1
|
Sasaki K, Komamura S, Matsuda K. Extracellular stimulation of lung fibroblasts with arachidonic acid increases interleukin 11 expression through p38 and ERK signaling. Biol Chem 2023; 404:59-69. [PMID: 36268909 DOI: 10.1515/hsz-2022-0218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/10/2022] [Indexed: 11/15/2022]
Abstract
Interleukin-11 (IL-11) is a pleiotropic cytokine that regulates proliferation and motility of cancer cells. Fibroblasts reside in the cancer microenvironment and are the primary source of IL-11. Activated fibroblasts, including cancer-associated fibroblasts that produce IL-11, contribute to the development and progression of cancer, and induce fibrosis associated with cancer. Changes in fatty acid composition or its metabolites, and an increase in free fatty acids have been observed in cancer. The effect of deregulated fatty acids on the development and progression of cancer is not fully understood yet. In the present study, we investigated the effects of fatty acids on mRNA expression and secretion of IL-11 in lung fibroblasts. Among the eight fatty acids added exogenously, arachidonic acid (AA) increased mRNA expression and secretion of IL-11 in lung fibroblasts in a dose-dependent manner. AA-induced upregulation of IL-11 was dependent on the activation of the p38 or ERK MAPK signaling pathways. Furthermore, prostaglandin E2, associated with elevated cyclooxygenase-2 expression, participated in the upregulation of IL-11 via its specific receptor in an autocrine/paracrine manner. These results suggest that AA may mediate IL-11 upregulation in lung fibroblasts in the cancer microenvironment, accompanied by unbalanced fatty acid composition.
Collapse
Affiliation(s)
- Kanako Sasaki
- Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan
| | - Shotaro Komamura
- Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan
| | - Kazuyuki Matsuda
- Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan
| |
Collapse
|
2
|
Van Valkenburgh J, Duro MVV, Burnham E, Chen Q, Wang S, Tran J, Kerman BE, Hwang SH, Liu X, Sta Maria NS, Zanderigo F, Croteau E, Rapoport SI, Cunnane SC, Jacobs RE, Yassine HN, Chen K. Radiosynthesis of 20-[ 18F]fluoroarachidonic acid for PET-MR imaging: Biological evaluation in ApoE4-TR mice. Prostaglandins Leukot Essent Fatty Acids 2022; 186:102510. [PMID: 36341886 PMCID: PMC9888757 DOI: 10.1016/j.plefa.2022.102510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 02/02/2023]
Abstract
Dysreglulated brain arachidonic acid (AA) metabolism is involved in chronic inflammation and is influenced by apolipoprotein E4 (APOE4) genotype, the strongest genetic risk factor of late-onset Alzheimer's disease (AD). Visualization of AA uptake and distribution in the brain can offer insight into neuroinflammation and AD pathogenesis. Here we present a novel synthesis and radiosynthesis of 20-[18F]fluoroarachidonic acid ([18F]-FAA) for PET imaging using a convergent route and a one-pot, single-purification radiolabeling procedure, and demonstrate its brain uptake in human ApoE4 targeted replacement (ApoE4-TR) mice. By examining p38 phosphorylation in astrocytes, we found that fluorination of AA at the ω-position did not significantly alter its biochemical role in cells. The brain incorporation coefficient (K*) of [18F]-FAA was estimated via multiple methods by using an image-derived input function from the right ventricle of the heart as a proxy of the arterial input function and brain tracer concentrations assessed by dynamic PET-MR imaging. This new synthetic approach should facilitate the practical [18F]-FAA production and allow its translation into clinical use, making investigations of dysregulation of lipid metabolism more feasible in the study of neurodegenerative diseases.
Collapse
Affiliation(s)
- Juno Van Valkenburgh
- Department of Radiology, Keck School of Medicine University of Southern California, Los Angeles, CA 90033, United States of America
| | - Marlon Vincent V Duro
- Department of Radiology, Keck School of Medicine University of Southern California, Los Angeles, CA 90033, United States of America
| | - Erica Burnham
- Department of Medicine, Keck School of Medicine University of Southern California, Los Angeles 90033, CA, United States of America
| | - Quan Chen
- Department of Radiology, Keck School of Medicine University of Southern California, Los Angeles, CA 90033, United States of America
| | - Shaowei Wang
- Department of Medicine, Keck School of Medicine University of Southern California, Los Angeles 90033, CA, United States of America
| | - Jenny Tran
- Department of Medicine, Keck School of Medicine University of Southern California, Los Angeles 90033, CA, United States of America
| | - Bilal E Kerman
- Department of Medicine, Keck School of Medicine University of Southern California, Los Angeles 90033, CA, United States of America
| | - Sung Hee Hwang
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, United States of America
| | - Xiaodan Liu
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States of America
| | - Naomi S Sta Maria
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States of America
| | - Francesca Zanderigo
- Department of Psychiatry, Columbia University, New York, NY 10032, United States of America; Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, NY 10032, United States of America
| | - Etienne Croteau
- Research Center on Aging, Department of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 4C4, Canada
| | - Stanley I Rapoport
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, United States of America
| | - Stephen C Cunnane
- Research Center on Aging, Department of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 4C4, Canada
| | - Russell E Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States of America
| | - Hussein N Yassine
- Department of Medicine, Keck School of Medicine University of Southern California, Los Angeles 90033, CA, United States of America.
| | - Kai Chen
- Department of Radiology, Keck School of Medicine University of Southern California, Los Angeles, CA 90033, United States of America.
| |
Collapse
|
3
|
Bi XJ, Lv YQ, Yang XH, Ge Y, Han H, Feng JS, Zhang M, Chen L, Xu MZ, Guan FY. A New Berberine Preparation Protects Pancreatic Islet Cells from Apoptosis Mediated by Inhibition of Phospholipase A2/p38 MAPK Pathway. Bull Exp Biol Med 2022; 173:346-353. [DOI: 10.1007/s10517-022-05547-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Indexed: 11/30/2022]
|
4
|
Munawara U, Perveen K, Small AG, Putty T, Quach A, Gorgani NN, Hii CS, Abbott CA, Ferrante A. Human Dendritic Cells Express the Complement Receptor Immunoglobulin Which Regulates T Cell Responses. Front Immunol 2019; 10:2892. [PMID: 31921153 PMCID: PMC6914870 DOI: 10.3389/fimmu.2019.02892] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 11/25/2019] [Indexed: 01/09/2023] Open
Abstract
The B7 family-related protein V-set and Ig containing 4 (VSIG4), also known as Z39Ig and Complement Immunoglobulin Receptor (CRIg), is the most recent of the complement receptors to be identified, with substantially distinct properties from the classical complement receptors. The receptor displays both phagocytosis-promoting and anti-inflammatory properties. The receptor has been reported to be exclusively expressed in macrophages. We now present evidence, that CRIg is also expressed in human monocyte-derived dendritic cells (MDDC), including on the cell surface, implicating its role in adaptive immunity. Three CRIg transcripts were detected and by Western blotting analysis both the known Long (L) and Short (S) forms were prominent but we also identified another form running between these two. Cytokines regulated the expression of CRIg on dendritic cells, leading to its up- or down regulation. Furthermore, the steroid dexamethasone markedly upregulated CRIg expression, and in co-culture experiments, the dexamethasone conditioned dendritic cells caused significant inhibition of the phytohemagglutinin-induced and alloantigen-induced T cell proliferation responses. In the alloantigen-induced response the production of IFNγ, TNF-α, IL-13, IL-4, and TGF-β1, were also significantly reduced in cultures with dexamethasone-treated DCs. Under these conditions dexamethasone conditioned DCs did not increase the percentage of regulatory T cells (Treg). Interestingly, this suppression could be overcome by the addition of an anti-CRIg monoclonal antibody to the cultures. Thus, CRIg expression may be a control point in dendritic cell function through which drugs and inflammatory mediators may exert their tolerogenic- or immunogenic-promoting effects on dendritic cells.
Collapse
Affiliation(s)
- Usma Munawara
- Department of Immunopathology, SA Pathology at the Women's and Children's Hospital, North Adelaide, SA, Australia.,College of Science and Engineering, Flinders University, Bedford Park, SA, Australia.,School of Medicine, School of Biological Sciences and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Khalida Perveen
- Department of Immunopathology, SA Pathology at the Women's and Children's Hospital, North Adelaide, SA, Australia.,School of Medicine, School of Biological Sciences and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Annabelle G Small
- Department of Immunopathology, SA Pathology at the Women's and Children's Hospital, North Adelaide, SA, Australia.,School of Medicine, School of Biological Sciences and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Trishni Putty
- Department of Immunopathology, SA Pathology at the Women's and Children's Hospital, North Adelaide, SA, Australia.,School of Medicine, School of Biological Sciences and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Alex Quach
- Department of Immunopathology, SA Pathology at the Women's and Children's Hospital, North Adelaide, SA, Australia.,School of Medicine, School of Biological Sciences and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Nick N Gorgani
- Department of Immunopathology, SA Pathology at the Women's and Children's Hospital, North Adelaide, SA, Australia.,School of Medicine, School of Biological Sciences and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Charles S Hii
- Department of Immunopathology, SA Pathology at the Women's and Children's Hospital, North Adelaide, SA, Australia.,School of Medicine, School of Biological Sciences and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Catherine A Abbott
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Antonio Ferrante
- Department of Immunopathology, SA Pathology at the Women's and Children's Hospital, North Adelaide, SA, Australia.,School of Medicine, School of Biological Sciences and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
5
|
Li YQ, Ngo A, Hoffmann P, Ferrante A, Hii CS. Regulation of endothelial cell survival and death by the MAP kinase/ERK kinase kinase 3 - glyceraldehyde-3-phosphate dehydrogenase signaling axis. Cell Signal 2019; 58:20-33. [DOI: 10.1016/j.cellsig.2019.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 02/06/2023]
|
6
|
Small tumor necrosis factor receptor biologics inhibit the tumor necrosis factor-p38 signalling axis and inflammation. Nat Commun 2018; 9:1365. [PMID: 29636466 PMCID: PMC5893557 DOI: 10.1038/s41467-018-03640-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/01/2018] [Indexed: 12/12/2022] Open
Abstract
Despite anti-TNF therapy advancements for inflammatory diseases such as rheumatoid arthritis, the burden of diseases remains high. An 11-mer TNF peptide, TNF70-80, is known to stimulate selective functional responses compared to the parent TNF molecule. Here, we show that TNF70-80 binds to the TNF receptor, activating p38 MAP kinase through TNF receptor-associated factor 2. Using truncated TNFR mutants, we identify the sequence in TNFRI which enables p38 activation by TNF70-80. Peptides with this TNFRI sequence, such as TNFRI206-211 bind to TNF and inhibit TNF-induced p38 activation, respiratory burst, cytokine production and adhesion receptor expression but not F-Met-Leu-Phe-induced respiratory burst in neutrophils. TNFRI206-211 does not prevent TNF binding to TNFRI or TNF-induced stimulation of ERK, JNK and NF-κB. TNFRI206-211 inhibits bacterial lipopolysaccharide-induced peritonitis, carrageenan-induced and antigen-induced paw inflammation, and respiratory syncytial virus-induced lung inflammation in mice. Our findings suggest a way of targeting TNF-p38 pathway to treat chronic inflammatory disorders.
Collapse
|
7
|
DeCoursey TE. The intimate and controversial relationship between voltage-gated proton channels and the phagocyte NADPH oxidase. Immunol Rev 2017; 273:194-218. [PMID: 27558336 DOI: 10.1111/imr.12437] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
One of the most fascinating and exciting periods in my scientific career entailed dissecting the symbiotic relationship between two membrane transporters, the Nicotinamide adenine dinucleotide phosphate reduced form (NADPH) oxidase complex and voltage-gated proton channels (HV 1). By the time I entered this field, there had already been substantial progress toward understanding NADPH oxidase, but HV 1 were known only to a tiny handful of cognoscenti around the world. Having identified the first proton currents in mammalian cells in 1991, I needed to find a clear function for these molecules if the work was to become fundable. The then-recent discoveries of Henderson, Chappell, and colleagues in 1987-1988 that led them to hypothesize interactions of both molecules during the respiratory burst of phagocytes provided an excellent opportunity. In a nutshell, both transporters function by moving electrical charge across the membrane: NADPH oxidase moves electrons and HV 1 moves protons. The consequences of electrogenic NADPH oxidase activity on both membrane potential and pH strongly self-limit this enzyme. Fortunately, both consequences specifically activate HV 1, and HV 1 activity counteracts both consequences, a kind of yin-yang relationship. Notwithstanding a decade starting in 1995 when many believed the opposite, these are two separate molecules that function independently despite their being functionally interdependent in phagocytes. The relationship between NADPH oxidase and HV 1 has become a paradigm that somewhat surprisingly has now extended well beyond the phagocyte NADPH oxidase - an industrial strength producer of reactive oxygen species (ROS) - to myriad other cells that produce orders of magnitude less ROS for signaling purposes. These cells with their seven NADPH oxidase (NOX) isoforms provide a vast realm of mechanistic obscurity that will occupy future studies for years to come.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL, USA
| |
Collapse
|
8
|
Evans J, Ko Y, Mata W, Saquib M, Eldridge J, Cohen-Gadol A, Leaver HA, Wang S, Rizzo MT. Arachidonic acid induces brain endothelial cell apoptosis via p38-MAPK and intracellular calcium signaling. Microvasc Res 2014; 98:145-58. [PMID: 24802256 DOI: 10.1016/j.mvr.2014.04.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/23/2014] [Accepted: 04/27/2014] [Indexed: 01/19/2023]
Abstract
Arachidonic acid (AA), a bioactive fatty acid whose levels increase during neuroinflammation, contributes to cerebral vascular damage and dysfunction. However, the mode of injury and underlying signaling mechanisms remain unknown. Challenge of primary human brain endothelial cells (HBECs) with AA activated a stress response resulting in caspase-3 activation, poly(ADP-ribose) polymerase cleavage, and disruption of monolayer integrity. AA also induced loss of mitochondrial membrane potential and cytochrome c release consistent with activation of intrinsic apoptosis. HBEC stimulation with AA resulted in sustained p38-MAPK activation and subsequent phosphorylation of mitogen-activated protein kinase activated protein-2 (MAPKAP-2) kinase and heat shock protein-27 (Hsp27). Conversely, other unsaturated and saturated fatty acids had no effect. Pharmacological and RNA interference-mediated p38α or p38β suppression abrogated AA signaling to caspase-3 and Hsp27, suggesting involvement of both p38 isoforms in AA-induced HBEC apoptosis. Hsp27 silencing also blocked caspase-3 activation. AA stimulated intracellular calcium release, which was attenuated by inositol 1,4,5-trisphosphate (IP3) receptor antagonists. Blockade of intracellular calcium release decreased caspase-3 activation, but had no effect on AA-induced p38-MAPK activation. However, inhibition of p38-MAPK or blockade of intracellular calcium mobilization abrogated AA-induced cytochrome c release. AA-induced caspase-3 activation was abrogated by pharmacological inhibition of lipooxygenases. These findings support a previously unrecognized signaling cooperation between p38-MAPK/MAPKAP-2/Hsp27 and intracellular calcium release in AA-induced HBEC apoptosis and suggest its relevance to neurological disorders associated with vascular inflammation.
Collapse
Affiliation(s)
- Justin Evans
- Signal Transduction Laboratory, Methodist Research Institute, Indiana University Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - YooSeung Ko
- Signal Transduction Laboratory, Methodist Research Institute, Indiana University Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wilmer Mata
- Signal Transduction Laboratory, Methodist Research Institute, Indiana University Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Muhammad Saquib
- Signal Transduction Laboratory, Methodist Research Institute, Indiana University Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joel Eldridge
- Signal Transduction Laboratory, Methodist Research Institute, Indiana University Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Aaron Cohen-Gadol
- Goodman Campbell Brain and Spine, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - H Anne Leaver
- Division of Clinical Neuroscience, Edinburgh University, Edinburgh, UK
| | - Shukun Wang
- Signal Transduction Laboratory, Methodist Research Institute, Indiana University Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maria Teresa Rizzo
- Signal Transduction Laboratory, Methodist Research Institute, Indiana University Health, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
9
|
Dwivedi PP, Grose RH, Filmus J, Hii CST, Xian CJ, Anderson PJ, Powell BC. Regulation of bone morphogenetic protein signalling and cranial osteogenesis by Gpc1 and Gpc3. Bone 2013; 55:367-76. [PMID: 23624389 DOI: 10.1016/j.bone.2013.04.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 04/11/2013] [Accepted: 04/13/2013] [Indexed: 10/26/2022]
Abstract
From birth, the vault of the skull grows at a prodigious rate, driven by the activity of osteoblastic cells at the fibrous joints (sutures) that separate the bony calvarial plates. One in 2500 children is born with a medical condition known as craniosynostosis because of premature bony fusion of the calvarial plates and a cessation of bone growth at the sutures. Bone morphogenetic proteins (BMPs) are potent growth factors that promote bone formation. Previously, we found that Glypican-1 (GPC1) and Glypican-3 (GPC3) are expressed in cranial sutures and are decreased during premature suture fusion in children. Although glypicans are known to regulate BMP signalling, a mechanistic link between GPC1, GPC3 and BMPs and osteogenesis has not yet been investigated. We now report that human primary suture mesenchymal cells coexpress GPC1 and GPC3 on the cell surface and release them into the media. We show that they inhibit BMP2, BMP4 and BMP7 activities, which both physically interact with BMP2 and that immunoblockade of endogenous GPC1 and GPC3 potentiates BMP2 activity. In contrast, increased levels of GPC1 and GPC3 as a result of overexpression or the addition of recombinant protein, inhibit BMP2 signalling and BMP2-mediated osteogenesis. We demonstrate that BMP signalling in suture mesenchymal cells is mediated by both SMAD-dependent and SMAD-independent pathways and that GPC1 and GPC3 inhibit both pathways. GPC3 inhibition of BMP2 activity is independent of attachment of the glypican on the cell surface and post-translational glycanation, and thus appears to be mediated by the core glypican protein. The discovery that GPC1 and GPC3 regulate BMP2-mediated osteogenesis, and that inhibition of endogenous GPC1 and GPC3 potentiates BMP2 responsiveness of human suture mesenchymal cells, indicates how downregulation of glypican expression could lead to the bony suture fusion that characterizes craniosynostosis.
Collapse
Affiliation(s)
- Prem P Dwivedi
- Women's and Children's Health Research Institute, North Adelaide, South Australia 5006, Australia
| | | | | | | | | | | | | |
Collapse
|
10
|
Shanu A, Groebler L, Kim HB, Wood S, Weekley CM, Aitken JB, Harris HH, Witting PK. Selenium inhibits renal oxidation and inflammation but not acute kidney injury in an animal model of rhabdomyolysis. Antioxid Redox Signal 2013; 18:756-69. [PMID: 22937747 PMCID: PMC3555114 DOI: 10.1089/ars.2012.4591] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
UNLABELLED Acute kidney injury (AKI) is a manifestation of rhabdomyolysis (RM). Extracellular myoglobin accumulating in the kidney after RM promotes oxidative damage, which is implicated in AKI. AIM To test whether selenium (Se) supplementation diminishes AKI and improves renal function. RESULTS Dietary selenite increased Se in the renal cortex, as demonstrated by X-ray fluorescence microscopy. Experimental RM-stimulated AKI as judged by increased urinary protein/creatinine, clusterin, and kidney injury molecule-1 (KIM-1), decreased creatinine clearance (CCr), increased plasma urea, and damage to renal tubules. Concentrations of cholesterylester (hydro)peroxides and F₂-isoprostanes increased in plasma and renal tissues after RM, while aortic and renal cyclic guanidine monophosphate (cGMP; marker of nitric oxide (NO) bioavailability) decreased. Renal superoxide dismutase-1, phospho-P65, TNFα gene, MCP-1 protein, and the 3-chloro-tyrosine/tyrosine ratio (Cl-Tyr/Tyr; marker of neutrophil activation) all increased after RM. Dietary Se significantly decreased renal lipid oxidation, phospho-P65, TNFα gene expression, MCP-1 and Cl-Tyr/Tyr, improved NO bioavailability in aorta but not in the renal microvasculature, and inhibited proteinuria. However, CCr, plasma urea and creatinine, urinary clusterin, and histopathological assessment of AKI remained unchanged. Except for the Se++ group, renal angiotensin-receptor-1/2 gene/protein expression increased after RM with parallel increases in MEK1/2 inhibitor-sensitive MAPkinase (ERK) activity. INNOVATION We employed synchrotron radiation to identify Se distribution in kidneys, in addition to assessing reno-protection after RM. CONCLUSION Se treatment has some potential as a therapeutic for AKI as it inhibits oxidative damage and inflammation and decreases proteinuria, albeit histopathological changes to the kidney and some plasma and urinary markers of AKI remain unaffected after RM.
Collapse
Affiliation(s)
- Anu Shanu
- Discipline of Pathology, Redox Biology Group, Bosch Institute, The University of Adelaide, Australia
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Han CW, Kang ES, Ham SA, Woo HJ, Lee JH, Seo HG. Antioxidative effects of Alisma orientale extract in palmitate-induced cellular injury. PHARMACEUTICAL BIOLOGY 2012; 50:1281-1288. [PMID: 22857151 DOI: 10.3109/13880209.2012.673629] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
CONTEXT Alisma orientale (Sam.) Juzepczuk (Alismataceae) is an indigenous medicinal herb that has been traditionally used for diuretic, hypolipidemic, anti-inflammatory, and antidiabetic proposes in northern and eastern Asia. OBJECTIVE This study examined the mechanisms underlying the cytoprotective effect of an aqueous extract of A. orientale (AEAO) against long-chain saturated fatty acid-induced cellular injury. MATERIALS AND METHODS HepG2 cells were treated with 0.5 mM palmitate to generate a cellular model of nonalcoholic fatty liver disease (NAFLD). Using this cellular model, the cytoprotective effect of AEAO (100 µg/mL) against long-chain saturated fatty acid-induced cellular injury was evaluated by measuring the steatosis, ROS accumulation, and apoptosis. RESULTS AEAO significantly attenuated palmitate-induced intracellular steatosis and cellular damage up to 54 and 33%, respectively. Palmitate-induced intracellular levels of reactive oxygen species (ROS) and reactive aldehydes were significantly reduced in the presence of AEAO to 40 and 75%, respectively, suggesting that oxidative stress plays a role in the palmitate-induced damage. AEAO inhibited the palmitate-mediated activation of c-Jun NH(2)-terminal kinase (JNK), a kinase that is correlated with NAFLD. Inhibition of JNK by SP600125 or addition of AEAO significantly reduced palmitate-induced steatosis, ROS accumulation, and apoptosis, indicating that the protective effects of AEAO against palmitate-induced cellular damage result from blocking ROS-activated JNK signaling. DISCUSSION AND CONCLUSION The combined properties of AEAO in cellular steatosis and ROS production are beneficial for treating NAFLD, which includes complex metabolic changes, such that modulation of a single target is often not sufficient to achieve the desired therapeutic effect.
Collapse
Affiliation(s)
- Chang Woo Han
- Department of Internal Medicine, Pusan National University School of Korean Medicine, Yangsan, Korea
| | | | | | | | | | | |
Collapse
|
12
|
Arachidonic acid regulation of the cytosolic phospholipase A2α/cyclooxygenase-2 pathway in mouse endometrial stromal cells. Fertil Steril 2012; 97:1199-205.e1-9. [DOI: 10.1016/j.fertnstert.2012.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 02/08/2012] [Accepted: 02/08/2012] [Indexed: 11/22/2022]
|
13
|
Saito Y, Watanabe K, Fujioka D, Nakamura T, Obata JE, Kawabata K, Watanabe Y, Mishina H, Tamaru S, Kita Y, Shimizu T, Kugiyama K. Disruption of group IVA cytosolic phospholipase A(2) attenuates myocardial ischemia-reperfusion injury partly through inhibition of TNF-α-mediated pathway. Am J Physiol Heart Circ Physiol 2012; 302:H2018-30. [PMID: 22427514 DOI: 10.1152/ajpheart.00955.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Group IVA cytosolic phospholipase A(2) (cPLA(2)α), which preferentially cleaves arachidonic acid from phospholipids, plays a role in apoptosis and tissue injury. Downstream signals in response to tumor necrosis factor (TNF)-α, a mediator of myocardial ischemia-reperfusion (I/R) injury, involve cPLA(2)α activation. This study examined the potential role of cPLA(2)α and its mechanistic link with TNF-α in myocardial I/R injury using cPLA(2)α knockout (cPLA(2)α(-/-)) mice. Myocardial I/R was created with 10-wk-old male mice by 1 h ligation of the left anterior descending coronary artery, followed by 24 h of reperfusion. As a result, compared with wild-type (cPLA(2)α(+/+)) mice, cPLA(2)α(-/-) mice had a 47% decrease in myocardial infarct size, preservation of echocardiographic left ventricle (LV) function (%fractional shortening: 14 vs. 21%, respectively), and lower content of leukotriene B(4) and thromboxane B(2) (62 and 50% lower, respectively) in the ischemic myocardium after I/R. Treatment with the TNF-α inhibitor (soluble TNF receptor II/IgG1 Fc fusion protein, sTNFR:Fc) decreased myocardial I/R injury and LV dysfunction in cPLA(2)α(+/+) mice but not cPLA(2)α(-/-) mice. sTNFR:Fc also suppressed cPLA(2)α phosphorylation in the ischemic myocardium after I/R of cPLA(2)α(+/+) mice. Similarly, sTNFR:Fc exerted protective effects against hypoxia-reoxygenation (H/R)-induced injury in the cultured cardiomyocytes from cPLA(2)α(+/+) mice but not cPLA(2)α(-/-) cardiomyocytes. H/R and TNF-α induced cPLA(2)α phosphorylation in cPLA(2)α(+/+) cardiomyocytes, which was reversible by sTNFR:Fc. In cPLA(2)α(-/-) cardiomyocytes, TNF-α induced apoptosis and release of arachidonic acid to a lesser extent than in cPLA(2)α(+/+) cardiomyocytes. In conclusion, disruption of cPLA(2)α attenuates myocardial I/R injury partly through inhibition of TNF-α-mediated pathways.
Collapse
Affiliation(s)
- Yukio Saito
- Department of Internal Medicine II, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Song H, Wohltmann M, Tan M, Bao S, Ladenson JH, Turk J. Group VIA PLA2 (iPLA2β) is activated upstream of p38 mitogen-activated protein kinase (MAPK) in pancreatic islet β-cell signaling. J Biol Chem 2012; 287:5528-41. [PMID: 22194610 PMCID: PMC3285329 DOI: 10.1074/jbc.m111.285114] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 12/21/2011] [Indexed: 01/09/2023] Open
Abstract
Group VIA phospholipase A(2) (iPLA(2)β) in pancreatic islet β-cells participates in glucose-stimulated insulin secretion and sarco(endo)plasmic reticulum ATPase (SERCA) inhibitor-induced apoptosis, and both are attenuated by pharmacologic or genetic reductions in iPLA(2)β activity and amplified by iPLA(2)β overexpression. While exploring signaling events that occur downstream of iPLA(2)β activation, we found that p38 MAPK is activated by phosphorylation in INS-1 insulinoma cells and mouse pancreatic islets, that this increases with iPLA(2)β expression level, and that it is stimulated by the iPLA(2)β reaction product arachidonic acid. The insulin secretagogue D-glucose also stimulates β-cell p38 MAPK phosphorylation, and this is prevented by the iPLA(2)β inhibitor bromoenol lactone. Insulin secretion induced by d-glucose and forskolin is amplified by overexpressing iPLA(2)β in INS-1 cells and in mouse islets, and the p38 MAPK inhibitor PD169316 prevents both responses. The SERCA inhibitor thapsigargin also stimulates phosphorylation of both β-cell MAPK kinase isoforms and p38 MAPK, and bromoenol lactone prevents both events. Others have reported that iPLA(2)β products activate Rho family G-proteins that promote MAPK kinase activation via a mechanism inhibited by Clostridium difficile toxin B, which we find to inhibit thapsigargin-induced β-cell p38 MAPK phosphorylation. Thapsigargin-induced β-cell apoptosis and ceramide generation are also prevented by the p38 MAPK inhibitor PD169316. These observations indicate that p38 MAPK is activated downstream of iPLA(2)β in β-cells incubated with insulin secretagogues or thapsigargin, that this requires prior iPLA(2)β activation, and that p38 MAPK is involved in the β-cell functional responses of insulin secretion and apoptosis in which iPLA(2)β participates.
Collapse
Affiliation(s)
- Haowei Song
- From the Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, and
| | - Mary Wohltmann
- From the Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, and
| | - Min Tan
- From the Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, and
| | - Shunzhong Bao
- From the Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, and
| | - Jack H. Ladenson
- the Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - John Turk
- From the Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, and
| |
Collapse
|
15
|
Boog B, Quach A, Costabile M, Smart J, Quinn P, Singh H, Gold M, Booker G, Choo S, Hii CS, Ferrante A. Identification and functional characterization of two novel mutations in the α-helical loop (residues 484-503) of CYBB/gp91(phox) resulting in the rare X91(+) variant of chronic granulomatous disease. Hum Mutat 2012; 33:471-5. [PMID: 22125116 DOI: 10.1002/humu.22003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 11/18/2011] [Indexed: 12/30/2022]
Abstract
Chronic granulomatous disease (CGD) is mainly caused by mutations in X-linked CYBB that encodes gp91. We have identified two novel mutations in CYBB resulting in the rare X91(+)-CGD variant, c.1500T>G (p.Asp500Glu) in two male siblings and c.1463C>A (p.Ala488Asp) in an unrelated male. Zymosan and/or PMA (Phorbol 12-myristate 13-acetate)-induced recruitment of p47(phox) and p67(phox) to the membrane fraction was normal for both mutants. Cell-free assays using recombinant wild-type and the mutant proteins revealed that these mutants were not activated by NADPH (nicotinamide adenine dinucleotide phosphate). Interestingly, the Ala488Asp mutant was activated by NADPH in the presence of glutathione. These data suggest that the mutations prevented NADPH from binding to gp91(phox) and the requirement of a negative charge at residue 500 in gp91(phox) for NADPH oxidase assembly, in contrast to a previously described Asp500Gly change. These mutations and the effect of glutathione provide a unique insight into disease pathogenesis and potential therapy in variant X91(+)-CGD.
Collapse
Affiliation(s)
- Bernadette Boog
- Department of Immunopathology, SA Pathology at Women's and Children's Hospital, North Adelaide, South Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lee TC, Cheng IC, Shue JJ, Wang T. Cytotoxicity of arsenic trioxide is enhanced by (−)-epigallocatechin-3-gallate via suppression of ferritin in cancer cells. Toxicol Appl Pharmacol 2011; 250:69-77. [DOI: 10.1016/j.taap.2010.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 10/04/2010] [Accepted: 10/06/2010] [Indexed: 12/11/2022]
|
17
|
Yano T, Fujioka D, Saito Y, Kobayashi T, Nakamura T, Obata JE, Kawabata K, Watanabe K, Watanabe Y, Mishina H, Tamaru S, Kugiyama K. Group V secretory phospholipase A2 plays a pathogenic role in myocardial ischaemia-reperfusion injury. Cardiovasc Res 2010; 90:335-43. [PMID: 21169294 DOI: 10.1093/cvr/cvq399] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
AIMS Group V secretory phospholipase A(2) (sPLA(2)-V) is highly expressed in the heart. This study examined (i) the role of sPLA(2)-V in myocardial ischaemia-reperfusion (I/R) injury and (ii) the cooperative action of sPLA(2)-V and cytosolic PLA(2) (cPLA(2)) in myocardial I/R injury, using sPLA(2)-V knockout (sPLA(2)V(-/-)) mice. METHODS AND RESULTS Myocardial I/R injury was created by 1 h ligation of the left anterior descending coronary artery, followed by 24 h of reperfusion. The sPLA(2)V(-/-) mice had a 44% decrease in myocardial infarct size, a preservation of echocardiographic LV function (%fractional shortening: 40 ± 3.5 vs. 21 ± 4.6, respectively), and lower content of leucotriene B(4) (LTB(4)) and thromboxane B(2) (TXB(2)) (40 and 37% lower, respectively) in the ischaemic myocardium after I/R compared with wild-type (WT) mice. Intraperitoneal administration of AACOCF3 or MAFP, inhibitors of cPLA(2) activity, decreased myocardial infarct size and myocardial content of LTB(4) and TXB(2) in both genotyped mice. The decrease in myocardial infarct size and content of LTB(4) and TXB(2) after cPLA(2) inhibitor administration was greater in WT mice than in sPLA(2)V(-/-) mice. I/R increased phosphorylation of extracellular signal-related kinase 1/2, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinases in the ischaemic myocardium in association with cPLA(2) phosphorylation. The I/R-induced increase in the phosphorylation of p38 and cPLA(2) was less in sPLA(2)-V(-/-) mice than in WT mice. Pretreatment with the p38 inhibitor SB202190 suppressed an increase in cPLA(2) phosphorylation after I/R in WT mice. CONCLUSION sPLA(2)-V plays an important role in the pathogenesis of myocardial I/R injury partly in concert with the activation of cPLA(2).
Collapse
Affiliation(s)
- Toshiaki Yano
- Department of Internal Medicine II, Faculty of Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Yamanashi, Chuo 409-3898, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
A role for the phosphatidylinositol 3-kinase – protein kinase C zeta – Sp1 pathway in the 1,25-dihydroxyvitamin D3 induction of the 25-hydroxyvitamin D3 24-hydroxylase gene in human kidney cells. Cell Signal 2010; 22:543-52. [DOI: 10.1016/j.cellsig.2009.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 10/09/2009] [Accepted: 11/10/2009] [Indexed: 11/18/2022]
|
19
|
Yeh MC, Mukaro V, Hii CS, Ferrante A. Regulation of neutrophil-mediated killing of Staphylococcus aureus and chemotaxis by c-jun NH2 terminal kinase. J Leukoc Biol 2010; 87:925-32. [PMID: 20097850 DOI: 10.1189/jlb.0609399] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The role of JNK in neutrophil chemotaxis and killing of microbial pathogens remains unclear. Using a recently described cell-permeable peptide inhibitor of the JNK pathway, based on the JBD of JIP-1, coupled to the protein transduction domain of HIV-TAT (TAT-JIP), in association with control peptides, we demonstrate that the JNK pathway plays a major role in regulating human neutrophil chemotaxis and killing of microbial pathogens. Serum-opsonized Staphylococcus aureus elicited JNK activation and c-jun phosphorylation. The activation of the JNK pathway and bactericidal activity were inhibited by the TAT-JIP peptide. The stimulation of oxygen radical generation by S. aureus was dependent on the JNK signaling pathway, as was the phagocytosis of serum-opsonized bacteria. Chemotaxis to activated serum complement but not random migration was inhibited by the TAT-JIP peptide. The findings demonstrate a major role for the JNK signaling pathway in neutrophil-mediated defense against microbial pathogens.
Collapse
Affiliation(s)
- Mei-Chun Yeh
- Department of Immunopathology, Children, Youth and Women's Health Service, North Adelaide, South Australia, Australia
| | | | | | | |
Collapse
|
20
|
Gladding CM, Fitzjohn SM, Molnár E. Metabotropic glutamate receptor-mediated long-term depression: molecular mechanisms. Pharmacol Rev 2009; 61:395-412. [PMID: 19926678 PMCID: PMC2802426 DOI: 10.1124/pr.109.001735] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability to modify synaptic transmission between neurons is a fundamental process of the nervous system that is involved in development, learning, and disease. Thus, synaptic plasticity is the ability to bidirectionally modify transmission, where long-term potentiation and long-term depression (LTD) represent the best characterized forms of plasticity. In the hippocampus, two main forms of LTD coexist that are mediated by activation of either N-methyl-d-aspartic acid receptors (NMDARs) or metabotropic glutamate receptors (mGluRs). Compared with NMDAR-LTD, mGluR-LTD is less well understood, but recent advances have started to delineate the underlying mechanisms. mGluR-LTD at CA3:CA1 synapses in the hippocampus can be induced either by synaptic stimulation or by bath application of the group I selective agonist (R,S)-3,5-dihydroxyphenylglycine. Multiple signaling mechanisms have been implicated in mGluR-LTD, illustrating the complexity of this form of plasticity. This review provides an overview of recent studies investigating the molecular mechanisms underlying hippocampal mGluR-LTD. It highlights the role of key molecular components and signaling pathways that are involved in the induction and expression of mGluR-LTD and considers how the different signaling pathways may work together to elicit a persistent reduction in synaptic transmission.
Collapse
Affiliation(s)
- Clare M Gladding
- MRC Centre for Synaptic Plasticity, Department of Anatomy, University of Bristol, School of Medical Sciences, University Walk, Bristol, BS8 1TD, UK
| | | | | |
Collapse
|
21
|
Marantos C, Mukaro V, Ferrante J, Hii C, Ferrante A. Inhibition of the lipopolysaccharide-induced stimulation of the members of the MAPK family in human monocytes/macrophages by 4-hydroxynonenal, a product of oxidized omega-6 fatty acids. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1057-66. [PMID: 18772336 DOI: 10.2353/ajpath.2008.071150] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The compound 4-hydroxynonenal (4-HNE) is the major aldehyde formed during lipid peroxidation of omega-6-polyunsaturated fatty acids and has been suggested to regulate inflammatory responses because it inhibits tumor necrosis factor (TNF) mRNA production in the human monocytic cell line THP-1. Here we demonstrate that 4-HNE inhibits TNF and interleukin-1beta production in human monocytes in response to lipopolysaccharide. The main action of 4-HNE occurred at the pretranscriptional level; there was no effect on TNF mRNA production or stability when 4-HNE was added after stimulation. The mechanism of action of 4-HNE appears to be downstream of lipopolysaccharide-receptor binding. In the human monocytic MonoMac 6 cell line, 4-HNE caused selective inhibition of the activity of the mitogen-activated protein kinases p38 and ERK1/ERK2, but not JNK. However, in monocytes, the activities of all three kinases were inhibited, suggesting that the effects of 4-HNE were exerted at points upstream of ERK1/ERK2 and JNK as the levels of the phosphorylated kinases were reduced. In contrast, p38 phosphorylation was not inhibited, suggesting that 4-HNE affects kinase activity. 4-HNE also inhibited nuclear factor-kappaB activation in monocytes. In view of the roles of p38, ERK1/ERK2, JNK, and nuclear factor-kappaB in inflammation, the data suggest that 4-HNE, at nontoxic concentrations, has anti-inflammatory properties, most likely through an effect on these signaling molecules, and could lead to the development of novel treatments for inflammatory diseases.
Collapse
Affiliation(s)
- Christos Marantos
- The Sansom Institute and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | | | | | | | | |
Collapse
|
22
|
Tan J, Dwivedi PP, Anderson P, Nutchey BK, O'Loughlin P, Morris HA, May BK, Ferrante A, Hii CS. Antineoplastic agents target the 25-hydroxyvitamin D3 24-hydroxylase messenger RNA for degradation: implications in anticancer activity. Mol Cancer Ther 2008; 6:3131-8. [PMID: 18089708 DOI: 10.1158/1535-7163.mct-07-0427] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Calcitriol or 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] has antitumor activity and hence its levels in patients may play an important role in disease outcome. Here, we report that the antineoplastic agents, daunorubicin hydrochloride, etoposide, and vincristine sulfate inhibited the ability of 1,25(OH)(2)D(3) to cause the accumulation of mRNA for kidney 25-hydroxyvitamin D(3) 24-hydroxylase (CYP24), an enzyme which catabolizes this hormone. This was not due to a drug-induced cytotoxic effect, reduction in the expression of the vitamin D receptor or inhibition of the vitamin D receptor-mediated activation of the mitogen-activated protein kinases or CYP24 promoter activity. Interestingly, there was selective degradation of CYP24 mRNA in the presence of the drugs. This was accompanied by an enhancement in the levels of 1,25(OH)(2)D(3) in cells incubated with 25-hydroxy vitamin D(3). These data identify a novel mechanism of action of some commonly used antineoplastic agents which by decreasing the stability of CYP24 mRNA would prolong the bioavailability of 1,25(OH)(2)D(3) for anticancer actions.
Collapse
Affiliation(s)
- Joseph Tan
- Department of Immunopathology, Children, Youth, and Women's Health Service, University of Adelaide, Adelaide, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bezdecny SA, Karmaus P, Roth RA, Ganey PE. 2,2',4,4'-Tetrachlorobiphenyl upregulates cyclooxygenase-2 in HL-60 cells via p38 mitogen-activated protein kinase and NF-kappaB. Toxicol Appl Pharmacol 2007; 221:285-94. [PMID: 17482227 PMCID: PMC1950673 DOI: 10.1016/j.taap.2007.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 03/15/2007] [Accepted: 03/19/2007] [Indexed: 01/25/2023]
Abstract
Polychlorinated biphenyls (PCBs) are ubiquitous, persistent environmental contaminants that affect a number of cellular systems, including neutrophils. Among the effects caused by the noncoplanar PCB 2,2',4,4'-tetrachlorobiphenyl (2244-TCB) in granulocytic HL-60 cells are increases in superoxide anion production, activation of phospholipase A(2) with subsequent release of arachidonic acid (AA) and upregulation of the inflammatory gene cyclooxygenase-2 (COX-2). The objective of this study was to determine the signal transduction pathways involved in the upregulation of COX-2 by 2244-TCB. Treatment of HL-60 cells with 2244-TCB led to increased expression of COX-2 mRNA. This increase was prevented by the transcriptional inhibitor actinomycin D in cells pretreated with 2244-TCB for 10 min. The increase in COX-2 mRNA was associated with release of (3)H-AA, phosphorylation of p38 and extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinases, increased levels of nuclear NF-kappaB and increased superoxide anion production. Bromoenol lactone, an inhibitor of the calcium-independent phospholipase A(2), reduced (3)H-AA release but had no effect on COX-2 mRNA, protein or activity. Pretreatment with SB-202190 or SB-203580, inhibitors of the p38 MAP kinase pathway, prevented the 2244-TCB-mediated induction of COX-2 and phosphorylation of p38 and ERK MAP kinases. These inhibitors did not alter (3)H-AA release. Treatment with PD 98059 or U 0126, inhibitors of the MAP/ERK (MEK) pathway, prevented the 2244-TCB-mediated activation of ERK but had no effect on COX-2 induction or p38 phosphorylation. 2244-TCB treatment did not affect c-Jun N-terminal kinase (JNK) phosphorylation. 2244-TCB exposure increased the amount of nuclear NF-kappaB. This increase was prevented by pretreatment with p38 MAP kinase inhibitors, but not by pretreatment with MEK inhibitors. Pretreatment with inhibitors of NF-kappaB prevented the 2244-TCB-mediated induction of COX-2 mRNA. 2244-TCB-mediated increases in superoxide anion were prevented by the NADPH oxidase inhibitor apocynin or the free radical scavenger 4-hydroxy TEMPO, but neither of these inhibitors affected the 2244-TCB-induced changes in COX-2 mRNA levels or (3)H-AA release. Taken together these data suggest that p38 MAP kinase-dependent activation of NF-kappaB is critical for the 2244-TCB-mediated upregulation of COX-2 mRNA.
Collapse
Affiliation(s)
- Steven A. Bezdecny
- Department of Pharmacology and Toxicology, Center for Integrative Toxicology and, National Food Safety and Toxicology Center, Michigan State University, East Lansing, Michigan 48824
| | - Peer Karmaus
- Department of Pharmacology and Toxicology, Center for Integrative Toxicology and, National Food Safety and Toxicology Center, Michigan State University, East Lansing, Michigan 48824
| | - Robert A. Roth
- Department of Pharmacology and Toxicology, Center for Integrative Toxicology and, National Food Safety and Toxicology Center, Michigan State University, East Lansing, Michigan 48824
| | - Patricia E. Ganey
- Department of Pharmacology and Toxicology, Center for Integrative Toxicology and, National Food Safety and Toxicology Center, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
24
|
Martins de Lima T, Gorjão R, Hatanaka E, Cury-Boaventura MF, Portioli Silva EP, Procopio J, Curi R. Mechanisms by which fatty acids regulate leucocyte function. Clin Sci (Lond) 2007; 113:65-77. [PMID: 17555405 DOI: 10.1042/cs20070006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Fatty acids (FAs) have been shown to alter leucocyte function and thus to modulate inflammatory and immune responses. In this review, the effects of FAs on several aspects of lymphocyte, neutrophil and macrophage function are discussed. The mechanisms by which FAs modulate the production of lipid mediators, activity of intracellular signalling pathways, activity of lipid-raft-associated proteins, binding to TLRs (Toll-like receptors), control of gene expression, activation of transcription factors, induction of cell death and production of reactive oxygen and nitrogen species are described in this review. The rationale for the use of specific FAs to treat patients with impaired immune function is explained. Substantial improvement in the therapeutic usage of FAs or FA derivatives may be possible based on an improvement in the understanding of the precise molecular mechanisms of action with respect to the different leucocyte types and outcome with respect to the inflammatory responses.
Collapse
Affiliation(s)
- Thais Martins de Lima
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
25
|
Griger Z, Páyer E, Kovács I, Tóth BI, Kovács L, Sipka S, Bíró T. Protein kinase C-β and -δ isoenzymes promote arachidonic acid production and proliferation of MonoMac-6 cells. J Mol Med (Berl) 2007; 85:1031-42. [PMID: 17549442 DOI: 10.1007/s00109-007-0209-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 02/08/2007] [Accepted: 03/30/2007] [Indexed: 10/23/2022]
Abstract
In this study, we investigated the putative roles of certain protein kinase C (PKC) isoenzymes in the regulation of proliferation and arachidonic acid (AA) release in the human monocytoid MonoMac-6 cell line. Experiments employing specific PKC inhibitors and molecular biological methods (RNA-interference, recombinant overexpression) revealed that the two dominantly expressed isozymes, i.e., the "conventional" cPKCbeta and the "novel" nPKCdelta, promote AA production and cellular proliferation. In addition, using different phospholipase A(2) (PLA(2)) inhibitors, we were able to show that the calcium-independent iPLA(2) as well as diacylglycerol lipase (but not the cytosolic PLA(2)) function as "downstream" targets of cPKCbeta and nPKCdelta. In addition, we have also found that, among the other existing PKC isoforms, cPKCalpha plays a minor inhibitory role, whereas nPKCvarepsilon and aPKCzeta apparently do not regulate these cellular processes. In conclusion, in this paper we provide the first evidence that certain PKC isoforms play pivotal, specific, and (at least partly) antagonistic roles in the regulation of AA production and cellular proliferation of human monocytoid MonoMac-6 cells.
Collapse
Affiliation(s)
- Zoltán Griger
- Department of Physiology, University of Debrecen, Research Center for Molecular Medicine, Medical and Health Science Center, Nagyerdei krt. 98., 4032, Debrecen, Hungary
| | | | | | | | | | | | | |
Collapse
|
26
|
Moghaddami N, Irvine J, Gao X, Grover PK, Costabile M, Hii CS, Ferrante A. Novel action of n-3 polyunsaturated fatty acids: inhibition of arachidonic acid-induced increase in tumor necrosis factor receptor expression on neutrophils and a role for proteases. ACTA ACUST UNITED AC 2007; 56:799-808. [PMID: 17328054 DOI: 10.1002/art.22432] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Neutrophils and tumor necrosis factor (TNF) play important roles in the pathogenesis of rheumatoid arthritis (RA). Modulation of TNF receptors (TNFRs) may contribute to the regulation of tissue damage, and n-6 polyunsaturated fatty acids (PUFAs) such as arachidonic acid (AA) can increase the expression of TNFRI and TNFRII on neutrophils. Because the n-3 PUFAs are antiinflammatory in RA, we examined whether, as a novel mechanism of action, n-3 PUFAs can antagonize the AA-induced increase in TNFR expression. METHODS Human neutrophils were treated with PUFAs and examined for changes in surface expression of TNFRs by flow cytometry. Translocation of protein kinase C (PKC) and activation of ERK-1/2 MAPK were determined by Western blotting. Intracellular calcium mobilization was measured in Fura 2-loaded cells by luminescence spectrometry. RESULTS Pretreatment of neutrophils with nanomolar levels of n-3 PUFAs, eicosapentaenoic acid, or docosahexaenoic acid led to a marked inhibition of the AA-induced up-regulation of TNFRs I and II. Such pretreatment, however, did not prevent AA from stimulating the activities of PKC and ERK-1/2, which is required for the actions of AA or its ability to mobilize Ca(2+). Nevertheless, treatment with n-3 PUFAs caused the stimulation of serine proteases that could cleave the TNFRs. CONCLUSION These findings suggest a mechanism by which the n-3 PUFAs inhibit the inflammatory response in RA, by regulating the ability of AA to increase TNFR expression. These results help fill the gaps in our knowledge regarding the mechanisms of action of n-3 PUFAs, thus allowing us to make specific recommendations for the use of n-3 PUFAs in the regulation of inflammatory diseases.
Collapse
Affiliation(s)
- Nahid Moghaddami
- Children, Youth and Women's Health Services, and University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | | | | | | | |
Collapse
|
27
|
Morgan D, Cherny VV, Finnegan A, Bollinger J, Gelb MH, DeCoursey TE. Sustained activation of proton channels and NADPH oxidase in human eosinophils and murine granulocytes requires PKC but not cPLA2 alpha activity. J Physiol 2006; 579:327-44. [PMID: 17185330 PMCID: PMC2075394 DOI: 10.1113/jphysiol.2006.124248] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The prevailing hypothesis that a signalling pathway involving cPLA(2)alpha is required to enhance the gating of the voltage-gated proton channel associated with NADPH oxidase was tested in human eosinophils and murine granulocytes. This hypothesis invokes arachidonic acid (AA) liberated by cPLA(2)alpha as a final activator of proton channels. In human eosinophils studied in the perforated-patch configuration, phorbol myristate acetate (PMA) stimulation elicited NADPH oxidase-generated electron current (I(e)) and enhanced proton channel gating identically in the presence or absence of three specific cPLA(2)alpha inhibitors, Wyeth-1, pyrrolidine-2 and AACOCF(3) (arachidonyl trifluoromethyl ketone). In contrast, PKC inhibitors GFX (GF109203X) or staurosporine prevented the activation of either proton channels or NADPH oxidase. PKC inhibition during the respiratory burst reversed the activation of both molecules, suggesting that ongoing phosphorylation is required. This effect of GFX was inhibited by okadaic acid, implicating phosphatases in proton channel deactivation. Proton channel activation by AA was partially reversed by GFX or staurosporine, indicating that AA effects are due in part to activation of PKC. In granulocytes from mice with the cPLA(2)alpha gene disrupted (knockout mice), PMA or fMetLeuPhe activated NADPH oxidase and proton channels in a manner indistinguishable from the responses of control cells. Thus, cPLA(2)alpha is not essential to activate the proton conductance or for a normal respiratory burst. Instead, phosphorylation of the proton channel or an activating molecule converts the channel to its activated gating mode. The existing paradigm for regulation of the concerted activity of proton channels and NADPH oxidase must be revised.
Collapse
Affiliation(s)
- Deri Morgan
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, 1750 West Harrison, Chicago, IL 60612 USA
| | | | | | | | | | | |
Collapse
|
28
|
Hughes-Fulford M, Rodenacker K, Jütting U. Reduction of anabolic signals and alteration of osteoblast nuclear morphology in microgravity. J Cell Biochem 2006; 99:435-49. [PMID: 16619267 DOI: 10.1002/jcb.20883] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bone loss has been repeatedly documented in astronauts after flight, yet little is known about the mechanism of bone loss in space flight. Osteoblasts were activated during space flight in microgravity (microg) with and without a 1 gravity (1 g) field and 24 genes were analyzed for early induction. Induction of proliferating cell nuclear antigen (PCNA), transforming growth factor beta (TGFbeta), cyclo-oxygenase-2 (cox-2), cpla2, osteocalcin (OC), c-myc, fibroblast growth factor-2 (fgf-2), bcl2, bax, and fgf-2 message as well as FGF-2 protein were significantly depressed in microg when compared to ground (gr). Artificial onboard gravity normalized the induction of c-myc, cox-2, TGFbeta, bax, bcl2, and fgf-2 message as well as FGF-2 protein synthesis in spaceflight samples. In normal gravity, FGF-2 induces bcl2 expression; we found that bcl2 expression was significantly reduced in microgravity conditions. Since nuclear shape is known to elongate in the absence of mitogens like FGF-2, we used high-resolution image-based morphometry to characterize changes in osteoblast nuclear architecture under microgravity, 1 g flight, and ground conditions. Besides changes in cell shape (roundish/elliptic), other high-resolution analyses show clear influences of gravity on the inner nuclear structure. These changes occur in the texture, arrangement, and contrast of nuclear particles and mathematical modeling defines the single cell classification of the osteoblasts. Changes in nuclear structure were evident as early as 24 h after exposure to microgravity. This documented alteration in nuclear architecture may be a direct result of decreased expression of autocrine and cell cycle genes, suggesting an inhibition of anabolic response in microg. Life on this planet has evolved in a normal gravity field and these data suggest that gravity plays a significant role in regulation of osteoblast transcription.
Collapse
Affiliation(s)
- Millie Hughes-Fulford
- Northern California Institute for Research and Education, San Francisco, California, USA.
| | | | | |
Collapse
|
29
|
Crozier SJ, Zhang X, Wang J, Cheung J, Kimball SR, Jefferson LS. Activation of signaling pathways and regulatory mechanisms of mRNA translation following myocardial ischemia-reperfusion. J Appl Physiol (1985) 2006; 101:576-82. [PMID: 16690784 PMCID: PMC2631174 DOI: 10.1152/japplphysiol.01122.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Protein expression in the heart is altered following periods of myocardial ischemia. The changes in protein expression are associated with increased cell size that can be maladaptive. There is little information regarding the regulation of protein expression through the process of mRNA translation during ischemia and reperfusion in the heart. Therefore, the purpose of this study was to identify changes in signaling pathways and downstream regulatory mechanisms of mRNA translation in an in vivo model of myocardial ischemia and reperfusion. Hearts were collected from rats whose left main coronary arteries had either been occluded for 25 min or reversibly occluded for 25 min and subsequently reperfused for 15 min. Following reperfusion, both the phosphoinositide 3-kinase and mitogen-activated protein kinase pathways were activated, as evidenced by increased phosphorylation of Akt (PKB), extracellular signal-regulated kinase 1/2, and p38 mitogen-activated protein kinase. Activation of Akt stimulated signaling through the protein kinase mammalian target of rapamycin, as evidenced by increased phosphorylation of two of its effectors, the ribosomal protein S6 kinase and the eukaryotic initiation factor eIF4E binding protein 1. Ischemia and reperfusion also resulted in increased phosphorylation of eIF2 and eIF2B. These changes in protein phosphorylation suggest that control of mRNA translation following ischemia and reperfusion is modulated through a number of signaling pathways and regulatory mechanisms.
Collapse
Affiliation(s)
- Stephen J Crozier
- Dept. of Cellular and Molecular Physiology, The Pennsylvania State Univ. College of Medicine, PO Box 850, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
30
|
Ferrante A, Robinson BS, Singh H, Jersmann HPA, Ferrante JV, Huang ZH, Trout NA, Pitt MJ, Rathjen DA, Easton CJ, Poulos A, Prager RH, Lee FS, Hii CST. A novel beta-oxa polyunsaturated fatty acid downregulates the activation of the IkappaB kinase/nuclear factor kappaB pathway, inhibits expression of endothelial cell adhesion molecules, and depresses inflammation. Circ Res 2006; 99:34-41. [PMID: 16763165 DOI: 10.1161/01.res.0000231292.66084.cd] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several novel polyunsaturated fatty acids (PUFAs) that contain either an oxygen or sulfur atom in the beta-position were found to exhibit more selective antiinflammatory properties than their natural PUFA counterparts. One of these, beta-oxa-23:4n-6, unlike natural PUFAs, lacked ability to stimulate oxygen radical production in neutrophils but caused marked inhibition of agonist-induced upregulation of leukocyte adhesion to cultured human umbilical vein endothelial cells (HUVEC) and E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 expression. In addition, beta-oxa-23:4n-6 inhibited acute and chronic inflammatory responses in mice as well as the upregulation of adhesion molecule expression in arterial endothelium. This action of beta-oxa-23:4n-6 required a functional 12- but not 5-lipoxygenase or cyclooxygenases, consistent with its metabolism via the 12-lipoxygenase pathway. Whereas beta-oxa-23:4n-6 did not affect the activation of mitogen-activated protein kinases by tumor necrosis factor, activation of the IkappaB kinase/nuclear factor kappaB pathway was selectively inhibited. These novel PUFAs could form the basis for a potential new class of pharmaceuticals for treating inflammatory diseases, including atherosclerosis.
Collapse
Affiliation(s)
- Antonio Ferrante
- Department of Immunopathology, Women's and Children's Hospital, University of Adelaide, South Australia, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Karkoulias G, Mastrogianni O, Lymperopoulos A, Paris H, Flordellis C. alpha(2)-Adrenergic receptors activate MAPK and Akt through a pathway involving arachidonic acid metabolism by cytochrome P450-dependent epoxygenase, matrix metalloproteinase activation and subtype-specific transactivation of EGFR. Cell Signal 2006; 18:729-739. [PMID: 16098714 DOI: 10.1016/j.cellsig.2005.06.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Revised: 06/29/2005] [Accepted: 06/29/2005] [Indexed: 12/11/2022]
Abstract
Previous study carried out on PC12 cells expressing each alpha(2)-adrenergic receptor subtype individually (PC12/alpha(2A), /alpha(2B) or /alpha(2C)) have shown that epinephrine causes activation of PI3K and phosphorylation of Erk 1/2. The signal transduction mechanisms whereby each alpha(2)-AR subtype triggers these actions were investigated in the present study. In all three clones, epinephrine-induced phosphorylation of MAPK or Akt was abolished by prior treatment with ketoconazole, but not with indomethacin or nordihydroguaiaretic acid. On the other hand, treatment of the clones with epinephrine caused a rapid increase of AA release, which was fully abolished by the PLC inhibitor U73122, but was unaffected by the PLA(2) inhibitor quinacrine. The effects of epinephrine on MAPK and Akt were mimicked by cell exposure to exogenous AA. Furthermore, whereas U73122 abolished the effects of epinephrine, quinacrine only prevented the effects of epinephrine, suggesting that AA release through PLC and its metabolites are responsible for MAPK and Akt activation by alpha(2)-ARs. Treatment with 1,10-phenanthroline, CRM197, or tyrphostin AG1478 suppressed MAPK and Akt phosphorylation by epinephrine or AA, in a subtype-specific manner. Furthermore, conditioned culture medium from epinephrine-treated PC12/alpha(2) induced MAPK and Akt phosphorylation in wild-type PC12. Inhibition of NGFR tyrosine phosphorylation had no effect but the src inhibitor PP1 abolished MAPK and Akt phosphorylation in all three clones. Our results provide evidence for a putative pathway by which alpha(2)-ARs activate MAPK and Akt in PC12 cells, involving stimulation of PLC, AA release, AA metabolism by cytochrome P450-dependent epoxygenase, stimulation of matrix metalloproteinases and subtype-specific transactivation of EGFR through src activation and heparin-binding EGF-like growth factor release.
Collapse
Affiliation(s)
- Georgios Karkoulias
- Department of Pharmacology, School of Medicine, University of Patras, 26504 Rio Patras, Greece
| | | | | | | | | |
Collapse
|
32
|
Malhi H, Bronk SF, Werneburg NW, Gores GJ. Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis. J Biol Chem 2006; 281:12093-101. [PMID: 16505490 DOI: 10.1074/jbc.m510660200] [Citation(s) in RCA: 573] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Elevated serum free fatty acids (FFAs) and hepatocyte lipoapoptosis are features of non-alcoholic fatty liver disease. However, the mechanism by which FFAs mediate lipoapoptosis is unclear. Because JNK activation is pivotal in both the metabolic syndrome accompanying non-alcoholic fatty liver disease and cellular apoptosis, we examined the role of JNK activation in FFA-induced lipoapoptosis. Multiple hepatocyte cell lines and primary mouse hepatocytes were treated in culture with monounsaturated fatty acids and saturated fatty acids. Despite equal cellular steatosis, apoptosis and JNK activation were greater during exposure to saturated versus monounsaturated FFAs. Inhibition of JNK, pharmacologically as well as genetically, reduced saturated FFA-mediated hepatocyte lipoapoptosis. Cell death was caspase-dependent and associated with mitochondrial membrane depolarization and cytochrome c release indicating activation of the mitochondrial pathway of apoptosis. JNK-dependent lipoapoptosis was associated with activation of Bax, a known mediator of mitochondrial dysfunction. As JNK can activate Bim, a BH3 domain-only protein capable of binding to and activating Bax, its role in lipoapoptosis was also examined. Small interfering RNA-targeted knock-down of Bim attenuated both Bax activation and cell death. Collectively the data indicate that saturated FFAs induce JNK-dependent hepatocyte lipoapoptosis by activating the proapoptotic Bcl-2 proteins Bim and Bax, which trigger the mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Harmeet Malhi
- Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
33
|
Flamand N, Lefebvre J, Surette ME, Picard S, Borgeat P. Arachidonic acid regulates the translocation of 5-lipoxygenase to the nuclear membranes in human neutrophils. J Biol Chem 2006; 281:129-36. [PMID: 16275640 DOI: 10.1074/jbc.m506513200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elevation of the intracellular cAMP concentration in agonist-activated human neutrophils (PMN) leads to the concomitant inhibitions of arachidonic acid (AA) release, 5-lipoxygenase (5-LO) translocation, and leukotriene (LT) biosynthesis. We report herein that exogenous AA completely prevents cAMP-dependent inhibition of 5-LO translocation and LT biosynthesis in agonist-activated PMN. Moreover, the group IVA phospholipase A2 inhibitor pyrrophenone and the MEK inhibitor U-0126 inhibited AA release and 5-LO translocation in activated PMN, and these effects were also prevented by exogenous AA, demonstrating a functional link between AA release and 5-LO translocation. Polyunsaturated fatty acids of the C18 and C20 series containing at least three double bonds located from carbon 9 (or closer to the carboxyl group) were equally effective as AA in restoring 5-LO translocation in pyrrophenone-treated agonist-activated PMN. Importantly, experiments with the 5-LO-activating protein inhibitor MK-0591 and the intracellular Ca2+ chelator BAPTA-AM demonstrated that the AA-regulated 5-LO translocation is FLAP- and Ca2+-dependent. Finally, the redox and competitive 5-LO inhibitors L-685,015, L-739,010, and L-702,539 (but not cyclooxygenase inhibitors) efficiently substituted for AA to reverse the pyrrophenone inhibition of 5-LO translocation, indicating that the site of regulation of 5-LO translocation by AA is at or in the vicinity of the catalytic site. This report demonstrates that AA regulates the translocation of 5-LO in human PMN and unravels a novel mechanism of the cAMP-mediated inhibition of LT biosynthesis.
Collapse
Affiliation(s)
- Nicolas Flamand
- Centre de Recherche en Rhumatologie et Immunologie, Université Laval, Québec, Canada G1V 4G2
| | | | | | | | | |
Collapse
|
34
|
Kim C, Dinauer MC. Impaired NADPH oxidase activity in Rac2-deficient murine neutrophils does not result from defective translocation of p47phox and p67phox and can be rescued by exogenous arachidonic acid. J Leukoc Biol 2006; 79:223-34. [PMID: 16275890 DOI: 10.1189/jlb.0705371] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Rac2 is a hematopoietic-specific Rho-GTPase that plays a stimulus-specific role in regulating reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation and other functional responses in neutrophils. In this study, rac2-/- neutrophils were shown to have significantly decreased NADPH oxidase activity and actin remodeling in response to exogenous arachidonic acid (AA), as previously observed for phorbol 12-myristate 13-acetate (PMA) or formyl-Met-Leu-Phe (fMLP) as agonists. PMA-, fMLP-, or AA-induced translocation of p47phox and p67phox to the plasma membrane was not impaired in rac2-/- neutrophils. Combined stimulation of rac2-/- neutrophils with exogenous AA and PMA had a synergistic effect on NADPH oxidase activity, and superoxide production increased to a level that was at least as high as wild-type cells and had no effect on fMLP-elicited enzyme activity. Membrane translocation of p47phox and p67phox as well as Rac1 activation was not increased further by combined PMA and AA stimulation. Inhibitor studies were consistent with important roles for phorbol ester-activated protein kinase C (PKC) isoforms and an atypical isoform, PKCzeta, in superoxide production by wild-type and rac2-/- neutrophils stimulated with AA and PMA. In addition, PMA-stimulated release of AA and cytoplasmic phospholipase A2 expression in rac2-/- neutrophils were similar to wild-type, suggesting that deficient AA production by PMA-stimulated rac2-/- neutrophils does not explain the effect of exogenous AA on oxidase activity. Although not required for translocation of p47phox and p67phox, Rac2 is necessary for optimal activity of the assembled oxidase complex, an effect that can be replaced by exogenous AA, which may act directly or via an exogenous AA-induced mediator.
Collapse
Affiliation(s)
- Chaekyun Kim
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics (Hematology/Oncology), James Whitcomb Riley Hospital for Children, Indiana University Medical Center, Indianapolis, IN, USA
| | | |
Collapse
|
35
|
Nutchey B, Kaplan J, Dwivedi P, Omdahl J, Ferrante A, May B, Hii C. Molecular action of 1,25-dihydroxyvitamin D3 and phorbol ester on the activation of the rat cytochrome P450C24 (CYP24) promoter: role of MAP kinase activities and identification of an important transcription factor binding site. Biochem J 2005; 389:753-62. [PMID: 15836435 PMCID: PMC1180726 DOI: 10.1042/bj20041947] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although investigations of the transcriptional regulation of the rat cytochrome P450C24 [CYP24 (25-hydroxyvitamin D3 24-hydroxylase)] gene by 1,25D (1,25-dihydroxyvitamin D3) at either the genomic, or more recently at the non-genomic, level have provided insight into the mechanism of control of 1,25D levels, this regulation is still poorly characterized. Using HEK-293T cells (human embryonic kidney 293T cells), we reported that 1,25D induction of CYP24 requires JNK (c-Jun N-terminal kinase) but not the ERK1/2 (extracellular-signal-regulated kinase 1/2). The phenomenon of synergistic up-regulation of CYP24 expression by PMA and 1,25D is well known and was found to be protein kinase C-dependent. Whereas ERK1/2 was not activated by 1,25D alone, its activation by PMA was potentiated by 1,25D also. The importance of ERK1/2 for transcriptional synergy was demonstrated by transfection of a dominant-negative ERK1(K71R) mutant (where K71R stands for Lys71-->Arg), which resulted in a reduced level of synergy on a CYP24 promoter-luciferase construct. JNK was also shown to be required for synergy. We report, in the present study, the identification of a site located at -171/-163, about 30 bp upstream of the vitamin D response element-1 in the CYP24 proximal promoter. This sequence, 5'-TGTCGGTCA-3', is critical for 1,25D induction of CYP24 and is therefore termed the vitamin D stimulatory element. The vitamin D stimulatory element, a target for the JNK module, and an Ets-1 binding site were shown to be vital for synergy between PMA and 1,25D. This is the first report to identify the DNA binding sequences required for the synergy between PMA and 1,25D and a role for JNK on the CYP24 gene promoter.
Collapse
Affiliation(s)
- Barbara K. Nutchey
- *School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5000, Australia
| | - Josef S. Kaplan
- *School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5000, Australia
| | - Prem P. Dwivedi
- *School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5000, Australia
| | - John L. Omdahl
- †Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131-5221, U.S.A
| | - Antonio Ferrante
- ‡Department of Paediatrics, University of Adelaide, Adelaide, SA 5006, Australia
- §Department of Immunopathology, Women's and Children's Hospital, 72 King William Road, SA 5006, North Adelaide, Australia
- ∥School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Brian K. May
- *School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5000, Australia
| | - Charles S. T. Hii
- ‡Department of Paediatrics, University of Adelaide, Adelaide, SA 5006, Australia
- §Department of Immunopathology, Women's and Children's Hospital, 72 King William Road, SA 5006, North Adelaide, Australia
- To whom correspondence should be addressed (email )
| |
Collapse
|
36
|
Talukdar I, Szeszel-Fedorowicz W, Salati LM. Arachidonic acid inhibits the insulin induction of glucose-6-phosphate dehydrogenase via p38 MAP kinase. J Biol Chem 2005; 280:40660-7. [PMID: 16210322 DOI: 10.1074/jbc.m505531200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polyunsaturated fatty acids are potent inhibitors of lipogenic gene expression in liver. The lipogenic enzyme glucose-6-phosphate dehydrogenase (G6PD) is unique in this gene family, in that fatty acids inhibit at a post-transcriptional step. In this study, we have provided evidence for a signaling pathway for the arachidonic acid inhibition of G6PD mRNA abundance. Arachidonic acid decreases the insulin induction of G6PD expression; by itself, arachidonic acid does not inhibit basal G6PD mRNA accumulation. The insulin stimulation of G6PD involves the phosphoinositide 3-kinase (PI 3-kinase) pathway (Wagle, A., Jivraj, S., Garlock, G. L., and Stapleton, S. R. (1998) J. Biol. Chem. 273, 14968-14974). Incubation of hepatocytes with arachidonic acid blocks the activation of PI 3-kinase by insulin as observed by a decrease in Ser(473) phosphorylation of Akt, the downstream effector of PI 3-kinase. The decrease in PI 3-kinase activity was associated with an increase in Ser(307) phosphorylation of IRS-1. Western analysis demonstrated increased phosphorylation of p38 mitogen-activated protein kinase (MAPK) in arachidonic acid-treated cells, whereas extracellular signal-regulated kinase and c-Jun NH(2)-terminal kinase activity was not changed. Incubating the hepatocytes with the p38 MAPK inhibitor, SB203580, blocked the arachidonic acid inhibition of G6PD mRNA accumulation. Furthermore, SB203580 decreased the arachidonic acid-mediated Ser(307) phosphorylation of IRS-1 and rescued Akt activation that was otherwise decreased by arachidonic acid. Thus, arachidonic acid inhibits the insulin stimulation of G6PD mRNA accumulation by stimulating the p38 MAPK pathway, thereby inhibiting insulin signal transduction.
Collapse
Affiliation(s)
- Indrani Talukdar
- Department of Biochemistry and Molecular Pharmacology, West Virginia University, Morgantown, West Virginia 26506, USA
| | | | | |
Collapse
|
37
|
Hendrickx N, Dewaele M, Buytaert E, Marsboom G, Janssens S, Van Boven M, Vandenheede JR, de Witte P, Agostinis P. Targeted inhibition of p38alpha MAPK suppresses tumor-associated endothelial cell migration in response to hypericin-based photodynamic therapy. Biochem Biophys Res Commun 2005; 337:928-35. [PMID: 16214108 DOI: 10.1016/j.bbrc.2005.09.135] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 09/20/2005] [Indexed: 11/25/2022]
Abstract
Photodynamic therapy (PDT) is an established anticancer modality and hypericin is a promising photosensitizer for the treatment of bladder tumors. We show that exposure of bladder cancer cells to hypericin PDT leads to a rapid rise in the cytosolic calcium concentration which is followed by the generation of arachidonic acid by phospholipase A2 (PLA2). PLA2 inhibition significantly protects cells from the PDT-induced intrinsic apoptosis and attenuates the activation of p38 MAPK, a survival signal mediating the up-regulation of cyclooxygenase-2 that converts arachidonic acid into prostanoids. Importantly, inhibition of p38alpha MAPK blocks the release of vascular endothelial growth factor and suppresses tumor-promoted endothelial cell migration, a key step in angiogenesis. Hence, targeted inhibition of p38alpha MAPK could be therapeutically beneficial to PDT, since it would prevent COX-2 expression, the inducible release of growth and angiogenic factors by the cancer cells, and cause an increase in the levels of free arachidonic acid, which promotes apoptosis.
Collapse
Affiliation(s)
- Nico Hendrickx
- Department Molecular and Cell Biology, Catholic University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
López-Lluch G, Fernández-Ayala DJM, Alcaín FJ, Burón MI, Quesada JM, Navas P. Inhibition of COX activity by NSAIDs or ascorbate increases cAMP levels and enhances differentiation in 1alpha,25-dihydroxyvitamin D3-induced HL-60 cells. Arch Biochem Biophys 2005; 436:32-9. [PMID: 15752706 DOI: 10.1016/j.abb.2004.12.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 12/20/2004] [Indexed: 12/18/2022]
Abstract
Arachidonic acid metabolism is modulated during differentiation induced by 1alpha,25(OH)(2)D(3) in HL-60 cells. Antioxidants that affect arachidonic acid metabolism enhance this differentiation program. Ascorbate also enhances differentiation in 1alpha,25(OH)(2)D(3)-induced cells depending on the induction of cAMP. The aim of this work was to study if this cAMP rise depends on modulation of arachidonic acid metabolism by ascorbate. Cyclooxygenase inhibitors, indomethacin and aspirin, increased cAMP levels and also enhanced 1alpha,25(OH)(2)D(3)-induced differentiation in HL-60 cells. Ascorbate did not affect the release of arachidonic acid-derived metabolites but decreased the levels of TXB(2) and PGE(2), suggesting the inhibition of cyclooxygenase. On the other hand, free arachidonic acid increased both cAMP levels and differentiation in the absence or presence of 1alpha,25(OH)(2)D(3). Neither cyclooxygenase inhibitors nor ascorbate modified AA effect. Then, inhibition of cyclooxygenase activity by ascorbate could accumulate free arachidonic acid or other metabolites that increase cAMP levels and enhance differentiation in 1alpha,25(OH)(2)D(3)-induced HL-60 cells.
Collapse
Affiliation(s)
- G López-Lluch
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, 41013 Sevilla, Spain.
| | | | | | | | | | | |
Collapse
|
39
|
Won JS, Im YB, Khan M, Singh AK, Singh I. Involvement of phospholipase A2 and lipoxygenase in lipopolysaccharide-induced inducible nitric oxide synthase expression in glial cells. Glia 2005; 51:13-21. [PMID: 15779087 DOI: 10.1002/glia.20178] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The present study underlines the importance of phospholipase A2 (PLA2)- and lipoxygenase (LO)-mediated signaling processes in the regulation of inducible nitric oxide synthase (iNOS) gene expression. In glial cells, lipopolysaccharide (LPS) induced the activities of PLA2 (calcium-independent PLA2; iPLA2 and cytosolic PLA2; cPLA2) as well as gene expression of iNOS. The inhibition of cPLA2 by methyl arachidonyl fluorophosphates (MAFP) or antisense oligomer against cPLA2 and inhibition of iPLA2 by bromoenol lactone reduced the LPS-induced iNOS gene expression and NFkappaB activation. In addition, the inhibition of LO by nordihydroguaiaretic acid (NDGA; general LO inhibitor) or MK886 (5-LO inhibitor), but not baicalein (12-LO inhibitor), completely abrogated the LPS-induced iNOS expression. Because NDGA could abrogate the LPS-induced activation of NFkappaB, while MK886 had no effect on it, LO-mediated inhibition of iNOS gene induction by LPS may involve an NFkappaB-dependent or -independent (by 5-LO) pathway. In contrast to LO, however, the cyclooxygenase (COX) may not be involved in the regulation of LPS-mediated induction of iNOS gene because COX inhibition by indomethacin (general COX inhibitor), SC560 (COX-1 inhibitor), and NS398 (COX-2 inhibitor) affected neither the LPS-induced iNOS expression nor activation of NFkappaB. These results indicate a role for cPLA2 and iPLA2 in LPS-mediated iNOS gene induction in glial cells and the involvement of LO in these reactions.
Collapse
Affiliation(s)
- Je-Seong Won
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | |
Collapse
|
40
|
Hii CS, Anson DS, Costabile M, Mukaro V, Dunning K, Ferrante A. Characterization of the MEK5-ERK5 module in human neutrophils and its relationship to ERK1/ERK2 in the chemotactic response. J Biol Chem 2004; 279:49825-34. [PMID: 15381709 DOI: 10.1074/jbc.m406892200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of the extracellular signal-regulated kinase (ERK) 1 and ERK2 in the neutrophil chemotactic response remains to be identified since a previously used specific inhibitor of MEK1 and MEK2, PD98059, that was used to provide evidence for a role of ERK1 and ERK2 in regulating chemotaxis, has recently been reported to also inhibit MEK5. This issue is made more critical by our present finding that human neutrophils express mitogen-activated protein (MAP) kinase/ERK kinase (MEK)5 and ERK5 (Big MAP kinase), and that their activities were stimulated by the bacterial tripeptide, formyl methionyl-leucyl-phenylalanine (fMLP). Dose response studies demonstrated a bell-shaped profile of fMLP-stimulated MEK5 and ERK5 activation, but this was left-shifted when compared with the profile of fMLP-stimulated chemotaxis. Kinetics studies demonstrated increases in kinase activity within 2 min, peaking at 3-5 min, and MEK5 activation was more persistent than that of ERK5. There were some similarities as well as differences in the pattern of activation between fMLP-stimulated ERK1 and ERK2, and MEK5-ERK5 activation. The up-regulation of MEK5-ERK5 activities was dependent on phosphatidylinositol 3-kinase. Studies with the recently described specific MEK inhibitor, PD184352, at concentrations that inhibited ERK1 and ERK2 but not ERK5 activity demonstrate that the ERK1 and ERK2 modules were involved in regulating fMLP-stimulated chemotaxis and chemokinesis. Our data suggest that the MEK5-ERK5 module is likely to regulate neutrophil responses at very low chemoattractant concentrations whereas at higher concentrations, a shift to the ERK1/ERK2 and p38 modules is apparent.
Collapse
Affiliation(s)
- Charles S Hii
- Department of Immunopathology, Women's and Children's Hospital, 72 King William Road, Adelaide SA5006, Australia.
| | | | | | | | | | | |
Collapse
|
41
|
Alexander LD, Alagarsamy S, Douglas JG. Cyclic stretch-induced cPLA2 mediates ERK 1/2 signaling in rabbit proximal tubule cells. Kidney Int 2004; 65:551-63. [PMID: 14717925 DOI: 10.1111/j.1523-1755.2004.00405.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Recent evidence from this laboratory have demonstrated a critical role of phospholipase A2 (PLA2) and arachidonic acid in angiotensin II type 2 (AT2) receptor-mediated kinase activation in renal epithelium independent of phosphoinositide- specific phospholipase C (PLC) and without the necessity of eicosanoid biosynthesis. In the present study, we investigated whether cyclic stress phosphorylates and activates the mitogen-activated protein kinase (MAPK) pathway and whether PLA2 activation mediates mechanotransduction in renal epithelial cells. The rational for studying kidney epithelial cells relates to their similarity to podocytes, which undergo mechanical stretch related to changes in intraglomerular pressure. METHODS To produce strain or stretch, primary cultures of rabbit proximal tubular cell cells are grown in tissue culture wells having a collagen-coated Silastic deformable membrane bottoms and applying vacuum to the well to generate alternating cycles of stretch and relaxation (30 cycles/min). RESULTS We found that cyclic stretching of rabbit proximal tubular cells caused a time- and intensity-dependent activation of extracellular signal-regulated kinases 1 and 2 (ERK 1/2) in proximal tubular cells as detected by its phosphorylation. In addition, mechanical stretch induced PLA2 activation and a subsequent rapid release of arachidonic acid. Inhibition of PLA2 by mepacrine and methyl arachidonyl fluorophosphonate ketone (AACOCF3) attenuated both arachidonic acid release and ERK 1/2 activation by cyclic stretch, supporting the importance of PLA2 as a mediator of mechanotransduction in renal proximal tubular cells. A requirement for extracellular Ca2+ and stretch-activated Ca2+ channels was also documented. Complete inhibition of ERK 1/2 by PD98059, a MAPK kinase (MEK) inhibitor, did not suppress stretch- induced PLA2 activation and arachidonic acid release, suggesting the later events were upstream of ERK 1/2. Cyclic stretch also caused rapid phosphorylation of the EGF receptor kinase and c-Src. Furthermore, arachidonic acid itself induced time- and dose-dependent phosphorylation of c-Src. In addition, the c-Src inhibitor PP2 and selective EGF receptor kinase inhibitor AG1478 attenuated both ERK 1/2 and EGF receptor phosphorylation by cyclic stretch. CONCLUSION PLA2 dependence for ERK 1/2 activation in response to cyclic stretch in proximal tubular epithelial cells was established in this report. In addition, these findings indicate cyclic stretch increased the tyrosine phosphorylation of the EGF receptor and c-Src and that c-Src acts upstream of the EGF receptor to mediate its phosphorylation, whereby both are critical for stretch- induced ERK 1/2 activation in rabbit proximal tubular cells. These observations documents for the first time a mechanism of mechanical stretch-induced kinase activation mediated by stretch activated Ca2+ channels and PLA2-dependent release of arachidonic acid.
Collapse
Affiliation(s)
- Larry D Alexander
- Department of Medicine, Division of Nephrology and Hypertension, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, Ohio 44106-4982, USA.
| | | | | |
Collapse
|
42
|
12-lipoxygenase metabolites of arachidonic acid mediate metabotropic glutamate receptor-dependent long-term depression at hippocampal CA3-CA1 synapses. J Neurosci 2004. [PMID: 14673007 DOI: 10.1523/jneurosci.23-36-11427.2003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Arachidonic acid metabolites have been proposed as signaling molecules in hippocampal long-term potentiation (LTP) and long-term depression (LTD) for >15 years. However, the functional role of these molecules remains controversial. Here we used a multidisciplinary biochemical, electrophysiological, and genetic approach to examine the function of the 12-lipoxygenase metabolites of arachidonic acid in long-term synaptic plasticity at CA3-CA1 synapses. We found that the 12-lipoxygenase pathway is required for the induction of metabotropic glutamate receptor-dependent LTD (mGluR-LTD), but is not required for LTP: (1) Hippocampal homogenates were capable of synthesizing the 12-lipoxygenase metabolite of arachidonic acid, 12(S)-hydroxyeicosa-5Z,8Z,10E,14Z-tetraenoic acid (HETE). (2) Stimulation protocols that induce mGluR-LTD lead to a release of 12-(S)-HETE from acute hippocampal slices. (3) A mouse in which the leukocyte-type 12-lipoxygenase (the neuronal isoform) was deleted through homologous recombination was deficient in mGluR-LTD, but showed normal LTP. (4) Pharmacological inhibition of 12-lipoxygenase also blocked induction of mGluR-LTD. (5) Finally, direct application of 12(S)-HPETE, but not 15(S)-HPETE, to hippocampal slices induced a long-term depression of synaptic transmission that mimicked and occluded mGluR-LTD induced by synaptic stimulation. Thus, 12(S)-hydroperoxyeicosa-5Z, 8Z, 10E, 14Z-tetraenoic acid (12(S)-HPETE), a 12-lipoxygenase metabolite of arachidonic acid, satisfies all of the criteria of a messenger molecule that is actively recruited for the induction of mGluR-LTD.
Collapse
|
43
|
JOUBERT A, MARITZ C, JOUBERT F. Influence of prostaglandin A2 and 2-methoxyestradiol on mitogen-activated protein kinase (MAPK) expression levels in malignant cell lines. Biomed Res 2004. [DOI: 10.2220/biomedres.25.133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Coulon L, Calzada C, Moulin P, Véricel E, Lagarde M. Activation of p38 mitogen-activated protein kinase/cytosolic phospholipase A2 cascade in hydroperoxide-stressed platelets. Free Radic Biol Med 2003; 35:616-25. [PMID: 12957654 DOI: 10.1016/s0891-5849(03)00386-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
12-Hydroperoxy-eicosatetraenoic acid (12-HpETE), the main hydroperoxide formed in platelets from arachidonic acid (AA) by 12-lipoxygenase, has been shown to increase the sensitivity of platelets to agonists resulting in increased aggregation. The aim of the present study was to determine the direct effect of low concentrations of 12-HpETE on the signaling pathways leading to AA release from membrane phospholipids and thromboxane A2 (TxA2) formation. Exogenous 12-HpETE activated platelet p38 mitogen-activated protein kinase (p38 MAPK), as assessed by its phosphorylation, at a concentration as low as 100 nM and was much more potent than hydrogen peroxide. Moreover, the incubation of platelets with 100 nM 12-HpETE for 2 min led to the phosphorylation of cytosolic phospholipase A2 (cPLA2). It was associated with a significant decrease in the concentration of AA esterified in phospholipids and an increased concentration of thromboxane B2, the stable catabolite of TxA2. Additionally, decreasing glutathione peroxidase activity pharmacologically favored endogenous 12-HpETE formation and led to an increase in phosphorylated p38 MAPK, while a thiol-reducing agent such as N-acetyl-cysteine fully prevented it. Finally, significant activation of p38 MAPK was also observed in platelets from type 2 diabetic patients with mild hyperglycemia. In conclusion, our data provide a new insight into the mechanism of 12-HpETE-induced platelet priming, suggesting that hydroperoxide-induced p38 MAPK activation could play a relevant role in the exacerbated platelet activation associated with oxidative stress as found in diabetes.
Collapse
|
45
|
Liu J, Liu Z, Chuai S, Shen X. Phospholipase C and phosphatidylinositol 3-kinase signaling are involved in the exogenous arachidonic acid-stimulated respiratory burst in human neutrophils. J Leukoc Biol 2003; 74:428-37. [PMID: 12949247 DOI: 10.1189/jlb.1102537] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
To define the role of phospholipase C (PLC) and phosphatidylinositol 3-kinase (PI-3K), signaling pathways in arachidonic acid (AA)-stimulated respiratory burst in human neutrophils, the AA-stimulated respiratory burst, Ins(1,4,5)P(3) production, PI-3K activation, and cytoplasmic Ca(2+) mobilization were investigated. It was found that Ins(1,4,5)P(3) production and PI-3K activity in AA-stimulated cells were increased in a dose-dependent manner. U73122, the PLC inhibitor, effectively inhibited the AA-stimulated respiratory burst and Ca(2+) release from the intracellular calcium store but not the activity of PI-3K, indicating the independence of PI-3K signaling on PLC activation. Wortmannin, the PI-3K inhibitor, at the concentration sufficient to inhibit PI-3K activity, can only partially inhibit Ca(2+) release from the internal store, indicating a partial regulation of PLC signaling by PI-3K and the existence of two pathways initiated by different PLC subfamilies. One is regulated by PI-3K activation, and the other is independent of PI-3K signaling. It was observed that AA could still induce a noncapacitative Ca(2+) entry in the cells when Ca(2+) release from the intracellular store was blocked by a PLC inhibitor, or a capacitative Ca(2+) entry was induced by preincubation with thapsigargin. However, the AA-mediated, noncapacitative Ca(2+) entry seems to play a little, if any, role in the stimulated respiratory burst. The present study suggests that the PLC signaling pathway, which may be activated by PLC(beta) and PLC(gamma), respectively, and the PI-3K signaling pathway are involved in the AA-stimulated respiratory burst in human neutrophil.
Collapse
Affiliation(s)
- Jiang Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing
| | | | | | | |
Collapse
|
46
|
Moghaddami N, Costabile M, Grover PK, Jersmann HPA, Huang ZH, Hii CST, Ferrante A. Unique effect of arachidonic acid on human neutrophil TNF receptor expression: up-regulation involving protein kinase C, extracellular signal-regulated kinase, and phospholipase A2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:2616-24. [PMID: 12928414 DOI: 10.4049/jimmunol.171.5.2616] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Arachidonic acid (AA) regulates the function of many cell types, including neutrophils. Although much emphasis has been placed on agonist-induced down-regulation of TNFR, our data show that AA caused a rapid (10-20 min) and dose-dependent (0.5-30 micro M) increase in the surface expression of both classes of TNFR (TNFR1 and TNFR2) on human neutrophils. This increased TNFR expression correlated with an increase in TNF-induced superoxide production. In contrast, the omega3 fatty acids eicosapentaenoic acid, docosahexaenoic acid, and linolenic acid failed to stimulate TNFR expression. Although fMLP and LPS reduced the neutrophil expression of TNFR, when pretreated with AA, fMLP caused an increase in TNFR expression. Consistent with this result was the finding that AA prevented the fMLP-induced receptor release in neutrophil cultures. AA also caused an increase in TNFR expression in matured HL-60 cells (neutrophil-like cells), but a decrease in nonmatured cells and HUVEC. The AA effects were independent of the lipoxygenase and cyclooxygenase pathways, but dependent on protein kinase C, the extracellular signal-regulated kinases 1 and 2, and cytosolic phospholipase A(2). The data demonstrate a unique effect of AA in the inflammatory reaction, through its action on neutrophil TNFR expression, and suggest that AA may regulate the response of neutrophils to TNF by altering its receptor number.
Collapse
Affiliation(s)
- Nahid Moghaddami
- Department of Immunopathology, Women's and Children's Hospital, 72 King William Road, North Adelaide, South Australia 5006
| | | | | | | | | | | | | |
Collapse
|
47
|
Burgermeister E, Endl J, Scheuer WV. Activation of cytosolic phospholipase A2 in human T-lymphocytes involves inhibitor-kappaB and mitogen-activated protein kinases. Eur J Pharmacol 2003; 466:169-80. [PMID: 12679154 DOI: 10.1016/s0014-2999(03)01492-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The group IV 85 kDa cytosolic phospholipase A(2) regulates many aspects of innate immunity. However, the function of this enzyme in T-cells remains controversial. We show here that human peripheral blood lymphocytes and Jurkat cells express cytosolic phospholipase A(2) and produce prostaglandin A(2) and leukotriene B(4). Selective inhibitors of this enzyme suppressed Ca(2+)-ionophore-, mitogen- and T-cell receptor-mediated expression of interleukin-2 at the level of transcription from the promoter. Activation of mitogen-activated protein kinases (MAPK), degradation of inhibitor-kappaBalpha and transactivation by nuclear factor-kappaB (NFkappaB) were impaired as was the antigen-, lectin- and interleukin-2-driven proliferation of T-cells in vitro. Ligands of peroxisome proliferator-activated receptor-gamma (PPARgamma) induced rapid phosphorylation of MAPK in human monocytic but not in Jurkat cells. These data indicated that in T-cells, eicosanoids generated upon signal-activated cytosolic phospholipase A(2) promote NFkappaB-dependent interleukin-2 transcription via a PPARgamma-independent mechanism involving the MAPK-pathway.
Collapse
Affiliation(s)
- Elke Burgermeister
- Department of Biological Regulation, The Weizmann Institute of Science, I-76100 Rehovot, Israel
| | | | | |
Collapse
|
48
|
Grenier S, Flamand N, Pelletier J, Naccache PH, Borgeat P, Bourgoin SG. Arachidonic acid activates phospholipase D in human neutrophils; essential role of endogenous leukotriene B4 and inhibition by adenosine A2A receptor engagement. J Leukoc Biol 2003; 73:530-9. [PMID: 12660228 DOI: 10.1189/jlb.0702371] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We report in human neutrophils (PMN) that phospholipase D (PLD) was stimulated by micromolar concentrations of arachidonic acid (AA) and nanomolar concentrations of leukotriene B(4) (LTB(4)), and eicosapentaenoic acid was inactive. The stimulatory effect of AA occurred only when adenosine was eliminated from PMN suspensions or when PMN were incubated with adenosine A(2A) receptor antagonists. The mechanism of AA-induced PLD activation was investigated. The results show that AA- and LTB(4)-induced PLD activation were inhibited by the LTB(4) receptor 1 (BLTR1) antagonist CP 105,696, whereas the LTA(4) hydrolase inhibitor SC57461A and the LT biosynthesis inhibitor MK-0591 inhibited AA- but not LTB(4)-mediated PLD activation. The AA-induced ARF1 and RhoA translocation to PMN membranes was inhibited by CP 105,696 and SC57461A. These results provide evidence of a requirement for an autocrine-stimulatory loop involving LTB(4) and BLTR1 in the translocation of small GTPases to membranes and the activation of PMN PLD by AA.
Collapse
Affiliation(s)
- Sonya Grenier
- Canadian Institutes for Health Research Group on the Molecular Mechanisms of Inflammation, Centre de Recherche en Rhumatologie et Immunologie, Québec, Canada
| | | | | | | | | | | |
Collapse
|
49
|
Hii CST, Costabile M, Mayne GC, Der CJ, Murray AW, Ferrante A. Selective deficiency in protein kinase C isoenzyme expression and inadequacy in mitogen-activated protein kinase activation in cord blood T cells. Biochem J 2003; 370:497-503. [PMID: 12435268 PMCID: PMC1223186 DOI: 10.1042/bj20021122] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2002] [Revised: 10/09/2002] [Accepted: 11/15/2002] [Indexed: 01/29/2023]
Abstract
The biochemical basis for the reduced lymphokine production by neonatal T cells compared with adult T cells remains poorly defined. Previous studies have raised the possibility that neonatal T cells could be deficient in their ability to transmit signals via protein kinase (PK) C. We now report that while PKC-dependent activation of the mitogen-activated protein (MAP) kinases, c-Jun N-terminal protein kinase and the extracellular signal-regulated protein kinase (ERK)1/ERK2, was deficient in cord blood T cells compared with adult blood T cells, marked activation of the MAP kinases in cord blood T cells was achieved via PKC-independent means. Consistent with a deficiency in the signalling capability of PKC, cord blood T cells were selectively deficient in the expression of PKC beta I, epsilon, theta and zeta. Stimulation of cord blood T cells resulted in a time-dependent increase in PKC expression, with increases detectable by 4 h. This was accompanied by an enhancement in MAP kinase activation via PKC-dependent means. These novel data suggest that an inadequacy in PKC-MAP kinase signalling may be responsible, at least in part, for the phenotype of cord blood T cells.
Collapse
Affiliation(s)
- Charles S T Hii
- Department of Immunopathology, Women's and Children's Hospital, 72 King William Road, North Adelaide, Adelaide 5006, Australia.
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Polyunsaturated fatty acids such as arachidonic acid (AA) play an important role in alcohol-induced liver injury. AA promotes toxicity in rat hepatocytes with high levels of cytochrome P4502E1 (CYP2E1) and in HepG2 E47 cells, which express CYP2E1. The possible role of mitogen-activated protein kinase (MAPK) members in this process was evaluated. SB203580, a p38 MAPK inhibitor, and PD98059, an ERK inhibitor, but not wortmannin a phosphatidylinositol 3-kinase (PI3K) inhibitor, prevented AA toxicity in pyrazole hepatocytes and E47 cells. SB203580 prevented the enhancement of AA toxicity by salicylate. SB203580 neither lowered the levels of CYP2E1 nor affected CYP2E1-dependent oxidative stress. The decrease in mitochondrial membrane potential produced by AA was prevented by SB203580. Treating CYP2E1-induced cells with AA activated p38 MAPK but not ERK or AKT. This activation was blocked by antioxidants. AA increased the translocation of NF-kappaB to the nucleus. Salicylate blocked this translocation, which may contribute to the enhancement of AA toxicity by salicylate. SB203580 restored AA-induced NF-kappaB translocation, which may contribute to protection against toxicity. In conclusion, AA toxicity was related to lipid peroxidation and oxidative stress, and to the activation of p38 MAPK, as a consequence of CYP2E1-dependent production of reactive oxygen species. Activation of p38 MAPK by AA coupled to AA-induced oxidative stress may synergize to cause cell toxicity by affecting mitochondrial membrane potential and by modulation of NF-kappaB activation.
Collapse
Affiliation(s)
- Defeng Wu
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York University, New York 10029, USA
| | | |
Collapse
|