1
|
Vergaro A, Pankievic M, Jedlickova J, Dudakova L, Vajter M, Michaelides M, Meliska M, Nemec P, Babincova D, Kousal B, Liskova P. Disease-Causing TIMP3 Variants and Deep Phenotyping of Two Czech Families with Sorsby Fundus Dystrophy Associated with Novel p.(Tyr152Cys) Mutation. Int J Mol Sci 2024; 25:3744. [PMID: 38612555 PMCID: PMC11011298 DOI: 10.3390/ijms25073744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
We aim to report the ocular phenotype and molecular genetic findings in two Czech families with Sorsby fundus dystrophy and to review all the reported TIMP3 pathogenic variants. Two probands with Sorsby fundus dystrophy and three first-degree relatives underwent ocular examination and retinal imaging, including optical coherence tomography angiography. The DNA of the first proband was screened using a targeted ocular gene panel, while, in the second proband, direct sequencing of the TIMP3 coding region was performed. Sanger sequencing was also used for segregation analysis within the families. All the previously reported TIMP3 variants were reviewed using the American College of Medical Genetics and the Association for Molecular Pathology interpretation framework. A novel heterozygous variant, c.455A>G p.(Tyr152Cys), in TIMP3 was identified in both families and potentially de novo in one. Optical coherence tomography angiography documented in one patient the development of a choroidal neovascular membrane at 54 years. Including this study, 23 heterozygous variants in TIMP3 have been reported as disease-causing. Application of gene-specific criteria denoted eleven variants as pathogenic, eleven as likely pathogenic, and one as a variant of unknown significance. Our study expands the spectrum of TIMP3 pathogenic variants and highlights the importance of optical coherence tomography angiography for early detection of choroidal neovascular membranes.
Collapse
Affiliation(s)
- Andrea Vergaro
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic; (A.V.); (J.J.); (L.D.); (M.V.)
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (M.M.); (B.K.)
| | - Monika Pankievic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic; (A.V.); (J.J.); (L.D.); (M.V.)
| | - Jana Jedlickova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic; (A.V.); (J.J.); (L.D.); (M.V.)
| | - Lubica Dudakova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic; (A.V.); (J.J.); (L.D.); (M.V.)
| | - Marie Vajter
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic; (A.V.); (J.J.); (L.D.); (M.V.)
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (M.M.); (B.K.)
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London and Moorfields Eye Hospital, London EC1V 9EL, UK;
| | - Martin Meliska
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (M.M.); (B.K.)
| | - Pavel Nemec
- Department of Ophthalmology, First Faculty of Medicine and Military University Hospital Prague, 162 00 Prague, Czech Republic;
| | - Daniela Babincova
- Laboratory of Molecular Biology, AGEL, 741 01 Nový Jíčín, Czech Republic;
| | - Bohdan Kousal
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (M.M.); (B.K.)
| | - Petra Liskova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic; (A.V.); (J.J.); (L.D.); (M.V.)
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (M.M.); (B.K.)
| |
Collapse
|
2
|
Abstract
Sorsby fundus dystrophy (SFD) is a rare autosomal dominant disorder with complete penetrance affecting the macula. This is caused by a mutation in the TIMP-3. This objective narrative review aims to provide an overview of the pathophysiology, current treatment modalities, and future perspectives. A literature search was performed using "PubMed," "Web of Science," "Scopus," "ScienceDirect," "Google Scholar," "medRxiv," and "bioRxiv." The molecular mechanisms underlying SFD are not completely understood. Novel advancements in cell culture techniques, including induced pluripotent stem cells, may enable more reliable modeling of SFD. These cell culture techniques aim to shed more light on the pathophysiology of SFD, and hopefully, this may lead to the future development of treatment strategies for SFD. Currently, no gene therapy is available. The main treatment is the use of anti-vascular endothelial growth factors (anti-VEGF) to treat secondary choroidal neovascular membrane (CNV), which is a major complication observed in this condition. If CNV is detected and treated promptly, patients with SFD have a good chance of maintaining a functional central vision. Other treatment modalities have been tried but have shown limited benefit, and therefore, have not managed to be more widely accepted. In summary, although there is no definitive cure yet, the use of anti-VEGF treatment for secondary CNV has provided the opportunity to maintain functional vision in individuals with SFD, provided CNV is detected and treated early.
Collapse
Affiliation(s)
- Georgios Tsokolas
- Medical Retina and Uveitis Fellow, Moorfields Eye Hospital, London, United Kingdom
| |
Collapse
|
3
|
Chen H, Chen S, Ye H, Guo X. Protective Effects of Circulating TIMP3 on Coronary Artery Disease and Myocardial Infarction: A Mendelian Randomization Study. J Cardiovasc Dev Dis 2022; 9:jcdd9080277. [PMID: 36005441 PMCID: PMC9410056 DOI: 10.3390/jcdd9080277] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022] Open
Abstract
Tissue inhibitor of metalloproteinase 3 (TIMP3) is a protease with high expression levels in the heart and plays an essential role in extracellular matrix turnover by maintaining equilibrium with matrix metalloproteinases. Considerable data in experimental models have demonstrated a protective role of TIMP3 in coronary artery disease (CAD) and myocardial infarction (MI). However, causality remains unexplored in population studies. Here, we sought to decipher the potential causality between TIMP3 and CAD/MI using the Mendelian randomization (MR) method. We extracted summary−level datasets for TIMP3 and CAD/MI from the genome−wide association studies performed in the KORA study and CARDIoGRAMplusC4D consortium, respectively. Seven independent SNPs were obtained as instrumental variables for TIMP3. The MR analyses were replicated using FinnGen datasets, and the main results were combined in meta−analyses. Elevated genetically predicted serum TIMP3 levels were causally associated with a lower risk of CAD [odds ratio (OR), 0.97; 95% confidence interval (CI), 0.95, 0.98; p = 5.29 × 10−5] and MI (OR, 0.96; 95% CI, 0.95, 0.98; p = 3.85 × 10−5). The association patterns persisted in the meta−analyses combining the different datasets (CAD: OR, 0.97; 95% CI, 0.96, 0.99; p = 4.37 × 10−5; MI: OR, 0.97; 95% CI, 0.96, 0.99; p = 9.96 × 10−5) and was broadly consistent across a set of complementary analyses. Evidence of heterogeneity and horizontal pleiotropy was limited for all associations considered. In conclusion, this MR study supports inverse causal associations between serum TIMP3 and the risk of CAD and MI. Strategies for raising TIMP3 levels may offer new avenues for the prevention strategies of atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Heng Chen
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Siyuan Chen
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Hengni Ye
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310003, China
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
- Correspondence:
| |
Collapse
|
4
|
Abu El-Asrar AM, Ahmad A, Nawaz MI, Siddiquei MM, De Zutter A, Vanbrabant L, Gikandi PW, Opdenakker G, Struyf S. Tissue Inhibitor of Metalloproteinase-3 Ameliorates Diabetes-Induced Retinal Inflammation. Front Physiol 2022; 12:807747. [PMID: 35082694 PMCID: PMC8784736 DOI: 10.3389/fphys.2021.807747] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/10/2021] [Indexed: 12/18/2022] Open
Abstract
Purpose: Endogenous tissue inhibitor of matrix metalloproteinase-3 (TIMP-3) has powerful regulatory effects on inflammation and angiogenesis. In this study, we investigated the role of TIMP-3 in regulating inflammation in the diabetic retina. Methods: Vitreous samples from patients with proliferative diabetic retinopathy (PDR) and non-diabetic patients were subjected to Western blot analysis. Streptozotocin-treated rats were used as a preclinical diabetic retinopathy (DR) model. Blood-retinal barrier (BRB) breakdown was assessed with fluorescein isothiocyanate (FITC)-conjugated dextran. Rat retinas, human retinal microvascular endothelial cells (HRMECs) and human retinal Müller glial cells were studied by Western blot analysis and ELISA. Adherence of human monocytes to HRMECs was assessed and in vitro angiogenesis assays were performed. Results: Tissue inhibitor of matrix metalloproteinase-3 in vitreous samples was largely glycosylated. Intravitreal injection of TIMP-3 attenuated diabetes-induced BRB breakdown. This effect was associated with downregulation of diabetes-induced upregulation of the p65 subunit of NF-κB, intercellular adhesion molecule-1 (ICAM-1), and vascular endothelial growth factor (VEGF), whereas phospho-ERK1/2 levels were not altered. In Müller cell cultures, TIMP-3 significantly attenuated VEGF upregulation induced by high-glucose (HG), the hypoxia mimetic agent cobalt chloride (CoCl2) and TNF-α and attenuated MCP-1 upregulation induced by CoCl2 and TNF-α, but not by HG. TIMP-3 attenuated HG-induced upregulation of phospho-ERK1/2, caspase-3 and the mature form of ADAM17, but not the levels of the p65 subunit of NF-κB and the proform of ADAM17 in Müller cells. TIMP-3 significantly downregulated TNF-α-induced upregulation of ICAM-1 and VCAM-1 in HRMECs. Accordingly, TIMP-3 significantly decreased spontaneous and TNF-α- and VEGF-induced adherence of monocytes to HRMECs. Finally, TIMP-3 significantly attenuated VEGF-induced migration, chemotaxis and proliferation of HRMECs. Conclusion:In vitro and in vivo data point to anti-inflammatory and anti-angiogenic effects of TIMP-3 and support further studies for its applications in the treatment of DR.
Collapse
Affiliation(s)
- Ahmed M Abu El-Asrar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Dr. Nasser Al-Rashid Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ajmal Ahmad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohd Imtiaz Nawaz
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Alexandra De Zutter
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Lotte Vanbrabant
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Priscilla W Gikandi
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ghislain Opdenakker
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Department of Microbiology and Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, KU Leuven, and University Hospitals UZ Gasthuisberg, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Wolk A, Upadhyay M, Ali M, Suh J, Stoehr H, Bonilha VL, Anand-Apte B. The retinal pigment epithelium in Sorsby Fundus Dystrophy shows increased sensitivity to oxidative stress-induced degeneration. Redox Biol 2020; 37:101681. [PMID: 32828705 PMCID: PMC7767753 DOI: 10.1016/j.redox.2020.101681] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 12/21/2022] Open
Abstract
Sorsby Fundus Dystrophy (SFD) is a rare inherited autosomal dominant macular degeneration caused by specific mutations in TIMP3. Patients with SFD present with pathophysiology similar to the more common Age-related Macular Degeneration (AMD) and loss of vision due to both choroidal neovascularization and geographic atrophy. Previously, it has been shown that RPE degeneration in AMD is due in part to oxidative stress. We hypothesized that similar mechanisms may be at play in SFD. The objective of this study was to evaluate whether mice carrying the S179C-Timp3 mutation, a variant commonly observed in SFD, showed increased sensitivity to oxidative stress. Antioxidant genes are increased at baseline in the RPE in SFD mouse models, but not in the retina. This suggests the presence of a pro-oxidant environment in the RPE in the presence of Timp3 mutations. To determine if the RPE of Timp3 mutant mice is more susceptible to degeneration when exposed to low levels of oxidative stress, mice were injected with low doses of sodium iodate. The RPE and photoreceptors in Timp3 mutant mice degenerated at low doses of sodium iodate, which had no effect in wildtype control mice. These studies suggest that TIMP3 mutations may result in a dysregulation of pro-oxidant-antioxidant homeostasis in the RPE, leading to RPE degeneration in SFD.
Collapse
Affiliation(s)
- Alyson Wolk
- Department of Ophthalmic Research, Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH, 44195, USA; Cleveland Clinic Lerner College of Medicine, Dept. of Molecular Medicine, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA
| | - Mala Upadhyay
- Department of Ophthalmic Research, Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Mariya Ali
- Department of Ophthalmic Research, Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Jason Suh
- Department of Ophthalmic Research, Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Heidi Stoehr
- Institute of Human Genetics, University of Regensburg, 31 Universitätsstraße, Regensburg, 93053, Germany
| | - Vera L Bonilha
- Department of Ophthalmic Research, Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH, 44195, USA; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Dept. of Ophthalmology, 10900 Euclid Ave, Cleveland, OH, 44106, USA
| | - Bela Anand-Apte
- Department of Ophthalmic Research, Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH, 44195, USA; Cleveland Clinic Lerner College of Medicine, Dept. of Molecular Medicine, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Dept. of Ophthalmology, 10900 Euclid Ave, Cleveland, OH, 44106, USA.
| |
Collapse
|
6
|
Hongisto H, Dewing JM, Christensen DR, Scott J, Cree AJ, Nättinen J, Määttä J, Jylhä A, Aapola U, Uusitalo H, Kaarniranta K, Ratnayaka JA, Skottman H, Lotery AJ. In vitro stem cell modelling demonstrates a proof-of-concept for excess functional mutant TIMP3 as the cause of Sorsby fundus dystrophy. J Pathol 2020; 252:138-150. [PMID: 32666594 DOI: 10.1002/path.5506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/06/2020] [Accepted: 06/29/2020] [Indexed: 12/28/2022]
Abstract
Sorsby fundus dystrophy (SFD) is a rare autosomal dominant disease of the macula that leads to bilateral loss of central vision and is caused by mutations in the TIMP3 gene. However, the mechanisms by which TIMP3 mutations cause SFD are poorly understood. Here, we generated human induced pluripotent stem cell-derived retinal pigmented epithelial (hiPSC-RPE) cells from three SFD patients carrying TIMP3 p.(Ser204Cys) and three non-affected controls to study disease-related structural and functional differences in the RPE. SFD-hiPSC-RPE exhibited characteristic RPE structure and physiology but showed significantly reduced transepithelial electrical resistance associated with enriched expression of cytoskeletal remodelling proteins. SFD-hiPSC-RPE exhibited basolateral accumulation of TIMP3 monomers, despite no change in TIMP3 gene expression. TIMP3 dimers were observed in both SFD and control hiPSC-RPE, suggesting that mutant TIMP3 dimerisation does not drive SFD pathology. Furthermore, mutant TIMP3 retained matrix metalloproteinase activity. Proteomic profiling showed increased expression of ECM proteins, endothelial cell interactions and angiogenesis-related pathways in SFD-hiPSC-RPE. By contrast, there were no changes in VEGF secretion. However, SFD-hiPSC-RPE secreted higher levels of monocyte chemoattractant protein 1, PDGF and angiogenin. Our findings provide a proof-of-concept that SFD patient-derived hiPSC-RPE mimic mature RPE cells and support the hypothesis that excess accumulation of mutant TIMP3, rather than an absence or deficiency of functional TIMP3, drives ECM and angiogenesis-related changes in SFD. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Heidi Hongisto
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
| | - Jennifer M Dewing
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - David Rg Christensen
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jennifer Scott
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Angela J Cree
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Janika Nättinen
- SILK, Department of Ophthalmology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Juha Määttä
- SILK, Department of Ophthalmology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Antti Jylhä
- SILK, Department of Ophthalmology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ulla Aapola
- SILK, Department of Ophthalmology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Hannu Uusitalo
- SILK, Department of Ophthalmology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Tays Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| | - J Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Heli Skottman
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
| | - Andrew J Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
7
|
DeBenedictis MJ, Gindzin Y, Glaab E, Anand-Apte B. A novel TIMP3 mutation associated with a retinitis pigmentosa-like phenotype. Ophthalmic Genet 2020; 41:480-484. [PMID: 32715858 DOI: 10.1080/13816810.2020.1795889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Sorsby Fundus Dystrophy is an inherited macular degeneration caused by pathogenic variants in the TIMP3 gene. Clinical exam findings typically drusen -like deposits beneath the RPE or reticular pseudo drusen deposits above the RPE with a majority of patients developing choroidal neovascularization. MATERIALS AND METHODS Case report of two members of a family that present with atypical clinical exam findings. Protein modeling of the novel Y137CTIMP3 variant was performed and compared with other known variants. RESULTS In this study we describe a father and son initially diagnosed with retinitis pigmentosa of unknown genetic origin. More recent genetic testing of the patients, identified a novel c.410A>G; p.Tyr137Cys variant of uncertain clinical significance in the Tissue Inhibitor of Metalloproteinase-3 (TIMP3) gene. The atypical clinical findings led us to compare the theoretical molecular effects of this variant on the TIMP3 protein structure and interactions with other proteins using homology modeling and machine learning predictions. CONCLUSIONS It is important to consider mutations in TIMP3 in atypical cases of Retinitis Pigmentosa particularly in the absence of known variants.
Collapse
Affiliation(s)
| | - Yosef Gindzin
- Grand Rapids Ophthalmology , Grand Rapids, Michigan, USA
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg , Esch-sur-Alzette, Luxembourg
| | - Bela Anand-Apte
- Cleveland Clinic Foundation, Cole Eye Institute , Cleveland, Ohio, USA.,Department of Ophthalmology and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University , Cleveland, Ohio, USA
| |
Collapse
|
8
|
Fan D, Kassiri Z. Biology of Tissue Inhibitor of Metalloproteinase 3 (TIMP3), and Its Therapeutic Implications in Cardiovascular Pathology. Front Physiol 2020; 11:661. [PMID: 32612540 PMCID: PMC7308558 DOI: 10.3389/fphys.2020.00661] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
Tissue inhibitor of metalloproteinase 3 (TIMP3) is unique among the four TIMPs due to its extracellular matrix (ECM)-binding property and broad range of inhibitory substrates that includes matrix metalloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs), and ADAM with thrombospondin motifs (ADAMTSs). In addition to its metalloproteinase-inhibitory function, TIMP3 can interact with proteins in the extracellular space resulting in its multifarious functions. TIMP3 mRNA has a long 3' untranslated region (UTR) which is a target for numerous microRNAs. TIMP3 levels are reduced in various cardiovascular diseases, and studies have shown that TIMP3 replenishment ameliorates the disease, suggesting a therapeutic potential for TIMP3 in cardiovascular diseases. While significant efforts have been made in identifying the effector targets of TIMP3, the regulatory mechanism for the expression of this multi-functional TIMP has been less explored. Here, we provide an overview of TIMP3 gene structure, transcriptional and post-transcriptional regulators (transcription factors and microRNAs), protein structure and partners, its role in cardiovascular pathology and its application as therapy, while also drawing reference from TIMP3 function in other diseases.
Collapse
Affiliation(s)
- Dong Fan
- Department of Pathology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Zamaneh Kassiri
- Department of Physiology, University of Alberta, Edmonton, AB, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
9
|
Wolk A, Hatipoglu D, Cutler A, Ali M, Bell L, Hua Qi J, Singh R, Batoki J, Karle L, Bonilha VL, Wessely O, Stoehr H, Hascall V, Anand-Apte B. Role of FGF and Hyaluronan in Choroidal Neovascularization in Sorsby Fundus Dystrophy. Cells 2020; 9:E608. [PMID: 32143276 PMCID: PMC7140456 DOI: 10.3390/cells9030608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/11/2020] [Accepted: 02/28/2020] [Indexed: 12/21/2022] Open
Abstract
Sorsby's fundus dystrophy (SFD) is an inherited blinding disorder caused by mutations in the tissue inhibitor of metalloproteinase-3 (TIMP3) gene. The SFD pathology of macular degeneration with subretinal deposits and choroidal neovascularization (CNV) closely resembles that of the more common age-related macular degeneration (AMD). The objective of this study was to gain further insight into the molecular mechanism(s) by which mutant TIMP3 induces CNV. In this study we demonstrate that hyaluronan (HA), a large glycosaminoglycan, is elevated in the plasma and retinal pigment epithelium (RPE)/choroid of patients with AMD. Mice carrying the S179C-TIMP3 mutation also showed increased plasma levels of HA as well as accumulation of HA around the RPE in the retina. Human RPE cells expressing the S179C-TIMP3 mutation accumulated HA apically, intracellularly and basally when cultured long-term compared with cells expressing wildtype TIMP3. We recently reported that RPE cells carrying the S179C-TIMP3 mutation have the propensity to induce angiogenesis via basic fibroblast growth factor (FGF-2). We now demonstrate that FGF-2 induces accumulation of HA in RPE cells. These results suggest that the TIMP3-MMP-FGF-2-HA axis may have an important role in the pathogenesis of CNV in SFD and possibly AMD.
Collapse
Affiliation(s)
- Alyson Wolk
- Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (A.W.); (D.H.); (A.C.); (M.A.); (L.B.); (J.H.Q.); (R.S.); (J.B.); (L.K.); (V.L.B.)
- Cleveland Clinic Lerner College of Medicine, Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44195, USA;
| | - Dilara Hatipoglu
- Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (A.W.); (D.H.); (A.C.); (M.A.); (L.B.); (J.H.Q.); (R.S.); (J.B.); (L.K.); (V.L.B.)
| | - Alecia Cutler
- Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (A.W.); (D.H.); (A.C.); (M.A.); (L.B.); (J.H.Q.); (R.S.); (J.B.); (L.K.); (V.L.B.)
| | - Mariya Ali
- Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (A.W.); (D.H.); (A.C.); (M.A.); (L.B.); (J.H.Q.); (R.S.); (J.B.); (L.K.); (V.L.B.)
| | - Lestella Bell
- Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (A.W.); (D.H.); (A.C.); (M.A.); (L.B.); (J.H.Q.); (R.S.); (J.B.); (L.K.); (V.L.B.)
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Department of Ophthalmology, Cleveland, OH 44195, USA
| | - Jian Hua Qi
- Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (A.W.); (D.H.); (A.C.); (M.A.); (L.B.); (J.H.Q.); (R.S.); (J.B.); (L.K.); (V.L.B.)
| | - Rupesh Singh
- Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (A.W.); (D.H.); (A.C.); (M.A.); (L.B.); (J.H.Q.); (R.S.); (J.B.); (L.K.); (V.L.B.)
| | - Julia Batoki
- Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (A.W.); (D.H.); (A.C.); (M.A.); (L.B.); (J.H.Q.); (R.S.); (J.B.); (L.K.); (V.L.B.)
| | - Laura Karle
- Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (A.W.); (D.H.); (A.C.); (M.A.); (L.B.); (J.H.Q.); (R.S.); (J.B.); (L.K.); (V.L.B.)
| | - Vera L. Bonilha
- Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (A.W.); (D.H.); (A.C.); (M.A.); (L.B.); (J.H.Q.); (R.S.); (J.B.); (L.K.); (V.L.B.)
- Cleveland Clinic Lerner College of Medicine, Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44195, USA;
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Department of Ophthalmology, Cleveland, OH 44195, USA
| | - Oliver Wessely
- Cleveland Clinic Lerner College of Medicine, Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44195, USA;
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Heidi Stoehr
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany;
| | - Vincent Hascall
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
| | - Bela Anand-Apte
- Cole Eye Institute & Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (A.W.); (D.H.); (A.C.); (M.A.); (L.B.); (J.H.Q.); (R.S.); (J.B.); (L.K.); (V.L.B.)
- Cleveland Clinic Lerner College of Medicine, Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44195, USA;
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Department of Ophthalmology, Cleveland, OH 44195, USA
| |
Collapse
|
10
|
Dewing JM, Carare RO, Lotery AJ, Ratnayaka JA. The Diverse Roles of TIMP-3: Insights into Degenerative Diseases of the Senescent Retina and Brain. Cells 2019; 9:cells9010039. [PMID: 31877820 PMCID: PMC7017234 DOI: 10.3390/cells9010039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
Tissue inhibitor of metalloproteinase-3 (TIMP-3) is a component of the extracellular environment, where it mediates diverse processes including matrix regulation/turnover, inflammation and angiogenesis. Rare TIMP-3 risk alleles and mutations are directly linked with retinopathies such as age-related macular degeneration (AMD) and Sorsby fundus dystrophy, and potentially, through indirect mechanisms, with Alzheimer's disease. Insights into TIMP-3 activities may be gleaned from studying Sorsby-linked mutations. However, recent findings do not fully support the prevailing hypothesis that a gain of function through the dimerisation of mutated TIMP-3 is responsible for retinopathy. Findings from Alzheimer's patients suggest a hitherto poorly studied relationship between TIMP-3 and the Alzheimer's-linked amyloid-beta (A) proteins that warrant further scrutiny. This may also have implications for understanding AMD as aged/diseased retinae contain high levels of A. Findings from TIMP-3 knockout and mutant knock-in mice have not led to new treatments, particularly as the latter does not satisfactorily recapitulate the Sorsby phenotype. However, recent advances in stem cell and in vitro approaches offer novel insights into understanding TIMP-3 pathology in the retina-brain axis, which has so far not been collectively examined. We propose that TIMP-3 activities could extend beyond its hitherto supposed functions to cause age-related changes and disease in these organs.
Collapse
Affiliation(s)
- Jennifer M. Dewing
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (J.M.D.); (R.O.C.); (A.J.L.)
| | - Roxana O. Carare
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (J.M.D.); (R.O.C.); (A.J.L.)
| | - Andrew J. Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (J.M.D.); (R.O.C.); (A.J.L.)
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - J. Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (J.M.D.); (R.O.C.); (A.J.L.)
- Correspondence: ; Tel.: +44-238120-8183
| |
Collapse
|
11
|
Qi JH, Bell B, Singh R, Batoki J, Wolk A, Cutler A, Prayson N, Ali M, Stoehr H, Anand-Apte B. Sorsby Fundus Dystrophy Mutation in Tissue Inhibitor of Metalloproteinase 3 (TIMP3) promotes Choroidal Neovascularization via a Fibroblast Growth Factor-dependent Mechanism. Sci Rep 2019; 9:17429. [PMID: 31757977 PMCID: PMC6874529 DOI: 10.1038/s41598-019-53433-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022] Open
Abstract
Choroidal neovascularization (CNV) leads to loss of vision in patients with Sorsby Fundus Dystrophy (SFD), an inherited, macular degenerative disorder, caused by mutations in the Tissue Inhibitor of Metalloproteinase-3 (TIMP3) gene. SFD closely resembles age-related macular degeneration (AMD), which is the leading cause of blindness in the elderly population of the Western hemisphere. Variants in TIMP3 gene have recently been identified in patients with AMD. A majority of patients with AMD also lose vision as a consequence of choroidal neovascularization (CNV). Thus, understanding the molecular mechanisms that contribute to CNV as a consequence of TIMP-3 mutations will provide insight into the pathophysiology in SFD and likely the neovascular component of the more commonly seen AMD. While the role of VEGF in CNV has been studied extensively, it is becoming increasingly clear that other factors likely play a significant role. The objective of this study was to test the hypothesis that basic Fibroblast Growth Factor (bFGF) regulates SFD-related CNV. In this study we demonstrate that mice expressing mutant TIMP3 (Timp3S179C/S179C) showed reduced MMP inhibitory activity with an increase in MMP2 activity and bFGF levels, as well as accentuated CNV leakage when subjected to laser injury. S179C mutant-TIMP3 in retinal pigment epithelial (RPE) cells showed increased secretion of bFGF and conditioned medium from these cells induced increased angiogenesis in endothelial cells. These studies suggest that S179C-TIMP3 may promote angiogenesis and CNV via a FGFR-1-dependent pathway by increasing bFGF release and activity.
Collapse
Affiliation(s)
- Jian Hua Qi
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Brent Bell
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Rupesh Singh
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Julia Batoki
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Alyson Wolk
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Alecia Cutler
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Nicholas Prayson
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Mariya Ali
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Heidi Stoehr
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Bela Anand-Apte
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
12
|
Logue T, Lizotte-Waniewski M, Brew K. Thermodynamic profiles of the interactions of suramin, chondroitin sulfate, and pentosan polysulfate with the inhibitory domain of TIMP-3. FEBS Lett 2019; 594:94-103. [PMID: 31359422 DOI: 10.1002/1873-3468.13556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/15/2019] [Accepted: 07/21/2019] [Indexed: 01/01/2023]
Abstract
Extracellular levels of soluble TIMP-3 are low, reflecting its binding by extracellular matrix (ECM) components including sulfated glycosaminoglycans (SGAGs) and endocytosis via low density lipoprotein receptor-related protein 1. Since TIMP-3 inhibits ECM degradation, the ability of SGAGs to elevate extracellular TIMP-3 is significant for osteoarthritis treatment. Previous studies of such interactions have utilized immobilized TIMP-3 or ligands. Here, we report the thermodynamics of the interactions of the sGAG-binding N-domain of TIMP-3 with chondroitin sulfate, pentosan polysulfate, and suramin in solution using isothermal titration calorimetry. All three interactions are driven by a favorable negative enthalpy change combined with an unfavorable decrease in entropy. The heat capacity changes (ΔCp ) for all of the interactions are zero, indicating an insignificant contribution from hydrophobic interactions.
Collapse
Affiliation(s)
- Timothy Logue
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Michelle Lizotte-Waniewski
- Integrated Medical Sciences Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Keith Brew
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
| |
Collapse
|
13
|
Naessens S, De Zaeytijd J, Syx D, Vandenbroucke RE, Smeets F, Van Cauwenbergh C, Leroy BP, Peelman F, Coppieters F. The N-terminal p.(Ser38Cys) TIMP3 mutation underlying Sorsby fundus dystrophy is a founder mutation disrupting an intramolecular disulfide bond. Hum Mutat 2019; 40:539-551. [PMID: 30668888 PMCID: PMC6594137 DOI: 10.1002/humu.23713] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 01/18/2019] [Accepted: 01/19/2019] [Indexed: 01/01/2023]
Abstract
Sorsby fundus dystrophy (SFD) is a macular degeneration caused by mutations in TIMP3, the majority of which introduce a novel cysteine. However, the exact molecular mechanisms underlying SFD remain unknown. We aimed to provide novel insights into the functional consequences of a distinct N-terminal mutation. Haplotype reconstruction in three SFD families revealed that the identified c.113C>G, p.(Ser38Cys) mutation is a founder in Belgian and northern French families with a late-onset SFD phenotype. Functional consequences of the p.(Ser38Cys) mutation were investigated by high-resolution Western blot analysis of wild type and mutant TIMP3 using patient fibroblasts and in vitro generated proteins, and by molecular modeling of TIMP3 and its interaction partners. We could not confirm a previous hypothesis on dimerization of mutant TIMP3 proteins. However, we identified aberrant intramolecular disulfide bonding. Our data provide evidence for disruption of the established Cys36-Cys143 disulfide bond and formation of a novel Cys36-Cys38 bond, possibly associated with increased glycosylation of the protein. In conclusion, we propose a novel pathogenetic mechanism underlying the p.(Ser38Cys) TIMP3 founder mutation involving intramolecular disulfide bonding. These results provide new insights into the pathogenesis of SFD and other retinopathies linked to mutations in TIMP3, such as age-related macular degeneration.
Collapse
Affiliation(s)
- Sarah Naessens
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Julie De Zaeytijd
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
| | - Delfien Syx
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Frédéric Smeets
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
| | - Caroline Van Cauwenbergh
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium.,Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
| | - Bart P Leroy
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium.,Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium.,Division of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Frank Peelman
- Receptor Research Laboratories, Cytokine Receptor Lab, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Frauke Coppieters
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
14
|
Anand-Apte B, Chao JR, Singh R, Stöhr H. Sorsby fundus dystrophy: Insights from the past and looking to the future. J Neurosci Res 2019; 97:88-97. [PMID: 30129971 PMCID: PMC6241301 DOI: 10.1002/jnr.24317] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/13/2018] [Accepted: 07/26/2018] [Indexed: 12/17/2022]
Abstract
Sorsby fundus dystrophy (SFD), an autosomal dominant, fully penetrant, degenerative disease of the macula, is manifested by symptoms of night blindness or sudden loss of visual acuity, usually in the third to fourth decades of life due to choroidal neovascularization (CNV). SFD is caused by specific mutations in the Tissue Inhibitor of Metalloproteinase-3, (TIMP3) gene. The predominant histo-pathological feature in the eyes of patients with SFD are confluent 20-30 m thick, amorphous deposits found between the basement membrane of the retinal pigment epithelium (RPE) and the inner collagenous layer of Bruch's membrane. SFD is a rare disease but it has generated significant interest because it closely resembles the exudative or "wet" form of the more common age-related macular degeneration (AMD). In addition, in both SFD and AMD donor eyes, sub-retinal deposits have been shown to accumulate TIMP3 protein. Understanding the molecular functions of wild-type and mutant TIMP3 will provide significant insights into the patho-physiology of SFD and perhaps AMD. This review summarizes the current knowledge on TIMP3 and how mutations in TIMP3 cause SFD to provide insights into how we can study this disease going forward. Findings from these studies could have potential therapeutic implications for both SFD and AMD.
Collapse
Affiliation(s)
- Bela Anand-Apte
- Department of Ophthalmic Research, Cole Eye Institute,
Cleveland Clinic Foundation, Cleveland Ohio; Department of Ophthalmology and
Department of Molecular Medicine, Lerner Research Institute, Cleveland Clinic Lerner
College of Medicine, Cleveland, OH,
| | - Jennifer R. Chao
- Department of Ophthalmology, University of Washington,
Seattle, WA 98109,
| | - Ruchira Singh
- Department of Ophthalmology (Flaum Eye Institute) and
Biomedical Genetics, 3Center for Visual Science, UR Stem Cell and Regenerative
Medicine Institute University of Rochester, Rochester, NY, USA, ruchira
| | - Heidi Stöhr
- Institute of Human Genetics, Universität
Regensburg, Regensburg, Germany,
| |
Collapse
|
15
|
Dalvi S, Galloway CA, Singh R. Pluripotent Stem Cells to Model Degenerative Retinal Diseases: The RPE Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1186:1-31. [PMID: 31654384 DOI: 10.1007/978-3-030-28471-8_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pluripotent stem cell technology, including human-induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs), has provided a suitable platform to investigate molecular and pathological alterations in an individual cell type using patient's own cells. Importantly, hiPSCs/hESCs are amenable to genome editing providing unique access to isogenic controls. Specifically, the ability to introduce disease-causing mutations in control (unaffected) and conversely correct disease-causing mutations in patient-derived hiPSCs has provided a powerful approach to clearly link the disease phenotype with a specific gene mutation. In fact, utilizing hiPSC/hESC and CRISPR technology has provided significant insight into the pathomechanism of several diseases. With regard to the eye, the use of hiPSCs/hESCs to study human retinal diseases is especially relevant to retinal pigment epithelium (RPE)-based disorders. This is because several studies have now consistently shown that hiPSC-RPE in culture displays key physical, gene expression and functional attributes of human RPE in vivo. In this book chapter, we will discuss the current utility, limitations, and plausible future approaches of pluripotent stem cell technology for the study of retinal degenerative diseases. Of note, although we will broadly summarize the significant advances made in modeling and studying several retinal diseases utilizing hiPSCs/hESCs, our specific focus will be on the utility of patient-derived hiPSCs for (1) establishment of human cell models and (2) molecular and pharmacological studies on patient-derived cell models of retinal degenerative diseases where RPE cellular defects play a major pathogenic role in disease development and progression.
Collapse
Affiliation(s)
- Sonal Dalvi
- Department of Ophthalmology, Flaum Eye Institute, University of Rochester, Rochester, NY, USA.,Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | - Chad A Galloway
- Department of Ophthalmology, Flaum Eye Institute, University of Rochester, Rochester, NY, USA.,Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | - Ruchira Singh
- Department of Ophthalmology, Flaum Eye Institute, University of Rochester, Rochester, NY, USA. .,Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA. .,UR Stem Cell and Regenerative Medicine Institute, Rochester, NY, USA. .,Center for Visual Science, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
16
|
Zheng Z, He X, Zhu M, Jin X, Li C, Zhu F, Lv C, Li W, Hu X, Wang W, Wang F. Tissue inhibitor of the metalloproteinases-3 gene polymorphisms and carotid plaque susceptibility in the Han Chinese population. Int J Neurosci 2018; 128:920-927. [PMID: 29498555 DOI: 10.1080/00207454.2018.1436544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tissue inhibitor of metalloproteinases (TIMPs) are endogenous inhibitors of matrix metalloproteinases that are involved in normal cellular processes and in the development and progression of atherosclerosis. Our purpose was to evaluate the polymorphisms of the TIMP-3 genes for their associations with carotid plaques or with serum protein levels in the Han Chinese population. Two promoter variants, -915A/G (rs2234921) and -1296T/C (rs9619311), were genotyped in 548 subjects with no plaques, 462 subjects with echogenic plaques, and 427 subjects with mixture plaques. The serum TIMP-3 levels were measured using an enzyme-linked immunosorbent assay (ELISA). There was a strong linkage disequilibrium between -1296T/C and -915A/G (D' = 1.0, r2 = 0.991). The individuals with the genotype (TC+CC) were 1.8 times more likely to have mixture plaques than the individuals with the TT genotype (P = 0.001, OR: 1.836, 95%CI: 1.269-2.665). The frequency of the C allele in the mixture plaque group was significantly higher than in the no plaque group (P = 0.009, CI: 1.119-2.187). We observed a significant elevation of the TIMP-3 levels in the serum of patients affected with mixture plaques compared to those with no plaques (P = 0.013). The current data suggest that genetic variation in the TIMP-3 genes may contribute to individual differences in mixture plaque susceptibility in the Han Chinese population.
Collapse
Affiliation(s)
- Zhou Zheng
- a Department of Neurology, Taizhou Hospital , Affiliated Hospital of Wenzhou Medical College, Taizhou , Zhejiang , China
| | - Xinwei He
- a Department of Neurology, Taizhou Hospital , Affiliated Hospital of Wenzhou Medical College, Taizhou , Zhejiang , China
| | - Min Zhu
- b Taizhou Hospital , Affiliated Hospital of Wenzhou Medical College , Medical Research Center , Taizhou , Zhejiang , China
| | - Xiaoping Jin
- a Department of Neurology, Taizhou Hospital , Affiliated Hospital of Wenzhou Medical College, Taizhou , Zhejiang , China
| | - Cai Li
- a Department of Neurology, Taizhou Hospital , Affiliated Hospital of Wenzhou Medical College, Taizhou , Zhejiang , China
| | - Feng Zhu
- a Department of Neurology, Taizhou Hospital , Affiliated Hospital of Wenzhou Medical College, Taizhou , Zhejiang , China
| | - Chenling Lv
- a Department of Neurology, Taizhou Hospital , Affiliated Hospital of Wenzhou Medical College, Taizhou , Zhejiang , China
| | - Weiling Li
- a Department of Neurology, Taizhou Hospital , Affiliated Hospital of Wenzhou Medical College, Taizhou , Zhejiang , China
| | - Xiaofei Hu
- a Department of Neurology, Taizhou Hospital , Affiliated Hospital of Wenzhou Medical College, Taizhou , Zhejiang , China
| | - Wanfeng Wang
- a Department of Neurology, Taizhou Hospital , Affiliated Hospital of Wenzhou Medical College, Taizhou , Zhejiang , China
| | - Feng Wang
- a Department of Neurology, Taizhou Hospital , Affiliated Hospital of Wenzhou Medical College, Taizhou , Zhejiang , China
| |
Collapse
|
17
|
Escalona RM, Chan E, Kannourakis G, Findlay JK, Ahmed N. The Many Facets of Metzincins and Their Endogenous Inhibitors: Perspectives on Ovarian Cancer Progression. Int J Mol Sci 2018; 19:E450. [PMID: 29393911 PMCID: PMC5855672 DOI: 10.3390/ijms19020450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 02/07/2023] Open
Abstract
Approximately sixty per cent of ovarian cancer patients die within the first five years of diagnosis due to recurrence associated with chemoresistance. The metzincin family of metalloproteinases is enzymes involved in matrix remodeling in response to normal physiological changes and diseased states. Recently, there has been a mounting awareness of these proteinases and their endogenous inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), as superb modulators of cellular communication and signaling regulating key biological processes in cancer progression. This review investigates the role of metzincins and their inhibitors in ovarian cancer. We propose that understanding the metzincins and TIMP biology in ovarian cancer may provide valuable insights in combating ovarian cancer progression and chemoresistance-mediated recurrence in patients.
Collapse
Affiliation(s)
- Ruth M Escalona
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3052, Australia.
- The Hudson Institute of Medical Research, Clayton, VIC 3168, Australia.
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia.
| | - Emily Chan
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3052, Australia.
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia.
- Federation University Australia, Ballarat, VIC 3010, Australia.
| | - Jock K Findlay
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3052, Australia.
- The Hudson Institute of Medical Research, Clayton, VIC 3168, Australia.
| | - Nuzhat Ahmed
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3052, Australia.
- The Hudson Institute of Medical Research, Clayton, VIC 3168, Australia.
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia.
- Federation University Australia, Ballarat, VIC 3010, Australia.
| |
Collapse
|
18
|
Sorsby fundus dystrophy - A review of pathology and disease mechanisms. Exp Eye Res 2017; 165:35-46. [PMID: 28847738 DOI: 10.1016/j.exer.2017.08.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 01/29/2023]
Abstract
Sorsby fundus dystrophy (SFD) is an autosomal dominant macular dystrophy with an estimated prevalence of 1 in 220,000 and an onset of disease around the 4th to 6th decade of life. Similar to age-related macular degeneration (AMD), ophthalmoscopy reveals accumulation of protein/lipid deposits under the retinal pigment epithelium (RPE), referred to as drusen, in the eyes of patients with SFD. SFD is caused by variants in the gene for tissue inhibitor of metalloproteinases-3 (TIMP3), which has been found in drusen-like deposits of SFD patients. TIMP3 is constitutively expressed by RPE cells and, in healthy eyes, resides in Bruch's membrane. Most SFD-associated TIMP3 variants involve the gain or loss of a cysteine residue. This suggests the protein aberrantly forms intermolecular disulphide bonds, resulting in the formation of TIMP3 dimers. It has been demonstrated that SFD-associated TIMP3 variants are more resistant to turnover, which is thought to be a result of dimerisation and thought to explain the accumulation of TIMP3 in drusen-like deposits at the level of Bruch's membrane. An important function of TIMP3 within the outer retina is to regulate the thickness of Bruch's membrane. TIMP3 performs this function by inhibiting the activity of matrix metalloproteinases (MMPs), which have the function of catalysing breakdown of the extracellular matrix. TIMP3 has an additional function to inhibit vascular endothelial growth factor (VEGF) signalling and thereby to inhibit angiogenesis. However, it is unclear whether SFD-associated TIMP3 variant proteins retain these functions. In this review, we discuss the current understanding of the potential mechanisms underlying development of SFD and summarise all known SFD-associated TIMP3 variants. Cell culture models provide an invaluable way to study disease and identify potential treatments. These allow a greater understanding of RPE physiology and pathophysiology, including the ability to study the blood-retinal barrier as well as other RPE functions such as phagocytosis of photoreceptor outer segments. This review describes some examples of such recent in vitro studies and how they might provide new insights into degenerative diseases like SFD. Thus far, most studies on SFD have been performed using ARPE-19 cells or other, less suitable, cell-types. Now, induced pluripotent stem cell (iPSC) technologies allow the possibility to non-invasively collect somatic cells, such as dermal fibroblast cells and reprogram those to produce iPSCs. Subsequent differentiation of iPSCs can generate patient-derived RPE cells that carry the same disease-associated variant as RPE cells in the eyes of the patient. Use of these patient-derived RPE cells in novel cell culture systems should increase our understanding of how SFD and similar macular dystrophies develop.
Collapse
|
19
|
Glycosylation of matrix metalloproteases and tissue inhibitors: present state, challenges and opportunities. Biochem J 2017; 473:1471-82. [PMID: 27234584 PMCID: PMC4888457 DOI: 10.1042/bj20151154] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/15/2016] [Indexed: 12/15/2022]
Abstract
Current knowledge about the glycosylation of matrix metalloproteinases (MMPs) and the inhibitors of metalloproteinases (TIMPs) is reviewed. Whereas structural and functional aspects of the glycobiology of many MMPs is unknown, research on MMP-9 and MMP-14 glycosylation reveals important functional implications, such as altered inhibitor binding and cellular localization. This, together with the fact that MMPs contain conserved and many potential attachment sites for N-linked and O-linked oligosaccharides, proves the need for further studies on MMP glycobiology. Matrix metalloproteases (MMPs) are crucial components of a complex and dynamic network of proteases. With a wide range of potential substrates, their production and activity are tightly controlled by a combination of signalling events, zymogen activation, post-translational modifications and extracellular inhibition. Slight imbalances may result in the initiation or progression of specific disease states, such as cancer and pathological inflammation. As glycosylation modifies the structures and functions of glycoproteins and many MMPs contain N- or O-linked oligosaccharides, we examine, compare and evaluate the evidence for whether glycosylation affects MMP catalytic activity and other functions. It is interesting that the catalytic sites of MMPs do not contain O-linked glycans, but instead possess a conserved N-linked glycosylation site. Both N- and O-linked oligosaccharides, attached to specific protein domains, endow these domains with novel functions such as the binding to lectins, cell-surface receptors and tissue inhibitors of metalloproteases (TIMPs). Validated glycobiological data on N- and O-linked oligosaccharides of gelatinase B/MMP-9 and on O-linked structures of membrane-type 1 MMP/MMP-14 indicate that in-depth research of other MMPs may yield important insights, e.g. about subcellular localizations and functions within macromolecular complexes.
Collapse
|
20
|
Tissue inhibitor of metalloproteinase-3 (TIMP3) promotes endothelial apoptosis via a caspase-independent mechanism. Apoptosis 2016; 20:523-34. [PMID: 25558000 DOI: 10.1007/s10495-014-1076-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tissue inhibitor of metalloproteinases-3 (TIMP3) is a tumor suppressor and a potent inhibitor of angiogenesis. TIMP3 exerts its anti-angiogenic effect via a direct interaction with vascular endothelial growth factor (VEGF) receptor-2 (KDR) and inhibition of proliferation, migration and tube formation of endothelial cells (ECs). TIMP3 has also been shown to induce apoptosis in some cancer cells and vascular smooth muscle cells via MMP inhibition and caspase-dependent mechanisms. In this study, we examined the molecular mechanisms of TIMP3-mediated apoptosis in endothelial cells. We have previously demonstrated that mice developed smaller tumors with decreased vascularity when injected with breast carcinoma cells overexpressing TIMP3, than with control breast carcinoma cells. TIMP3 overexpression resulted in increased apoptosis in human breast carcinoma (MDA-MB435) in vivo but not in vitro. However, TIMP3 could induce apoptosis in ECs in vitro. The apoptotic activity of TIMP3 in ECs appears to be independent of MMP inhibitory activity. Furthermore, the equivalent expression of functional TIMP3 promoted apoptosis and caspase activation in ECs expressing KDR (PAE/KDR), but not in ECs expressing PDGF beta-receptor (PAE/β-R). Surprisingly, the apoptotic activity of TIMP3 appears to be independent of caspases. TIMP3 inhibited matrix-induced focal adhesion kinase (FAK) tyrosine phosphorylation and association with paxillin and disrupted the incorporation of β3 integrin, FAK and paxillin into focal adhesion contacts on the matrix, which were not affected by caspase inhibitors. Thus, TIMP3 may induce apoptosis in ECs by triggering a caspase-independent cell death pathway and targeting a FAK-dependent survival pathway.
Collapse
|
21
|
Yan F, Jiao Y, Deng Y, Du X, Huang R, Wang Q, Chen W. Tissue inhibitor of metalloproteinase gene from pearl oyster Pinctada martensii participates in nacre formation. Biochem Biophys Res Commun 2014; 450:300-5. [PMID: 24942875 DOI: 10.1016/j.bbrc.2014.05.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 05/24/2014] [Indexed: 01/31/2023]
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are nature inhibitors of matrix metalloproteinases and play a vital role in the regulation of extracellular matrix turnover, tissue remodeling and bone formation. In this study, the molecular characterization of TIMP and its potential function in nacre formation was described in pearl oyster Pinctada martensii. The cDNA of TIMP gene in P. martensii (Pm-TIMP) was 901 bp long, containing a 5' untranslated region (UTR) of 51 bp, a 3' UTR of 169 bp, and an open reading fragment (ORF) of 681 bp encoding 226 amino acids with an estimated molecular mass of 23.37 kDa and a theoretical isoelectric point of 5.42; The predicted amino acid sequence had a signal peptide, 13 cysteine residues, a N-terminal domain and a C-terminal domain, similar to that from other species. Amino acid multiple alignment showed Pm-TIMP had the highest (41%) identity to that from Crassostrea gigas. Tissue expression analysis indicated Pm-TIMP was highly expressed in nacre formation related-tissues, including mantle and pearl sac. After decreasing Pm-TIMP gene expression by RNA interference (RNAi) technology in the mantle pallium, the inner nacreous layer of the shells showed a disordered growth. These results indicated that the obtained Pm-TIMP in this study participated in nacre formation.
Collapse
Affiliation(s)
- Fang Yan
- Fishery College, Guangdong Ocean University, 40 East Jiefang Road, Xiashan District, Zhanjiang City, Guangdong 524025, China
| | - Yu Jiao
- Fishery College, Guangdong Ocean University, 40 East Jiefang Road, Xiashan District, Zhanjiang City, Guangdong 524025, China.
| | - Yuewen Deng
- Fishery College, Guangdong Ocean University, 40 East Jiefang Road, Xiashan District, Zhanjiang City, Guangdong 524025, China.
| | - Xiaodong Du
- Fishery College, Guangdong Ocean University, 40 East Jiefang Road, Xiashan District, Zhanjiang City, Guangdong 524025, China
| | - Ronglian Huang
- Fishery College, Guangdong Ocean University, 40 East Jiefang Road, Xiashan District, Zhanjiang City, Guangdong 524025, China
| | - Qingheng Wang
- Fishery College, Guangdong Ocean University, 40 East Jiefang Road, Xiashan District, Zhanjiang City, Guangdong 524025, China
| | - Weiyao Chen
- Fishery College, Guangdong Ocean University, 40 East Jiefang Road, Xiashan District, Zhanjiang City, Guangdong 524025, China
| |
Collapse
|
22
|
Sandholm J, Tuomela J, Kauppila JH, Harris KW, Graves D, Selander KS. Hypoxia regulates Toll-like receptor-9 expression and invasive function in human brain cancer cells in vitro. Oncol Lett 2014; 8:266-274. [PMID: 24959259 PMCID: PMC4063648 DOI: 10.3892/ol.2014.2095] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 02/18/2014] [Indexed: 12/22/2022] Open
Abstract
Toll-like receptor-9 (TLR9) is a cellular DNA sensor of the innate immune system. TLR9 is widely expressed in a number of tumors, including brain cancer; however, little is known regarding its regulation and involvement in cancer pathophysiology. The present study demonstrated that hypoxia upregulates and downregulates TLR9 expression in human brain cancer cells in vitro, in a cell-specific manner. In addition, hypoxia-induced TLR9 upregulation was associated with hypoxia-induced invasion; however, such invasion was not detected in cells where hypoxia had suppressed TLR9 expression. Furthermore, suppression of TLR9 expression through TLR9 siRNA resulted in an upregulation of matrix metalloproteinase (MMP)-2, -9 and -13 and tissue inhibitor of matrix metalloproteinases-3 (TIMP-3) mRNA, and a decreased invasion of cells in normoxia, in a cell-specific manner. In cells where hypoxia induced TLR9 expression, TLR9 expression and invasion were reduced by TLR9 siRNA. The decreased invasion observed in hypoxia was associated with the decreased expression of the MMPs and a concomitant increase in TIMP-3 expression. In conclusion, hypoxia regulates the invasion of brain cancer cells in vitro in a TLR9-dependent manner, which is considered to be associated with a complex expression pattern of TLR9-regulated mediators and inhibitors of invasion.
Collapse
Affiliation(s)
- Jouko Sandholm
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Johanna Tuomela
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Joonas H Kauppila
- Department of Pathology, Oulu University Hospital, Oulu 90029, Finland ; Department of Surgery, Oulu University Hospital, Oulu 90029, Finland ; Department of Anatomy and Cell Biology, University of Oulu, Oulu 90570, Finland
| | - Kevin W Harris
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA ; Birmingham Veterans Affairs Medical Center, Birmingham, AL 35233, USA
| | - David Graves
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Katri S Selander
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
23
|
Functional characterization of tissue inhibitor of metalloproteinase-1 (TIMP-1) N- and C-terminal domains during Xenopus laevis development. ScientificWorldJournal 2014; 2014:467907. [PMID: 24616631 PMCID: PMC3925571 DOI: 10.1155/2014/467907] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/12/2013] [Indexed: 01/25/2023] Open
Abstract
Extracellular matrix (ECM) remodeling is essential for facilitating developmental processes. ECM remodeling, accomplished by matrix metalloproteinases (MMPs), is regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs). While the TIMP N-terminal domain is involved in inhibition of MMP activity, the C-terminal domain exhibits cell-signaling activity, which is TIMP and cell type dependent. We have previously examined the distinct roles of the Xenopus laevis TIMP-2 and -3 C-terminal domains during development and here examined the unique roles of TIMP-1 N- and C-terminal domains in early X. laevis embryos. mRNA microinjection was used to overexpress full-length TIMP-1 or its individual N- or C-terminal domains in embryos. Full-length and C-terminal TIMP-1 resulted in increased lethality compared to N-terminal TIMP-1. Overexpression of C-terminal TIMP-1 resulted in significant decreases in mRNA levels of proteolytic genes including TIMP-2, RECK, MMP-2, and MMP-9, corresponding to decreases in MMP-2 and -9 protein levels, as well as decreased MMP-2 and MMP-9 activities. These trends were not observed with the N-terminus. Our research suggests that the individual domains of TIMP-1 are capable of playing distinct roles in regulating the ECM proteolytic network during development and that the unique functions of these domains are moderated in the endogenous full-length TIMP-1 molecule.
Collapse
|
24
|
Chen YY, Brown NJ, Jones R, Lewis CE, Mujamammi AH, Muthana M, Seed MP, Barker MD. A peptide derived from TIMP-3 inhibits multiple angiogenic growth factor receptors and tumour growth and inflammatory arthritis in mice. Angiogenesis 2013; 17:207-19. [PMID: 24129822 PMCID: PMC3898417 DOI: 10.1007/s10456-013-9389-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 09/23/2013] [Indexed: 11/30/2022]
Abstract
The binding of vascular endothelial growth factor (VEGF) to VEGF receptor-2 (VEGFR-2) on the surface of vascular endothelial cells stimulates many steps in the angiogenic pathway. Inhibition of this interaction is proving of value in moderating the neovascularization accompanying age-related macular degeneration and in the treatment of cancer. Tissue inhibitor of metalloproteinases-3 (TIMP-3) has been shown to be a natural VEGFR-2 specific antagonist-an activity that is independent of its ability to inhibit metalloproteinases. In this investigation we localize this activity to the C-terminal domain of the TIMP-3 molecule and characterize a short peptide, corresponding to part of this domain, that not only inhibits all three VEGF-family receptors, but also fibroblast growth factor and platelet-derived growth factor receptors. This multiple-receptor inhibition may explain why the peptide was also seen to be a powerful inhibitor of tumour growth and also a partial inhibitor of arthritic joint inflammation in vivo.
Collapse
Affiliation(s)
- Yung-Yi Chen
- Department of Oncology, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Cantacessi C, Hofmann A, Pickering D, Navarro S, Mitreva M, Loukas A. TIMPs of parasitic helminths - a large-scale analysis of high-throughput sequence datasets. Parasit Vectors 2013; 6:156. [PMID: 23721526 PMCID: PMC3679795 DOI: 10.1186/1756-3305-6-156] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 05/28/2013] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Tissue inhibitors of metalloproteases (TIMPs) are a multifunctional family of proteins that orchestrate extracellular matrix turnover, tissue remodelling and other cellular processes. In parasitic helminths, such as hookworms, TIMPs have been proposed to play key roles in the host-parasite interplay, including invasion of and establishment in the vertebrate animal hosts. Currently, knowledge of helminth TIMPs is limited to a small number of studies on canine hookworms, whereas no information is available on the occurrence of TIMPs in other parasitic helminths causing neglected diseases. METHODS In the present study, we conducted a large-scale investigation of TIMP proteins of a range of neglected human parasites including the hookworm Necator americanus, the roundworm Ascaris suum, the liver flukes Clonorchis sinensis and Opisthorchis viverrini, as well as the schistosome blood flukes. This entailed mining available transcriptomic and/or genomic sequence datasets for the presence of homologues of known TIMPs, predicting secondary structures of defined protein sequences, systematic phylogenetic analyses and assessment of differential expression of genes encoding putative TIMPs in the developmental stages of A. suum, N. americanus and Schistosoma haematobium which infect the mammalian hosts. RESULTS A total of 15 protein sequences with high homology to known eukaryotic TIMPs were predicted from the complement of sequence data available for parasitic helminths and subjected to in-depth bioinformatic analyses. CONCLUSIONS Supported by the availability of gene manipulation technologies such as RNA interference and/or transgenesis, this work provides a basis for future functional explorations of helminth TIMPs and, in particular, of their role/s in fundamental biological pathways linked to long-term establishment in the vertebrate hosts, with a view towards the development of novel approaches for the control of neglected helminthiases.
Collapse
Affiliation(s)
- Cinzia Cantacessi
- Center for Biodiscovery and Molecular Development of Therapeutics, Queensland Tropical Health Alliance, James Cook University, Cairns, Queensland, Australia
| | - Andreas Hofmann
- Structural Chemistry Program, Eskitis Institute, Griffith University, Brisbane, Queensland, Australia
| | - Darren Pickering
- Center for Biodiscovery and Molecular Development of Therapeutics, Queensland Tropical Health Alliance, James Cook University, Cairns, Queensland, Australia
| | - Severine Navarro
- Center for Biodiscovery and Molecular Development of Therapeutics, Queensland Tropical Health Alliance, James Cook University, Cairns, Queensland, Australia
| | - Makedonka Mitreva
- The Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Alex Loukas
- Center for Biodiscovery and Molecular Development of Therapeutics, Queensland Tropical Health Alliance, James Cook University, Cairns, Queensland, Australia
| |
Collapse
|
26
|
Moore L, Fan D, Basu R, Kandalam V, Kassiri Z. Tissue inhibitor of metalloproteinases (TIMPs) in heart failure. Heart Fail Rev 2013; 17:693-706. [PMID: 21717224 DOI: 10.1007/s10741-011-9266-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Remodeling of the myocardium and the extracellular matrix (ECM) occurs in heart failure irrespective of its initial cause. The ECM serves as a scaffold to provide structural support as well as housing a number of cytokines and growth factors. Hence, disruption of the ECM will result in structural instability as well as activation of a number of signaling pathways that could lead to fibrosis, hypertrophy, and apoptosis. The ECM is a dynamic entity that undergoes constant turnover, and the integrity of its network structure is maintained by a balance in the function of matrix metalloproteinases (MMPs) and their inhibitors, the tissue inhibitor of metalloproteinases (TIMPs). In heart disease, levels of MMPs and TIMPs are altered resulting in an imbalance between these two families of proteins. In this review, we will discuss the structure, function, and regulation of TIMPs, their MMP-independent functions, and their role in heart failure. We will review the knowledge that we have gained from clinical studies and animal models on the contribution of TIMPs in the development and progression of heart disease. We will further discuss how ECM molecules and regulatory genes can be used as biomarkers of disease in heart failure patients.
Collapse
Affiliation(s)
- Linn Moore
- Department of Physiology, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Heritage Medical Research Centre, Edmonton, AB, Canada
| | | | | | | | | |
Collapse
|
27
|
Qi JH, Ebrahem Q, Ali M, Cutler A, Bell B, Prayson N, Sears J, Knauper V, Murphy G, Anand-Apte B. Tissue inhibitor of metalloproteinases-3 peptides inhibit angiogenesis and choroidal neovascularization in mice. PLoS One 2013; 8:e55667. [PMID: 23469166 PMCID: PMC3585964 DOI: 10.1371/journal.pone.0055667] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/28/2012] [Indexed: 01/08/2023] Open
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) while originally characterized as inhibitors of matrix metalloproteinases (MMPs) have recently been shown to have a wide range of functions that are independent of their MMP inhibitory properties. Tissue inhibitor of metalloproteinases-3 (TIMP-3) is a potent inhibitor of VEGF-mediated angiogenesis and neovascularization through its ability to block the binding of VEGF to its receptor VEGFR-2. To identify and characterize the anti-angiogenic domain of TIMP-3, structure function analyses and synthetic peptide studies were performed using VEGF-mediated receptor binding, signaling, migration and proliferation. In addition, the ability of TIMP-3 peptides to inhibit CNV in a mouse model was evaluated. We demonstrate that the anti-angiogenic property resides in the COOH-terminal domain of TIMP-3 protein which can block the binding of VEGF specifically to its receptor VEGFR-2, but not to VEGFR-1 similar to the full-length wild-type protein. Synthetic peptides corresponding to putative loop 6 and tail region of TIMP-3 have anti-angiogenic properties as determined by inhibition of VEGF binding to VEGFR-2, VEGF-induced phosphorylation of VEGFR-2 and downstream signaling pathways as well as endothelial cell proliferation and migration in response to VEGF. In addition, we show that intravitreal administration of TIMP-3 peptide could inhibit the size of laser-induced choroidal neovascularization lesions in mice. Thus, we have identified TIMP-3 peptides to be efficient inhibitors of angiogenesis and have a potential to be used therapeutically in diseases with increased neovascularization.
Collapse
Affiliation(s)
- Jian Hua Qi
- Department of Ophthalmology, Cole Eye Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Quteba Ebrahem
- Department of Ophthalmology, Cole Eye Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Mariya Ali
- Department of Ophthalmology, Cole Eye Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Alecia Cutler
- Department of Ophthalmology, Cole Eye Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, Ohio, United States of America
| | | | - Nicholas Prayson
- Department of Ophthalmology, Cole Eye Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Jonathan Sears
- Department of Ophthalmology, Cole Eye Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Vera Knauper
- Metalloproteinase Research Group, Matrix Biology and Tissue Repair Research Unit, Dental School, Cardiff University, Heath Park, Cardiff, Wales, United Kingdom
| | - Gillian Murphy
- Cancer Research United Kingdom Cambridge Research Institute, The Li Ka Shing Centre, Robinson Way, Cambridge, United Kingdom
| | - Bela Anand-Apte
- Department of Ophthalmology, Cole Eye Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, Ohio, United States of America
- Dept. of Molecular Medicine, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
28
|
Xiang Y, Zhang X, Li Q, Xu J, Zhou X, Wang T, Xing Q, Liu Y, Wang L, He L, Zhao X. Promoter hypomethylation of TIMP3 is associated with pre-eclampsia in a Chinese population. Mol Hum Reprod 2012; 19:153-9. [PMID: 23172037 DOI: 10.1093/molehr/gas054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A study by Yuen RK, Penaherrera MS, von Dadelszen P, McFadden DE, Robinson WP. DNA methylation profiling of human placentas reveals promoter hypomethylation of multiple genes in early-onset preeclampsia. Eur J Hum Genet 2010;18:1006-1012 based on a Canadian population found the tissue inhibitor of the metalloproteinase 3 (TIMP3) gene to be hypomethylated in pre-eclampsia (PE) placentas and to be a potential prenatal marker for early onset PE. To further explore the role of TIMP3 in PE and to investigate whether the TIMP3 promoter shows the same methylation pattern in the Han Chinese population, we analyzed a complete methylation assay of TIMP3 including the promoter region studied in the Canadian report and the neighboring CpG island in placentas (cases n = 41, controls n = 22) maternal peripheral blood (cases n = 3; controls n = 6) and umbilical cord blood (cases n = 7; controls n = 8) using MassArray EpiTyper (Sequenom, San Diego, CA, USA). Our results confirmed the finding of aberrant TIMP3 promoter methylation in PE placentas (mean = 0.405) compared with those in controls (mean = 0.534, P = 9.40 × 10(-7)). A tissue-specific methylation pattern between placentas (mean = 0.459) and bloods (mean = 0.961, P = 6.91 × 10(-13)) was also demonstrated in our clinical samples. Furthermore, a nearly 2-fold increase in TIMP3 expression for the hypomethylated promoter was found in PE placentas (P = 0.007), pointing to a negative relationship between TIMP3 methylation and the expression (R = -0.758, P = 0.029). In conclusion, we replicated the findings of Yuen et al. in our Han Chinese-based study, confirming that TIMP3 is likely to be involved in the etiology of PE and that hypomethylated and placenta-specific TIMP3 may be a potential marker for early diagnosis of PE in maternal plasma.
Collapse
Affiliation(s)
- Yuqian Xiang
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wang Q, Bao Y, Huo L, Gu H, Lin Z. A novel tissue inhibitor of metalloproteinase in blood clam Tegillarca granosa: molecular cloning, tissue distribution and expression analysis. FISH & SHELLFISH IMMUNOLOGY 2012; 33:645-651. [PMID: 22771965 DOI: 10.1016/j.fsi.2012.06.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 06/01/2012] [Accepted: 06/26/2012] [Indexed: 06/01/2023]
Abstract
Tissue inhibitor of metalloproteinases (TIMPs) were originally characterized as inhibitors of matrix metalloproteinases (MMPs), but their range of activities has been found to be broader as it includes the inhibition of several of the MMPs, etc. The cDNA encoding TIMP-4-like gene from blood clam Tegillarca granosa (designated as Tg-TIMP-4-like) which is the first tissue inhibitor of metalloproteinase identified in blood clams, was cloned and characterized. It was of 1164 bp, and an open reading frame (ORF) of 666 bp encoding a putative protein of 222 amino acids. The predicted amino acid sequence comprised all recognized functional domains found in other TIMP homologues and showed the highest (30.56%) identity to the TIMP-1.3 from Crassostrea gigas. Several highly conserved motifs including several TIMP signatures, amino acid residue Cys³⁰ responsible for coordinating the metal ions, the Cys-X-Cys motif and the putative NTR (netrin) domain were almost completely conserved in the deduced amino acid of Tg-TIMP-4 like, which indicated that Tg-TIMP-4-like should be a member of the TIMP family. The mRNA expression of Tg-TIMP-4-like in the tissues of mantle, adductor muscle, foot, gill, hemocyte and hepatopancreas was examined by quantitative real-time PCR (qT-PCR) and mRNA transcripts of Tg-TIMP-4-like were mainly detected in hemocyte, and weakly detected in the other tissues. We also observed that Tg-TIMP-4 like mRNA accumulated significantly during Vibrio parahaemolyticus, Peptidogylcan (PGN) and Lipopolysaccharide (LPS) challenge, whereas the timing and quantitative differences of mRNA expression against different challenge indicated that Tg-TIMP-4-like may play a pivotal role in mollusc defense mechanisms.
Collapse
Affiliation(s)
- Qing Wang
- College of Biological & Environmental Sciences, Zhejiang Wanli University, 8 South Qianhu Road, Ningbo, Zhejiang 315100, PR China
| | | | | | | | | |
Collapse
|
30
|
Nieuwesteeg MA, Walsh LA, Fox MA, Damjanovski S. Domain specific overexpression of TIMP-2 and TIMP-3 reveals MMP-independent functions of TIMPs during Xenopus laevis development. Biochem Cell Biol 2012; 90:585-95. [PMID: 22574808 DOI: 10.1139/o2012-014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Extracellular matrix remodelling mediates many processes including cell migration and differentiation and is regulated through the enzymatic action of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). TIMPs are secreted proteins, consisting of structurally and functionally distinct N- and C-terminal domains. TIMP N-terminal domains inhibit MMP activity, whereas their C-terminal domains may have cell signalling activity. The in vivo role of TIMP N- and C-terminal domains in regulating developmental events has not previously been demonstrated. Here we investigated the roles of TIMP-2 and TIMP-3 N- and C-terminal domains in Xenopus laevis embryos. We show that overexpression of TIMP-2 N- and C-terminal domains results in severe developmental defects and death, as well as unique changes in MMP-2 and -9 expression, indicating that the individual domains may regulate MMPs through distinct mechanisms. In contrast, we show that only the N-terminal, but not the C-terminal domain of TIMP-3, results in developmental defects.
Collapse
Affiliation(s)
- M A Nieuwesteeg
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | | | | | | |
Collapse
|
31
|
Abstract
AbstractMatrix metalloproteinases play a crucial role in the remodelling of the extracellular matrix through direct degradation of its structural proteins and control of extracellular signalling. The most common cause of ischemic brain damage is an atherothrombotic lesion in the supplying arteries. The progress of the atherosclerotic plaque development and the related thrombotic complications are mediated in part by matrix metalloproteinases. In addition to their role in the underlying disease, various members of this protease family are upregulated in the acute phase of ischemic brain damage as well as in the post-ischemic brain recovery following stroke. This review summarizes the current understanding of the matrix metalloproteinase-related molecular events at three stages of the ischemic cerebrovascular disease (in the atherosclerotic plaque, in the neurovascular unit of the brain and in the regenerating brain tissue).
Collapse
|
32
|
SFRPs act as negative modulators of ADAM10 to regulate retinal neurogenesis. Nat Neurosci 2011; 14:562-9. [PMID: 21478884 DOI: 10.1038/nn.2794] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 03/02/2011] [Indexed: 12/17/2022]
Abstract
It is well established that retinal neurogenesis in mouse embryos requires the activation of Notch signaling, but is independent of the Wnt signaling pathway. We found that genetic inactivation of Sfrp1 and Sfrp2, two postulated Wnt antagonists, perturbs retinal neurogenesis. In retinas from Sfrp1(-/-); Sfrp2(-/-) embryos, Notch signaling was transiently upregulated because Sfrps bind ADAM10 metalloprotease and downregulate its activity, an important step in Notch activation. The proteolysis of other ADAM10 substrates, including APP, was consistently altered in Sfrp mutants, whereas pharmacological inhibition of ADAM10 partially rescued the Sfrp1(-/-); Sfrp2(-/-) retinal phenotype. Conversely, ectopic Sfrp1 expression in the Drosophila wing imaginal disc prevented the expression of Notch targets, and this was restored by the coexpression of Kuzbanian, the Drosophila ADAM10 homolog. Together, these data indicate that Sfrps inhibit the ADAM10 metalloprotease, which might have important implications in pathological events, including cancer and Alzheimer's disease.
Collapse
|
33
|
Mellough CB, Steel DHW, Lako M. Genetic basis of inherited macular dystrophies and implications for stem cell therapy. Stem Cells 2009; 27:2833-45. [PMID: 19551904 PMCID: PMC2962903 DOI: 10.1002/stem.159] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Accepted: 06/11/2009] [Indexed: 12/25/2022]
Abstract
Untreatable hereditary macular dystrophy (HMD) presents a major burden to society in terms of the resulting patient disability and the cost to the healthcare provision system. HMD results in central vision loss in humans sufficiently severe for blind registration, and key issues in the development of therapeutic strategies to target these conditions are greater understanding of the causes of photoreceptor loss and the development of restorative procedures. More effective and precise analytical techniques coupled to the development of transgenic models of disease have led to a prolific growth in the identification and our understanding of the genetic mutations that underly HMD. Recent successes in driving differentiation of pluripotent cells towards specific somatic lineages have led to the development of more efficient protocols that can yield enriched populations of a desired phenotype. Retinal pigmented epithelial cells and photoreceptors derived from these are some of the most promising cells that may soon be used in the treatment of specific HMD, especially since rapid developments in the field of induced pluripotency have now set the stage for the production of patient-derived stem cells that overcome the ethical and methodological issues surrounding the use of embryonic derivatives. In this review we highlight a selection of HMD which appear suitable candidates for combinatorial restorative therapy, focusing specifically on where those photoreceptor loss occurs. This technology, along with increased genetic screening, opens up an entirely new pathway to restore vision in patients affected by HMD.
Collapse
Affiliation(s)
- Carla B Mellough
- Institute of Human Genetics andInternational Centre for LifeNewcastle Upon Tyne, United Kingdom
| | - David HW Steel
- Sunderland Eye InfirmaryQueen Alexandra Road, Sunderland, Tyne and Wear, United Kingdom
| | - Majlinda Lako
- North East Stem Cell Institute, Newcastle University, International Centre for LifeNewcastle Upon Tyne, United Kingdom
| |
Collapse
|
34
|
Troeberg L, Fushimi K, Scilabra SD, Nakamura H, Dive V, Thøgersen IB, Enghild JJ, Nagase H. The C-terminal domains of ADAMTS-4 and ADAMTS-5 promote association with N-TIMP-3. Matrix Biol 2009; 28:463-9. [PMID: 19643179 PMCID: PMC2835468 DOI: 10.1016/j.matbio.2009.07.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 07/20/2009] [Accepted: 07/20/2009] [Indexed: 10/20/2022]
Abstract
We investigated whether the affinity of tissue inhibitor of metalloproteinases (TIMP)-3 for adamalysins with thrombospondin motifs (ADAMTS)-4 and ADAMTS-5 is affected by the non-catalytic ancillary domains of the enzymes. For this purpose, we first established a novel method of purifying recombinant FLAG-tagged TIMP-3 and its inhibitory N-terminal domain (N-TIMP-3) by treating transfected HEK293 cells with sodium chlorate to prevent heparan sulfate proteoglycan-mediated TIMP-3 internalization. TIMP-3 and N-TIMP-3 affinity for selected matrix metalloproteinases and forms of ADAMTS-4 and -5 lacking sequential C-terminal domains was determined. TIMP-3 and N-TIMP-3 displayed similar affinity for various matrix metalloproteinases as has been previously reported for E. coli-expressed N-TIMP-3. ADAMTS-4 and -5 were inhibited more strongly by N-TIMP-3 than by full-length TIMP-3. The C-terminal domains of the enzymes enhanced interaction with N-TIMP-3 and to a lesser extent with the full-length inhibitor. For example, N-TIMP-3 had 7.5-fold better K(i) value for full-length ADAMTS-5 than for the catalytic and disintegrin domain alone. We propose that the C-terminal domains of the enzymes affect the structure around the active site, favouring interaction with TIMP-3.
Collapse
Affiliation(s)
- Linda Troeberg
- Kennedy Institute of Rheumatology, Imperial College London, 65 Aspenlea Road, London, W6 8LH, UK
| | - Kazunari Fushimi
- Kennedy Institute of Rheumatology, Imperial College London, 65 Aspenlea Road, London, W6 8LH, UK
| | - Simone D. Scilabra
- Kennedy Institute of Rheumatology, Imperial College London, 65 Aspenlea Road, London, W6 8LH, UK
| | - Hiroyuki Nakamura
- Kennedy Institute of Rheumatology, Imperial College London, 65 Aspenlea Road, London, W6 8LH, UK
| | - Vincent Dive
- CEA, iBiTecS, Service d'Ingéníerie Moleculaires des Protéines, Gif Sur Yvette, F-91191, France
| | - Ida B. Thøgersen
- Department of Molecular Biology and Interdisciplinary Nanoscience Centre (iNANO), University of Aarhus, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Jan J. Enghild
- Department of Molecular Biology and Interdisciplinary Nanoscience Centre (iNANO), University of Aarhus, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Hideaki Nagase
- Kennedy Institute of Rheumatology, Imperial College London, 65 Aspenlea Road, London, W6 8LH, UK
| |
Collapse
|
35
|
Deshmukh HS, McLachlan A, Atkinson JJ, Hardie WD, Korfhagen TR, Dietsch M, Liu Y, Di PYP, Wesselkamper SC, Borchers MT, Leikauf GD. Matrix metalloproteinase-14 mediates a phenotypic shift in the airways to increase mucin production. Am J Respir Crit Care Med 2009; 180:834-45. [PMID: 19661247 DOI: 10.1164/rccm.200903-0328oc] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Induced mainly by cigarette smoking, chronic obstructive pulmonary disease (COPD) is a global public health problem characterized by progressive difficulty in breathing and increased mucin production. Previously, we reported that acrolein levels found in COPD sputum could activate matrix metalloproteinase-9 (MMP9). OBJECTIVES To determine whether acrolein increases expression and activity of MMP14, a critical membrane-bound endopeptidase that can initial a MMP-activation cascade. METHODS MMP14 activity and adduct formation were measured following direct acrolein treatment. MMP14 expression and activity was measured in human airway epithelial cells. MMP14 immunohistochemistry was performed with COPD tissue, and in acrolein- or tobacco-exposed mice. MEASUREMENTS AND MAIN RESULTS In a cell-free system, acrolein, in concentrations equal to those found in COPD sputum, directly adducted cysteine 319 in the MMP14 hemopexin-like domain and activated MMP14. In cells, acrolein increased MMP14 activity, which was inhibited by a proprotein convertase inhibitor, hexa-d-arginine. In the airway epithelium of COPD subjects, immunoreactive MMP14 protein increased. In mouse lung, acrolein or tobacco smoke increased lung MMP14 activity and protein. In cells, acrolein-induced MMP14 transcripts were inhibited by an epidermal growth factor receptor (EGFR) neutralizing antibody, EGFR kinase inhibitor, metalloproteinase inhibitor, or mitogen-activated protein kinase (MAPK) 3/2 or MAPK8 inhibitors, but not a MAPK14 inhibitor. Decreasing the MMP14 protein and activity in vitro by small interfering (si)RNA to MMP14 diminished the acrolein-induced MUC5AC transcripts. In acrolein-exposed mice or transgenic mice with lung-specific transforming growth factor-alpha (an EGFR ligand) expression, lung MMP14 and MUC5AC levels increased and these effects were inhibited by a EGFR inhibitor, erlotinib. CONCLUSIONS Taken together, these findings implicate acrolein-induced MMP14 expression and activity in mucin production in COPD.
Collapse
Affiliation(s)
- Hitesh S Deshmukh
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Qi JH, Dai G, Luthert P, Chaurasia S, Hollyfield J, Weber BHF, Stöhr H, Anand-Apte B. S156C mutation in tissue inhibitor of metalloproteinases-3 induces increased angiogenesis. J Biol Chem 2009; 284:19927-36. [PMID: 19478078 DOI: 10.1074/jbc.m109.013763] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tissue Inhibitor of metalloproteinases-3 (TIMP-3) is a potent matrix-bound angiogenesis inhibitor. Mutations in TIMP-3 cause Sorsby Fundus Dystrophy, a dominant inherited, early onset macular degenerative disease, with choroidal neovascularization causing a loss of vision in the majority of patients. Here we report that expression of S156C TIMP-3 mutation in endothelial cells results in an abnormal localization of the protein, increased glycosylation, decreased matrix metalloproteinase inhibitory activity, and increased vascular endothelial growth factor (VEGF) binding with a consequent increase in VEGF-dependent migration and tube formation. These enhanced signaling events appear to be mediated as a consequence of a post-transcriptionally regulated increase in the expression of membrane-associated VEGFR-2 in endothelial cells of Timp-3(156/156) mutant mice as well as in human Sorsby fundus dystrophy eyes. Understanding the mechanism(s) by which mutant TIMP-3 can induce abnormal neovascularization provides important insight into the pathophysiology of a number of diseases with increased angiogenesis.
Collapse
Affiliation(s)
- Jian Hua Qi
- Department of Opthalmology, Cole Eye Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Wisniewska M, Goettig P, Maskos K, Belouski E, Winters D, Hecht R, Black R, Bode W. Structural determinants of the ADAM inhibition by TIMP-3: crystal structure of the TACE-N-TIMP-3 complex. J Mol Biol 2008; 381:1307-19. [PMID: 18638486 DOI: 10.1016/j.jmb.2008.06.088] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2008] [Revised: 06/20/2008] [Accepted: 06/30/2008] [Indexed: 10/21/2022]
Abstract
TIMP-3 (tissue inhibitor of metalloproteinases 3) is unique among the TIMP inhibitors, in that it effectively inhibits the TNF-alpha converting enzyme (TACE). In order to understand this selective capability of inhibition, we crystallized the complex formed by the catalytic domain of recombinant human TACE and the N-terminal domain of TIMP-3 (N-TIMP-3), and determined its molecular structure with X-ray data to 2.3 A resolution. The structure reveals that TIMP-3 exhibits a fold similar to those of TIMP-1 and TIMP-2, and interacts through its functional binding edge, which consists of the N-terminal segment and other loops, with the active-site cleft of TACE in a manner similar to that of matrix metalloproteinases (MMPs). Therefore, the mechanism of TIMP-3 binding toward TACE is not fundamentally different from that previously elucidated for the MMPs. The Phe34 phenyl side chain situated at the tip of the relatively short sA-sB loop of TIMP-3 extends into a unique hydrophobic groove of the TACE surface, and two Leu residues in the adjacent sC-connector and sE-sF loops are tightly packed in the interface allowing favourable interactions, in agreement with predictions obtained by systematic mutations by Gillian Murphy's group. The combination of favourable functional epitopes together with a considerable flexibility renders TIMP-3 an efficient TACE inhibitor. This structure might provide means to design more efficient TIMP inhibitors of TACE.
Collapse
Affiliation(s)
- Magdalena Wisniewska
- Max-Planck-Institut für Biochemie, Proteinase Research Group, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Fogarasi M, Janssen A, Weber BHF, Stöhr H. Molecular dissection of TIMP3 mutation S156C associated with Sorsby fundus dystrophy. Matrix Biol 2008; 27:381-92. [PMID: 18295466 DOI: 10.1016/j.matbio.2008.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 12/20/2007] [Accepted: 01/22/2008] [Indexed: 01/09/2023]
Abstract
Sorsby fundus dystrophy (SFD) is an autosomal dominant macular degeneration of late onset. A key feature of the disease is the thickening of Bruch's membrane, an ECM structure located between the RPE and the choroid. SFD is caused by mutations in the gene encoding the ECM-associated tissue inhibitor of metalloproteases-3 (TIMP3). We have recently generated two Timp3 gene-targeted mouse lines, one deficient for the murine gene (Timp3-/-) and one carrying an SFD-related S156C mutation. Based on extracts and cell cultures derived from tissues of these animals we now evaluated TIMP3 functionality and its contribution to SFD. We show that the activity levels of TIMP3 target proteases including TACE, ADAMTS4/5 and aggrecan-cleaving MMPs are similar in Timp3S156/+ and Timp3S156C/S156C mice when compared to controls. In Timp3-/- mice, a significant enhancement of enzyme activity was observed for TACE but not for ADAMTS4/5 and MMPs indicating a compensatory effect of other inhibitors regulating the latter two groups of proteases. Fibrin bead assays show that angiogenesis in Timp3S156/+ and Timp3S156C/S156C mice is not altered whereas increased formation of capillary tubes was observed in Timp3-/- animals over controls. Rescue experiments using recombinant proteins demonstrate that the inhibitory activities of TIMP3 towards TACE and aggrecan-cleaving MMPs as well as the anti-angiogenic properties of TIMP3 are not impaired by SFD mutation S156C. We finally demonstrate that wild-type and S156C-TIMP3 proteins block the binding of VEGF to its receptor VEGFR2 to a similar extent. Taken together, this study shows that S156C-TIMP3 retains its known functional properties suggesting that causes other than an imbalance in protease or angiogenic activities represent the primary molecular defect underlying SFD.
Collapse
Affiliation(s)
- Marton Fogarasi
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, D-93053 Regensburg, Germany
| | | | | | | |
Collapse
|
39
|
Liu Y, Fu L, Chen DG, Deeb SS. Identification of novel retinal target genes of thyroid hormone in the human WERI cells by expression microarray analysis. Vision Res 2007; 47:2314-26. [PMID: 17655910 PMCID: PMC2932699 DOI: 10.1016/j.visres.2007.04.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 04/04/2007] [Accepted: 04/12/2007] [Indexed: 11/29/2022]
Abstract
Using the human WERI-Rb1 cell line as a model system, we performed a genome-wide search for retinal target genes of thyroid hormone (TH) via expression microarray analysis followed by quantitative real-time RT-PCR verification. We identified 12 novel retinal targets of TH, including 10 up-regulated genes (OPN1MW, OPN1LW, TIMP3, RP1L1, GNGT2, CRX, ARR3, GCAP1, IMPDH1, and PDE6C) and 2 down-regulated genes (GNGT1 and GNB3). In addition, we found a number of novel TH-targets that are not currently known to be retinal genes. This is the first report of human retinal targets regulated by thyroid hormone.
Collapse
Affiliation(s)
- Yan Liu
- Division of Medical Genetics, Departments of Medicine and Genome Sciences, University of Washington, Box 357720, Seattle, WA 98195-7720, USA.
| | | | | | | |
Collapse
|
40
|
Majid MA, Smith VA, Newby AC, Dick AD. Matrix bound SFD mutant TIMP-3 is more stable than wild type TIMP-3. Br J Ophthalmol 2007; 91:1073-6. [PMID: 17383996 PMCID: PMC1954801 DOI: 10.1136/bjo.2006.113225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Sorsby's fundus dystrophy (SFD) is a degenerative retinopathy characterised by accumulation of mutant TIMP-3 protein in Bruch's membrane. AIM To compare the stability of matrix bound SFD mutant TIMP-3s with wild type TIMP-3. METHODS COS-7 cells were transfected with plasmids containing wild type, Ser 181, Gly-167, Ser-156, and Tyr-168 TIMP-3 cDNA. The cells and their matrices were subsequently harvested and homogenised. After measuring the bound wild type and SFD mutant TIMP-3 concentrations by ELISA, aliquots of the homogenates were heated to 100 degrees C. The rates of denaturation of the TIMP proteins at this temperature were monitored by reverse zymography. RESULTS Over a period of 24 h at 100 degrees C the biological activity of both wild type and SFD mutant TIMP-3 was lost. Over a period of 6 h at this temperature the biological activity of the SFD mutant TIMP-3s was fully retained whereas that of the wild type TIMP-3 was lost. CONCLUSION Matrix bound SFD mutant TIMP-3s are thermodynamically more stable than wild type. This may explain why SFD starts earlier in life than age related macular degeneration.
Collapse
|
41
|
Lee MH, Atkinson S, Murphy G. Identification of the extracellular matrix (ECM) binding motifs of tissue inhibitor of metalloproteinases (TIMP)-3 and effective transfer to TIMP-1. J Biol Chem 2007; 282:6887-98. [PMID: 17202148 DOI: 10.1074/jbc.m610490200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tissue inhibitor of metalloproteinases (TIMPs) are the endogenous inhibitors of the zinc-dependent endopeptidases of the matrix metalloproteinase families. There are four mammalian TIMPs (TIMP-1 to -4) but only TIMP-3 is sequestered to the extracellular matrix (ECM). The molecular basis for the TIMP-3:ECM association has never been fully investigated until now. In this report, we identify the unique amino acid configuration that constitutes the basis of the ECM binding motif in TIMP-3. By systematically exchanging the subdomains of the TIMPs and exhaustive mutation of TIMP-3, we have identified the surface residues directly responsible for ECM association. Contrary to the accepted view, we have found that TIMP-3 interacts with the ECM via both its N- and C-terminal domains. The amino acids involved in ECM binding are all basic in nature: Lys-26, Lys-27, Lys-30, Lys-76 of the N-terminal domain and Arg-163, Lys-165 of the C-terminal domain. Replacement of these residues with glutamate (E) and glutamine (Q) (K26/27/30/76E + R163/K165Q) resulted in a soluble TIMP-3 devoid of ECM-adhering ability. Using the ECM binding motif derived from TIMP-3, we have also created a TIMP-1 mutant (K26/27/30 + K76 transplant) capable of ECM association. This is the first instance of TIMPs being intentionally rendered soluble or ECM-bound. The ability to prepare TIMPs in soluble or ECM-bound forms also opens new avenues for future TIMP research.
Collapse
Affiliation(s)
- Meng-Huee Lee
- Department of Oncology, Cancer Research UK Cambridge Research Institute, Cambridge University, Cambridge CB2 0RE, United Kingdom
| | | | | |
Collapse
|
42
|
Saunders WB, Bohnsack BL, Faske JB, Anthis NJ, Bayless KJ, Hirschi KK, Davis GE. Coregulation of vascular tube stabilization by endothelial cell TIMP-2 and pericyte TIMP-3. ACTA ACUST UNITED AC 2006; 175:179-91. [PMID: 17030988 PMCID: PMC2064509 DOI: 10.1083/jcb.200603176] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The endothelial cell (EC)–derived tissue inhibitor of metalloproteinase-2 (TIMP-2) and pericyte-derived TIMP-3 are shown to coregulate human capillary tube stabilization following EC–pericyte interactions through a combined ability to block EC tube morphogenesis and regression in three-dimensional collagen matrices. EC–pericyte interactions strongly induce TIMP-3 expression by pericytes, whereas ECs produce TIMP-2 in EC–pericyte cocultures. Using small interfering RNA technology, the suppression of EC TIMP-2 and pericyte TIMP-3 expression leads to capillary tube regression in these cocultures in a matrix metalloproteinase-1 (MMP-1)–, MMP-10–, and ADAM-15 (a disintegrin and metalloproteinase-15)–dependent manner. Furthermore, we show that EC tube morphogenesis (lumen formation and invasion) is primarily controlled by the TIMP-2 and -3 target membrane type (MT) 1 MMP. Additional targets of these inhibitors include MT2-MMP and ADAM-15, which also regulate EC invasion. Mutagenesis experiments reveal that TIMP-3 requires its proteinase inhibitory function to induce tube stabilization. Overall, these data reveal a novel role for both TIMP-2 and -3 in the pericyte-induced stabilization of newly formed vascular networks that are predisposed to undergo regression and reveal specific molecular targets of the inhibitors regulating these events.
Collapse
Affiliation(s)
- W Brian Saunders
- Department of Pathology and Laboratory Medicine, Texas A&M University System Health Science Center, College Station, TX 77843, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Lin RJ, Blumenkranz MS, Binkley J, Wu K, Vollrath D. A novel His158Arg mutation in TIMP3 causes a late-onset form of Sorsby fundus dystrophy. Am J Ophthalmol 2006; 142:839-48. [PMID: 16989765 DOI: 10.1016/j.ajo.2006.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 05/27/2006] [Accepted: 06/01/2006] [Indexed: 10/24/2022]
Abstract
PURPOSE To describe the phenotype and genotype of a family with suspected Sorsby fundus dystrophy (SFD). DESIGN Case reports and results of deoxyribonucleic acid (DNA) analysis. METHODS Clinical features were determined by complete ophthalmologic examination or by review of medical records. Mutational analysis of the tissue inhibitor of metalloproteinase (TIMP)3 gene was performed by DNA resequencing. Biochemical properties of the mutant TIMP3 protein were studied, and phylogenetic and molecular modeling analyses of TIMP proteins were performed. RESULTS Fundi of four affected family members demonstrated active or regressed bilateral choroidal neovascularization, whereas another affected individual displayed severe diffuse pigmentary degeneration associated with nyctalopia characteristic of SFD. Onset of disease occurred in the fifth to seventh decades of life. A heterozygous His158Arg mutation was found in seven affected family members and was absent from an unaffected member and 98 unrelated controls. Bioinformatic analyses indicate that histidine 158 is an evolutionarily conserved residue in most vertebrate TIMP homologs and predict that substitution by arginine disrupts TIMP3 function. The mutant protein appears to be expressed by fibroblasts from an affected family member. Molecular modeling suggests that TIMP3 residue 158 may be part of a protein-protein interaction interface. CONCLUSION A novel mutation in TIMP3 causes a late-onset form of SFD in this family. His158Arg is the first reported TIMP3 SFD coding sequence mutation that does not create an unpaired cysteine. Further study of this unusual mutation may provide insight into the mechanism of SFD pathogenesis.
Collapse
Affiliation(s)
- Ruth J Lin
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120, USA
| | | | | | | | | |
Collapse
|
44
|
Majid MA, Smith VA, Matthews FJ, Newby AC, Dick AD. Tissue inhibitor of metalloproteinase-3 differentially binds to components of Bruch's membrane. Br J Ophthalmol 2006; 90:1310-5. [PMID: 16837541 PMCID: PMC1857436 DOI: 10.1136/bjo.2006.097246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2006] [Indexed: 11/03/2022]
Abstract
BACKGROUND Sorsby's fundus dystrophy (SFD) is caused by mutations in tissue inhibitor of metalloproteinase (TIMP)-3 and, with the exception of early onset, is similar to age-related macular degeneration. The pathological features of this condition relate to the accumulation of TIMP-3 in Bruch's membrane. AIMS To compare the extracellular membrane-binding characteristics of wild-type and four SFD-mutant TIMP-3s. METHODS COS-7 cells were transfected with wild-type, Ser-181, Gly-167, Ser-156 and Tyr-168 SFD-mutant TIMP-3 cDNA. The TIMP-3 proteins subsequently synthesised were harvested, analysed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, semiquantified by ELISA and used in binding assays on the basis of the retention of the wild-type and SFD-mutant TIMP-3 proteins by components of Bruch's membrane. RESULTS SFD-mutant TIMP-3s could not be distinguished from wild-type TIMP-3 by the extents to which they aggregated or adhered to type-I collagen, type-IV collagen, fibronectin, laminin, elastin, chondroitin sulphates A, B and C, and heparin sulphate. Of these macromolecules, the wild-type and SFD-mutant TIMP-3s exhibited greatest affinity for elastin and laminin. CONCLUSION The similarity in the physical and extracellular membrane-binding characteristics of wild-type and SFD-mutant TIMP-3s indicates that these properties are not responsible for the difference in timing of onset of SFD and age-related macular degeneration.
Collapse
Affiliation(s)
- M A Majid
- Academic Unit of Ophthalmology, University of Bristol, Bristol Eye Hospital, Bristol, UK
| | | | | | | | | |
Collapse
|
45
|
Knupp C, Pinali C, Munro PM, Gruber HE, Sherratt MJ, Baldock C, Squire JM. Reprint of "Structural correlation between collagen VI microfibrils and collagen VI banded aggregates" [J. Struct. Biol. 154 (2006) 312-326]. J Struct Biol 2006; 155:379-93. [PMID: 16934714 DOI: 10.1016/s1047-8477(06)00256-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 03/20/2006] [Indexed: 11/24/2022]
Abstract
Collagen VI is a component of the extracellular matrix that is able to form structural links with cells. Collagen VI monomers cross-link into tetramers that come together to form long molecular chains known as microfibrils. Collagen VI tetramers are also the most likely candidates for the formation of banded aggregates with an axial periodicity of about 105 nm that are seen in the retinas of people suffering from age-related macular degeneration and Sorsby's fundus dystrophy, in the vitreous of patients with full thickness macular holes and in the intervertebral discs of normal individuals. Here, a protocol is developed to carry out a structural comparison between the microfibrils, which are known to be made of collagen VI tetramers, and the banded aggregates. The comparison shows that the banded aggregates are easily explained as being a lateral assembly of microfibrils, thus supporting the hypothesis that they too are made of collagen VI. Understanding the role played by the collagen VI aggregates in normal and pathological conditions will help to throw light on the pathologies with which they are associated.
Collapse
Affiliation(s)
- Carlo Knupp
- Structural Biophysics Group, School of Optometry and Vision Sciences, Redwood Building, Cardiff University, Cardiff CF10 3NB, UK.
| | | | | | | | | | | | | |
Collapse
|
46
|
Merrell MA, Ilvesaro JM, Lehtonen N, Sorsa T, Gehrs B, Rosenthal E, Chen D, Shackley B, Harris KW, Selander KS. Toll-like receptor 9 agonists promote cellular invasion by increasing matrix metalloproteinase activity. Mol Cancer Res 2006; 4:437-47. [PMID: 16849519 DOI: 10.1158/1541-7786.mcr-06-0007] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Toll-like receptor 9 (TLR9) recognizes microbial DNA. We show here that TLR9 protein is expressed in human breast cancer cells and clinical breast cancer samples. Stimulation of TLR9-expressing breast cancer cells with the TLR9 agonistic CpG oligonucleotides (1-10 mumol/L) dramatically increased their in vitro invasion in both Matrigel assays and three-dimensional collagen cultures. Similar effects on invasion were seen in TLR9-expressing astrocytoma and glioblastoma cells and in the immortalized human breast epithelial cell line MCF-10A. This effect was not, however, dependent on the CpG content of the TLR9 ligands because the non-CpG oligonucleotides induced invasion of TLR9-expressing cells. CpG or non-CpG oligonucleotide-induced invasion in MDA-MB-231 cells was blunted by chloroquine and they did not induce invasion of TLR9(-) breast cancer cells. Treatment of MDA-MB-231 cells with CpG or non-CpG oligonucleotides induced the formation of approximately 50-kDa gelatinolytic band in zymograms. This band and the increased invasion were abolished by a matrix metalloproteinase (MMP) inhibitor GM6001 but not by a serine proteinase inhibitor aprotinin. Furthermore, CpG oligonucleotide treatment decreased tissue inhibitor of metalloproteinase-3 expression and increased levels of active MMP-13 in TLR9-expressing but not TLR9(-) breast cancer cells without affecting MMP-8. Neutralizing anti-MMP-13 antibodies inhibited the CpG oligonucleotide-induced invasion. These findings suggest that infections may promote cancer progression through a novel TLR9-mediated mechanism. They also propose a new molecular target for cancer therapy, because TLR9 has not been associated with cancer invasiveness previously.
Collapse
Affiliation(s)
- Melinda A Merrell
- Division of Hematology-Oncology, Department of Medicine, University of Alabama at Birmingham, 35294-3300, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of matrix metalloproteinases (MMPs) and the balance between MMPs/TIMPs regulates the extracellular matrix (ECM) turnover and remodeling during normal development and pathogenesis. Increasing evidence indicates a much more complex role for TIMPs during tumor progression and angiogenesis, in addition to their regulation of MMP-mediated ECM degradation. In this article, we review both the MMP-dependent and -independent actions of TIMPs for the regulation of cell death, cell proliferation, and angiogenesis, with a particular emphasis on TIMP-1 in the regulation of tetraspanin/integrin-mediated cell survival signal transduction pathways.
Collapse
Affiliation(s)
- Rosemarie Chirco
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
48
|
Yang Q, Wang HX, Zhao YG, Lin HY, Zhang H, Wang HM, Sang QXA, Zhu C. Expression of tissue inhibitor of metalloproteinase-4 (TIMP-4) in endometrium and placenta of rhesus monkey (Macaca mulatta) during early pregnancy. Life Sci 2006; 78:2804-11. [PMID: 16375928 DOI: 10.1016/j.lfs.2005.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Accepted: 11/02/2005] [Indexed: 11/17/2022]
Abstract
The tissue inhibitors of metalloproteinases (TIMPs) are secreted as important regulators of the matrix metalloproteinases (MMPs). TIMP-4 is the most recently characterized member of the TIMPs family. In the present study, we examined the expression and localization of the TIMP-4 transcript and protein in endometrium and placenta of rhesus monkey (Macaca mulatta) on days 12, 18 and 26 of pregnancy using RT-PCR, in situ hybridization, and immunohistochemistry. The fragment of TIMP-4 gene from rhesus monkey uterine samples shared 95% identity with the corresponding region of human homologue. On day 12 of pregnancy, TIMP-4 mRNA was mainly expressed in the glandular and luminal epithelium. On days 18 and 26 of pregnancy, the expression of TIMP-4 mRNA tended to decline in glandular epithelium and there were strong staining in the placental villi. Furthermore, TIMP-4 mRNA was very faint or undetectable in the stromal cells, endothelial cells of arterioles and myometrium at any stages of pregnancy. The results of immunohistochemical analysis were similar to that of its mRNA. These findings indicate that TIMP-4 might play an important role in glandular secretion, endometrial tissue remodeling and invasion of the trophoblast cells by regulating MMPs in a localized manner in the uteri of rhesus monkey during early pregnancy.
Collapse
Affiliation(s)
- Qing Yang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 25, Bei Si Huan Xi Lu, Beijing 100080, China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
García-Alvarez J, Ramirez R, Checa M, Nuttall RK, Sampieri CL, Edwards DR, Selman M, Pardo A. Tissue inhibitor of metalloproteinase-3 is up-regulated by transforming growth factor-beta1 in vitro and expressed in fibroblastic foci in vivo in idiopathic pulmonary fibrosis. Exp Lung Res 2006; 32:201-14. [PMID: 16908447 DOI: 10.1080/01902140600817481] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by fibroblast expansion and extracellular matrix accumulation. However, the mechanisms involved in matrix remodeling have not been elucidated. In this study, the authors aimed to evaluate the expression of the tissue inhibitors of matrix metalloproteinases (TIMPs) in human fibroblasts and whole tissues from IPF and normal lungs. They also determined the role of mitogen-activated protein kinase (MAPK) in TIMP3 expression. TIMP1, TIMP2, and TIMP3 were highly expressed in lung fibroblasts. Transforming growth factor (TGF)-beta1, a profibrotic mediator, induced strong up-regulation of TIMP3 at the mRNA and protein levels. The authors examined whether the MAPK pathway was involved in TGF-beta1-induced TIMP3 expression. TGF-beta1 induced the phosphorylation of p38 and extracellular signal-regulated kinase (ERK)1/2. Biochemical blockade of p38 by SB203580, but not of the ERK MAPK pathway, inhibited the effect of this factor. The effect was also blocked by the tyrosine kinase inhibitor genistein and by antagonizing TGF-beta1 receptor type I (activin-linked kinase [ALK5]). In IPF tissues TIMP3 gene expression was significantly increased and the protein was localized to fibroblastic foci and extracellular matrix. Our findings suggest that TGF-beta1-induced TIMP3 may be an important mediator in lung fibrogenesis.
Collapse
Affiliation(s)
- Jorge García-Alvarez
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México DF, México
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Knupp C, Pinali C, Munro PM, Gruber HE, Sherratt MJ, Baldock C, Squire JM. Structural correlation between collagen VI microfibrils and collagen VI banded aggregates. J Struct Biol 2006; 154:312-26. [PMID: 16713302 DOI: 10.1016/j.jsb.2006.03.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 03/20/2006] [Indexed: 01/22/2023]
Abstract
Collagen VI is a component of the extracellular matrix that is able to form structural links with cells. Collagen VI monomers cross-link into tetramers that come together to form long molecular chains known as microfibrils. Collagen VI tetramers are also the most likely candidates for the formation of banded aggregates with an axial periodicity of about 105 nm that are seen in the retinas of people suffering from age-related macular degeneration and Sorsby's fundus dystrophy, in the vitreous of patients with full thickness macular holes and in the intervertebral discs of normal individuals. Here, a protocol is developed to carry out a structural comparison between the microfibrils, which are known to be made of collagen VI tetramers, and the banded aggregates. The comparison shows that the banded aggregates are easily explained as being a lateral assembly of microfibrils, thus supporting the hypothesis that they too are made of collagen VI. Understanding the role played by the collagen VI aggregates in normal and pathological conditions will help to throw light on the pathologies with which they are associated.
Collapse
Affiliation(s)
- Carlo Knupp
- Structural Biophysics Group, School of Optometry and Vision Sciences, Redwood Building, Cardiff University, Cardiff CF10 3NB, UK.
| | | | | | | | | | | | | |
Collapse
|