1
|
Millichap L, Turton N, Alomosh R, Heaton RA, Bateman A, Al-Shanti N, Lightfoot AP, Damiani E, Marcheggiani F, Orlando P, Silvestri S, Tiano L, Hargreaves IP. The effect of simvastatin induced neurotoxicity on mitochondrial function in human neuronal cells. Toxicol Mech Methods 2025:1-12. [PMID: 40028788 DOI: 10.1080/15376516.2025.2471807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase (HMGR) inhibitors, commonly known as statins, are drugs frequently used in the treatment of hypercholesterolemia and hyperlipidemia. However, the current study has demonstrated that simvastatin induces neurotoxicity and is associated with cellular coenzyme Q10 (CoQ10) depletion. CoQ10 has a significant role in the mitochondrial electron transport chain (ETC), in addition to being a fundamental lipid-soluble antioxidant. Depletion of CoQ10 is frequently associated with impaired mitochondrial function and increased oxidative stress. The aim of this study was to investigate the potential mechanisms of simvastatin-induced neurotoxicity assessing mitochondrial function and evidence of oxidative stress in an in vitro SH-SY5Y human neuronal cell line. Fluorescence studies assessed via flow cytometry determined significant increases in intracellular and mitochondrial reactive oxygen species production following SH-SY5Y treatment with simvastatin compared to control cells. Additionally, spectrophotometric enzyme studies determined a significant (p < 0.0001) inhibition of ETC complex I and II-III activities which accompanied a significant decrease in neuronal CoQ10 content (p < 0.005) and cell viability (p < 0.0001). The results of the present study have indicated evidence of mitochondrial dysfunction and increased oxidative stress, resulting in increased loss of neuronal viability following simvastatin treatment. Thus, these results demonstrate evidence of neurotoxicity associated with statin therapy.
Collapse
Affiliation(s)
- Lauren Millichap
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Nadia Turton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Razan Alomosh
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Robert A Heaton
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Amy Bateman
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Nasser Al-Shanti
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Adam P Lightfoot
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Iain P Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
2
|
Phillips MCL, Picard M. Neurodegenerative disorders, metabolic icebergs, and mitohormesis. Transl Neurodegener 2024; 13:46. [PMID: 39242576 PMCID: PMC11378521 DOI: 10.1186/s40035-024-00435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/25/2024] [Indexed: 09/09/2024] Open
Abstract
Neurodegenerative disorders are typically "split" based on their hallmark clinical, anatomical, and pathological features, but they can also be "lumped" by a shared feature of impaired mitochondrial biology. This leads us to present a scientific framework that conceptualizes Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD) as "metabolic icebergs" comprised of a tip, a bulk, and a base. The visible tip conveys the hallmark neurological symptoms, neurodegenerative regions, and neuronal protein aggregates for each disorder. The hidden bulk depicts impaired mitochondrial biology throughout the body, which is multifaceted and may be subdivided into impaired cellular metabolism, cell-specific mitotypes, and mitochondrial behaviours, functions, activities, and features. The underlying base encompasses environmental factors, especially modern industrial toxins, dietary lifestyles, and cognitive, physical, and psychosocial behaviours, but also accommodates genetic factors specific to familial forms of AD, PD, and ALS, as well as HD. Over years or decades, chronic exposure to a particular suite of environmental and genetic factors at the base elicits a trajectory of impaired mitochondrial biology that maximally impacts particular subsets of mitotypes in the bulk, which eventually surfaces as the hallmark features of a particular neurodegenerative disorder at the tip. We propose that impaired mitochondrial biology can be repaired and recalibrated by activating "mitohormesis", which is optimally achieved using strategies that facilitate a balanced oscillation between mitochondrial stressor and recovery phases. Sustainably harnessing mitohormesis may constitute a potent preventative and therapeutic measure for people at risk of, or suffering with, neurodegenerative disorders.
Collapse
Affiliation(s)
- Matthew C L Phillips
- Department of Neurology, Waikato Hospital, Hamilton, 3204, New Zealand.
- Department of Medicine, University of Auckland, Auckland, 1142, New Zealand.
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
3
|
Millichap L, Turton N, Damiani E, Marcheggiani F, Orlando P, Silvestri S, Tiano L, Hargreaves IP. The Effect of Neuronal CoQ 10 Deficiency and Mitochondrial Dysfunction on a Rotenone-Induced Neuronal Cell Model of Parkinson's Disease. Int J Mol Sci 2024; 25:6622. [PMID: 38928331 PMCID: PMC11204355 DOI: 10.3390/ijms25126622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder currently affecting the ageing population. Although the aetiology of PD has yet to be fully elucidated, environmental factors such as exposure to the naturally occurring neurotoxin rotenone has been associated with an increased risk of developing PD. Rotenone inhibits mitochondrial respiratory chain (MRC) complex I activity as well as induces dopaminergic neuronal death. The aim of the present study was to investigate the underlying mechanisms of rotenone-induced mitochondrial dysfunction and oxidative stress in an in vitro SH-SY5Y neuronal cell model of PD and to assess the ability of pre-treatment with Coenzyme Q10 (CoQ10) to ameliorate oxidative stress in this model. Spectrophotometric determination of the mitochondrial enzyme activities and fluorescence probe studies of reactive oxygen species (ROS) production was assessed. Significant inhibition of MRC complex I and II-III activities was observed, together with a significant loss of neuronal viability, CoQ10 status, and ATP synthesis. Additionally, significant increases were observed in intracellular and mitochondrial ROS production. Remarkably, CoQ10 supplementation was found to reduce ROS formation. These results have indicated mitochondrial dysfunction and increased oxidative stress in a rotenone-induced neuronal cell model of PD that was ameliorated by CoQ10 supplementation.
Collapse
Affiliation(s)
- Lauren Millichap
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (L.M.); (E.D.); (F.M.); (P.O.); (S.S.); (L.T.)
| | - Nadia Turton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 5UA, UK;
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (L.M.); (E.D.); (F.M.); (P.O.); (S.S.); (L.T.)
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (L.M.); (E.D.); (F.M.); (P.O.); (S.S.); (L.T.)
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (L.M.); (E.D.); (F.M.); (P.O.); (S.S.); (L.T.)
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (L.M.); (E.D.); (F.M.); (P.O.); (S.S.); (L.T.)
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (L.M.); (E.D.); (F.M.); (P.O.); (S.S.); (L.T.)
| | - Iain P. Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 5UA, UK;
| |
Collapse
|
4
|
Dashkova AS, Kovalev VI, Chaplygina AV, Zhdanova DY, Bobkova NV. Unique Properties of Synaptosomes and Prospects for Their Use for the Treatment of Alzheimer's Disease. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1031-1044. [PMID: 38981699 DOI: 10.1134/s0006297924060051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 07/11/2024]
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative condition affecting millions worldwide. Prevalence of AD correlates with increased life expectancy and aging population in the developed countries. Considering that AD is a multifactorial disease involving various pathological processes such as synaptic dysfunction, neuroinflammation, oxidative stress, and improper protein folding, a comprehensive approach targeting multiple pathways may prove effective in slowing the disease progression. Cellular therapy and its further development in the form of cell vesicle and particularly mitochondrial transplantation represent promising approaches for treating neurodegeneration. The use of synaptosomes, due to uniqueness of their contents, could mark a new stage in the development of comprehensive therapies for neurodegenerative diseases, particularly AD. Synaptosomes contain unique memory mitochondria, which differ not only in size but also in functionality compared to the mitochondria in the neuronal soma. These synaptosomal mitochondria actively participate in cellular communication and signal transmission within synapses. Synaptosomes also contain other elements such as their own protein synthesis machinery, synaptic vesicles with neurotransmitters, synaptic adhesion molecules, and microRNAs - all crucial for synaptic transmission and, consequently, cognitive processes. Complex molecular ensemble ensures maintenance of the synaptic autonomy of mitochondria. Additionally, synaptosomes, with their affinity for neurons, can serve as an optimal platform for targeted drug delivery to nerve cells. This review discusses unique composition of synaptosomes, their capabilities and advantages, as well as limitations of their suggested use as therapeutic agents for treating neurodegenerative pathologies, particularly AD.
Collapse
Affiliation(s)
- Alla S Dashkova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Vladimir I Kovalev
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Alina V Chaplygina
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Daria Yu Zhdanova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Natalia V Bobkova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
5
|
López-Molina L, Sancho-Balsells A, Al-Massadi O, Montalban E, Alberch J, Arranz B, Girault JA, Giralt A. Hippocampal Pyk2 regulates specific social skills: Implications for schizophrenia. Neurobiol Dis 2024; 194:106487. [PMID: 38552722 DOI: 10.1016/j.nbd.2024.106487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/14/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024] Open
Abstract
Pyk2 has been shown previously to be involved in several psychological and cognitive alterations related to stress, Huntington's disease, and Alzheimer's disease. All these disorders are accompanied by different types of impairments in sociability, which has recently been linked to improper mitochondrial function. We hypothesize that Pyk2, which regulates mitochondria, could be associated with the regulation of mitochondrial dynamics and social skills. In the present manuscript, we report that a reduction of Pyk2 levels in mouse pyramidal neurons of the hippocampus decreased social dominance and aggressivity. Furthermore, social interactions induced robust Pyk2-dependent hippocampal changes in several oxidative phosphorylation complexes. We also observed that Pyk2 levels were increased in the CA1 pyramidal neurons of schizophrenic subjects, occurring alongside changes in different direct and indirect regulators of mitochondrial function including DISC1 and Grp75. Accordingly, overexpressing Pyk2 in hippocampal CA1 pyramidal cells mimicked some specific schizophrenia-like social behaviors in mice. In summary, our results indicate that Pyk2 might play a role in regulating specific social skills likely via mitochondrial dynamics and that there might be a link between Pyk2 levels in hippocampal neurons and social disturbances in schizophrenia.
Collapse
Affiliation(s)
- Laura López-Molina
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Anna Sancho-Balsells
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Omar Al-Massadi
- Inserm UMR-S 1270, 75005 Paris, France; Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France; Institut du Fer a Moulin, 75005 Paris, France; Translational Endocrinology Group, Servicio de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (IDIS/CHUS), Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Spain
| | - Enrica Montalban
- Inserm UMR-S 1270, 75005 Paris, France; Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France; Institut du Fer a Moulin, 75005 Paris, France; UMR 1286, NutriNeuro - INRAE / Université de Bordeaux / INP 146, rue Léo Saignat, 33076 Brodeaux cedex, France
| | - Jordi Alberch
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Faculty of Medicine and Health Science, Production and Validation Center of Advanced Therapies (Creatio), University of Barcelona, Barcelona, Spain
| | - Belén Arranz
- Parc Sanitari Sant Joan de Déu, CIBERSAM, Barcelona, Spain
| | - Jean-Antoine Girault
- Inserm UMR-S 1270, 75005 Paris, France; Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France; Institut du Fer a Moulin, 75005 Paris, France
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Faculty of Medicine and Health Science, Production and Validation Center of Advanced Therapies (Creatio), University of Barcelona, Barcelona, Spain.
| |
Collapse
|
6
|
Kiy RT, Khoo SH, Chadwick AE. Assessing the mitochondrial safety profile of the molnupiravir active metabolite, β-d-N4-hydroxycytidine (NHC), in the physiologically relevant HepaRG model. Toxicol Res (Camb) 2024; 13:tfae012. [PMID: 38328743 PMCID: PMC10848230 DOI: 10.1093/toxres/tfae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 02/09/2024] Open
Abstract
Background β-d-N4-Hydroxycytidine (NHC) is the active metabolite of molnupiravir, a broad-spectrum antiviral approved by the MHRA for COVID-19 treatment. NHC induces lethal mutagenesis of the SARS-CoV-2 virus, undergoing incorporation into the viral genome and arresting viral replication. It has previously been reported that several nucleoside analogues elicit off-target inhibition of mitochondrial DNA (mtDNA) or RNA replication. Although NHC does not exert these effects in HepG2 cells, HepaRG are proven to be advantageous over HepG2 for modelling nucleoside analogue-induced mitochondrial dysfunction. Therefore, the objective of this work was to assess the mitotoxic potential of NHC in HepaRG cells, a model more closely resembling physiological human liver. Methods Differentiated HepaRG cells were exposed to 1-60 μM NHC for 3-14 days to investigate effects of sub-, supra-, and clinically-relevant exposures (in the UK, molnupiravir for COVID-19 is indicated for 5 days and reported Cmax is 16 μM). Following drug incubation, cell viability, mtDNA copy number, mitochondrial protein expression, and mitochondrial respiration were assessed. Results NHC induced minor decreases in cell viability at clinically relevant exposures, but did not decrease mitochondrial protein expression. The effects on mtDNA were variable, but typically copy number was increased. At supra-clinical concentrations (60 μM), NHC reduced mitochondrial respiration, but did not appear to induce direct electron transport chain dysfunction. Conclusions Overall, NHC does not cause direct mitochondrial toxicity in HepaRG cells at clinically relevant concentrations, but may induce minor cellular perturbations. As HepaRG cells have increased physiological relevance, these findings provide additional assurance of the mitochondrial safety profile of NHC.
Collapse
Affiliation(s)
- Robyn T Kiy
- Department of Pharmacology and Therapeutics, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, United Kingdom
| | - Saye H Khoo
- Department of Pharmacology and Therapeutics, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, United Kingdom
- Tropical Infectious Diseases Unit, Royal Liverpool University Hospital, Prescot Street, Liverpool, L7 8XP, United Kingdom
| | - Amy E Chadwick
- Department of Pharmacology and Therapeutics, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, United Kingdom
| |
Collapse
|
7
|
Bortoluzzi VT, Ribeiro RT, Pinheiro CV, Castro ET, Tavares TQ, Leipnitz G, Sass JO, Castilho RF, Amaral AU, Wajner M. N-Acetylglutamate and N-acetylmethionine compromise mitochondrial bioenergetics homeostasis and glutamate oxidation in brain of developing rats: Potential implications for the pathogenesis of ACY1 deficiency. Biochem Biophys Res Commun 2023; 684:149123. [PMID: 37871522 DOI: 10.1016/j.bbrc.2023.149123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Aminoacylase 1 (ACY1) deficiency is an inherited metabolic disorder biochemically characterized by high urinary concentrations of aliphatic N-acetylated amino acids and associated with a broad clinical spectrum with predominant neurological signs. Considering that the pathogenesis of ACY1 is practically unknown and the brain is highly dependent on energy production, the in vitro effects of N-acetylglutamate (NAG) and N-acetylmethionine (NAM), major metabolites accumulating in ACY1 deficiency, on the enzyme activities of the citric acid cycle (CAC), of the respiratory chain complexes and glutamate dehydrogenase (GDH), as well as on ATP synthesis were evaluated in brain mitochondrial preparations of developing rats. NAG mildly inhibited mitochondrial isocitrate dehydrogenase 2 (IDH2) activity, moderately inhibited the activities of isocitrate dehydrogenase 3 (IDH3) and complex II-III of the respiratory chain and markedly suppressed the activities of complex IV and GDH. Of note, the NAG-induced inhibitory effect on IDH3 was competitive, whereas that on GDH was mixed. On the other hand, NAM moderately inhibited the activity of respiratory complexes II-III and GDH activities and strongly decreased complex IV activity. Furthermore, NAM was unable to modify any of the CAC enzyme activities, indicating a selective effect of NAG toward IDH mitochondrial isoforms. In contrast, the activities of citrate synthase, α-ketoglutarate dehydrogenase, malate dehydrogenase, and of the respiratory chain complexes I and II were not changed by these N-acetylated amino acids. Finally, NAG and NAM strongly decreased mitochondrial ATP synthesis. Taken together, the data indicate that NAG and NAM impair mitochondrial brain energy homeostasis.
Collapse
Affiliation(s)
- Vanessa Trindade Bortoluzzi
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Rafael Teixeira Ribeiro
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Camila Vieira Pinheiro
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Ediandra Tissot Castro
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Tailine Quevedo Tavares
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Guilhian Leipnitz
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Jörn Oliver Sass
- Research Group Inborn Errors of Metabolism, Department of Natural Sciences & Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, Rheinbach, Germany.
| | - Roger Frigério Castilho
- Departamento de Patologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, Brazil.
| | - Alexandre Umpierrez Amaral
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; PPG Atenção Integral à Saúde, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, Brazil.
| | - Moacir Wajner
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| |
Collapse
|
8
|
Nusir A, Sinclair P, Kabbani N. Mitochondrial Proteomes in Neural Cells: A Systematic Review. Biomolecules 2023; 13:1638. [PMID: 38002320 PMCID: PMC10669788 DOI: 10.3390/biom13111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Mitochondria are ancient endosymbiotic double membrane organelles that support a wide range of eukaryotic cell functions through energy, metabolism, and cellular control. There are over 1000 known proteins that either reside within the mitochondria or are transiently associated with it. These mitochondrial proteins represent a functional subcellular protein network (mtProteome) that is encoded by mitochondrial and nuclear genomes and significantly varies between cell types and conditions. In neurons, the high metabolic demand and differential energy requirements at the synapses are met by specific modifications to the mtProteome, resulting in alterations in the expression and functional properties of the proteins involved in energy production and quality control, including fission and fusion. The composition of mtProteomes also impacts the localization of mitochondria in axons and dendrites with a growing number of neurodegenerative diseases associated with changes in mitochondrial proteins. This review summarizes the findings on the composition and properties of mtProteomes important for mitochondrial energy production, calcium and lipid signaling, and quality control in neural cells. We highlight strategies in mass spectrometry (MS) proteomic analysis of mtProteomes from cultured cells and tissue. The research into mtProteome composition and function provides opportunities in biomarker discovery and drug development for the treatment of metabolic and neurodegenerative disease.
Collapse
Affiliation(s)
- Aya Nusir
- Interdisciplinary Program in Neuroscience, School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
| | - Patricia Sinclair
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
| | - Nadine Kabbani
- Interdisciplinary Program in Neuroscience, School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
| |
Collapse
|
9
|
Smith AN, Morris JK, Carbuhn AF, Herda TJ, Keller JE, Sullivan DK, Taylor MK. Creatine as a Therapeutic Target in Alzheimer's Disease. Curr Dev Nutr 2023; 7:102011. [PMID: 37881206 PMCID: PMC10594571 DOI: 10.1016/j.cdnut.2023.102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, affecting approximately 6.5 million older adults in the United States. Development of AD treatment has primarily centered on developing pharmaceuticals that target amyloid-β (Aβ) plaques in the brain, a hallmark pathological biomarker that precedes symptomatic AD. Though recent clinical trials of novel drugs that target Aβ have demonstrated promising preliminary data, these pharmaceuticals have a poor history of developing into AD treatments, leading to hypotheses that other therapeutic targets may be more suitable for AD prevention and treatment. Impaired brain energy metabolism is another pathological hallmark that precedes the onset of AD that may provide a target for intervention. The brain creatine (Cr) system plays a crucial role in maintaining bioenergetic flux and is disrupted in AD. Recent studies using AD mouse models have shown that supplementing with Cr improves brain bioenergetics, as well as AD biomarkers and cognition. Despite these promising findings, no human trials have investigated the potential benefits of Cr supplementation in AD. This narrative review discusses the link between Cr and AD and the potential for Cr supplementation as a treatment for AD.
Collapse
Affiliation(s)
- Aaron N. Smith
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jill K. Morris
- Alzheimer’s Disease Research Center, University of Kansas, Fairway, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Aaron F. Carbuhn
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
| | - Trent J. Herda
- Department of Health, Sport, and Exercise Sciences, University of Kansas, Lawrence, KS, United States
| | - Jessica E. Keller
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
| | - Debra K. Sullivan
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
- Alzheimer’s Disease Research Center, University of Kansas, Fairway, KS, United States
| | - Matthew K. Taylor
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
- Alzheimer’s Disease Research Center, University of Kansas, Fairway, KS, United States
| |
Collapse
|
10
|
Inoue R, Nishimune H. Neuronal Plasticity and Age-Related Functional Decline in the Motor Cortex. Cells 2023; 12:2142. [PMID: 37681874 PMCID: PMC10487126 DOI: 10.3390/cells12172142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
Physiological aging causes a decline of motor function due to impairment of motor cortex function, losses of motor neurons and neuromuscular junctions, sarcopenia, and frailty. There is increasing evidence suggesting that the changes in motor function start earlier in the middle-aged stage. The mechanism underlining the middle-aged decline in motor function seems to relate to the central nervous system rather than the peripheral neuromuscular system. The motor cortex is one of the responsible central nervous systems for coordinating and learning motor functions. The neuronal circuits in the motor cortex show plasticity in response to motor learning, including LTP. This motor cortex plasticity seems important for the intervention method mechanisms that revert the age-related decline of motor function. This review will focus on recent findings on the role of plasticity in the motor cortex for motor function and age-related changes. The review will also introduce our recent identification of an age-related decline of neuronal activity in the primary motor cortex of middle-aged mice using electrophysiological recordings of brain slices.
Collapse
Affiliation(s)
- Ritsuko Inoue
- Laboratory of Neurobiology of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan;
| | - Hiroshi Nishimune
- Laboratory of Neurobiology of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan;
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-8-1 Harumicho, Fuchu-shi, Tokyo 183-8538, Japan
| |
Collapse
|
11
|
Duarte FV, Ciampi D, Duarte CB. Mitochondria as central hubs in synaptic modulation. Cell Mol Life Sci 2023; 80:173. [PMID: 37266732 DOI: 10.1007/s00018-023-04814-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 06/03/2023]
Abstract
Mitochondria are present in the pre- and post-synaptic regions, providing the energy required for the activity of these very specialized neuronal compartments. Biogenesis of synaptic mitochondria takes place in the cell body, and these organelles are then transported to the synapse by motor proteins that carry their cargo along microtubule tracks. The transport of mitochondria along neurites is a highly regulated process, being modulated by the pattern of neuronal activity and by extracellular cues that interact with surface receptors. These signals act by controlling the distribution of mitochondria and by regulating their activity. Therefore, mitochondria activity at the synapse allows the integration of different signals and the organelles are important players in the response to synaptic stimulation. Herein we review the available evidence regarding the regulation of mitochondrial dynamics by neuronal activity and by neuromodulators, and how these changes in the activity of mitochondria affect synaptic communication.
Collapse
Affiliation(s)
- Filipe V Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- III - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Daniele Ciampi
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Carlos B Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
12
|
Pearson-Smith JN, Fulton R, Huynh CQ, Figueroa AG, Huynh GB, Liang LP, Gano LB, Michel CR, Reisdorph N, Reisdorph R, Fritz KS, Verdin E, Patel M. Neuronal SIRT3 Deletion Predisposes to Female-Specific Alterations in Cellular Metabolism, Memory, and Network Excitability. J Neurosci 2023; 43:1845-1857. [PMID: 36759193 PMCID: PMC10010453 DOI: 10.1523/jneurosci.1259-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/14/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Mitochondrial dysfunction is an early event in the pathogenesis of neurologic disorders and aging. Sirtuin 3 (SIRT3) regulates mitochondrial function in response to the cellular environment through the reversible deacetylation of proteins involved in metabolism and reactive oxygen species detoxification. As the primary mitochondrial deacetylase, germline, or peripheral tissue-specific deletion of SIRT3 produces mitochondrial hyperacetylation and the accelerated development of age-related diseases. Given the unique metabolic demands of neurons, the role of SIRT3 in the brain is only beginning to emerge. Using mass spectrometry-based acetylomics, high-resolution respirometry, video-EEG, and cognition testing, we report targeted deletion of SIRT3 from select neurons in the cortex and hippocampus produces altered neuronal excitability and metabolic dysfunction in female mice. Targeted deletion of SIRT3 from neuronal helix-loop-helix 1 (NEX)-expressing neurons resulted in mitochondrial hyperacetylation, female-specific superoxide dismutase-2 (SOD2) modification, increased steady-state superoxide levels, metabolic reprogramming, altered neuronal excitability, and working spatial memory deficits. Inducible neuronal deletion of SIRT3 likewise produced female-specific deficits in spatial working memory. Together, the data demonstrate that deletion of SIRT3 from forebrain neurons selectively predisposes female mice to deficits in mitochondrial and cognitive function.SIGNIFICANCE STATEMENT Mitochondrial SIRT3 is an enzyme shown to regulate energy metabolism and antioxidant function, by direct deacetylation of proteins. In this study, we show that neuronal SIRT3 deficiency renders female mice selectively vulnerable to impairment in redox and metabolic function, spatial memory, and neuronal excitability. The observed sex-specific effects on cognition and neuronal excitability in female SIRT3-deficient mice suggest that mitochondrial dysfunction may be one factor underlying comorbid neuronal diseases, such as Alzheimer's disease and epilepsy. Furthermore, the data suggest that SIRT3 dysfunction may predispose females to age-related metabolic and cognitive impairment.
Collapse
Affiliation(s)
- Jennifer N Pearson-Smith
- School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Ruth Fulton
- School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Christopher Q Huynh
- School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Anna G Figueroa
- School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Gia B Huynh
- School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Li-Ping Liang
- School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Lindsey B Gano
- School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Cole R Michel
- School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Nichole Reisdorph
- School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Richard Reisdorph
- School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Kristofer S Fritz
- School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Eric Verdin
- Buck Institute for Aging, Novato, California 94945
| | - Manisha Patel
- School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
13
|
Currò M, Saija C, Trainito A, Trovato-Salinaro A, Bertuccio MP, Visalli G, Caccamo D, Ientile R. Rotenone-induced oxidative stress in THP-1 cells: biphasic effects of baicalin. Mol Biol Rep 2023; 50:1241-1252. [PMID: 36446982 DOI: 10.1007/s11033-022-08060-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/26/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Several results demonstrated that microglia and peripheral monocytes/macrophages infiltrating the central nervous system (CNS) are involved in cell response against toxic compounds. It has been shown that rotenone induces neurodegeneration in various in vitro experimental models. Baicalin, a natural compound, is able to attenuate cell damage through anti-oxidant, anti-microbial, anti-inflammatory, and immunomodulatory action. Using THP-1 monocytes, we investigated rotenone effects on mitochondrial dysfunction and apoptosis, as well as baicalin ability to counteract rotenone toxicity. METHODS AND RESULTS THP-1 cells were exposed to rotenone (250 nM), in the presence/absence of baicalin (10-500 μM) for 2-24 h. Reactive Oxygen Species production (ROS), mitochondrial activity and transmembrane potential (Δψm), DNA damage, and caspase-3 activity were assessed. Moreover, gene expression of mitochondrial transcription factor a (mtTFA), interleukin-1β (IL-1β), B-cell lymphoma 2 (Bcl2) and BCL2-associated X protein (Bax), together with apoptotic morphological changes, were evaluated. After 2 h of rotenone incubation, increased ROS production and altered Δψm were observed, hours later resulting in DNA oxidative damage and apoptosis. Baicalin treatment at 50 µM counteracted rotenone toxicity by modulating the expression levels of some proteins involved in mitochondrial biogenesis and apoptosis. Interestingly, at higher baicalin concentrations, rotenone-induced alterations persisted. CONCLUSIONS These results give evidence that exposure to rotenone may promote the activation of THP-1 monocytes contributing to enhanced neurodegeneration. In this context, baicalin at low concentration exerts beneficial effects on mitochondrial function, and thus may prevent the onset of neurotoxic processes.
Collapse
Affiliation(s)
- Monica Currò
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, Polyclinic Hospital University, 98125, Messina, Italy
| | - Caterina Saija
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, Polyclinic Hospital University, 98125, Messina, Italy
| | - Alessandra Trainito
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, Polyclinic Hospital University, 98125, Messina, Italy
| | | | - Maria Paola Bertuccio
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, Polyclinic Hospital University, 98125, Messina, Italy
| | - Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, Polyclinic Hospital University, 98125, Messina, Italy
| | - Daniela Caccamo
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, Polyclinic Hospital University, 98125, Messina, Italy
| | - Riccardo Ientile
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, Polyclinic Hospital University, 98125, Messina, Italy.
| |
Collapse
|
14
|
Parsons RB, Kocinaj A, Ruiz Pulido G, Prendergast SA, Parsons AE, Facey PD, Hirth F. Alpha-synucleinopathy reduces NMNAT3 protein levels and neurite formation that can be rescued by targeting the NAD+ pathway. Hum Mol Genet 2022; 31:2918-2933. [PMID: 35397003 PMCID: PMC9433734 DOI: 10.1093/hmg/ddac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 03/18/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022] Open
Abstract
Parkinson's disease is characterized by the deposition of α-synuclein, which leads to synaptic dysfunction, the loss of neuronal connections and ultimately progressive neurodegeneration. Despite extensive research into Parkinson's disease pathogenesis, the mechanisms underlying α-synuclein-mediated synaptopathy have remained elusive. Several lines of evidence suggest that altered nicotinamide adenine dinucleotide (NAD+) metabolism might be causally related to synucleinopathies, including Parkinson's disease. NAD+ metabolism is central to the maintenance of synaptic structure and function. Its synthesis is mediated by nicotinamide mononucleotide adenylyltransferases (NMNATs), but their role in Parkinson's disease is not known. Here we report significantly decreased levels of NMNAT3 protein in the caudate nucleus of patients who have died with Parkinson's disease, which inversely correlated with the amount of monomeric α-synuclein. The detected alterations were specific and significant as the expression levels of NMNAT1, NMNAT2 and sterile alpha and TIR motif containing 1 (SARM1) were not significantly different in Parkinson's disease patients compared to controls. To test the functional significance of these findings, we ectopically expressed wild-type α-synuclein in retinoic acid-differentiated dopaminergic SH-SY5Y cells that resulted in decreased levels of NMNAT3 protein plus a neurite pathology, which could be rescued by FK866, an inhibitor of nicotinamide phosphoribosyltransferase that acts as a key enzyme in the regulation of NAD+ synthesis. Our results establish, for the first time, NMNAT3 alterations in Parkinson's disease and demonstrate in human cells that this phenotype together with neurite pathology is causally related to α-synucleinopathy. These findings identify alterations in the NAD+ biosynthetic pathway as a pathogenic mechanism underlying α-synuclein-mediated synaptopathy.
Collapse
Affiliation(s)
- Richard B Parsons
- King’s College London, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, UK
| | - Altin Kocinaj
- King’s College London, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, UK
| | - Gustavo Ruiz Pulido
- King’s College London, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, UK
| | - Sarah A Prendergast
- King’s College London, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, UK
| | - Anna E Parsons
- King’s College London, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, UK
| | - Paul D Facey
- Swansea University, Singleton Park Campus, Swansea University Medical School, Swansea SA2 8PP, UK
| | - Frank Hirth
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neurosciences Institute, Department of Basic & Clinical Neuroscience, 5 Cutcombe Road, London SE5 9RX, UK
| |
Collapse
|
15
|
Gore E, Duparc T, Genoux A, Perret B, Najib S, Martinez LO. The Multifaceted ATPase Inhibitory Factor 1 (IF1) in Energy Metabolism Reprogramming and Mitochondrial Dysfunction: A New Player in Age-Associated Disorders? Antioxid Redox Signal 2022; 37:370-393. [PMID: 34605675 PMCID: PMC9398489 DOI: 10.1089/ars.2021.0137] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: The mitochondrial oxidative phosphorylation (OXPHOS) system, comprising the electron transport chain and ATP synthase, generates membrane potential, drives ATP synthesis, governs energy metabolism, and maintains redox balance. OXPHOS dysfunction is associated with a plethora of diseases ranging from rare inherited disorders to common conditions, including diabetes, cancer, neurodegenerative diseases, as well as aging. There has been great interest in studying regulators of OXPHOS. Among these, ATPase inhibitory factor 1 (IF1) is an endogenous inhibitor of ATP synthase that has long been thought to avoid the consumption of cellular ATP when ATP synthase acts as an ATP hydrolysis enzyme. Recent Advances: Recent data indicate that IF1 inhibits ATP synthesis and is involved in a multitude of mitochondrial-related functions, such as mitochondrial quality control, energy metabolism, redox balance, and cell fate. IF1 also inhibits the ATPase activity of cell-surface ATP synthase, and it is used as a cardiovascular disease biomarker. Critical Issues: Although recent data have led to a paradigm shift regarding IF1 functions, these have been poorly studied in entire organisms and in different organs. The understanding of the cellular biology of IF1 is, therefore, still limited. The aim of this review was to provide an overview of the current understanding of the role of IF1 in mitochondrial functions, health, and diseases. Future Directions: Further investigations of IF1 functions at the cell, organ, and whole-organism levels and in different pathophysiological conditions will help decipher the controversies surrounding its involvement in mitochondrial function and could unveil therapeutic strategies in human pathology. Antioxid. Redox Signal. 37, 370-393.
Collapse
Affiliation(s)
- Emilia Gore
- I2MC, University of Toulouse, INSERM, UPS, Toulouse, France
| | - Thibaut Duparc
- I2MC, University of Toulouse, INSERM, UPS, Toulouse, France
| | - Annelise Genoux
- I2MC, University of Toulouse, INSERM, UPS, Toulouse, France.,Service de Biochimie, Pôle de biologie, Hôpital de Purpan, CHU de Toulouse, Toulouse, France
| | - Bertrand Perret
- I2MC, University of Toulouse, INSERM, UPS, Toulouse, France.,Service de Biochimie, Pôle de biologie, Hôpital de Purpan, CHU de Toulouse, Toulouse, France
| | - Souad Najib
- I2MC, University of Toulouse, INSERM, UPS, Toulouse, France
| | | |
Collapse
|
16
|
Henkel ND, Wu X, O'Donovan SM, Devine EA, Jiron JM, Rowland LM, Sarnyai Z, Ramsey AJ, Wen Z, Hahn MK, McCullumsmith RE. Schizophrenia: a disorder of broken brain bioenergetics. Mol Psychiatry 2022; 27:2393-2404. [PMID: 35264726 DOI: 10.1038/s41380-022-01494-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023]
Abstract
A substantial and diverse body of literature suggests that the pathophysiology of schizophrenia is related to deficits of bioenergetic function. While antipsychotics are an effective therapy for the management of positive psychotic symptoms, they are not efficacious for the complete schizophrenia symptom profile, such as the negative and cognitive symptoms. In this review, we discuss the relationship between dysfunction of various metabolic pathways across different brain regions in relation to schizophrenia. We contend that several bioenergetic subprocesses are affected across the brain and such deficits are a core feature of the illness. We provide an overview of central perturbations of insulin signaling, glycolysis, pentose-phosphate pathway, tricarboxylic acid cycle, and oxidative phosphorylation in schizophrenia. Importantly, we discuss pharmacologic and nonpharmacologic interventions that target these pathways and how such interventions may be exploited to improve the symptoms of schizophrenia.
Collapse
Affiliation(s)
- Nicholas D Henkel
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.
| | - Xiajoun Wu
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Sinead M O'Donovan
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Emily A Devine
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Jessica M Jiron
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zoltan Sarnyai
- Laboratory of Psychiatric Neuroscience, Australian Institute for Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | - Amy J Ramsey
- Department of Pharmacology and Toxicology, Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Zhexing Wen
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Margaret K Hahn
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Robert E McCullumsmith
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
- Neurosciences Institute, ProMedica, Toledo, OH, USA
| |
Collapse
|
17
|
Faria-Pereira A, Morais VA. Synapses: The Brain's Energy-Demanding Sites. Int J Mol Sci 2022; 23:3627. [PMID: 35408993 PMCID: PMC8998888 DOI: 10.3390/ijms23073627] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
The brain is one of the most energy-consuming organs in the mammalian body, and synaptic transmission is one of the major contributors. To meet these energetic requirements, the brain primarily uses glucose, which can be metabolized through glycolysis and/or mitochondrial oxidative phosphorylation. The relevance of these two energy production pathways in fulfilling energy at presynaptic terminals has been the subject of recent studies. In this review, we dissect the balance of glycolysis and oxidative phosphorylation to meet synaptic energy demands in both resting and stimulation conditions. Besides ATP output needs, mitochondria at synapse are also important for calcium buffering and regulation of reactive oxygen species. These two mitochondrial-associated pathways, once hampered, impact negatively on neuronal homeostasis and synaptic activity. Therefore, as mitochondria assume a critical role in synaptic homeostasis, it is becoming evident that the synaptic mitochondria population possesses a distinct functional fingerprint compared to other brain mitochondria. Ultimately, dysregulation of synaptic bioenergetics through glycolytic and mitochondrial dysfunctions is increasingly implicated in neurodegenerative disorders, as one of the first hallmarks in several of these diseases are synaptic energy deficits, followed by synapse degeneration.
Collapse
Affiliation(s)
| | - Vanessa A. Morais
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal;
| |
Collapse
|
18
|
McElroy GS, Chakrabarty RP, D'Alessandro KB, Hu YS, Vasan K, Tan J, Stoolman JS, Weinberg SE, Steinert EM, Reyfman PA, Singer BD, Ladiges WC, Gao L, Lopéz-Barneo J, Ridge K, Budinger GRS, Chandel NS. Reduced expression of mitochondrial complex I subunit Ndufs2 does not impact healthspan in mice. Sci Rep 2022; 12:5196. [PMID: 35338200 PMCID: PMC8956724 DOI: 10.1038/s41598-022-09074-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/16/2022] [Indexed: 01/01/2023] Open
Abstract
Aging in mammals leads to reduction in genes encoding the 45-subunit mitochondrial electron transport chain complex I. It has been hypothesized that normal aging and age-related diseases such as Parkinson’s disease are in part due to modest decrease in expression of mitochondrial complex I subunits. By contrast, diminishing expression of mitochondrial complex I genes in lower organisms increases lifespan. Furthermore, metformin, a putative complex I inhibitor, increases healthspan in mice and humans. In the present study, we investigated whether loss of one allele of Ndufs2, the catalytic subunit of mitochondrial complex I, impacts healthspan and lifespan in mice. Our results indicate that Ndufs2 hemizygous mice (Ndufs2+/−) show no overt impairment in aging-related motor function, learning, tissue histology, organismal metabolism, or sensitivity to metformin in a C57BL6/J background. Despite a significant reduction of Ndufs2 mRNA, the mice do not demonstrate a significant decrease in complex I function. However, there are detectable transcriptomic changes in individual cell types and tissues due to loss of one allele of Ndufs2. Our data indicate that a 50% decline in mRNA of the core mitochondrial complex I subunit Ndufs2 is neither beneficial nor detrimental to healthspan.
Collapse
Affiliation(s)
- Gregory S McElroy
- Department of Medicine Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ram P Chakrabarty
- Department of Medicine Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Karis B D'Alessandro
- Department of Medicine Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yuan-Shih Hu
- Department of Medicine Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Karthik Vasan
- Department of Medicine Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jerica Tan
- Department of Medicine Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Joshua S Stoolman
- Department of Medicine Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Samuel E Weinberg
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Elizabeth M Steinert
- Department of Medicine Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Paul A Reyfman
- Department of Medicine Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Benjamin D Singer
- Department of Medicine Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Warren C Ladiges
- Department of Comparative Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Lin Gao
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José Lopéz-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Karen Ridge
- Department of Medicine Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - G R Scott Budinger
- Department of Medicine Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Navdeep S Chandel
- Department of Medicine Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
19
|
Pathania A, Garg P, Sandhir R. Impaired mitochondrial functions and energy metabolism in MPTP-induced Parkinson's disease: comparison of mice strains and dose regimens. Metab Brain Dis 2021; 36:2343-2357. [PMID: 34648126 DOI: 10.1007/s11011-021-00840-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/08/2021] [Indexed: 11/27/2022]
Abstract
Heterogenous diseases such as Parkinson's disease (PD) needs an efficient animal model to enhance understanding of the underlying mechanisms and to develop therapeutics. MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), a neurotoxin, has been widely used to replicate the pathophysiology of PD in rodents, however, the knowledge about its effects on energy metabolism is limited. Moreover, susceptibility to different dose regimens of MPTP also varies among mice strains. Thus, the present study compares the effect of acute and sub-acute MPTP administration on mitochondrial functions in C57BL/6 and BALB/c mice. In addition, activity of enzymes involved in energy metabolism was also studied along with behavioural alterations. The findings show that acute dose of MPTP in C57BL/6 mice had more profound effect on the activity of electron transport chain complexes. Further, the activity of MAO-B was increased following acute and sub-acute MPTP administration in C57BL/6 mice. However, no significant change was observed in BALB/c mice. Acute MPTP treatment resulted in decreased mitochondrial membrane potential along with increased swelling of mitochondria in C57BL/6 mice. In addition, perturbations were observed in hexokinase, the rate limiting enzyme of glycolysis and pyruvate dehydrogenase, the enzymes that connects glycolysis and TCA cycle. The activity of TCA cycle enzymes; citrate synthase, aconitase, isocitrate dehydrogenase and fumarase were also altered following MPTP intoxication. Furthermore, acute MPTP administration led to drastic reduction in dopamine levels in striatum of C57BL/6 as compared to BALB/c mice. Behavioral tests such as open field, narrow beam walk and footprint analysis revealed severe impairment in locomotor activity in C57BL/6 mice. These results clearly demonstrate that C57BL/6 strain is more vulnerable to MPTP-induced mitochondrial dysfunctions, perturbations in energy metabolism and motor defects as compared to BALB/c strain. Thus, the findings suggest that the dose and strain of mice need to be considered for pre-clinical studies using MPTP-induced model of Parkinson's disease.
Collapse
Affiliation(s)
- Anjana Pathania
- Department of Biochemistry, Panjab University, Basic Medical Science Block-II, Sector-25, Chandigarh, 160014, India
| | - Priyanka Garg
- Department of Biochemistry, Panjab University, Basic Medical Science Block-II, Sector-25, Chandigarh, 160014, India
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Basic Medical Science Block-II, Sector-25, Chandigarh, 160014, India.
| |
Collapse
|
20
|
Dubinin MV, Semenova AA, Ilzorkina AI, Penkov NV, Nedopekina DA, Sharapov VA, Khoroshavina EI, Davletshin EV, Belosludtseva NV, Spivak AY, Belosludtsev KN. Mitochondria-targeted prooxidant effects of betulinic acid conjugated with delocalized lipophilic cation F16. Free Radic Biol Med 2021; 168:55-69. [PMID: 33812008 DOI: 10.1016/j.freeradbiomed.2021.03.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/15/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023]
Abstract
The paper examines the molecular mechanisms of the cytotoxicity of conjugates of betulinic acid with the penetrating cation F16. The in vitro experiments on rat thymocytes revealed that all the obtained F16-betulinic acid derivatives showed more than 10-fold higher cytotoxicity as compared to betulinic acid and F16. In this case, 0.5-1 μM of all conjugates showed mitochondria-targeted action, inducing superoxide overproduction and reducing the mitochondrial potential of cells. Experiments on isolated rat liver mitochondria revealed the ability of conjugates to dose-dependently reduce the membrane potential of organelles, as well as the intensity of respiration and oxidative phosphorylation, which is also accompanied by an increase in the production of hydrogen peroxide by mitochondria. It was shown that these actions of derivatives may be due to several effects: the reversion of ATP synthase, changes in the activity of complexes of the respiratory chain and permeabilization of the inner mitochondrial membrane. All compounds also demonstrated the ability to induce aggregation of isolated rat liver mitochondria. Using the model of lecithin liposomes, we found that the F6 conjugate (2 μM) induces the permeability of vesicle membranes for the fluorescent probe sulforhodamine B. High concentrations (25 μM) of the F6 derivative have been found to induce dynamic processes in the liposome membrane leading to aggregation and/or fusion of vesicle membranes. The paper discusses the relationship between the mitochondria-targeted effects of F16-betulinic acid conjugates and their cytotoxicity.
Collapse
Affiliation(s)
- Mikhail V Dubinin
- Mari State University, Pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia.
| | - Alena A Semenova
- Mari State University, Pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia
| | - Anna I Ilzorkina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow Region, 142290, Russia
| | - Nikita V Penkov
- Institute of Cell Biophysics, Russian Academy of Sciences, PSCBR RAS, Institutskaya 3, Pushchino, Moscow Region, 142290, Russia
| | - Darya A Nedopekina
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Prospekt Oktyabrya 141, Ufa, Republic of Bashkortostan, 450075, Russia
| | | | | | - Eldar V Davletshin
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Prospekt Oktyabrya 141, Ufa, Republic of Bashkortostan, 450075, Russia
| | - Natalia V Belosludtseva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow Region, 142290, Russia
| | - Anna Yu Spivak
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Prospekt Oktyabrya 141, Ufa, Republic of Bashkortostan, 450075, Russia
| | - Konstantin N Belosludtsev
- Mari State University, Pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow Region, 142290, Russia; Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova 38, Moscow, 119991, Russia
| |
Collapse
|
21
|
Dionísio PA, Amaral JD, Rodrigues CMP. Oxidative stress and regulated cell death in Parkinson's disease. Ageing Res Rev 2021; 67:101263. [PMID: 33540042 DOI: 10.1016/j.arr.2021.101263] [Citation(s) in RCA: 235] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. Motor deficits usually associated with PD correlate with dopaminergic axonal neurodegeneration starting at the striatum, which is then followed by dopaminergic neuronal death in the substantia nigra pars compacta (SN), with both events occurring already at the prodromal stage. We will overview the main physiological characteristics responsible for the higher susceptibility of the nigrostriatal circuit to mitochondrial dysfunction and oxidative stress, as hinted by the acting mechanisms of the PD-causing neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Then, we will present multiple lines of evidence linking several cell death mechanisms involving mitochondria and production of reactive oxygen species to neuronal loss in PD, namely intrinsic and extrinsic apoptosis, necroptosis, ferroptosis, parthanatos and mitochondrial permeability transition-driven necrosis. We will focus on gathered data from postmortem PD samples and relevant in vivo models, especially MPTP-based models.
Collapse
Affiliation(s)
- P A Dionísio
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, 1649-003, Portugal
| | - J D Amaral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, 1649-003, Portugal
| | - C M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, 1649-003, Portugal.
| |
Collapse
|
22
|
Nitric oxide and dopamine metabolism converge via mitochondrial dysfunction in the mechanisms of neurodegeneration in Parkinson's disease. Arch Biochem Biophys 2021; 704:108877. [PMID: 33864752 DOI: 10.1016/j.abb.2021.108877] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
The molecular mechanisms underlying the degeneration and neuronal death associated with Parkinson's disease (PD) are not clearly understood. Several pathways and models have been explored in an overwhelming number of studies. Overall, from these studies, mitochondrial dysfunction and nitroxidative stress have emerged as major contributors to degeneration of dopaminergic neurons in PD. In addition, an excessive or inappropriate production of nitric oxide (•NO) and an abnormal metabolism of dopamine have been independently implicated in both processes. However, the participation of •NO in reactions with dopamine relevant to neurotoxicity strongly suggests that dopamine or its metabolites may be potential targets for •NO, affecting the physiological chemistry of both, •NO and dopamine. In this short review, we provide a critical and integrative appraisal of the nitric oxide-dopamine pathway we have previously suggested and that might be operative in PD. This pathway emphasizes a connection between abnormal dopamine and •NO metabolism, which may potentially converge in an integrated mechanism with toxic cellular outcomes. In particular, it encompasses the synergistic interaction of •NO with 3,4-dihydroxyphenylacetic acid (DOPAC), a major dopamine metabolite, leading to dopaminergic cell death via mechanisms that involve mitochondrial dysfunction, gluthathione depletion and nitroxidative stress.
Collapse
|
23
|
Adlimoghaddam A, Odero GG, Glazner G, Turner RS, Albensi BC. Nilotinib Improves Bioenergetic Profiling in Brain Astroglia in the 3xTg Mouse Model of Alzheimer's Disease. Aging Dis 2021; 12:441-465. [PMID: 33815876 PMCID: PMC7990369 DOI: 10.14336/ad.2020.0910] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/10/2020] [Indexed: 12/27/2022] Open
Abstract
Current treatments targeting amyloid beta in Alzheimer's disease (AD) have minimal efficacy, which results in a huge unmet medical need worldwide. Accumulating data suggest that brain mitochondrial dysfunction play a critical role in AD pathogenesis. Targeting cellular mechanisms associated with mitochondrial dysfunction in AD create a novel approach for drug development. This study investigated the effects of nilotinib, as a selective tyrosine kinase inhibitor, in astroglia derived from 3xTg-AD mice versus their C57BL/6-controls. Parameters included oxygen consumption rates (OCR), ATP, cytochrome c oxidase (COX), citrate synthase (CS) activity, alterations in oxidative phosphorylation (OXPHOS), nuclear factor kappa B (NF-κB), key regulators of mitochondrial dynamics (mitofusin (Mfn1), dynamin-related protein 1 (Drp1)), and mitochondrial biogenesis (peroxisome proliferator-activated receptor gamma coactivator1-alpha (PGC-1α), calcium/calmodulin-dependent protein kinase II (CaMKII), and nuclear factor (erythroid-derived 2)-like 2 (Nrf2)). Nilotinib increased OCR, ATP, COX, Mfn1, and OXPHOS levels in 3xTg astroglia. No significant differences were detected in levels of Drp1 protein and CS activity. Nilotinib enhanced mitochondrial numbers, potentially through a CaMKII-PGC1α-Nrf2 pathway in 3xTg astroglia. Additionally, nilotinib-induced OCR increases were reduced in the presence of the NF-κB inhibitor, Bay11-7082. The data suggest that NF-κB signaling is intimately involved in nilotinib-induced changes in bioenergetics in 3xTg brain astroglia. Nilotinib increased translocation of the NF-κB p50 subunit into the nucleus of 3xTg astroglia that correlates with an increased expression and activation of NF-κB. The current findings support a role for nilotinib in improving mitochondrial function and suggest that astroglia may be a key therapeutic target in treating AD.
Collapse
Affiliation(s)
- Aida Adlimoghaddam
- 1Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB, Canada
| | - Gary G Odero
- 1Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB, Canada
| | - Gordon Glazner
- 1Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB, Canada.,2Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - R Scott Turner
- 3Department of Neurology, Georgetown University, Washington, DC, USA
| | - Benedict C Albensi
- 1Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB, Canada.,2Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
24
|
PGC-1s in the Spotlight with Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22073487. [PMID: 33800548 PMCID: PMC8036867 DOI: 10.3390/ijms22073487] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease is one of the most common neurodegenerative disorders worldwide, characterized by a progressive loss of dopaminergic neurons mainly localized in the substantia nigra pars compacta. In recent years, the detailed analyses of both genetic and idiopathic forms of the disease have led to a better understanding of the molecular and cellular pathways involved in PD, pointing to the centrality of mitochondrial dysfunctions in the pathogenic process. Failure of mitochondrial quality control is now considered a hallmark of the disease. The peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1) family acts as a master regulator of mitochondrial biogenesis. Therefore, keeping PGC-1 level in a proper range is fundamental to guarantee functional neurons. Here we review the major findings that tightly bond PD and PGC-1s, raising important points that might lead to future investigations.
Collapse
|
25
|
Kilbride SM, Telford JE, Davey GP. Complex I Controls Mitochondrial and Plasma Membrane Potentials in Nerve Terminals. Neurochem Res 2021; 46:100-107. [PMID: 32130629 DOI: 10.1007/s11064-020-02990-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 12/21/2022]
Abstract
Reductions in the activities of mitochondrial electron transport chain (ETC) enzymes have been implicated in the pathogenesis of numerous chronic neurodegenerative disorders. Maintenance of the mitochondrial membrane potential (Δψm) is a primary function of these enzyme complexes, and is essential for ATP production and neuronal survival. We examined the effects of inhibition of mitochondrial ETC complexes I, II/III, III and IV activities by titrations of respective inhibitors on Δψm in synaptosomal mitochondria. Small perturbations in the activity of complex I, brought about by low concentrations of rotenone (1-50 nM), caused depolarisation of Δψm. Small decreases in complex I activity caused an immediate and partial Δψm depolarisation, whereas inhibition of complex II/III activity by more than 70% with antimycin A was required to affect Δψm. A similarly high threshold of inhibition was found when complex III was inhibited with myxothiazol, and inhibition of complex IV by more than 90% with KCN was required. The plasma membrane potential (Δψp) had a complex I inhibition threshold of 40% whereas complex III and IV had to be inhibited by more than 90% before changes in Δψp were registered. These data indicate that in synaptosomes, both Δψm and Δψp are more susceptible to reductions in complex I activity than reductions in the other ETC complexes. These findings may be of relevance to the mechanism of neuronal cell death in Parkinson's disease in particular, where such reductions in complex I activity are present.
Collapse
Affiliation(s)
- Seán M Kilbride
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Jayne E Telford
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Gavin P Davey
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
26
|
Turton N, Heaton RA, Ismail F, Roberts S, Nelder S, Phillips S, Hargreaves IP. The Effect of Organophosphate Exposure on Neuronal Cell Coenzyme Q 10 Status. Neurochem Res 2021; 46:131-139. [PMID: 32306167 PMCID: PMC7829235 DOI: 10.1007/s11064-020-03033-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/17/2022]
Abstract
Organophosphate (OP) compounds are widely used as pesticides and herbicides and exposure to these compounds has been associated with both chronic and acute forms of neurological dysfunction including cognitive impairment, neurophysiological problems and cerebral ataxia with evidence of mitochondrial impairment being associated with this toxicity. In view of the potential mitochondrial impairment, the present study aimed to investigate the effect of exposure to commonly used OPs, dichlorvos, methyl-parathion (parathion) and chloropyrifos (CPF) on the cellular level of the mitochondrial electron transport chain (ETC) electron carrier, coenzyme Q10 (CoQ10) in human neuroblastoma SH-SY5Y cells. The effect of a perturbation in CoQ10 status was also evaluated on mitochondrial function and cell viability. A significant decreased (P < 0.0001) in neuronal cell viability was observed following treatment with all three OPs (100 µM), with dichlorvos appearing to be the most toxic to cells and causing an 80% loss of viability. OP treatment also resulted in a significant diminution in cellular CoQ10 status, with levels of this isoprenoid being decreased by 72% (P < 0.0001), 62% (P < 0.0005) and 43% (P < 0.005) of control levels following treatment with dichlorvos, parathion and CPF (50 µM), respectively. OP exposure was also found to affect the activities of the mitochondrial enzymes, citrate synthase (CS) and mitochondrial electron transport chain (ETC) complex II+III. Dichlorvos and CPF (50 µM) treatment significantly decreased CS activity by 38% (P < 0.0001) and 35% (P < 0.0005), respectively compared to control levels in addition to causing a 54% and 57% (P < 0.0001) reduction in complex II+III activity, respectively. Interestingly, although CoQ10 supplementation (5 μM) was able to restore cellular CoQ10 status and CS activity to control levels following OP treatment, complex II+III activity was only restored to control levels in neuronal cells exposed to dichlorvos (50 µM). However, post supplementation with CoQ10, complex II+III activity significantly increased by 33% (P < 0.0005), 25% (P < 0.005) and 35% (P < 0.0001) in dichlorvos, parathion and CPF (100 µM) treated cells respectively compared to non-CoQ10 supplemented cells. In conclusion, the results of this study have indicated evidence of neuronal cell CoQ10 deficiency with associated mitochondrial dysfunction following OP exposure. Although CoQ10 supplementation was able to ameliorate OP induced deficiencies in CS activity, ETC complex II+III activity appeared partially refractory to this treatment. Accordingly, these results indicate the therapeutic potential of CoQ10 supplementation in the treatment of OP poisoning. However, higher doses may be required to engender therapeutic efficacy.
Collapse
Affiliation(s)
- Nadia Turton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Robert A Heaton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Fahima Ismail
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Sioned Roberts
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Sian Nelder
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Sue Phillips
- The Royal Liverpool University Hospital, Royal Liverpool and Broadgreen NHS Trust, Prescot Street, Liverpool, UK
| | - Iain P Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
27
|
The nuclear factor kappa B (NF-κB) signaling pathway is involved in ammonia-induced mitochondrial dysfunction. Mitochondrion 2020; 57:63-75. [PMID: 33378713 DOI: 10.1016/j.mito.2020.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Abstract
Hyperammonemia is very toxic to the brain, leading to inflammation, disruption of brain cellular energy metabolism and cognitive function. However, the underlying mechanism(s) for these impairments is still not fully understood. This study investigated the effects of ammonia in hippocampal astroglia derived from C57BL/6 mice. Parameters measured included oxygen consumption rates (OCR), ATP, cytochrome c oxidase (COX) activity, alterations in oxidative phosphorylation (OXPHOS), nuclear factor kappa B (NF-κB) subunits, key regulators of mitochondrial biogenesis (peroxisome proliferator-activated receptor gamma coactivator1-alpha (PGC-1α), calcium/calmodulin-dependent protein kinase II (CaMKII), cAMP-response element binding protein (CREB), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), early growth response (Egr) factor family of proteins, and mitochondrial transcription factor A (TFAM). Ammonia was found to decrease mitochondrial numbers, potentially through a CaMKII-CREB-PGC1α-Nrf2 pathway in astroglia. Ammonia did not alter the levels of Egrs and TFAM in astroglia. Ammonia decreased OCR, ATP, COX, and OXPHOS levels in astroglia. To assess whether energy metabolism is reduced by ammonia through NF-κB associated pathways, astroglia were treated with ammonia alone or with NF-κB inhibitors such as Bay11-7082 or SN50. Mitochondrial OCR levels were reduced in the presence of NF-κB inhibitors; however co-treatment of NF-κB inhibitors and ammonia reversed mitochondrial deficits. Further, ammonia increased translocation of the NF-κB p65 into the nucleus of astroglia that correlates with an increased activity of NF-κB. These findings suggest that the NF-κB signaling pathway is putatively involved in ammonia-induced changes in bioenergetics in astroglia. Such research has critical implications for the treatment of disorders in which brain bioenergetics is compromised.
Collapse
|
28
|
Proctor EC, Turton N, Boan EJ, Bennett E, Philips S, Heaton RA, Hargreaves IP. The Effect of Methylmalonic Acid Treatment on Human Neuronal Cell Coenzyme Q 10 Status and Mitochondrial Function. Int J Mol Sci 2020; 21:E9137. [PMID: 33266298 PMCID: PMC7730949 DOI: 10.3390/ijms21239137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/26/2022] Open
Abstract
Methylmalonic acidemia is an inborn metabolic disease of propionate catabolism, biochemically characterized by accumulation of methylmalonic acid (MMA) to millimolar concentrations in tissues and body fluids. However, MMA's role in the pathophysiology of the disorder and its status as a "toxic intermediate" is unclear, despite evidence for its ability to compromise antioxidant defenses and induce mitochondrial dysfunction. Coenzyme Q10 (CoQ10) is a prominent electron carrier in the mitochondrial respiratory chain (MRC) and a lipid-soluble antioxidant which has been reported to be deficient in patient-derived fibroblasts and renal tissue from an animal model of the disease. However, at present, it is uncertain which factors are responsible for inducing this CoQ10 deficiency or the effect of this deficit in CoQ10 status on mitochondrial function. Therefore, in this study, we investigated the potential of MMA, the principal metabolite that accumulates in methylmalonic acidemia, to induce a cellular CoQ10 deficiency. In view of the severe neurological presentation of patients with this condition, human neuroblastoma SH-SY5Y cells were used as a neuronal cell model for this investigation. Following treatment with pathological concentrations of MMA (>0.5 mM), we found a significant (p = 0.0087) ~75% reduction in neuronal cell CoQ10 status together with a significant (p = 0.0099) decrease in MRC complex II-III activity at higher concentrations (>2 mM). The deficits in neuronal CoQ10 status and MRC complex II-III activity were associated with a loss of cell viability. However, no significant impairment of mitochondrial membrane potential (ΔΨm) was detectable. These findings indicate the potential of pathological concentrations of MMA to induce a neuronal cell CoQ10 deficiency with an associated loss of MRC complex II-III activity. However, in the absence of an impairment of ΔΨm, the contribution this potential deficit in cellular CoQ10 status makes towards the disease pathophysiology methylmalonic acidemia has yet to be fully elucidated.
Collapse
Affiliation(s)
- Emma C. Proctor
- Department of Biochemistry, University of Warwick, Coventry CV4 7AL, UK;
| | - Nadia Turton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (N.T.); (E.J.B.); (E.B.); (R.A.H.)
| | - Elle Jo Boan
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (N.T.); (E.J.B.); (E.B.); (R.A.H.)
| | - Emily Bennett
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (N.T.); (E.J.B.); (E.B.); (R.A.H.)
| | - Suzannah Philips
- Department of Clinical Biochemistry, The Royal Liverpool University Hospital, Royal Liverpool and Broadgreen NHS Trust, Prescot Street, Liverpool L7 8XP, UK;
| | - Robert A. Heaton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (N.T.); (E.J.B.); (E.B.); (R.A.H.)
| | - Iain P. Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (N.T.); (E.J.B.); (E.B.); (R.A.H.)
| |
Collapse
|
29
|
Wang W, Zhao F, Ma X, Perry G, Zhu X. Mitochondria dysfunction in the pathogenesis of Alzheimer's disease: recent advances. Mol Neurodegener 2020; 15:30. [PMID: 32471464 PMCID: PMC7257174 DOI: 10.1186/s13024-020-00376-6] [Citation(s) in RCA: 723] [Impact Index Per Article: 144.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases, characterized by impaired cognitive function due to progressive loss of neurons in the brain. Under the microscope, neuronal accumulation of abnormal tau proteins and amyloid plaques are two pathological hallmarks in affected brain regions. Although the detailed mechanism of the pathogenesis of AD is still elusive, a large body of evidence suggests that damaged mitochondria likely play fundamental roles in the pathogenesis of AD. It is believed that a healthy pool of mitochondria not only supports neuronal activity by providing enough energy supply and other related mitochondrial functions to neurons, but also guards neurons by minimizing mitochondrial related oxidative damage. In this regard, exploration of the multitude of mitochondrial mechanisms altered in the pathogenesis of AD constitutes novel promising therapeutic targets for the disease. In this review, we will summarize recent progress that underscores the essential role of mitochondria dysfunction in the pathogenesis of AD and discuss mechanisms underlying mitochondrial dysfunction with a focus on the loss of mitochondrial structural and functional integrity in AD including mitochondrial biogenesis and dynamics, axonal transport, ER-mitochondria interaction, mitophagy and mitochondrial proteostasis.
Collapse
Affiliation(s)
- Wenzhang Wang
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106 USA
| | - Fanpeng Zhao
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106 USA
| | - Xiaopin Ma
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106 USA
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX USA
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106 USA
| |
Collapse
|
30
|
Singh SS, Rai SN, Birla H, Zahra W, Rathore AS, Dilnashin H, Singh R, Singh SP. Neuroprotective Effect of Chlorogenic Acid on Mitochondrial Dysfunction-Mediated Apoptotic Death of DA Neurons in a Parkinsonian Mouse Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6571484. [PMID: 32566093 PMCID: PMC7273475 DOI: 10.1155/2020/6571484] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 12/21/2022]
Abstract
Mitochondrial dysfunction and oxidative stress characterize major factors involved in the activation of complex processes corresponding to apoptosis-mediated neuronal senescence of dopaminergic neurons (DA) in Parkinson's disease (PD). Here, we evaluated the molecular mechanisms participating in the treatment of a 1-methyl-4-phenyl-1,2,3,6-tetrahydopyridine- (MPTP-) intoxicated PD mouse model in response to chlorogenic acid (CGA). The results indicate that CGA treatment significantly improved the motor coordination of the MPTP-intoxicated mice. CGA also alleviated the fall in activity of mitochondrial complexes I, IV, and V in accordance with ameliorating the level of superoxide dismutase and mitochondrial glutathione in the midbrain of MPTP-induced mice. CGA inhibited the activation of proapoptotic proteins including Bax and caspase-3, while elevating the expression of antiapoptotic protein like Bcl-2 consequently preventing the MPTP-mediated apoptotic cascade. The study also revealed the improved phosphorylation state of Akt, ERK1/2, and GSK3β which was downregulated as an effect of MPTP toxicity. Our findings signify that CGA may possess pharmacological properties and contribute to neuroprotection against MPTP induced toxicity in a PD mouse model associated with phosphorylation of GSK3β via activating Akt/ERK signalling in the mitochondrial intrinsic apoptotic pathway. Thus, CGA treatment may arise as a potential therapeutic candidate for mitochondrial-mediated apoptotic senescence of DA neurons in PD.
Collapse
Affiliation(s)
- Saumitra Sen Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sachchida Nand Rai
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India
| | - Hareram Birla
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Richa Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
31
|
Venediktova NI, Mashchenko OV, Talanov EY, Belosludtseva NV, Mironova GD. Energy metabolism and oxidative status of rat liver mitochondria in conditions of experimentally induced hyperthyroidism. Mitochondrion 2020; 52:190-196. [PMID: 32278087 DOI: 10.1016/j.mito.2020.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/20/2020] [Accepted: 04/07/2020] [Indexed: 01/01/2023]
Abstract
The aim of the present work was to investigate the energy metabolism and antioxidant status of rat liver mitochondria using a model of hyperthyroidism. In experimental animals, the level of triiodothyronine and thyroxine was increased 3- and 4-fold, respectively, in comparison with that in the control group, indicating the development of hyperthyroidism in these animals. Oxygen consumption was found to be higher in rats with experimentally induced hyperthyroidism (from 20 to 60% depending on the experimental scheme used), with a slight decrease in the efficiency of oxidative phosphorylation and respiratory state ratio. It was shown for the first time that the level the respiratory complexes of the electron transport chain in hyperthyroid rats increased; however, the quantity of complexes III and V changed unreliably. The assay of respiratory chain enzymes revealed that the activities of complexes I, II, and citrate synthase increased, whereas the activities complexes II + III, III, IV decreased in liver mitochondria of the experimental animals. Alterations in the oxidative state in liver mitochondria were found: a 60% increase in the hydrogen peroxide production rate and a 45% increase in lipid peroxidation. The activities of superoxide dismutase and catalase in the liver of experimental rats were higher than in the control. At the same time, the activity of glutathione peroxidase did not change. The data obtained indicate that the known activation of metabolism and changes in the oxidative status in thyrotoxicosis are associated with variations in the respiratory chain functioning and the antioxidant enzymes of mitochondria.
Collapse
Affiliation(s)
- Natalya I Venediktova
- Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia.
| | - Oleksandr V Mashchenko
- Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Eugeny Y Talanov
- Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Natalia V Belosludtseva
- Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Galina D Mironova
- Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| |
Collapse
|
32
|
Kim DK, Mook-Jung I. The role of cell type-specific mitochondrial dysfunction in the pathogenesis of Alzheimer's disease. BMB Rep 2020. [PMID: 31722781 PMCID: PMC6941758 DOI: 10.5483/bmbrep.2019.52.12.282] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The decrease of metabolism in the brain has been observed as the important lesions of Alzheimer’s disease (AD) from the early stages of diagnosis. The cumulative evidence has reported that the failure of mitochondria, an organelle involved in diverse biological processes as well as energy production, maybe the cause or effect of the pathogenesis of AD. Both amyloid and tau pathologies have an impact upon mitochondria through physical interaction or indirect signaling pathways, resulting in the disruption of mitochondrial function and dynamics which can trigger AD. In addition, mitochondria are involved in different biological processes depending on the specific functions of each cell type in the brain. Thus, it is necessary to understand mitochondrial dysfunction as part of the pathological phenotypes of AD according to each cell type. In this review, we summarize that 1) the effects of AD pathology inducing mitochondrial dysfunction and 2) the contribution of mitochondrial dysfunction in each cell type to AD pathogenesis.
Collapse
Affiliation(s)
- Dong Kyu Kim
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Inhee Mook-Jung
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
33
|
Analysis of the Potential for N 4-Hydroxycytidine To Inhibit Mitochondrial Replication and Function. Antimicrob Agents Chemother 2020; 64:AAC.01719-19. [PMID: 31767721 PMCID: PMC6985706 DOI: 10.1128/aac.01719-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023] Open
Abstract
N4-Hydroxycytidine (NHC) is an antiviral ribonucleoside analog that acts as a competitive alternative substrate for virally encoded RNA-dependent RNA polymerases. It exhibits measurable levels of cytotoxicity, with 50% cytotoxic concentration values ranging from 7.5 μM in CEM cells and up to >100 μM in other cell lines. N4-Hydroxycytidine (NHC) is an antiviral ribonucleoside analog that acts as a competitive alternative substrate for virally encoded RNA-dependent RNA polymerases. It exhibits measurable levels of cytotoxicity, with 50% cytotoxic concentration values ranging from 7.5 μM in CEM cells and up to >100 μM in other cell lines. The mitochondrial DNA-dependent RNA polymerase (POLRMT) has been shown to incorporate some nucleotide analogs into mitochondrial RNAs, resulting in substantial mitochondrial toxicity. NHC was tested in multiple assays intended to determine its potential to cause mitochondrial toxicity. NHC showed similar cytotoxicity in HepG2 cells incubated in a glucose-free and glucose-containing media, suggesting that NHC does not impair mitochondrial function in this cell line based on the Crabtree effect. We demonstrate that the 5′-triphosphate of NHC can be used by POLRMT for incorporation into nascent RNA chain but does not cause immediate chain termination. In PC-3 cells treated with NHC, the 50% inhibitory concentrations of mitochondrial protein expression inhibition were 2.7-fold lower than those for nuclear-encoded protein expression, but this effect did not result in selective mitochondrial toxicity. A 14-day incubation of HepG2 cells with NHC had no effect on mitochondrial DNA copy number or extracellular lactate levels. In CEM cells treated with NHC at 10 μM, a slight decrease (by ∼20%) in mitochondrial DNA copy number and a corresponding slight increase in extracellular lactate levels were detected, but these effects were not enhanced by an increase in NHC treatment concentration. In summary, the results indicate that mitochondrial impairment by NHC is not the main contributor to the compound’s observed cytotoxicity in these cell lines.
Collapse
|
34
|
Ng X, Sadeghian M, Heales S, Hargreaves IP. Assessment of Mitochondrial Dysfunction in Experimental Autoimmune Encephalomyelitis (EAE) Models of Multiple Sclerosis. Int J Mol Sci 2019; 20:ijms20204975. [PMID: 31600882 PMCID: PMC6829485 DOI: 10.3390/ijms20204975] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/03/2019] [Accepted: 10/07/2019] [Indexed: 01/03/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) that involves the autoreactive T-cell attack on axonal myelin sheath. Lesions or plaques formed as a result of repeated damage and repair mechanisms lead to impaired relay of electrical impulses along the nerve, manifesting as clinical symptoms of MS. Evidence from studies in experimental autoimmune encephalomyelitis (EAE) models of MS strongly suggests that mitochondrial dysfunction presents at the onset of disease and throughout the disease course. The aim of this study was to determine if mitochondrial dysfunction occurs before clinical symptoms arise, and whether this is confined to the CNS. EAE was induced in C57B/L6 mice, and citrate synthase and mitochondrial respiratory chain (MRC) complex I–IV activities were assayed at presymptomatic (3 or 10 days post first immunisation (3 or 10 DPI)) and asymptomatic (17 days post first immunisation (17 DPI) time-points in central nervous system (CNS; spinal cord) and peripheral (liver and jaw muscle) tissues. Samples from animals immunised with myelin oligodendrocyte glycoprotein (MOG) as EAE models were compared with control animals immunised with adjuvant (ADJ) only. Significant changes in MOG compared to control ADJ animals in MRC complex I activity occurred only at presymptomatic stages, with an increase in the spinal cord at 10 DPI (87.9%), an increase at 3 DPI (25.6%) and decrease at 10 DPI (22.3%) in the jaw muscle, and an increase in the liver at 10 DPI (71.5%). MRC complex II/III activity changes occurred at presymptomatic and the asymptomatic stages of the disease, with a decrease occurring in the spinal cord at 3 DPI (87.6%) and an increase at 17 DPI (36.7%), increase in the jaw muscle at 10 DPI (25.4%), and an increase at 3 DPI (75.2%) and decrease at 17 DPI (95.7%) in the liver. Citrate synthase activity was also significantly decreased at 10 DPI (27.3%) in the liver. No significant changes were observed in complex IV across all three tissues assayed. Our findings reveal evidence that mitochondrial dysfunction is present at the asymptomatic stages in the EAE model of MS, and that the changes in MRC enzyme activities are tissue-specific and are not confined to the CNS.
Collapse
Affiliation(s)
- Xiulin Ng
- UCL Institute of Neurology, Queen Square, University College London, London WC1N 3BG, UK.
- University Medical Center, 79106 Freiburg im Breisgau, Germany.
| | - Mona Sadeghian
- Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London WC1N 3BG, UK.
- Global Clinical Development, Actelion, High Wycombe HP12 4DP, UK.
| | - Simon Heales
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
- Neurometabolic Unit, National Hospital, London WC1N 3BG, UK.
| | - Iain P Hargreaves
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
- Neurometabolic Unit, National Hospital, London WC1N 3BG, UK.
- School of Pharmacy and Biomolecular Sciences, Byrom Street, Liverpool John Moores University, Liverpool L3 3AF, UK.
| |
Collapse
|
35
|
Devine MJ, Kittler JT. Mitochondria at the neuronal presynapse in health and disease. Nat Rev Neurosci 2019; 19:63-80. [PMID: 29348666 DOI: 10.1038/nrn.2017.170] [Citation(s) in RCA: 391] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Synapses enable neurons to communicate with each other and are therefore a prerequisite for normal brain function. Presynaptically, this communication requires energy and generates large fluctuations in calcium concentrations. Mitochondria are optimized for supplying energy and buffering calcium, and they are actively recruited to presynapses. However, not all presynapses contain mitochondria; thus, how might synapses with and without mitochondria differ? Mitochondria are also increasingly recognized to serve additional functions at the presynapse. Here, we discuss the importance of presynaptic mitochondria in maintaining neuronal homeostasis and how dysfunctional presynaptic mitochondria might contribute to the development of disease.
Collapse
Affiliation(s)
- Michael J Devine
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| |
Collapse
|
36
|
The role of oxidative stress in ovarian toxicity induced by haloperidol and clozapine—a histological and biochemical study in albino rats. Cell Tissue Res 2019; 378:371-383. [DOI: 10.1007/s00441-019-03067-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 07/01/2019] [Indexed: 12/20/2022]
|
37
|
Pozzi A, Dowling DK. The Genomic Origins of Small Mitochondrial RNAs: Are They Transcribed by the Mitochondrial DNA or by Mitochondrial Pseudogenes within the Nucleus (NUMTs)? Genome Biol Evol 2019; 11:1883-1896. [PMID: 31218347 PMCID: PMC6619488 DOI: 10.1093/gbe/evz132] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2019] [Indexed: 02/06/2023] Open
Abstract
Several studies have linked mitochondrial genetic variation to phenotypic modifications; albeit the identity of the mitochondrial polymorphisms involved remains elusive. The search for these polymorphisms led to the discovery of small noncoding RNAs, which appear to be transcribed by the mitochondrial DNA ("small mitochondrial RNAs"). This contention is, however, controversial because the nuclear genome of most animals harbors mitochondrial pseudogenes (NUMTs) of identical sequence to regions of mtDNA, which could alternatively represent the source of these RNAs. To discern the likely contributions of the mitochondrial and nuclear genome to transcribing these small mitochondrial RNAs, we leverage data from six vertebrate species exhibiting markedly different levels of NUMT sequence. We explore whether abundances of small mitochondrial RNAs are associated with levels of NUMT sequence across species, or differences in tissue-specific mtDNA content within species. Evidence for the former would support the hypothesis these RNAs are primarily transcribed by NUMT sequence, whereas evidence for the latter would provide strong evidence for the counter hypothesis that these RNAs are transcribed directly by the mtDNA. No association exists between the abundance of small mitochondrial RNAs and NUMT levels across species. Moreover, a sizable proportion of transcripts map exclusively to the mtDNA sequence, even in species with highest NUMT levels. Conversely, tissue-specific abundances of small mitochondrial RNAs are strongly associated with the mtDNA content. These results support the hypothesis that small mitochondrial RNAs are primarily transcribed by the mitochondrial genome and that this capacity is conserved across Amniota and, most likely, across most metazoan lineages.
Collapse
Affiliation(s)
- Andrea Pozzi
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
38
|
|
39
|
Killen MJ, Giorgi-Coll S, Helmy A, Hutchinson PJ, Carpenter KL. Metabolism and inflammation: implications for traumatic brain injury therapeutics. Expert Rev Neurother 2019; 19:227-242. [PMID: 30848963 DOI: 10.1080/14737175.2019.1582332] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Traumatic Brain Injury (TBI) is a leading cause of death and disability in young people, affecting 69 million people annually, worldwide. The initial trauma disrupts brain homeostasis resulting in metabolic dysfunction and an inflammatory cascade, which can then promote further neurodegenerative effects for months or years, as a 'secondary' injury. Effective targeting of the cerebral inflammatory system is challenging due to its complex, pleiotropic nature. Cell metabolism plays a key role in many diseases, and increased disturbance in the TBI metabolic state is associated with poorer patient outcomes. Investigating critical metabolic pathways, and their links to inflammation, can potentially identify supplements which alter the brain's long-term response to TBI and improve recovery. Areas covered: The authors provide an overview of literature on metabolism and inflammation following TBI, and from relevant pre-clinical and clinical studies, propose therapeutic strategies. Expert opinion: There is still no specific active drug treatment for TBI. Changes in metabolic and inflammatory states have been reported after TBI and appear linked. Understanding more about abnormal cerebral metabolism following TBI, and its relationship with cerebral inflammation, will provide essential information for designing therapies, with implications for neurocritical care and for alleviating long-term disability and neurodegeneration in post-TBI patients.
Collapse
Affiliation(s)
- Monica J Killen
- a Division of Neurosurgery, Department of Clinical Neurosciences , University of Cambridge , Cambridge , UK
| | - Susan Giorgi-Coll
- a Division of Neurosurgery, Department of Clinical Neurosciences , University of Cambridge , Cambridge , UK
| | - Adel Helmy
- a Division of Neurosurgery, Department of Clinical Neurosciences , University of Cambridge , Cambridge , UK
| | - Peter Ja Hutchinson
- a Division of Neurosurgery, Department of Clinical Neurosciences , University of Cambridge , Cambridge , UK.,b Wolfson Brain Imaging Centre, Department of Clinical Neurosciences , University of Cambridge , Cambridge , UK
| | - Keri Lh Carpenter
- a Division of Neurosurgery, Department of Clinical Neurosciences , University of Cambridge , Cambridge , UK.,b Wolfson Brain Imaging Centre, Department of Clinical Neurosciences , University of Cambridge , Cambridge , UK
| |
Collapse
|
40
|
Naserzadeh P, Hafez AA, Abdorahim M, Abdollahifar MA, Shabani R, Peirovi H, Simchi A, Ashtari K. Curcumin loading potentiates the neuroprotective efficacy of Fe 3O 4 magnetic nanoparticles in cerebellum cells of schizophrenic rats. Biomed Pharmacother 2018; 108:1244-1252. [PMID: 30453447 DOI: 10.1016/j.biopha.2018.09.106] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/09/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the neurotoxic effects of Fe3O4 magnetic- CurNPs on isolated schizophrenia mitochondria of rats as an in vivo model. METHODS We designed CMN loaded superparamagnetic iron oxide nanoparticles (SPIONs) (Fe3O4 magnetic- CurNPs) to achieve an enhanced therapeutic effect. The physicochemical properties of Fe3O4 magnetic- CurNPs were characterized using X-ray diffraction (XRD), and dynamic laser light scattering (DLS) and zeta potential. Further, to prove Fe3O4 magnetic- CurNPs results in superior therapeutic effects, and also, the mitochondrial membrane potential collapse, mitochondrial complex II activity, reactive oxygen species generation, ATP level, cytochrome c release and histopathology of cerebellums were determined in brains of schizophrenic rats. RESULTS We showed that effective treatment with CMN reduced or prevented Fe3O4 magnetic-induced oxidative stress and mitochondrial dysfunction in the rat brain probably, as well as mitochondrial complex II activity, MMP, and ATP level were remarkably reduced in the cerebellum mitochondria of treated group toward control (p < 0.05). Therewith, ROS generation, and cytochrome c release were notably (p < 0.05) increased in the cerebellum mitochondria of treated group compared with control group. CONCLUSION Taken together, Fe3O4 magnetic- CurNPs exhibits potent antineurotoxicity activity in cerebellums of schizophrenic rats. This approach can be extended to preclinical and clinical use and may have importance in schizophernia treatment in the future. To our knowledge this is the first report that provides the Fe3O4 magnetic- CurNPs could enhance the neuroprotective effects of CMN in the Schizophrenia.
Collapse
Affiliation(s)
- Parvaneh Naserzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Students Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ashrafi Hafez
- Cancer Research Center, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Abdorahim
- Faculté de science, Université Paris-Sud 11, Université Paris Saclay, 91405, Orsay Cedex, France
| | - Mohammad Amin Abdollahifar
- Department of Anatomical Sciences and Biology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Habiballah Peirovi
- Nanomedicine and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolreza Simchi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box, 11365-11155, Tehran, Iran.
| | - Khadijeh Ashtari
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
41
|
Abstract
This review systematically examines the evidence for shifts in flux through energy generating biochemical pathways in Huntington’s disease (HD) brains from humans and model systems. Compromise of the electron transport chain (ETC) appears not to be the primary or earliest metabolic change in HD pathogenesis. Rather, compromise of glucose uptake facilitates glucose flux through glycolysis and may possibly decrease flux through the pentose phosphate pathway (PPP), limiting subsequent NADPH and GSH production needed for antioxidant protection. As a result, oxidative damage to key glycolytic and tricarboxylic acid (TCA) cycle enzymes further restricts energy production so that while basal needs may be met through oxidative phosphorylation, those of excessive stimulation cannot. Energy production may also be compromised by deficits in mitochondrial biogenesis, dynamics or trafficking. Restrictions on energy production may be compensated for by glutamate oxidation and/or stimulation of fatty acid oxidation. Transcriptional dysregulation generated by mutant huntingtin also contributes to energetic disruption at specific enzymatic steps. Many of the alterations in metabolic substrates and enzymes may derive from normal regulatory feedback mechanisms and appear oscillatory. Fine temporal sequencing of the shifts in metabolic flux and transcriptional and expression changes associated with mutant huntingtin expression remain largely unexplored and may be model dependent. Differences in disease progression among HD model systems at the time of experimentation and their varying states of metabolic compensation may explain conflicting reports in the literature. Progressive shifts in metabolic flux represent homeostatic compensatory mechanisms that maintain the model organism through presymptomatic and symptomatic stages.
Collapse
Affiliation(s)
- Janet M Dubinsky
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
42
|
Vo MT, Choi SH, Lee JH, Hong CH, Kim JS, Lee UH, Chung HM, Lee BJ, Park JW, Cho WJ. Tristetraprolin inhibits mitochondrial function through suppression of α-Synuclein expression in cancer cells. Oncotarget 2018; 8:41903-41920. [PMID: 28410208 PMCID: PMC5522037 DOI: 10.18632/oncotarget.16706] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/19/2017] [Indexed: 11/25/2022] Open
Abstract
Mitochondrial dynamics play critical roles in maintaining mitochondrial functions. Here, we report a novel mechanism for regulation of mitochondrial dynamics mediated by tristetraprolin (TTP), an AU-rich element (ARE)-binding protein. Overexpression of TTP resulted in elongated mitochondria, down-regulation of mitochondrial oxidative phosphorylation, reduced membrane potential, cytochrome c release, and increased apoptotic cell death in cancer cells. TTP overexpression inhibited the expression of α-Synuclein (α-Syn). TTP bound to the ARE within the mRNA 3′-untranslated regions (3′-UTRs) of α-Syn and enhanced the decay of α-Syn mRNA. Overexpression of α-Syn without the 3′-UTR restored TTP-induced defects in mitochondrial morphology, mitochondrial oxidative phosphorylation, membrane potential, and apoptotic cell death. Taken together, our data demonstrate that TTP acts as a regulator of mitochondrial dynamics through enhancing degradation of α-Syn mRNA in cancer cells. This finding will increase understanding of the molecular basis of mitochondrial dynamics.
Collapse
Affiliation(s)
- Mai-Tram Vo
- Department of Biological Sciences, University of Ulsan, Ulsan, 680-749, Korea
| | - Seong Hee Choi
- Department of Biological Sciences, University of Ulsan, Ulsan, 680-749, Korea
| | - Ji-Heon Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Gwangjin-Gu, Seoul, 143-701, Korea
| | - Chung Hwan Hong
- Department of Biological Sciences, University of Ulsan, Ulsan, 680-749, Korea
| | - Jong Soo Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Gwangjin-Gu, Seoul, 143-701, Korea
| | - Unn Hwa Lee
- Department of Biological Sciences, University of Ulsan, Ulsan, 680-749, Korea
| | - Hyung-Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Gwangjin-Gu, Seoul, 143-701, Korea
| | - Byung Ju Lee
- Department of Biological Sciences, University of Ulsan, Ulsan, 680-749, Korea
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan, 680-749, Korea
| | - Wha Ja Cho
- Department of Biological Sciences, University of Ulsan, Ulsan, 680-749, Korea
| |
Collapse
|
43
|
Oliva CR, Zhang W, Langford C, Suto MJ, Griguer CE. Repositioning chlorpromazine for treating chemoresistant glioma through the inhibition of cytochrome c oxidase bearing the COX4-1 regulatory subunit. Oncotarget 2018; 8:37568-37583. [PMID: 28455961 PMCID: PMC5514931 DOI: 10.18632/oncotarget.17247] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/07/2017] [Indexed: 12/12/2022] Open
Abstract
Patients with glioblastoma have one of the lowest overall survival rates among patients with cancer. Standard of care for patients with glioblastoma includes temozolomide and radiation therapy, yet 30% of patients do not respond to these treatments and nearly all glioblastoma tumors become resistant. Chlorpromazine is a United States Food and Drug Administration-approved phenothiazine widely used as a psychotropic in clinical practice. Recently, experimental evidence revealed the anti-proliferative activity of chlorpromazine against colon and brain tumors. Here, we used chemoresistant patient-derived glioma stem cells and chemoresistant human glioma cell lines to investigate the effects of chlorpromazine against chemoresistant glioma. Chlorpromazine selectively and significantly inhibited proliferation in chemoresistant glioma cells and glioma stem cells. Mechanistically, chlorpromazine inhibited cytochrome c oxidase (CcO, complex IV) activity from chemoresistant but not chemosensitive cells, without affecting other mitochondrial complexes. Notably, our previous studies revealed that the switch to chemoresistance in glioma cells is accompanied by a switch from the expression of CcO subunit 4 isoform 2 (COX4-2) to COX4-1. In this study, chlorpromazine induced cell cycle arrest selectively in glioma cells expressing COX4-1, and computer-simulated docking studies indicated that chlorpromazine binds more tightly to CcO expressing COX4-1 than to CcO expressing COX4-2. In orthotopic mouse brain tumor models, chlorpromazine treatment significantly increased the median overall survival of mice harboring chemoresistant tumors. These data indicate that chlorpromazine selectively inhibits the growth and proliferation of chemoresistant glioma cells expressing COX4-1. The feasibility of repositioning chlorpromazine for selectively treating chemoresistant glioma tumors should be further explored.
Collapse
Affiliation(s)
- Claudia R Oliva
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, 35294 Alabama, USA
| | - Wei Zhang
- Southern Research, Birmingham, 35294 Alabama, USA
| | - Cathy Langford
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, 35294 Alabama, USA
| | - Mark J Suto
- Southern Research, Birmingham, 35294 Alabama, USA
| | - Corinne E Griguer
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, 35294 Alabama, USA.,Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, 35294 Alabama, USA
| |
Collapse
|
44
|
Scaini G, Quevedo J, Velligan D, Roberts DL, Raventos H, Walss-Bass C. Second generation antipsychotic-induced mitochondrial alterations: Implications for increased risk of metabolic syndrome in patients with schizophrenia. Eur Neuropsychopharmacol 2018; 28:369-380. [PMID: 29449054 DOI: 10.1016/j.euroneuro.2018.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/27/2017] [Accepted: 01/26/2018] [Indexed: 12/21/2022]
Abstract
Metabolic syndrome (MetS) is seen more frequently in persons with schizophrenia than in the general population, and these metabolic abnormalities are further aggravated by second generation antipsychotic (SGA) drugs. Although the underlying mechanisms responsible for the increased prevalence of MetS among patients under SGA treatment are not well understood, alterations in mitochondria function have been implicated. We performed a comprehensive evaluation of the role of mitochondrial dysfunction in the pathophysiology of drug-induced MetS in schizophrenia. We found a downregulation in genes encoding subunits of the electron transport chain complexes (ETC), enzyme activity, and mitochondrial dynamics in peripheral blood cells from patients at high-risk for MetS. Additionally, we evaluated several markers of energy metabolism in lymphoblastoid cell lines from patients with schizophrenia and controls following exposure to antipsychotics. We found that the high-risk drugs clozapine and olanzapine induced a general down-regulation of genes involved in the ETC, as well as decreased activities of the corresponding enzymes, ATP levels and a significant decrease in all the functional parameters of mitochondrial oxygen consumption in cells from patients and controls. We also observed that the medium-risk SGA quetiapine decreased oxygen consumption and respiratory control ratio in controls and patients. Additionally, clozapine and olanzapine induced a downregulation of Drp1 and Mfn2 both in terms of mRNA and protein levels. Together, these data suggest that an intrinsic defect in multiple components of oxidative metabolism may contribute to the increased prevalence of MetS in patients under treatment with SGAs known to cause risk for MetS.
Collapse
Affiliation(s)
- Giselli Scaini
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - João Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Dawn Velligan
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - David L Roberts
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Henriette Raventos
- Centro de Investigacion en Biologia Celular y Molecular, University of Costa Rica, San Jose, Costa Rica
| | - Consuelo Walss-Bass
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
| |
Collapse
|
45
|
Adams SD, Kouzani AZ, Tye SJ, Bennet KE, Berk M. An investigation into closed-loop treatment of neurological disorders based on sensing mitochondrial dysfunction. J Neuroeng Rehabil 2018; 15:8. [PMID: 29439744 PMCID: PMC5811973 DOI: 10.1186/s12984-018-0349-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 02/05/2018] [Indexed: 12/14/2022] Open
Abstract
Dynamic feedback based closed-loop medical devices offer a number of advantages for treatment of heterogeneous neurological conditions. Closed-loop devices integrate a level of neurobiological feedback, which allows for real-time adjustments to be made with the overarching aim of improving treatment efficacy and minimizing risks for adverse events. One target which has not been extensively explored as a potential feedback component in closed-loop therapies is mitochondrial function. Several neurodegenerative and psychiatric disorders including Parkinson's disease, Major Depressive disorder and Bipolar disorder have been linked to perturbations in the mitochondrial respiratory chain. This paper investigates the potential to monitor this mitochondrial function as a method of feedback for closed-loop neuromodulation treatments. A generic model of the closed-loop treatment is developed to describe the high-level functions of any system designed to control neural function based on mitochondrial response to stimulation, simplifying comparison and future meta-analysis. This model has four key functional components including: a sensor, signal manipulator, controller and effector. Each of these components are described and several potential technologies for each are investigated. While some of these candidate technologies are quite mature, there are still technological gaps remaining. The field of closed-loop medical devices is rapidly evolving, and whilst there is a lot of interest in this area, widespread adoption has not yet been achieved due to several remaining technological hurdles. However, the significant therapeutic benefits offered by this technology mean that this will be an active area for research for years to come.
Collapse
Affiliation(s)
- Scott D. Adams
- School of Engineering, Deakin University, Geelong, VIC 3216 Australia
| | - Abbas Z. Kouzani
- School of Engineering, Deakin University, Geelong, VIC 3216 Australia
| | - Susannah J. Tye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905 USA
| | - Kevin E. Bennet
- Division of Engineering, Mayo Clinic, Rochester, MN 55905 USA
| | - Michael Berk
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216 Australia
| |
Collapse
|
46
|
Snow WM, Cadonic C, Cortes-Perez C, Roy Chowdhury SK, Djordjevic J, Thomson E, Bernstein MJ, Suh M, Fernyhough P, Albensi BC. Chronic dietary creatine enhances hippocampal-dependent spatial memory, bioenergetics, and levels of plasticity-related proteins associated with NF-κB. ACTA ACUST UNITED AC 2018; 25:54-66. [PMID: 29339557 PMCID: PMC5772392 DOI: 10.1101/lm.046284.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/03/2017] [Indexed: 12/23/2022]
Abstract
The brain has a high demand for energy, of which creatine (Cr) is an important regulator. Studies document neurocognitive benefits of oral Cr in mammals, yet little is known regarding their physiological basis. This study investigated the effects of Cr supplementation (3%, w/w) on hippocampal function in male C57BL/6 mice, including spatial learning and memory in the Morris water maze and oxygen consumption rates from isolated mitochondria in real time. Levels of transcription factors and related proteins (CREB, Egr1, and IκB to indicate NF-κB activity), proteins implicated in cognition (CaMKII, PSD-95, and Egr2), and mitochondrial proteins (electron transport chain Complex I, mitochondrial fission protein Drp1) were probed with Western blotting. Dietary Cr decreased escape latency/time to locate the platform (P < 0.05) and increased the time spent in the target quadrant (P < 0.01) in the Morris water maze. This was accompanied by increased coupled respiration (P < 0.05) in isolated hippocampal mitochondria. Protein levels of CaMKII, PSD-95, and Complex 1 were increased in Cr-fed mice, whereas IκB was decreased. These data demonstrate that dietary supplementation with Cr can improve learning, memory, and mitochondrial function and have important implications for the treatment of diseases affecting memory and energy homeostasis.
Collapse
Affiliation(s)
- Wanda M Snow
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | - Chris Cadonic
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | - Claudia Cortes-Perez
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | - Subir K Roy Chowdhury
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | - Jelena Djordjevic
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | - Ella Thomson
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | - Michael J Bernstein
- Department of Psychological and Social Sciences, Pennsylvania State University Abington, Abington, Pennsylvania 19001, USA
| | - Miyoung Suh
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Paul Fernyhough
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada.,Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, Manitoba R3E 0T6, Canada
| | - Benedict C Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada.,Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, Manitoba R3E 0T6, Canada
| |
Collapse
|
47
|
Rocha S, Freitas A, Guimaraes SC, Vitorino R, Aroso M, Gomez-Lazaro M. Biological Implications of Differential Expression of Mitochondrial-Shaping Proteins in Parkinson's Disease. Antioxidants (Basel) 2017; 7:E1. [PMID: 29267236 PMCID: PMC5789311 DOI: 10.3390/antiox7010001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/17/2022] Open
Abstract
It has long been accepted that mitochondrial function and morphology is affected in Parkinson's disease, and that mitochondrial function can be directly related to its morphology. So far, mitochondrial morphological alterations studies, in the context of this neurodegenerative disease, have been performed through microscopic methodologies. The goal of the present work is to address if the modifications in the mitochondrial-shaping proteins occurring in this disorder have implications in other cellular pathways, which might constitute important pathways for the disease progression. To do so, we conducted a novel approach through a thorough exploration of the available proteomics-based studies in the context of Parkinson's disease. The analysis provided insight into the altered biological pathways affected by changes in the expression of mitochondrial-shaping proteins via different bioinformatic tools. Unexpectedly, we observed that the mitochondrial-shaping proteins altered in the context of Parkinson's disease are, in the vast majority, related to the organization of the mitochondrial cristae. Conversely, in the studies that have resorted to microscopy-based techniques, the most widely reported alteration in the context of this disorder is mitochondria fragmentation. Cristae membrane organization is pivotal for mitochondrial ATP production, and changes in their morphology have a direct impact on the organization and function of the oxidative phosphorylation (OXPHOS) complexes. To understand which biological processes are affected by the alteration of these proteins we analyzed the binding partners of the mitochondrial-shaping proteins that were found altered in Parkinson's disease. We showed that the binding partners fall into seven different cellular components, which include mitochondria, proteasome, and endoplasmic reticulum (ER), amongst others. It is noteworthy that, by evaluating the biological process in which these modified proteins are involved, we showed that they are related to the production and metabolism of ATP, immune response, cytoskeleton alteration, and oxidative stress, amongst others. In summary, with our bioinformatics approach using the data on the modified proteins in Parkinson's disease patients, we were able to relate the alteration of mitochondrial-shaping proteins to modifications of crucial cellular pathways affected in this disease.
Collapse
Affiliation(s)
- Sara Rocha
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Ana Freitas
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
- FMUP-Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal.
| | - Sofia C Guimaraes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Rui Vitorino
- iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal.
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Universidade do Porto, 4200-319 Porto, Portugal.
| | - Miguel Aroso
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Maria Gomez-Lazaro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
48
|
de la Fuente C, Burke DG, Eaton S, Heales SJ. Inhibition of neuronal mitochondrial complex I or lysosomal glucocerebrosidase is associated with increased dopamine and serotonin turnover. Neurochem Int 2017; 109:94-100. [DOI: 10.1016/j.neuint.2017.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/16/2017] [Accepted: 02/21/2017] [Indexed: 01/31/2023]
|
49
|
Lee SR, Han J. Mitochondrial Mutations in Cardiac Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:81-111. [PMID: 28551783 DOI: 10.1007/978-3-319-55330-6_5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondria individually encapsulate their own genome, unlike other cellular organelles. Mitochondrial DNA (mtDNA) is a circular, double-stranded, 16,569-base paired DNA containing 37 genes: 13 proteins of the mitochondrial respiratory chain, two ribosomal RNAs (rRNAs; 12S and 16S), and 22 transfer RNAs (tRNAs). The mtDNA is more vulnerable to oxidative modifications compared to nuclear DNA because of its proximity to ROS-producing sites, limited presence of DNA damage repair systems, and continuous replication in the cell. mtDNA mutations can be inherited or sporadic. Simple mtDNA mutations are point mutations, which are frequently found in mitochondrial tRNA loci, causing mischarging of mitochondrial tRNAs or deletion, duplication, or reduction in mtDNA content. Because mtDNA has multiple copies and a specific replication mechanism in cells or tissues, it can be heterogenous, resulting in characteristic phenotypic presentations such as heteroplasmy, genetic drift, and threshold effects. Recent studies have increased the understanding of basic mitochondrial genetics, providing an insight into the correlations between mitochondrial mutations and cardiac manifestations including hypertrophic or dilated cardiomyopathy, arrhythmia, autonomic nervous system dysfunction, heart failure, or sudden cardiac death with a syndromic or non-syndromic phenotype. Clinical manifestations of mitochondrial mutations, which result from structural defects, functional impairment, or both, are increasingly detected but are not clear because of the complex interplay between the mitochondrial and nuclear genomes, even in homoplasmic mitochondrial populations. Additionally, various factors such as individual susceptibility, nutritional state, and exposure to chemicals can influence phenotypic presentation, even for the same mtDNA mutation.In this chapter, we summarize our current understanding of mtDNA mutations and their role in cardiac involvement. In addition, epigenetic modifications of mtDNA are briefly discussed for future elucidation of their critical role in cardiac involvement. Finally, current strategies for dealing with mitochondrial mutations in cardiac disorders are briefly stated.
Collapse
Affiliation(s)
- Sung Ryul Lee
- Department of Integrated Biomedical Science, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan, 47392, South Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Cardiovascular and Metabolic Disease Center, Department of Physiology, College of Medicine, Inje University, Busan, 47392, South Korea.
| |
Collapse
|
50
|
Lopez-Fabuel I, Martin-Martin L, Resch-Beusher M, Azkona G, Sanchez-Pernaute R, Bolaños JP. Mitochondrial respiratory chain disorganization in Parkinson's disease-relevant PINK1 and DJ1 mutants. Neurochem Int 2017; 109:101-105. [PMID: 28408307 DOI: 10.1016/j.neuint.2017.03.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 12/21/2022]
Abstract
Brain mitochondrial complex I (CI) damage is associated with the loss of the dopaminergic neurons of the Substantia Nigra in Parkinson's Disease (PD) patients. However, whether CI inhibition is associated with any alteration of the mitochondrial respiratory chain (MRC) organization in PD patients is unknown. To address this issue, here we analyzed the MRC by blue native gel electrophoresis (BNGE) followed by western blotting, in mitochondria purified from fibroblasts of patients harboring PD-relevant Pink1 mutations. We found a decrease in free CI, and in free versus supercomplexes (SCs)-assembled CI in PD; however, free complex III (CIII) was only modestly affected, whereas its free versus SCs-assembled forms decreased. Interestingly, complex IV (CIV) was considerably lost in the PD samples. These results were largely confirmed in mitochondria isolated from cultured neurons from Pink1-/- mice, and in cultured neurons and forebrain samples from the PD-related Dj1-/- mice. Thus, besides CI damage, the MRC undergoes a profound structural remodeling in PD likely responsible for the energetic inefficiency and mitochondrial reactive oxygen species (mROS) over-production observed in this disease.
Collapse
Affiliation(s)
- Irene Lopez-Fabuel
- University of Salamanca, CIBERFES, Institute of Functional Biology and Genomics (IBFG), CSIC, 37007 Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Lucia Martin-Martin
- University of Salamanca, CIBERFES, Institute of Functional Biology and Genomics (IBFG), CSIC, 37007 Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Monica Resch-Beusher
- University of Salamanca, CIBERFES, Institute of Functional Biology and Genomics (IBFG), CSIC, 37007 Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Garikoitz Azkona
- Animal Research Facility, Scientific and Technological Centers, University of Barcelona, 08007 Barcelona, Spain
| | | | - Juan P Bolaños
- University of Salamanca, CIBERFES, Institute of Functional Biology and Genomics (IBFG), CSIC, 37007 Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|