1
|
Yang X, Zeng Q, İnam MG, İnam O, Lin CS, Tezel G. cFLIP in the molecular regulation of astroglia-driven neuroinflammation in experimental glaucoma. J Neuroinflammation 2024; 21:145. [PMID: 38824526 PMCID: PMC11143607 DOI: 10.1186/s12974-024-03141-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Recent experimental studies of neuroinflammation in glaucoma pointed to cFLIP as a molecular switch for cell fate decisions, mainly regulating cell type-specific caspase-8 functions in cell death and inflammation. This study aimed to determine the importance of cFLIP for regulating astroglia-driven neuroinflammation in experimental glaucoma by analyzing the outcomes of astroglia-targeted transgenic deletion of cFLIP or cFLIPL. METHODS Glaucoma was modeled by anterior chamber microbead injections to induce ocular hypertension in mouse lines with or without conditional deletion of cFLIP or cFLIPL in astroglia. Morphological analysis of astroglia responses assessed quantitative parameters in retinal whole mounts immunolabeled for GFAP and inflammatory molecules or assayed for TUNEL. The molecular analysis included 36-plexed immunoassays of the retina and optic nerve cytokines and chemokines, NanoString-based profiling of inflammation-related gene expression, and Western blot analysis of selected proteins in freshly isolated samples of astroglia. RESULTS Immunoassays and immunolabeling of retina and optic nerve tissues presented reduced production of various proinflammatory cytokines, including TNFα, in GFAP/cFLIP and GFAP/cFLIPL relative to controls at 12 weeks of ocular hypertension with no detectable alteration in TUNEL. Besides presenting a similar trend of the proinflammatory versus anti-inflammatory molecules displayed by immunoassays, NanoString-based molecular profiling detected downregulated NF-κB/RelA and upregulated RelB expression of astroglia in ocular hypertensive samples of GFAP/cFLIP compared to ocular hypertensive controls. Analysis of protein expression also revealed decreased phospho-RelA and increased phospho-RelB in parallel with an increase in caspase-8 cleavage products. CONCLUSIONS A prominent response limiting neuroinflammation in ocular hypertensive eyes with cFLIP-deletion in astroglia values the role of cFLIP in the molecular regulation of glia-driven neuroinflammation during glaucomatous neurodegeneration. The molecular responses accompanying the lessening of neurodegenerative inflammation also seem to maintain astroglia survival despite increased caspase-8 cleavage with cFLIP deletion. A transcriptional autoregulatory response, dampening RelA but boosting RelB for selective expression of NF-κB target genes, might reinforce cell survival in cFLIP-deleted astroglia.
Collapse
Affiliation(s)
- Xiangjun Yang
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Qun Zeng
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Maide Gözde İnam
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Onur İnam
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Chyuan-Sheng Lin
- Department of Pathology & Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Gülgün Tezel
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
2
|
Liu J, Tao X, Zhang J, Wang P, Sha M, Ma Y, Geng X, Feng L, Shen Y, Yu Y, Wang S, Fang S, Shen Y. Small ubiquitin-related modifier 1 is involved in hepatocellular carcinoma progression via mediating p65 nuclear translocation. Oncotarget 2017; 7:22206-18. [PMID: 26993772 PMCID: PMC5008356 DOI: 10.18632/oncotarget.8066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/23/2016] [Indexed: 12/23/2022] Open
Abstract
Small ubiquitin-related modifier (SUMO) proteins participate in a post-translational modification called SUMOylation and regulate a variety of intracellular processes, such as targeting proteins for nuclear import. The nuclear transport of p65 results in the activation of NF-κB, and p65 contains several SUMO interacting motifs (SIMs). However, the relationship between p65 and SUMO1 in hepatocellular carcinoma (HCC) remains unclear. In this study, we demonstrated the potential roles of SUMO1 in HCC via the regulation of p65 subcellular localization. We found that either SUMO1- or p65-positive immunoreactivity was remarkably increased in the nuclei of tumor tissues in HCC patients compared with non-tumor tissues, and further analysis suggested a correlation between SUMO1- and nuclear p65-positive immunoreactivities (R = 0.851, P = 0.002). We also verified the interaction between p65 and SUMO1 in HCC by co-immunoprecipitation. TNF-α and hypoxia increased SUMO1 protein levels and enhanced SUMO1-modified p65 SUMOylation. Moreover, the knockdown of SUMO1 decreased p65 nuclear translocation and inhibited NF-κB transcriptional activity. Further the results of this study revealed that the knockdown of SUMO1 suppressed the proliferation and migration of hepatoma cells. These results suggest that SUMO1 contributes to HCC progression by promoting p65 nuclear translocation and regulating NF-κB activity.
Collapse
Affiliation(s)
- Jun Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,School of Pharmacy, Anhui Medical University, Hefei, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Xiaofang Tao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Jin Zhang
- School of Pharmacy, Anhui Medical University, Hefei, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Peng Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Manqi Sha
- School of Pharmacy, Anhui Medical University, Hefei, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Yong Ma
- Chinese People's Liberation Army 123 Hospital, Bengbu, China
| | - Xiaoping Geng
- The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Lijie Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Yujun Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Yifan Yu
- Actuarial Science, School of Continuing Education, Columbia University, New York, NY, USA
| | - Siying Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Shengyun Fang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China.,Center for Biomedical Engineering and Technology, Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,School of Pharmacy, Anhui Medical University, Hefei, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Zhou J, Ching YQ, Chng WJ. Aberrant nuclear factor-kappa B activity in acute myeloid leukemia: from molecular pathogenesis to therapeutic target. Oncotarget 2015; 6:5490-5500. [PMID: 25823927 PMCID: PMC4467382 DOI: 10.18632/oncotarget.3545] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/15/2015] [Indexed: 02/07/2023] Open
Abstract
The overall survival of patients with acute myeloid leukemia (AML) has not been improved significantly over the last decade. Molecularly targeted agents hold promise to change the therapeutic landscape in AML. The nuclear factor kappa B (NF-κB) controls a plethora of biological process through switching on and off its long list of target genes. In AML, constitutive NF-κB has been detected in 40% of cases and its aberrant activity enable leukemia cells to evade apoptosis and stimulate proliferation. These facts suggest that NF-κB signaling pathway plays a fundamental role in the development of AML and it represents an attractive target for the intervention of AML. This review summarizes our current knowledge of NF-κB signaling transduction including canonical and non-canonical NF-κB pathways. Then we specifically highlight what factors contribute to the aberrant activation of NF-κB activity in AML, followed by an overview of 8 important clinical trials of the first FDA approved proteasome inhibitor, Bortezomib (Velcade), which is a NF-κB inhibitor too, in combination with other therapeutic agents in patients with AML. Finally, this review discusses the future directions of NF-κB inhibitor in treatment of AML, especially in targeting leukemia stem cells (LSCs).
Collapse
Affiliation(s)
- Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, Republic of Singapore
| | - Ying Qing Ching
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, Republic of Singapore
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, Republic of Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), Singapore, Republic of Singapore
| |
Collapse
|
4
|
Wang R, Liang S, Yue H, Chen L. Using a novel in vivo model to study the function of nuclear factor kappa B in cerebral ischemic injury. Med Sci Monit 2013; 18:BR461-7. [PMID: 23111737 PMCID: PMC3560616 DOI: 10.12659/msm.883539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background Cerebral ischemia is a situation with a deficit blood supply to the brain, which eventually leads to cell death, inflammation, and tissue damage. Nuclear factor kappa B (NF-κB) plays an important role in inflammation and immune regulation. The aim of this study was to test the function of the activation of NF-κB in vivo in cerebral ischemic injury. Material/Methods We generated an animal model that used the method of occlusion of the middle cerebral artery (MCAO). The 60 traits were equally divided into 5 groups to investigate the role of NAC pretreatment: (1) sham-operation (control), (2) ischemia for 6 hours, (3) ischemia for 6 hours and NAC pretreatment, (4) ischemia for 24 hours, (5) ischemia for 24 hours and NAC pretreatment. The 36 rats were divided randomly into 3 groups: (A) recombinant adenovirus expressing wild-type κBα (AdIκBαM) group, (B) recombinant adenovirus expressing wild-type IκBα (AdIκBα) group, and (C) simple ischemia group. Triphenyltetrazolium chloride (TTC) was used to measure infarct volume. Detection of expression of NF-κB was by Immunohistochemistry analysis. Results The infarct size of the 24-hours ischemia groups were bigger than those of 6-hours ischemia groups (P<0.01). The infarct size of using NAC pretreatment groups was obviously reduced compared with saline control groups (P<0.01).The percentage of cortical p65-positive cells of the group of (A) were significantly less than the groups of (B) and (C). Conclusions Our data suggest that N-acetylcysteine (NAC) and Ad-IκBα-Mut can inhibit the activation of NF-κB in vivo, reduce the focal infarct size, and protect the brain tissue in ischemia.
Collapse
Affiliation(s)
- Rui Wang
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | |
Collapse
|
5
|
Bowick GC, Fennewald SM, Zhang L, Yang X, Aronson JF, Shope RE, Luxon BA, Gorenstein DG, Herzog NK. Attenuated and lethal variants of Pichindé virus induce differential patterns of NF-kappaB activation suggesting a potential target for novel therapeutics. Viral Immunol 2010; 22:457-62. [PMID: 19951183 DOI: 10.1089/vim.2009.0034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lassa virus pathogenesis is believed to involve dysregulation of cytokines. We have previously shown nuclear factor-kappaB (NF-kappaB) inhibition using a BSL-2 model for Lassa fever. Here we further define the potential mechanism for NF-kappaB inhibition as involving increased levels of repressive p50/p50 homodimers, and suggest a novel therapeutic strategy that acts via modulation of host signaling.
Collapse
Affiliation(s)
- Gavin C Bowick
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas 77555-0609, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Macrophage-specific inhibition of NF-κB activation reduces foam-cell formation. Atherosclerosis 2007; 192:283-90. [DOI: 10.1016/j.atherosclerosis.2006.07.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 07/19/2006] [Accepted: 07/19/2006] [Indexed: 10/24/2022]
|
7
|
Derudder E, Laferté A, Ferreira V, Mishal Z, Baud V, Tarantino N, Körner M. Identification and characterization of p100HB, a new mutant form of p100/NF-kappa B2. Biochem Biophys Res Commun 2003; 308:744-9. [PMID: 12927781 DOI: 10.1016/s0006-291x(03)01474-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
P100, which is encoded by NF-kappa B2, inhibits Rel dimers. It can also be processed into p52, one of the DNA binding sub-units of NF-kappa B/Rel factors. Several p100 C-terminal truncations that result from gene rearrangements are associated with lymphomagenesis. Here, we characterized a new p100 mutant that we termed p100HB. It originates from a point-mutation that generates a premature stop-codon, and thus the protein lacks the last 125 amino acids. We have detected p100HB in several human tumor cell lines. The truncated protein is mainly unprocessed, and although it still binds Rel dimers, it has reduced inhibitory potency compared to p100 and translocates into the nucleus. Thus, p100HB may be associated with deregulated NF-kappa B/Rel functions.
Collapse
Affiliation(s)
- Emmanuel Derudder
- Oncogenèse, Différenciation et Transduction du Signal, UPR 9079 du CNRS, Institut André Lwoff,7, rue Guy Môquet, 94801 Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
8
|
Johannessen M, Olsen PA, Sørensen R, Johansen B, Seternes OM, Moens U. A role of the TATA box and the general co-activator hTAF(II)130/135 in promoter-specific trans-activation by simian virus 40 small t antigen. J Gen Virol 2003; 84:1887-1897. [PMID: 12810884 DOI: 10.1099/vir.0.19057-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The small t antigen (st-ag) of simian virus 40 can exert pleiotropic effects on biological processes such as DNA replication, cell cycle progression and gene expression. One possible mode of achieving these effects is through stimulation of NFkappaB-responsive genes encoding growth factors, cytokines, transcription factors and cell cycle regulatory proteins. Indeed, a previous study has shown that st-ag enhanced NFkappaB-mediated transcription. This study demonstrates that promoters possessing a consensus TATA box (i.e. TATAAAAG) in the context of either NFkappaB- or Sp1-binding sites are trans-activated by st-ag. Overexpressing the general transcription factor hTAF(II)130/135, but not hTAF(II)28 or hTAF(II)80, stimulated the activity of promoters in a consensus TATA box-dependent mode. Converting the consensus TATA motif into a non-consensus TATA box strongly impaired activation by st-ag and hTAF(II)130/135. Conversely, mutating a non-consensus TATA motif into the consensus TATA box rendered the mutated promoter inducible by st-ag and hTAF(II)130/135. Mutation of the TATA box had no effect on TNFalpha- or RelA/p65-mediated induction of NFkappaB-responsive promoters, indicating a specific st-ag effect on hTAF(II)130/135. St-ag stimulated the intrinsic transcriptional activity of hTAF(II)130/135. Substitutions in the conserved HPDKGG motif in the N-terminal region or a mutation that impaired the interaction with protein phosphatase 2A abrogated the ability of st-ag to activate hTAF(II)130/135-mediated transcription. These results indicate that trans-activation of promoters by st-ag may depend on a consensus TATA motif and suggest that such promoters recruit the general transcription factor hTAF(II)130/135.
Collapse
Affiliation(s)
- Mona Johannessen
- Department of Biochemistry, Section for Molecular Genetics, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| | - Petter Angell Olsen
- Department of Biochemistry, Section for Molecular Genetics, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| | - Rita Sørensen
- Department of Biochemistry, Section for Molecular Genetics, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| | - Bjarne Johansen
- Department of Biochemistry, Section for Molecular Genetics, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| | - Ole Morten Seternes
- Department of Biochemistry, Section for Molecular Genetics, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| | - Ugo Moens
- Department of Biochemistry, Section for Molecular Genetics, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| |
Collapse
|
9
|
Abstract
Transcription factors within a family usually share the ability to recognize similar or identical consensus sites. For example, the five mammalian NF-kappaB/Rel proteins generate more than 12 dimers recognizing 9-11 nucleotide kappaB sites. Each dimer selectively regulates a few target promoters; however, several genes are redundantly induced by more than one dimer. Whether this property simply generates redundancy in target gene activation or underlies more complex regulatory mechanisms is an open issue. We show here that during dendritic cell maturation, rapidly activated dimers (e.g., p50/RelA) bound to a subset of target promoters are gradually replaced by slowly activated dimers (e.g., p52/RelB). Since the dimers have different transcriptional activity at each promoter, the dimer exchange allows fine tuning of the response over time. Further, due to the insensitivity of p52/RelB to the NF-kappaB inhibitors, the IkappaBs, dimer exchange contributes to sustained activation of selected NF-kappaB targets in spite of the resynthesis of IkappaBalpha.
Collapse
Affiliation(s)
- Simona Saccani
- Institute for Research in Biomedicine, Via Vela 6, CH6500 Bellinzona, Switzerland
| | | | | |
Collapse
|
10
|
Takehana K, Konishi A, Oonuki A, Noguchi M, Fujita K, Iino Y, Kobayashi T. APC0576, a novel inhibitor of NF-kappaB-dependent gene activation, prevents pro-inflammatory cytokine-induced chemokine production in human endothelial cells. Biochem Biophys Res Commun 2002; 293:945-52. [PMID: 12051750 DOI: 10.1016/s0006-291x(02)00322-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelial cells participate in the inflammatory and immune reactions. Endothelial cell activation is a recurrent phenomenon linked to the pathogenesis of diverse human diseases, such as acute and chronic inflammation and cardiovascular disorders. Pro-inflammatory cytokines (e.g., IL-1, TNF) are well-known activators of endothelial cells, since they strongly induce production of chemokines (e.g., IL-8, MCP-1) and cell adhesion molecules, resulting in an activation of inflammatory transcription factors such as NF-kappaB. We have established a cell-based reporter assay for the NF-kappaB-dependent gene activation in HUVEC. Using this assay system, we have identified a novel synthetic small molecule, APC0576, 5-(((S)-2,2-dimethylcyclopropanecarbonyl)amino)-2-(4-(((S)-2,2-dimethylcyclopropanecarbonyl)amino)phenoxy)pyridine, as an inhibitor of IL-1-induced NF-kappaB-dependent gene activation without any adverse effects on the cell viability. APC0576 represses the IL-1-induced release of chemokines (e.g., IL-8, MCP-1) in HUVEC. This inhibitory effect occurred at the level of mRNA expression. Despite having a strong inhibitory effect on the NF-kappaB-dependent transcriptional activation, APC0576 does not inhibit the IL-1-induced DNA binding of NF-kappaB, degradation of I-kappaB-alpha, or phosphorylation of RelA (p65). Although its molecular mechanism of action is not yet clear, APC0576 is a promising therapeutic candidate for diverse diseases involved in the pathogenic endothelial activation.
Collapse
Affiliation(s)
- Kenji Takehana
- Discovery Research Laboratories, Pharmaceutical Research Laboratories, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan.
| | | | | | | | | | | | | |
Collapse
|
11
|
Bren GD, Solan NJ, Miyoshi H, Pennington KN, Pobst LJ, Paya CV. Transcription of the RelB gene is regulated by NF-kappaB. Oncogene 2001; 20:7722-33. [PMID: 11753650 DOI: 10.1038/sj.onc.1204868] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2001] [Revised: 07/20/2001] [Accepted: 07/26/2001] [Indexed: 11/09/2022]
Abstract
RelA and RelB are two members of the NF-kappaB family that differ structurally and functionally. While RelA is regulated through its cytosolic localization by inhibitor proteins or IkappaB and not through transcriptional mechanisms, the regulation of RelB is poorly understood. In this study we demonstrate that stimuli (TNF or LPS) lead within minutes to the nuclear translocation of RelA, but require hours to result in the nuclear translocation of RelB. The delayed nuclear translocation of RelB correlates with increases in its protein synthesis which are secondary to increases in RelB gene transcription. RelA is alone sufficient to induce RelB gene transcription and to mediate the stimuli-driven increase in RelB transcription. Cloning and characterization of the RelB 5' untranslated gene region indicates that RelB transcription is dependent on a TATA-less promoter containing two NF-kappaB binding sites. One of the NF-kappaB sites is primarily involved in the binding of p50 while the other one in the binding and transactivation by RelA and also RelB. Lastly, it is observed that p21, a protein involved in cell cycle control and oncogenesis known to be regulated by NF-kappaB, is upregulated at the transcriptional level by RelB. Thus, RelB is regulated at least at the level of transcription in a RelA and RelB dependent manner and may exert an important role in p21 regulation.
Collapse
Affiliation(s)
- G D Bren
- Department of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
12
|
Cazes E, Giron-Michel J, Baouz S, Doucet C, Cagnoni F, Oddera S, Körner M, Dasic G, Testi R, Azzarone B, Canonica GW. Novel anti-inflammatory effects of the inhaled corticosteroid fluticasone propionate during lung myofibroblastic differentiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:5329-37. [PMID: 11673549 DOI: 10.4049/jimmunol.167.9.5329] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Asthma is characterized by an irreversible subepithelial fibrosis with the appearance of myofibroblasts, which can be now considered important early participants in inflammatory responses as well as potential targets for anti-inflammatory drugs. In this study, we show that fluticasone propionate (FP), a powerful inhaled corticosteroid (ICS), displays novel anti-inflammatory effects on human lung fibroblasts during their myofibroblastic differentiation. Indeed, FP inhibits in lung myofibroblasts, at a very early stage of differentiation, the activation of Janus kinase/STAT pathways induced by IL-13 (tyrosine kinase 2, STAT1, STAT3, STAT6, mitogen-activated protein kinase). Contrarily, in mildly or fully differentiated myofibroblastic cultures, FP still displays a potential anti-inflammatory activity even if it only inhibits tyrosine kinase 2 phosphorylation. Moreover, FP inhibits constitutive and TGF-beta-induced expression of alpha-smooth muscle actin, the main marker of myofibroblastic differentiation, both in very early and in mild differentiated myofibroblasts. Finally, FP displays an additional powerful anti-inflammatory effect, decreasing nuclear translocation of NF-kappaB independent of the degree of myofibroblastic differentiation. These data 1) suggest that myofibroblasts are priority targets for ICS, which is able to revert them to a normal phenotype even if they appear to be already engaged in their differentiation, and 2) may help to explain why asthma is improved by an early ICS treatment, whereas advanced asthma is more resistant to these drugs.
Collapse
Affiliation(s)
- E Cazes
- Institut National de la Santé et de la Recherche Médicale Unité 506, Hospital Paul Brousse, Villejuif, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bentires-Alj M, Dejardin E, Viatour P, Van Lint C, Froesch B, Reed JC, Merville MP, Bours V. Inhibition of the NF-kappa B transcription factor increases Bax expression in cancer cell lines. Oncogene 2001; 20:2805-13. [PMID: 11420692 DOI: 10.1038/sj.onc.1204343] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2000] [Revised: 09/27/2000] [Accepted: 02/06/2001] [Indexed: 11/09/2022]
Abstract
The NF-kappa B transcription factor has been shown to inhibit apoptosis in several experimental systems. We therefore investigated whether the expression of the Bax proapoptotic protein could be influenced by NF-kappa B activity. Increased Bax protein expression was detected in HCT116, OVCAR-3 and MCF7 cells stably expressing a mutated unresponsive I kappa B-alpha inhibitory protein that blocks NF-kappa B activity. Northern blots showed that bax mRNA expression was increased as a consequence of mutated I kappa B-alpha expression in HCT116 cells. A careful examination of the human bax gene promoter sequence showed three putative binding sites for NF-kappa B, and the kappa B2 site at position -687 could indeed bind NF-kappa B complexes in vitro. Transient transfection of a bax promoter luciferase construct in HCT116 cells showed that NF-kappa B proteins could partially inhibit the transactivation of the bax promoter by p53. Mutations or deletions of the kappa B sites, including kappa B2, indicated that this NF-kappa B-dependent inhibitory effect did not require NF-kappa B DNA-binding, and was thus an indirect effect. However, cotransfection of expression vectors for several known cofactors failed to identify a competition between p53 and NF-kappa B for a transcription coactivator. Our findings thus demonstrate for the first time that NF-kappa B regulates, through an indirect pathway, the bax gene expression.
Collapse
Affiliation(s)
- M Bentires-Alj
- Laboratory of Medical Chemistry and Medical Oncology, University of Liège, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
14
|
O'Sullivan BJ, MacDonald KP, Pettit AR, Thomas R. RelB nuclear translocation regulates B cell MHC molecule, CD40 expression, and antigen-presenting cell function. Proc Natl Acad Sci U S A 2000; 97:11421-6. [PMID: 11027342 PMCID: PMC17215 DOI: 10.1073/pnas.97.21.11421] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mice with targeted RelB mutations demonstrated an essential role for RelB in immune responses and in myeloid dendritic cell differentiation. Human studies suggested a more global transcriptional role in antigen presentation. Burkitt lymphoma cell lines were used as a model to examine the role of RelB in antigen presentation. After transient transfection of BJAB with RelB, strong nuclear expression of RelB-p50 heterodimers was associated with increased APC function and expression of CD40 and MHC class I. Antisense RelB in DG75 reduced antigen-presenting capacity and CD40-mediated up-regulation of MHC molecules. The data indicate that RelB transcriptional activity directly affects antigen presentation and CD40 synthesis. Stimulation of RelB transcriptional activity may provide a positive feedback loop for facilitating productive APC/T cell interactions.
Collapse
Affiliation(s)
- B J O'Sullivan
- Centre for Immunology and Cancer Research, University of Queensland, Princess Alexandra Hospital, Brisbane, Queensland, 4102, Australia
| | | | | | | |
Collapse
|
15
|
Xia Y, Chen S, Wang Y, Mackman N, Ku G, Lo D, Feng L. RelB modulation of IkappaBalpha stability as a mechanism of transcription suppression of interleukin-1alpha (IL-1alpha), IL-1beta, and tumor necrosis factor alpha in fibroblasts. Mol Cell Biol 1999; 19:7688-96. [PMID: 10523657 PMCID: PMC84809 DOI: 10.1128/mcb.19.11.7688] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the NF-kappaB/RelB family of transcription factors play important roles in the regulation of inflammatory and immune responses. RelB, a member of this family, has been characterized as a transcription activator and is involved in the constitutive NF-kappaB activity in lymphoid tissues. However, in a previous study we observed an overexpression of chemokines in RelB-deficient fibroblasts. Here we show that RelB is an important transcription suppressor in fibroblasts which limits the expression of proinflammatory mediators and may exert its function by modulating the stability of IkappaBalpha protein. Fibroblasts from relb(-/-) mice overexpress interleukin-1alpha (IL-1alpha), IL-1beta, and tumor necrosis factor alpha in response to lipopolysaccharide (LPS) stimulation. These cells have an augmented and prolonged LPS-inducible IKK activity and an accelerated degradation which results in a diminished level of IkappaBalpha protein, despite an upregulated IkappaBalpha mRNA expression. Consequently, NF-kappaB activity was augmented and postinduction repression of NF-kappaB activity was impaired in these cells. The increased kappaB-binding activity and cytokine overexpression was suppressed by introducing RelB cDNA or a dominant negative IkappaBalpha into relb(-/-) fibroblasts. Our findings suggest a novel transcription suppression function of RelB in fibroblasts.
Collapse
Affiliation(s)
- Y Xia
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Tsuji-Takayama K, Aizawa Y, Okamoto I, Kojima H, Koide K, Takeuchi M, Ikegami H, Ohta T, Kurimoto M. Interleukin-18 induces interferon-gamma production through NF-kappaB and NFAT activation in murine T helper type 1 cells. Cell Immunol 1999; 196:41-50. [PMID: 10486154 DOI: 10.1006/cimm.1999.1542] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interleukin-18 (IL-18) combined with anti-CD3 monoclonal antibody (mAb) induced interferon-gamma (IFN-gamma) production by T helper type 1 (Th1) cells. Neither IL-18 nor anti-CD3 mAb alone induced production of IFN-gamma. Although treatment with IL-18 alone induced full activation of NF-kappaB in Th1 cells, it was not sufficient for the production of IFN-gamma. To examine the importance of NF-kappaB activation in IFN-gamma production, we established Th1 cells which expressed a transdominant IkappaBalpha mutant. In these cells, activation of NF-kappaB and production of IFN-gamma by IL-18 were suppressed. On the other hand, we examined the T cell receptor (TCR)/CD3-mediated signaling pathway. FK506, an inhibitor of NFAT activation, inhibited IFN-gamma production by IL-18 without any effect on the NF-kappaB activation. We conclude that dual signaling consisting of IL-18-induced NF-kappaB activation and TCR/CD3-mediated NFAT activation is crucial for IFN-gamma production by IL-18 in murine Th1 cells.
Collapse
Affiliation(s)
- K Tsuji-Takayama
- Fujisaki Institute, Hayashibara Biochemical Laboratories, Inc., 675-1 Fujisaki, Okayama, 702-8006, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ferreira V, Sidénius N, Tarantino N, Hubert P, Chatenoud L, Blasi F, Körner M. In Vivo Inhibition of NF-κB in T-Lineage Cells Leads to a Dramatic Decrease in Cell Proliferation and Cytokine Production and to Increased Cell Apoptosis in Response to Mitogenic Stimuli, But Not to Abnormal Thymopoiesis. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.11.6442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
To understand the role of NF-κB complexes in T cell development and activation, we have generated transgenic mice in which RelA and c-Rel complexes were selectively inhibited in the T-lineage cells by specific expression of a trans-dominant form of IκBα. Transgene expression did not affect the thymic development, but led to lowered numbers of splenic T cells and to a dramatic decrease in the ex vivo proliferative response of splenic T lymphocytes. Analysis of IL-2 and IL-2Rα expression demonstrated that the perturbation of the proliferation response was not attributable to an abnormal expression of these genes. In contrast, expression of IL-4, IL-10, and IFN-γ was strongly inhibited in the transgenic T cells. The proliferative deficiency of the transgenic T cells was associated with an increased apoptosis. These results point out the involvement of NF-κB/Rel family proteins in growth signaling pathways by either regulating proteins involved in the IL-2 signaling or by functionally interfering with the cell cycle progression.
Collapse
Affiliation(s)
- Valérie Ferreira
- *Laboratoire d’Immunologie Cellulaire et Tissulaire, Centre National de la Recherche Scientifique UMR 7627, Batiment Centre d’Etudes et de Recherches Virologiques et Immunologiques, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Nicolai Sidénius
- †Unit of Molecular Genetics, DIBIT, Hospital San Raffaele, Milan, Italy; and
| | - Nadine Tarantino
- *Laboratoire d’Immunologie Cellulaire et Tissulaire, Centre National de la Recherche Scientifique UMR 7627, Batiment Centre d’Etudes et de Recherches Virologiques et Immunologiques, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Pascale Hubert
- *Laboratoire d’Immunologie Cellulaire et Tissulaire, Centre National de la Recherche Scientifique UMR 7627, Batiment Centre d’Etudes et de Recherches Virologiques et Immunologiques, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Lucienne Chatenoud
- ‡Institut National de la Santé et Research Médicale, Unit 25, Hôpital Necker Enfants Malades, Paris, France
| | - Francesco Blasi
- †Unit of Molecular Genetics, DIBIT, Hospital San Raffaele, Milan, Italy; and
| | - Marie Körner
- *Laboratoire d’Immunologie Cellulaire et Tissulaire, Centre National de la Recherche Scientifique UMR 7627, Batiment Centre d’Etudes et de Recherches Virologiques et Immunologiques, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
18
|
Asin S, Taylor JA, Trushin S, Bren G, Paya CV. Ikappakappa mediates NF-kappaB activation in human immunodeficiency virus-infected cells. J Virol 1999; 73:3893-903. [PMID: 10196284 PMCID: PMC104167 DOI: 10.1128/jvi.73.5.3893-3903.1999] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human monocytes and macrophages are persistent reservoirs of human immunodeficiency virus (HIV) type-1. Persistent HIV infection of these cells results in increased levels of NF-kappaB in the nucleus secondary to increased IkappaBalpha, IkappaBbeta, and IkappaBepsilon degradation, a mechanism postulated to regulate viral persistence. To characterize the molecular mechanisms regulating HIV-mediated degradation of IkappaB, we have sought to identify the regulatory domains of IkappaBalpha targeted by HIV infection. Using monocytic cells stably expressing different transdominant molecules of IkappaBalpha, we determined that persistent HIV infection of these cells targets the NH2 but not the COOH terminus of IkappaBalpha. Further analysis demonstrated that phosphorylation at S32 and S36 is necessary for HIV-dependent IkappaBalpha degradation and NF-kappaB activation. Of the putative N-terminal IkappaBalpha kinases, we demonstrated that the Ikappakappa complex, but not p90(rsk), is activated by HIV infection and mediates HIV-dependent NF-kappaB activation. Analysis of viral replication in cells that constitutively express IkappaBalpha negative transdominant molecules demonstrated a lack of correlation between virus-induced NF-kappaB (p65/p50) nuclear translocation and degree of viral persistence in human monocytes.
Collapse
Affiliation(s)
- S Asin
- Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
19
|
Abstract
Nucelar NFkappaB was analyzed in murine Th2 cells after stimulation via the TCR pathway. Signals delivered through the TCR/CD3 complex induced active NFkappaB translocation to the nucleus of Th2 cells after a late phase (24 h) of the activation process, which is in contrast to the rapid appearance of nuclear NFkappaB (3 h) in Th1 cells after the same stimulation. The slow kinetic of NFkappaB nuclear uptake in Th2 cells was not accelerated by CD28 triggering or under stimulation with antigen plus antigen-presenting cells. Th1 and Th2 cells were also different in the composition of NFkappaB complexes induced. Whereas in Th1 cells TCR triggering induced the presence of nuclear p50.p65 heterodimers, in Th2 cells the complexes induced were shown to be composed of p65 plus another NFkappaB protein distinct from p50. The delayed NFkappaB induction in Th2 cells was dependent on protein synthesis and the significance of this is discussed.
Collapse
Affiliation(s)
- B Dorado
- Centro Nacional de Biología Fundamental, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | | | | |
Collapse
|