1
|
Mouro PR, Sanches MN, Leite VBP, Chahine J. Exploring the Folding Mechanism of Dimeric Superoxide Dismutase. J Phys Chem B 2023; 127:1338-1349. [PMID: 36716437 DOI: 10.1021/acs.jpcb.2c08877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Cu/Zn Human Superoxide Dismutase (SOD1) is a dimeric metalloenzyme whose genetic mutations are directly related to amyotrophic lateral sclerosis (ALS), so understanding its folding mechanism is of fundamental importance. Currently, the SOD1 dimer formation is studied via molecular dynamics simulations using a simplified structure-based model and an all-atom model. Results from the simplified model reveal a mechanism dependent on distances between monomers, which are limited by constraints to mimic concentration dependence. The stability of intermediates (during the int state) is significantly affected by this distance, as well as by the presence of two folded monomers prior to dimer formation. The kinetics of interface formation are also highly dependent on the separation distance. The folding temperature of the dimer is about 4.2% higher than that of the monomer, a value not too different from experimental data. All-atom simulations on the apo dimer give binding free energy between monomers similar to experimental values. An intermediate state is evident for the apo form at a separation distance between monomers slightly larger than the native distance which has little formed interface between monomers. We have shown that this intermediate is stabilized by non-native intra- and intercontacts.
Collapse
Affiliation(s)
- Paulo R Mouro
- São Paulo State University (UNESP), IBILCE, São José do Rio Preto15054-000, Brazil
| | - Murilo N Sanches
- São Paulo State University (UNESP), IBILCE, São José do Rio Preto15054-000, Brazil
| | - Vitor B P Leite
- São Paulo State University (UNESP), IBILCE, São José do Rio Preto15054-000, Brazil
| | - Jorge Chahine
- São Paulo State University (UNESP), IBILCE, São José do Rio Preto15054-000, Brazil
| |
Collapse
|
2
|
Steimbrüch BA, Sartorio MG, Cortez N, Albanesi D, Lisa MN, Repizo GD. The distinctive roles played by the superoxide dismutases of the extremophile Acinetobacter sp. Ver3. Sci Rep 2022; 12:4321. [PMID: 35279679 PMCID: PMC8918354 DOI: 10.1038/s41598-022-08052-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/28/2022] [Indexed: 11/09/2022] Open
Abstract
Acinetobacter sp. Ver3 is a polyextremophilic strain characterized by a high tolerance to radiation and pro-oxidants. The Ver3 genome comprises the sodB and sodC genes encoding an iron (AV3SodB) and a copper/zinc superoxide dismutase (AV3SodC), respectively; however, the specific role(s) of these genes has remained elusive. We show that the expression of sodB remained unaltered in different oxidative stress conditions whereas sodC was up-regulated in the presence of blue light. Besides, we studied the changes in the in vitro activity of each SOD enzyme in response to diverse agents and solved the crystal structure of AV3SodB at 1.34 Å, one of the highest resolutions achieved for a SOD. Cell fractionation studies interestingly revealed that AV3SodB is located in the cytosol whereas AV3SodC is also found in the periplasm. Consistently, a bioinformatic analysis of the genomes of 53 Acinetobacter species pointed out the presence of at least one SOD type in each compartment, suggesting that these enzymes are separately required to cope with oxidative stress. Surprisingly, AV3SodC was found in an active state also in outer membrane vesicles, probably exerting a protective role. Overall, our multidisciplinary approach highlights the relevance of SOD enzymes when Acinetobacterspp. are confronted with oxidizing agents.
Collapse
Affiliation(s)
- Bruno Alejandro Steimbrüch
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Mariana Gabriela Sartorio
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Néstor Cortez
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Daniela Albanesi
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo y Esmeralda, S2002LRK, Rosario, Argentina.,Plataforma de Biología Estructural y Metabolómica (PLABEM), Ocampo y Esmeralda, S2002LRK, Rosario, Argentina
| | - María-Natalia Lisa
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo y Esmeralda, S2002LRK, Rosario, Argentina. .,Plataforma de Biología Estructural y Metabolómica (PLABEM), Ocampo y Esmeralda, S2002LRK, Rosario, Argentina.
| | - Guillermo Daniel Repizo
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina.
| |
Collapse
|
3
|
Furukawa Y, Shintani A, Kokubo T. A dual role of cysteine residues in the maturation of prokaryotic Cu/Zn-superoxide dismutase. Metallomics 2021; 13:6353531. [PMID: 34402915 DOI: 10.1093/mtomcs/mfab050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/05/2021] [Indexed: 11/14/2022]
Abstract
Bacterial Cu/Zn-superoxide dismutase (SodC) is an enzyme catalyzing the disproportionation of superoxide radicals, to which the binding of copper and zinc ions and the formation of an intramolecular disulfide bond are essential. We previously showed that Escherichia coli SodC (SodC) was prone to spontaneous degradation in vivo in an immature form prior to the introduction of the disulfide bond. The post-translational maintenance involving the metal binding and the disulfide formation would thus control the stability as well as the enzymatic function of SodC; however, a mechanism of the SodC maturation remains obscure. Here, we show that the disulfide-reduced SodC can secure a copper ion as well as a zinc ion through the thiolate groups. Furthermore, the disulfide-reduced SodC was found to bind cuprous and cupric ions more tightly than SodC with the disulfide bond. The thiolate groups ligating the copper ion were then autooxidized to form the intramolecular disulfide bond, leading to the production of enzymatically active SodC. Based upon the experiments in vitro, therefore, we propose a mechanism for the activation of SodC, in which the conserved Cys residues play a dual role: the acquisition of a copper ion for the enzymatic activity and the formation of the disulfide bond for the structural stabilization.
Collapse
Affiliation(s)
- Yoshiaki Furukawa
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, Yokohama 223-8522, Japan
| | - Atsuko Shintani
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, Yokohama 223-8522, Japan
| | - Teppei Kokubo
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, Yokohama 223-8522, Japan
| |
Collapse
|
4
|
Abstract
Copper is a redox-active transition metal ion required for the function of many essential human proteins. For biosynthesis of proteins coordinating copper, the metal may bind before, during or after folding of the polypeptide. If the metal binds to unfolded or partially folded structures of the protein, such coordination may modulate the folding reaction. The molecular understanding of how copper is incorporated into proteins requires descriptions of chemical, thermodynamic, kinetic and structural parameters involved in the formation of protein-metal complexes. Because free copper ions are toxic, living systems have elaborate copper-transport systems that include particular proteins that facilitate efficient and specific delivery of copper ions to target proteins. Therefore, these pathways become an integral part of copper protein folding in vivo. This review summarizes biophysical-molecular in vitro work assessing the role of copper in folding and stability of copper-binding proteins as well as protein-protein copper exchange reactions between human copper transport proteins. We also describe some recent findings about the participation of copper ions and copper proteins in protein misfolding and aggregation reactions in vitro.
Collapse
|
5
|
Wang X, Song Q, Wang Z, Xie Y, Zhang D, Ye K, Han F. Characterizations of intracellular copper/zinc superoxide dismutase from yellow drum (Nibea albiflora, Richardson 1846) and its gene expressions under the ammonia/nitrite stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 214:105254. [PMID: 31357109 DOI: 10.1016/j.aquatox.2019.105254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/11/2019] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
Intracellular copper/zinc superoxide dismutase (icCuZnSOD) is a member of superoxide dismutase family that is capable of catalyzing the superoxide radicals into either hydrogen peroxide (H2O2) or ordinary molecular oxygen (O2). Unlike mammals, the study of icCuZnSOD in aquatic animals is still in the infancy stage. Here, we identified the cDNA of na-iccuznsod from yellow drum (Nibea albiflora, Richardson 1846) and obtained its fusion protein for the first time. The mRNA expressions of na-iccuznsod were investigated in different tissues, and the dominant distribution was found in head-kidney, followed by brain, liver, heart, and gill. The effects of ammonia-N/nitrite-N on the mRNA expressions of na-iccuznsod were investigated. Na-iccuznsod transcription levels showed a general tendency of an initial up-regulation followed by a down-regulation in liver, gill, and head-kidney when yellow drum were exposed to ammonia-N/nitrite-N at the lethal concentration 50 at 96 h post-treatment, suggesting the important role of Na-icCuZnSOD in eliminating reactive oxygen species (ROS) induced by ammonia-N/nitrite-N. In addition, the characteristics of Na-icCuZnSOD protein and its comparative analysis with Na-ecCuZnSOD were investigated. Na-icCuZnSOD protein showed high enzyme stabilities over a wide range of temperature (10 to 60 °C) and pH (4.9 to 11.0), indicating its broad in vitro applications in many industries. Furthermore, the comparative analysis of Na-icCuZnSOD and Na-ecCuZnSOD gives a new perspective for the study of their structure-function relationship. Collectively, the present study will advance our understanding of the toxicity of ammonia-N/nitrite-N on yellow drum through testing the mRNA expression of iccuznsod gene, and broaden our knowledge of the protein characteristics of icCuZnSOD from fish.
Collapse
Affiliation(s)
- Xiaolong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, PR China
| | - Qing Song
- MIIT Key Laboratory of Flexible Electronics & Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics & Xi'an Key Laboratory of Biomedical Materials and Engineering, Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, PR China
| | - Zhiyong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, PR China
| | - Yangjie Xie
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, PR China
| | - Dongling Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, PR China
| | - Kun Ye
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, PR China
| | - Fang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, PR China.
| |
Collapse
|
6
|
Robinett NG, Culbertson EM, Peterson RL, Sanchez H, Andes DR, Nett JE, Culotta VC. Exploiting the vulnerable active site of a copper-only superoxide dismutase to disrupt fungal pathogenesis. J Biol Chem 2018; 294:2700-2713. [PMID: 30593499 DOI: 10.1074/jbc.ra118.007095] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/21/2018] [Indexed: 01/08/2023] Open
Abstract
Copper-only superoxide dismutases (SODs) represent a new class of SOD enzymes that are exclusively extracellular and unique to fungi and oomycetes. These SODs are essential for virulence of fungal pathogens in pulmonary and disseminated infections, and we show here an additional role for copper-only SODs in promoting survival of fungal biofilms. The opportunistic fungal pathogen Candida albicans expresses three copper-only SODs, and deletion of one of them, SOD5, eradicated candidal biofilms on venous catheters in a rodent model. Fungal copper-only SODs harbor an irregular active site that, unlike their Cu,Zn-SOD counterparts, contains a copper co-factor unusually open to solvent and lacks zinc for stabilizing copper binding, making fungal copper-only SODs highly vulnerable to metal chelators. We found that unlike mammalian Cu,Zn-SOD1, C. albicans SOD5 indeed rapidly loses its copper to metal chelators such as EDTA, and binding constants for Cu(II) predict that copper-only SOD5 has a much lower affinity for copper than does Cu,Zn-SOD1. We screened compounds with a variety of indications and identified several metal-binding compounds, including the ionophore pyrithione zinc (PZ), that effectively inhibit C. albicans SOD5 but not mammalian Cu,Zn-SOD1. We observed that PZ both acts as an ionophore that promotes uptake of toxic metals and inhibits copper-only SODs. The pros and cons of a vulnerable active site for copper-only SODs and the possible exploitation of this vulnerability in antifungal drug design are discussed.
Collapse
Affiliation(s)
- Natalie G Robinett
- From the Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205 and
| | - Edward M Culbertson
- From the Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205 and
| | - Ryan L Peterson
- From the Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205 and
| | - Hiram Sanchez
- the Departments of Medicine and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53726
| | - David R Andes
- the Departments of Medicine and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53726
| | - Jeniel E Nett
- the Departments of Medicine and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53726
| | - Valeria C Culotta
- From the Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205 and
| |
Collapse
|
7
|
Abstract
Nucleic acid enzymes require metal ions for activity, and many recently discovered enzymes can use multiple metals, either binding to the scissile phosphate or also playing an allosteric role.
Collapse
Affiliation(s)
- Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha
- China
| | - Juewen Liu
- Department of Chemistry
- Water Institute, and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| |
Collapse
|
8
|
Luangwattananun P, Eiamphungporn W, Songtawee N, Bülow L, Isarankura Na Ayudhya C, Prachayasittikul V, Yainoy S. Improving enzymatic activities and thermostability of a tri-functional enzyme with SOD, catalase and cell-permeable activities. J Biotechnol 2017; 247:50-59. [PMID: 28274879 DOI: 10.1016/j.jbiotec.2017.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 10/20/2022]
Abstract
Synergistic action of major antioxidant enzymes, e.g., superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) is known to be more effective than the action of any single enzyme. Recently, we have engineered a tri-functional enzyme, 6His-MnSOD-TAT/CAT-MnSOD (M-TAT/CM), with SOD, CAT and cell-permeable activities. The protein actively internalized into the cells and showed superior protection against oxidative stress-induced cell death over native enzymes fused with TAT. To improve its molecular size, enzymatic activity and stability, in this study, MnSOD portions of the engineered protein were replaced by CuZnSOD, which is the smallest and the most heat resistant SOD isoform. The newly engineered protein, CAT-CuZnSOD/6His-CuZnSOD-TAT (CS/S-TAT), had a 42% reduction in molecular size and an increase in SOD and CAT activities by 22% and 99%, respectively. After incubation at 70°C for 10min, the CS/S-TAT retained residual SOD activity up to 54% while SOD activity of the M-TAT/CM was completely abolished. Moreover, the protein exhibited a 5-fold improvement in half-life at 70°C. Thus, this work provides insights into the design and synthesis of a smaller but much more stable multifunctional antioxidant enzyme with ability to enter mammalian cells for further application as protective/therapeutic agent against oxidative stress-related conditions.
Collapse
Affiliation(s)
- Piriya Luangwattananun
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Warawan Eiamphungporn
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Napat Songtawee
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Leif Bülow
- Pure and Applied Biochemistry, Department of Chemistry, Lund University, Lund SE-221 00, Sweden
| | | | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Sakda Yainoy
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
9
|
Tuteja N, Mishra P, Yadav S, Tajrishi M, Baral S, Sabat SC. Heterologous expression and biochemical characterization of a highly active and stable chloroplastic CuZn-superoxide dismutase from Pisum sativum. BMC Biotechnol 2015; 15:3. [PMID: 25887674 PMCID: PMC4333176 DOI: 10.1186/s12896-015-0117-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/27/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND CuZn-Superoxide dismutase (SOD) is a unique enzyme, which can catalyzes the dismutation of inevitable metabolic product i.e.; superoxide anion into molecular oxygen and hydrogen peroxide. The enzyme has gained wide interest in pharmaceutical industries due to its highly acclaimed antioxidative properties. The recombinant expression of this protein in its enzymatically active and stable form is highly desired and hence optimization of culture conditions and characterization of the related biochemical properties are essential to explore the significance of the enzyme in physiological, therapeutic, structural and transgenic research. RESULTS High-level expression of the chloroplastic isoform of Pisum sativum CuZn-SOD was achieved at 18°C, upon isopropyl β-D-1-thiogalactopyranoside induction and the process was optimized for maximum recovery of the protein in its soluble (enzymatically active) form. Both crude and purified protein fractions display significant increase in activity following supplementation of defined concentration Cu (CuSO4) and Zn (ZnSO4). Yield of the purified recombinant protein was ~ 4 mg L(-1) of culture volume and the bacterial biomass was ~ 4.5 g L(-1). The recombinant pea chloroplastic SOD was found to possess nearly 6 fold higher superoxide dismutase activity and the peroxidase activity was also 5 fold higher as compared to commercially available CuZn-superoxide dismutase. The computational, spectroscopic and biochemical characterization reveals that the protein harbors all the characteristics features of this class of enzyme. The enzyme was found to be exceptionally stable as evident from pH and temperature incubation studies and maintenance of SOD activity upon prolonged storage. CONCLUSIONS Overexpression and purification strategy presented here describes an efficient protocol for the production of a highly active and stable CuZn-superoxide dismutase in its recombinant form in E. coli system. The strategy can be utilized for the large-scale preparation of active CuZn-superoxide dismutase and thus it has wide application in pharmaceutical industries and also for elucidating the potential of this protein endowed with exceptional stability and activity.
Collapse
Affiliation(s)
- Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Panchanand Mishra
- Stress Biology Laboratory, Gene Function and Regulation, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India.
| | - Sandep Yadav
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Marjan Tajrishi
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Sudhir Baral
- Stress Biology Laboratory, Gene Function and Regulation, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India.
| | - Surendra Chandra Sabat
- Stress Biology Laboratory, Gene Function and Regulation, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India.
| |
Collapse
|
10
|
The megavirus chilensis Cu,Zn-superoxide dismutase: the first viral structure of a typical cellular copper chaperone-independent hyperstable dimeric enzyme. J Virol 2014; 89:824-32. [PMID: 25355875 DOI: 10.1128/jvi.02588-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Giant viruses able to replicate in Acanthamoeba castellanii penetrate their host through phagocytosis. After capsid opening, a fusion between the internal membranes of the virion and the phagocytic vacuole triggers the transfer in the cytoplasm of the viral DNA together with the DNA repair enzymes and the transcription machinery present in the particles. In addition, the proteome analysis of purified mimivirus virions revealed the presence of many enzymes meant to resist oxidative stress and conserved in the Mimiviridae. Megavirus chilensis encodes a predicted copper, zinc superoxide dismutase (Cu,Zn-SOD), an enzyme known to detoxify reactive oxygen species released in the course of host defense reactions. While it was thought that the metal ions are required for the formation of the active-site lid and dimer stabilization, megavirus chilensis SOD forms a very stable metal-free dimer. We used electron paramagnetic resonance (EPR) analysis and activity measurements to show that the supplementation of the bacterial culture with copper and zinc during the recombinant expression of Mg277 is sufficient to restore a fully active holoenzyme. These results demonstrate that the viral enzyme's activation is independent of a chaperone both for disulfide bridge formation and for copper incorporation and suggest that its assembly may not be as regulated as that of its cellular counterparts. A SOD protein is encoded by a variety of DNA viruses but is absent from mimivirus. As in poxviruses, the enzyme might be dispensable when the virus infects Acanthamoeba cells but may allow megavirus chilensis to infect a broad range of eukaryotic hosts. IMPORTANCE Mimiviridae are giant viruses encoding more than 1,000 proteins. The virion particles are loaded with proteins used by the virus to resist the vacuole's oxidative stress. The megavirus chilensis virion contains a predicted copper, zinc superoxide dismutase (Cu,Zn-SOD). The corresponding gene is present in some megavirus chilensis relatives but is absent from mimivirus. This first crystallographic structure of a viral Cu,Zn-SOD highlights the features that it has in common with and its differences from cellular SODs. It corresponds to a very stable dimer of the apo form of the enzyme. We demonstrate that upon supplementation of the growth medium with Cu and Zn, the recombinant protein is fully active, suggesting that the virus's SOD activation is independent of a copper chaperone for SOD generally used by eukaryotic SODs.
Collapse
|
11
|
Sakurai Y, Anzai I, Furukawa Y. A primary role for disulfide formation in the productive folding of prokaryotic Cu,Zn-superoxide dismutase. J Biol Chem 2014; 289:20139-49. [PMID: 24917671 DOI: 10.1074/jbc.m114.567677] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Enzymatic activation of Cu,Zn-superoxide dismutase (SOD1) requires not only binding of a catalytic copper ion but also formation of an intramolecular disulfide bond. Indeed, the disulfide bond is completely conserved among all species possessing SOD1; however, it remains obscure how disulfide formation controls the enzymatic activity of SOD1. Here, we show that disulfide formation is a primary event in the folding process of prokaryotic SOD1 (SodC) localized to the periplasmic space. Escherichia coli SodC was found to attain β-sheet structure upon formation of the disulfide bond, whereas disulfide-reduced SodC assumed little secondary structure even in the presence of copper and zinc ions. Moreover, reduction of the disulfide bond made SodC highly susceptible to proteolytic degradation. We thus propose that the thiol-disulfide status in SodC controls the intracellular stability of this antioxidant enzyme and that the oxidizing environment of the periplasm is required for the enzymatic activation of SodC.
Collapse
Affiliation(s)
- Yasuyuki Sakurai
- From the Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, Yokohama, Kanagawa 223-8522 Japan
| | - Itsuki Anzai
- From the Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, Yokohama, Kanagawa 223-8522 Japan
| | - Yoshiaki Furukawa
- From the Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, Yokohama, Kanagawa 223-8522 Japan
| |
Collapse
|
12
|
Mechanistic study of CuZn-SOD from Ipomoea carnea mutated at dimer interface: Enhancement of peroxidase activity upon monomerization. Biochimie 2014; 97:181-93. [DOI: 10.1016/j.biochi.2013.10.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 10/14/2013] [Indexed: 12/22/2022]
|
13
|
Engineering a thermo-stable superoxide dismutase functional at sub-zero to >50°C, which also tolerates autoclaving. Sci Rep 2012; 2:387. [PMID: 22548128 PMCID: PMC3339387 DOI: 10.1038/srep00387] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 03/27/2012] [Indexed: 01/16/2023] Open
Abstract
Superoxide dismutase (SOD) is a critical enzyme associated with controlling oxygen toxicity arising out of oxidative stress in any living system. A hyper-thermostable SOD isolated from a polyextremophile higher plant Potentilla atrosanguinea Lodd. var. argyrophylla (Wall. ex Lehm.) was engineered by mutation of a single amino acid that enhanced the thermostability of the enzyme to twofold. The engineered enzyme was functional from sub-zero temperature to >50°C, tolerated autoclaving (heating at 121°C, at a pressure of 1.1 kg per square cm for 20 min) and was resistant to proteolysis. The present work is the first example to enhance the thermostability of a hyper-thermostable protein and has potential to application to other proteins for enhancing thermostability.
Collapse
|
14
|
Role of metal in folding and stability of copper proteins in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1594-603. [PMID: 22306006 DOI: 10.1016/j.bbamcr.2012.01.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 01/09/2012] [Accepted: 01/18/2012] [Indexed: 01/04/2023]
Abstract
Metal coordination is required for function of many proteins. For biosynthesis of proteins coordinating a metal, the question arises if the metal binds before, during or after folding of the polypeptide. Moreover, when the metal is bound to the protein, how does its coordination affect biophysical properties such as stability and dynamics? Understanding how metals are utilized by proteins in cells on a molecular level requires accurate descriptions of the thermodynamic and kinetic parameters involved in protein-metal complexes. Copper is one of the essential transition metals found in the active sites of many key proteins. To avoid toxicity of free copper ions, living systems have developed elaborate copper-transport systems that involve dedicated proteins that facilitate efficient and specific delivery of copper to target proteins. This review describes in vitro and in silico biophysical work assessing the role of copper in folding and stability of copper-binding proteins. Examples of proteins discussed are: a blue-copper protein (Pseudomonas aeruginosa azurin), members of copper-transport systems (bacterial CopZ, human Atox1 and ATP7B domains) and multi-copper ferroxidases (yeast Fet3p and human ceruloplasmin). The consequences of interactions between copper proteins and platinum-complexes are also discussed. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
|
15
|
Dolashka P, Moshtanska V, Dolashki A, Velkova L, Rao GS, Angelova M, Betzel C, Voelter W, Atanasov B. Structural analysis and molecular modelling of the Cu/Zn-SOD from fungal strain Humicola lutea 103. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2011; 83:67-73. [PMID: 21907612 DOI: 10.1016/j.saa.2011.07.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 07/13/2011] [Indexed: 05/31/2023]
Abstract
The native form of Cu/Zn-superoxide dismutase, isolated from fungal strain Humicola lutea 103 is a homodimer that coordinates one Cu(2+) and one Zn(2+) per monomer. Cu(2+) and Zn(2+) ions play crucial roles in enzyme activity and structural stability, respectively. It was established that HLSOD shows high pH and temperature stability. Thermostability of the glycosylated enzyme Cu/Zn-SOD, isolated from fungal strain H. lutea 103, was determined by CD spectroscopy. Determination of reversibility toward thermal denaturation for HLSOD allowed several thermodynamic parameters to be calculated. In this communication we report the conditions under which reversible denaturation of HLSOD exists. The narrow range over which the system is reversible has been determined using the strongest test of two important thermodynamic independent variables (T and pH). Combining both these variables, the "phase diagram" was determined, as a result of which the real thermodynamic parameters (ΔC(p), ΔH(exp)°, and ΔG(exp)°) was established. Because very narrow pH-interval of transitions we assume they are as result of overlapping of two simple transitions. It was found that ΔH(o) is independent from pH with a value of 1.3 kcal/mol and 2.8 kcal/mol for the first and the second transition, respectively. ΔG(o) was pH-dependent in all studied pH-interval. This means that the transitions are entropically driven, these. Based on this, these processes can be described as hydrophobic rearrangement of the quaternary structure. It was also found that glycosylation does not influence the stability of the enzyme because the carbohydrate chain is exposed on the surface of the molecule.
Collapse
Affiliation(s)
- Pavlina Dolashka
- Institute of Organic Chemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Falahati M, Ma'mani L, Saboury AA, Shafiee A, Foroumadi A, Badiei AR. Aminopropyl-functionalized cubic Ia3d mesoporous silica nanoparticle as an efficient support for immobilization of superoxide dismutase. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1814:1195-1202. [PMID: 21530691 DOI: 10.1016/j.bbapap.2011.04.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/05/2011] [Accepted: 04/09/2011] [Indexed: 11/25/2022]
Abstract
In this research, the immobilization of superoxide dismutase (SOD) onto aminopropyl-functionalized KIT-6 [n-PrNH(2)-KIT-6] was investigated. This organo-functionalized mesoporous silica nanoparticle was prepared using a non-ionic surfactant and was fully characterized by XRD, nitrogen adsorption-desorption isotherm assay, IR and TGA techniques. An activity assay demonstrated that the immobilized SOD had a higher activity than the free enzyme. Further investigations using FT-IR, circular dichroism (CD), and probe 1-anilino-8-naphthalene sulfonate (ANS) fluorescence intensity measurements indicated that the structure of the enzyme did not change upon binding to the mesoporous silica, and that immobilized SOD was also less affected by higher temperatures. The melting temperatures of the free and immobilized enzymes were measured by differential scanning calorimetry (DSC), which showed that a fraction of immobilized enzyme was more stable and revealed that immobilized enzyme was partly reversible.
Collapse
Affiliation(s)
- Mojtaba Falahati
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
17
|
Kitamura F, Fujimaki N, Okita W, Hiramatsu H, Takeuchi H. Structural Instability and Cu-Dependent Pro-Oxidant Activity Acquired by the Apo Form of Mutant SOD1 Associated with Amyotrophic Lateral Sclerosis. Biochemistry 2011; 50:4242-50. [DOI: 10.1021/bi200338h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Furi Kitamura
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai 980-8578, Japan
| | - Nobuhiro Fujimaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai 980-8578, Japan
| | - Wakana Okita
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai 980-8578, Japan
| | - Hirotsugu Hiramatsu
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai 980-8578, Japan
| | - Hideo Takeuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai 980-8578, Japan
| |
Collapse
|
18
|
Kiliç GA, Kutlu M. Effects of exogenous metallothionein against thallium-induced oxidative stress in rat liver. Food Chem Toxicol 2010; 48:980-7. [PMID: 20079794 DOI: 10.1016/j.fct.2010.01.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 12/30/2009] [Accepted: 01/11/2010] [Indexed: 11/26/2022]
Abstract
Metallothionein (MT) is a low-molecular weight sulfur-rich protein that plays role in metal homeostasis/detoxification and radical scavenging. The following study investigated the ability of exogenous MT to protect against oxidative damage induced by thallium (TI) in rat liver. Male Wistar rats were divided into four groups; a control and three experimental groups. The control group received physiological saline. Group 1 animals were injected with thallium acetate intraperitoneally (i.p.) at a single dose of LD(50) (32 mg/kg). In group 2 and group 3, metallothionein I was administrated once at two different doses (1 or 2.5mg/kg i.p., respectively) 1h before TI intoxication. Levels of endogenous antioxidants, oxidative stress markers were measured and histopathological examinations were performed 4 days after TI administration. TI accumulation in liver decreased related to the dose of MT. Mostly all of the alterations in the levels antioxidants restored to normal levels in MT administrated animals. H(2)O(2) levels and lipid peroxidation decreased, integrity of hepatocytes and membranous structures inside the cells were preserved. The toxic effects of TI were modulated in MT administrated animals particularly at the dose of 2.5mg/kg. These findings suggest an active role of exogenous MT against TI-induced oxidative stress in rat liver.
Collapse
Affiliation(s)
- Gözde Aydoğan Kiliç
- Faculty of Science, Department of Biology, Anadolu University, 26470 Eskişehir, Turkey.
| | | |
Collapse
|
19
|
Nedeva T, Dolashka-Angelova P, Moshtanska V, Voelter W, Petrova V, Kujumdzieva A. Purification and partial characterization of Cu/Zn superoxide dismutase from Kluyveromyces marxianus yeast. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:3529-36. [DOI: 10.1016/j.jchromb.2009.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 06/12/2009] [Accepted: 08/11/2009] [Indexed: 10/20/2022]
|
20
|
Sundaram S, Khanna S, Khanna-Chopra R. Purification and characterization of thermostable monomeric chloroplastic Cu/Zn superoxide dismutase from Chenopodium murale. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2009; 15:199-209. [PMID: 23572930 PMCID: PMC3550362 DOI: 10.1007/s12298-009-0024-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Superoxide dismutase is the first line of defense against oxidative stress and thus helps in maintaining the cellular integrity. Chenopodium murale, a weed species adapted to widely varying climatic conditions faces extremes of temperatures ranging from 4 °C to 45 °C (Tmax) during growth and development. From this plant, we have purified a thermostable chloroplastic Cu/Zn superoxide dismutase (Chl Cu/Zn SOD) to homogeneity using minimal steps. Incubation of lysed chloroplasts at 70 °C for 1h reduced the interference of cytosolic SOD isoforms and reduced the protein content by 75 %. Chloroplastic SOD was purified from the heat stable fraction by gel filtration chromatography. The purified enzyme had a native molecular weight of 24 kDa, a half-life of 47.9 min at 80 °C and showed a single band at 24 kDa on SDS-PAGE. The N-terminus contained the conserved amino acids of chl Cu-Zn SOD. The Chl Cu/Zn SOD protein and its activity were enhanced under very high temperatures, high light intensities and in water stress/recovered C. murale plants under controlled environment conditions. Chl Cu/Zn SOD was also one of the predominant isoforms throughout growing period in field grown plants and declined during senescence. The Chl Cu/Zn SOD activity increased with the increase in ambient temperature and peaked in April with a 45 °C Tmax. These results clearly indicate that the chloroplastic Cu/Zn SOD is stably expressed at extreme environmental conditions. The presence of stable monomeric chloroplastic Cu/Zn SOD might help the plants to maintain the cellular homeostatis against adverse environmental conditions.
Collapse
Affiliation(s)
- Sabarinath Sundaram
- />Water Technology Centre, Indian Agricultural Research Institute, New Delhi, 110 012 India
| | - Sunil Khanna
- />Department of Biotechnology and Bioinformatics, NIIT Institute of Information Technology (TNI), NIIT House, Balaji Estate, Kalkaji, New Delhi, 110 019 India
| | - Renu Khanna-Chopra
- />Water Technology Centre, Indian Agricultural Research Institute, New Delhi, 110 012 India
| |
Collapse
|
21
|
D'Orazio M, Cervoni L, Giartosio A, Rotilio G, Battistoni A. Thermal stability and redox properties of M. tuberculosis CuSOD. Arch Biochem Biophys 2009; 486:119-24. [PMID: 19383490 DOI: 10.1016/j.abb.2009.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 04/07/2009] [Accepted: 04/11/2009] [Indexed: 11/19/2022]
Abstract
The superoxide dismutase from Mycobacterium tuberculosis is the only Cu-containing superoxide dismutase that lacks zinc in the active site. To explore the structural properties of this unusual enzyme, we have investigated its stability by differential scanning calorimetry. We have found that the holo-enzyme is significantly more stable than the apo-protein or the partially metallated enzyme, but that its melting temperature is markedly lower than that of all the other characterized eukaryotic and prokaryotic Cu,Zn superoxide dismutases. We have also observed that, unlike the zinc-free eukaryotic or bacterial enzymes, the active site copper of the mycobacterial enzyme is not reduced by ascorbate, confirming that its redox properties are comparable to those typical of the enzymes containing zinc in the active site. Our findings highlight the role of zinc in conferring stability to Cu,Zn superoxide dismutases and indicate that the structural rearrangements observed in M. tuberculosis Cu,SOD compensate for the absence of zinc in achieving a fully active enzyme.
Collapse
|
22
|
Törő I, Petrutz C, Pacello F, D’Orazio M, Battistoni A, Djinović-Carugo K. Structural Basis of Heme Binding in the Cu,Zn Superoxide Dismutase from Haemophilus ducreyi. J Mol Biol 2009; 386:406-18. [DOI: 10.1016/j.jmb.2008.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Revised: 11/28/2008] [Accepted: 12/02/2008] [Indexed: 12/01/2022]
|
23
|
D'Orazio M, Scotti R, Nicolini L, Cervoni L, Rotilio G, Battistoni A, Gabbianelli R. Regulatory and structural properties differentiating the chromosomal and the bacteriophage-associated Escherichia coli O157:H7 Cu, Zn superoxide dismutases. BMC Microbiol 2008; 8:166. [PMID: 18828904 PMCID: PMC2569942 DOI: 10.1186/1471-2180-8-166] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 10/01/2008] [Indexed: 11/10/2022] Open
Abstract
Background Highly virulent enterohemorrhagic Escherichia coli O157:H7 strains possess three sodC genes encoding for periplasmic Cu, Zn superoxide dismutases: sodC, which is identical to the gene present in non-pathogenic E. coli strains, and sodC-F1 and sodC-F2, two nearly identical genes located within lambdoid prophage sequences. The significance of this apparent sodC redundancy in E. coli O157:H7 has not yet been investigated. Results We report that strains deleted of one or more sodC genes are less resistant than the wild type strain to a challenge with hydrogen peroxide, thus confirming their involvement in the bacterial antioxidant apparatus. To understand if the different sodC genes have truly overlapping functions, we have carried out a comparison of the functional, structural and regulatory properties of the various E. coli O157:H7 SodC enzymes. We have found that the chromosomal and prophagic sodC genes are differentially regulated in vitro. sodC is exclusively expressed in aerobic cultures grown to the stationary phase. In contrast, sodC-F1 and sodC-F2 are expressed also in the logarithmic phase and in anaerobic cultures. Moreover, the abundance of SodC-F1/SodC-F2 increases with respect to that of SodC in bacteria recovered from infected Caco-2 cells, suggesting higher expression/stability of SodC-F1/SodC-F2 in intracellular environments. This observation correlates with the properties of the proteins. In fact, monomeric SodC and dimeric SodC-F1/SodC-F2 are characterized by sharp differences in catalytic activity, metal affinity, protease resistance and stability. Conclusion Our data show that the chromosomal and bacteriophage-associated E. coli O157:H7 sodC genes have different regulatory properties and encode for proteins with distinct structural/functional features, suggesting that they likely play distinctive roles in bacterial protection from reactive oxygen species. In particular, dimeric SodC-F1 and SodC-F2 possess physico-chemical properties which make these enzymes more suitable than SodC to resist the harsh environmental conditions which are encountered by bacteria within the infected host.
Collapse
Affiliation(s)
- Melania D'Orazio
- Department of Biology, University of Rome, Tor Vergata, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
24
|
Ammendola S, Pasquali P, Pacello F, Rotilio G, Castor M, Libby SJ, Figueroa-Bossi N, Bossi L, Fang FC, Battistoni A. Regulatory and structural differences in the Cu,Zn-superoxide dismutases of Salmonella enterica and their significance for virulence. J Biol Chem 2008; 283:13688-99. [PMID: 18362154 DOI: 10.1074/jbc.m710499200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Many of the most virulent strains of Salmonella enterica produce two distinct Cu,Zn-superoxide dismutases (SodCI and SodCII). The bacteriophage-encoded SodCI enzyme makes the greater contribution to Salmonella virulence. We have performed a detailed comparison of the functional, structural, and regulatory properties of the Salmonella SodC enzymes. Here we demonstrate that SodCI and SodCII differ with regard to specific activity, protease resistance, metal affinity, and peroxidative activity, with dimeric SodCI exhibiting superior stability and activity. In particular, monomeric SodCII is unable to retain its catalytic copper ion in the absence of zinc. We have also found that SodCI and SodCII are differentially affected by oxygen, zinc availability, and the transcriptional regulator FNR. SodCII is strongly down-regulated under anaerobic conditions and dependent on the high affinity ZnuABC zinc transport system, whereas SodCI accumulation in vitro and within macrophages is FNR-dependent. We have confirmed earlier findings that SodCII accumulation in intracellular Salmonella is negligible, whereas SodCI is strongly up-regulated in macrophages. Our observations demonstrate that differences in expression, activity, and stability help to account for the unique contribution of the bacteriophage-encoded SodCI enzyme to Salmonella virulence.
Collapse
Affiliation(s)
- Serena Ammendola
- Dipartimento di Biologia, Università di Roma Tor Vergata, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Catacchio B, D'Orazio M, Battistoni A, Chiancone E. The dimeric assembly of Photobacterium leiognathi and Salmonella typhimurium SodC1 Cu,Zn superoxide dismutases is affected differently by active site demetallation and pH: an analytical ultracentrifuge study. Arch Biochem Biophys 2008; 471:77-84. [PMID: 18179768 DOI: 10.1016/j.abb.2007.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 12/14/2007] [Accepted: 12/15/2007] [Indexed: 11/28/2022]
Abstract
To establish whether the species-specific variations at the subunit interface of bacterial Cu,Zn superoxide dismutases affect dimer assembly, the association state of the Photobacterium leiognathi (PlSOD) and Salmonella typhimurium (StSOD) enzymes, which differ in 11 out of 19 interface residues, was investigated by analytical ultracentrifugation. The same linkage pattern correlates quaternary assembly, active site metallation, and pH in the two enzymes albeit with quantitative differences. Both holo-enzymes are stable dimers at pH 6.8 and 8.0, although their shape is altered at alkaline pH. In contrast, dimer stability is affected differently by metal removal. Thus, apo-StSOD is a stable dimer at pH 6.8 whereas apo-PlSOD is in reversible monomer-dimer equilibrium. In both apoproteins a pH increase to 8.0 favors monomerization. These effects prove the existence of long-range communication between the active site and the subunit interface and provide a structural explanation for the known functional differences between the two enzymes.
Collapse
Affiliation(s)
- B Catacchio
- CNR Institute of Molecular Biology and Pathology, Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | | | | | | |
Collapse
|
26
|
Liau YJ, Wen L, Shaw JF, Lin CT. A highly stable cambialistic-superoxide dismutase from Antrodia camphorata: Expression in yeast and enzyme properties. J Biotechnol 2007; 131:84-91. [PMID: 17604867 DOI: 10.1016/j.jbiotec.2007.05.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Revised: 05/15/2007] [Accepted: 05/21/2007] [Indexed: 11/30/2022]
Abstract
A cDNA encoding a putative superoxide dismutase (SOD) was identified in expressed sequence tags of Antrodia camphorata, a medicinal mushroom found only in Taiwan. The deduced protein was aligned with Mn-SODs and Fe-SODs from other organisms, this SOD showed greater homology to Mn-SOD. Functional A. camphorata SOD protein was overexpressed in yeast and purified. The purified enzyme showed two active forms on a 12.5% native PAGE, a dimer and a monomer. The dimeric protein's half-life of deactivation at 80 degrees C was 7 min, and its thermal inactivation rate constant K(d) was 9.87 x 10(-2)min(-1). The enzyme was stable in a broad pH range from 5-11; in the presence of 0.4M imidazole and 2% SDS. The atomic absorption spectrometric assay showed that 1.0 atom of manganese/iron (9:1) was present in each SOD subunit. The high stability of the enzyme make it better suited than other cambialistic-SODs for use in cosmetics. The SOD also documents its future utility in developing anti-inflammatory agent and in the treatment of chronic diseases.
Collapse
Affiliation(s)
- Yi-Jen Liau
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | | | | | | |
Collapse
|
27
|
Ken CF, Lin CT, Wen YD, Wu JL. Replacement of buried cysteine from zebrafish Cu/Zn superoxide dismutase and enhancement of its stability via site-directed mutagenesis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2007; 9:335-42. [PMID: 17549562 DOI: 10.1007/s10126-006-0143-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Accepted: 11/28/2006] [Indexed: 05/15/2023]
Abstract
Zebrafish Cu/Zn-superoxide dismutase (ZSOD1) has one free cysteine (Cys-7) in a first beta-strand with lower thermostability. We predicted the stability would be increased with single-point mutation at 70 degrees C via the I-Mutant 2.0 server, and generated a mutant SOD with replacement of the free Cys to Ala (ZSODC7A) by site-directed mutagenesis. The mutant was expressed and purified from the Escherichia coli strain AD494(DE3)pLysS and the yield was 2 mg from 0.4 L of culture. The ZSODC7A was heated at 90 degrees C. In a time-dependent assay, the time interval for 50% inactivation was 32 min, and its thermal inactivation rate constant K (d) was 2 x 10(-2) min(-1). The mutant was still activated in broad pH range (2.3-12), and had only a moderate effect under sodium dodecyl sulfate treatment. The calculated specific activity of the mutant was 3980 U/mg, twice that of wild-type ZSOD1. In addition, we soaked fish larva with equal enzyme units of either ZSOD1 or ZSODC7A for 2 h, and then stressed them with 100 ppm of paraquat to induce oxidative injury. The survival rate was significant.
Collapse
Affiliation(s)
- Chuian-Fu Ken
- Institute of Biotechnology, National Changhua University of Education, Changhua, Taiwan
| | | | | | | |
Collapse
|
28
|
Rakhit R, Chakrabartty A. Structure, folding, and misfolding of Cu,Zn superoxide dismutase in amyotrophic lateral sclerosis. Biochim Biophys Acta Mol Basis Dis 2006; 1762:1025-37. [PMID: 16814528 DOI: 10.1016/j.bbadis.2006.05.004] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 05/15/2006] [Accepted: 05/16/2006] [Indexed: 11/16/2022]
Abstract
Fourteen years after the discovery that mutations in Cu, Zn superoxide dismutase (SOD1) cause a subset of familial amyotrophic lateral sclerosis (fALS), the mechanism by which mutant SOD1 exerts toxicity remains unknown. The two principle hypotheses are (a) oxidative damage stemming from aberrant SOD1 redox chemistry, and (b) misfolding of the mutant protein. Here we review the structure and function of wild-type SOD1, as well as the changes to the structure and function in mutant SOD1. The relative merits of the two hypotheses are compared and a common unifying principle is outlined. Lastly, the potential for therapies targeting SOD1 misfolding is discussed.
Collapse
Affiliation(s)
- Rishi Rakhit
- Department of Biochemistry, University of Toronto, University Health Network, Toronto Medical Discovery Tower, Medical and Related Sciences (MaRS), 101 College Street, Toronto, ON, Canada, M5G 1L7
| | | |
Collapse
|
29
|
Kapetaniou EG, Thanassoulas A, Dubnovitsky AP, Nounesis G, Papageorgiou AC. Effect of pH on the structure and stability of Bacillus circulans ssp. alkalophilus phosphoserine aminotransferase: Thermodynamic and crystallographic studies. Proteins 2006; 63:742-53. [PMID: 16532449 DOI: 10.1002/prot.20935] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
pH is one of the key parameters that affect the stability and function of proteins. We have studied the effect of pH on the pyridoxal-5'-phosphate-dependent enzyme phosphoserine aminotransferase produced by the facultative alkaliphile Bacillus circulans ssp. alkalophilus using thermodynamic and crystallographic analysis. Enzymatic activity assay showed that the enzyme has maximum activity at pH 9.0 and relative activity less than 10% at pH 7.0. Differential scanning calorimetry and circular dichroism experiments revealed variations in the stability and denaturation profiles of the enzyme at different pHs. Most importantly, release of pyridoxal-5'-phosphate and protein thermal denaturation were found to occur simultaneously at pH 6.0 in contrast to pH 8.5 where denaturation preceded cofactor's release by approximately 3 degrees C. To correlate the observed differences in thermal denaturation with structural features, the crystal structure of phosphoserine aminotransferase was determined at 1.2 and 1.5 A resolution at two different pHs (8.5 and 4.6, respectively). Analysis of the two structures revealed changes in the vicinity of the active site and in surface residues. A conformational change in a loop involved in substrate binding at the entrance of the active site has been identified upon pH change. Moreover, the number of intramolecular ion pairs was found reduced in the pH 4.6 structure. Taken together, the presented kinetics, thermal denaturation, and crystallographic data demonstrate a potential role of the active site in unfolding and suggest that subtle but structurally significant conformational rearrangements are involved in the stability and integrity of phosphoserine aminotransferase in response to pH changes.
Collapse
|
30
|
De Domenico I, Lania A, Bonaccorsi di Patti MC, Battistoni A, Musci G, Desideri A. Purification and characterization of recombinant Caulobacter crescentus Cu,Zn superoxide dismutase. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1764:105-9. [PMID: 16213200 DOI: 10.1016/j.bbapap.2005.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 08/20/2005] [Accepted: 08/24/2005] [Indexed: 05/04/2023]
Abstract
Recombinant Cu,Zn Superoxide Dismutase from Caulobacter crescentus has been expressed in Escherichia coli and characterized. The corresponding recombinant protein has a molecular weight typical of a homodimeric Cu,ZnSODs and an activity comparable to that of other prokaryotic enzymes. The copper active site is characterized by a peculiar axial geometry as evidenced by its electron paramagnetic resonance spectrum, moreover, the copper atom displays a low accessibility toward external chelating agents indicating a lower solvent accessibility when compared to other prokaryotic enzymes. Investigation of the enzyme thermal stability through differential scanning calorimetry indicates the occurrence of two transitions at low and higher temperature that are found to be due to the apo and holo protein, respectively, confirming that the metals have a crucial role in the stabilization of this class of enzymes.
Collapse
Affiliation(s)
- Ivana De Domenico
- Department of Microbiological, Genetic and Molecular Sciences, University of Messina, Salita Sperone, 31, 98166 Messina, Italy
| | | | | | | | | | | |
Collapse
|
31
|
Hong J, Moosavi-Movahedi AA, Ghourchian H, Amani M, Amanlou M, Chilaka FC. Thermal dissociation and conformational lock of superoxide dismutase. JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 38:533-538. [PMID: 16202231 DOI: 10.5483/bmbrep.2005.38.5.533] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The kinetics of thermal dissociation of superoxide dismutase (SOD) was studied in 0.05 M Tris-HCl buffer at pH 7.4 containing 10(-4) M EDTA. The number of conformational locks and contact areas and amino acid residues of dimers of SOD were obtained by kinetic analysis and biochemical calculation. The cleavage bonds between dimers of SOD during thermal dissociation and type of interactions between specific amino acid residues were also simulated. Two identical contact areas between two subunits were identified. Cleavage of these contact areas resulted in dissociation of the subunits, with destruction of the active centers, and thus, lost of activity. It is suggested that the contact areas interact with active centers by conformational changes involving secondary structural elements.
Collapse
Affiliation(s)
- J Hong
- Institute of Biochemistry and Biophysics, University of Tehran, Iran
| | | | | | | | | | | |
Collapse
|
32
|
Ammendola S, Ajello M, Pasquali P, Kroll JS, Langford PR, Rotilio G, Valenti P, Battistoni A. Differential contribution of sodC1 and sodC2 to intracellular survival and pathogenicity of Salmonella enterica serovar Choleraesuis. Microbes Infect 2005; 7:698-707. [PMID: 15823516 DOI: 10.1016/j.micinf.2005.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Revised: 12/30/2004] [Accepted: 01/17/2005] [Indexed: 11/29/2022]
Abstract
Several of the most virulent Salmonella enterica strains possess two genes encoding periplasmic Cu,Zn superoxide dismutase, sodC1 and sodC2, located on a lambdoid prophage and on the chromosome, respectively. These genes contribute to Salmonella virulence by protecting bacteria from superoxide generated by the host's phagocytes. To investigate the respective contributions of sodC1 and sodC2 to the virulence of a clinical isolate of Salmonella enterica serovar Choleraesuis (S. choleraesuis), we have analyzed both the intracellular survival of wild type and sodC mutant strains within J774 macrophages and Caco-2 cells, and their ability to proliferate in intraperitoneally-infected mice in competition assays. In agreement with previous studies, mutant strains lacking one or both sodC genes were equally impaired in their ability to survive within activated macrophages. However, when macrophage killing experiments were carried out with non-opsonized bacteria, sodC2 contributed to intracellular survival more than sodC1, indicating that changes in the pathways of bacterial uptake can modify the relative role of the two sodC genes. More unexpectedly, we have found that the ability of S. choleraesuis to survive within Caco-2 cells was severely affected by inactivation of sodC genes, sodC2 being more important than sodC1. As Caco-2 cells actively produce superoxide, this suggests that oxygen radical production by colonic cells has a role in controlling proliferation of facultative intracellular bacteria. Mouse infection studies confirmed that, in the S. choleraesuis strain under investigation, both sodC genes are required to confer full virulence, sodC2 contributing slightly more than sodC1 to Salmonella pathogenesis. Our findings contrast with the results of other studies carried out in S. enterica serovar Typhimurium and suggest that the relative contributions of sodC1 and sodC2 to host-pathogen interactive biology may vary depending on the Salmonella serovar or strain.
Collapse
Affiliation(s)
- Serena Ammendola
- Dipartimento di Biologia, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Stutz H, Wallner M, Malissa H, Bordin G, Rodriguez AR. Detection of coexisting protein conformations in capillary zone electrophoresis subsequent to transient contact with sodium dodecyl sulfate solutions. Electrophoresis 2005; 26:1089-105. [PMID: 15719362 DOI: 10.1002/elps.200406195] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Non-native conformations of proteins were generated by temporary contact with aqueous solutions of sodium dodecyl sulfate (SDS) and separated from the native state with capillary zone electrophoresis (CZE) in alkaline borate buffer deficient of SDS. Nine proteins at concentrations of 2.0 or 3.0 mg.L(-1) were compared in terms of their susceptibility to SDS. For superoxide dismutase and ferritin the tendency of unfolding was modest with < 25% of the protein being transformed to the non-native state at 10 mmol.L(-1) SDS. Highest susceptibility was observed for albumin, myoglobin (Mb), and hemoglobin with > 75% in the non-native state even at 2.0 mmol.L(-1) SDS. The influence of varying SDS concentrations on the conformational state of Mb was tested. Increasing the SDS concentration, circular dichroism revealed a reduction in alpha-helix, an increase in random coil, and an introduction of beta-sheet, which is absent in native structure. Modifications in the secondary structure were in agreement with distinct changes in the shape of the non-native Mb peak in CZE and make a gradual unfolding/refolding process with several coexisting molten globules instead of two-state transition of conformations most plausible for Mb. CZE was found to contribute to a further understanding of holo-Mb transformation towards a population of non-native conformations (i) by means of calculated peak area ratios of native to non-native states, which showed sigmoid transition, (ii) by detecting the release of the prosthetic heme group, and (iii) by changes in the effective electrophoretic mobility of the Mb-SDS peaks. Reconstituted holo-Mb forms differed in the Soret band around 410 nm, indicating diversity in the conformation of the heme pocket.
Collapse
Affiliation(s)
- Hanno Stutz
- University of Salzburg, Department of Molecular Biology, Division of Chemistry, Hellbrunner Str. 34, A-5020 Salzburg, Austria.
| | | | | | | | | |
Collapse
|
34
|
Lynch SM, Boswell SA, Colón W. Kinetic stability of Cu/Zn superoxide dismutase is dependent on its metal ligands: implications for ALS. Biochemistry 2005; 43:16525-31. [PMID: 15610047 DOI: 10.1021/bi048831v] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Over 100 mutants of the enzyme Cu/Zn superoxide dismutase (SOD) have been implicated in the neurodegenerative disease familial amyotrophic lateral sclerosis (FALS). Growing evidence suggests that the aggregation of SOD mutants may play a causative role in FALS and that aberrant copper chemistry, decreased thermodynamic stability, and decreased affinity for metals may contribute independently or synergistically to this process. Since the loss of the copper and zinc ions significantly decreases the thermodynamic stability of SOD, it is expected that this would also decrease its kinetic stability, thereby facilitating partial or global unfolding transitions that may lead to misfolding and aggregation. Here we used wild-type (WT) SOD and five FALS-related mutants (G37R, H46R, G85R, D90A, and L144F) to show that the metals contribute significantly to the kinetic stability of the protein, with demetalated (apo) SOD showing acid-induced unfolding rates about 60-fold greater than the metalated (holo) protein. However, the unfolding rates of SOD WT and mutants were similar to each other in both the holo and apo states, indicating that regardless of the effect of mutation on thermodynamic stability, the kinetic barrier toward SOD unfolding is dependent on the presence of metals. Thus, these results suggest that pathogenic SOD mutations that do not significantly alter the stability of the protein may still lead to SOD aggregation by compromising its ability to bind or retain its metals and thereby decrease its kinetic stability. Furthermore, the mutant-like decrease in the kinetic stability of apo WT SOD raises the possibility that the loss of metals in WT SOD may be involved in nonfamilial forms of ALS.
Collapse
Affiliation(s)
- Sandra M Lynch
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, USA
| | | | | |
Collapse
|
35
|
de Beus MD, Chung J, Colón W. Modification of cysteine 111 in Cu/Zn superoxide dismutase results in altered spectroscopic and biophysical properties. Protein Sci 2004; 13:1347-55. [PMID: 15096637 PMCID: PMC2286766 DOI: 10.1110/ps.03576904] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cu/Zn superoxide dismutase (SOD) mutations are involved in about 20% of all cases of familial amyotrophic lateral sclerosis (FALS). Recently, it has been proposed that aberrant copper activity may be occurring within SOD at an alternative binding, and cysteine 111 has been identified as a potential copper ligand. Using a commercial source of human SOD isolated from erythrocytes, an anomalous absorbance at 325 nm was identified. This unusual property, which does not compromise SOD activity, had previously been shown to be consistent with a sulfhydryl modification at a cysteine residue. Here, we utilized limited trypsin proteolysis and mass spectrometry to show that the modification has a mass of 32 daltons and is located at cysteine 111. The reaction of SOD with sodium sulfide, which can react with cysteine to form a persulfide group, and with potassium cyanide, which can selectively remove persulfide bonds, confirmed the addition of a persulfide group at cysteine 111. Gel electrophoresis and glutaraldehyde cross-linking revealed that this modification makes the acid-induced denaturation of SOD fully irreversible. Furthermore, the modified protein exhibits a slower acid-induced unfolding, and is more resistant to oxidation-induced aggregation caused by copper and hydrogen peroxide. Thus, these results suggest that cysteine 111 can have a biochemical and biophysical impact on SOD, and suggest that it can interact with copper, potentially mediating the copper-induced oxidative damage of SOD. It will be of interest to study the role of cysteine 111 in the oxidative damage and aggregation of toxic SOD mutants.
Collapse
Affiliation(s)
- Mitchel D de Beus
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | |
Collapse
|
36
|
Berducci G, Mazzetti AP, Rotilio G, Battistoni A. Periplasmic competition for zinc uptake between the metallochaperone ZnuA and Cu,Zn superoxide dismutase. FEBS Lett 2004; 569:289-92. [PMID: 15225650 DOI: 10.1016/j.febslet.2004.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Revised: 06/02/2004] [Accepted: 06/02/2004] [Indexed: 10/26/2022]
Abstract
We have investigated the availability of zinc in the periplasmic space of Escherichia coli using a mutant Cu,Zn superoxide dismutase whose dimerization is triggered by zinc binding. This mutant enzyme accumulates in the monomeric form when wild type cells are grown in minimal medium, but assembles in the dimeric form when it is produced in the same medium by a mutant strain lacking the periplasmic zinc metallochaperone ZnuA. These results indicate that periplasmic zinc-containing proteins compete for metal binding when bacteria grow in environments where this element is present in traces. The effective ZnuA ability to sequester the available zinc ions from the periplasm suggests that zinc-containing cytoplasmic proteins are more important for bacterial viability than the periplasmic ones.
Collapse
Affiliation(s)
- Giovanni Berducci
- Dipartimento di Biologia, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | | | | | | |
Collapse
|
37
|
Spagnolo L, Törö I, D'Orazio M, O'Neill P, Pedersen JZ, Carugo O, Rotilio G, Battistoni A, Djinovic-Carugo K. Unique features of the sodC-encoded superoxide dismutase from Mycobacterium tuberculosis, a fully functional copper-containing enzyme lacking zinc in the active site. J Biol Chem 2004; 279:33447-55. [PMID: 15155722 DOI: 10.1074/jbc.m404699200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sodC-encoded Mycobacterium tuberculosis superoxide dismutase (SOD) shows high sequence homology to other members of the copper/zinc-containing SOD family. Its three-dimensional structure is reported here, solved by x-ray crystallography at 1.63-A resolution. Metal analyses of the recombinant protein indicate that the native form of the enzyme lacks the zinc ion, which has a very important structural and functional role in all other known enzymes of this class. The absence of zinc within the active site is due to significant rearrangements in the zinc subloop, including deletion or mutation of the metal ligands His115 and His123. Nonetheless, the enzyme has a catalytic rate close to the diffusion limit; and unlike all other copper/zinc-containing SODs devoid of zinc, the geometry of the copper site is pH-independent. The protein shows a novel dimer interface characterized by a long and rigid loop, which confers structural stability to the enzyme. As the survival of bacterial pathogens within their host critically depends on their ability to recruit zinc in highly competitive environments, we propose that the observed structural rearrangements are required to build up a zinc-independent but fully active and stable copper-containing SOD.
Collapse
Affiliation(s)
- Laura Spagnolo
- Structural Biology Laboratory, ELETTRA, Sincrotrone Trieste, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rakhit R, Crow JP, Lepock JR, Kondejewski LH, Cashman NR, Chakrabartty A. Monomeric Cu,Zn-superoxide dismutase is a common misfolding intermediate in the oxidation models of sporadic and familial amyotrophic lateral sclerosis. J Biol Chem 2004; 279:15499-504. [PMID: 14734542 DOI: 10.1074/jbc.m313295200] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteinacious intracellular aggregates in motor neurons are a key feature of both sporadic and familial amyotrophic lateral sclerosis (ALS). These inclusion bodies are often immunoreactive for Cu,Zn-superoxide dismutase (SOD1) and are implicated in the pathology of ALS. On the basis of this and a similar clinical presentation of symptoms in the familial (fALS) and sporadic forms of ALS, we sought to investigate the possibility that there exists a common disease-related aggregation pathway for fALS-associated mutant SODs and wild type SOD1. We have previously shown that oxidation of fALS-associated mutant SODs produces aggregates that have the same morphological, structural, and tinctorial features as those found in SOD1 inclusion bodies in ALS. Here, we show that oxidative damage of wild type SOD at physiological concentrations ( approximately 40 microm) results in destabilization and aggregation in vitro. Oxidation of either mutant or wild type SOD1 causes the enzyme to dissociate to monomers prior to aggregation. Only small changes in secondary and tertiary structure are associated with monomer formation. These results indicate a common aggregation prone monomeric intermediate for wild type and fALS-associated mutant SODs and provides a link between sporadic and familial ALS.
Collapse
Affiliation(s)
- Rishi Rakhit
- Departments of Medical Biophysics and Biochemistry, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Gabbianelli R, D'Orazio M, Pacello F, O'Neill P, Nicolini L, Rotilio G, Battistoni A. Distinctive functional features in prokaryotic and eukaryotic Cu,Zn superoxide dismutases. Biol Chem 2004; 385:749-54. [PMID: 15449711 DOI: 10.1515/bc.2004.091] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bacterial and eukaryotic Cu,Zn superoxide dismutases show remarkable differences in the active site region and in their quaternary structure organization. We report here a functional comparison between four Cu,Zn superoxide dismutases from Gram-negative bacteria and the eukaryotic bovine enzyme. Our data indicate that bacterial dimeric variants are characterized by catalytic rates higher than that of the bovine enzyme, probably due to the solvent accessibility of their active site. Prokaryotic Cu,Zn superoxide dismutases also show higher resistance to hydrogen peroxide inactivation and lower HCO3- -dependent peroxidative activity. Moreover, unlike the eukaryotic enzyme, all bacterial variants are susceptible to inactivation by chelating agents and show variable sensitivity to proteolytic attack, with the E. coli monomeric enzyme showing higher rates of inactivation by EDTA and proteinase K. We suggest that differences between individual bacterial variants could be due to the influence of modifications at the dimer interface on the enzyme conformational flexibility.
Collapse
Affiliation(s)
- Roberta Gabbianelli
- Servizio Biologico, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
40
|
Khare SD, Ding F, Dokholyan NV. Folding of Cu, Zn Superoxide Dismutase and Familial Amyotrophic Lateral Sclerosis. J Mol Biol 2003; 334:515-25. [PMID: 14623191 DOI: 10.1016/j.jmb.2003.09.069] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cu, Zn superoxide dismutase (SOD1) has been implicated in the familial form of the neurodegenerative disease amyotrophic lateral sclerosis (ALS). It has been suggested that mutant mediated SOD1 misfolding/aggregation is an integral part of the pathology of ALS. We study the folding thermodynamics and kinetics of SOD1 using a hybrid molecular dynamics approach. We reproduce the experimentally observed SOD1 folding thermodynamics and find that the residues which contribute the most to SOD1 thermal stability are also crucial for apparent two-state folding kinetics. Surprisingly, we find that these residues are located on the surface of the protein and not in the hydrophobic core. Mutations in some of the identified residues are found in patients with the disease. We argue that the identified residues may play an important role in aggregation. To further characterize the folding of SOD1, we study the role of cysteine residues in folding and find that non-native disulfide bond formation may significantly alter SOD1 folding dynamics and aggregation propensity.
Collapse
Affiliation(s)
- Sagar D Khare
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
41
|
Falconi M, Parrilli L, Battistoni A, Desideri A. Flexibility in monomeric Cu,Zn superoxide dismutase detected by limited proteolysis and molecular dynamics simulation. Proteins 2002; 47:513-20. [PMID: 12001230 DOI: 10.1002/prot.10094] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Limited proteolysis by trypsin of monomeric Cu,Zn superoxide dismutase from Escherichia coli induces a specific cleavage of the polypeptide chain at the level of Lys60 located in the S-S subloop of loop 6,5 where, when compared to the eukaryotic enzyme, a seven-residues insertion, completely exposed to the solvent, is observed. This result suggests that this subloop is disordered and flexible, thus enabling binding and adaptation to the active site of the proteolytic enzyme. Indeed, molecular dynamics simulation indicates that the S-S subloop undergoes high fluctuations and that its high flexibility coupled to an high solvent accessibility can explain the specific bond selection of the protease. As a matter of fact, of the possible 14 solvent accessible proteolytic sites only the Lys60 flexible site is cleaved. High flexibility and solvent exposure are confirmed by the short water residence time for the residues corresponding to the cleavage site evaluated by molecular dynamics simulation. These experiments demonstrate that molecular dynamics simulation and limited proteolysis are complementary and unambiguous tools to identify flexible sites in proteins.
Collapse
Affiliation(s)
- M Falconi
- INFM and Department of Biology, University of Rome "Tor Vergata," Rome, Italy
| | | | | | | |
Collapse
|
42
|
Bonaccorsi di Patti MC, Giartosio A, Rotilio G, Battistoni A. Analysis of Cu,ZnSOD conformational stability by differential scanning calorimetry. Methods Enzymol 2002; 349:49-61. [PMID: 11912929 DOI: 10.1016/s0076-6879(02)49320-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
43
|
Rodriguez JA, Valentine JS, Eggers DK, Roe JA, Tiwari A, Brown RH, Hayward LJ. Familial amyotrophic lateral sclerosis-associated mutations decrease the thermal stability of distinctly metallated species of human copper/zinc superoxide dismutase. J Biol Chem 2002; 277:15932-7. [PMID: 11854285 DOI: 10.1074/jbc.m112088200] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the thermal stability of wild type (WT) and 14 different variants of human copper/zinc superoxide dismutase (SOD1) associated with familial amyotrophic lateral sclerosis (FALS). Multiple endothermic unfolding transitions were observed by differential scanning calorimetry for partially metallated SOD1 enzymes isolated from a baculovirus system. We correlated the metal ion contents of SOD1 variants with the occurrence of distinct melting transitions. Altered thermal stability upon reduction of copper with dithionite identified transitions resulting from the unfolding of copper-containing SOD1 species. We demonstrated that copper or zinc binding to a subset of "WT-like" FALS mutants (A4V, L38V, G41S, G72S, D76Y, D90A, G93A, and E133Delta) conferred a similar degree of incremental stabilization as did metal ion binding to WT SOD1. However, these mutants were all destabilized by approximately 1-6 degrees C compared with the corresponding WT SOD1 species. Most of the "metal binding region" FALS mutants (H46R, G85R, D124V, D125H, and S134N) exhibited transitions that probably resulted from unfolding of metal-free species at approximately 4-12 degrees C below the observed melting of the least stable WT species. We conclude that decreased conformational stability shared by all of these mutant SOD1s may contribute to SOD1 toxicity in FALS.
Collapse
Affiliation(s)
- Jorge A Rodriguez
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095-1569, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Falconi M, Stroppolo ME, Cioni P, Strambini G, Sergi A, Ferrario M, Desideri A. Dynamics-function correlation in Cu, Zn superoxide dismutase: a spectroscopic and molecular dynamics simulation study. Biophys J 2001; 80:2556-67. [PMID: 11371434 PMCID: PMC1301445 DOI: 10.1016/s0006-3495(01)76227-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
A single mutation (Val29-->Gly) at the subunit interface of a Cu, Zn superoxide dismutase dimer leads to a twofold increase in the second order catalytic rate, when compared to the native enzyme, without causing any modification of the structure or the electric field distribution. To check the role of dynamic processes in this catalytic enhancement, the flexibility of the dimeric protein at the subunit interface region has been probed by the phosphorescence and fluorescence properties of the unique tryptophan residue. Multiple spectroscopic data indicate that Trp83 experiences a very similar, and relatively hydrophobic, environment in both wild-type and mutant protein, whereas its mobility is distinctly more restrained in the latter. Molecular dynamics simulation confirms this result, and provides, at the molecular level, details of the dynamic change felt by tryptophan. Moreover, the simulation shows that the loops surrounding the active site are more flexible in the mutant than in the native enzyme, making the copper more accessible to the incoming substrate, and being thus responsible for the catalytic rate enhancement. Evidence for increased, dynamic copper accessibility also comes from faster copper removal in the mutant by a metal chelator. These results indicate that differences in dynamic, rather than structural, features of the two enzymes are responsible for the observed functional change.
Collapse
Affiliation(s)
- M Falconi
- INFM and Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
45
|
Bozzi M, Battistoni A, Sette M, Melino S, Rotilio G, Paci M. Unfolding and inactivation of monomeric superoxide dismutase from E. coli by SDS. Int J Biol Macromol 2001; 29:99-105. [PMID: 11518581 DOI: 10.1016/s0141-8130(01)00146-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The inactivation and the unfolding of the naturally monomeric Cu, Zn, superoxide dismutase from E. coli upon addition of sodium dodecylsulphate have been studied. In contrast to the bovine enzyme, CD, EPR, NMR spectroscopy and pulsed low resolution NMR measurements found an unfolding transition followed by inactivation of the enzyme. During this transition the active site becomes accessible to the bulk water. The unfolding is reversible and both, the tridimensional structure of the protein and the active site, can be restored upon dialysis. In addition, unfolding occurs without loss of metals in the solution.
Collapse
Affiliation(s)
- M Bozzi
- Department of Chemical Science and Technology, Tor Vergata University, Via della Ricerca Scientifica, 00133, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
46
|
Battistoni A, Pacello F, Mazzetti AP, Capo C, Kroll JS, Langford PR, Sansone A, Donnarumma G, Valenti P, Rotilio G. A histidine-rich metal binding domain at the N terminus of Cu,Zn-superoxide dismutases from pathogenic bacteria: a novel strategy for metal chaperoning. J Biol Chem 2001; 276:30315-25. [PMID: 11369756 DOI: 10.1074/jbc.m010527200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A group of Cu,Zn-superoxide dismutases from pathogenic bacteria is characterized by histidine-rich N-terminal extensions that are in a highly exposed and mobile conformation. This feature allows these proteins to be readily purified in a single step by immobilized metal affinity chromatography. The Cu,Zn-superoxide dismutases from both Haemophilus ducreyi and Haemophilus parainfluenzae display anomalous absorption spectra in the visible region due to copper binding at the N-terminal region. Reconstitution experiments of copper-free enzymes demonstrate that, under conditions of limited copper availability, this metal ion is initially bound at the N-terminal region and subsequently transferred to an active site. Evidence is provided for intermolecular pathways of copper transfer from the N-terminal domain of an enzyme subunit to an active site located on a distinct dimeric molecule. Incubation with EDTA rapidly removes copper bound at the N terminus but is much less effective on the copper ion bound at the active site. This indicates that metal binding by the N-terminal histidines is kinetically favored, but the catalytic site binds copper with higher affinity. We suggest that the histidine-rich N-terminal region constitutes a metal binding domain involved in metal uptake under conditions of metal starvation in vivo. Particular biological importance for this domain is inferred by the observation that its presence enhances the protection offered by periplasmic Cu,Zn-superoxide dismutase toward phagocytic killing.
Collapse
Affiliation(s)
- A Battistoni
- Dipartimento di Biologia, Università di Roma "Tor Vergata," Via della Ricerca Scientifica, 00133 Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Pacello F, Langford PR, Kroll JS, Indiani C, Smulevich G, Desideri A, Rotilio G, Battistoni A. A novel heme protein, the Cu,Zn-superoxide dismutase from Haemophilus ducreyi. J Biol Chem 2001; 276:30326-34. [PMID: 11369755 DOI: 10.1074/jbc.m010488200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Haemophilus ducreyi, the causative agent of the genital ulcerative disease known as chancroid, is unable to synthesize heme, which it acquires from humans, its only known host. Here we provide evidence that the periplasmic Cu,Zn-superoxide dismutase from this organism is a heme-binding protein, unlike all the other known Cu,Zn-superoxide dismutases from bacterial and eukaryotic species. When the H. ducreyi enzyme was expressed in Escherichia coli cells grown in standard LB medium, it contained only limited amounts of heme covalently bound to the polypeptide but was able efficiently to bind exogenously added hemin. Resonance Raman and electronic spectra at neutral pH indicate that H. ducreyi Cu,Zn-superoxide dismutase contains a 6-coordinated low spin heme, with two histidines as the most likely axial ligands. By site-directed mutagenesis and analysis of a structural model of the enzyme, we identified as a putative axial ligand a histidine residue (His-64) that is present only in the H. ducreyi enzyme and that was located at the bottom of the dimer interface. The introduction of a histidine residue in the corresponding position of the Cu,Zn-superoxide dismutase from Haemophilus parainfluenzae was not sufficient to confer the ability to bind heme, indicating that other residues neighboring His-64 are involved in the formation of the heme-binding pocket. Our results suggest that periplasmic Cu,Zn-superoxide dismutase plays a role in heme metabolism of H. ducreyi and provide further evidence for the structural flexibility of bacterial enzymes of this class.
Collapse
Affiliation(s)
- F Pacello
- Dipartimento di Biologia and INFM, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Roma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Stroppolo ME, Pesce A, D'Orazio M, O'Neill P, Bordo D, Rosano C, Milani M, Battistoni A, Bolognesi M, Desideri A. Single mutations at the subunit interface modulate copper reactivity in Photobacterium leiognathi Cu,Zn superoxide dismutase. J Mol Biol 2001; 308:555-63. [PMID: 11327787 DOI: 10.1006/jmbi.2001.4606] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The functional properties and X-ray structures of five mutant forms of Photobacterium leiognathi Cu,Zn superoxide dismutase carrying single mutations at residues located at the dimer association interface have been investigated. When compared to the wild-type enzyme, the three-dimensional structures of the mutants show structural perturbations limited to the proximity of the mutation sites and substantial identity of active site geometry. Nonetheless, the catalytic rates of all mutants, measured at neutral pH and low ionic strength by pulse radiolysis, are higher than that of the wild-type protein. Such enzymatic activity increase is paralleled by enhanced active site accessibility to external chelating agents, which, in the mutated enzyme, remove more readily the active site copper ion. It is concluded that mutations at the prokaryotic Cu,Zn superoxide dismutase subunit interface can transduce dynamical perturbation to the active site region, promoting substrate active site accessibility. Such long-range intramolecular communication effects have not been extensively described before within the Cu,Zn superoxide dismutase homology family.
Collapse
Affiliation(s)
- M E Stroppolo
- Department of Biology and INFM, University of Rome "Tor Vergata", Rome, Via della Ricerca Scientifica, 00133, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sette M, Bozzi M, Battistoni A, Fasano M, Paci M, Rotilio G. Investigation of the active site of Escherichia coli Cu,Zn superoxide dismutase reveals the absence of the copper-coordinated water molecule. is the water molecule really necessary for the enzymatic mechanism? FEBS Lett 2000; 483:21-6. [PMID: 11033349 DOI: 10.1016/s0014-5793(00)02074-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The active site of the Cu,Zn superoxide dismutase from Escherichia coli in the oxidized Cu(II) state has been studied by nuclear magnetic relaxation dispersion (NMRD), optical and nuclear magnetic resonance spectroscopy. The orientation of some metal ligands is different with respect to all the other Cu,Zn superoxide dismutases. Moreover, NMRD measurements demonstrate the lack of a copper-coordinated water molecule. In spite of these differences the enzymatic activity is still high. Azide also binds copper with normal affinity and induces modifications in the active site comparable to those previously observed in the eukaryotic enzymes. Our results suggest that, in this enzyme, the copper-coordinated water molecule appears not necessary for the enzymatic reaction. A role for the copper-coordinated water molecule is discussed in the light of recent crystallographic studies.
Collapse
Affiliation(s)
- M Sette
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy
| | | | | | | | | | | |
Collapse
|
50
|
Pesce A, Battistoni A, Stroppolo ME, Polizio F, Nardini M, Kroll JS, Langford PR, O'Neill P, Sette M, Desideri A, Bolognesi M. Functional and crystallographic characterization of Salmonella typhimurium Cu,Zn superoxide dismutase coded by the sodCI virulence gene. J Mol Biol 2000; 302:465-78. [PMID: 10970746 DOI: 10.1006/jmbi.2000.4074] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The functional and three-dimensional structural features of Cu,Zn superoxide dismutase coded by the Salmonella typhimurium sodCI gene, have been characterized. Measurements of the catalytic rate indicate that this enzyme is the most efficient superoxide dismutase analyzed so far, a feature that may be related to the exclusive association of the sodCI gene with the most pathogenic Salmonella serotypes. The enzyme active-site copper ion is highly accessible to external probes, as indicated by quenching of the water proton relaxation rate upon addition of iodide. The shape of the electron paramagnetic resonance spectrum is dependent on the frozen or liquid state of the enzyme solution, suggesting relative flexibility of the copper ion environment. The crystal structure (R-factor 22.6%, at 2.3 A resolution) indicates that the dimeric enzyme adopts the quaternary assembly typical of prokaryotic Cu,Zn superoxide dismutases. However, when compared to the structures of the homologous enzymes from Photobacterium leiognathi and Actinobacillus pleuropneumoniae, the subunit interface of Salmonella Cu,Zn superoxide dismutase shows substitution of 11 out of 19 interface residues. As a consequence, the network of structural water molecules that fill the dimer interface cavity is structured differently from the other dimeric bacterial enzymes. The crystallographic and functional characterization of this Salmonella Cu,Zn superoxide dismutase indicates that structural variability and catalytic efficiency are higher in prokaryotic than in the eukaryotic homologous enzymes.
Collapse
Affiliation(s)
- A Pesce
- Department of Physics-INFM and Advanced Biotechnology Center-IST, University of Genoa, Largo Rosanna Benzi, Genova, 10. I-16132, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|