted to sequence independent amplification and high-throughput pyrosequencing. This is the first time an unbiased and comprehensive transcriptomic approach has been used to analyse an infectious disease vector in its natural environment. Transcripts identified in the sand flies showed characteristic profiles which correlated with the environment of origin and with taxa previously identified in these same specimens. Among these, various genes represented putative targets for vector control via RNA interference (RNAi).
Collapse
Affiliation(s)
- Christina B McCarthy
- Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Florencio Varela, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
19
|
Drosophila heat shock response requires the JNK pathway and phosphorylation of mixed lineage kinase at a conserved serine-proline motif. PLoS One 2012; 7:e42369. [PMID: 22848763 PMCID: PMC3407086 DOI: 10.1371/journal.pone.0042369] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 07/06/2012] [Indexed: 12/21/2022] Open
Abstract
Defining context specific requirements for proteins and pathways is a major challenge in the study of signal transduction. For example, the stress-activated protein kinase (SAPK) pathways are comprised of families of closely related transducers that are activated in a variety of tissues and contexts during development and organismal homeostasis. Consequently, redundant and pleiotropic effects have hampered a complete understanding of the individual contributions of transducers in distinct contexts. Here, we report on the function of a context-specific regulatory phosphorylation site, PXSP, in the Drosophila mixed lineage kinase protein, Slpr, a mitogen-activated protein kinase kinase kinase (MAP3K) in the Jun Kinase (JNK) pathway. Genetic analysis of the function of non-phosphorylatable (PXAP) and phosphomimetic mutant (PXEP) Slpr transgenes in several distinct contexts revealed minimal effects in JNK-dependent tissue closure processes but differential requirements in heat stress response. In particular, PXAP expression resulted in sensitivity of adults to sustained heat shock, like p38 and JNK pathway mutants. In contrast, PXEP overexpression conferred some resistance. Indeed, phosphorylation of the PXSP motif is enriched under heat shock conditions and requires in part, the p38 kinases for the enrichment. These data suggest that coordination of signaling between p38 and Slpr serves to maintain JNK signaling during heat stress. In sum, we demonstrate a novel role for JNK signaling in the heat shock response in flies and identify a posttranslational modification on Slpr, at a conserved site among MAP3K mixed lineage kinase family members, which bolsters stress resistance with negligible effects on JNK-dependent developmental processes.
Collapse
|
20
|
Zhang L, Meng F, Li Y, Kang M, Guo X, Xu B. Molecular characterization and immunohistochemical localization of a mitogen-activated protein kinase, Accp38b, from Apis cerana cerana. BMB Rep 2012; 45:293-8. [DOI: 10.5483/bmbrep.2012.45.5.293] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
21
|
Abstract
The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen-host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial-host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis-host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed.
Collapse
Affiliation(s)
- Christina O Igboin
- Division of Oral Biology, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | | | | |
Collapse
|
22
|
A muscle-specific p38 MAPK/Mef2/MnSOD pathway regulates stress, motor function, and life span in Drosophila. Dev Cell 2011; 21:783-95. [PMID: 22014527 DOI: 10.1016/j.devcel.2011.09.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 07/06/2011] [Accepted: 09/09/2011] [Indexed: 12/30/2022]
Abstract
Molecular mechanisms that concordantly regulate stress, life span, and aging remain incompletely understood. Here, we demonstrate that in Drosophila, a p38 MAP kinase (p38K)/Mef2/MnSOD pathway is a coregulator of stress and life span. Hence, overexpression of p38K extends life span in a MnSOD-dependent manner, whereas inhibition of p38K causes early lethality and precipitates age-related motor dysfunction and stress sensitivity, that is rescued through muscle-restricted (but not neuronal) add-back of p38K. Additionally, mutations in p38K are associated with increased protein carbonylation and Nrf2-dependent transcription, while adversely affecting metabolic response to hypoxia. Mechanistically, p38K modulates expression of the mitochondrial MnSOD enzyme through the transcription factor Mef2, and predictably, perturbations in MnSOD modify p38K-dependent phenotypes. Thus, our results uncover a muscle-restricted p38K-Mef2-MnSOD signaling module that influences life span and stress, distinct from the insulin/JNK/FOXO pathway. We propose that potentiating p38K might be instrumental in restoring the mitochondrial detoxification machinery and combating stress-induced aging.
Collapse
|
23
|
Sekine Y, Takagahara S, Hatanaka R, Watanabe T, Oguchi H, Noguchi T, Naguro I, Kobayashi K, Tsunoda M, Funatsu T, Nomura H, Toyoda T, Matsuki N, Kuranaga E, Miura M, Takeda K, Ichijo H. p38 MAPKs regulate the expression of genes in the dopamine synthesis pathway through phosphorylation of NR4A nuclear receptors. J Cell Sci 2011; 124:3006-16. [DOI: 10.1242/jcs.085902] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Drosophila, the melanization reaction is an important defense mechanism against injury and invasion of microorganisms. Drosophila tyrosine hydroxylase (TH, also known as Pale) and dopa decarboxylase (Ddc), key enzymes in the dopamine synthesis pathway, underlie the melanin synthesis by providing the melanin precursors dopa and dopamine, respectively. It has been shown that expression of Drosophila TH and Ddc is induced in various physiological and pathological conditions, including bacterial challenge; however, the mechanism involved has not been fully elucidated. Here, we show that ectopic activation of p38 MAPK induces TH and Ddc expression, leading to upregulation of melanization in the Drosophila cuticle. This p38-dependent melanization was attenuated by knockdown of TH and Ddc, as well as by that of Drosophila HR38, a member of the NR4A family of nuclear receptors. In mammalian cells, p38 phosphorylated mammalian NR4As and Drosophila HR38 and potentiated these NR4As to transactivate a promoter containing NR4A-binding elements, with this transactivation being, at least in part, dependent on the phosphorylation. This suggests an evolutionarily conserved role for p38 MAPKs in the regulation of NR4As. Thus, p38-regulated gene induction through NR4As appears to function in the dopamine synthesis pathway and may be involved in immune and stress responses.
Collapse
Affiliation(s)
- Yusuke Sekine
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, Strategic Approach to Drug Discovery and Development in Pharmaceutical Sciences, Global Center of Excellence (GCOE) program, and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shuichi Takagahara
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, Strategic Approach to Drug Discovery and Development in Pharmaceutical Sciences, Global Center of Excellence (GCOE) program, and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryo Hatanaka
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, Strategic Approach to Drug Discovery and Development in Pharmaceutical Sciences, Global Center of Excellence (GCOE) program, and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takeshi Watanabe
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, Strategic Approach to Drug Discovery and Development in Pharmaceutical Sciences, Global Center of Excellence (GCOE) program, and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Haruka Oguchi
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, Strategic Approach to Drug Discovery and Development in Pharmaceutical Sciences, Global Center of Excellence (GCOE) program, and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takuya Noguchi
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, Strategic Approach to Drug Discovery and Development in Pharmaceutical Sciences, Global Center of Excellence (GCOE) program, and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Isao Naguro
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, Strategic Approach to Drug Discovery and Development in Pharmaceutical Sciences, Global Center of Excellence (GCOE) program, and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Makoto Tsunoda
- Department of Bioanalytical Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takashi Funatsu
- Department of Bioanalytical Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroshi Nomura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takeshi Toyoda
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Norio Matsuki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Erina Kuranaga
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Laboratory for Histogenetic Dynamics, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kohsuke Takeda
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, Strategic Approach to Drug Discovery and Development in Pharmaceutical Sciences, Global Center of Excellence (GCOE) program, and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, Strategic Approach to Drug Discovery and Development in Pharmaceutical Sciences, Global Center of Excellence (GCOE) program, and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
24
|
Seong KH, Li D, Shimizu H, Nakamura R, Ishii S. Inheritance of stress-induced, ATF-2-dependent epigenetic change. Cell 2011; 145:1049-61. [PMID: 21703449 DOI: 10.1016/j.cell.2011.05.029] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 03/16/2011] [Accepted: 05/23/2011] [Indexed: 11/17/2022]
Abstract
Atf1, the fission yeast homolog of activation transcription factor-2 (ATF-2), contributes to heterochromatin formation. However, the role of ATF-2 in chromatin assembly in higher organisms remains unknown. This study reveals that Drosophila ATF-2 (dATF-2) is required for heterochromatin assembly, whereas the stress-induced phosphorylation of dATF-2, via Mekk1-p38, disrupts heterochromatin. The dATF-2 protein colocalized with HP1, not only on heterochromatin but also at specific loci in euchromatin. Heat shock or osmotic stress induced phosphorylation of dATF-2 and resulted in its release from heterochromatin. This heterochromatic disruption was an epigenetic event that was transmitted to the next generation in a non-Mendelian fashion. When embryos were exposed to heat stress over multiple generations, the defective chromatin state was maintained over multiple successive generations, though it gradually returned to the normal state. The results suggest a mechanism by which the effects of stress are inherited epigenetically via the regulation of a tight chromatin structure.
Collapse
Affiliation(s)
- Ki-Hyeon Seong
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | |
Collapse
|
25
|
Moon AE, Walker AJ, Goodbourn S. Regulation of transcription of the Aedes albopictus cecropin A1 gene: A role for p38 mitogen-activated protein kinase. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:628-636. [PMID: 21501684 DOI: 10.1016/j.ibmb.2011.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/22/2011] [Accepted: 04/01/2011] [Indexed: 05/30/2023]
Abstract
Regulation of the Aedes albopictus cecropin A1 promoter was studied to provide insight into the transcriptional control of this antimicrobial peptide (AMP) gene in mosquitoes. Gene expression levels of cecropin A1 increased in A. albopictus C6/36 cells in response to heat-killed Escherichiacoli. Reporter gene assays incorporating -757 to +32 of the A. albopictus cecropin A1 promoter revealed that E. coli could induce expression in these cells with more pronounced expression than that seen with lipopolysaccharide (LPS). Analysis of deletion constructs demonstrated that the 5' boundary of the regulatory region for the activation of this AMP was located between -173 and -64. Western blotting with anti-phospho-specific antibodies demonstrated that p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK) were activated by LPS, whereas only p38 MAPK was activated by E. coli. Moreover, pharmacological experiments revealed that pre-incubation of cells with the p38 MAPK inhibitor SB203580 resulted in a striking activation of the cecropin A1 promoter following immune challenge, demonstrating that p38 MAPK negatively regulates cecropin A1 promoter activity. Finally the region required for the negative regulation by p38 MAPK was identified as being between -173 and -64. This report is the first to show involvement of the p38 MAPK pathway in the negative regulation of AMP production in a mosquito.
Collapse
Affiliation(s)
- Alice E Moon
- School of Life Sciences, Kingston University, Kingston upon Thames, Surrey KT1 2EE, UK
| | | | | |
Collapse
|
26
|
Stress Tolerance of Bed Bugs: A Review of Factors That Cause Trauma to Cimex lectularius and C. Hemipterus. INSECTS 2011; 2:151-72. [PMID: 26467619 PMCID: PMC4553455 DOI: 10.3390/insects2020151] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 03/26/2011] [Accepted: 04/20/2011] [Indexed: 11/16/2022]
Abstract
Recent emergence of bed bugs (Cimex spp.) has prompted a significant expansion of research devoted to this pest. The ability to survive and recover from stress has significant implications on the distribution and survival of insects, and bed bugs are no exception. Research on bed bug stress tolerance has shown considerable progress and necessitates a review on this topic. Bed bugs have an extraordinary ability to resist dehydration between bloodmeals, and this represents a critical factor allowing their prolonged survival when no host is available. High relative humidities are detrimental to bed bugs, leading to reduced survival in comparison to those held at lower relative humidities. Continual exposure of bed bugs, eggs and mobile stages, to temperatures below freezing and short term exposure (=1 h) to temperatures below -16 to -18 °C results in mortality. The upper thermal limit for short term exposure of eggs, nymphs and adults is between 40-45 °C for the common (Cimex lectularius) and tropical (C. hemipterus) bed bugs. Long-term exposure to temperatures above 35 °C results in significant reduction in survival of mobile bed bugs. Eggs for C. lectularius and C. hemipterus are no longer viable when held below 10 °C or above 37 °C throughout embryogenesis. Blood feeding, although necessary for survival and reproduction, is discussed as a stress due to thermal and osmotic fluctuations that result from ingesting a warm bloodmeal from a vertebrate host. Cold, heat, water stress and blood feeding prompted the expression of heat shock proteins (Hsps). Pesticide application is a common human-induced stress for urban pests, and recent studies have documented pesticide resistance in many bed bug populations. High levels of traumatic insemination (mating) of bed bugs has been linked to reduced survival and fecundity along with possibly exposing individuals to microbial infections after cuticular penetration by the paramere (=male reproductive organ), thus represents a form of sexual stress. Additionally, less common stress types such as microbial infections that have been documented in bed bugs will be discussed. Overall, this review provides a current update of research related to bed bug stress tolerance and how their ability to resist stressful conditions has lead to their expansion and proliferation.
Collapse
|
27
|
A non-redundant role for Drosophila Mkk4 and hemipterous/Mkk7 in TAK1-mediated activation of JNK. PLoS One 2009; 4:e7709. [PMID: 19888449 PMCID: PMC2766050 DOI: 10.1371/journal.pone.0007709] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 10/07/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The JNK pathway is a mitogen-activated protein (MAP) kinase pathway involved in the regulation of numerous physiological processes during development and in response to environmental stress. JNK activity is controlled by two MAPK kinases (MAPKK), Mkk4 and Mkk7. Mkk7 plays a prominent role upon Tumor Necrosis Factor (TNF) stimulation. Eiger, the unique TNF-superfamily ligand in Drosophila, potently activates JNK signaling through the activation of the MAPKKK Tak1. METHODOLOGY/PRINCIPAL FINDINGS In a dominant suppressor screen for new components of the Eiger/JNK-pathway in Drosophila, we have identified an allelic series of the Mkk4 gene. Our genetic and biochemical results demonstrate that Mkk4 is dispensable for normal development and host resistance to systemic bacterial infection but plays a non-redundant role as a MAPKK acting in parallel to Hemipterous/Mkk7 in dTAK1-mediated JNK activation upon Eiger and Imd pathway activation. CONCLUSIONS/SIGNIFICANCE In contrast to mammals, it seems that in Drosophila both MAPKKs, Hep/Mkk7 and Mkk4, are required to induce JNK upon TNF or pro-inflammatory stimulation.
Collapse
|
28
|
Coordination of multiple dual oxidase-regulatory pathways in responses to commensal and infectious microbes in drosophila gut. Nat Immunol 2009; 10:949-57. [PMID: 19668222 DOI: 10.1038/ni.1765] [Citation(s) in RCA: 250] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 06/08/2009] [Indexed: 01/23/2023]
Abstract
All metazoan guts are in permanent contact with the microbial realm. However, understanding of the exact mechanisms by which the strength of gut immune responses is regulated to achieve gut-microbe mutualism is far from complete. Here we identify a signaling network composed of complex positive and negative mechanisms that controlled the expression and activity of dual oxidase (DUOX), which 'fine tuned' the production of microbicidal reactive oxygen species depending on whether the gut encountered infectious or commensal microbes. Genetic analyses demonstrated that negative and positive regulation of DUOX was required for normal host survival in response to colonization with commensal and infectious microbes, respectively. Thus, the coordinated regulation of DUOX enables the host to achieve gut-microbe homeostasis by efficiently combating infection while tolerating commensal microbes.
Collapse
|
29
|
Marmaras VJ, Lampropoulou M. Regulators and signalling in insect haemocyte immunity. Cell Signal 2009; 21:186-95. [DOI: 10.1016/j.cellsig.2008.08.014] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 08/24/2008] [Indexed: 02/06/2023]
|
30
|
Lee KS, Choi JS, Hong SY, Son TH, Yu K. Mobile phone electromagnetic radiation activates MAPK signaling and regulates viability inDrosophila. Bioelectromagnetics 2008; 29:371-9. [DOI: 10.1002/bem.20395] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Silva EA, Lee BJ, Caceres LS, Renouf D, Vilay BR, Yu O, Bradley JA, Campbell SD. A novel strategy for identifying mutations that sensitize Drosophila eye development to caffeine and hydroxyurea. Genome 2007; 49:1416-27. [PMID: 17426757 DOI: 10.1139/g06-098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This report describes a novel strategy for isolating Drosophila mutants with conditional eye phenotypes that should be generally applicable for identifying genes required for cellular responses to specific drugs. To test the strategy, we screened 3 of the 5 major chromosome arms for hydroxyurea- and (or) caffeine-sensitive (huc) mutants, and isolated mutations affecting 5 different complementation groups. Most of these were represented by single alleles; however, we also isolated multiple alleles of huc(29DE) gene, an essential gene that is also associated with a nonconditional pupal lethal phenotype. We also identified huc(95E) mutants, which are extremely sensitive to caffeine. Although huc(95E) is a nonessential gene, mutant imaginal disc cells undergo caffeine-dependent apoptosis, and huc(95E) gene function is required for the viability of the organism when mutant larvae are exposed to levels of caffeine that controls can easily tolerate. We have mapped the cytological positions of huc(29D) and huc(95E) as a first step toward molecularly characterizing the relevant genes.
Collapse
Affiliation(s)
- E A Silva
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Keyser P, Borge-Renberg K, Hultmark D. The Drosophila NFAT homolog is involved in salt stress tolerance. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:356-62. [PMID: 17368199 DOI: 10.1016/j.ibmb.2006.12.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 12/22/2006] [Accepted: 12/29/2006] [Indexed: 05/14/2023]
Abstract
The NFAT gene encodes the only homolog in Drosophila of the five human Nuclear Factors of Activated T-cells, NFAT1-5. Its rel homology domain is most similar to that of NFAT5, and like the latter it lacks conserved AP1 and calcineurin binding sites. Two promoters give rise to alternative transcripts that are ubiquitously expressed in several different tissues. We generated mutants for each transcript, as well as a mutant that lacks all functional NFAT expression. Only the null mutant generated a visible phenotype, indicating that the two transcripts are redundant. The mutants are sensitive to high salt diet and have enlarged anal pads in hypotonic solution, suggesting that NFAT, like mammalian NFAT5, is regulating the osmotic balance. A phylogenetic reconstruction puts the Drosophila gene near the root of the NFAT tree, indicating that regulation of tonicity may be an ancestral function of the NFAT family.
Collapse
Affiliation(s)
- Pia Keyser
- Umeå Centre for Molecular Pathogenesis, By. 6L, Umeå University, S-901 87 Umeå, Sweden
| | | | | |
Collapse
|
33
|
Liu W, Silverstein AM, Shu H, Martinez B, Mumby MC. A functional genomics analysis of the B56 isoforms of Drosophila protein phosphatase 2A. Mol Cell Proteomics 2006; 6:319-32. [PMID: 17121811 DOI: 10.1074/mcp.m600272-mcp200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the B56 family of protein phosphatase 2A (PP2A) regulatory subunits play crucial roles in Drosophila cell survival. Distinct functions of two B56 subunits were investigated using a combination of RNA interference, DNA microarrays, and proteomics. RNA interference-mediated knockdown of the B56-1 subunit (PP2A-B') but not the catalytic (mts) or B56-2 subunit (wdb) of PP2A resulted in increased expression of the apoptotic inducers reaper and sickle. Co-knockdown of B56-1 with reaper, but not with sickle, reduced the apoptosis caused by depletion of the B56 subunits. Two-dimensional gel electrophoresis and mass spectrometry identified proteins modified in cells depleted of PP2A subunits. These included generation of caspase-dependent cleavage products, increases in protein abundance, and covalent modifications. Results suggested that up-regulation of the ribosome-associated protein stubarista can serve as a sensitive marker of apoptosis. Up-regulation of transcripts for multiple glutathione transferases and other proteins suggested that loss of PP2A affected pathways involved in the response to oxidative stress. Knockdown of PP2A elevated basal JNK activity and substantially decreased activation of ERK in response to oxidative stress. The results reveal that the B56-containing isoform of PP2A functions within multiple signaling pathways, including those that regulate expression of reaper and the response to oxidative stress, thus promoting cell survival in Drosophila.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041, USA
| | | | | | | | | |
Collapse
|
34
|
Brun S, Vidal S, Spellman P, Takahashi K, Tricoire H, Lemaitre B. The MAPKKK Mekk1 regulates the expression of Turandot stress genes in response to septic injury in Drosophila. Genes Cells 2006; 11:397-407. [PMID: 16611243 DOI: 10.1111/j.1365-2443.2006.00953.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Septic injury triggers a rapid and widespread response in Drosophila adults that involves the up-regulation of many genes required to combat infection and for wound healing. Genome-wide expression profiling has already demonstrated that this response is controlled by signaling through the Toll, Imd, JAK-STAT and JNK pathways. Using oligonucleotide microarrays, we now demonstrate that the MAPKKK Mekk1 regulates a small subset of genes induced by septic injury including Turandot (Tot) stress genes. Our analysis indicates that Tot genes show a complex regulation pattern including signals from both the JAK-STAT and Imd pathways and Mekk1. Interestingly, Mekk1 flies are resistant to microbial infection but susceptible to paraquat, an inducer of oxidative stress. These results point to a role of Mekk1 in the protection against tissue damage and/or protein degradation and indicate complex interactions between stress and immune pathways in Drosophila.
Collapse
Affiliation(s)
- Sylvain Brun
- Centre de Génétique Moléculaire, CNRS, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
35
|
Zhuang ZH, Zhou Y, Yu MC, Silverman N, Ge BX. Regulation of Drosophila p38 activation by specific MAP2 kinase and MAP3 kinase in response to different stimuli. Cell Signal 2006; 18:441-8. [PMID: 16014325 DOI: 10.1016/j.cellsig.2005.05.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2005] [Revised: 05/11/2005] [Accepted: 05/12/2005] [Indexed: 12/31/2022]
Abstract
The p38 mitogen-activated protein kinase (MAPK) signaling pathway plays an important role in cellular responses to inflammatory stimuli and environmental stress. Activation of p38 is mediated through phosphorylation by upstream MAPKK, which in turn is activated by MAPKKK. However, the mechanism of how different upstream MAP2Ks and MAP3Ks specifically contribute to p38 activation in response to different stimuli is still not clearly understood. By using double-stranded RNA-mediated interference (RNAi) in Drosophila cells, we demonstrate that D-MKK3 is a major MAP2K responsible for D-p38 activation by UV, heat shock, NaCl or peptiodglycan (PGN). Stimulation of UV and PGN activates D-p38 through D-MEKK1, heat shock-induced activation of D-p38 signals through both D-MEKK1 and D-ASK1. On the other hand, maximal activation of D-p38 by NaCl requires the expression of four MAP3Ks.
Collapse
Affiliation(s)
- Zi-Heng Zhuang
- Signal Transduction Lab of Institute of Health Sciences, Shanghai Institutes for Biological Sciences [corrected] Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine [corrected] PR China
| | | | | | | | | |
Collapse
|
36
|
Jang IH, Chosa N, Kim SH, Nam HJ, Lemaitre B, Ochiai M, Kambris Z, Brun S, Hashimoto C, Ashida M, Brey PT, Lee WJ. A Spätzle-processing enzyme required for toll signaling activation in Drosophila innate immunity. Dev Cell 2006; 10:45-55. [PMID: 16399077 DOI: 10.1016/j.devcel.2005.11.013] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 11/08/2005] [Accepted: 11/21/2005] [Indexed: 11/27/2022]
Abstract
The Toll receptor was originally identified as an indispensable molecule for Drosophila embryonic development and subsequently as an essential component of innate immunity from insects to humans. Although in Drosophila the Easter protease processes the pro-Spätzle protein to generate the Toll ligand during development, the identification of the protease responsible for pro-Spätzle processing during the immune response has remained elusive for a decade. Here, we report a protease, called Spätzle-processing enzyme (SPE), required for Toll-dependent antimicrobial response. Flies with reduced SPE expression show no noticeable pro-Spätzle processing and become highly susceptible to microbial infection. Furthermore, activated SPE can rescue ventral and lateral development in embryos lacking Easter, showing the functional homology between SPE and Easter. These results imply that a single ligand/receptor-mediated signaling event can be utilized for different biological processes, such as immunity and development, by recruiting similar ligand-processing proteases with distinct activation modes.
Collapse
Affiliation(s)
- In-Hwan Jang
- Division of Molecular Life Science, Ewha Womans University, Seoul, 120-750, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The family members of the mitogen-activated protein (MAP) kinases mediate a wide variety of cellular behaviors in response to extracellular stimuli. One of the four main sub-groups, the p38 group of MAP kinases, serve as a nexus for signal transduction and play a vital role in numerous biological processes. In this review, we highlight the known characteristics and components of the p38 pathway along with the mechanism and consequences of p38 activation. We focus on the role of p38 as a signal transduction mediator and examine the evidence linking p38 to inflammation, cell cycle, cell death, development, cell differentiation, senescence and tumorigenesis in specific cell types. Upstream and downstream components of p38 are described and questions remaining to be answered are posed. Finally, we propose several directions for future research on p38.
Collapse
Affiliation(s)
- Tyler Zarubin
- Department of Immunology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
38
|
Craig CR, Fink JL, Yagi Y, Ip YT, Cagan RL. A Drosophila p38 orthologue is required for environmental stress responses. EMBO Rep 2005; 5:1058-63. [PMID: 15514678 PMCID: PMC1299177 DOI: 10.1038/sj.embor.7400282] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Revised: 09/21/2004] [Accepted: 09/21/2004] [Indexed: 11/09/2022] Open
Abstract
The p38 mitogen-activated protein kinase (MAPK) cascade is an evolutionarily conserved signalling mechanism involved in processes as diverse as apoptosis, cell fate determination, immune function and stress response. Aberrant p38 signalling has been implicated in many human diseases, including heart disease, cancer, arthritis and neurodegenerative diseases. To further understand the role of p38 in these processes, we generated a Drosophila strain that is null for the D-p38a gene. Mutants are homozygous viable and show no observable developmental defects. However, flies lacking D-p38a are susceptible to some environmental stresses, including heat shock, oxidative stress and starvation. These phenotypes only partially overlap those caused by mutations in D-MEKK1 and dTAK1, suggesting that the D-p38a gene is required to mediate some, but not all, of the functions ascribed to p38 signalling.
Collapse
Affiliation(s)
- Caroline R Craig
- Department of Molecular Biology & Pharmacology, Washington University School of Medicine, 660 S Euclid Avenue, Campus Box 8103, Saint Louis, Missouri 63110, USA
| | - Jill L Fink
- Department of Molecular Biology & Pharmacology, Washington University School of Medicine, 660 S Euclid Avenue, Campus Box 8103, Saint Louis, Missouri 63110, USA
| | - Yoshimasa Yagi
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, Massachusetts 01605, USA
| | - Y Tony Ip
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, Massachusetts 01605, USA
| | - Ross L Cagan
- Department of Molecular Biology & Pharmacology, Washington University School of Medicine, 660 S Euclid Avenue, Campus Box 8103, Saint Louis, Missouri 63110, USA
- Tel: +1 314 362 7796; Fax: +1 314 362 7058; E-mail:
| |
Collapse
|
39
|
Sano Y, Akimaru H, Okamura T, Nagao T, Okada M, Ishii S. Drosophila activating transcription factor-2 is involved in stress response via activation by p38, but not c-Jun NH(2)-terminal kinase. Mol Biol Cell 2005; 16:2934-46. [PMID: 15788564 PMCID: PMC1142437 DOI: 10.1091/mbc.e04-11-1008] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Activating transcription factor (ATF)-2 is a member of the ATF/cAMP response element-binding protein family of transcription factors, and its trans-activating capacity is enhanced by stress-activated protein kinases such as c-Jun NH(2)-terminal kinase (JNK) and p38. However, little is known about the in vivo roles played by ATF-2. Here, we identified the Drosophila homologue of ATF-2 (dATF-2) consisting of 381 amino acids. In response to UV irradiation and osmotic stress, Drosophila p38 (dp38), but not JNK, phosphorylates dATF-2 and enhances dATF-2-dependent transcription. Consistent with this, injection of dATF-2 double-stranded RNA (dsRNA) into embryos did not induce the dorsal closure defects that are commonly observed in the Drosophila JNK mutant. Furthermore, expression of the dominant-negative dp38 enhanced the aberrant wing phenotype caused by expression of a dominant-negative dATF-2. Similar genetic interactions between dATF-2 and the dMEKK1-dp38 signaling pathway also were observed in the osmotic stress-induced lethality of embryos. Loss of dATF-2 in Drosophila S2 cells by using dsRNA abrogated the induction of 40% of the osmotic stress-induced genes, including multiple immune response-related genes. This indicates that dATF-2 is a major transcriptional factor in stress-induced transcription. Thus, dATF-2 is critical for the p38-mediated stress response.
Collapse
Affiliation(s)
- Yuji Sano
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Both extra- and intracellular stimuli elicit a wide variety of responses, such as cell survival, proliferation, differentiation, and apoptosis, through regulation of cell signaling. Recent studies have revealed that stress-responsive signal transduction pathways are strictly regulated by the intracellular redox state. The redox state of the cell is a consequence of the precise balance between the levels of oxidizing and reducing equivalents, such as reactive oxygen species (ROS) and endogenous antioxidants. The generation of ROS fluctuates in response to alterations of both external and internal environment and, in turn, triggers specific signaling cascades, including mitogen-activated protein kinases, which determine cell survival or cell death. This review focuses on the regulatory mechanisms of stress-responsive protein kinases and their involvement in oxidative stress-induced apoptosis. It also provides recent findings on the molecular mechanisms by which redox signaling cross-talks with stress-responsive protein kinase cascades.
Collapse
Affiliation(s)
- Atsushi Matsuzawa
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
41
|
Lamprou I, Tsakas S, Theodorou GL, Karakantza M, Lampropoulou M, Marmaras VJ. Uptake of LPS/E. coli/latex beads via distinct signalling pathways in medfly hemocytes: the role of MAP kinases activation and protein secretion. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1744:1-10. [PMID: 15878392 DOI: 10.1016/j.bbamcr.2004.09.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 09/23/2004] [Accepted: 09/27/2004] [Indexed: 11/16/2022]
Abstract
In response to LPS/E. coli treatment, extracellular signal-regulated kinase (ERK) is activated in medfly hemocytes. To explore the molecular mechanisms underlying LPS/E. coli/latex beads endo- and phagocytosis, we studied the signalling pathways leading to p38 and c-jun N-terminal kinase (JNK) activation. JNK and p38-like proteins were initially identified within medfly hemocytes. Flow cytometry analysis revealed that mitogen-activated protein kinases (MAPK) are required for phagocytosis. Inhibition of specific MAPK signalling pathways, with manumycin A, toxin A, cytochalasin D and latrunculin A, revealed activation of p38 via Ras/Rho/actin remodelling pathway and activation of JNK that was independent of actin cytoskeleton reorganization. ERK and p38 pathways, but not JNK, appeared to be involved in LPS-dependent hemocyte secretion, whereas all MAPK subfamilies seemed to participate in E. coli-dependent secretion. In addition, flow cytometry experiments in hemocytes showed that the LPS/E. coli-induced release was a prerequisite for LPS/E. coli uptake, whereas latex bead phagocytosis did not depend on hemocyte secretion. This is a novel aspect, as in mammalian monocytes/macrophages LPS/E. coli-triggered release has not been yet correlated with phagocytosis. It is of interest that these data suggest distinct mechanisms for the phagocytosis of E. coli and latex beads in medfly hemocytes.
Collapse
Affiliation(s)
- Irene Lamprou
- Laboratory of Biology, Department of Biology, University of Patras, 26500 Patras, Greece
| | | | | | | | | | | |
Collapse
|
42
|
Bikopoulos G, Ceddia RB, Sweeney G, Hilliker AJ. Insulin reduces apoptosis and increases DNA synthesis and cell size via distinct signalling pathways in Drosophila Kc cells. Cell Prolif 2004; 37:307-16. [PMID: 15245566 PMCID: PMC6496170 DOI: 10.1111/j.1365-2184.2004.00314.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
During development of Drosophila, cell proliferation and size are known to be regulated by insulin. Here we use Drosophila Kc cells to examine the molecular basis for the control of cell growth by insulin. Growing cells in the presence of insulin increased cell number above control levels at 16, 24, 48 and 72 h. We have demonstrated a novel anti-apoptotic effect of insulin (approximately 50%) in these cells, measured by caspase 3-like activity, which contributed to the increase in cell number. The anti-apoptotic effect was observed both in control cells and those in which apoptosis was induced by ultraviolet irradiation. An approximately 2-fold stimulation of bromodeoxyuridine incorporation demonstrated that insulin also increased Kc cell proliferation by stimulating new DNA synthesis. The ability of insulin to increase cell number, stimulate bromodeoxyuridine incorporation and reduce caspase 3-like activity was prevented by PD98059, which inhibits activation of the Drosophila extracellular signal regulated kinase (DERK) pathway, and was unaffected by wortmannin, an inhibitor of Drosophila phosphatidylinositol 3-kinase (DPI3K). Insulin also increased cell size approximately 2-fold and this was prevented by wortmannin and rapamycin, an inhibitor of Drosphilia target of rapamycin (DTOR). In summary, we show that DERK plays an important role in mediating the effect of insulin to reduce apoptosis and increase DNA synthesis whereas the DPI3K/DTOR/Dp70S6 kinase pathway mediates effects of insulin on cell size in Drosophila Kc cells.
Collapse
Affiliation(s)
- G. Bikopoulos
- Department of Biology, York University, Toronto, Canada
| | - R. B. Ceddia
- Department of Biology, York University, Toronto, Canada
| | - G. Sweeney
- Department of Biology, York University, Toronto, Canada
| | | |
Collapse
|
43
|
Asehnoune K, Strassheim D, Mitra S, Kim JY, Abraham E. Involvement of reactive oxygen species in Toll-like receptor 4-dependent activation of NF-kappa B. THE JOURNAL OF IMMUNOLOGY 2004; 172:2522-9. [PMID: 14764725 DOI: 10.4049/jimmunol.172.4.2522] [Citation(s) in RCA: 448] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although oxidative stress has been thought to play a general role in the activation of NF-kappaB, the involvement of reactive oxygen species (ROS) in facilitating nuclear translocation of NF-kappaB in neutrophils has not been described. In addition, the mechanisms by which ROS modulate the transcriptional activity of NF-kappaB in response to Toll-like receptor 4 (TLR4)-dependent signaling are not well characterized. To examine these issues, oxidant-dependent signaling events downstream of TLR4 were investigated in neutrophils stimulated with LPS. Pretreatment of neutrophils with the antioxidants N-acetylcysteine or alpha-tocopherol prevented LPS-induced nuclear translocation of NF-kappaB. Antioxidant treatment of LPS-stimulated neutrophils also inhibited the production of proinflammatory cytokines (TNF-alpha, macrophage inflammatory protein-2, and IL-1beta), as well as activation of the kinases IkappaB kinase alpha, IkappaB kinase beta, p38, Akt, and extracellular receptor-activated kinases 1 and 2. The decrease in cytoplasmic levels of IkappaBalpha produced by exposure of neutrophils to LPS was prevented by N-acetylcysteine or alpha-tocopherol. Activation of IL-1R-associated kinase-1 (IRAK-1) and IRAK-4 in response to LPS stimulation was inhibited by antioxidants. These results demonstrate that proximal events in TLR4 signaling, at or antecedent to IRAK-1 and IRAK-4 activation, are oxidant dependent and indicate that ROS can modulate NF-kappaB-dependent transcription through their involvement in early TLR4-mediated cellular responses.
Collapse
Affiliation(s)
- Karim Asehnoune
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
44
|
Abstract
DMKP-3 is a Drosophila dual-specificity phosphatase, which has high substrate specificity for Drosophila extracellular signal-regulated kinases (DERK). By in vitro reconstitution experiments, we found that DERK activates DMKP-3. Moreover, DMKP-3 was specifically activated by the addition of DERK but not by DJNK, Dp38, or Sevenmaker DERK D334N, a DMKP-3- binding mutant. The phosphatase activity of DMKP-3-R56A/R57A, a DERK-binding mutant, was not increased by DERK. Significantly, mammalian MKP-3 was also found to be activated by DERK. This cross-reactivity suggests a high level of conservation of the activation mechanism of ERK-specific phosphatases in Drosophila and mammals. When DMKP-3 was co-expressed with DERK in Drosophila Schneider cells, DMKP-3 protein levels increased, but this was not observed for the co-expressions of DJNK or Dp38. The stabilizations of the DERK binding mutants (DMKP-3-RR and DMKP-3-CA-RR) were not increased by DERK co-expression. Our results suggest that DERK specifically regulates DMKP-3 in terms of its enzyme activity and protein stability, and that direct protein-protein interaction is an essential aspect of this regulation.
Collapse
Affiliation(s)
- Sung-Eun Kim
- Department of Biotechnology, Protein Research Center, Yonsei University College of Engineering, Seoul 120-752, South Korea
| | | | | |
Collapse
|
45
|
Han SH, Ryu JH, Oh CT, Nam KB, Nam HJ, Jang IH, Brey PT, Lee WJ. The moleskin gene product is essential for Caudal-mediated constitutive antifungal Drosomycin gene expression in Drosophila epithelia. INSECT MOLECULAR BIOLOGY 2004; 13:323-327. [PMID: 15157233 DOI: 10.1111/j.0962-1075.2004.00491.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The homeobox gene, Caudal, encodes the DNA-binding nuclear transcription factor that plays a crucial role during development and innate immune response. The Drosophila homologue of importin-7 (DIM-7), encoded by moleskin, was identified as a Caudal-interacting molecule during yeast two-hybrid screening. Both mutation of the minimal region of Caudal responsible for moleskin binding and RNA interference (RNAi) of moleskin dramatically inhibited the Caudal nuclear localization. Furthermore, Caudal-mediated constitutive expression of antifungal Drosomycin gene was severely affected in the moleskin-RNAi flies, showing a local Drosomycin expression pattern indistinguishable from that of the Caudal-RNAi flies. These in vivo data suggest that DIM-7 mediates Caudal nuclear localization, which is important for the proper Caudal function necessary for regulating innate immune genes in Drosophila.
Collapse
Affiliation(s)
- S-H Han
- Division of Molecular Life Science and Center for Cell Signalling Research, Ewha Womans University, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Silverstein AM, Mumby MC. Analysis of protein phosphatase function in Drosophila cells using RNA interference. Methods Enzymol 2004; 366:361-72. [PMID: 14674261 DOI: 10.1016/s0076-6879(03)66027-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Double stranded RNA-mediated RNA interference is an effective method to downregulate the levels of protein phosphatases in Drosophila S2 cells. In many cases, nearly complete ablation of the targeted protein can be achieved. RNAi-mediated knockdown of protein phosphatases is akin to pharmacological inhibition with drugs and can be used to determine the roles of specific protein phosphatases in intact cells. RNAi can avoid the problems associated with less than adequate specificity of phosphatase inhibitors. Although information about the signaling pathways present in Drosophila S2 cells is not as well developed as many mammalian cell lines, the Drosophila system is particularly attractive for the study of oligomeric phosphatases like PP2A. Drosophila has far fewer isoforms for the phosphatases we have examined. This is especially true of the genes for PP2A regulatory subunits where over 50 isoforms are present in mammals but only four are present in Drosophila. Once hypotheses regarding phosphatase function have been generated from RNAi experiments in S2 cells, they can potentially be tested utilizing recent advances in the use of siRNAs to conduct RNAi experiments in mammalian cell lines. RNAi in Drosophila S2 cells has proven to be a powerful technique for identifying physiological functions of signaling proteins. The RNAi method is straightforward and works routinely with almost all proteins. RNAi in S2 cells can be used to assess the role of signaling proteins in specific pathways and as a screening tool to identify new roles for signaling molecules. For example, results from RNAi analysis of PP2A show that regulation of MAP kinase signaling involves the R2/B regulatory subunit and that the R5/B56 subunits play a previously unidentified role in apoptosis. While RNAi in Drosophila S2 cells is a powerful tool for analyzing protein function, the method does have limitations. Foremost, cells may exhibit an RNAi response to any nonspecific dsRNA, even in the absence of interferon. Therefore, physiological processes that respond to nonspecific dsRNA will be difficult to study. A second limitation is the need to produce antibodies that react with Drosophila isoforms. We have found that many antibodies to mammalian protein phosphatases do not cross-react with the corresponding Drosophila proteins. Finally, the physiology and signaling pathways of S2 cells have not been extensively studied. This lack of information limits the number of available readouts that can be used when assessing the effects of protein knockdowns.
Collapse
Affiliation(s)
- Adam M Silverstein
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041, USA
| | | |
Collapse
|
47
|
Ryu JH, Nam KB, Oh CT, Nam HJ, Kim SH, Yoon JH, Seong JK, Yoo MA, Jang IH, Brey PT, Lee WJ. The homeobox gene Caudal regulates constitutive local expression of antimicrobial peptide genes in Drosophila epithelia. Mol Cell Biol 2004; 24:172-85. [PMID: 14673153 PMCID: PMC303351 DOI: 10.1128/mcb.24.1.172-185.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In Drosophila melanogaster, although the NF-kappaB transcription factors play a pivotal role in the inducible expression of innate immune genes, such as antimicrobial peptide genes, the exact regulatory mechanism of the tissue-specific constitutive expression of these genes in barrier epithelia is largely unknown. Here, we show that the Drosophila homeobox gene product Caudal functions as the innate immune transcription modulator that is responsible for the constitutive local expression of antimicrobial peptides cecropin and drosomycin in a tissue-specific manner. These results suggest that certain epithelial tissues have evolved a unique constitutive innate immune strategy by recruiting a developmental "master control" gene.
Collapse
Affiliation(s)
- Ji-Hwan Ryu
- Division of Molecular Life Science and Center for Cell Signaling Research, Ewha Womans University, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kurz CL, Ewbank JJ. Caenorhabditis elegans: an emerging genetic model for the study of innate immunity. Nat Rev Genet 2003; 4:380-90. [PMID: 12728280 DOI: 10.1038/nrg1067] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Invaluable insights into how animals, humans included, defend themselves against infection have been provided by more than a decade of genetic studies that have used fruitflies. In the past few years, attention has also turned to another simple animal model, the nematode worm Caenorhabditis elegans. What exactly have we learned from the work in Drosophila? And will research with C. elegans teach us anything new about our response to pathogen attack?
Collapse
Affiliation(s)
- C Léopold Kurz
- Centre d'Immunologie de Marseille Luminy, INSERM/CNRS/Université de la Méditerranée, Case 906, 13288 Marseille Cedex 9, France
| | | |
Collapse
|
49
|
Eckert RL, Efimova T, Balasubramanian S, Crish JF, Bone F, Dashti S. p38 Mitogen-activated protein kinases on the body surface--a function for p38 delta. J Invest Dermatol 2003; 120:823-8. [PMID: 12713588 DOI: 10.1046/j.1523-1747.2003.12120.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The p38 family of mitogen-activated protein kinases includes p38 alpha (SAPK2a, CSBP), p38 beta (SAPK2b), p38 delta (SAPK4), and p38 gamma (SAPK3/ERK6). p38 alpha and p38 beta are widely expressed p38 isoforms that are involved in regulation of cell proliferation, differentiation, development, and response to stress. Relatively less is known regarding the function of the p38 delta isoform. In this review, we discuss the role of the p38 alpha, p38 beta, and p38 gamma isoforms and then present recent findings that define a role for p38 delta as a regulator of differentiation-dependent gene expression in keratinocytes.
Collapse
Affiliation(s)
- Richard L Eckert
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4970, USA
| | | | | | | | | | | |
Collapse
|
50
|
Casano C, Roccheri MC, Maenza L, Migliore S, Gianguzza F. Sea urchin deciliation induces thermoresistance and activates the p38 mitogen-activated protein kinase pathway. Cell Stress Chaperones 2003; 8:70-5. [PMID: 12820656 PMCID: PMC514855 DOI: 10.1379/1466-1268(2003)8<70:sudita>2.0.co;2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In this study, we demonstrate by a variety of approaches (ie, morphological analysis, Western blots, immunolocalization, and the use of specific antibodies) that hyperosmotic deciliation stress of sea urchin embryos induces a thermotolerant response. Deciliation is also able to activate a phosphorylation signaling cascade the effector of which might be the p38 stress-activated protein kinase because we found that the administration of the p38 inhibitor SB203580 to sea urchin deciliated gastrula embryos makes the hyperosmotic deciliation stress lethal.
Collapse
Affiliation(s)
- Caterina Casano
- Dipartimento di Biologia Cellulare e dello Sviluppo "A. Monroy," Università di Palermo, Viale delle Scienze, Parco D'Orleans, 90128 Palermo, Italy
| | | | | | | | | |
Collapse
|