1
|
Dutta A, Kumari M, Kashyap HK. Tracking Cholesterol Flip-Flop in Mammalian Plasma Membrane through Coarse-Grained Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1651-1663. [PMID: 39807660 DOI: 10.1021/acs.langmuir.4c03717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Plasma membrane (PM) simulations at longer length and time scales at nearly atomistic resolution can provide invaluable insights into cell signaling, apoptosis, lipid trafficking, and lipid raft formation. We propose a coarse-grained (CG) model of a mammalian PM considering major lipid head groups distributed asymmetrically across the membrane bilayer and validate the model against bilayer structural properties from atomistic simulation. Using the proposed CG model, we identify a recurring pattern in the passive collective cholesterol transbilayer motion and study the individual cholesterol flip-flop events and associated pathways along with lateral ordering in the bilayer during a flip-flop event. We identify two discrete cholesterol flip-flop pathways: (i) a systematic rototranslational pathway and (ii) intraleaflet inversion followed by interleaflet translation (or reverse). We observe a periodic cholesterol enrichment in the exoplasmic leaflet of the PM bilayer and examine the underlying cholesterol-lipid affinities. We observe closer association between cholesterol and palmitoylsphingomyelin (PSM) lipid, relative to other lipids, and conclude that the cholesterol enrichment in the exoplasmic leaflet can be attributed to higher PSM content in that leaflet, together leading to formation of short-lived PSM-cholesterol-rich domains.
Collapse
Affiliation(s)
- Ayishwarya Dutta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Monika Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
2
|
Murai T. Transmembrane signaling through single-spanning receptors modulated by phase separation at the cell surface. Eur J Cell Biol 2024; 103:151413. [PMID: 38631097 DOI: 10.1016/j.ejcb.2024.151413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
A wide variety of transmembrane signals are transduced by cell-surface receptors that activate intracellular signaling molecules. In particular, receptor clustering in the plasma membrane plays a critical role in these processes. Single-spanning or single-pass transmembrane proteins are among the most significant types of membrane receptors, which include adhesion receptors, such as integrins, CD44, cadherins, and receptor tyrosine kinases. Elucidating the molecular mechanisms underlying the regulation of the activity of these receptors is of great significance. Liquid-liquid phase separation (LLPS) is a recently emerging paradigm in cellular physiology for the ubiquitous regulation of the spatiotemporal dynamics of various signaling pathways. This study describes the emerging features of transmembrane signaling through single-spanning receptors from the perspective of phase separation. Possible physicochemical modulations of LLPS-based transmembrane signaling are also discussed.
Collapse
Affiliation(s)
- Toshiyuki Murai
- Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
3
|
Kordyum EL, Artemenko OA, Hasenstein KH. Lipid Rafts and Plant Gravisensitivity. Life (Basel) 2022; 12:1809. [PMID: 36362962 PMCID: PMC9695138 DOI: 10.3390/life12111809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 07/24/2023] Open
Abstract
The necessity to include plants as a component of a Bioregenerative Life Support System leads to investigations to optimize plant growth facilities as well as a better understanding of the plant cell membrane and its numerous activities in the signaling, transport, and sensing of gravity, drought, and other stressors. The cell membrane participates in numerous processes, including endo- and exocytosis and cell division, and is involved in the response to external stimuli. Variable but stabilized microdomains form in membranes that include specific lipids and proteins that became known as (detergent-resistant) membrane microdomains, or lipid rafts with various subclassifications. The composition, especially the sterol-dependent recruitment of specific proteins affects endo- and exo-membrane domains as well as plasmodesmata. The enhanced saturated fatty acid content in lipid rafts after clinorotation suggests increased rigidity and reduced membrane permeability as a primary response to abiotic and mechanical stress. These results can also be obtained with lipid-sensitive stains. The linkage of the CM to the cytoskeleton via rafts is part of the complex interactions between lipid microdomains, mechanosensitive ion channels, and the organization of the cytoskeleton. These intricately linked structures and functions provide multiple future research directions to elucidate the role of lipid rafts in physiological processes.
Collapse
Affiliation(s)
- Elizabeth L. Kordyum
- Department of Cell Biology and Anatomy, Institute of Botany NASU, Tereschenkivska Str. 2, 01601 Kyiv, Ukraine
| | - Olga A. Artemenko
- Department of Cell Biology and Anatomy, Institute of Botany NASU, Tereschenkivska Str. 2, 01601 Kyiv, Ukraine
| | - Karl H. Hasenstein
- Biology Department, University of Louisiana at Lafayette, Lafayette, LA 70504-3602, USA
| |
Collapse
|
4
|
Okundaye B, Biyani N, Moitra S, Zhang K. The Golgi-localized sphingosine-1-phosphate phosphatase is indispensable for Leishmania major. Sci Rep 2022; 12:16064. [PMID: 36163400 PMCID: PMC9513092 DOI: 10.1038/s41598-022-20249-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Sphingosine-1-phosphate phosphatase (SPP) catalyzes the dephosphorylation of sphingosine-1-phosphate (S1P) into sphingosine, the reverse reaction of sphingosine kinase. In mammals, S1P acts as a potent bioactive molecule regulating cell proliferation, migration, and immunity. In Leishmania, S1P production is crucial for the synthesis of ethanolamine and choline phospholipids, and cell survival under stress conditions. To better understand the roles of S1P, we characterized a SPP ortholog in Leishmania major which displays activity towards S1P but not structurally related lipids such as ceramide-1-phosphate or lysophosphatidic acid. While this enzyme is found in the endoplasmic reticulum in mammalian cells, L. major SPP is localized at the Golgi apparatus. Importantly, chromosomal SPP alleles cannot be deleted from L. major even with the addition of a complementing episome, suggesting that endogenously expressed SPP is essential. Finally, SPP overexpression in L. major leads to a slower growth rate and heightened sensitivity to brefeldin A and sodium orthovanadate. Together, these results suggest that the equilibrium between S1P and sphingosine is vital for the function of Golgi apparatus in Leishmania.
Collapse
Affiliation(s)
- Brian Okundaye
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
- The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX, 79409, USA
| | - Neha Biyani
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
- Lantern Pharma Inc., 1920 McKinney Ave., Dallas, TX, 75201, USA
| | - Samrat Moitra
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
5
|
Clusters of apoptotic signaling molecule-enriched rafts, CASMERs: membrane platforms for protein assembly in Fas/CD95 signaling and targets in cancer therapy. Biochem Soc Trans 2022; 50:1105-1118. [PMID: 35587168 PMCID: PMC9246327 DOI: 10.1042/bst20211115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022]
Abstract
Mammalian cells show the ability to commit suicide through the activation of death receptors at the cell surface. Death receptors, among which Fas/CD95 is one of their most representative members, lack enzymatic activity, and depend on protein-protein interactions to signal apoptosis. Fas/CD95 death receptor-mediated apoptosis requires the formation of the so-called death-inducing signaling complex (DISC), bringing together Fas/CD95, Fas-associated death domain-containing protein and procaspase-8. In the last two decades, cholesterol-rich lipid raft platforms have emerged as scaffolds where Fas/CD95 can be recruited and clustered. The co-clustering of Fas/CD95 and rafts facilitates DISC formation, bringing procaspase-8 molecules to be bunched together in a limited membrane region, and leading to their autoproteolytic activation by oligomerization. Lipid raft platforms serve as a specific region for the clustering of Fas/CD95 and DISC, as well as for the recruitment of additional downstream signaling molecules, thus forming the so-called cluster of apoptotic signaling molecule-enriched rafts, or CASMER. These raft/CASMER structures float in the membrane like icebergs, in which the larger portion lies inside the cell and communicates with other subcellular structures to facilitate apoptotic signal transmission. This allows an efficient spatiotemporal compartmentalization of apoptosis signaling machinery during the triggering of cell death. This concept of proapoptotic raft platforms as a basic chemical-biological structure in the regulation of cell death has wide-ranging implications in human biology and disease, as well as in cancer therapy. Here, we discuss how these raft-centered proapoptotic hubs operate as a major linchpin for apoptosis signaling and as a promising target in cancer therapy.
Collapse
|
6
|
Borges AR, Link F, Engstler M, Jones NG. The Glycosylphosphatidylinositol Anchor: A Linchpin for Cell Surface Versatility of Trypanosomatids. Front Cell Dev Biol 2021; 9:720536. [PMID: 34790656 PMCID: PMC8591177 DOI: 10.3389/fcell.2021.720536] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/06/2021] [Indexed: 11/20/2022] Open
Abstract
The use of glycosylphosphatidylinositol (GPI) to anchor proteins to the cell surface is widespread among eukaryotes. The GPI-anchor is covalently attached to the C-terminus of a protein and mediates the protein’s attachment to the outer leaflet of the lipid bilayer. GPI-anchored proteins have a wide range of functions, including acting as receptors, transporters, and adhesion molecules. In unicellular eukaryotic parasites, abundantly expressed GPI-anchored proteins are major virulence factors, which support infection and survival within distinct host environments. While, for example, the variant surface glycoprotein (VSG) is the major component of the cell surface of the bloodstream form of African trypanosomes, procyclin is the most abundant protein of the procyclic form which is found in the invertebrate host, the tsetse fly vector. Trypanosoma cruzi, on the other hand, expresses a variety of GPI-anchored molecules on their cell surface, such as mucins, that interact with their hosts. The latter is also true for Leishmania, which use GPI anchors to display, amongst others, lipophosphoglycans on their surface. Clearly, GPI-anchoring is a common feature in trypanosomatids and the fact that it has been maintained throughout eukaryote evolution indicates its adaptive value. Here, we explore and discuss GPI anchors as universal evolutionary building blocks that support the great variety of surface molecules of trypanosomatids.
Collapse
Affiliation(s)
- Alyssa R Borges
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Fabian Link
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Nicola G Jones
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
7
|
Rezola M, Castellanos A, Gasull X, Comes N. Functional Interaction Between Caveolin 1 and LRRC8-Mediated Volume-Regulated Anion Channel. Front Physiol 2021; 12:691045. [PMID: 34658903 PMCID: PMC8517123 DOI: 10.3389/fphys.2021.691045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Volume-regulated anion channel (VRAC), constituted by leucine-rich repeat-containing 8 (LRRC8) heteromers, is crucial for volume homeostasis in vertebrate cells. This widely expressed channel has been associated with membrane potential modulation, proliferation, migration, apoptosis, and glutamate release. VRAC is activated by cell swelling and by low cytoplasmic ionic strength or intracellular guanosine 5′-O-(3-thiotriphosphate) (GTP-γS) in isotonic conditions. Despite the substantial number of studies that characterized the biophysical properties of VRAC, its mechanism of activation remains a mystery. Different evidence suggests a possible effect of caveolins in modulating VRAC activity: (1) Caveolin 1 (Cav1)-deficient cells display insignificant swelling-induced Cl– currents mediated by VRAC, which can be restored by Cav1 expression; (2) Caveolin 3 (Cav3) knockout mice display reduced VRAC currents; and (3) Interaction between LRRC8A, the essential subunit for VRAC, and Cav3 has been found in transfected human embryonic kidney 293 (HEK 293) cells. In this study, we demonstrate a physical interaction between endogenous LRRC8A and Cav1 proteins, that is enhanced by hypotonic stimulation, suggesting that this will increase the availability of the channel to Cav1. In addition, LRRC8A targets plasma membrane regions outside caveolae of HEK 293 cells where it associates with non-caveolar Cav1. We propose that a rise in cell membrane tension by hypotonicity would flatten caveolae, as described previously, increasing the amount of Cav1 outside of caveolar structures interacting with VRAC. Besides, the expression of Cav1 in HEK Cav1- cells increases VRAC current density without changing the main biophysical properties of the channel. The present study provides further evidence on the relevance of Cav1 on the activation of endothelial VRAC through a functional molecular interaction.
Collapse
Affiliation(s)
- Mikel Rezola
- Neurophysiology Laboratory, Physiology Unit, Department of Biomedicine, Medical School, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Aida Castellanos
- Neurophysiology Laboratory, Physiology Unit, Department of Biomedicine, Medical School, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Xavier Gasull
- Neurophysiology Laboratory, Physiology Unit, Department of Biomedicine, Medical School, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Núria Comes
- Neurophysiology Laboratory, Physiology Unit, Department of Biomedicine, Medical School, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
8
|
Coones RT, Green RJ, Frazier RA. Investigating lipid headgroup composition within epithelial membranes: a systematic review. SOFT MATTER 2021; 17:6773-6786. [PMID: 34212942 DOI: 10.1039/d1sm00703c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Membrane lipid composition is often quoted within the literature, but with very little insight into how or why these compositions vary when compared to other biological membranes. One prominent area that lacks understanding in terms of rationale for lipid variability is the human gastro-intestinal tract (GIT). We have carried out a comprehensive systematic literature search to ascertain the key lipid components of epithelial membranes, with a particular focus on addressing the human GIT and to use compositional data to understand structural aspects of biological membranes. Both bacterial outer membranes and the human erythrocyte membrane were used as a comparison for the mammalian [epithelial] membranes and to understand variations in lipid presence. We show that phosphatidylcholine (PC) lipid types tend to dominate (33%) with phosphatidylethanolamines (PE) and cholesterol having very similar abundances (25 and 23% respectively). This systematic review presents a detailed insight into lipid headgroup composition and roles in various membrane types, with a summary of the distinction between the major lipid bilayer forming lipids and how peripheral lipids regulate charge and fluidity. The variety of lipids present in biological membranes is discussed and rationalised in terms function as well as cellular position.
Collapse
Affiliation(s)
- R T Coones
- Department of Pharmacy, School of Chemistry, Food, and Pharmacy, University of Reading, UK.
| | - R J Green
- Department of Pharmacy, School of Chemistry, Food, and Pharmacy, University of Reading, UK.
| | - R A Frazier
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, UK.
| |
Collapse
|
9
|
Rubio-Ramos A, Labat-de-Hoz L, Correas I, Alonso MA. The MAL Protein, an Integral Component of Specialized Membranes, in Normal Cells and Cancer. Cells 2021; 10:1065. [PMID: 33946345 PMCID: PMC8145151 DOI: 10.3390/cells10051065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
The MAL gene encodes a 17-kDa protein containing four putative transmembrane segments whose expression is restricted to human T cells, polarized epithelial cells and myelin-forming cells. The MAL protein has two unusual biochemical features. First, it has lipid-like properties that qualify it as a member of the group of proteolipid proteins. Second, it partitions selectively into detergent-insoluble membranes, which are known to be enriched in condensed cell membranes, consistent with MAL being distributed in highly ordered membranes in the cell. Since its original description more than thirty years ago, a large body of evidence has accumulated supporting a role of MAL in specialized membranes in all the cell types in which it is expressed. Here, we review the structure, expression and biochemical characteristics of MAL, and discuss the association of MAL with raft membranes and the function of MAL in polarized epithelial cells, T lymphocytes, and myelin-forming cells. The evidence that MAL is a putative receptor of the epsilon toxin of Clostridium perfringens, the expression of MAL in lymphomas, the hypermethylation of the MAL gene and subsequent loss of MAL expression in carcinomas are also presented. We propose a model of MAL as the organizer of specialized condensed membranes to make them functional, discuss the role of MAL as a tumor suppressor in carcinomas, consider its potential use as a cancer biomarker, and summarize the directions for future research.
Collapse
Affiliation(s)
- Armando Rubio-Ramos
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.R.-R.); (L.L.-d.-H.); (I.C.)
| | - Leticia Labat-de-Hoz
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.R.-R.); (L.L.-d.-H.); (I.C.)
| | - Isabel Correas
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.R.-R.); (L.L.-d.-H.); (I.C.)
- Department of Molecular Biology, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Miguel A. Alonso
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.R.-R.); (L.L.-d.-H.); (I.C.)
| |
Collapse
|
10
|
Marlow B, Kuenze G, Li B, Sanders CR, Meiler J. Structural determinants of cholesterol recognition in helical integral membrane proteins. Biophys J 2021; 120:1592-1604. [PMID: 33640379 DOI: 10.1016/j.bpj.2021.02.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/12/2021] [Accepted: 02/08/2021] [Indexed: 12/20/2022] Open
Abstract
Cholesterol is an integral component of mammalian membranes. It has been shown to modulate membrane fluidity and dynamics and alter integral membrane protein function. However, understanding the molecular mechanisms of how cholesterol impacts protein function is complicated by limited and conflicting structural data. Because of the nature of the crystallization and cryo-EM structure determination, it is difficult to distinguish between specific and biologically relevant interactions and a nonspecific association. The only widely recognized search algorithm for cholesterol-integral-membrane-protein interaction sites is sequence based, i.e., searching for the so-called "Cholesterol Recognition/interaction Amino acid Consensus" motif. Although these motifs are present in numerous integral membrane proteins, there is inconclusive evidence to support their necessity or sufficiency for cholesterol binding. Here, we leverage the increasing number of experimental cholesterol-integral-membrane-protein structures to systematically analyze putative interaction sites based on their spatial arrangement and evolutionary conservation. This analysis creates three-dimensional representations of general cholesterol interaction sites that form clusters across multiple integral membrane protein classes. We also classify cholesterol-integral-membrane-protein interaction sites as either likely-specific or nonspecific. Information gleaned from our characterization will eventually enable a structure-based approach to predict and design cholesterol-integral-membrane-protein interaction sites.
Collapse
Affiliation(s)
- Brennica Marlow
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee
| | - Georg Kuenze
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Department of Chemistry, Vanderbilt University, Nashville, Tennessee; Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - Bian Li
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee
| | - Charles R Sanders
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee; Department of Chemistry, Vanderbilt University, Nashville, Tennessee; Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany.
| |
Collapse
|
11
|
Differential expression of two ATPases revealed by lipid raft isolation from gills of euryhaline teleosts with different salinity preferences. Comp Biochem Physiol B Biochem Mol Biol 2021; 253:110562. [PMID: 33453387 DOI: 10.1016/j.cbpb.2021.110562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 12/29/2020] [Accepted: 01/10/2021] [Indexed: 12/12/2022]
Abstract
In euryhaline teleosts, Na+, K+-ATPase (NKA) and V-type H + -ATPase A (VHA A) are important ion-transporters located in cell membrane. Lipid rafts (LR) are plasma membrane microdomains enriched in cholesterol, sphingolipids, and proteins (e.g., flotillin). Flotillin is a LR-associated protein, commonly used as the LR marker. Previous mammalian studies showed that LR may play a crucial role in ion exchanges. Meanwhile, studies on mammals and rainbow trout showed that NKA were found to be present mainly in LR. However, little is known about LR in fish. Therefore, the present study aimed to investigate the involvement of branchial LR in osmoregulation of tilapia and milkfish, two euryhaline teleosts with different salinity preferences, by (i) extracting LR from the gills of euryhaline teleosts; (ii) detecting the abundance of LR marker protein (flotillin-2) and ion-transporters (NKA and VHA A) in branchial LR and non-LR of fresh water- and seawater-acclimated milkfish and tilapia. The results indicated that the protein abundance of LR marker, flotillin-2, changed with environmental salinities in branchial LR of tilapia. In addition, flotillin-2 and NKA were only found in LR in both tilapia and milkfish gills, while VHA A were mainly present in non-LR. Relative protein abundance of NKA was found to be significantly higher in gills of freshwater milkfish and seawater tilapia, while VHA A was significantly higher in gills of freshwater tilapia and milkfish. This study illustrated differential distribution and salinity-dependent expression of NKA and VHA A in cell membrane of gill tissues of euryhaline teleosts with different salinity preferences.
Collapse
|
12
|
Gajate C, Mollinedo F. Lipid Raft Isolation by Sucrose Gradient Centrifugation and Visualization of Raft-Located Proteins by Fluorescence Microscopy: The Use of Combined Techniques to Assess Fas/CD95 Location in Rafts During Apoptosis Triggering. Methods Mol Biol 2021; 2187:147-186. [PMID: 32770506 DOI: 10.1007/978-1-0716-0814-2_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Lipid rafts are heterogeneous membrane domains enriched in cholesterol, sphingolipids, and gangliosides that serve as sorting platforms to compartmentalize and modulate signaling pathways. Death receptors and downstream signaling molecules have been reported to be recruited into these raft domains during the triggering of apoptosis. Here, we provide two protocols that support the presence of Fas/CD95 in lipid rafts during apoptosis, involving lipid raft isolation and confocal microscopy techniques. A detailed protocol is provided for the isolation of lipid rafts, by taking advantage of their resistance to Triton X-100 solubilization at 4 °C, followed by subsequent sucrose gradient centrifugation and analysis of the protein composition of the different gradient fractions by Western blotting. In addition, we also provide a detailed protocol for the visualization of the coclustering of Fas/CD95 death receptor and lipid rafts, as assessed by using anti-Fas/CD95 antibodies and fluorescent dye-conjugated cholera toxin B subunit that binds to ganglioside GM1, a main component of lipid rafts, by immunofluorescence and confocal microscopy. These protocols can be extended to any protein of interest to be analyzed for its association to lipid rafts.
Collapse
Affiliation(s)
- Consuelo Gajate
- Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Faustino Mollinedo
- Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| |
Collapse
|
13
|
Isaeva MK, Belova VA, Korostin DO, Degtyareva AV. Genetic aspects of biliary atresia etiology. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2020. [DOI: 10.24075/brsmu.2020.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Biliary atresia (BA) is a cholestatic disorder of infancy that is fatal if untreated. Despite years of study the etiology of BA remains unknown. Three etiopathogenic mechanisms may be involved, such as immune dysregulation, environmental factors and genetic susceptibility. Genetic predisposition is being actively studied. Candidate genes associated with BA in certain populations, genes affecting the cholangiocyte cilia function, as well as genes involved in stress responses have been identified. However, the long-term follow-up of twins with BA suggests that genotype is not of paramount importance for the disease development. Both epigenetic patterns and postzygotic somatic mutations may contribute to etiology of the disease. Recently, some evidence is being accumulated on the possible genetic predisposition to certain outcome of Kasai portoenterostomy performed in patients with BA. However, the presence of a number of factors contributing to the development of the disease makes it difficult to identify the genetic markers.
Collapse
Affiliation(s)
- MKh Isaeva
- Academician V. I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - VA Belova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - DO Korostin
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - AV Degtyareva
- Academician V. I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia; I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
14
|
Lietha D, Izard T. Roles of Membrane Domains in Integrin-Mediated Cell Adhesion. Int J Mol Sci 2020; 21:ijms21155531. [PMID: 32752284 PMCID: PMC7432473 DOI: 10.3390/ijms21155531] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
The composition and organization of the plasma membrane play important functional and regulatory roles in integrin signaling, which direct many physiological and pathological processes, such as development, wound healing, immunity, thrombosis, and cancer metastasis. Membranes are comprised of regions that are thick or thin owing to spontaneous partitioning of long-chain saturated lipids from short-chain polyunsaturated lipids into domains defined as ordered and liquid-disorder domains, respectively. Liquid-ordered domains are typically 100 nm in diameter and sometimes referred to as lipid rafts. We posit that integrin β senses membrane thickness and that mechanical force on the membrane regulates integrin activation through membrane thinning. This review examines what we know about the nature and mechanism of the interaction of integrins with the plasma membrane and its effects on regulating integrins and its binding partners.
Collapse
Affiliation(s)
- Daniel Lietha
- Cell Signaling and Adhesion Group, Structural and Chemical Biology, Margarita Salas Center for Biological Research (CIB-CSIC), E-28040 Madrid, Spain;
| | - Tina Izard
- Cell Adhesion Laboratory, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
- Correspondence:
| |
Collapse
|
15
|
Syga Ł, de Vries RH, van Oosterhout H, Bartelds R, Boersma AJ, Roelfes G, Poolman B. A Trifunctional Linker for Palmitoylation and Peptide and Protein Localization in Biological Membranes. Chembiochem 2020; 21:1320-1328. [PMID: 31814256 PMCID: PMC7317724 DOI: 10.1002/cbic.201900655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 01/09/2023]
Abstract
Attachment of lipophilic groups is an important post-translational modification of proteins, which involves the coupling of one or more anchors such as fatty acids, isoprenoids, phospholipids, or glycosylphosphatidyl inositols. To study its impact on the membrane partitioning of hydrophobic peptides or proteins, we designed a tyrosine-based trifunctional linker. The linker allows the facile incorporation of two different functionalities at a cysteine residue in a single step. We determined the effect of the lipid modification on the membrane partitioning of the synthetic α-helical model peptide WALP with or without here and in all cases below; palmitoyl groups in giant unilamellar vesicles that contain a liquid-ordered (Lo ) and liquid-disordered (Ld ) phase. Introduction of two palmitoyl groups did not alter the localization of the membrane peptides, nor did the membrane thickness or lipid composition. In all cases, the peptide was retained in the Ld phase. These data demonstrate that the Lo domain in model membranes is highly unfavorable for a single membrane-spanning peptide.
Collapse
Affiliation(s)
- Łukasz Syga
- Department of BiochemistryGroningen Biomolecular Sciences andBiotechnology Institute and Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Reinder H. de Vries
- Department of Biomolecular Chemistry and CatalysisStratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Hugo van Oosterhout
- Department of Biomolecular Chemistry and CatalysisStratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Rianne Bartelds
- Department of BiochemistryGroningen Biomolecular Sciences andBiotechnology Institute and Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Arnold J. Boersma
- DWI Leibniz Institute for Interactive MaterialsForckenbeckstrasse 5052074AachenGermany
| | - Gerard Roelfes
- Department of Biomolecular Chemistry and CatalysisStratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Bert Poolman
- Department of BiochemistryGroningen Biomolecular Sciences andBiotechnology Institute and Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| |
Collapse
|
16
|
Abstract
At least 150 human proteins are glycosylphosphatidylinositol-anchored proteins (GPI-APs). The protein moiety of GPI-APs lacking transmembrane domains is anchored to the plasma membrane with GPI covalently attached to the C-terminus. The GPI consists of the conserved core glycan, phosphatidylinositol and glycan side chains. The entire GPI-AP is anchored to the outer leaflet of the lipid bilayer by insertion of fatty chains of phosphatidylinositol. Because of GPI-dependent membrane anchoring, GPI-APs have some unique characteristics. The most prominent feature of GPI-APs is their association with membrane microdomains or membrane rafts. In the polarized cells such as epithelial cells, many GPI-APs are exclusively expressed in the apical surfaces, whereas some GPI-APs are preferentially expressed in the basolateral surfaces. Several GPI-APs act as transcytotic transporters carrying their ligands from one compartment to another. Some GPI-APs are shed from the membrane after cleavage within the GPI by a GPI-specific phospholipase or a glycosidase. In this review, I will summarize the current understanding of GPI-AP biosynthesis in mammalian cells and discuss examples of GPI-dependent functions of mammalian GPI-APs.
Collapse
Affiliation(s)
- Taroh Kinoshita
- Yabumoto Department of Intractable Disease Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
17
|
Chen HL, Wu SH, Hsu SH, Liou BY, Chen HL, Chang MH. Jaundice revisited: recent advances in the diagnosis and treatment of inherited cholestatic liver diseases. J Biomed Sci 2018; 25:75. [PMID: 30367658 PMCID: PMC6203212 DOI: 10.1186/s12929-018-0475-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/03/2018] [Indexed: 12/17/2022] Open
Abstract
Background Jaundice is a common symptom of inherited or acquired liver diseases or a manifestation of diseases involving red blood cell metabolism. Recent progress has elucidated the molecular mechanisms of bile metabolism, hepatocellular transport, bile ductular development, intestinal bile salt reabsorption, and the regulation of bile acids homeostasis. Main body The major genetic diseases causing jaundice involve disturbances of bile flow. The insufficiency of bile salts in the intestines leads to fat malabsorption and fat-soluble vitamin deficiencies. Accumulation of excessive bile acids and aberrant metabolites results in hepatocellular injury and biliary cirrhosis. Progressive familial intrahepatic cholestasis (PFIC) is the prototype of genetic liver diseases manifesting jaundice in early childhood, progressive liver fibrosis/cirrhosis, and failure to thrive. The first three types of PFICs identified (PFIC1, PFIC2, and PFIC3) represent defects in FIC1 (ATP8B1), BSEP (ABCB11), or MDR3 (ABCB4). In the last 5 years, new genetic disorders, such as TJP2, FXR, and MYO5B defects, have been demonstrated to cause a similar PFIC phenotype. Inborn errors of bile acid metabolism also cause progressive cholestatic liver injuries. Prompt differential diagnosis is important because oral primary bile acid replacement may effectively reverse liver failure and restore liver functions. DCDC2 is a newly identified genetic disorder causing neonatal sclerosing cholangitis. Other cholestatic genetic disorders may have extra-hepatic manifestations, such as developmental disorders causing ductal plate malformation (Alagille syndrome, polycystic liver/kidney diseases), mitochondrial hepatopathy, and endocrine or chromosomal disorders. The diagnosis of genetic liver diseases has evolved from direct sequencing of a single gene to panel-based next generation sequencing. Whole exome sequencing and whole genome sequencing have been actively investigated in research and clinical studies. Current treatment modalities include medical treatment (ursodeoxycholic acid, cholic acid or chenodeoxycholic acid), surgery (partial biliary diversion and liver transplantation), symptomatic treatment for pruritus, and nutritional therapy. New drug development based on gene-specific treatments, such as apical sodium-dependent bile acid transporter (ASBT) inhibitor, for BSEP defects are underway. Short conclusion Understanding the complex pathways of jaundice and cholestasis not only enhance insights into liver pathophysiology but also elucidate many causes of genetic liver diseases and promote the development of novel treatments.
Collapse
Affiliation(s)
- Huey-Ling Chen
- Departments of Pediatrics, National Taiwan University College of Medicine and Children's Hospital, 17F, No. 8, Chung Shan S. Rd, Taipei, 100, Taiwan. .,Department of Medical Education and Bioethics, National Taiwan University College of Medicine, No. 1, Jen Ai Rd Section 1, Taipei, 100, Taiwan. .,Hepatitis Research Center, National Taiwan University Hospital, Changde St. No.1, Zhongzhen Dist., Taipei 100, Taiwan.
| | - Shang-Hsin Wu
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, No. 7 Chung Shan S. Rd, Taipei 100, Taiwan
| | - Shu-Hao Hsu
- Graduate Institute of Anatomy and Cell Biology, Nationatl Taiwan University College of Medicine, No. 1 Jen Ai Rd Section 1, Taipei 100, Taiwan
| | - Bang-Yu Liou
- Departments of Pediatrics, National Taiwan University College of Medicine and Children's Hospital, 17F, No. 8, Chung Shan S. Rd, Taipei, 100, Taiwan
| | - Hui-Ling Chen
- Hepatitis Research Center, National Taiwan University Hospital, Changde St. No.1, Zhongzhen Dist., Taipei 100, Taiwan
| | - Mei-Hwei Chang
- Departments of Pediatrics, National Taiwan University College of Medicine and Children's Hospital, 17F, No. 8, Chung Shan S. Rd, Taipei, 100, Taiwan.,Hepatitis Research Center, National Taiwan University Hospital, Changde St. No.1, Zhongzhen Dist., Taipei 100, Taiwan
| |
Collapse
|
18
|
Pick H, Alves AC, Vogel H. Single-Vesicle Assays Using Liposomes and Cell-Derived Vesicles: From Modeling Complex Membrane Processes to Synthetic Biology and Biomedical Applications. Chem Rev 2018; 118:8598-8654. [PMID: 30153012 DOI: 10.1021/acs.chemrev.7b00777] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The plasma membrane is of central importance for defining the closed volume of cells in contradistinction to the extracellular environment. The plasma membrane not only serves as a boundary, but it also mediates the exchange of physical and chemical information between the cell and its environment in order to maintain intra- and intercellular functions. Artificial lipid- and cell-derived membrane vesicles have been used as closed-volume containers, representing the simplest cell model systems to study transmembrane processes and intracellular biochemistry. Classical examples are studies of membrane translocation processes in plasma membrane vesicles and proteoliposomes mediated by transport proteins and ion channels. Liposomes and native membrane vesicles are widely used as model membranes for investigating the binding and bilayer insertion of proteins, the structure and function of membrane proteins, the intramembrane composition and distribution of lipids and proteins, and the intermembrane interactions during exo- and endocytosis. In addition, natural cell-released microvesicles have gained importance for early detection of diseases and for their use as nanoreactors and minimal protocells. Yet, in most studies, ensembles of vesicles have been employed. More recently, new micro- and nanotechnological tools as well as novel developments in both optical and electron microscopy have allowed the isolation and investigation of individual (sub)micrometer-sized vesicles. Such single-vesicle experiments have revealed large heterogeneities in the structure and function of membrane components of single vesicles, which were hidden in ensemble studies. These results have opened enormous possibilities for bioanalysis and biotechnological applications involving unprecedented miniaturization at the nanometer and attoliter range. This review will cover important developments toward single-vesicle analysis and the central discoveries made in this exciting field of research.
Collapse
Affiliation(s)
- Horst Pick
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Ana Catarina Alves
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Horst Vogel
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| |
Collapse
|
19
|
Yeager AN, Weber PK, Kraft ML. Cholesterol is enriched in the sphingolipid patches on the substrate near nonpolarized MDCK cells, but not in the sphingolipid domains in their plasma membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2004-2011. [PMID: 29684331 DOI: 10.1016/j.bbamem.2018.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/15/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022]
Abstract
Information about the distributions of cholesterol and sphingolipids within the plasma membranes of mammalian cells provides insight into the roles of these molecules in membrane function. In this report, high-resolution secondary ion mass spectrometry was used to image the distributions of metabolically incorporated rare isotope-labeled sphingolipids and cholesterol on the surfaces of nonpolarized epithelial cells. Sphingolipid domains that were not enriched with cholesterol were detected in the plasma membranes of subconfluent Madin-Darby canine kidney cells. Surprisingly, cholesterol-enriched sphingolipid patches were observed on the substrate adjacent to these cells. Based on the shapes of these cholesterol-enriched sphingolipid patches on the substrate and their proximity to cellular projections, we hypothesize that they are deposits of membranous particles released by the cell.
Collapse
Affiliation(s)
- Ashley N Yeager
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL 61801, United States
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, United States
| | - Mary L Kraft
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL 61801, United States.
| |
Collapse
|
20
|
Efficient scalable production of therapeutic microvesicles derived from human mesenchymal stem cells. Sci Rep 2018; 8:1171. [PMID: 29352188 PMCID: PMC5775399 DOI: 10.1038/s41598-018-19211-6] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 12/21/2017] [Indexed: 12/25/2022] Open
Abstract
Microvesicles (MVs) released by cells are involved in a multitude of physiological events as important mediators of intercellular communication. MVs derived from mesenchymal stem cells (MSCs) contain various paracrine factors from the cells that primarily contribute to their therapeutic efficacy observed in numerous clinical trials. As nano-sized and bi-lipid layered vesicles retaining therapeutic potency equivalent to that of MSCs, MSC-derived MVs have been in focus as ideal medicinal candidates for regenerative medicine, and are preferred over MSC infusion therapy with their improved safety profiles. However, technical challenges in obtaining sufficient amounts of MVs have limited further progress in studies and clinical application. Of the multiple efforts to reinforce the therapeutic capacity of MSCs, few studies have reportedly examined the scale-up of MSC-derived MV production. In this study, we successfully amplified MV secretion from MSCs compared to the conventional culture method using a simple and efficient 3D-bioprocessing method. The MSC-derived MVs produced in our dynamic 3D-culture contained numerous therapeutic factors such as cytokines and micro-RNAs, and showed their therapeutic potency in in vitro efficacy evaluation. Our results may facilitate diverse applications of MSC-derived MVs from the bench to the bedside, which requires the large-scale production of MVs.
Collapse
|
21
|
Ushiyama A, Tajima A, Ishikawa N, Asano A. Characterization of the functions and proteomes associated with membrane rafts in chicken sperm. PLoS One 2017; 12:e0186482. [PMID: 29095853 PMCID: PMC5667776 DOI: 10.1371/journal.pone.0186482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/02/2017] [Indexed: 01/23/2023] Open
Abstract
Cellular membranes are heterogeneous, and this has a great impact on cellular function. Despite the central role of membrane functions in multiple cellular processes in sperm, their molecular mechanisms are poorly understood. Membrane rafts are specific membrane domains enriched in cholesterol, ganglioside GM1, and functional proteins, and they are involved in the regulation of a variety of cellular functions. Studies of the functional characterization of membrane rafts in mammalian sperm have demonstrated roles in sperm-egg binding and the acrosomal reaction. Recently, our biochemical and cell biological studies showed that membrane rafts are present and might play functional roles in chicken sperm. In this study, we isolated membrane rafts from chicken sperm as a detergent-resistant membranes (DRM) floating on a density gradient in the presence of 1% Triton X-100, and characterized the function and proteomes associated with these domains. Biochemical comparison of the DRM between fresh and cryopreserved sperm demonstrated that cryopreservation induces cholesterol loss specifically from membrane rafts, indicating the functional connection with reduced post-thaw fertility in chicken sperm. Furthermore, using an avidin-biotin system, we found that sperm DRM is highly enriched in a 60 KDa single protein able to bind to the inner perivitelline layer. To identify possible roles of membrane rafts, quantitative proteomics, combined with a stable isotope dimethyl labeling approach, identified 82 proteins exclusively or relatively more associated with membrane rafts. Our results demonstrate the functional distinctions between membrane domains and provide compelling evidence that membrane rafts are involved in various cellular pathways inherent to chicken sperm.
Collapse
Affiliation(s)
- Ai Ushiyama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Atsushi Tajima
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Naoto Ishikawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Atsushi Asano
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
22
|
Hein LK, Rozaklis T, Adams MK, Hopwood JJ, Karageorgos L. Lipid composition of microdomains is altered in neuronopathic Gaucher disease sheep brain and spleen. Mol Genet Metab 2017; 121:259-270. [PMID: 28532689 DOI: 10.1016/j.ymgme.2017.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 01/16/2023]
Abstract
Gaucher disease is a lysosomal storage disorder caused by a deficiency in glucocerebrosidase activity that leads to accumulation of glucosylceramide and glucosylsphingosine. Membrane raft microdomains are discrete, highly organized microdomains with a unique lipid composition that provide the necessary environment for specific protein-lipid and protein-protein interactions to take place. In this study we purified detergent resistant membranes (DRM; membrane rafts) from the occipital cortex and spleen from sheep affected with acute neuronopathic Gaucher disease and wild-type controls. We observed significant increases in the concentrations of glucosylceramide, hexosylsphingosine, BMP and gangliosides and decreases in the percentage of cholesterol and phosphatidylcholine leading to an altered DRM composition. Altered sphingolipid/cholesterol homeostasis would dramatically disrupt DRM architecture making them less ordered and more fluid. In addition, significant changes in the length and degree of lipid saturation within the DRM microdomains in the Gaucher brain were also observed. As these DRM microdomains are involved in many cellular events, an imbalance or disruption of the cell membrane homeostasis may impair normal cell function. This disruption of membrane raft microdomains and imbalance within the environment of cellular membranes of neuronal cells may be a key factor in initiating a cascade process leading to neurodegeneration.
Collapse
Affiliation(s)
- Leanne K Hein
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5001, Australia
| | - Tina Rozaklis
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5001, Australia
| | - Melissa K Adams
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5001, Australia
| | - John J Hopwood
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5001, Australia
| | - Litsa Karageorgos
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5001, Australia.
| |
Collapse
|
23
|
Kim JH, Singh A, Del Poeta M, Brown DA, London E. The effect of sterol structure upon clathrin-mediated and clathrin-independent endocytosis. J Cell Sci 2017; 130:2682-2695. [PMID: 28655854 DOI: 10.1242/jcs.201731] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/22/2017] [Indexed: 12/25/2022] Open
Abstract
Ordered lipid domains (rafts) in plasma membranes have been hypothesized to participate in endocytosis based on inhibition of endocytosis by removal or sequestration of cholesterol. To more carefully investigate the role of the sterol in endocytosis, we used a substitution strategy to replace cholesterol with sterols that show various raft-forming abilities and chemical structures. Both clathrin-mediated endocytosis of transferrin and clathrin-independent endocytosis of clustered placental alkaline phosphatase were measured. A subset of sterols reversibly inhibited both clathrin-dependent and clathrin-independent endocytosis. The ability of a sterol to support lipid raft formation was necessary for endocytosis. However, it was not sufficient, because a sterol lacking a 3β-OH group did not support endocytosis even though it had the ability to support ordered domain formation. Double bonds in the sterol rings and an aliphatic tail structure identical to that of cholesterol were neither necessary nor sufficient to support endocytosis. This study shows that substitution using a large number of sterols can define the role of sterol structure in cellular functions. Hypotheses for how sterol structure can similarly alter clathrin-dependent and clathrin-independent endocytosis are discussed.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Dept. of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ashutosh Singh
- Dept. of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maurizio Del Poeta
- Dept. of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Deborah A Brown
- Dept. of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Erwin London
- Dept. of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
24
|
Chen M, Balhara V, Jaimes Castillo AM, Balsevich J, Johnston LJ. Interaction of saponin 1688 with phase separated lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1263-1272. [PMID: 28389202 DOI: 10.1016/j.bbamem.2017.03.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/14/2017] [Accepted: 03/31/2017] [Indexed: 12/12/2022]
Abstract
Saponins are a diverse family of naturally occurring plant triterpene or steroid glycosides that have a wide range of biological activities. They have been shown to permeabilize membranes and in some cases membrane disruption has been hypothesized to involve saponin/cholesterol complexes. We have examined the interaction of steroidal saponin 1688-1 with lipid membranes that contain cholesterol and have a mixture of liquid-ordered (Lo) and liquid-disordered (Ld) phases as a model for lipid rafts in cellular membranes. A combination of atomic force microscopy (AFM) and fluorescence was used to probe the effect of saponin on the bilayer. The results demonstrate that saponin forms defects in the membrane and also leads to formation of small aggregates on the membrane surface. Although most of the membrane damage occurs in the liquid-disordered phase, fluorescence results demonstrate that saponin localizes in both ordered and disordered membrane phases, with a modest preference for the disordered regions. Similar effects are observed for both direct incorporation of saponin in the lipid mixture used to make vesicles/bilayers and for incubation of saponin with preformed bilayers. The results suggest that the initial sites of interaction are at the interface between the domains and surrounding disordered phase. The preference for saponin localization in the disordered phase may reflect the ease of penetration of saponin into a less ordered membrane, rather than the actual cholesterol concentration in the membrane. Dye leakage assays indicate that a high concentration of saponin is required for membrane permeabilization consistent with the supported lipid bilayer experiments.
Collapse
Affiliation(s)
- Maohui Chen
- Measurement Science and Standards, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Vinod Balhara
- Measurement Science and Standards, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | | | - John Balsevich
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK S7N 0W9, Canada
| | - Linda J Johnston
- Measurement Science and Standards, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.
| |
Collapse
|
25
|
Bartelds R, Barnoud J, J. Boersma A, J. Marrink S, Poolman B. Lipid phase separation in the presence of hydrocarbons in giant unilamellar vesicles. AIMS BIOPHYSICS 2017. [DOI: 10.3934/biophy.2017.4.528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
26
|
Gajate C, Mollinedo F. Isolation of Lipid Rafts Through Discontinuous Sucrose Gradient Centrifugation and Fas/CD95 Death Receptor Localization in Raft Fractions. Methods Mol Biol 2017; 1557:125-138. [PMID: 28078589 DOI: 10.1007/978-1-4939-6780-3_13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lipid raft domains, enriched in sphingolipids and cholesterol, serve as sorting platforms and hubs for signal transduction proteins, and show resistance to detergent solubilization. Despite rafts have been involved in survival processes, these membrane domains have also been shown to play a major role in the modulation of death receptor signaling. Here, we describe a detailed protocol for isolating lipid rafts from whole cells by taking advantage of the lipid raft resistance to Triton X-100 solubilization at 4 °C, followed by sucrose gradient centrifugation, with subsequent analysis of Fas/CD95 death receptor localization in the raft fractions by immunoblotting. This method is also useful to localize additional proteins in membrane rafts.
Collapse
Affiliation(s)
- Consuelo Gajate
- Laboratory of Cell Death and Cancer Therapy, Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), C/ Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Faustino Mollinedo
- Laboratory of Cell Death and Cancer Therapy, Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), C/ Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
27
|
Jan HM, Chen YC, Shih YY, Huang YC, Tu Z, Ingle AB, Liu SW, Wu MS, Gervay-Hague J, Mong KKT, Chen YR, Lin CH. Metabolic labelling of cholesteryl glucosides in Helicobacter pylori reveals how the uptake of human lipids enhances bacterial virulence. Chem Sci 2016; 7:6208-6216. [PMID: 30034762 PMCID: PMC6024656 DOI: 10.1039/c6sc00889e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/28/2016] [Indexed: 12/30/2022] Open
Abstract
Helicobacter pylori infects approximately half of the human population and is the main cause of various gastric diseases. This pathogen is auxotrophic for cholesterol, which it converts upon uptake to various cholesteryl α-glucoside derivatives, including cholesteryl 6'-acyl and 6'-phosphatidyl α-glucosides (CAGs and CPGs). Owing to a lack of sensitive analytical methods, it is not known if CAGs and CPGs play distinct physiological roles or how the acyl chain component affects function. Herein we established a metabolite-labelling method for characterising these derivatives qualitatively and quantitatively with a femtomolar detection limit. The development generated an MS/MS database of CGds, allowing for profiling of all the cholesterol-derived metabolites. The subsequent analysis led to the unprecedented information that these bacteria acquire phospholipids from the membrane of epithelial cells for CAG biosynthesis. The resulting increase in longer or/and unsaturated CAG acyl chains helps to promote lipid raft formation and thus delivery of the virulence factor CagA into the host cell, supporting the idea that the host/pathogen interplay enhances bacterial virulence. These findings demonstrate an important connection between the chain length of CAGs and the bacterial pathogenicity.
Collapse
Affiliation(s)
- Hau-Ming Jan
- Institute of Biological Chemistry , Academia Sinica , No. 128 Academia Road Section 2, Nan-Kang , Taipei , 11529 , Taiwan . .,Institute of Biochemical Sciences and Department of Chemistry , National Taiwan University , Taipei , 10617 , Taiwan
| | - Yi-Chi Chen
- Institute of Biological Chemistry , Academia Sinica , No. 128 Academia Road Section 2, Nan-Kang , Taipei , 11529 , Taiwan . .,Institute of Biochemical Sciences and Department of Chemistry , National Taiwan University , Taipei , 10617 , Taiwan
| | - Yu-Yin Shih
- Institute of Biological Chemistry , Academia Sinica , No. 128 Academia Road Section 2, Nan-Kang , Taipei , 11529 , Taiwan .
| | - Yu-Chen Huang
- Agriculture Biotechnology Research Center , Academia Sinica , Taipei , 11529 , Taiwan
| | - Zhijay Tu
- Institute of Biological Chemistry , Academia Sinica , No. 128 Academia Road Section 2, Nan-Kang , Taipei , 11529 , Taiwan .
| | - Arun B Ingle
- Department of Applied Chemistry , National Chiao-Tung University , Hsin-Chu 300 , Taiwan
| | - Sheng-Wen Liu
- Institute of Biological Chemistry , Academia Sinica , No. 128 Academia Road Section 2, Nan-Kang , Taipei , 11529 , Taiwan .
| | - Ming-Shiang Wu
- Division of Gastroenterology , Department of Internal Medicine , National Taiwan University Hospital , Taipei , 10002 , Taiwan
| | | | - Kwok-Kong Tony Mong
- Department of Applied Chemistry , National Chiao-Tung University , Hsin-Chu 300 , Taiwan
| | - Yet-Ran Chen
- Agriculture Biotechnology Research Center , Academia Sinica , Taipei , 11529 , Taiwan
| | - Chun-Hung Lin
- Institute of Biological Chemistry , Academia Sinica , No. 128 Academia Road Section 2, Nan-Kang , Taipei , 11529 , Taiwan . .,Institute of Biochemical Sciences and Department of Chemistry , National Taiwan University , Taipei , 10617 , Taiwan
| |
Collapse
|
28
|
Basso LGM, Mendes LFS, Costa-Filho AJ. The two sides of a lipid-protein story. Biophys Rev 2016; 8:179-191. [PMID: 28510056 DOI: 10.1007/s12551-016-0199-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 03/29/2016] [Indexed: 01/10/2023] Open
Abstract
Protein-membrane interactions play essential roles in a variety of cell functions such as signaling, membrane trafficking, and transport. Membrane-recruited cytosolic proteins that interact transiently and interfacially with lipid bilayers perform several of those functions. Experimental techniques capable of probing changes on the structural dynamics of this weak association are surprisingly limited. Among such techniques, electron spin resonance (ESR) has the enormous advantage of providing valuable local information from both membrane and protein perspectives by using intrinsic paramagnetic probes in metalloproteins or by attaching nitroxide spin labels to proteins and lipids. In this review, we discuss the power of ESR to unravel relevant structural and functional details of lipid-peripheral membrane protein interactions with special emphasis on local changes of specific regions of the protein and/or the lipids. First, we show how ESR can be used to investigate the direct interaction between a protein and a particular lipid, illustrating the case of lipid binding into a hydrophobic pocket of chlorocatechol 1,2-dioxygenase, a non-heme iron enzyme responsible for catabolism of aromatic compounds that are industrially released in the environment. In the second case, we show the effects of GPI-anchored tissue-nonspecific alkaline phosphatase, a protein that plays a crucial role in skeletal mineralization, and on the ordering and dynamics of lipid acyl chains. Then, switching to the protein perspective, we analyze the interaction with model membranes of the brain fatty acid binding protein, the major actor in the reversible binding and transport of hydrophobic ligands such as long-chain, saturated, or unsaturated fatty acids. Finally, we conclude by discussing how both lipid and protein views can be associated to address a common question regarding the molecular mechanism by which dihydroorotate dehydrogenase, an essential enzyme for the de novo synthesis of pyrimidine nucleotides, and how it fishes out membrane-embedded quinones to perform its function.
Collapse
Affiliation(s)
- Luis G Mansor Basso
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Luis F Santos Mendes
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Antonio J Costa-Filho
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
29
|
Pizzirusso A, De Nicola A, Milano G. MARTINI Coarse-Grained Model of Triton TX-100 in Pure DPPC Monolayer and Bilayer Interfaces. J Phys Chem B 2016; 120:3821-32. [PMID: 27042862 DOI: 10.1021/acs.jpcb.6b00646] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The coarse-grained MARTINI model of Triton TX-100 has been validated by direct comparison of the experimental and calculated area increase in pure DPPC lipid bilayers and monolayers at water/air interfaces in the presence of surfactant and by comparison of electron density profiles calculated with more detailed atomistic models based on the CHARMM force field. Bilayer simulations have been performed and compared with monolayers and with atomistic models. The validated CG model has been employed to study the phase separation of TX-100 molecules in lipid bilayers and the effect of the lipid bilayer curvature.
Collapse
Affiliation(s)
- Antonio Pizzirusso
- Dipartimento di Chimica e Biologia, Università di Salerno , via Giovanni Paolo II, Fisciano, Salerno I-84084, Italy
| | - Antonio De Nicola
- Dipartimento di Chimica e Biologia, Università di Salerno , via Giovanni Paolo II, Fisciano, Salerno I-84084, Italy
| | - Giuseppe Milano
- Dipartimento di Chimica e Biologia, Università di Salerno , via Giovanni Paolo II, Fisciano, Salerno I-84084, Italy
| |
Collapse
|
30
|
Tran J, Magenau A, Rodriguez M, Rentero C, Royo T, Enrich C, Thomas SR, Grewal T, Gaus K. Activation of Endothelial Nitric Oxide (eNOS) Occurs through Different Membrane Domains in Endothelial Cells. PLoS One 2016; 11:e0151556. [PMID: 26977592 PMCID: PMC4792450 DOI: 10.1371/journal.pone.0151556] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 03/01/2016] [Indexed: 11/18/2022] Open
Abstract
Endothelial cells respond to a large range of stimuli including circulating lipoproteins, growth factors and changes in haemodynamic mechanical forces to regulate the activity of endothelial nitric oxide synthase (eNOS) and maintain blood pressure. While many signalling pathways have been mapped, the identities of membrane domains through which these signals are transmitted are less well characterized. Here, we manipulated bovine aortic endothelial cells (BAEC) with cholesterol and the oxysterol 7-ketocholesterol (7KC). Using a range of microscopy techniques including confocal, 2-photon, super-resolution and electron microscopy, we found that sterol enrichment had differential effects on eNOS and caveolin-1 (Cav1) colocalisation, membrane order of the plasma membrane, caveolae numbers and Cav1 clustering. We found a correlation between cholesterol-induced condensation of the plasma membrane and enhanced high density lipoprotein (HDL)-induced eNOS activity and phosphorylation suggesting that cholesterol domains, but not individual caveolae, mediate HDL stimulation of eNOS. Vascular endothelial growth factor (VEGF)-induced and shear stress-induced eNOS activity was relatively independent of membrane order and may be predominantly controlled by the number of caveolae on the cell surface. Taken together, our data suggest that signals that activate and phosphorylate eNOS are transmitted through distinct membrane domains in endothelial cells.
Collapse
Affiliation(s)
- Jason Tran
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, Australia
| | - Astrid Magenau
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, Australia
| | - Macarena Rodriguez
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, Australia
| | - Carles Rentero
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Teresa Royo
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Carlos Enrich
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Shane R. Thomas
- School of Medical Sciences, The University of New South Wales, Sydney, Australia
| | - Thomas Grewal
- Faculty of Pharmacy A15, University of Sydney, Sydney, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
31
|
Bienias K, Fiedorowicz A, Sadowska A, Prokopiuk S, Car H. Regulation of sphingomyelin metabolism. Pharmacol Rep 2016; 68:570-81. [PMID: 26940196 DOI: 10.1016/j.pharep.2015.12.008] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 11/24/2015] [Accepted: 12/28/2015] [Indexed: 12/17/2022]
Abstract
Sphingolipids (SFs) represent a large class of lipids playing diverse functions in a vast number of physiological and pathological processes. Sphingomyelin (SM) is the most abundant SF in the cell, with ubiquitous distribution within mammalian tissues, and particularly high levels in the Central Nervous System (CNS). SM is an essential element of plasma membrane (PM) and its levels are crucial for the cell function. SM content in a cell is strictly regulated by the enzymes of SM metabolic pathways, which activities create a balance between SM synthesis and degradation. The de novo synthesis via SM synthases (SMSs) in the last step of the multi-stage process is the most important pathway of SM formation in a cell. The SM hydrolysis by sphingomyelinases (SMases) increases the concentration of ceramide (Cer), a bioactive molecule, which is involved in cellular proliferation, growth and apoptosis. By controlling the levels of SM and Cer, SMSs and SMases maintain cellular homeostasis. Enzymes of SM cycle exhibit unique properties and diverse tissue distribution. Disturbances in their activities were observed in many CNS pathologies. This review characterizes the physiological roles of SM and enzymes controlling SM levels as well as their involvement in selected pathologies of the Central Nervous System, such as ischemia/hypoxia, Alzheimer disease (AD), Parkinson disease (PD), depression, schizophrenia and Niemann Pick disease (NPD).
Collapse
Affiliation(s)
- Kamil Bienias
- Department of Experimental Pharmacology, Medical University of Białystok, Białystok, Poland
| | - Anna Fiedorowicz
- Department of Experimental Pharmacology, Medical University of Białystok, Białystok, Poland; Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Anna Sadowska
- Department of Experimental Pharmacology, Medical University of Białystok, Białystok, Poland
| | - Sławomir Prokopiuk
- Department of Experimental Pharmacology, Medical University of Białystok, Białystok, Poland
| | - Halina Car
- Department of Experimental Pharmacology, Medical University of Białystok, Białystok, Poland.
| |
Collapse
|
32
|
Villar VAM, Cuevas S, Zheng X, Jose PA. Localization and signaling of GPCRs in lipid rafts. Methods Cell Biol 2016; 132:3-23. [DOI: 10.1016/bs.mcb.2015.11.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
van Gijsel-Bonnello M, Acar N, Molino Y, Bretillon L, Khrestchatisky M, de Reggi M, Gharib B. Pantethine Alters Lipid Composition and Cholesterol Content of Membrane Rafts, With Down-Regulation of CXCL12-Induced T Cell Migration. J Cell Physiol 2015; 230:2415-25. [PMID: 25728249 DOI: 10.1002/jcp.24971] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 02/20/2015] [Indexed: 11/08/2022]
Abstract
Pantethine, a natural low-molecular-weight thiol, shows a broad activity in a large range of essential cellular pathways. It has been long known as a hypolipidemic and hypocholesterolemic agent. We have recently shown that it exerts a neuroprotective action in mouse models of cerebral malaria and Parkinson's disease through multiple mechanisms. In the present study, we looked at its effects on membrane lipid rafts that serve as platforms for molecules engaged in cell activity, therefore providing a target against inappropriate cell response leading to a chronic inflammation. We found that pantethine-treated cells showed a significant change in raft fatty acid composition and cholesterol content, with ultimate downregulation of cell adhesion, CXCL12-driven chemotaxis, and transendothelial migration of various T cell types, including human Jurkat cell line and circulating effector T cells. The mechanisms involved include the alteration of the following: (i) CXCL12 binding to its target cells; (ii) membrane dynamics of CXCR4 and CXCR7, the two CXCL12 receptors; and (iii) cell redox status, a crucial determinant in the regulation of the chemokine system. In addition, we considered the linker for activation of T cells molecule to show that pantethine effects were associated with the displacement from the rafts of the acylated signaling molecules which had their palmitoylation level reduced.. In conclusion, the results presented here, together with previously published findings, indicate that due to its pleiotropic action, pantethine can downregulate the multifaceted process leading to pathogenic T cell activation and migration.
Collapse
Affiliation(s)
| | - Niyazi Acar
- INRA UMR 6265, University of Burgundy, Dijon, France
| | - Yves Molino
- Vect-Horus, 51 Boulevard Pierre Dramard, Marseille, France
| | | | | | - Max de Reggi
- Aix Marseille University, CNRS, NICN UMR 7259, Marseille, France
| | - Bouchra Gharib
- Aix Marseille University, CNRS, NICN UMR 7259, Marseille, France
| |
Collapse
|
34
|
Chatterjee A, Caballero-Franco C, Bakker D, Totten S, Jardim A. Pore-forming Activity of the Escherichia coli Type III Secretion System Protein EspD. J Biol Chem 2015; 290:25579-94. [PMID: 26324713 DOI: 10.1074/jbc.m115.648204] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Indexed: 12/20/2022] Open
Abstract
Enterohemorrhagic Escherichia coli is a causative agent of gastrointestinal and diarrheal diseases. Pathogenesis associated with enterohemorrhagic E. coli involves direct delivery of virulence factors from the bacteria into epithelial cell cytosol via a syringe-like organelle known as the type III secretion system. The type III secretion system protein EspD is a critical factor required for formation of a translocation pore on the host cell membrane. Here, we show that recombinant EspD spontaneously integrates into large unilamellar vesicle (LUV) lipid bilayers; however, pore formation required incorporation of anionic phospholipids such as phosphatidylserine and an acidic pH. Leakage assays performed with fluorescent dextrans confirmed that EspD formed a structure with an inner diameter of ∼2.5 nm. Protease mapping indicated that the two transmembrane helical hairpin of EspD penetrated the lipid layer positioning the N- and C-terminal domains on the extralumenal surface of LUVs. Finally, a combination of glutaraldehyde cross-linking and rate zonal centrifugation suggested that EspD in LUV membranes forms an ∼280-320-kDa oligomeric structure consisting of ∼6-7 subunits.
Collapse
Affiliation(s)
- Abhishek Chatterjee
- From the Institute of Parasitology and Centre for Host-Parasite Interactions, McGill University, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada
| | - Celia Caballero-Franco
- From the Institute of Parasitology and Centre for Host-Parasite Interactions, McGill University, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada
| | - Dannika Bakker
- From the Institute of Parasitology and Centre for Host-Parasite Interactions, McGill University, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada
| | - Stephanie Totten
- From the Institute of Parasitology and Centre for Host-Parasite Interactions, McGill University, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada
| | - Armando Jardim
- From the Institute of Parasitology and Centre for Host-Parasite Interactions, McGill University, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada
| |
Collapse
|
35
|
Lorent JH, Quetin-Leclercq J, Mingeot-Leclercq MP. The amphiphilic nature of saponins and their effects on artificial and biological membranes and potential consequences for red blood and cancer cells. Org Biomol Chem 2015; 12:8803-22. [PMID: 25295776 DOI: 10.1039/c4ob01652a] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Saponins, amphiphiles of natural origin with numerous biological activities, are widely used in the cosmetic and pharmaceutical industry. Some saponins exhibit relatively selective cytotoxic effects on cancer cells but the tendency of saponins to induce hemolysis limits their anticancer potential. This review focused on the effects of saponin activity on membranes and consequent implications for red blood and cancer cells. This activity seems to be strongly related to the amphiphilic character of saponins that gives them the ability to self-aggregate and interact with membrane components such as cholesterol and phospholipids. Membrane interactions of saponins with artificial membrane models, red blood and cancer cells are reviewed with respect to their molecular structures. The review considered the mechanisms of these membrane interactions and their consequences including the modulation of membrane dynamics, interaction with membrane rafts, and membrane lysis. We summarized current knowledge concerning the mechanisms involved in the interactions of saponins with membrane lipids and examined the structure activity relationship of saponins regarding hemolysis and cancer cell death. A critical analysis of these findings speculates on their potential to further develop new anticancer compounds.
Collapse
Affiliation(s)
- Joseph H Lorent
- Université catholique de Louvain, Louvain Drug Research Institute, Cellular and Molecular Pharmacology (FACM), Avenue Mounier 73, B1.73.05, B-1200 Brussels, Belgium.
| | | | | |
Collapse
|
36
|
Farnoud AM, Toledo AM, Konopka JB, Del Poeta M, London E. Raft-like membrane domains in pathogenic microorganisms. CURRENT TOPICS IN MEMBRANES 2015; 75:233-68. [PMID: 26015285 DOI: 10.1016/bs.ctm.2015.03.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The lipid bilayer of the plasma membrane is thought to be compartmentalized by the presence of lipid-protein microdomains. In eukaryotic cells, microdomains composed of sterols and sphingolipids, commonly known as lipid rafts, are believed to exist, and reports on the presence of sterol- or protein-mediated microdomains in bacterial cell membranes are also appearing. Despite increasing attention, little is known about microdomains in the plasma membrane of pathogenic microorganisms. This review attempts to provide an overview of the current state of knowledge of lipid rafts in pathogenic fungi and bacteria. The current literature on characterization of microdomains in pathogens is reviewed, and their potential role in growth, pathogenesis, and drug resistance is discussed. Better insight into the structure and function of membrane microdomains in pathogenic microorganisms might lead to a better understanding of their pathogenesis and development of raft-mediated approaches for therapy.
Collapse
Affiliation(s)
- Amir M Farnoud
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Alvaro M Toledo
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - James B Konopka
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
37
|
Cytochrome P450 system proteins reside in different regions of the endoplasmic reticulum. Biochem J 2015; 464:241-9. [PMID: 25236845 DOI: 10.1042/bj20140787] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cytochrome P450 (P450) function is dependent on the ability of these enzymes to successfully interact with their redox partners, NADPH-cytochrome P450 reductase (CPR) and cytochrome b5, in the endoplasmic reticulum (ER). Because the ER is heterogeneous in lipid composition, membrane microdomains with different characteristics are formed. Ordered microdomains are more tightly packed, and enriched in saturated fatty acids, sphingomyelin and cholesterol, whereas disordered regions contain higher levels of unsaturated fatty acids. The goal of the present study was to determine whether the P450 system proteins localize to different regions of the ER. The localization of CYP1A2, CYP2B4 and CYP2E1 within the ER was determined by partial membrane solubilization with Brij 98, centrifugation on a discontinuous sucrose gradient and immune blotting of the gradient fractions to identify ordered and disordered microdomains. CYP1A2 resided almost entirely in the ordered regions of the ER with CPR also localized predominantly to this region. CYP2B4 was equally distributed between the ordered and disordered domains. In contrast, CYP2E1 localized to the disordered membrane regions. Removal of cholesterol (an important constituent of ordered domains) led to the relocation of CYP1A2, CYP2B4 and CPR to the disordered regions. Interestingly, CYP1A1 and CYP1A2 localized to different membrane microdomains, despite their high degree of sequence similarity. These data demonstrate that P450 system enzymes are organized in specific membrane regions, and their localization can be affected by depletion of membrane cholesterol. The differential localization of different P450 in specific membrane regions may provide a novel mechanism for modulating P450 function.
Collapse
|
38
|
Mystek P, Tworzydło M, Dziedzicka-Wasylewska M, Polit A. New insights into the model of dopamine D1 receptor and G-proteins interactions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:594-603. [DOI: 10.1016/j.bbamcr.2014.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/03/2014] [Accepted: 12/10/2014] [Indexed: 01/11/2023]
|
39
|
Lipid rafts and raft-mediated supramolecular entities in the regulation of CD95 death receptor apoptotic signaling. Apoptosis 2015; 20:584-606. [DOI: 10.1007/s10495-015-1104-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Moscatelli A, Gagliardi A, Maneta-Peyret L, Bini L, Stroppa N, Onelli E, Landi C, Scali M, Idilli AI, Moreau P. Characterisation of detergent-insoluble membranes in pollen tubes of Nicotiana tabacum (L.). Biol Open 2015; 4:378-99. [PMID: 25701665 PMCID: PMC4359744 DOI: 10.1242/bio.201410249] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Pollen tubes are the vehicle for sperm cell delivery to the embryo sac during fertilisation of Angiosperms. They provide an intriguing model for unravelling mechanisms of growing to extremes. The asymmetric distribution of lipids and proteins in the pollen tube plasma membrane modulates ion fluxes and actin dynamics and is maintained by a delicate equilibrium between exocytosis and endocytosis. The structural constraints regulating polarised secretion and asymmetric protein distribution on the plasma membrane are mostly unknown. To address this problem, we investigated whether ordered membrane microdomains, namely membrane rafts, might contribute to sperm cell delivery. Detergent insoluble membranes, rich in sterols and sphingolipids, were isolated from tobacco pollen tubes. MALDI TOF/MS analysis revealed that actin, prohibitins and proteins involved in methylation reactions and in phosphoinositide pattern regulation are specifically present in pollen tube detergent insoluble membranes. Tubulins, voltage-dependent anion channels and proteins involved in membrane trafficking and signalling were also present. This paper reports the first evidence of membrane rafts in Angiosperm pollen tubes, opening new perspectives on the coordination of signal transduction, cytoskeleton dynamics and polarised secretion.
Collapse
Affiliation(s)
- Alessandra Moscatelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Assunta Gagliardi
- Laboratorio di Proteomica Funzionale, Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Lilly Maneta-Peyret
- Laboratoire de Biogenèse Membranaire, Université Bordeaux Segalen, 71 Avenue Edouard Bourlaux, 33883 Villenave d'Ornon, France
| | - Luca Bini
- Laboratorio di Proteomica Funzionale, Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Nadia Stroppa
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Elisabetta Onelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Claudia Landi
- Laboratorio di Proteomica Funzionale, Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Monica Scali
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via P. A. Mattioli 4, 53100 Siena, Italy
| | - Aurora Irene Idilli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy Present address: Institute of Biophysics, National Research Council and FBK, 38123 Trento, Italy
| | - Patrick Moreau
- Laboratoire de Biogenèse Membranaire, Université Bordeaux Segalen, 71 Avenue Edouard Bourlaux, 33883 Villenave d'Ornon, France
| |
Collapse
|
41
|
Suzuki KG. New Insights into the Organization of Plasma Membrane and Its Role in Signal Transduction. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:67-96. [DOI: 10.1016/bs.ircmb.2015.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Mollinedo F, Gajate C. Lipid rafts as major platforms for signaling regulation in cancer. Adv Biol Regul 2015; 57:130-146. [PMID: 25465296 DOI: 10.1016/j.jbior.2014.10.003] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 10/10/2014] [Accepted: 10/11/2014] [Indexed: 06/04/2023]
Abstract
Cell signaling does not apparently occur randomly over the cell surface, but it seems to be integrated very often into cholesterol-rich membrane domains, termed lipid rafts. Membrane lipid rafts are highly ordered membrane domains that are enriched in cholesterol, sphingolipids and gangliosides, and behave as major modulators of membrane geometry, lateral movement of molecules, traffic and signal transduction. Because the lipid and protein composition of membrane rafts differs from that of the surrounding membrane, they provide an additional level of compartmentalization, serving as sorting platforms and hubs for signal transduction proteins. A wide number of signal transduction processes related to cell adhesion, migration, as well as to cell survival and proliferation, which play major roles in cancer development and progression, are dependent on lipid rafts. Despite lipid rafts harbor mainly critical survival signaling pathways, including insulin-like growth factor I (IGF-I)/phosphatidylinositol 3-kinase (PI3K)/Akt signaling, recent evidence suggests that these membrane domains can also house death receptor-mediated apoptotic signaling. Recruitment of this death receptor signaling pathway in membrane rafts can be pharmacologically modulated, thus opening up the possibility to regulate cell demise with a therapeutic use. The synthetic ether phospholipid edelfosine shows a high affinity for cholesterol and accumulates in lipid rafts in a number of malignant hematological cells, leading to an efficient in vitro and in vivo antitumor activity by inducing translocation of death receptors and downstream signaling molecules to these membrane domains. Additional antitumor drugs have also been shown to act, at least in part, by recruiting death receptors in lipid rafts. The partition of death receptors together with downstream apoptotic signaling molecules in membrane rafts has led us to postulate the concept of a special liquid-ordered membrane platform coined as "cluster of apoptotic signaling molecule-enriched rafts" (CASMER), referring to raft platforms enriched in apoptotic molecules. CASMERs act as scaffolds for apoptosis signaling compartmentalization, facilitating and stabilizing protein-protein interactions by local assembly of cross-interacting molecules, which leads to apoptosis amplification and a decrease in apoptotic signal threshold. Edelfosine also displaced survival PI3K/Akt signaling from lipid rafts, leading to Akt inhibition, in mantle cell lymphoma cells. Thus, membrane rafts could act as scaffold structures where segregation of pro- from anti-apoptotic molecules could take place. In this review, we summarize our view of how reorganization of the protein composition of lipid raft membrane domains regulates cell death and therefore it might be envisaged as a novel target in the treatment of cancer.
Collapse
Affiliation(s)
- Faustino Mollinedo
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, E-37007 Salamanca, Spain.
| | - Consuelo Gajate
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, E-37007 Salamanca, Spain.
| |
Collapse
|
43
|
Xu W, Hsu FF, Baykal E, Huang J, Zhang K. Sterol biosynthesis is required for heat resistance but not extracellular survival in leishmania. PLoS Pathog 2014; 10:e1004427. [PMID: 25340392 PMCID: PMC4207814 DOI: 10.1371/journal.ppat.1004427] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/27/2014] [Indexed: 12/25/2022] Open
Abstract
Sterol biosynthesis is a crucial pathway in eukaryotes leading to the production of cholesterol in animals and various C24-alkyl sterols (ergostane-based sterols) in fungi, plants, and trypanosomatid protozoa. Sterols are important membrane components and precursors for the synthesis of powerful bioactive molecules, including steroid hormones in mammals. Their functions in pathogenic protozoa are not well characterized, which limits the development of sterol synthesis inhibitors as drugs. Here we investigated the role of sterol C14α-demethylase (C14DM) in Leishmania parasites. C14DM is a cytochrome P450 enzyme and the primary target of azole drugs. In Leishmania, genetic or chemical inactivation of C14DM led to a complete loss of ergostane-based sterols and accumulation of 14-methylated sterols. Despite the drastic change in lipid composition, C14DM-null mutants (c14dm(-)) were surprisingly viable and replicative in culture. They did exhibit remarkable defects including increased membrane fluidity, failure to maintain detergent resistant membrane fraction, and hypersensitivity to heat stress. These c14dm(-) mutants showed severely reduced virulence in mice but were highly resistant to itraconazole and amphotericin B, two drugs targeting sterol synthesis. Our findings suggest that the accumulation of toxic sterol intermediates in c14dm(-) causes strong membrane perturbation and significant vulnerability to stress. The new knowledge may help improve the efficacy of current drugs against pathogenic protozoa by exploiting the fitness loss associated with drug resistance.
Collapse
Affiliation(s)
- Wei Xu
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Fong-Fu Hsu
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Eda Baykal
- Department of Physics, Texas Tech University, Lubbock, Texas, United States of America
| | - Juyang Huang
- Department of Physics, Texas Tech University, Lubbock, Texas, United States of America
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
- * E-mail:
| |
Collapse
|
44
|
Gucwa AL, Brown DA. UIM domain-dependent recruitment of the endocytic adaptor protein Eps15 to ubiquitin-enriched endosomes. BMC Cell Biol 2014; 15:34. [PMID: 25260758 PMCID: PMC4181756 DOI: 10.1186/1471-2121-15-34] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 09/22/2014] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Eps15 is an endocytic adaptor protein that stimulates clathrin-mediated endocytosis. Among other interactions, Eps15 binds ubiquitin via UIM domains, recruiting ubiquitinated cargo into clathrin-coated vesicles. In EGF-treated cells, Eps15 also localizes to endosomes. The basis of this localization is not known. RESULTS We show that accumulation of ubiquitinated cargo can recruit Eps15 to endosomes via UIM domain interactions. First, treatment of SK-Br-3 breast cancer cells, which overexpress the EGFR family member ErbB2, with geldanamycin to promote receptor ubiquitination and endosomal transport, recruited FLAG-Eps15 to endosomes. Two in-frame ubiquitin constructs, PM-GFP-Ub (retained in endosomes after endocytosis), and GFP-FYVE-UbΔGG (targeted directly to endosomes) also recruited Eps15 to endosomes, as did slowing endosome maturation with constitutively-active Rab5-Q79L. Endosomal recruitment required the UIM domains, but not the N-terminal EH domains or central coiled-coil domains, of Eps15. Silencing of the endosomal Eps15 binding partner Hrs did not affect recruitment of Eps15 to ubiquitin-enriched endosomes. In fact, Hrs silencing itself modestly recruited Eps15 to endosomes, probably by accumulating endogenous ubiquitinated cargo. Eps15 silencing did not affect lysosomal degradation of ubiquitinated ErbB2; however, GFP-FYVE-UbΔGG overexpression inhibited internalization of EGFR and transferrin receptor. CONCLUSIONS We show for the first time that ubiquitin is sufficient for Eps15 recruitment to endosomes. We speculate that Eps15 recruitment to ubiquitin-rich endosomes may reduce the level of Eps15 at the plasma membrane, slowing endocytosis to allow time for processing of ubiquitinated cargo in endosomes.
Collapse
Affiliation(s)
- Azad L Gucwa
- Department of Biomedical Sciences, Long Island University at Post, Brookville, NY 11548-1300, USA.
| | | |
Collapse
|
45
|
Cholesterol favors the anchorage of human dystrophin repeats 16 to 21 in membrane at physiological surface pressure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1266-73. [PMID: 24440661 DOI: 10.1016/j.bbamem.2014.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 01/07/2014] [Accepted: 01/10/2014] [Indexed: 12/28/2022]
Abstract
Dystrophin (DYS) is a filamentous protein that connects the cytoskeleton and the extracellular matrix via the sarcolemma, conferring resistance to muscular cells. In this study, interactions between the DYS R16-21 fragment and lipids were examined using Langmuir films made of anionic and zwitterionic lipids. The film fluidity was modified by the addition of 15% cholesterol. Whatever the lipid mixture examined, at low surface pressure (20 mN/m) few differences appeared on the protein insertion and the presence of cholesterol did not affect the protein/lipid interactions. At high surface pressure (30 mN/m), the protein insertion was very low and occurred only in zwitterionic films in the liquid-expanded phase. In anionic films, electrostatic interactions prevented the protein insertion outright, and caused accumulation of the protein on the hydrophilic part of the monolayer. Addition of cholesterol to both lipid mixtures drastically modified the protein-lipid interactions: the DYS R16-21 insertion increased and its organization in the monolayer appeared to be more homogeneous. The presence of accessible cholesterol recognition amino-acid consensus sequences in this fragment may enhance the protein/membrane binding at physiological lateral pressure. These results suggest that the anchorage of dystrophin to the membrane in vivo may be stabilized by cholesterol-rich nano-domains in the inner leaflet of sarcolemma.
Collapse
|
46
|
Marella M, Patki G, Matsuno-Yagi A, Yagi T. Complex I inhibition in the visual pathway induces disorganization of the node of Ranvier. Neurobiol Dis 2013; 58:281-8. [PMID: 23816754 PMCID: PMC3767286 DOI: 10.1016/j.nbd.2013.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/10/2013] [Accepted: 06/15/2013] [Indexed: 01/02/2023] Open
Abstract
Mitochondrial defects can have significant consequences on many aspects of neuronal physiology. In particular, deficiencies in the first enzyme complex of the mitochondrial respiratory chain (complex I) are considered to be involved in a number of human neurodegenerative diseases. The current work highlights a tight correlation between the inhibition of complex I and the state of axonal myelination of the optic nerve. Exposing the visual pathway of rats to rotenone, a complex I inhibitor, resulted in disorganization of the node of Ranvier. The structure and function of the node depend on specific cell adhesion molecules, among others, CASPR (contactin associated protein) and contactin. CASPR and contactin are both on the axonal surfaces and need to be associated to be able to anchor their myelin counterpart. Here we show that inhibition of mitochondrial complex I by rotenone in rats induces reactive oxygen species, disrupts the interaction of CASPR and contactin couple, and thus damages the organization and function of the node of Ranvier. Demyelination of the optic nerve occurs as a consequence which is accompanied by a loss of vision. The physiological impairment could be reversed by introducing an alternative NADH dehydrogenase to the mitochondria of the visual system. The restoration of the nodal structure was specifically correlated with visual recovery in the treated animal.
Collapse
Affiliation(s)
- Mathieu Marella
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
47
|
Masuishi Y, Nomura A, Okayama A, Kimura Y, Arakawa N, Hirano H. Mass spectrometric identification of glycosylphosphatidylinositol-anchored peptides. J Proteome Res 2013; 12:4617-26. [PMID: 24001144 DOI: 10.1021/pr4004807] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glycosylphosphatidylinositol (GPI) anchoring is a post-translational modification widely observed among eukaryotic membrane proteins. GPI anchors are attached to proteins via the carboxy-terminus in the outer leaflet of the cell membrane, where GPI-anchored proteins (GPI-APs) perform important functions as coreceptors and enzymes. Precursors of GPI-APs (Pre-GPI-APs) contain a C-terminal hydrophobic sequence that is involved in cleavage of the signal sequence from the protein and addition of the GPI anchor by the transamidase complex. In order to confirm that a given protein contains a GPI anchor, it is essential to identify the C-terminal peptide containing the GPI-anchor modification site (ω-site). Previously, efficient identification of GPI-anchored C-terminal peptides by mass spectrometry has been difficult, in part because of complex structure of the GPI-anchor moiety. We developed a method to experimentally identify GPI-APs and their ω-sites. In this method, a part of GPI-anchor moieties are removed from GPI-anchored peptides using phosphatidylinositol-specific phospholipase C (PI-PLC) and aqueous hydrogen fluoride (HF), and peptide sequence is then determined by mass spectrometry. Using this method, we successfully identified 10 GPI-APs and 12 ω-sites in the cultured ovarian adenocarcinoma cells, demonstrating that this method is useful for identifying efficiently GPI-APs.
Collapse
Affiliation(s)
- Yusuke Masuishi
- Graduate School of Medical Life Science and ‡Advanced Medical Research Center, Yokohama City University , Yokohama, Kanagawa 236-0004, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Discriminatory Role of Detergent-Resistant Membranes in the Dimerization and Endocytosis of Prostate-Specific Membrane Antigen. PLoS One 2013; 8:e66193. [PMID: 23840421 PMCID: PMC3686812 DOI: 10.1371/journal.pone.0066193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/02/2013] [Indexed: 11/20/2022] Open
Abstract
Prostate-specific membrane antigen (PSMA) is a type-II membrane glycoprotein that was initially identified in LNCaP cells. It is expressed at elevated levels in prostate cancer. In view of the correlation between the expression levels of PSMA and disease grade and stage, PSMA is considered to be one of the most promising biomarkers in the diagnosis and treatment of prostate cancer. In LNCaP cells PSMA undergoes internalization via clathrin-coated pits followed by accumulation in the endosomes. PSMA associates with different types of detergent-resistant membranes (DRMs) along the secretory pathway. Its mature form is mainly insoluble in Lubrol WX, but does not associate with Triton X-100-DRMs. To understand the mechanism of PSMA internalization we investigated its association during internalization with DRMs. For this purpose, internalization was induced by antibody cross-linking. We demonstrate at the biochemical and cell biological levels that: [i] exclusively homodimers of PSMA are associated with Lubrol WX-DRMs, [ii] antibody-induced cross-linking of PSMA molecules results in a time-dependent partitioning into another DRMs type, namely Triton X-100-DRMs, and [iii] concomitant with its association with Triton-X-100-DRMs internalization of PSMA occurs along tubulin filaments. In a previous work (Colombatti et al. (2009) PLoS One 4: e4608) we demonstrated that the small GTPases RAS and RAC1 and the MAPKs p38 and ERK1/2 are activated during antibody cross-linking. As downstream effects of this activation we observed a strong induction of NF-kB associated with an increased expression of IL-6 and CCL5 genes and that IL-6 and CCL5 enhanced the proliferative potential of LNCaP cells synergistically. These observations together with findings reported here hypothesize a fundamental role of DRMs during activation of PSMA as platforms for trafficking, endocytosis and signalling. Understanding these mechanisms constitutes an essential prerequisite for utilization of PSMA as a therapeutically suitable target in prostate cancer.
Collapse
|
49
|
Inder KL, Davis M, Hill MM. Ripples in the pond--using a systems approach to decipher the cellular functions of membrane microdomains. MOLECULAR BIOSYSTEMS 2013; 9:330-8. [PMID: 23322173 DOI: 10.1039/c2mb25300c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Membrane microdomains such as lipid rafts and caveolae regulate a myriad of cellular functions including cell signalling, protein trafficking, cell viability, and cell movement. They have been implicated in diseases such as cancer, diabetes and Alzheimer's disease, highlighting the essential role they play in cell processes. Despite much research and debate on the size, composition and dynamics of membrane microdomains, the molecular mechanism(s) of their action remain poorly understood. Most studies have dealt solely with the content and properties of the membrane microdomain as an entity in itself. However, recent work shows that membrane microdomain disruption has wide ranging effects on other subcellular compartments, and the cell as a whole. Hence we propose that a systems approach incorporating many cellular attributes such as subcellular localisation is required in order to understand the global impact of microdomains on cell function. Although analysis of sub-proteome changes already provides additional insight, we further propose biological network analysis of functional proteomics data to capture effects at the systems level. In this review, we highlight the use of protein-protein interactions networks and mixed networks to portray and visualize the relationships between proteins within and between subcellular fractions. Such a systems analysis will be required to improve our understanding of the full cellular function of membrane microdomains.
Collapse
|
50
|
Bayyareddy K, Zhu X, Orlando R, Adang MJ. Proteome analysis of Cry4Ba toxin-interacting Aedes aegypti lipid rafts using geLC-MS/MS. J Proteome Res 2012; 11:5843-55. [PMID: 23153095 DOI: 10.1021/pr3006167] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Lipid rafts are microdomains in the plasma membrane of eukaryotic cells. Among their many functions, lipid rafts are involved in cell toxicity caused by pore forming bacterial toxins including Bacillus thuringiensis (Bt) Cry toxins. We isolated lipid rafts from brush border membrane vesicles (BBMV) of Aedes aegypti larvae as a detergent resistant membrane (DRM) fraction on density gradients. Cholesterol, aminopeptidase (APN), alkaline phosphatase (ALP) and the raft marker flotillin were preferentially partitioned into the lipid raft fraction. When mosquitocidal Cry4Ba toxin was preincubated with BBMV, Cry4Ba localized to lipid rafts. A proteomic approach based on one-dimensional gel electrophoresis, in-gel trypsin digestion, followed by liquid chromatography-mass spectrometry (geLC-MS/MS) identified a total of 386 proteins. Of which many are typical lipid raft marker proteins including flotillins and glycosylphosphatidylinositol (GPI)-anchored proteins. Identified raft proteins were annotated in silico for functional and physicochemical characteristics. Parameters such as distribution of isoelectric point, molecular mass, and predicted post-translational modifications relevant to lipid raft proteins (GPI anchorage and myristoylation or palmitoylation) were analyzed for identified proteins in the DRM fraction. From a functional point of view, this study identified proteins implicated in Cry toxin interactions as well as membrane-associated proteins expressed in the mosquito midgut that have potential relevance to mosquito biology and vector management.
Collapse
Affiliation(s)
- Krishnareddy Bayyareddy
- Department of Entomology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | | | | | | |
Collapse
|