1
|
Arige V, Yule DI. PIP 2 primes IP 3 receptor activity: It takes at least three IP 3s to open! Cell Calcium 2024; 124:102970. [PMID: 39602952 DOI: 10.1016/j.ceca.2024.102970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Affiliation(s)
- Vikas Arige
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, United States
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, United States.
| |
Collapse
|
2
|
Ivanova A, Atakpa-Adaji P, Rao S, Marti-Solano M, Taylor CW. Dual regulation of IP 3 receptors by IP 3 and PIP 2 controls the transition from local to global Ca 2+ signals. Mol Cell 2024; 84:3997-4015.e7. [PMID: 39366376 DOI: 10.1016/j.molcel.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/11/2024] [Accepted: 09/08/2024] [Indexed: 10/06/2024]
Abstract
The spatial organization of inositol 1,4,5-trisphosphate (IP3)-evoked Ca2+ signals underlies their versatility. Low stimulus intensities evoke Ca2+ puffs, localized Ca2+ signals arising from a few IP3 receptors (IP3Rs) within a cluster tethered beneath the plasma membrane. More intense stimulation evokes global Ca2+ signals. Ca2+ signals propagate regeneratively as the Ca2+ released stimulates more IP3Rs. How is this potentially explosive mechanism constrained to allow local Ca2+ signaling? We developed methods that allow IP3 produced after G-protein coupled receptor (GPCR) activation to be intercepted and replaced by flash photolysis of a caged analog of IP3. We find that phosphatidylinositol 4,5-bisphosphate (PIP2) primes IP3Rs to respond by partially occupying their IP3-binding sites. As GPCRs stimulate IP3 formation, they also deplete PIP2, relieving the priming stimulus. Loss of PIP2 resets IP3R sensitivity and delays the transition from local to global Ca2+ signals. Dual regulation of IP3Rs by PIP2 and IP3 through GPCRs controls the transition from local to global Ca2+ signals.
Collapse
Affiliation(s)
- Adelina Ivanova
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK.
| | - Peace Atakpa-Adaji
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Shanlin Rao
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Maria Marti-Solano
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Colin W Taylor
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| |
Collapse
|
3
|
Deng J, Geng Z, Luan L, Jiang D, Lu J, Zhang H, Chen B, Liu X, Xing D. Novel Anti-Trop2 Nanobodies Disrupt Receptor Dimerization and Inhibit Tumor Cell Growth. Pharmaceutics 2024; 16:1255. [PMID: 39458590 PMCID: PMC11510716 DOI: 10.3390/pharmaceutics16101255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/20/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Trop2 (trophoblast cell-surface antigen 2) is overexpressed in multiple malignancies and is closely associated with poor prognosis, thus positioning it as a promising target for pan-cancer therapies. Despite the approval of Trop2-targeted antibody-drug conjugates (ADCs), challenges such as side effects, drug resistance, and limited efficacy persist. Recent studies have shown that the dimeric forms of Trop2 are crucial for its oncogenic functions, and the binding epitopes of existing Trop2-targeted drugs lie distant from the dimerization interface, potentially limiting their antitumor efficacy. Method: A well-established synthetic nanobody library was screened against Trop2-ECD. The identified nanobodies were extensively characterized, including their binding specificity and affinity, as well as their bioactivities in antigen-antibody endocytosis, cell proliferation, and the inhibition of Trop2 dimer assembly. Finally, ELISA based epitope analysis and AlphaFold 3 were employed to elucidate the binding modes of the nanobodies. Results: We identified two nanobodies, N14 and N152, which demonstrated high affinity and specificity for Trop2. Cell-based assays confirmed that N14 and N152 can facilitate receptor internalization and inhibit growth in Trop2-positive tumor cells. Epitope analysis uncovered that N14 and N152 are capable of binding with all three subdomains of Trop2-ECD and effectively disrupt Trop2 dimerization. Predictive modeling suggests that N14 and N152 likely target the epitopes at the interface of Trop2 cis-dimerization. The binding modality and mechanism of action demonstrated by N14 and N152 are unique among Trop2-targeted antibodies. Conclusions: we identified two novel nanobodies, N14 and N152, that specifically bind to Trop2. Importantly, these nanobodies exhibit significant anti-tumor efficacy and distinctive binding patterns, underscoring their potential as innovative Trop2-targeted therapeutics.
Collapse
Affiliation(s)
- Junwen Deng
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; (J.D.); (Z.G.); (H.Z.)
- Qingdao Cancer Institute, Qingdao 266071, China
| | - Zhongmin Geng
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; (J.D.); (Z.G.); (H.Z.)
- Qingdao Cancer Institute, Qingdao 266071, China
| | - Linli Luan
- Noventi Biopharmaceuticals Co., Ltd., Shanghai 201203, China; (L.L.); (D.J.); (J.L.); (B.C.)
| | - Dingwen Jiang
- Noventi Biopharmaceuticals Co., Ltd., Shanghai 201203, China; (L.L.); (D.J.); (J.L.); (B.C.)
| | - Jian Lu
- Noventi Biopharmaceuticals Co., Ltd., Shanghai 201203, China; (L.L.); (D.J.); (J.L.); (B.C.)
| | - Hanzhong Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; (J.D.); (Z.G.); (H.Z.)
- Qingdao Cancer Institute, Qingdao 266071, China
| | - Bingguan Chen
- Noventi Biopharmaceuticals Co., Ltd., Shanghai 201203, China; (L.L.); (D.J.); (J.L.); (B.C.)
| | - Xinlin Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; (J.D.); (Z.G.); (H.Z.)
- Qingdao Cancer Institute, Qingdao 266071, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; (J.D.); (Z.G.); (H.Z.)
- Qingdao Cancer Institute, Qingdao 266071, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Obeng B, Potts CM, West BE, Burnell JE, Fleming PJ, Shim JK, Kinney MS, Ledue EL, Sangroula S, Baez Vazquez AY, Gosse JA. Pharmaceutical agent cetylpyridinium chloride inhibits immune mast cell function by interfering with calcium mobilization. Food Chem Toxicol 2023; 179:113980. [PMID: 37549805 PMCID: PMC10529140 DOI: 10.1016/j.fct.2023.113980] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/12/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Cetylpyridinium chloride (CPC) is an antimicrobial used in numerous personal care and janitorial products and food for human consumption at millimolar concentrations. Minimal information exists on the eukaryotic toxicology of CPC. We have investigated the effects of CPC on signal transduction of the immune cell type mast cells. Here, we show that CPC inhibits the mast cell function degranulation with antigen dose-dependence and at non-cytotoxic doses ∼1000-fold lower than concentrations in consumer products. Previously we showed that CPC disrupts phosphatidylinositol 4,5-bisphosphate, a signaling lipid critical for store-operated Ca2+ entry (SOCE), which mediates degranulation. Our results indicate that CPC inhibits antigen-stimulated SOCE: CPC restricts Ca2+ efflux from endoplasmic reticulum, reduces Ca2+ uptake into mitochondria, and dampens Ca2+ flow through plasma membrane channels. While inhibition of Ca2+ channel function can be caused by alteration of plasma membrane potential (PMP) and cytosolic pH, CPC does not affect PMP or pH. Inhibition of SOCE is known to depress microtubule polymerization, and here we show that CPC indeed dose-dependently shuts down formation of microtubule tracks. In vitro data reveal that CPC inhibition of microtubules is not due to direct CPC interference with tubulin. In summary, CPC is a signaling toxicant that targets Ca2+ mobilization.
Collapse
Affiliation(s)
- Bright Obeng
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Christian M Potts
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Bailey E West
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - John E Burnell
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Patrick J Fleming
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Juyoung K Shim
- Department of Biology, University of Maine Augusta, Augusta, ME, USA
| | - Marissa S Kinney
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Emily L Ledue
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Suraj Sangroula
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Alan Y Baez Vazquez
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Julie A Gosse
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA.
| |
Collapse
|
5
|
Obeng B, Potts CM, West BE, Burnell JE, Fleming PJ, Shim JK, Kinney MS, Ledue EL, Sangroula S, Baez Vazquez AY, Gosse JA. Pharmaceutical agent cetylpyridinium chloride inhibits immune mast cell function by interfering with calcium mobilization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541979. [PMID: 37292883 PMCID: PMC10245882 DOI: 10.1101/2023.05.23.541979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cetylpyridinium chloride (CPC) is an antimicrobial used in numerous personal care and janitorial products and food for human consumption at millimolar concentrations. Minimal information exists on the eukaryotic toxicology of CPC. We have investigated the effects of CPC on signal transduction of the immune cell type mast cells. Here, we show that CPC inhibits the mast cell function degranulation with antigen dose-dependence and at non-cytotoxic doses ∼1000-fold lower than concentrations in consumer products. Previously we showed that CPC disrupts phosphatidylinositol 4,5-bisphosphate, a signaling lipid critical for store-operated Ca 2+ entry (SOCE), which mediates degranulation. Our results indicate that CPC inhibits antigen-stimulated SOCE: CPC restricts Ca 2+ efflux from endoplasmic reticulum, reduces Ca 2+ uptake into mitochondria, and dampens Ca 2+ flow through plasma membrane channels. While inhibition of Ca 2+ channel function can be caused by alteration of plasma membrane potential (PMP) and cytosolic pH, CPC does not affect PMP or pH. Inhibition of SOCE is known to depress microtubule polymerization, and here we show that CPC indeed dose-dependently shuts down formation of microtubule tracks. In vitro data reveal that CPC inhibition of microtubules is not due to direct CPC interference with tubulin. In summary, CPC is a signaling toxicant that targets Ca 2+ mobilization.
Collapse
|
6
|
Ivanova A, Atakpa-Adaji P. Phosphatidylinositol 4,5-bisphosphate and calcium at ER-PM junctions - Complex interplay of simple messengers. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119475. [PMID: 37098393 DOI: 10.1016/j.bbamcr.2023.119475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/05/2023] [Accepted: 04/03/2023] [Indexed: 04/27/2023]
Abstract
Endoplasmic reticulum-plasma membrane contact sites (ER-PM MCS) are a specialised domain involved in the control of Ca2+ dynamics and various Ca2+-dependent cellular processes. Intracellular Ca2+ signals are broadly supported by Ca2+ release from intracellular Ca2+ channels such as inositol 1,4,5-trisphosphate receptors (IP3Rs) and subsequent store-operated Ca2+ entry (SOCE) across the PM to replenish store content. IP3Rs sit in close proximity to the PM where they can easily access newly synthesised IP3, interact with binding partners such as actin, and localise adjacent to ER-PM MCS populated by the SOCE machinery, STIM1-2 and Orai1-3, to possibly form a locally regulated unit of Ca2+ influx. PtdIns(4,5)P2 is a multiplex regulator of Ca2+ signalling at the ER-PM MCS interacting with multiple proteins at these junctions such as actin and STIM1, whilst also being consumed as a substrate for phospholipase C to produce IP3 in response to extracellular stimuli. In this review, we consider the mechanisms regulating the synthesis and turnover of PtdIns(4,5)P2 via the phosphoinositide cycle and its significance for sustained signalling at the ER-PM MCS. Furthermore, we highlight recent insights into the role of PtdIns(4,5)P2 in the spatiotemporal organization of signalling at ER-PM junctions and raise outstanding questions on how this multi-faceted regulation occurs.
Collapse
Affiliation(s)
- Adelina Ivanova
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, UK.
| | | |
Collapse
|
7
|
Liu X, Deng J, Yuan Y, Chen W, Sun W, Wang Y, Huang H, Liang B, Ming T, Wen J, Huang B, Xing D. Advances in Trop2-targeted therapy: Novel agents and opportunities beyond breast cancer. Pharmacol Ther 2022; 239:108296. [PMID: 36208791 DOI: 10.1016/j.pharmthera.2022.108296] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022]
Abstract
Trop2 is a transmembrane glycoprotein and calcium signal transducer with limited expression in normal human tissues. It is consistently overexpressed in a variety of malignant tumors and participates in several oncogenic signaling pathways that lead to tumor development, invasion, and metastasis. As a result, Trop2 has become an attractive therapeutic target in cancer treatment. The anti-Trop2 antibody-drug conjugate (Trodelvy™, sacituzumab govitecan) has been approved to treat metastatic triple-negative breast cancer. However, it is still unclear whether the success observed in Trop2-positive breast cancer could be replicated in other tumor types, owing to the differences in the expression levels and functions of Trop2 across cancer types. In this review, we summarize the recent progress on the structures and functions of Trop2 and highlight the potential diagnostic and therapeutic value of Trop2 beyond breast cancer. In addition, the promising novel Trop2-targeted agents in the clinic were discussed, which will likely alter the therapeutic landscape of Trop2-positive tumors in the future.
Collapse
Affiliation(s)
- Xinlin Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Junwen Deng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Yang Yuan
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Wenshe Sun
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Yanhong Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Haiming Huang
- Shanghai Asia United Antibody Medical Co., Ltd, Shanghai 201203, China
| | - Bing Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Tao Ming
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Jialian Wen
- School of Social Science, The University of Manchester, Manchester, UK
| | - Binghuan Huang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China.
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
8
|
Zhao J, Zhang H, Fan X, Yu X, Huai J. Lipid Dyshomeostasis and Inherited Cerebellar Ataxia. Mol Neurobiol 2022; 59:3800-3828. [PMID: 35420383 PMCID: PMC9148275 DOI: 10.1007/s12035-022-02826-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/01/2022] [Indexed: 12/04/2022]
Abstract
Cerebellar ataxia is a form of ataxia that originates from dysfunction of the cerebellum, but may involve additional neurological tissues. Its clinical symptoms are mainly characterized by the absence of voluntary muscle coordination and loss of control of movement with varying manifestations due to differences in severity, in the site of cerebellar damage and in the involvement of extracerebellar tissues. Cerebellar ataxia may be sporadic, acquired, and hereditary. Hereditary ataxia accounts for the majority of cases. Hereditary ataxia has been tentatively divided into several subtypes by scientists in the field, and nearly all of them remain incurable. This is mainly because the detailed mechanisms of these cerebellar disorders are incompletely understood. To precisely diagnose and treat these diseases, studies on their molecular mechanisms have been conducted extensively in the past. Accumulating evidence has demonstrated that some common pathogenic mechanisms exist within each subtype of inherited ataxia. However, no reports have indicated whether there is a common mechanism among the different subtypes of inherited cerebellar ataxia. In this review, we summarize the available references and databases on neurological disorders characterized by cerebellar ataxia and show that a subset of genes involved in lipid homeostasis form a new group that may cause ataxic disorders through a common mechanism. This common signaling pathway can provide a valuable reference for future diagnosis and treatment of ataxic disorders.
Collapse
Affiliation(s)
- Jin Zhao
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Huan Zhang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xueyu Fan
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xue Yu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jisen Huai
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China.
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
9
|
Conrard L, Tyteca D. Regulation of Membrane Calcium Transport Proteins by the Surrounding Lipid Environment. Biomolecules 2019; 9:E513. [PMID: 31547139 PMCID: PMC6843150 DOI: 10.3390/biom9100513] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
Calcium ions (Ca2+) are major messengers in cell signaling, impacting nearly every aspect of cellular life. Those signals are generated within a wide spatial and temporal range through a large variety of Ca2+ channels, pumps, and exchangers. More and more evidences suggest that Ca2+ exchanges are regulated by their surrounding lipid environment. In this review, we point out the technical challenges that are currently being overcome and those that still need to be defeated to analyze the Ca2+ transport protein-lipid interactions. We then provide evidences for the modulation of Ca2+ transport proteins by lipids, including cholesterol, acidic phospholipids, sphingolipids, and their metabolites. We also integrate documented mechanisms involved in the regulation of Ca2+ transport proteins by the lipid environment. Those include: (i) Direct interaction inside the protein with non-annular lipids; (ii) close interaction with the first shell of annular lipids; (iii) regulation of membrane biophysical properties (e.g., membrane lipid packing, thickness, and curvature) directly around the protein through annular lipids; and (iv) gathering and downstream signaling of several proteins inside lipid domains. We finally discuss recent reports supporting the related alteration of Ca2+ and lipids in different pathophysiological events and the possibility to target lipids in Ca2+-related diseases.
Collapse
Affiliation(s)
- Louise Conrard
- CELL Unit, de Duve Institute and Université catholique de Louvain, UCL B1.75.05, avenue Hippocrate, 75, B-1200 Brussels, Belgium
| | - Donatienne Tyteca
- CELL Unit, de Duve Institute and Université catholique de Louvain, UCL B1.75.05, avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| |
Collapse
|
10
|
Liu Y, Iwano T, Ma F, Wang P, Wang Y, Zheng M, Liu G, Ono K. Short- and long-term roles of phosphatidylinositol 4,5-bisphosphate PIP 2 on Cav3.1- and Cav3.2-T-type calcium channel current. ACTA ACUST UNITED AC 2018; 26:31-38. [PMID: 30528337 DOI: 10.1016/j.pathophys.2018.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 11/24/2022]
Abstract
T-type calcium (Ca2+) channels play important physiological functions in excitable cells including cardiomyocyte. Phosphatidylinositol-4,5-bisphosphate (PIP2) has recently been reported to modulate various ion channels' function. However the actions of PIP2 on the T-type Ca2+ channel remain unclear. To elucidate possible effects of PIP2 on the T-type Ca2+ channel, we applied patch clamp method to investigate recombinant CaV3.1- and CaV3.2-T-type Ca2+ channels expressed in mammalian cell lines with PIP2 in acute- and long-term potentiation. Short- and long-term potentiation of PIP2 shifted the activation and the steady-state inactivation curve toward the hyperpolarization direction of CaV3.1-ICa.T without affecting the maximum inward current density. Short- and long-term potentiation of PIP2 also shifted the activation curve toward the hyperpolarization direction of CaV3.2-ICa.T without affecting the maximum inward current density. Conversely, long-term but not short-term potentiation of PIP2 shifted the steady-state inactivation curve toward the hyperpolarization direction of CaV3.2-ICa.T. Long-term but not short-term potentiation of PIP2 blunted the voltage-dependency of current decay CaV3.1-ICa.T. PIP2 modulates CaV3.1- and CaV3.2-ICa.T not by their current density but by their channel gating properties possibly through its membrane-delimited actions.
Collapse
Affiliation(s)
- Yangong Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, Hebei Province, 050031, People's Republic of China; Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan
| | - Tomohiro Iwano
- Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan
| | - Fangfang Ma
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, Hebei Province, 050031, People's Republic of China; Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan
| | - Pu Wang
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, Hebei Province, 050031, People's Republic of China; Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan
| | - Yan Wang
- Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan
| | - Mingqi Zheng
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, Hebei Province, 050031, People's Republic of China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, Hebei Province, 050031, People's Republic of China
| | - Katsushige Ono
- Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan.
| |
Collapse
|
11
|
Thillaiappan NB, Chakraborty P, Hasan G, Taylor CW. IP 3 receptors and Ca 2+ entry. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:1092-1100. [PMID: 30448464 DOI: 10.1016/j.bbamcr.2018.11.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 12/23/2022]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3R) are the most widely expressed intracellular Ca2+ release channels. Their activation by IP3 and Ca2+ allows Ca2+ to pass rapidly from the ER lumen to the cytosol. The resulting increase in cytosolic [Ca2+] may directly regulate cytosolic effectors or fuel Ca2+ uptake by other organelles, while the decrease in ER luminal [Ca2+] stimulates store-operated Ca2+ entry (SOCE). We are close to understanding the structural basis of both IP3R activation, and the interactions between the ER Ca2+-sensor, STIM, and the plasma membrane Ca2+ channel, Orai, that lead to SOCE. IP3Rs are the usual means through which extracellular stimuli, through ER Ca2+ release, stimulate SOCE. Here, we review evidence that the IP3Rs most likely to respond to IP3 are optimally placed to allow regulation of SOCE. We also consider evidence that IP3Rs may regulate SOCE downstream of their ability to deplete ER Ca2+ stores. Finally, we review evidence that IP3Rs in the plasma membrane can also directly mediate Ca2+ entry in some cells.
Collapse
Affiliation(s)
| | - Pragnya Chakraborty
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, United Kingdom; National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, India
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, India
| | - Colin W Taylor
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, United Kingdom.
| |
Collapse
|
12
|
Chakraborty S, Deb BK, Chorna T, Konieczny V, Taylor CW, Hasan G. Mutant IP3 receptors attenuate store-operated Ca2+ entry by destabilizing STIM-Orai interactions in Drosophila neurons. J Cell Sci 2016; 129:3903-3910. [PMID: 27591258 PMCID: PMC5087660 DOI: 10.1242/jcs.191585] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/30/2016] [Indexed: 12/25/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) occurs when loss of Ca2+ from the endoplasmic reticulum (ER) stimulates the Ca2+ sensor, STIM, to cluster and activate the plasma membrane Ca2+ channel Orai (encoded by Olf186-F in flies). Inositol 1,4,5-trisphosphate receptors (IP3Rs, which are encoded by a single gene in flies) are assumed to regulate SOCE solely by mediating ER Ca2+ release. We show that in Drosophila neurons, mutant IP3R attenuates SOCE evoked by depleting Ca2+ stores with thapsigargin. In normal neurons, store depletion caused STIM and the IP3R to accumulate near the plasma membrane, association of STIM with Orai, clustering of STIM and Orai at ER–plasma-membrane junctions and activation of SOCE. These responses were attenuated in neurons with mutant IP3Rs and were rescued by overexpression of STIM with Orai. We conclude that, after depletion of Ca2+ stores in Drosophila, translocation of the IP3R to ER–plasma-membrane junctions facilitates the coupling of STIM to Orai that leads to activation of SOCE. Summary: In Drosophila neurons, mutant IP3 receptors disrupt store-operated Ca2+ entry by destabilizing interaction of STIM with the Ca2+ channel, Orai. The interactions could coordinate store emptying with Ca2+ entry.
Collapse
Affiliation(s)
- Sumita Chakraborty
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bellary Road, Bangalore 560065, India Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Bipan K Deb
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bellary Road, Bangalore 560065, India
| | - Tetyana Chorna
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bellary Road, Bangalore 560065, India
| | - Vera Konieczny
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Colin W Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bellary Road, Bangalore 560065, India
| |
Collapse
|
13
|
McDougall ARA, Tolcos M, Hooper SB, Cole TJ, Wallace MJ. Trop2: from development to disease. Dev Dyn 2015; 244:99-109. [PMID: 25523132 DOI: 10.1002/dvdy.24242] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/08/2014] [Accepted: 12/11/2014] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Trop2 was first discovered as a biomarker of invasive trophoblast cells. Since then most research has focused on its role in tumourigenesis because it is highly expressed in the vast majority of human tumours and animal models of cancer. It is also highly expressed in stem cells and in many organs during development. RESULTS We review the multifaceted role of Trop2 during development and tumourigenesis, including its role in regulating cell proliferation and migration, self-renewal, and maintenance of basement membrane integrity. We discuss the evolution of Trop2 and its related protein Epcam (Trop1), including their distinct roles. Mutation of Trop2 leads to gelatinous drop-like corneal dystrophy, whereas over-expression of Trop2 in human tumours promotes tumour aggressiveness and increases mortality. Although Trop2 expression is sufficient to promote tumour growth, the surprising discovery that Trop2-null mice have an increased risk of tumour development has highlighted the complexity of Trop2 signaling. Recently, studies have begun to identify the mechanisms underlying TROP2’s functions, including regulated intramembrane proteolysis or specific interactions with integrin b1 and claudin proteins. CONCLUSIONS Understanding the mechanisms underlying TROP2 signaling will clarify its role during development, aid in the development of better cancer treatments and unlock a promising new direction in regenerative medicine.
Collapse
|
14
|
Bezprozvanny I. Bilayer measurement of endoplasmic reticulum Ca2+ channels. Cold Spring Harb Protoc 2013; 2013:2013/11/pdb.top066225. [PMID: 24184754 DOI: 10.1101/pdb.top066225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Reconstitution of ion channels into planar lipid bilayers (also called black lipid membranes or BLM) is the most widely used method to conduct physiological studies of intracellular ion channels, including endoplasmic reticulum (ER) calcium (Ca(2+)) channels. The two main types of Ca(2+) release channels in the ER membrane are ryanodine receptors (RyanRs) and inositol(1,4,5)-trisphosphate receptors (InsP3Rs). Use of the BLM reconstitution technique enabled the initial description of the functional properties of InsP3R and RyanR at the single-channel level more than 20 years ago. Since then, BLM reconstitution methods have been used to study physiological modulation and to perform structure-function analysis of these channels, and to study pathological changes in the function of InsP3R and RyanR in various disease states. The BLM technique has also been useful for studies of other intracellular Ca(2+) channels, such as ER Ca(2+) leak presenilin channels and NAADP-gated lysosomal Ca(2+) channels encoded by TPC2. In this article, basic protocols used for BLM studies of ER Ca(2+) channels are introduced.
Collapse
Affiliation(s)
- Ilya Bezprozvanny
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
15
|
Abstract
The Ca(2) (+) signals evoked by inositol 1,4,5-trisphosphate (IP(3)) are built from elementary Ca(2) (+) release events involving progressive recruitment of IP(3) receptors (IP(3)R), intracellular Ca(2) (+) channels that are expressed in almost all animal cells. The smallest events ('blips') result from opening of single IP(3)R. Larger events ('puffs') reflect the near-synchronous opening of a small cluster of IP(3)R. These puffs become more frequent as the stimulus intensity increases and they eventually trigger regenerative Ca(2) (+) waves that propagate across the cell. This hierarchical recruitment of IP(3)R is important in allowing Ca(2) (+) signals to be delivered locally to specific target proteins or more globally to the entire cell. Co-regulation of IP(3)R by Ca(2) (+) and IP(3), the ability of a single IP(3)R rapidly to mediate a large efflux of Ca(2) (+) from the endoplasmic reticulum, and the assembly of IP(3)R into clusters are key features that allow IP(3)R to propagate Ca(2) (+) signals regeneratively. We review these properties of IP(3)R and the structural basis of IP(3)R behavior.
Collapse
Affiliation(s)
- Colin W Taylor
- Department of Pharmacology, Tennis Court Road, CB2 1PD, Cambridge, UK,
| | | |
Collapse
|
16
|
Rosenhouse‐Dantsker A, Mehta D, Levitan I. Regulation of Ion Channels by Membrane Lipids. Compr Physiol 2012; 2:31-68. [DOI: 10.1002/cphy.c110001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
McDougall ARA, Hooper SB, Zahra VA, Sozo F, Lo CY, Cole TJ, Doran T, Wallace MJ. The oncogene Trop2 regulates fetal lung cell proliferation. Am J Physiol Lung Cell Mol Physiol 2011; 301:L478-89. [PMID: 21743029 DOI: 10.1152/ajplung.00063.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The factors regulating growth of the developing lung are poorly understood, although the degree of fetal lung expansion is critical. The oncogene Trop2 (trophoblast antigen 2) is upregulated during accelerated fetal lung growth, and we hypothesized that it may regulate normal fetal lung growth. We investigated Trop2 expression in the fetal and neonatal sheep lung during accelerated and delayed lung growth induced by alterations in fetal lung expansion, as well as in response to glucocorticoids. Trop2 expression was measured using real-time PCR and localized spatially using in situ hybridization and immunofluorescence. During normal lung development, Trop2 expression was higher at 90 days gestational age (GA; 4.0 ± 0.8) than at 128 days GA (1.0 ± 0.1), decreased to 0.5 ± 0.1 at 142 days GA (full term ∼147 days GA), and was positively correlated to lung cell proliferation rates (r = 0.953, P < 0.005). Trop2 expression was regulated by fetal lung expansion, but not by glucocorticoids. It was increased nearly threefold by 36 h of increased fetal lung expansion (P < 0.05) and was reduced to ∼55% of control levels by reduced fetal lung expansion (P < 0.05). Trop2 expression was associated with lung cell proliferation during normal and altered lung growth, and the TROP2 protein colocalized with Ki-67-positive cells in the fetal lung. TROP2 was predominantly localized to fibroblasts and type II alveolar epithelial cells. Trop2 small interfering RNA decreased Trop2 expression by ∼75% in cultured fetal rat lung fibroblasts and decreased their proliferation by ∼50%. Cell viability was not affected. This study demonstrates that TROP2 regulates lung cell proliferation during development.
Collapse
Affiliation(s)
- Annie R A McDougall
- The Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Australia
| | | | | | | | | | | | | | | |
Collapse
|
18
|
The biphasic increase of PIP2 in the fertilized eggs of starfish: new roles in actin polymerization and Ca2+ signaling. PLoS One 2010; 5:e14100. [PMID: 21124897 PMCID: PMC2990714 DOI: 10.1371/journal.pone.0014100] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 11/01/2010] [Indexed: 12/17/2022] Open
Abstract
Background Fertilization of echinoderm eggs is accompanied by dynamic changes of the actin cytoskeleton and by a drastic increase of cytosolic Ca2+. Since the plasma membrane-enriched phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) serves as the precursor of inositol 1,4,5 trisphosphate (InsP3) and also regulates actin-binding proteins, PIP2 might be involved in these two processes. Methodology/Principal Findings In this report, we have studied the roles of PIP2 at fertilization of starfish eggs by using fluorescently tagged pleckstrin homology (PH) domain of PLC-δ1, which has specific binding affinity to PIP2, in combination with Ca2+ and F-actin imaging techniques and transmission electron microscopy. During fertilization, PIP2 increased at the plasma membrane in two phases rather than continually decreasing. The first increase was quickly followed by a decrease about 40 seconds after sperm-egg contact. However, these changes took place only after the Ca2+ wave had already initiated and propagated. The fertilized eggs then displayed a prolonged increase of PIP2 that was accompanied by the appearance of numerous spikes in the perivitelline space during the elevation of the fertilization envelope (FE). These spikes, protruding from the plasma membrane, were filled with microfilaments. Sequestration of PIP2 by RFP-PH at higher doses resulted in changes of subplasmalemmal actin networks which significantly delayed the intracellular Ca2+ signaling, impaired elevation of FE, and increased occurrences of polyspermic fertilization. Conclusions/Significance Our results suggest that PIP2 plays comprehensive roles in shaping Ca2+ waves and guiding structural and functional changes required for successful fertilization. We propose that the PIP2 increase and the subsequent formation of actin spikes not only provide the mechanical supports for the elevating FE, but also accommodate increased membrane surfaces during cortical granule exocytosis.
Collapse
|
19
|
Foskett JK, Daniel Mak DO. Regulation of IP(3)R Channel Gating by Ca(2+) and Ca(2+) Binding Proteins. CURRENT TOPICS IN MEMBRANES 2010; 66:235-72. [PMID: 22353483 PMCID: PMC6707373 DOI: 10.1016/s1063-5823(10)66011-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- J Kevin Foskett
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
20
|
Logothetis DE, Petrou VI, Adney SK, Mahajan R. Channelopathies linked to plasma membrane phosphoinositides. Pflugers Arch 2010; 460:321-41. [PMID: 20396900 PMCID: PMC4040125 DOI: 10.1007/s00424-010-0828-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 03/11/2010] [Accepted: 03/13/2010] [Indexed: 02/07/2023]
Abstract
The plasma membrane phosphoinositide phosphatidylinositol 4,5-bisphosphate (PIP2) controls the activity of most ion channels tested thus far through direct electrostatic interactions. Mutations in channel proteins that change their apparent affinity to PIP2 can lead to channelopathies. Given the fundamental role that membrane phosphoinositides play in regulating channel activity, it is surprising that only a small number of channelopathies have been linked to phosphoinositides. This review proposes that for channels whose activity is PIP2-dependent and for which mutations can lead to channelopathies, the possibility that the mutations alter channel-PIP2 interactions ought to be tested. Similarly, diseases that are linked to disorders of the phosphoinositide pathway result in altered PIP2 levels. In such cases, it is proposed that the possibility for a concomitant dysregulation of channel activity also ought to be tested. The ever-growing list of ion channels whose activity depends on interactions with PIP2 promises to provide a mechanism by which defects on either the channel protein or the phosphoinositide levels can lead to disease.
Collapse
Affiliation(s)
- Diomedes E Logothetis
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA.
| | | | | | | |
Collapse
|
21
|
Analysis of phosphatidylinositol-4,5-bisphosphate signaling in cerebellar Purkinje spines. Biophys J 2008; 95:1795-812. [PMID: 18487300 DOI: 10.1529/biophysj.108.130195] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A 3D model was developed and used to explore dynamics of phosphatidylinositol-4,5-bisphosphate (PIP2) signaling in cerebellar Purkinje neurons. Long-term depression in Purkinje neurons depends on coincidence detection of climbing fiber stimulus evoking extracellular calcium flux into the cell and parallel fiber stimulus evoking inositol-1,4,5-trisphosphate (IP3)-meditated calcium release from the endoplasmic reticulum. Experimental evidence shows that large concentrations of IP3 are required for calcium release. This study uses computational analysis to explore how the Purkinje cell provides sufficient PIP2 to produce large amounts of IP3. Results indicate that baseline PIP2 concentration levels in the plasma membrane are inadequate, even if the model allows for PIP2 replenishment by lateral diffusion from neighboring dendrite membrane. Lateral diffusion analysis indicates apparent anomalous diffusion of PIP2 in the spiny dendrite membrane, due to restricted diffusion through spine necks. Stimulated PIP2 synthesis and elevated spine PIP2 mediated by a local sequestering protein were explored as candidate mechanisms to supply sufficient PIP2. Stimulated synthesis can indeed lead to high IP3 amplitude of long duration; local sequestration produces high IP3 amplitude, but of short duration. Simulation results indicate that local sequestration could explain the experimentally observed finely tuned timing between parallel fiber and climbing fiber activation.
Collapse
|
22
|
Jardín I, Redondo PC, Salido GM, Rosado JA. Phosphatidylinositol 4,5-bisphosphate enhances store-operated calcium entry through hTRPC6 channel in human platelets. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:84-97. [PMID: 17719101 DOI: 10.1016/j.bbamcr.2007.07.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 06/29/2007] [Accepted: 07/19/2007] [Indexed: 10/23/2022]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP2) is a versatile regulator of TRP channels. We report that inclusion of a PIP2 analogue, PIP2 1,2-dioctanoyl, does not induce non-capacitative Ca2+ entry per se but enhanced Ca2+ entry stimulated either by thrombin or by selective depletion of the Ca2+ stores in platelets, the dense tubular system, using 10 nM TG, and the acidic stores, using 20 microM 2,5-di-(tert-butyl)-1,4-hydroquinone (TBHQ). Reduction of PIP2 levels by blocking PIP2 resynthesis with Li+ or introducing a monoclonal anti-PIP2 antibody, or sequestering PIP2 using poly-lysine, attenuated Ca2+ entry induced by thrombin, TG and TBHQ, and reduced thrombin-evoked, but not TG- or TBHQ-induced, Ca2+ release from the stores. Incubation with the anti-hTRPC1 antibody did not alter the stimulation of Ca2+ entry by PIP2, whilst introduction of anti-hTRPC6 antibody directed towards the C-terminus of hTRPC6 reduced Ca2+ and Mn2+ entry induced by thrombin, TG or TBHQ, and abolished the stimulation of Ca2+ entry by PIP2. The anti-hTRPC6 antibody, but not the anti-hTRPC1 antibody or PIP2, reduced non-capacitative Ca2+ entry by the DAG analogue 1-oleoyl-2-acetyl-sn-glycerol. In summary, hTRPC6 plays a role both in store-operated and in non-capacitative Ca2+ entry. PIP2 enhances store-operated Ca2+ entry in human platelets, most probably by stimulation of hTRPC6 channels.
Collapse
Affiliation(s)
- Isaac Jardín
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10071 Cáceres, Spain
| | | | | | | |
Collapse
|
23
|
Abstract
The inositol 1,4,5-trisphosphate (InsP3) receptors (InsP3Rs) are a family of Ca2+ release channels localized predominately in the endoplasmic reticulum of all cell types. They function to release Ca2+ into the cytoplasm in response to InsP3 produced by diverse stimuli, generating complex local and global Ca2+ signals that regulate numerous cell physiological processes ranging from gene transcription to secretion to learning and memory. The InsP3R is a calcium-selective cation channel whose gating is regulated not only by InsP3, but by other ligands as well, in particular cytoplasmic Ca2+. Over the last decade, detailed quantitative studies of InsP3R channel function and its regulation by ligands and interacting proteins have provided new insights into a remarkable richness of channel regulation and of the structural aspects that underlie signal transduction and permeation. Here, we focus on these developments and review and synthesize the literature regarding the structure and single-channel properties of the InsP3R.
Collapse
Affiliation(s)
- J Kevin Foskett
- Department of Physiology, University of Pennsylvania, Philadelphia 19104-6085, USA.
| | | | | | | |
Collapse
|
24
|
Chakrabarti R, Chakrabarti R. Calcium signaling in non-excitable cells: Ca2+ release and influx are independent events linked to two plasma membrane Ca2+ entry channels. J Cell Biochem 2007; 99:1503-16. [PMID: 17031847 DOI: 10.1002/jcb.21102] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The regulatory mechanism of Ca2+ influx into the cytosol from the extracellular space in non-excitable cells is not clear. The "capacitative calcium entry" (CCE) hypothesis suggested that Ca2+ influx is triggered by the IP(3)-mediated emptying of the intracellular Ca2+ stores. However, there is no clear evidence for CCE and its mechanism remains elusive. In the present work, we have provided the reported evidences to show that inhibition of IP(3)-dependent Ca2+ release does not affect Ca2+ influx, and the experimental protocols used to demonstrate CCE can stimulate Ca2+ influx by means other than emptying of the Ca2+ stores. In addition, we have presented the reports showing that IP(3)-mediated Ca2+ release is linked to a Ca2+ entry from the extracellular space, which does not increase cytosolic [Ca2+] prior to Ca2+ release. Based on these and other reports, we have provided a model of Ca2+ signaling in non-excitable cells, in which IP(3)-mediated emptying of the intracellular Ca2+ store triggers entry of Ca2+ directly into the store, through a plasma membrane TRPC channel. Thus, emptying and direct refilling of the Ca2+ stores are repeated in the presence of IP(3), giving rise to the transient phase of oscillatory Ca2+ release. Direct Ca2+ entry into the store is regulated by its filling status in a negative and positive manner through a Ca2+ -binding protein and Stim1/Orai complex, respectively. The sustained phase of Ca2+ influx is triggered by diacylglycerol (DAG) through the activation of another TRPC channel, independent of Ca2+ release. The plasma membrane IP(3) receptor (IP(3)R) plays an essential role in Ca2+ influx, by interacting with the DAG-activated TRPC, without the requirement of binding to IP(3).
Collapse
Affiliation(s)
- Ranjana Chakrabarti
- Department of Laboratory Medicine, St. Michael's Hospital, 30 Bond Street, Toronto, Ontario, Canada M6N 4C5
| | | |
Collapse
|
25
|
Abstract
Biological rhythms with periods of less than a day are physiologically important but poorly understood. In this issue of Cell, Norman, Maricq, and colleagues (Norman et al., 2005) show that VAV-1, a guanine nucleotide exchange factor for Rho-family GTPases, is necessary for three rhythmic behaviors in the nematode Caenorhabditis elegans: feeding, defecation, and ovulation.
Collapse
|
26
|
Zhang Z, Okawa H, Wang Y, Liman ER. Phosphatidylinositol 4,5-bisphosphate rescues TRPM4 channels from desensitization. J Biol Chem 2005; 280:39185-92. [PMID: 16186107 DOI: 10.1074/jbc.m506965200] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TRPM4 is a Ca(2+)-activated nonselective cation channel that regulates membrane potential in response to intracellular Ca(2+) signaling. In lymphocytes it plays an essential role in shaping the pattern of intracellular Ca(2+) oscillations that lead to cytokine secretion. To better understand its role in this and other physiological processes, we investigated mechanisms by which TRPM4 is regulated. TRPM4 was expressed in ChoK1 cells, and currents were measured in excised patches. Under these conditions, TRPM4 currents were activated by micromolar concentrations of cytoplasmic Ca(2+) and progressively desensitized. Here we show that desensitization can be explained by a loss of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) from the channels. Poly-l-lysine, a PI(4,5)P(2) scavenger, caused rapid desensitization, whereas MgATP, at concentrations that activate lipid kinases, promoted recovery of TRPM4 currents. Application of exogenous PI(4,5)P(2) to the intracellular surface of the patch restored the properties of TRPM4 currents. Our results suggest that PI(4,5)P(2) acts to uncouple channel opening from changes in the transmembrane potential, allowing current activation at physiological voltages. These data argue that hydrolysis of PI(4,5)P(2) underlies desensitization of TRPM4 and support the idea that PI(4,5)P(2) is a general regulator for the gating of TRPM ion channels.
Collapse
Affiliation(s)
- Zheng Zhang
- Division of Neurobiology, Department of Biological Sciences and Program in Neuroscience, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | |
Collapse
|
27
|
Horowitz LF, Hirdes W, Suh BC, Hilgemann DW, Mackie K, Hille B. Phospholipase C in living cells: activation, inhibition, Ca2+ requirement, and regulation of M current. J Gen Physiol 2005; 126:243-62. [PMID: 16129772 PMCID: PMC2266577 DOI: 10.1085/jgp.200509309] [Citation(s) in RCA: 252] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Accepted: 07/19/2005] [Indexed: 01/22/2023] Open
Abstract
We have further tested the hypothesis that receptor-mediated modulation of KCNQ channels involves depletion of phosphatidylinositol 4,5-bisphosphate (PIP2) by phosphoinositide-specific phospholipase C (PLC). We used four parallel assays to characterize the agonist-induced PLC response of cells (tsA or CHO cells) expressing M1 muscarinic receptors: translocation of two fluorescent probes for membrane lipids, release of calcium from intracellular stores, and chemical measurement of acidic lipids. Occupation of M1 receptors activates PLC and consumes cellular PIP2 in less than a minute and also partially depletes mono- and unphosphorylated phosphoinositides. KCNQ current is simultaneously suppressed. Two inhibitors of PLC, U73122 and edelfosine (ET-18-OCH3), can block the muscarinic actions completely, including suppression of KCNQ current. However, U73122 also had many side effects that were attributable to alkylation of various proteins. These were mimicked or occluded by prior reaction with the alkylating agent N-ethylmaleimide and included block of pertussis toxin-sensitive G proteins and effects that resembled a weak activation of PLC or an inhibition of lipid kinases. By our functional criteria, the putative PLC activator m-3M3FBS did stimulate PLC, but with a delay and an irregular time course. It also suppressed KCNQ current. The M1 receptor-mediated activation of PLC and suppression of KCNQ current were stopped by lowering intracellular calcium well below resting levels and were slowed by not allowing intracellular calcium to rise in response to PLC activation. Thus calcium release induced by PLC activation feeds back immediately on PLC, accelerating it during muscarinic stimulation in strong positive feedback. These experiments clarify important properties of receptor-coupled PLC responses and their inhibition in the context of the living cell. In each test, the suppression of KCNQ current closely paralleled the expected fall of PIP2. The results are described by a kinetic model.
Collapse
Affiliation(s)
- Lisa F Horowitz
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle 98195, USA
| | | | | | | | | | | |
Collapse
|
28
|
Churamani D, Dickinson G, Patel S. NAADP binding to its target protein in sea urchin eggs requires phospholipids. Biochem J 2005; 386:497-504. [PMID: 15610067 PMCID: PMC1134868 DOI: 10.1042/bj20041990] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mobilization of intracellular Ca2+ pools by NAADP (nicotinic acid-adenine dinucleotide phosphate) is becoming increasingly recognized as an important determinant of complex Ca2+ signals. However, the properties of the putative Ca2+ channel activated by NAADP are poorly defined. In the present study, we provide evidence that binding of NAADP to its target protein in sea urchin eggs requires phospholipids. Decreasing the level of protein-bound lipid in detergent extracts by either dilution of the preparation at a fixed detergent concentration or increasing the detergent concentration at a fixed protein concentration inhibited [32P]NAADP binding. These effects were prevented by the addition of phospholipids, but not other related molecules, were reversible and were associated with a marked decrease in the apparent affinity of the target protein for its ligand. Additionally, we show that the extent of dissociation of NAADP-receptor ligand complexes during gel filtration in the presence of detergent correlates well with the extent of delipidation. Our data highlight the importance of the lipid environment for interaction of NAADP with its target protein.
Collapse
Affiliation(s)
- Dev Churamani
- The Old Squash Courts, Department of Physiology, University College London, Gower Street, London WC1E 6BT, U.K
| | - George D. Dickinson
- The Old Squash Courts, Department of Physiology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Sandip Patel
- The Old Squash Courts, Department of Physiology, University College London, Gower Street, London WC1E 6BT, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
29
|
Suh BC, Hille B. Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate. Curr Opin Neurobiol 2005; 15:370-8. [PMID: 15922587 DOI: 10.1016/j.conb.2005.05.005] [Citation(s) in RCA: 331] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Accepted: 05/05/2005] [Indexed: 12/20/2022]
Abstract
Phosphatidylinositol 4,5-bisphosphate is a signaling phospholipid of the plasma membrane that has a dynamically changing concentration. In addition to being the precursor of inositol trisphosphate and diacylglycerol, it complexes with and regulates many cytoplasmic and membrane proteins. Recent work has characterized the regulation of a wide range of ion channels by phosphatidylinositol 4,5-bisphosphate, helping to redefine the role of this lipid in cells and in neurobiology. In most cases, phosphatidylinositol 4,5-bisphosphate increases channel activity, and its hydrolysis by phospholipase C reduces channel activity.
Collapse
Affiliation(s)
- Byung-Chang Suh
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | |
Collapse
|
30
|
Lin X, Várnai P, Csordás G, Balla A, Nagai T, Miyawaki A, Balla T, Hajnóczky G. Control of Calcium Signal Propagation to the Mitochondria by Inositol 1,4,5-Trisphosphate-binding Proteins. J Biol Chem 2005; 280:12820-32. [PMID: 15644334 DOI: 10.1074/jbc.m411591200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytosolic Ca2+ ([Ca2+]c) signals triggered by many agonists are established through the inositol 1,4,5-trisphosphate (IP3) messenger pathway. This pathway is believed to use Ca2+-dependent local interactions among IP3 receptors (IP3R) and other Ca2+ channels leading to coordinated Ca2+ release from the endoplasmic reticulum throughout the cell and coupling Ca2+ entry and mitochondrial Ca2+ uptake to Ca2+ release. To evaluate the role of IP3 in the local control mechanisms that support the propagation of [Ca2+]c waves, store-operated Ca2+ entry, and mitochondrial Ca2+ uptake, we used two IP3-binding proteins (IP3BP): 1) the PH domain of the phospholipase C-like protein, p130 (p130PH); and 2) the ligand-binding domain of the human type-I IP3R (IP3R224-605). As expected, p130PH-GFP and GFP-IP3R224-605 behave as effective mobile cytosolic IP3 buffers. In COS-7 cells, the expression of IP3BPs had no effect on store-operated Ca2+ entry. However, the IP3-linked [Ca2+]c signal appeared as a regenerative wave and IP3BPs slowed down the wave propagation. Most importantly, IP3BPs largely inhibited the mitochondrial [Ca2+] signal and decreased the relationship between the [Ca2+]c and mitochondrial [Ca2+] signals, indicating disconnection of the mitochondria from the [Ca2+]c signal. These data suggest that IP3 elevations are important to regulate the local interactions among IP3Rs during propagation of [Ca2+]c waves and that the IP3-dependent synchronization of Ca2+ release events is crucial for the coupling between Ca2+ release and mitochondrial Ca2+ uptake.
Collapse
Affiliation(s)
- Xuena Lin
- Department of Pathology, Anatomy & Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Cho H, Lee D, Lee SH, Ho WK. Receptor-induced depletion of phosphatidylinositol 4,5-bisphosphate inhibits inwardly rectifying K+ channels in a receptor-specific manner. Proc Natl Acad Sci U S A 2005; 102:4643-8. [PMID: 15767570 PMCID: PMC555493 DOI: 10.1073/pnas.0408844102] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Indexed: 11/18/2022] Open
Abstract
Phosphatidylionsitol 4,5-bisphosphate (PIP(2)), a substrate of phospholipase C, has recently been recognized to regulate membrane-associated proteins and act as a signal molecule in phospholipase C-linked Gq-coupled receptor (GqPCR) pathways. However, it is not known whether PIP(2) depletion induced by GqPCRs can act as receptor-specific signals in native cells. We investigated this issue in cardiomyocytes where PIP(2)-dependent ion channels, G protein-gated inwardly rectifying K(+) (GIRK) and inwardly rectifying background K(+) (IRK) channels, and various GqPCRs are present. The GIRK current was recorded by using the patch-clamp technique during the application of 10 microM acetylcholine. The extent of receptor-mediated inhibition was estimated as the current decrease over 4 min while taking the GIRK current (I(GIRK)) value during a previous stimulation as the control. Each GqPCR agonist inhibited I(GIRK) with different potencies and kinetics. The extents of inhibition induced by phenylephrine, angiotensin II, endothelin-1, prostaglandin F2alpha, and bradykinin at supramaximal concentrations were (mean +/- SE) 32.1 +/- 0.6%, 21.9 +/- 1.4%, 86.4 +/- 1.6%, 63.7 +/- 4.9%, and 5.7 +/- 1.9%, respectively. GqPCR-induced inhibitions of I(GIRK) were not affected by protein kinase C inhibitor (calphostin C) but potentiated and became irreversible when the replenishment of PIP(2) was blocked by wortmannin (phosphatidylinositol kinase inhibitor). Loading the cells with PIP(2) significantly reduced endothelin-1 and prostaglandin F2alpha-induced inhibition of I(GIRK). On the contrary, GqPCR-mediated inhibitions of inwardly rectifying background K(+) currents were observed only when GqPCR agonists were applied with wortmannin, and the effects were not parallel with those on I(GIRK). These results indicate that GqPCR-induced inhibition of ion channels by means of PIP(2) depletion occurs in a receptor-specific manner.
Collapse
Affiliation(s)
- Hana Cho
- National Research Laboratory for Cell Physiology, Department of Physiology, Seoul National University College of Medicine, 28 Yonkeun-Dong, Chongno-Ku, Seoul 110-799, Korea
| | | | | | | |
Collapse
|
32
|
del Pilar Gomez M, Nasi E. A direct signaling role for phosphatidylinositol 4,5-bisphosphate (PIP2) in the visual excitation process of microvillar receptors. J Biol Chem 2005; 280:16784-9. [PMID: 15741162 DOI: 10.1074/jbc.m414538200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In microvillar photoreceptors the pivotal role of phospholipase C in light transduction is undisputed, but previous attempts to account for the photoresponse solely in terms of downstream products of phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis have proved wanting. In other systems PIP2 has been shown to possess signaling functions of its own, rather than simply serving as a precursor molecule. Because illumination of microvillar photoreceptors cells leads to PIP2 break-down, a potential role for this phospholipid in phototransduction would be to help maintain some element(s) of the transduction cascade in the inactive state. We tested the effect of intracellular dialysis of PIP2 on voltage-clamped molluscan photoreceptors and found a marked reduction in the amplitude of the photocurrent; by contrast, depolarization-activated calcium and potassium currents were unaffected, thus supporting the notion of a specific effect on light signaling. In the dark, PIP2 caused a gradual outward shift of the holding current; this change was due to a decrease in membrane conductance and may reflect the suppression of basal openings of the light-sensitive conductance. The consequences of depleting PIP2 were examined in patches of light-sensitive microvillar membrane screened for the exclusive presence of light-activated ion channels. After excision, superfusion with anti-PIP2 antibodies induced the appearance of single-channel currents. Replenishment of PIP2 by exogenous application reverted the effect. These data support the notion that PIP2, in addition to being the source of inositol trisphosphate and diacylglycerol, two messengers of visual excitation, may also participate in a direct fashion in the control of the light-sensitive conductance.
Collapse
Affiliation(s)
- Maria del Pilar Gomez
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | |
Collapse
|
33
|
Johenning F, Wenk M, Uhlén P, DeGray B, Lee E, de Camilli P, Ehrlich B. InsP3-mediated intracellular calcium signalling is altered by expression of synaptojanin-1. Biochem J 2005; 382:687-94. [PMID: 15080793 PMCID: PMC1133826 DOI: 10.1042/bj20040418] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2004] [Accepted: 04/14/2004] [Indexed: 11/17/2022]
Abstract
Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] plays an important physiological role as a precursor for the InsP3-mediated intracellular calcium (Ca2+) signalling cascade. It also regulates membrane trafficking, actin function and transmembrane proteins. SJ-1 (synaptojanin-1), a phosphoinositide phosphatase, regulates the turnover of a PtdIns(4,5)P2 pool involved in clathrin and actin dynamics at the cell surface. We tested the interrelationship of this pool with PtdIns(4,5)P2 pools involved in Ca2+ signalling by expressing in Chinese-hamster ovary cells full-length SJ-1 or its 5-Pase (inositol 5-phosphatase) domain. SJ-1 significantly attenuated the generation of Ca2+ oscillations induced by ATP and the 5-Pase domain mimicked this effect. These changes correlated with increased PtdIns(4,5)P2 phosphatase activity of cellular extracts. Overexpression of the endoplasmic reticulum-anchored PtdIns(4)P phosphatase Sac1 did not affect Ca2+ oscillations, although it increased the Ca2+ efflux rate from intracellular stores. The ability of SJ-1 to alter intracellular Ca2+ signalling indicates a close functional interrelationship between plasma membrane PtdIns(4,5)P2 pools that control actin and endocytosis and those involved in the regulation of specific spatio-temporal Ca2+ signals.
Collapse
Affiliation(s)
- Friedrich W. Johenning
- *Departments of Pharmacology, Cell and Molecular Physiology, Yale University School of Medicine, New Haven, CT, U.S.A
- †Institute for Anatomy, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Markus R. Wenk
- ‡Departments of Cell Biology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, U.S.A
| | - Per Uhlén
- *Departments of Pharmacology, Cell and Molecular Physiology, Yale University School of Medicine, New Haven, CT, U.S.A
| | - Brenda DeGray
- *Departments of Pharmacology, Cell and Molecular Physiology, Yale University School of Medicine, New Haven, CT, U.S.A
| | - Eunkyung Lee
- ‡Departments of Cell Biology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, U.S.A
| | - Pietro de Camilli
- ‡Departments of Cell Biology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, U.S.A
| | - Barbara E. Ehrlich
- *Departments of Pharmacology, Cell and Molecular Physiology, Yale University School of Medicine, New Haven, CT, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
34
|
Tang TS, Slow E, Lupu V, Stavrovskaya IG, Sugimori M, Llinás R, Kristal BS, Hayden MR, Bezprozvanny I. Disturbed Ca2+ signaling and apoptosis of medium spiny neurons in Huntington's disease. Proc Natl Acad Sci U S A 2005; 102:2602-7. [PMID: 15695335 PMCID: PMC548984 DOI: 10.1073/pnas.0409402102] [Citation(s) in RCA: 283] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) is caused by polyglutamine expansion (exp) in huntingtin. Here, we used a yeast artificial chromosome (YAC) transgenic mouse model of HD to investigate the connection between disturbed calcium (Ca2+) signaling and apoptosis of HD medium spiny neurons (MSN). Repetitive application of glutamate elevates cytosolic Ca2+ levels in MSN from the YAC128 mouse but not in MSN from the wild-type or control YAC18 mouse. Application of glutamate results in apoptosis of YAC128 MSN but not wild-type or YAC18 MSN. Analysis of glutamate-induced apoptosis of the YAC128 MSN revealed that (i) actions of glutamate are mediated by mGluR1/5 and NR2B glutamate receptors; (ii) membrane-permeable inositol 1,4,5-trisphosphate receptor blockers 2-APB and Enoxaparin (Lovenox) are neuroprotective; (iii) apoptosis involves the intrinsic pathway mediated by release of mitochondrial cytochrome c and activation of caspases 9 and 3; (iv) apoptosis requires mitochondrial Ca2+ overload and can be prevented by the mitochondrial Ca2+ uniporter blocker Ruthenium 360; and (v) apoptosis involves opening of mitochondrial permeability transition pore (MPTP) and can be prevented by MPTP blockers such as bongkrekic acid, Nortriptyline, Desipramine, Trifluoperazine, and Maprotiline. These findings describe a pathway directly linking disturbed Ca2+ signaling and degeneration of MSN in the caudate nucleus in HD. These findings also suggest that Ca2+ and MPTP blockers may have a therapeutic potential for treatment of HD.
Collapse
Affiliation(s)
- Tie-Shan Tang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Srikanth S, Wang Z, Tu H, Nair S, Mathew MK, Hasan G, Bezprozvanny I. Functional properties of the Drosophila melanogaster inositol 1,4,5-trisphosphate receptor mutants. Biophys J 2005; 86:3634-46. [PMID: 15189860 PMCID: PMC1304265 DOI: 10.1529/biophysj.104.040121] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The inositol (1,4,5)-trisphosphate receptor (InsP(3)R) is an intracellular calcium (Ca(2+)) release channel that plays a crucial role in cell signaling. In Drosophila melanogaster a single InsP(3)R gene (itpr) encodes a protein (DmInsP(3)R) that is approximately 60% conserved with mammalian InsP(3)Rs. A number of itpr mutant alleles have been identified in genetic screens and studied for their effect on development and physiology. However, the functional properties of wild-type or mutant DmInsP(3)Rs have never been described. Here we use the planar lipid bilayer reconstitution technique to describe single-channel properties of embryonic and adult head DmInsP(3)R splice variants. The three mutants chosen in this study reside in each of the three structural domains of the DmInsP(3)R-the amino-terminal ligand binding domain (ug3), the middle-coupling domain (wc703), and the channel-forming region (ka901). We discovered that 1), the major functional properties of DmInsP(3)R (conductance, gating, and sensitivity to InsP(3) and Ca(2+)) are remarkably conserved with the mammalian InsP(3)R1; 2), single-channel conductance of the adult head DmInsP(3)R isoform is 89 pS and the embryonic DmInsP(3)R isoform is 70 pS; 3), ug3 mutation affects sensitivity of the DmInsP(3)Rs to activation by InsP(3), but not their InsP(3)-binding properties; 4), wc703 channels have increased sensitivity to modulation by Ca(2+); and 5), homomeric ka901 channels are not functional. We correlated the results obtained in planar lipid bilayer experiments with measurements of InsP(3)-induced Ca(2+) fluxes in microsomes isolated from wild-type and heterozygous itpr mutants. Our study validates the use of D. melanogaster as an appropriate model for InsP(3)R structure-function studies and provides novel insights into the fundamental mechanisms of the InsP(3)R function.
Collapse
Affiliation(s)
- Sonal Srikanth
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Verkhratsky A. Physiology and Pathophysiology of the Calcium Store in the Endoplasmic Reticulum of Neurons. Physiol Rev 2005; 85:201-79. [PMID: 15618481 DOI: 10.1152/physrev.00004.2004] [Citation(s) in RCA: 567] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The endoplasmic reticulum (ER) is the largest single intracellular organelle, which is present in all types of nerve cells. The ER is an interconnected, internally continuous system of tubules and cisterns, which extends from the nuclear envelope to axons and presynaptic terminals, as well as to dendrites and dendritic spines. Ca2+release channels and Ca2+pumps residing in the ER membrane provide for its excitability. Regulated ER Ca2+release controls many neuronal functions, from plasmalemmal excitability to synaptic plasticity. Enzymatic cascades dependent on the Ca2+concentration in the ER lumen integrate rapid Ca2+signaling with long-lasting adaptive responses through modifications in protein synthesis and processing. Disruptions of ER Ca2+homeostasis are critically involved in various forms of neuropathology.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester, Faculty of Biological Sciences, United Kingdom.
| |
Collapse
|
37
|
Cascio M. Connexins and their environment: effects of lipids composition on ion channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1711:142-53. [PMID: 15955299 DOI: 10.1016/j.bbamem.2004.12.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 11/25/2004] [Accepted: 12/02/2004] [Indexed: 11/16/2022]
Abstract
Intercellular communication is mediated through paired connexons that form an aqueous pore between two adjacent cells. These membrane proteins reside in the plasma membrane of their respective cells and their activity is modulated by the composition of the lipid bilayer. The effects of the bilayer on connexon structure and function may be direct or indirect, and may arise from specific binding events or the physicochemical properties of the bilayer. While the effects of the bilayer and its constituent lipids on gap junction activity have been described in the literature, the underlying mechanisms of the interaction of connexin with its lipidic microenvironment are not as well characterized. Given that the information regarding connexons is limited, in this review, the specific roles of lipids and the properties of the bilayer on membrane protein structure and function are described for other ion channels as well as for connexons.
Collapse
Affiliation(s)
- Michael Cascio
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States.
| |
Collapse
|
38
|
Grayson TH, Haddock RE, Murray TP, Wojcikiewicz RJH, Hill CE. Inositol 1,4,5-trisphosphate receptor subtypes are differentially distributed between smooth muscle and endothelial layers of rat arteries. Cell Calcium 2004; 36:447-58. [PMID: 15488594 DOI: 10.1016/j.ceca.2004.04.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 03/29/2004] [Accepted: 04/20/2004] [Indexed: 11/22/2022]
Abstract
In blood vessels, the ability to control vascular tone depends on extracellular calcium entry and the release of calcium from inositol 1,4,5-trisphosphate receptor (IP3R)-gated stores located in both the endothelial and smooth muscle cells of the vascular wall. Therefore, we examined mRNA expression and protein distribution of IP3R subtypes in intact aorta, basilar and mesenteric arteries of the rat. IP3R1 mRNA was predominantly expressed in all three arteries. Immunohistochemistry showed that IP3R1 was present in both the muscle and endothelial cell layers, while IP3R2 and IP3R3 were largely restricted to the endothelium. Weak expression of IP3R2 was observed in the smooth muscle of the basilar artery. Co-localisation studies of IP3R subtypes with known cellular elements showed no association of any of the three subtypes with the endothelial cell plasma membrane, but a close association between the subtypes and actin filaments was observed in all cell layers. IP3R2 was found to be present near the endothelial cell nucleus. We are the first to demonstrate differential IP3R subtype distribution between the cell layers of the intact vascular wall and hypothesise that this may underlie the diversity of IP3R-dependent responses, such as vasoconstriction, vasodilation and vasomotion, displayed by arteries.
Collapse
MESH Headings
- Animals
- Arteries/chemistry
- Arteries/metabolism
- Calcium Channels/analysis
- Calcium Channels/biosynthesis
- Endothelium, Vascular/chemistry
- Endothelium, Vascular/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Muscle, Smooth, Vascular/chemistry
- Muscle, Smooth, Vascular/metabolism
- Protein Subunits/analysis
- Protein Subunits/biosynthesis
- Rats
- Rats, Wistar
- Receptors, Cytoplasmic and Nuclear/analysis
- Receptors, Cytoplasmic and Nuclear/biosynthesis
Collapse
Affiliation(s)
- T Hilton Grayson
- Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT 0200, Australia.
| | | | | | | | | |
Collapse
|
39
|
Tu H, Wang Z, Nosyreva E, De Smedt H, Bezprozvanny I. Functional characterization of mammalian inositol 1,4,5-trisphosphate receptor isoforms. Biophys J 2004; 88:1046-55. [PMID: 15533917 PMCID: PMC1305111 DOI: 10.1529/biophysj.104.049593] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Inositol 1,4,5-trisphosphate receptors (InsP3R) play a key role in intracellular calcium (Ca2+) signaling. Three mammalian InsP3R isoforms--InsP3R type 1 (InsP3R1), InsP3R type 2 (InsP3R2), and InsP3R type 3 (InsP3R3) are expressed in mammals, but the functional differences between the three mammalian InsP3R isoforms are poorly understood. Here we compared single-channel behavior of the recombinant rat InsP3R1, InsP3R2, and InsP3R3 expressed in Sf9 cells, reconstituted into planar lipid bilayers and recorded with 50 mM Ba2+ as a current carrier. We found that: 1), for all three mammalian InsP3R isoforms the size of the unitary current is 1.9 pA and single-channel conductance is 74-80 pS; 2), in optimal recording conditions the maximal single-channel open probability for all three mammalian InsP3R isoforms is in the range 30-40%; 3), in optimal recording conditions the mean open dwell time for all three mammalian InsP3R isoforms is 7-8 ms, the mean closed dwell time is approximately 10 ms; 4), InsP3R2 has the highest apparent affinity for InsP(3) (0.10 microM), followed by InsP3R1 (0.27 microM), and then by InsP3R3 (0.40 microM); 5), InsP3R1 has a high-affinity (0.13 mM) ATP modulatory site, InsP3R2 gating is ATP independent, and InsP3R3 has a low-affinity (2 mM) ATP modulatory site; 6), ATP modulates InsP3R1 gating in a noncooperative manner (n(Hill) = 1.3); 7), ATP modulates InsP3R3 gating in a highly cooperative manner (n(Hill) = 4.1). Obtained results provide novel information about functional properties of mammalian InsP3R isoforms.
Collapse
Affiliation(s)
- Huiping Tu
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
The inositol 1,4,5 trisphosphate (IP3) receptor (IP3R) is a Ca2+ release channel that responds to the second messenger IP3. Exquisite modulation of intracellular Ca2+ release via IP3Rs is achieved by the ability of IP3R to integrate signals from numerous small molecules and proteins including nucleotides, kinases, and phosphatases, as well as nonenzyme proteins. Because the ion conduction pore composes only approximately 5% of the IP3R, the great bulk of this large protein contains recognition sites for these substances. Through these regulatory mechanisms, IP3R modulates diverse cellular functions, which include, but are not limited to, contraction/excitation, secretion, gene expression, and cellular growth. We review the unique properties of the IP3R that facilitate cell-type and stimulus-dependent control of function, with special emphasis on protein-binding partners.
Collapse
Affiliation(s)
- Randen L Patterson
- Department of Neuroscience, Johns Hopkins University, Johns Hopkins Medical School, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
41
|
Zhang H, Craciun LC, Mirshahi T, Rohács T, Lopes CMB, Jin T, Logothetis DE. PIP(2) activates KCNQ channels, and its hydrolysis underlies receptor-mediated inhibition of M currents. Neuron 2003; 37:963-75. [PMID: 12670425 DOI: 10.1016/s0896-6273(03)00125-9] [Citation(s) in RCA: 437] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
KCNQ channels belong to a family of potassium ion channels with crucial roles in physiology and disease. Heteromers of KCNQ2/3 subunits constitute the neuronal M channels. Inhibition of M currents, by pathways that stimulate phospholipase C activity, controls excitability throughout the nervous system. Here we show that a common feature of all KCNQ channels is their activation by the signaling membrane phospholipid phosphatidylinositol-bis-phosphate (PIP(2)). We show that wortmannin, at concentrations that prevent recovery from receptor-mediated inhibition of M currents, blocks PIP(2) replenishment to the cell surface. Moreover, we identify a C-terminal histidine residue, immediately proximal to the plasma membrane, mutation of which renders M channels less sensitive to PIP(2) and more sensitive to receptor-mediated inhibition. Finally, native or recombinant channels inhibited by muscarinic agonists can be activated by PIP(2). Our data strongly suggest that PIP(2) acts as a membrane-diffusible second messenger to regulate directly the activity of KCNQ currents.
Collapse
Affiliation(s)
- Hailin Zhang
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York University, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Maximov A, Tang TS, Bezprozvanny I. Association of the type 1 inositol (1,4,5)-trisphosphate receptor with 4.1N protein in neurons. Mol Cell Neurosci 2003; 22:271-83. [PMID: 12676536 DOI: 10.1016/s1044-7431(02)00027-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The type 1 inositol (1,4,5)-trisphosphate receptor (InsP(3)R1) is an intracellular calcium (Ca(2+)) release channel that plays an important role in neuronal function. In yeast two-hybrid screen of rat brain cDNA library with the InsP(3)R1 carboxy-terminal bait we isolated multiple clones of neuronal cytoskeletal protein 4.1N. We mapped the 4.1N-interaction site to a short fragment (50 amino acids) within the carboxy-terminal tail of the InsP(3)R1 and the InsP(3)R1-interaction site to the carboxy-terminal domain (CTD) of 4.1N. We established that InsP(3)R1 carboxy-terminal binds selectively to the CTDDelta alternatively spliced form of the 4.1N protein. In biochemical experiments we demonstrated that 4.1N and InsP(3)R1 specifically associate in vitro. We showed that both 4.1N and InsP(3)R1 were enriched in synaptic locations and immunoprecipitated the 4.1N-InsP(3)R1 complex from rat brain synaptosomes. In biochemical experiments we demonstrated a possibility of InsP(3)R1-4.1N-CASK-syndecan-2 quaternary complex formation. From our findings we hypothesize that InsP(3)R1-4.1N association may play a role in InsP(3)R1 localization or Ca(2+) signaling in neurons.
Collapse
Affiliation(s)
- Anton Maximov
- Department of Physiology, UT Southwestern Medical Center at Dallas, 75390, Dallas, TX, USA
| | | | | |
Collapse
|
43
|
Modulation of type 1 inositol (1,4,5)-trisphosphate receptor function by protein kinase a and protein phosphatase 1alpha. J Neurosci 2003. [PMID: 12533600 DOI: 10.1523/jneurosci.23-02-00403.2003] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Type 1 inositol (1,4,5)-trisphosphate receptors (InsP3R1s) play a major role in neuronal calcium (Ca2+) signaling. The InsP3R1s are phosphorylated by protein kinase A (PKA), but the functional consequences of InsP3R1 phosphorylation and the mechanisms that control the phosphorylated state of neuronal InsP3R1s are poorly understood. In a yeast two-hybrid screen of rat brain cDNA library with the InsP3R1-specific bait, we isolated the protein phosphatase 1alpha (PP1alpha). In biochemical experiments, we confirmed the specificity of the InsP3R1-PP1alpha association and immunoprecipitated the InsP3R1-PP1 complex from rat brain synaptosomes and from the neostriatal lysate. We also established that the association with PP1 facilitates dephosphorylation of PKA-phosphorylated InsP3R1 by the endogenous neostriatal PP1 and by the recombinant PP1alpaha. We demonstrated that exposure of neostriatal slices to 8-bromo-cAMP, dopamine, calyculin A, or cyclosporine A, but not to 10 nM okadaic acid, promotes the phosphorylation of neostriatal InsP3R1 by PKA in vivo. We discovered that PKA activates and PP1alpha inhibits the activity of recombinant InsP3R1 reconstituted into planar lipid bilayers. We found that phosphorylation of InsP3R1 by PKA induces at least a fourfold increase in the sensitivity of InsP3R1 to activation by InsP3 without shifting the peak of InsP3R1 bell-shaped Ca2+ dependence. Based on these data, we suggest that InsP3R1 may participate in cross talk between cAMP and Ca2+ signaling in the neostriatum and possibly in other regions of the brain.
Collapse
|
44
|
Hamada K, Miyata T, Mayanagi K, Hirota J, Mikoshiba K. Two-state conformational changes in inositol 1,4,5-trisphosphate receptor regulated by calcium. J Biol Chem 2002; 277:21115-8. [PMID: 11980893 DOI: 10.1074/jbc.c200244200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inositol 1,4,5-trisphosphate receptor (IP3R) is a highly controlled calcium (Ca2+) channel gated by inositol 1,4,5-trisphosphate (IP3). Multiple regulators modulate IP3-triggered pore opening by binding to discrete allosteric sites within IP3R. Accordingly we have postulated that these regulators structurally control ligand gating behavior; however, no structural evidence has been available. Here we show that Ca2+, the most pivotal regulator, induced marked structural changes in the tetrameric IP3R purified from mouse cerebella. Electron microscopy of the IP3R particles revealed two distinct structures with 4-fold symmetry: a windmill structure and a square structure. Ca2+ reversibly promoted a transition from the square to the windmill with relocations of four peripheral IP3-binding domains, assigned by binding to heparin-gold. Ca2+-dependent susceptibilities to limited digestion strongly support the notion that these alterations exist. Thus, Ca2+ appeared to regulate IP3 gating activity through the rearrangement of functional domains.
Collapse
Affiliation(s)
- Kozo Hamada
- Laboratory for Developmental Neurobiology, Brain Science Institute, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | | | | | | | | |
Collapse
|
45
|
Lopes CMB, Zhang H, Rohacs T, Jin T, Yang J, Logothetis DE. Alterations in conserved Kir channel-PIP2 interactions underlie channelopathies. Neuron 2002; 34:933-44. [PMID: 12086641 DOI: 10.1016/s0896-6273(02)00725-0] [Citation(s) in RCA: 307] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inwardly rectifying K(+) (Kir) channels are important regulators of resting membrane potential and cell excitability. The activity of Kir channels is critically dependent on the integrity of channel interactions with phosphatidylinositol 4,5-bisphosphate (PIP(2)). Here we identify and characterize channel-PIP(2) interactions that are conserved among Kir family members. We find basic residues that interact with PIP(2), two of which have been associated with Andersen's and Bartter's syndromes. We show that several naturally occurring mutants decrease channel-PIP(2) interactions, leading to disease.
Collapse
Affiliation(s)
- Coeli M B Lopes
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York University, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
A fundamental question in cell biology is how different receptor-mediated signaling cascades, despite utilizing many of the same intracellular components, can generate specific cellular responses. Delmas and colleagues (in this issue of Neuron) address this question in relation to the muscarinic acetylcholine receptor (M(1)AchR) and the B(2) bradykinin receptor (B(2)R). Using Trp channel isoforms as biosensors for PLC stimulation in response to agonist activation, they demonstrate a role for signaling microdomains in the induction of such selective responses.
Collapse
Affiliation(s)
- Friedrich W Johenning
- Department of Pharmacology and Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
47
|
Rohács T, Lopes C, Mirshahi T, Jin T, Zhang H, Logothetis DE. Assaying phosphatidylinositol bisphosphate regulation of potassium channels. Methods Enzymol 2002; 345:71-92. [PMID: 11665643 DOI: 10.1016/s0076-6879(02)45008-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Tibor Rohács
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|
48
|
Rueda A, García L, Soria-Jasso LE, Arias-Montaño JA, Guerrero-Hernández A. The initial inositol 1,4,5-trisphosphate response induced by histamine is strongly amplified by Ca(2+) release from internal stores in smooth muscle. Cell Calcium 2002; 31:161-73. [PMID: 12027381 DOI: 10.1054/ceca.2002.0270] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have studied the Ca(2+)-dependence and wortmannin-sensitivity of the initial inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)) response induced by activation of either histamine or muscarinic receptors in smooth muscle from guinea pig urinary bladder. Activation of H(1) receptors with histamine (100 microM) produced a significant elevation in Ins(1,4,5)P(3) levels with only 5s stimulation and in the presence of external Ca(2+). However, this response was abolished fully by either the prolonged absence of external Ca(2+) or the depletion of internal Ca(2+) stores with thapsigargin (100nM) or ryanodine (10 microM). In contrast, the same conditions only slightly reduced the initial Ins(1,4,5)P(3) response induced by carbachol. The prolonged incubation of smooth muscle in 10 microM wortmannin to inhibit type III PI 4-kinase abolished both the early histamine-evoked Ins(1,4,5)P(3) and Ca(2+) responses. Conversely, wortmannin did not alter Ca(2+) release induced by carbachol, despite a partial reduction of its Ins(1,4,5)P(3) response. Collectively, these data indicate that the detectable histamine-induced increase in Ins(1,4,5)P(3) is more the consequence of Ca(2+) release from internal stores than a direct activation of phospholipase C by H(1) receptors. In addition, the effect of wortmannin implies the existence of a Ca(2+)-dependent amplification loop for the histamine-induced Ins(1,4,5)P(3) response in smooth muscle.
Collapse
Affiliation(s)
- A Rueda
- Departamento de Bioquímica, CINVESTAV, México
| | | | | | | | | |
Collapse
|
49
|
Nasuhoglu C, Feng S, Mao J, Yamamoto M, Yin HL, Earnest S, Barylko B, Albanesi JP, Hilgemann DW. Nonradioactive analysis of phosphatidylinositides and other anionic phospholipids by anion-exchange high-performance liquid chromatography with suppressed conductivity detection. Anal Biochem 2002; 301:243-54. [PMID: 11814295 DOI: 10.1006/abio.2001.5489] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphatidylinositol 4,5-biphosphate (PIP(2)) modulates the function of numerous ion transporters and channels, as well as cell signaling and cytoskeletal proteins. To study PIP(2) levels of cells without radiolabeling, we have developed a new method to quantify anionic phospholipid species. Phospholipids are extracted and deacylated to glycero-head groups, which are then separated by anion-exchange HPLC and detected by suppressed conductivity measurements. The major anionic head groups can be quantified in single runs with practical detection limits of about 100 pmol, and the D3 isoforms of phosphatidylinositol phosphate (PIP) and PIP(2) are detected as shoulder peaks. In HeLa, Hek 293 and COS cells, as well as intact heart, PIP(2) amounts to 0.5 to 1.5% of total anionic phospholipid (10 to 30 micromol/liter cell water or 0.15 to 0.45 nmol/mg protein). In cell cultures, overexpression of Type I PIP5-kinase specifically increases PIP(2), whereas overexpression of Type II PI4-kinase can increase both PIP and PIP(2). Phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) and the D3 isomers of PIP(2) are detected after treatment of cells with pervanadate; in yeast, overexpression of a phosphatidylinositol 3-kinase (VPS34) specifically increases phosphatidylinositol 3-phosphate (PI3P). Using isolated cardiac membranes, lipid kinase and lipid phosphatase activities can be monitored with the same methods. Upon addition of ATP, PIP increases while PIP(2) remains low; exogenous PIP(2) is rapidly degraded to PIP and phosphatidylinositol (PI). In summary, the HPLC methods described here can be used to probe multiple aspects of phosphatidylinositide (Ptide) metabolism without radiolabeling.
Collapse
Affiliation(s)
- Cem Nasuhoglu
- Department of Physiology, Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9040, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bian J, Cui J, McDonald TV. HERG K(+) channel activity is regulated by changes in phosphatidyl inositol 4,5-bisphosphate. Circ Res 2001; 89:1168-76. [PMID: 11739282 DOI: 10.1161/hh2401.101375] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Autonomic stimulation controls heart rate and myocardial excitability and may underlie the precipitation of both acquired and hereditary arrhythmias. Changes in phosphatidyl inositol bisphosphate (PIP2) concentration results from activation of several muscarinic and adrenergic receptors. We sought to investigate whether PIP2 changes could alter HERG K(+) channel activity in a manner similar to that seen with inward rectifier channels. PIP2 (10 micromol/L) internally dialyzed increased the K(+) current amplitude and shifted the voltage-dependence of activation in a hyperpolarizing direction. Elevated PIP2 accelerated activation and slowed inactivation kinetics. When 10 micromol/L PIP2 was applied to excised patches, no significant change in single channel conductance occurred, indicating that PIP2-dependent effects were primarily due to altered channel gating. PIP2 significantly attenuated the run-down of HERG channel activity that we normally observe after patch excision, suggesting that channel run-down is due, in part, to membrane depletion of PIP2. Inclusion of a neutralizing anti-PIP2 monoclonal antibody in whole cell pipette solution produced the opposite effects of PIP2. The physiological relevance of PIP2-HERG interactions is supported by our finding that phenylephrine reduced the K(+) current density in cells coexpressing alpha1A-receptor and HERG. The effects of alpha-adrenergic stimulation, however, were prevented by excess PIP2 in internal solutions but not by internal Ca(2+) buffering nor PKC inhibition, suggesting that the mechanism is due to G-protein-coupled receptor stimulation of PLC resulting in the consumption of endogenous PIP2. Thus, dynamic regulation of HERG K(+) channels may be achieved via receptor-mediated changes in PIP2 concentrations.
Collapse
MESH Headings
- Adrenergic alpha-Agonists/pharmacology
- Animals
- Antibodies, Monoclonal/pharmacology
- CHO Cells
- Calcium/metabolism
- Cation Transport Proteins
- Cricetinae
- DNA-Binding Proteins
- Dose-Response Relationship, Drug
- ERG1 Potassium Channel
- Ether-A-Go-Go Potassium Channels
- GTP-Binding Proteins/metabolism
- Gadolinium/pharmacology
- Humans
- Intracellular Fluid/metabolism
- Ion Channel Gating/drug effects
- Ion Channel Gating/physiology
- Lanthanum/pharmacology
- Membrane Potentials/drug effects
- Patch-Clamp Techniques
- Phenylephrine/pharmacology
- Phosphatidylinositol 4,5-Diphosphate/antagonists & inhibitors
- Phosphatidylinositol 4,5-Diphosphate/metabolism
- Phosphatidylinositol 4,5-Diphosphate/pharmacology
- Potassium/metabolism
- Potassium Channels/genetics
- Potassium Channels/metabolism
- Potassium Channels, Voltage-Gated
- Receptors, Adrenergic, alpha-1/genetics
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Trans-Activators
- Transcriptional Regulator ERG
- Transfection
Collapse
Affiliation(s)
- J Bian
- Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | |
Collapse
|