1
|
Filisola-Villaseñor JG, Arroyo-Sánchez BI, Navarro-González LJ, Morales-Ríos E, Olin-Sandoval V. Ornithine decarboxylase and its role in cancer. Arch Biochem Biophys 2025; 765:110321. [PMID: 39870288 DOI: 10.1016/j.abb.2025.110321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/03/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Cancer is among the leading causes of death worldwide. The effectiveness of conventional chemotherapy has some drawbacks, therefore, there is an urgency to develop novel strategies to fight this disease. Ornithine decarboxylase (ODC) is the most finely tuned enzyme of the polyamine (PA) biosynthesis pathway as it is regulated at different levels: transcriptional, translational, post-translational, and by feedback inhibition. In cancer, this enzyme is overexpressed due to its regulation by the protooncogene c-Myc, thus it has been proposed as a drug target against this disease. This review describes information regarding the biochemistry and regulation of the ODC at different levels and its role in cancer. Moreover, we discuss the molecules aiming on the inhibition of the ODC activity that have been tested as therapeutic options. ODC remains as a therapeutic opportunity that needs to be more explored.
Collapse
Affiliation(s)
| | - Beatriz Irene Arroyo-Sánchez
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Luis Janiel Navarro-González
- Department of Biochemistry, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Edgar Morales-Ríos
- Department of Biochemistry, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.
| | - Viridiana Olin-Sandoval
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.
| |
Collapse
|
2
|
Gao J, Chen Y, Wang H, Li X, Li K, Xu Y, Xie X, Guo Y, Yang N, Zhang X, Ma D, Lu HS, Shen YH, Liu Y, Zhang J, Chen YE, Daugherty A, Wang DW, Zheng L. Gasdermin D Deficiency in Vascular Smooth Muscle Cells Ameliorates Abdominal Aortic Aneurysm Through Reducing Putrescine Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204038. [PMID: 36567267 PMCID: PMC9929270 DOI: 10.1002/advs.202204038] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/16/2022] [Indexed: 06/17/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a common vascular disease associated with significant phenotypic alterations in vascular smooth muscle cells (VSMCs). Gasdermin D (GSDMD) is a pore-forming effector of pyroptosis. In this study, the role of VSMC-specific GSDMD in the phenotypic alteration of VSMCs and AAA formation is determined. Single-cell transcriptome analyses reveal Gsdmd upregulation in aortic VSMCs in angiotensin (Ang) II-induced AAA. VSMC-specific Gsdmd deletion ameliorates Ang II-induced AAA in apolipoprotein E (ApoE)-/- mice. Using untargeted metabolomic analysis, it is found that putrescine is significantly reduced in the plasma and aortic tissues of VSMC-specific GSDMD deficient mice. High putrescine levels trigger a pro-inflammatory phenotype in VSMCs and increase susceptibility to Ang II-induced AAA formation in mice. In a population-based study, a high level of putrescine in plasma is associated with the risk of AAA (p < 2.2 × 10-16 ), consistent with the animal data. Mechanistically, GSDMD enhances endoplasmic reticulum stress-C/EBP homologous protein (CHOP) signaling, which in turn promotes the expression of ornithine decarboxylase 1 (ODC1), the enzyme responsible for increased putrescine levels. Treatment with the ODC1 inhibitor, difluoromethylornithine, reduces AAA formation in Ang II-infused ApoE-/- mice. The findings suggest that putrescine is a potential biomarker and target for AAA treatment.
Collapse
Affiliation(s)
- Jianing Gao
- The Institute of Cardiovascular Sciences and Institute of Systems BiomedicineSchool of Basic Medical SciencesKey Laboratory of Molecular Cardiovascular Science of Ministry of EducationNHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchHealth Science CenterPeking UniversityBeijing100191P. R. China
| | - Yanghui Chen
- Division of CardiologyDepartment of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic DisordersTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue NO.1095, Qiaokou DistrictWuhan430000P. R. China
| | - Huiqing Wang
- The Institute of Cardiovascular Sciences and Institute of Systems BiomedicineSchool of Basic Medical SciencesKey Laboratory of Molecular Cardiovascular Science of Ministry of EducationNHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchHealth Science CenterPeking UniversityBeijing100191P. R. China
| | - Xin Li
- The Institute of Cardiovascular Sciences and Institute of Systems BiomedicineSchool of Basic Medical SciencesKey Laboratory of Molecular Cardiovascular Science of Ministry of EducationNHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchHealth Science CenterPeking UniversityBeijing100191P. R. China
| | - Ke Li
- Beijing Tiantan HospitalChina National Clinical Research Center for Neurological DiseasesAdvanced Innovation Center for Human Brain ProtectionBeijing Institute of Brain DisordersThe Capital Medical UniversityBeijing100050P. R. China
| | - Yangkai Xu
- The Institute of Cardiovascular Sciences and Institute of Systems BiomedicineSchool of Basic Medical SciencesKey Laboratory of Molecular Cardiovascular Science of Ministry of EducationNHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchHealth Science CenterPeking UniversityBeijing100191P. R. China
| | - Xianwei Xie
- Department of CardiologyShengli Clinical Medical College of Fujian Medical UniversityFujian Provincial HospitalFuzhou350001P. R. China
| | - Yansong Guo
- Department of CardiologyShengli Clinical Medical College of Fujian Medical UniversityFujian Provincial HospitalFujian Provincial Key Laboratory of Cardiovascular DiseaseFujian Provincial Center for GeriatricsFujian Clinical Medical Research Center for Cardiovascular DiseasesFujian Heart Failure Center AllianceFuzhou350001P. R. China
| | - Nana Yang
- Weifang Key Laboratory of Animal Model Research on Cardiovascular and Cerebrovascular DiseasesWeifang Medical UniversityWeifang261053P. R. China
| | - Xinhua Zhang
- Department of Biochemistry and Molecular BiologyThe Key Laboratory of Neural and Vascular BiologyMinistry of EducationHebei Medical UniversityZhongshan East Road No. 361Shijiazhuang050017P. R. China
| | - Dong Ma
- Department of Biochemistry and Molecular BiologyThe Key Laboratory of Neural and Vascular BiologyChina Administration of EducationHebei Medical UniversityHebei050017P. R. China
| | - Hong S. Lu
- Department of PhysiologySaha Cardiovascular Research CenterUniversity of KentuckySouth LimestoneLexingtonKY40536‐0298USA
| | - Ying H. Shen
- Division of Cardiothoracic SurgeryMichael E. DeBakey Department of SurgeryBaylor College of MedicineDepartment of Cardiovascular SurgeryTexas Heart InstituteHoustonTX77030USA
| | - Yong Liu
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesInstitute for Advanced StudiesWuhan UniversityWuhan430072P. R. China
| | - Jifeng Zhang
- Department of Internal MedicineUniversity of Michigan Medical CenterAnn ArborMI48109USA
| | - Y. Eugene Chen
- Department of Internal MedicineUniversity of Michigan Medical CenterAnn ArborMI48109USA
| | - Alan Daugherty
- Department of PhysiologySaha Cardiovascular Research CenterUniversity of KentuckySouth LimestoneLexingtonKY40536‐0298USA
| | - Dao Wen Wang
- Division of CardiologyDepartment of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic DisordersTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue NO.1095, Qiaokou DistrictWuhan430000P. R. China
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems BiomedicineSchool of Basic Medical SciencesKey Laboratory of Molecular Cardiovascular Science of Ministry of EducationNHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchHealth Science CenterPeking UniversityBeijing100191P. R. China
- Beijing Tiantan HospitalChina National Clinical Research Center for Neurological DiseasesAdvanced Innovation Center for Human Brain ProtectionBeijing Institute of Brain DisordersThe Capital Medical UniversityBeijing100050P. R. China
- Hangzhou Qianjiang Distinguished ExpertHangzhou Institute of Advanced TechnologyHangzhou310026P. R. China
| |
Collapse
|
3
|
Genomic profiling of the transcription factor Zfp148 and its impact on the p53 pathway. Sci Rep 2020; 10:14156. [PMID: 32843651 PMCID: PMC7447789 DOI: 10.1038/s41598-020-70824-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 08/04/2020] [Indexed: 12/12/2022] Open
Abstract
Recent data suggest that the transcription factor Zfp148 represses activation of the tumor suppressor p53 in mice and that therapeutic targeting of the human orthologue ZNF148 could activate the p53 pathway without causing detrimental side effects. We have previously shown that Zfp148 deficiency promotes p53-dependent proliferation arrest of mouse embryonic fibroblasts (MEFs), but the underlying mechanism is not clear. Here, we showed that Zfp148 deficiency downregulated cell cycle genes in MEFs in a p53-dependent manner. Proliferation arrest of Zfp148-deficient cells required increased expression of ARF, a potent activator of the p53 pathway. Chromatin immunoprecipitation showed that Zfp148 bound to the ARF promoter, suggesting that Zfp148 represses ARF transcription. However, Zfp148 preferentially bound to promoters of other transcription factors, indicating that deletion of Zfp148 may have pleiotropic effects that activate ARF and p53 indirectly. In line with this, we found no evidence of genetic interaction between TP53 and ZNF148 in CRISPR and siRNA screen data from hundreds of human cancer cell lines. We conclude that Zfp148 deficiency, by increasing ARF transcription, downregulates cell cycle genes and cell proliferation in a p53-dependent manner. However, the lack of genetic interaction between ZNF148 and TP53 in human cancer cells suggests that therapeutic targeting of ZNF148 may not increase p53 activity in humans.
Collapse
|
4
|
Izumikawa K, Ishikawa H, Simpson RJ, Takahashi N. Modulating the expression of Chtop, a versatile regulator of gene-specific transcription and mRNA export. RNA Biol 2018; 15:849-855. [PMID: 29683372 DOI: 10.1080/15476286.2018.1465795] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Chtop binds competitively to the arginine methyltransferases PRMT1 and PRMT5, thereby promoting the asymmetric or symmetric methylation of arginine residues, respectively. In cooperation with PRMT1, Chtop activates transcription of certain gene groups, such as the estrogen-inducible genes in breast cancer cells, the 5-hydroxymethylcytosine-modified genes involved in glioblastomagenesis, or the Zbp-89-dependent genes in erythroleukemia cells. Chtop also represses expression of the fetal γ-globin gene. In addition, Chtop is a component of the TREX complex that links transcription elongation to mRNA export. The regulation of Chtop expression is, therefore, a key process during the expression of certain gene groups and pathogenesis of certain diseases. Our recent study revealed that cellular levels of Chtop are strictly autoregulated by a mechanism involving intron retention and nonsense-mediated mRNA decay. Here, we summarize roles of Chtop in gene-specific expression and highlight our recent findings concerning the autoregulation of Chtop.
Collapse
Affiliation(s)
- Keiichi Izumikawa
- a Department of Applied Biological Science , United Graduate School of Agriculture, Tokyo University of Agriculture and Technology , Fuchu , Tokyo , Japan
| | - Hideaki Ishikawa
- a Department of Applied Biological Science , United Graduate School of Agriculture, Tokyo University of Agriculture and Technology , Fuchu , Tokyo , Japan
| | - Richard J Simpson
- b Global Innovation Research Organizations, Tokyo University of Agriculture and Technology , Fuchu , Tokyo , Japan.,c La Trobe Institute for Molecular Science (LIMS) LIMS Building 1, Room 412 La Trobe University , Bundoora Victoria , Australia
| | - Nobuhiro Takahashi
- a Department of Applied Biological Science , United Graduate School of Agriculture, Tokyo University of Agriculture and Technology , Fuchu , Tokyo , Japan.,b Global Innovation Research Organizations, Tokyo University of Agriculture and Technology , Fuchu , Tokyo , Japan
| |
Collapse
|
5
|
ZBP-89 and Sp1 contribute to Bak expression in hepatocellular carcinoma cells. BMC Cancer 2018; 18:419. [PMID: 29653560 PMCID: PMC5899329 DOI: 10.1186/s12885-018-4349-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 04/08/2018] [Indexed: 02/05/2023] Open
Abstract
Background Kruppel family member zinc binding protein 89 (ZBP-89), also known as ZNF148, regulates Bak expression via binding to GC-rich promoter domain. It is not clear if other GC-rich binding factors, such as Sp family members, can interact with ZBPp-89 on Bak expression. This study aims to elucidate the mechanism of Bak expression regulation by ZBP-89 and Sp proteins, based on in vitro experiment and The Cancer Genome Atlas (TCGA) hepatocellular carcinoma (HCC) data cohort. Methods We downloaded TCGA hepatocellular carcinoma (HCC) cohort data to analysis the association of Bak transcription level with ZBP-89 and Sp proteins transcription level. HCC cell lines and liver immortal non-tumour cell lines were used for mechanism study, including western blotting analysis, expression vector mediated gene expression and siRNA interference. Results Results showed that cancer tissues have higher Bak transcription level compared with adjacent non-cancer tissues. Bak transcription level was correlated with Sp1 and Sp3 expression level, while no correlation was found in ZBP-89 and Bak, neither Sp2 nor Sp4. Mithramycin A (MMA) induced Bak expression in a dose-dependent manner. Western blotting results showed Sp1 overexpression increased Bak expression both in liver immortal non-tumour cells and HCC cells. Interference Sp1 expression could inhibit Bak expression alone. ZBP-89 siRNA suppressed Bak expression even in the presence of MMA treatment and S1 overexpression. Additionally, Bak and Sp1 level were associated with HCC patient survival. Conclusions Bak expression required ZBP-89 and Sp1 cooperative regulation simultaneously. Electronic supplementary material The online version of this article (10.1186/s12885-018-4349-y) contains supplementary material, which is available to authorized users.
Collapse
|
6
|
ZBP-89 function in colonic stem cells and during butyrate-induced senescence. Oncotarget 2017; 8:94330-94344. [PMID: 29212231 PMCID: PMC5706877 DOI: 10.18632/oncotarget.21698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/08/2017] [Indexed: 01/29/2023] Open
Abstract
ZBP-89 (Zfp148, ZNF148) is a Kruppel-type zinc-finger family transcription factor that binds to GC-rich DNA elements. Earlier studies in cell lines demonstrated that ZBP-89 cooperates with Wnt β-catenin signaling by inducing β-catenin gene expression. Since β-catenin levels are normally highest at the crypt base, we examined whether ZBP-89 is required for stem cell maintenance. Lineage-tracing using a Zfp148CreERT2 transgenic line demonstrated expression in both intestine and colonic stem cells. Deleting the Zfp148 locus in the colon using the Cdx2NLSCreERT2 transgene, reduced the size and number of polyps formed in the Apc-deleted mice. Since colon polyps form in the presence of butyrate, a short chain fatty acid that suppresses cell growth, we examined the direct effect of butyrate on colon organoid survival. Butyrate induced senescence of colon organoids carrying the Apc deletion, only when Zfp148 was deleted. Using quantitative PCR and chromatin immunoprecipitation, we determined that butyrate treatment of colon cell lines suppressed ZNF148 gene expression, inducing CDKN2a (p16Ink4a ) gene expression. Collectively, Zfp148 mRNA is expressed in CBCs, and is required for stem cell maintenance and colonic transformation. Butyrate induces colonic cell senescence in part through suppression of ZBP-89 gene expression and its subsequent occupancy of the CDKN2A promoter.
Collapse
|
7
|
Xu HF, Gao XT, Lin JY, Xu XH, Hu J, Ding YJ, Zhu SH. MicroRNA-20b suppresses the expression of ZFP-148 in viral myocarditis. Mol Cell Biochem 2017; 429:199-210. [PMID: 28247213 DOI: 10.1007/s11010-017-2947-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/17/2017] [Indexed: 12/19/2022]
Abstract
Viral myocarditis is a common cardiovascular disease, which seriously endangers the health of people and even leads to sudden unexpected death. MicroRNAs play very important roles in various physical and pathological processes including cardiogenesis and heart diseases. In recent years, miR-20b has been implicated in various diseases such as breast cancer, gastric cancer, hepatocellular carcinoma, cardiovascular diseases. However, the function of miR-20b in the pathological progress of viral myocarditis has not been reported. In this study, we found that miR-20b was up-regulated in mouse heart tissues post Coxsackievirus B3 (CVB3) infection. Bioinformatics analysis identified ZFP-148, a transcription factor that plays essential roles in the regulation of virus replication, is one of the predicted targets of miR-20b. MiR-20b expression was found to be up-regulated and ZFP-148 protein level was markedly repressed during viral myocarditis. Further studies demonstrated that miR-20b directly binds to the 3'-UTR of ZFP-148 and suppresses its translation. Moreover, aberrant expression of miR-20b promoted the expression of anti-apoptosis proteins Bcl-2 and Bcl-xL, suggesting that altered gene expression might promote cardiomyocytes survival in viral myocarditis. Our findings indicated that miR-20b might be a potential therapeutic target for CVB3-induced viral myocarditis and a useful marker for the diagnosis of viral myocarditis.
Collapse
Affiliation(s)
- Hong-Fei Xu
- Department of Forensic Medicine, Soochow University, Suzhou Dushuhu High Educational Town, Suzhou, Jiangsu, 215123, People's Republic of China.
| | - Xiang-Ting Gao
- Department of Forensic Medicine, Soochow University, Suzhou Dushuhu High Educational Town, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Jun-Yi Lin
- Department of Forensic Medicine, Shanghai Medical College, Fudan University, Xuhui, Shanghai, 200032, People's Republic of China
| | - Xue-Hua Xu
- Department of Forensic Medicine, Soochow University, Suzhou Dushuhu High Educational Town, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Jun Hu
- Department of Forensic Medicine, Soochow University, Suzhou Dushuhu High Educational Town, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Yu-Jie Ding
- Department of dermatological, The second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China.
| | - Shao-Hua Zhu
- Department of Forensic Medicine, Soochow University, Suzhou Dushuhu High Educational Town, Suzhou, Jiangsu, 215123, People's Republic of China.
| |
Collapse
|
8
|
Essien BE, Sundaresan S, Ocadiz-Ruiz R, Chavis A, Tsao AC, Tessier AJ, Hayes MM, Photenhauer A, Saqui-Salces M, Kang AJ, Shah YM, Győrffy B, Merchant JL. Transcription Factor ZBP-89 Drives a Feedforward Loop of β-Catenin Expression in Colorectal Cancer. Cancer Res 2016; 76:6877-6887. [PMID: 27758879 DOI: 10.1158/0008-5472.can-15-3150] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 09/12/2016] [Accepted: 09/28/2016] [Indexed: 01/24/2023]
Abstract
In colorectal cancer, APC-mediated induction of unregulated cell growth involves posttranslational mechanisms that prevent proteasomal degradation of proto-oncogene β-catenin (CTNNB1) and its eventual translocation to the nucleus. However, about 10% of colorectal tumors also exhibit increased CTNNB1 mRNA. Here, we show in colorectal cancer that increased expression of ZNF148, the gene coding for transcription factor ZBP-89, correlated with reduced patient survival. Tissue arrays showed that ZBP-89 protein was overexpressed in the early stages of colorectal cancer. Conditional deletion of Zfp148 in a mouse model of Apc-mediated intestinal polyps demonstrated that ZBP-89 was required for polyp formation due to induction of Ctnnb1 gene expression. Chromatin immunoprecipitation (ChIP) and EMSA identified a ZBP-89-binding site in the proximal promoter of CTNNB1 Reciprocally, siRNA-mediated reduction of CTNNB1 expression also decreased ZBP-89 protein. ChIP identified TCF DNA binding sites in the ZNF148 promoter through which Wnt signaling regulates ZNF148 gene expression. Suppression of either ZNF148 or CTNNB1 reduced colony formation in WNT-dependent, but not WNT-independent cell lines. Therefore, the increase in intracellular β-catenin protein initiated by APC mutations is sustained by ZBP-89-mediated feedforward induction of CTNNB1 mRNA. Cancer Res; 76(23); 6877-87. ©2016 AACR.
Collapse
Affiliation(s)
- Bryan E Essien
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Sinju Sundaresan
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Ramon Ocadiz-Ruiz
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Aaron Chavis
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Amy C Tsao
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Arthur J Tessier
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Michael M Hayes
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Amanda Photenhauer
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Milena Saqui-Salces
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Anthony J Kang
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Balazs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary
| | - Juanita L Merchant
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan. .,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
9
|
Mazuy C, Ploton M, Eeckhoute J, Berrabah W, Staels B, Lefebvre P, Helleboid-Chapman A. Palmitate increases Nur77 expression by modulating ZBP89 and Sp1 binding to the Nur77 proximal promoter in pancreatic β-cells. FEBS Lett 2013; 587:S0014-5793(13)00781-3. [PMID: 24512852 DOI: 10.1016/j.febslet.2013.10.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 09/18/2013] [Accepted: 10/15/2013] [Indexed: 11/23/2022]
Abstract
Nur77 is a stress sensor in pancreatic β-cells, which negatively regulates glucose-stimulated insulin secretion. We recently showed that a lipotoxic shock caused by exposure of β-cells to the saturated fatty acid palmitate strongly increases Nur77 expression. Here, using dual luciferase reporter assays and Nur77 promoter deletion constructs, we identified a regulatory cassette between -1534 and -1512 bp upstream from the translational start site mediating Nur77 promoter activation in response to palmitate exposure. Chromatin immunoprecipitation, transient transfection and siRNA-mediated knockdown assays revealed that palmitate induced Nur77 promoter activation involves Sp1 recruitment and ZBP89 release from the gene promoter.
Collapse
Affiliation(s)
- Claire Mazuy
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; UNIV LILLE 2, F-59000 Lille, France; Inserm UMR 1011, F-59000 Lille, France; IPL, F-59000 Lille, France
| | - Maheul Ploton
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; UNIV LILLE 2, F-59000 Lille, France; Inserm UMR 1011, F-59000 Lille, France; IPL, F-59000 Lille, France
| | - Jérôme Eeckhoute
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; UNIV LILLE 2, F-59000 Lille, France; Inserm UMR 1011, F-59000 Lille, France; IPL, F-59000 Lille, France
| | - Wahiba Berrabah
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; UNIV LILLE 2, F-59000 Lille, France; Inserm UMR 1011, F-59000 Lille, France; IPL, F-59000 Lille, France
| | - Bart Staels
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; UNIV LILLE 2, F-59000 Lille, France; Inserm UMR 1011, F-59000 Lille, France; IPL, F-59000 Lille, France
| | - Philippe Lefebvre
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; UNIV LILLE 2, F-59000 Lille, France; Inserm UMR 1011, F-59000 Lille, France; IPL, F-59000 Lille, France
| | - Audrey Helleboid-Chapman
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; UNIV LILLE 2, F-59000 Lille, France; Inserm UMR 1011, F-59000 Lille, France; IPL, F-59000 Lille, France
| |
Collapse
|
10
|
Essien B, Grasberger H, Romain RD, Law DJ, Veniaminova NA, Saqui-Salces M, El-Zaatari M, Tessier A, Hayes MM, Yang AC, Merchant JL. ZBP-89 regulates expression of tryptophan hydroxylase I and mucosal defense against Salmonella typhimurium in mice. Gastroenterology 2013; 144:1466-77, 1477.e1-9. [PMID: 23395646 PMCID: PMC3665710 DOI: 10.1053/j.gastro.2013.01.057] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 01/28/2013] [Accepted: 01/31/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS ZBP-89 (also ZNF148 or Zfp148) is a butyrate-inducible zinc finger transcription factor that binds to GC-rich DNA elements. Deletion of the N-terminal domain is sufficient to increase mucosal susceptibility to chemical injury and inflammation. We investigated whether conditional deletion of ZBP-89 from the intestinal and colonic epithelium of mice increases their susceptibility to pathogens such as Salmonella typhimurium. METHODS We generated mice with a conditional null allele of Zfp148 (ZBP-89(FL/FL)) using homologous recombination to flank Zfp148 with LoxP sites (ZBP-89(FL/FL)), and then bred the resulting mice with those that express VillinCre. We used microarray analysis to compare gene expression patterns in colonic mucosa between ZBP-89(ΔInt) and C57BL/6 wild-type mice (controls). Mice were gavaged with 2 isogenic strains of S. typhimurium after administration of streptomycin. RESULTS Microarray analysis revealed that the colonic mucosa of ZBP-89(ΔInt) mice had reduced levels of tryptophan hydroxylase 1 (Tph1) messenger RNA, encoding the rate-limiting enzyme in enterochromaffin cell serotonin (5-hydroxytryptamine [5HT]) biosynthesis. DNA affinity precipitation demonstrated direct binding of ZBP-89 to the mouse Tph1 promoter, which was required for its basal and butyrate-inducible expression. ZBP-89(ΔInt) mice did not increase mucosal levels of 5HT in response to S. typhimurium infection, and succumbed to the infection 2 days before control mice. The ΔhilA isogenic mutant of S. typhimurium lacks this butyrate-regulated locus and stimulated, rather than suppressed, expression of Tph1 approximately 50-fold in control, but not ZBP-89(ΔInt), mice, correlating with fecal levels of butyrate. CONCLUSIONS ZBP-89 is required for butyrate-induced expression of the Tph1 gene and subsequent production of 5HT in response to bacterial infection in mice. Reductions in epithelial ZBP-89 increase susceptibility to colitis and sepsis after infection with S. typhimurium, partly because of reduced induction of 5HT production in response to butyrate and decreased secretion of antimicrobial peptides.
Collapse
Affiliation(s)
- Bryan Essien
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Helmut Grasberger
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Rachael D. Romain
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI
| | - David J. Law
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Natalia A. Veniaminova
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Milena Saqui-Salces
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Mohamad El-Zaatari
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Arthur Tessier
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Michael M. Hayes
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Alexander C. Yang
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Juanita L. Merchant
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
11
|
Butter F, Davison L, Viturawong T, Scheibe M, Vermeulen M, Todd JA, Mann M. Proteome-wide analysis of disease-associated SNPs that show allele-specific transcription factor binding. PLoS Genet 2012; 8:e1002982. [PMID: 23028375 PMCID: PMC3459973 DOI: 10.1371/journal.pgen.1002982] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 08/09/2012] [Indexed: 01/09/2023] Open
Abstract
A causative role for single nucleotide polymorphisms (SNPs) in many genetic disorders has become evident through numerous genome-wide association studies. However, identification of these common causal variants and the molecular mechanisms underlying these associations remains a major challenge. Differential transcription factor binding at a SNP resulting in altered gene expression is one possible mechanism. Here we apply PWAS ("proteome-wide analysis of SNPs"), a methodology based on quantitative mass spectrometry that enables rapid screening of SNPs for differential transcription factor binding, to 12 SNPs that are highly associated with type 1 diabetes at the IL2RA locus, encoding the interleukin-2 receptor CD25. We report differential, allele-specific binding of the transcription factors RUNX1, LEF1, CREB, and TFAP4 to IL2RA SNPs rs12722508*A, rs12722522*C, rs41295061*A, and rs2104286*A and demonstrate the functional influence of RUNX1 at rs12722508 by reporter gene assay. Thus, PWAS may be able to contribute to our understanding of the molecular consequences of human genetic variability underpinning susceptibility to multi-factorial disease.
Collapse
Affiliation(s)
- Falk Butter
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Lucy Davison
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Tar Viturawong
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Marion Scheibe
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Michiel Vermeulen
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - John A. Todd
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- * E-mail:
| |
Collapse
|
12
|
Cai MY, Luo RZ, Li YH, Dong P, Zhang ZL, Zhou FJ, Chen JW, Yun JP, Zhang CZY, Cao Y. High-expression of ZBP-89 correlates with distal metastasis and poor prognosis of patients in clear cell renal cell carcinoma. Biochem Biophys Res Commun 2012; 426:636-42. [PMID: 22982674 DOI: 10.1016/j.bbrc.2012.08.146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 08/31/2012] [Indexed: 01/18/2023]
Abstract
ZBP-89, a Krüppel-type zinc-finger transcription factor, is found to participate in tumor development, invasion and metastasis. However, the expression status of ZBP-89 in clear cell renal cell carcinoma (CCRCC) remains elusive. Using quantitative real-time-PCR and Western Blot, we found that, in fresh cancer tissues, ZBP-89 was remarkably decreased in 79.2% (19/24) and 83.3% (5/6) of CCRCC at mRNA and protein level, respectively. Immunohistochemistry also revealed a significant decline of ZBP-89 expression in CCRCC, showing that low expression of ZBP-89 was present in 73.9% (105/142) of tumorous tissues but in 48.1% (52/108) of the corresponding adjacent kidney tissues. Furthermore, ZBP-89 expression in CCRCC was significantly correlated with several clinicopathological features, including TNM stage (P=0.005) and distal metastasis (P=0.001). Further study confirmed that ZBP-89 expression was markedly higher in metastatic CCRCC than that in non-metastatic tissue (P=0.002). In addition, CCRCC patients with low ZBP-89 expression survived longer than those with high ZBP-89 expression, as indicated by the result of univariate analysis (P<0.0001). More importantly, multivariate analysis revealed that ZBP-89 was an independent predictor of overall survival (HR, 2.871; 95% CI, 1.409-5.853; P=0.004). Collectively, our study provides vigorous evidence that ZBP-89 was significantly downregulated in CCRCC and could be served as a promising biomarker for prediction of distal metastasis and prognosis of patient with CCRCC.
Collapse
Affiliation(s)
- Mu-Yan Cai
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhang CZY, Cao Y, Yun JP, Chen GG, Lai PBS. Increased expression of ZBP-89 and its prognostic significance in hepatocellular carcinoma. Histopathology 2012; 60:1114-24. [PMID: 22372401 DOI: 10.1111/j.1365-2559.2011.04136.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AIMS ZBP-89 plays a role in cell growth and death. Its expression in hepatocellular carcinoma (HCC) is not well documented. This study aimed to analyse ZBP-89 expression in HCC. METHODS AND RESULTS We examined ZBP-89 expression in five HCC cell lines and 182 HCC tissue samples by reverse transcription-polymerase chain reaction (RT-PCR), Western blot analysis and immunofluorescence staining. Our results showed that the expression of ZBP-89 was higher in HCC than adjacent non-tumour liver, at both mRNA and protein levels. ZBP-89 was localized in the nucleus in most HCC tissue samples, but was found in the cytoplasm in 11.5% of cases. Patient survival in those tumours showing high ZBP-89 expression was better than in those with low expression. High ZBP-89 expression tended to be more common in World Health Organization (WHO) grade I than grades II-IV HCC. There was a significant association between HBV positivity and high ZBP-89 expression. Colony formation was reduced dramatically in those HCC cell lines in which ZBP-89 overexpression was demonstrated; this appeared to correlate with increased apoptosis, inferred by finding elevated levels of cleaved poly(ADP-ribose)polymerases (PARP), the probable mechanisms for which may involve increased p53 or p21 expression. CONCLUSIONS ZBP-89 has anti-tumour properties and is a potential biomarker for prognosis of HCC.
Collapse
Affiliation(s)
- Chris Z Y Zhang
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong
| | | | | | | | | |
Collapse
|
14
|
Promoter cloning and characterization of the human programmed cell death protein 4 (pdcd4) gene: evidence for ZBP-89 and Sp-binding motifs as essential Pdcd4 regulators. Biosci Rep 2012; 32:281-97. [DOI: 10.1042/bsr20110045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pdcd4 (programmed cell death protein 4) is an important novel tumour suppressor inhibiting transformation, translation, invasion and intravasation, and its expression is down-regulated in several cancers. However, little is known about the transcriptional regulation and the promoter of this important tumour suppressor. So far the following is the first comprehensive study to describe the regulation of Pdcd4 transcription by ZBP-89 (zinc-finger-binding protein 89), besides characterizing the gene promoter. We identified the transcriptional start sites of the human pdcd4 promoter, a functional CCAAT-box, and the basal promoter region. Within this basal region, computer-based analysis revealed several potential binding sites for ZBPs, especially for Sp (specificity protein) family members and ZBP-89. We identified four Sp1/Sp3/Sp4-binding elements to be indispensable for basal promoter activity. However, overexpression of Sp1 and Sp3 was not sufficient to enhance Pdcd4 protein expression. Analysis in different solid cancer cell lines showed a significant correlation between pdcd4 and zbp-89 mRNA amounts. In contrast with Sp transcription factors, overexpression of ZBP-89 led to an enhanced expression of Pdcd4 mRNA and protein. Additionally, specific knockdown of ZBP-89 resulted in a decreased pdcd4 gene expression. Reporter gene analysis showed a significant up-regulation of basal promoter activity by co-transfection with ZBP-89, which could be abolished by mithramycin treatment. Predicted binding of ZBP-89 to the basal promoter was confirmed by EMSA (electrophoretic mobility-shift assay) data and supershift analysis for ZBP-89. Taken together, data for the first time implicate ZBP-89 as a regulator of Pdcd4 by binding to the basal promoter either alone or by interacting with Sp family members.
Collapse
|
15
|
Zhang CZY, Chen GG, Merchant JL, Lai PBS. Interaction between ZBP-89 and p53 mutants and its contribution to effects of HDACi on hepatocellular carcinoma. Cell Cycle 2012; 11:322-34. [PMID: 22214764 DOI: 10.4161/cc.11.2.18758] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ZBP-89, a zinc finger transcription factor, participates in histone deacetylases inhibitors (HDACi)-mediated growth arrest and apoptosis in cancer cells. p53 mutants may interact with ZBP-89 that transcriptionally regulates p21(Waf1) (p21). However, this interaction and its consequence in cancer treatments are poorly understood. In this study, we demonstrate that ZBP‑89 is essentially required in HDACi-mediated p21 upregulation in hepetocellular carcinoma (HCC). Overexpression of ZBP-89 protein enhanced the lethal effectiveness of Trichostatin A (TSA). p53 mutant p53(G245D), but not p53(R249S), directly bound to ZBP-89 and prevented its translocation from cytoplasm to nucleus. Furthermore, p53(G245D) was shown to have a similar pattern of subcellular localization to ZBP-89 in tissues of HCC patients in Hong Kong. Functionally, the cytoplasmic accumulation of ZBP-89 by p53(G245D) significantly abrogated the induction of p21 caused by sodium butyrate (NaB) treatment and protected cells from TSA-induced death. The activations of several apoptotic proteins, such as Bid and PARP, were involved in p53(G245D)-mediated protection. Moreover, the resistance to HDACi in p53(G245D)-expressing cells was reversed by overexpression of ZBP-89. Taken together, these data suggest a potential mechanism via which mutant p53 enables tumor cells to resist chemotherapy and, therefore, establish a plausible link between mutant p53 binding to ZBP-89 and a decreased chemosensitivity of HCC cells.
Collapse
Affiliation(s)
- Chris Z Y Zhang
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT Hong Kong
| | | | | | | |
Collapse
|
16
|
Woo AJ, Kim J, Xu J, Huang H, Cantor AB. Role of ZBP-89 in human globin gene regulation and erythroid differentiation. Blood 2011; 118:3684-93. [PMID: 21828133 PMCID: PMC3186340 DOI: 10.1182/blood-2011-03-341446] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 07/25/2011] [Indexed: 12/16/2022] Open
Abstract
The molecular mechanisms underlying erythroid-specific gene regulation remain incompletely understood. Closely spaced binding sites for GATA, NF-E2/maf, and CACCC interacting transcription factors play functionally important roles in globin and other erythroid-specific gene expression. We and others recently identified the CACCC-binding transcription factor ZBP-89 as a novel GATA-1 and NF-E2/mafK interacting partner. Here, we examined the role of ZBP-89 in human globin gene regulation and erythroid maturation using a primary CD34(+) cell ex vivo differentiation system. We show that ZBP-89 protein levels rise dramatically during human erythroid differentiation and that ZBP-89 occupies key cis-regulatory elements within the globin and other erythroid gene loci. ZBP-89 binding correlates strongly with RNA Pol II occupancy, active histone marks, and high-level gene expression. ZBP-89 physically associates with the histone acetyltransferases p300 and Gcn5/Trrap, and occupies common sites with Gcn5 within the human globin loci. Lentiviral short hairpin RNAs knockdown of ZBP-89 results in reduced Gcn5 occupancy, decreased acetylated histone 3 levels, lower globin and erythroid-specific gene expression, and impaired erythroid maturation. Addition of the histone deacetylase inhibitor valproic acid partially reverses the reduced globin gene expression. These findings reveal an activating role for ZBP-89 in human globin gene regulation and erythroid differentiation.
Collapse
Affiliation(s)
- Andrew J Woo
- Division of Pediatric Hematology/Oncology, Children's Hospital Boston and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | | | | |
Collapse
|
17
|
Das A, Acharya S, Gottipati KR, McKnight JB, Chandru H, Alcorn JL, Boggaram V. Thyroid transcription factor-1 (TTF-1) gene: identification of ZBP-89, Sp1, and TTF-1 sites in the promoter and regulation by TNF-α in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2011; 301:L427-40. [PMID: 21784970 DOI: 10.1152/ajplung.00090.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Thyroid transcription factor-1 (TTF-1/Nkx2.1/TITF1) is a homeodomain-containing transcription factor essential for the morphogenesis and differentiation of the lung. In the lung, TTF-1 controls the expression of surfactant proteins that are essential for lung stability and lung host defense. In this study, we identified functionally important transcription factor binding sites in the TTF-1 proximal promoter and studied tumor necrosis factor-α (TNF-α) regulation of TTF-1 expression. TNF-α, a proinflammatory cytokine, has been implicated in the pathogenesis of acute respiratory distress syndrome (ARDS) and inhibits surfactant protein levels. Deletion analysis of TTF-1 5'-flanking DNA indicated that the TTF-1 proximal promoter retained high-level activity. Electrophoretic mobility shift assay, chromatin immunoprecipitation, and mutational analysis experiments identified functional ZBP-89, Sp1, Sp3, and TTF-1 sites in the TTF-1 proximal promoter. TNF-α inhibited TTF-1 protein levels in H441 and primary alveolar type II cells. TNF-α inhibited TTF-1 gene transcription and promoter activity, indicating that transcriptional mechanisms play important roles in the inhibition of TTF-1 levels. TNF-α inhibited TTF-1 but not Sp1 or hepatocyte nuclear factor-3 DNA binding to TTF-1 promoter. Transactivation experiments in A549 cells indicated that TNF-α inhibited TTF-1 promoter activation by exogenous Sp1 and TTF-1 without altering their levels, suggesting inhibition of transcriptional activities of these proteins. TNF-α inhibition of TTF-1 expression was associated with increased threonine, but not serine, phosphorylation of Sp1. Because TTF-1 serves as a positive regulator for surfactant protein gene expression, TNF-α inhibition of TTF-1 expression could have important implications for the reduction of surfactant protein levels in diseases such as ARDS.
Collapse
Affiliation(s)
- Aparajita Das
- Center for Biomedical Research, The University of Texas Health Center at Tyler, 75708-3154, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
To AKY, Chen GG, Chan UPF, Ye C, Yun JP, Ho RLK, Tessier A, Merchant JL, Lai PBS. ZBP-89 enhances Bak expression and causes apoptosis in hepatocellular carcinoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:222-30. [PMID: 20850481 DOI: 10.1016/j.bbamcr.2010.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 08/30/2010] [Accepted: 09/09/2010] [Indexed: 11/27/2022]
Abstract
ZBP-89 can enhance tumor cells to death stimuli. However, the molecular mechanism leading to the inhibitory effect of ZBP-89 is unknown. In this study, 4 liver cell lines were used to screen for the target of ZBP-89 on cell death pathway. The identified Bak was further analyzed for its role in ZBP-89-mediated apoptosis. The result showed that ZBP-89 significantly and time-dependently induced apoptosis. It significantly upregulated the level of pro-apoptotic Bak. ZBP-89 targeted a region between -457 and -407 of human Bak promoter to stimulate Bak expression based on the findings of Bak promoter luciferase report gene assay and electrophoretic mobility shift assay. ZBP-89-induced Bak increase and ZBP-89-mediated apoptosis were markedly suppressed by Bak siRNA, confirming that Bak was specifically targeted by ZBP-89 to facilitate apoptosis. In conclusion, this study demonstrated that ZBP-89 significantly induced apoptosis of HCC cells via promoting Bak level.
Collapse
Affiliation(s)
- Ann K Y To
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Buira SP, Dentesano G, Albasanz JL, Moreno J, Martín M, Ferrer I, Barrachina M. DNA methylation and Yin Yang-1 repress adenosine A2A receptor levels in human brain. J Neurochem 2010; 115:283-95. [DOI: 10.1111/j.1471-4159.2010.06928.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
|
21
|
Zhang CZY, Chen GG, Lai PBS. Transcription factor ZBP-89 in cancer growth and apoptosis. Biochim Biophys Acta Rev Cancer 2010; 1806:36-41. [PMID: 20230874 DOI: 10.1016/j.bbcan.2010.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 02/25/2010] [Accepted: 03/08/2010] [Indexed: 11/30/2022]
Abstract
ZBP-89, a Krüppel-type zinc-finger transcription factor that binds to GC-rich sequences, is involved in the regulation of cell growth and cell death. It maps to chromosome 3q21 and is composed of 794 residues. Having bifunctional regulatory domains, ZBP-89 may function as a transcriptional activator or repressor of variety of genes such as p16 and vimentin. ZBP-89 arrests cell proliferation through its interactions with p53 and p21(waf1). It is able to stabilize p53 through directly binding and enhance p53 transcriptional activity by retaining it in the nucleus. In addition, ZBP-89 potentiates in butyrate-induced endogenous p21(waf1) up-regulation. ZBP-89 is usually over-expressed in human cancer cells, where it can efficiently induce apoptosis through p53-dependent and -independent mechanisms. Moreover, ZBP-89 is capable of enhancing killing effects of several anti-cancer drugs. Therefore, ZBP-89 may be served as a potential target in cancer therapy.
Collapse
Affiliation(s)
- Chris Z Y Zhang
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong
| | | | | |
Collapse
|
22
|
Ohneda K, Ohmori S, Ishijima Y, Nakano M, Yamamoto M. Characterization of a functional ZBP-89 binding site that mediates Gata1 gene expression during hematopoietic development. J Biol Chem 2009; 284:30187-99. [PMID: 19723625 DOI: 10.1074/jbc.m109.026948] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
GATA-1 is a lineage-restricted transcription factor that plays essential roles in hematopoietic development. The Gata1 gene hematopoietic enhancer allowed Gata1 reporter expression in erythroid cells and megakaryocytes of transgenic mice. The Gata1 hematopoietic enhancer activity is strictly dependent on a GATA site located in the 5' region of the enhancer. However, the importance of the GC-rich region adjacent to the 3'-end of this GATA site has been also suggested. In this study, we show that this GC-rich region contains five contiguous deoxyguanosine residues (G(5) string) that are bound by multiple nuclear proteins. Interestingly, deletion of one deoxyguanosine residue from the G(5) string (G(4) mutant) specifically eliminates binding to ZBP-89, a Krüppel-like transcription factor, but not to Sp3 and other binding factors. We demonstrate that GATA-1 and ZBP-89 occupy chromatin regions of the Gata1 enhancer and physically associate in vitro through zinc finger domains. Gel mobility shift assays and DNA affinity precipitation assays suggest that binding of ZBP-89 to this region is reduced in the absence of GATA-1 binding to the G1HE. Luciferase reporter assays demonstrate that ZBP-89 activates the Gata1 enhancer depending on the G(5) string sequence. Finally, transgenic mouse studies reveal that the G(4) mutation significantly reduced the reporter activity of the Gata1 hematopoietic regulatory domain encompassing an 8.5-kbp region of the Gata1 gene. These data provide compelling evidence that the G(5) string is necessary for Gata1 gene expression in vivo and ZBP-89 is the functional trans-acting factor for this cis-acting region.
Collapse
Affiliation(s)
- Kinuko Ohneda
- Department of Pharmacy, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki 370-0033, Japan.
| | | | | | | | | |
Collapse
|
23
|
Feng Y, Wang X, Xu L, Pan H, Zhu S, Liang Q, Huang B, Lu J. The transcription factor ZBP-89 suppresses p16 expression through a histone modification mechanism to affect cell senescence. FEBS J 2009; 276:4197-206. [PMID: 19583777 DOI: 10.1111/j.1742-4658.2009.07128.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transcription factor ZBP-89 has been implicated in the induction of growth arrest and apoptosis. In this article, we demonstrate that ZBP-89 was able to restrain senescence in NCI-H460 human lung cancer cells, through epigenetically regulating p(16INK4a) expression. Specifically, our results indicate that knockdown of ZBP-89 by RNA interference stimulated cellular senescence in NCI-H460 cells, as judged by the senescence-associated beta-galactosidase activity assay and senescence-associated heterochromatin foci assay, and this process could be reversed by RNA interference-mediated p16(INK4a) silencing. We also show that histone deacetylase (HDAC) 3 and HDAC4 inhibited p16(INK4a) promoter activity in a dose-dependent manner. Furthermore, chromatin immunoprecipitation assays verified that HDAC3 was recruited to the p16(INK4a) promoter by ZBP-89 through an epigenetic mechanism involving histone acetylation modification. Moreover, immunofluorescence and coimmunoprecipitation assays revealed that ZBP-89 and HDAC3 formed a complex. These data suggest that ZBP-89 and HDAC3, but not HDAC4, can work coordinately to restrain cell senescence by downregulating p16(INK4a) expression through an epigenetic modification of histones.
Collapse
Affiliation(s)
- Yunpeng Feng
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Chen GG, Chan UPF, Bai LC, Fung KY, Tessier A, To AKY, Merchant JL, Lai PBS. ZBP-89 reduces the cell death threshold in hepatocellular carcinoma cells by increasing caspase-6 and S phase cell cycle arrest. Cancer Lett 2009; 283:52-8. [PMID: 19362768 DOI: 10.1016/j.canlet.2009.03.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 03/15/2009] [Accepted: 03/16/2009] [Indexed: 12/01/2022]
Abstract
ZBP-89 inhibits the some tumor cells but its role in HCC is unknown. We investigated effect of ZBP-89 on cell death of 5 HCC cell lines with different status of p53. We found that ZBP-89 significantly induced cell death of all HCC cells particularly those with wild-type p53. The inhibition was well correlated with the induction of caspase-6 activity. The inhibition of caspase-6 abolished the effect of ZBP-89. ZBP-89 reduced the cells in G2-M but increased them in S phase. With the changes in caspase-6 and cell cycle, ZBP-89 greatly enhanced the killing effectiveness of 5-fluorouracil or staurosporine in HCC cells.
Collapse
Affiliation(s)
- George G Chen
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Twenty-one-base-pair insertion polymorphism creates an enhancer element and potentiates SLC6A1 GABA transporter promoter activity. Pharmacogenet Genomics 2009; 19:53-65. [PMID: 19077666 DOI: 10.1097/fpc.0b013e328318b21a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Sodium-dependent and chloride-dependent gamma-aminobutyric acid (GABA) transporter 1 (SLC6A1) is the target of a number of drugs of clinical importance and is a major determinant of synaptic GABA concentrations. We resequenced the human SLC6A1 gene previously and discovered a novel 21 bp insertion in the predicted promoter region that creates a second tandem copy of the sequence. Here we sought to determine the functional relevance of this variation. METHODS We used reporter assays, mobility shift assays, quantitative PCR, and proteomics methods as well as postmortem expression analysis for this work. RESULTS Reporter assays showed that the insertion allele significantly increases promoter activity in multiple cell lines. The zinc finger transcription factor ZNF148 was found to significantly transactivate the promoter and increase expression when overexpressed but could not account for the differences in activity between the two alleles of the promoter. Copy number of the insertion sequence was associated with exponentially increasing activity of a downstream promoter, suggesting that the insertion sequence has enhancer activity when present in multiple copies. SLC6A1 promoter genotype was found to predict SLC6A1 RNA expression in human postmortem hippocampal samples. These results suggest that the insertion polymorphism leads to increased SLC6A1 promoter activity because, in part, of creation of an enhancer element when present as multiple copies. Genotyping individuals from Tanzania in this study suggested that the insertion allele has its origin in Africa. CONCLUSION On account of the effect of the insertion on promoter activity, this relatively common polymorphism may prove useful in predicting clinical response to pharmacological modulators of SLC6A1 as well as GABAergic function in individuals of African descent.
Collapse
|
26
|
Salmon M, Owens GK, Zehner ZE. Over-expression of the transcription factor, ZBP-89, leads to enhancement of the C2C12 myogenic program. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1144-55. [PMID: 19232372 DOI: 10.1016/j.bbamcr.2009.01.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 01/16/2009] [Accepted: 01/20/2009] [Indexed: 11/18/2022]
Abstract
Myogenesis involves the complex interplay between the down-regulation of non-muscle genes and the up-regulation of muscle-specific genes. This interplay is controlled by the myogenic regulatory factors Myf5, MRF4, MyoD and myogenin. To trigger the up-regulation of these muscle-specific factors, certain environmental cues, such as the removal of serum, signal C2C12 myoblast cells to withdraw from cell cycle, fuse and activate muscle-specific genes. Here, the level of ZBP-89 (zfp148), a Krüppel-like transcription factor, has been shown to increase during myogenesis. Over-expression of ZBP-89, via adenoviral infection, led to the enhancement of the myogenic program without requiring the removal of serum. Quantitative real-time PCR and ChIP assays documented that ZBP-89 promoted the down-regulation of Pax7 coupled with the up-regulation of MRF4 and MyoD to regulate C2C12 differentiation in vitro. In addition, ZBP-89 over-expression up-regulated p21 and Rb while promoting the down-regulation of cyclinA and cyclinD1. In converse, the diminution of ZBP-89 by siRNA promoted the retention of myogenic and cell cycle regulators at myoblast levels resulting in a concomitant delay of the myogenic program. From these studies we conclude that the transcription factor ZBP-89 plays an important role in the timing of the myogenic program.
Collapse
Affiliation(s)
- Morgan Salmon
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University Medical Center, Richmond, VA 23298-0614, USA
| | | | | |
Collapse
|
27
|
ZBP-89 and Sp3 down-regulate while NF-Y up-regulates SOX18 promoter activity in HeLa cells. Mol Biol Rep 2008; 36:993-1000. [PMID: 18496767 DOI: 10.1007/s11033-008-9272-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 05/12/2008] [Indexed: 10/22/2022]
Abstract
The aim of this study has been to identify transcription factors involved in transcriptional regulation of the human SOX18 gene expression. Structural analysis revealed that the SOX18 promoter lacks a TATA box, but is CG-rich containing many putative binding sites for transcription factors that can bind and act through GC-boxes. Alignment analysis of promoter regions between human and mouse revealed conserved putative binding sites for transcription factors NF-Y and Sp-family members. Mithramycin A treatment led to increased SOX18 expression in vivo raising the possibility that the GC-rich sequence of the human SOX18 promoter might be occupied by transcription factor(s) that acts as repressor(s). Using in vitro binding assays we have demonstrated that transcription factors Sp3, ZBP-89 and NF-Y are capable of binding to the SOX18 promoter region spanning the sequence -200 to -162 relative to ATG and that formation of complexes could be efficiently reduced by mithramycin A. Furthermore, co-transfection experiments revealed that over-expression of Sp3 and ZBP-89 down-regulate, while over-expression of NF-Y up-regulates SOX18 promoter activity in HeLa cells. The involvement of these transcription factors in the regulation of SOX18 expression in HeLa cells was further confirmed in vivo by Western blot analyses. In this paper, for the first time, we have demonstrated that Sp3, ZBP-89 and NF-Y are involved in transcriptional regulation of the human SOX18 gene expression. Presented data provide the initial information about transcriptional regulation that will help in better understanding of molecular mechanisms involved in regulation of SOX18 gene expression.
Collapse
|
28
|
Chupreta S, Brevig H, Bai L, Merchant JL, Iñiguez-Lluhí JA. Sumoylation-dependent control of homotypic and heterotypic synergy by the Kruppel-type zinc finger protein ZBP-89. J Biol Chem 2007; 282:36155-66. [PMID: 17940278 DOI: 10.1074/jbc.m708130200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Krüppel-like transcription factor ZBP-89 is a sequence-specific regulator that plays key roles in cellular growth and differentiation especially in endodermal and germ cell lineages. ZBP-89 shares with other members of the Sp-like family an overlapping sequence specificity for GC-rich sequences in the regulatory regions of multiple genes. Defining the mechanisms that govern the intrinsic function of ZBP-89 as well as its competitive and non-competitive functional interactions with other regulators is central to understand how ZBP-89 exerts its biological functions. We now describe that post-translational modification of ZBP-89 by multiple small ubiquitin-like modifier (SUMO) isoforms occurs at two conserved synergy control motifs flanking the DNA binding domain. Functionally sumoylation did not directly alter the ability of ZBP-89 to compete with other Sp-like factors from individual sites. At promoters bearing multiple response elements, however, this modification inhibited the functional cooperation between ZBP-89 and Sp1. Analysis of the properties of ZBP-89 in cellular contexts devoid of competing factors indicated that although on its own it behaves as a modest activator it potently synergizes with heterologous activators such as the glucocorticoid receptor. Notably we found that when conjugated to ZBP-89, SUMO exerts a strong inhibitory effect on such synergistic interactions through a critical conserved functional surface. By regulating higher order functional interactions, sumoylation provides a reversible post-translational mechanism to control the activity of ZBP-89.
Collapse
Affiliation(s)
- Sergey Chupreta
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0632, USA
| | | | | | | | | |
Collapse
|
29
|
Wu Y, Zhang X, Salmon M, Zehner ZE. The zinc finger repressor, ZBP-89, recruits histone deacetylase 1 to repress vimentin gene expression. Genes Cells 2007; 12:905-18. [PMID: 17663720 DOI: 10.1111/j.1365-2443.2007.01104.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vimentin, a member of the intermediate filament (IF) protein family, exhibits a complex pattern of tissue- and developmental-specific expression. Although vimentin is widely expressed in the embryo, its expression becomes restricted during terminal differentiation. Moreover, it is often expressed in tissue culture cells despite their embryological origin and is a marker for the metastatic tumor cell. Previously, the vimentin promoter has been shown to contain several positive- and negative-acting cis-elements. The negative elements bind the transcription factor ZBP-89. Interestingly, ZBP-89 can be either an activator or a repressor of gene expression. For instance, ZBP-89 has been shown to activate p21(waf1/cip1) expression by recruiting p300 to the p21 promoter. Here, we have investigated the mechanism of ZBP-89 repression. The histone deacetylase (HDAC) inhibitor TSA enhances vimentin gene expression requiring the proximal promoter region including GC-box 1, a known Sp1/Sp3 binding site. Chromatin immunoprecipitation (ChIP) assays document an increase in the acetylation status of histone H3 on the endogenous vimentin gene concomitant with TSA treatment. However, EMSAs, DNA precipitation, co-immunoprecipitation and ChIP data show that it is not Sp1, but rather ZBP-89, which recruits HDAC1. From these studies we conclude that ZBP-89 functions as a repressor by recruiting HDAC1 to the vimentin promoter.
Collapse
Affiliation(s)
- Yongzhong Wu
- The Department of Biochemistry and the Massey Cancer Center, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond, VA 23298-0614, USA
| | | | | | | |
Collapse
|
30
|
Almon RR, DuBois DC, Jusko WJ. A microarray analysis of the temporal response of liver to methylprednisolone: a comparative analysis of two dosing regimens. Endocrinology 2007; 148:2209-25. [PMID: 17303664 PMCID: PMC4183266 DOI: 10.1210/en.2006-0790] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Microarray analyses were performed on livers from adrenalectomized male Wistar rats chronically infused with methylprednisolone (MPL) (0.3 mg/kg.h) using Alzet mini-osmotic pumps for periods ranging from 6 h to 7 d. Four control and 40 drug-treated animals were killed at 10 different times during drug infusion. Total RNA preparations from the livers of these animals were hybridized to 44 individual Affymetrix REA230A gene chips, generating data for 15,967 different probe sets for each chip. A series of three filters were applied sequentially. These filters were designed to eliminate probe sets that were not expressed in the tissue, were not regulated by the drug, or did not meet defined quality control standards. These filters eliminated 13,978 probe sets (87.5%) leaving a remainder of 1989 probe sets for further consideration. We previously described a similar dataset obtained from animals after administration of a single dose of MPL (50 mg/kg given iv). That study involved 16 time points over a 72-h period. A similar filtering schema applied to the single-bolus-dose dataset identified 1519 probe sets as being regulated by MPL. A comparison of datasets from the two different dosing regimens identified 358 genes that were regulated by MPL in response to both dosing regimens. Regulated genes were grouped into 13 categories, mainly on gene product function. The temporal profiles of these common genes were subjected to detailed scrutiny. Examination of temporal profiles demonstrates that current perspectives on the mechanism of glucocorticoid action cannot entirely explain the temporal profiles of these regulated genes.
Collapse
Affiliation(s)
- Richard R Almon
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260, USA.
| | | | | |
Collapse
|
31
|
Watson SA, Grabowska AM, El-Zaatari M, Takhar A. Gastrin - active participant or bystander in gastric carcinogenesis? Nat Rev Cancer 2006; 6:936-46. [PMID: 17128210 DOI: 10.1038/nrc2014] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gastrin is a pro-proliferative, anti-apoptotic hormone with a central role in acid secretion in the gastric mucosa and a long-standing association with malignant progression in transgenic mouse models. However, its exact role in human gastric malignancy requires further validation. Gastrin expression is tightly regulated by two closely associated hormones, somatostatin and gastrin-releasing peptide, and aspects of their interaction may be deregulated during progression to gastric adenocarcinoma. Furthermore, agonists and antagonists of the receptors for all three hormones have shown modest clinical efficacy against gastric adenocarcinoma, which might provide useful information on the future combined use of these agents.
Collapse
Affiliation(s)
- Susan A Watson
- Academic Unit of Cancer Studies, University of Nottingham, Nottingham, NG7 2UH, UK.
| | | | | | | |
Collapse
|
32
|
Thimmarayappa J, Sun J, Schultz LE, Dejkhamron P, Lu C, Giallongo A, Merchant JL, Menon RK. Inhibition of Growth Hormone Receptor Gene Expression by Saturated Fatty Acids: Role of Krüppel-Like Zinc Finger Factor, ZBP-89. Mol Endocrinol 2006; 20:2747-60. [PMID: 16825291 DOI: 10.1210/me.2006-0128] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
AbstractThe expression and function of the GH receptor is critical for the actions of pituitary GH in the intact animal. The role of systemic factors in the reduced expression of the GH receptor and consequent GH insensitivity in pathological states such as sepsis, malnutrition, and poorly controlled diabetes mellitus is unclear. In the current study, we demonstrate that saturated (palmitic and myristic; 50 μm) fatty acids (FA) inhibit activity of the promoter of the major (L2) transcript of the GH receptor gene; unsaturated (oleic and linoleic) FA (200 μm) do not alter activity of the promoter. Comparable effects with palmitic acid and the nonmetabolizable analog bromo-palmitic acid, and failure of triacsin C to abrogate palmitic acids effects on GH receptor expression indicate that this effect is due to direct action(s) of FA. Palmitic acid, but not the unsaturated FA linoleic acid, decreased steady-state levels of endogenous L2 mRNA and GHR protein in 3T3-L1 preadipocytes. The effect of FA was localized to two cis elements located approximately 600 bp apart on the L2 promoter. EMSA and chromatin immunoprecipitation assays established that both these cis elements bind the Krüppel-type zinc finger transcription factor, ZBP-89. Ectopic expression of ZBP-89 amplified the inhibitory effect of FA on L2 promoter activity and on steady-state levels of endogenous L2 mRNA in 3T3-L1 preadipocytes. Mutational analyses of the two ZBP-89 binding sites revealed that both the sites are essential for palmitic acid’s inhibitory effect on the L2 promoter and for the enhancing effect of ZBP-89 on palmitic acid-induced inhibition of the L2 promoter. Our results establish a molecular basis for FA-induced inhibition of GH receptor gene expression in the pathogenesis of acquired GH insensitivity in pathological states such as poorly controlled diabetes mellitus and small for gestational age.
Collapse
Affiliation(s)
- Jamuna Thimmarayappa
- University of Michigan Medical School, 1205 Medical Professional Building, Box 0718, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109-0718, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Law DJ, Labut EM, Merchant JL. Intestinal overexpression of ZNF148 suppresses ApcMin/+ neoplasia. Mamm Genome 2006; 17:999-1004. [PMID: 17019648 DOI: 10.1007/s00335-006-0052-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2006] [Accepted: 05/22/2006] [Indexed: 10/24/2022]
Abstract
ZNF148 (ZBP-89, Zfp148) is a multifunctional transcription factor expressed at low levels in most tissues. When overexpressed in gastrointestinal cancer cell lines, ZNF148 inhibits cellular proliferation and induces apoptosis. We sought to determine whether intestinal ZNF148 overexpression would abrogate adenoma development in the ApcMin/+ mouse, i.e., whether ZNF148 is a tumor suppressor. The 13-kb villin promoter was spliced upstream of the ZNF148 cDNA to generate transgenic villin-ZNF148 (ZNF148TgVZ) mice. Intestinal mucosal ZNF148 expression was elevated in four of five ZNF148(TgVZ) lineages and correlated with increased caspase-3 expression and activation. In addition, DNA fragmentation was increased in ZNF148TgVZ mice relative to wild-type littermates. These results suggested that increased intestinal ZNF148 expression induces apoptosis. ZNF148TgVZ mice were crossed with ApcMin/+ mice to assess the biological significance of intestinal ZNF148 overexpression. The presence of the ZNF148TgVZ allele in ApcMin/+ mice correlated with reduced gastrointestinal bleeding at 5 weeks, a 50% reduction in adenoma burden at 20-22 weeks, and prolonged survival (median survival of 33.5 days vs. 21.5 days), relative to nontransgenic littermates. These data suggest that enhanced ZNF148 expression activates intestinal apoptosis and thereby mitigates disease burden in ApcMin/+ mice. They also suggest that ZNF148 is a therapeutic target to inhibit colon cancer development.
Collapse
Affiliation(s)
- David J Law
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, 48109-2200, USA
| | | | | |
Collapse
|
34
|
Xu Q, Springer L, Merchant JL, Jiang H. Identification of zinc finger binding protein 89 (ZBP-89) as a transcriptional activator for a major bovine growth hormone receptor promoter. Mol Cell Endocrinol 2006; 251:88-95. [PMID: 16621236 DOI: 10.1016/j.mce.2006.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 03/03/2006] [Accepted: 03/06/2006] [Indexed: 11/30/2022]
Abstract
The objective of this study was to identify the transcription factors that regulate the expression of growth hormone receptor (GHR) 1A mRNA, a major GHR mRNA variant in the bovine liver. A deoxyribonuclease I footprint analysis revealed that the GHR1A promoter region -69 to -30 (relative to the transcription start site for GHR1A mRNA) contained binding sites for bovine liver nuclear proteins. Using a yeast one-hybrid analysis, zinc finger binding protein 89 (ZBP-89) was identified as a binding protein to this promoter region. Binding of ZBP-89 to the GHR1A promoter region -69 to -30 was further confirmed by an electrophoretic mobility shift assay. In cotransfection analyses, overexpression of ZBP-89 enhanced (P<0.01) the activity of the GHR1A promoter and this enhancement was dependent on the putative ZBP-89 binding site in the promoter. These results together indicate that ZBP-89 is a transcription factor that regulates the expression of GHR1A mRNA.
Collapse
Affiliation(s)
- Qingfu Xu
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, 24061-0306, USA
| | | | | | | |
Collapse
|
35
|
De Bustos C, Smits A, Strömberg B, Collins VP, Nistér M, Afink G. A PDGFRA promoter polymorphism, which disrupts the binding of ZNF148, is associated with primitive neuroectodermal tumours and ependymomas. J Med Genet 2006; 42:31-7. [PMID: 15635072 PMCID: PMC1735903 DOI: 10.1136/jmg.2004.024034] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Platelet derived growth factor receptor alpha (PDGFRalpha) expression is typical for a variety of brain tumours, while in normal adult brain PDGFRalpha expression is limited to a small number of neural progenitor cells. The molecular mechanisms responsible for the PDGFRalpha expression in tumours are not known, but in the absence of amplification, changes in transcriptional regulation might be an important factor in this process. METHODS AND RESULTS We have investigated the link between single nucleotide polymorphisms (SNPs) within the PDGFRalpha gene promoter and the occurrence of brain tumours (medulloblastomas, supratentorial primitive neuroectodermal tumours (PNETs), ependymal tumours, astrocytomas, oligodendrogliomas, and mixed gliomas). These SNPs give rise to five different promoter haplotypes named H1 and H2alpha-delta. It is apparent from the haplotype frequency distribution that both PNET (10-fold) and ependymoma (6.5-fold) patient groups display a significant over-representation of the H2delta haplotype. The precise functional role in PDGFRalpha gene transcription for the H2delta haplotype is not known yet, but we can show that the H2delta haplotype specifically disrupts binding of the transcription factor ZNF148 as compared to the other promoter haplotypes. CONCLUSIONS The specific over-representation of the H2delta haplotype in both patients with PNETs and ependymomas suggests a functional role for the ZNF148/PDGFRalpha pathway in the pathogenesis of these tumours.
Collapse
Affiliation(s)
- C De Bustos
- Department of Genetics and Pathology, Uppsala University, Rudbeck Laboratory, 751 85 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
36
|
Holley-Guthrie EA, Seaman WT, Bhende P, Merchant JL, Kenney SC. The Epstein-Barr virus protein BMRF1 activates gastrin transcription. J Virol 2005; 79:745-55. [PMID: 15613302 PMCID: PMC538557 DOI: 10.1128/jvi.79.2.745-755.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Epstein-Barr virus (EBV) BMRF1 gene encodes an early lytic protein that functions not only as the viral DNA polymerase processivity factor but also as a transcriptional activator. BMRF1 has been previously shown to activate transcription of an EBV early promoter, BHLF1, though a GC-rich motif which binds to SP1 and ZBP-89, although the exact mechanism for this effect is not known (D. J. Law, S. A. Tarle, and J. L. Merchant, Mamm. Genome 9:165-167, 1998). Here we demonstrate that BMRF1 activates transcription of the cellular gastrin gene in telomerase-immortalized keratinocytes. Furthermore, BMRF1 activated a reporter gene construct driven by the gastrin promoter in a variety of cell types, and this effect was mediated by two SP1/ZBP-89 binding sites in the gastrin promoter. ZBP-89 has been previously shown to negatively regulate the gastrin promoter. However, ZBP-89 can function as either a negative or positive regulator of transcription, depending upon the promoter and perhaps other, as-yet-unidentified factors. BMRF1 increased the binding of ZBP-89 to the gastrin promoter, and a ZBP-89-GAL4 fusion protein was converted into a positive transcriptional regulator by cotransfection with BMRF1. BMRF1 also enhanced the transcriptional activity of an SP1-GAL4 fusion protein. These results suggest that BMRF1 activates target promoters through its effect on both the SP1 and ZBP-89 transcription factors. Furthermore, as the EBV genome is present in up to 10% of gastric cancers, and the different forms of gastrin are growth factors for gastrointestinal epithelium, our results suggest a mechanism by which lytic EBV infection could promote the growth of gastric cells.
Collapse
Affiliation(s)
- Elizabeth A Holley-Guthrie
- Lineberger Comprehensive Cancer Center, CB # 7295, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
37
|
Qin C, Samudio I, Ngwenya S, Safe S. Estrogen-dependent regulation of ornithine decarboxylase in breast cancer cells through activation of nongenomic cAMP-dependent pathways. Mol Carcinog 2004; 40:160-170. [PMID: 15224348 DOI: 10.1002/mc.20030] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
17beta-estradiol (E2) induces ornithine decarboxylase (ODC) activity in several E2-responsive tissues/cells, and this study investigated the mechanism of hormone-induced transactivation in MCF-7 human breast cancer cells. E2-induced reporter gene (luciferase) activity in MCF-7 cells transfected with a construct (pODC1) containing the -164 to +29 region of the human ODC gene promoter linked to bacterial luciferase. This promoter sequence contains GC-rich Sp1 binding sites, CAAT, LSF, cAMP response element (CRE), and TATA motifs. Deletion and mutational analysis of the ODC promoter showed that both CAAT and LSF sites were required for hormone-induced transactivation. Gel mobility shift and DNA footprinting assays indicated that NFYA and LSF bound the CAAT and LSF motifs, respectively, and GAL4-NFYA/GAL4-LSF chimeras were also activated by E2, 8-bromo-cAMP, and protein kinase A (PKA) expression plasmid. However, E2-induced transactivation of GAL4-NFYA and GAL4-LSF was blocked by the PKA inhibitor SQ22356 indicating that the mechanism of ODC induction by E2 involves upregulation of cAMP/PKA through nongenomic pathways of estrogen action.
Collapse
Affiliation(s)
- Chunhua Qin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466, USA
| | | | | | | |
Collapse
|
38
|
Boopathi E, Lenka N, Prabu SK, Fang JK, Wilkinson F, Atchison M, Giallongo A, Avadhani NG. Regulation of murine cytochrome c oxidase Vb gene expression during myogenesis: YY-1 and heterogeneous nuclear ribonucleoprotein D-like protein (JKTBP1) reciprocally regulate transcription activity by physical interaction with the BERF-1/ZBP-89 factor. J Biol Chem 2004; 279:35242-54. [PMID: 15190078 DOI: 10.1074/jbc.m403160200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A transcription suppressor element (sequence -481 to -320) containing a G-rich motif (designated GTG) and a newly identified CAT-rich motif (designated CATR) was previously shown to modulate expression of the mouse cytochrome c oxidase Vb gene during myogenesis. Here, we show that the GTG element is critical for transcription activation in both undifferentiated and differentiated myocytes. Mutations of the CATR motif abolished transcription repression in myoblasts while limiting transcription activation in differentiated myotubes, suggesting contrasting functional attributes of this DNA motif at different stages of myogenesis. Results show that the activity of the transcription suppressor motif is modulated by an orchestrated interplay between ubiquitous transcription factors: ZBP-89, YY-1, and a member of the heterogeneous nuclear ribonucleoprotein D-like protein (also known as JKTBP1) family. In undifferentiated muscle cells, GTG motif-bound ZBP-89 physically and functionally interacted with CATR motif-bound YY-1 to mediate transcription repression. In differentiated myotubes, heterogeneous nuclear ribonucleoprotein D-like protein/JKTBP1 bound to the CATR motif exclusive of YY-1 and interacted with ZBP-89 in attenuating repressor activity, leading to transcription activation. Our results show a novel mechanism of protein factor switching in transcription regulation of the cytochrome c oxidase Vb gene during myogenesis.
Collapse
Affiliation(s)
- Ettickan Boopathi
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Borghaei RC, Rawlings PL, Javadi M, Woloshin J. NF-kappaB binds to a polymorphic repressor element in the MMP-3 promoter. Biochem Biophys Res Commun 2004; 316:182-8. [PMID: 15003528 DOI: 10.1016/j.bbrc.2004.02.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Indexed: 12/13/2022]
Abstract
A 5T/6T polymorphic site in the matrix metalloproteinase-3 (MMP-3) promoter has been identified as a repressor element involved in inhibiting induction of MMP-3 transcription by interleukin 1; and the 6T allele has been associated with decreased expression of MMP-3 as compared to the 5T allele. Zinc-binding protein-89 (ZBP-89) was cloned from a yeast one-hybrid assay via its ability to interact with this site, but when the protein was over-expressed, it resulted in activation of the MMP-3 promoter rather than repression. Here we show that in nuclear extracts isolated from human gingival fibroblasts stimulated with IL-1, this site is bound by p50 and p65 components of NF-kappaB in addition to ZBP-89, and that recombinant p50 binds preferentially to the 6T binding site. These results are consistent with a role for NF-kappaB in limiting the cytokine induced expression of MMP-3.
Collapse
Affiliation(s)
- Ruth C Borghaei
- Department of Biochemistry and Molecular Biology, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA 19131, USA.
| | | | | | | |
Collapse
|
40
|
Miyahara K, Kuge H, Shizuta Y, Honke K. Three repeats of CCCCTCC on the pyrimidine-rich sequence in the proximal 5' flanking region are required for efficient transcriptional activity of the human endothelial nitric oxide synthase gene. Free Radic Res 2004; 38:87-95. [PMID: 15061658 DOI: 10.1080/10715160310001638029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The endothelial nitric-oxide synthase (eNOS) gene is constitutively expressed in endothelial cells, but numerous regulatory elements in the promoter region should contribute to the regulation for cell specific expression and the response to exogenous stimuli. A Sp1-binding consensus motif (-104 to -96) is essential for a core promoter activity of the human eNOS gene. In this study, we show that three repeats of CCCCTCC element (-74, -61, and -47), which located periodically at 13 and 14 nucleotide intervals on a pyrimidine-rich string in the proximal 5'-flanking region, were required for efficient transcriptional activity of the eNOS gene. In electrophoretic mobility shift assays, a specific DNA-protein complex was formed with a binding ability depending on the number of the CCCCTCC element while only one element did not retain any binding ability. Dinucleotide-substitution mutants at the repeat sequences reduced their transcriptional activities of the eNOS gene in transient transfection assays as diminishing their abilities to form the complex. Further, DNase I footprinting analyses indicated that nuclear extracts continuously protected a proximal region from -108 to -16, which includes pyrimidine-rich and purine-rich strings containing three CCCCTCC repeats and the Sp1-binding motif. UV-crosslink assay revealed the CCCCTCC repeat probe bound to a 97 kDa protein in the complex. A huge protein complex including Sp1-related factors and a 97 kDa protein might be formed along the proximal promoter of the eNOS gene for efficient transcriptional activity.
Collapse
Affiliation(s)
- Kaoru Miyahara
- Department of Molecular Genetics, Kochi Medical School, Nankoku, Kochi 783, Japan.
| | | | | | | |
Collapse
|
41
|
Wu Y, Diab I, Zhang X, Izmailova ES, Zehner ZE. Stat3 enhances vimentin gene expression by binding to the antisilencer element and interacting with the repressor protein, ZBP-89. Oncogene 2004; 23:168-78. [PMID: 14712222 DOI: 10.1038/sj.onc.1207003] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Vimentin exhibits a complex pattern of developmental- and tissue-specific expression and is aberrantly expressed in most metastatic tumors. The human vimentin promoter contains multiple DNA elements, some of which enhance gene expression and one that inhibits. A silencer element (at -319) binds the repressor ZBP-89. Further upstream (at -757) is an element, which acts positively in the presence of the silencer element and, thus, is referred to as an antisilencer (ASE). Previously, we showed that Stat1alpha binds to this element upon induction by IFN-gamma. However, substantial binding and reporter gene activity was still present in nontreated cells. Here, we have found that Stat3 binds to the ASE element in vitro. Transfection experiments in COS-1 cells with various vimentin promoter--reporter constructs show that gene activity is dependent upon the cotransfection and activation of Stat3. Moreover, activated Stat3 can overcome ZBP-89 repression. Coimmunoprecipitation studies demonstrate that Stat3 and ZBP-89 can interact and confocal microscopy detects these factors to be colocalized in the nucleus. Moreover, a correlation exists between the presence of activated Stat3 and vimentin expression in MDA-MB-231 cells, which is lacking in MCF7 cells where vimentin is not expressed. In the light of these results, we propose that the interaction of Stat3 and ZBP-89 may be crucial for overcoming the effects of the repressor ZBP-89, which suggests a novel mode for Stat3 gene activation.
Collapse
Affiliation(s)
- Yongzhong Wu
- Department of Biochemistry, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond, VA 23298-0614, USA
| | | | | | | | | |
Collapse
|
42
|
Ruminy P, Rouet P, Salier JP. An interplay of Sp1, GKLF and CREB-2 controls human Pre-alpha-Inhibitor gene (ITIH3) transcription. Gene 2004; 315:133-44. [PMID: 14557073 DOI: 10.1016/s0378-1119(03)00727-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pre-alpha-Inhibitor is a plasma protease inhibitor and a heterodimeric molecule whose one polypeptide chain is encoded by the ITIH3 gene. In order to understand the expression of this protein that is regulated in health and disease, we have analyzed the 5' flanking region of ITIH3, specifically focussing on its proximal promoter. A combination of methods including wild-type (wt) or mutant promoter linked to a reporter cat gene, co-transfections of cat constructs with expression plasmids for nuclear factors and electrophoretic mobility shift assays revealed that two antagonistic sets of regulatory elements and nuclear proteins are critical for the activity of this promoter. Indeed, several overlapping Sp1/Sp3-binding sites are required for a sustained activity. However, a tripartite complex including CREB-2 and two molecules of the gut-enriched, Krüppel-like factor cooperate to bind to an upstream area whose 3' end overlaps the Sp1-binding sites. The resulting competition between this tripartite complex and Sp1 results in impaired occupancy of Sp1-binding sites by Sp1 and a consequent reduction in ITIH3 transcription. Competition between Sp1 and a Krüppel-like factor for GC-rich sites has been previously reported, but this is the first description of an elaborate tripartite cooperation of two Krüppel-like factors and CREB as a key step in such a competition.
Collapse
Affiliation(s)
- Philippe Ruminy
- INSERM Unit 519, Faculté de Médecine-Pharmacie, Institut Fédératif de Recherches Multidisciplinaires sur les Peptides, 22 Bvd Gambetta, 76183 Rouen cedex, France
| | | | | |
Collapse
|
43
|
Abstract
Inducible p53-independent regulation of the cyclin-dependent kinase inhibitor p21(Waf1) transcription is mediated through its proximal GC-rich sites. Prior studies have shown that Sp1, Sp3 and the histone acetyltransferase coactivator p300 are components of the complexes that bind to these sites. Although Sp1 and Sp3 collaborate with p300, a direct interaction between Sp1 and p300 does not occur. Zinc-finger binding protein-89 (ZBP-89, also known as BFCOL1, BERF-1 and ZNF-148) is a Krüppel-type zinc-finger transcription factor that binds to the same GC-rich sequences as Sp1. We sought to determine whether ZBP-89 is a target of p300 during butyrate induction of p21(Waf1). This review summarizes the evidence that supports a crucial role for ZBP-89 in butyrate regulation of p21(Waf1). Adenovirus-mediated expression of ZBP-89 in HT-29 cells reveals that ZBP-89 potentiates butyrate induction of endogenous p21(Waf1) gene expression. DNA-protein interaction assays demonstrate that Sp1, Sp3 and ZBP-89 bind the p21(Waf1) promoter at -245 to -215. Coprecipitation assays reveal that p300 preferentially binds to the N-terminus of ZBP-89. ZBP-89 also induces p21(Waf1) through stabilization of p53. Although ZBP-89 binds mutant and wild-type p53, only wild-type p53 is stabilized. Moreover, mutant p53 shifts the subnuclear location of ZBP-89 to the nuclear periphery, which is a domain rich in heterochromatin. This finding led to the conclusion that mutant p53 exerts a dominant negative effect on ZBP-89. We propose that gene silencing by mutant p53 might be mediated by sequestering ZBP-89 within heterochromatin regions at the nuclear periphery. Overall, ZBP-89 is a butyrate-regulated coactivator of p53 and is able to induce p21(Waf1) gene expression through both p53-dependent and -independent mechanisms to inhibit cell growth.
Collapse
Affiliation(s)
- Juanita L Merchant
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
44
|
Zhang X, Diab IH, Zehner ZE. ZBP-89 represses vimentin gene transcription by interacting with the transcriptional activator, Sp1. Nucleic Acids Res 2003; 31:2900-14. [PMID: 12771217 PMCID: PMC156715 DOI: 10.1093/nar/gkg380] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Vimentin, a member of the intermediate filament protein family, is regulated both developmentally and tissue specifically. It is also a marker of the metastatic potential of many tumor cells. Pre viously, the human vimentin promoter has been shown to contain multiple elements for the binding of both positive- and negative-acting regulatory factors. Transient transfection analysis of various vimentin 5'-end promoter sequences and mutants thereof fused to a reporter gene further defined two regulatory elements, a positive element that binds Sp1 and a negative element that binds the protein ZBP-89. ZBP-89 has been shown to be either a repressor or an activator of gene expression, depending on the promoter. Here, we show that for vimentin, both ZBP-89 and ZBP-99 repress reporter gene expression in Schneider (S2) cells. Deletion constructs confirm that the glutamine-rich region of Sp1 is required to enhance vimentin transcription, whereas the N-terminus of ZBP-89 is required to interact with Sp1 and repress gene expression. The overexpression of hTAF(II)130 can alleviate ZBP-89 repression in S2 cells, suggesting how ZBP-89 might serve to block gene expression.
Collapse
Affiliation(s)
- Xueping Zhang
- Department of Biochemistry and the Massey Cancer Center, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond, VA 23298-0614, USA
| | | | | |
Collapse
|
45
|
Chen GG, Merchant JL, Lai PBS, Ho RLK, Hu X, Okada M, Huang SF, Chui AKK, Law DJ, Li YG, Lau WY, Li AKC. Mutation of p53 in recurrent hepatocellular carcinoma and its association with the expression of ZBP-89. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:1823-9. [PMID: 12759240 PMCID: PMC1868140 DOI: 10.1016/s0002-9440(10)64317-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
p53 has recently been identified as a downstream target of ZBP-89, a zinc finger transcription factor. ZBP-89 promotes growth arrest through stabilization of the p53 protein. The aim of this study is to determine the status of the p53 gene in recurrent human hepatocellular carcinoma (HCC) and test the link between the expression of ZBP-89 and the p53 gene. The results showed that mutations in the p53 gene were frequently detected in recurrent HCC. The interval between surgical resection and the recurrence of HCC was significantly longer in patients with the wild-type p53 gene than those with mutations, strongly suggesting a pathological role for the mutant p53 gene in HCC recurrence. Among those positive for the p53 protein, nearly 85% (18 of 21) showed nuclear localization of the p53 protein while only about 14% (3 of 21) were positive for the p53 protein in the cytoplasm. ZBP-89 co-localized with p53 in the nucleus in about 67% (12 of 18) of all cases positive for the nuclear p53 protein, suggesting that ZBP-89 may play a role in the nuclear accumulation of the p53 protein in a subset of recurrent HCC. With accumulation of p53 protein in the nucleus, tumor cells undergo apoptosis and thus are more susceptible to radiotherapy and chemotherapy. Therefore, co-localization of p53 protein with ZBP-89 may define a subgroup of recurrent HCC that is more sensitive to treatment.
Collapse
Affiliation(s)
- George G Chen
- Department of Surgery and the Sir Y. K. Pao Center for Cancer, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Slutsky SG, Kamaraju AK, Levy AM, Chebath J, Revel M. Activation of myelin genes during transdifferentiation from melanoma to glial cell phenotype. J Biol Chem 2003; 278:8960-8. [PMID: 12643284 DOI: 10.1074/jbc.m210569200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Induction of myelin genes occurs around birth in the last stage of Schwann cells differentiation and is reactivated in case of nerve injury. Previous studies showed that activation of the gp130 receptor system, using as ligand interleukin-6 fused to its soluble receptor (IL6RIL6), causes induction of myelin genes such as myelin basic protein (MBP) and myelin protein zero (Po) in embryonic dorsal root ganglia Schwann cells. We also reported that in murine melanoma B16/F10.9 cells, IL6RIL6 causes a shut-off of melanogenesis mediated by a down-regulation of the paired-homeodomain factor Pax3. The present work demonstrates that these IL6RIL6-treated F10.9 cells undergo transdifferentiation to a myelinating glial phenotype characterized by induction of the transcriptional activities of both Po and MBP promoters and accumulation of myelin gene products. For both Po and MBP promoters, a repression by Pax3 and stimulation by Sox10 can be demonstrated. Because after IL6RIL6-treatment, Pax3 disappears from the F10.9 cells (as it does in mature myelinating Schwann cells) whereas the level of Sox10 rather increases, we modulated the relative level of these factors and show their involvement in the induction of myelin gene expression by IL6RIL6. In addition, however, we show that a C/G-rich CACC box in the Po promoter is required for activation by IL6RIL6, as well as by ectopic Sox10, and identify a Kruppel-type zinc finger factor acting through this CACC box, which stimulates Po promoter activity.
Collapse
Affiliation(s)
- Shalom G Slutsky
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
47
|
Park H, Shelley CS, Arnaout MA. The zinc finger transcription factor ZBP-89 is a repressor of the human beta 2-integrin CD11b gene. Blood 2003; 101:894-902. [PMID: 12393719 DOI: 10.1182/blood-2002-03-0680] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrin CD11b is a differentiation marker of the myelomonocytic lineage and an important mediator of inflammation. Expression of the CD11b gene is transcriptionally induced as myeloid precursors differentiate into mature cells, then drops as monocytes further differentiate into macrophages. Previous studies have identified elements and factors involved in the transcriptional activation of the CD11b gene during myeloid differentiation, but no data exist regarding potential down-regulatory factors, especially in the later stages of differentiation. Using 2 copies of a GC-rich element (-141 to -110) in the CD11b promoter, we probed a cDNA expression library for interacting proteins. Three clones were identified among 9.1 million screened, all encoding the DNA-binding domain of the zinc finger factor ZBP-89. Overexpression of ZBP-89 in the monocyte precursor cell line U937 reduced CD11b promoter-driven luciferase activity when U937 cells were induced to differentiate into monocytelike cells using phorbol esters. To identify the differentiation stage at which ZBP-89 repression of the CD11b gene is exerted, the protein level of ZBP-89 was correlated with that of CD11b mRNA in differentiating U937 as well as in normal human monocytes undergoing in vitro differentiation into macrophages. A clear inverse relationship was observed in the latter but not the former state, suggesting that ZBP-89 represses CD11b gene expression during the further differentiation of monocytes into macrophages.
Collapse
Affiliation(s)
- Heiyoung Park
- Leukocyte Biology and Inflammation Program, Renal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
48
|
Chen ZY, Shie JL, Tseng CC. Gut-enriched Kruppel-like factor represses ornithine decarboxylase gene expression and functions as checkpoint regulator in colonic cancer cells. J Biol Chem 2002; 277:46831-9. [PMID: 12297499 DOI: 10.1074/jbc.m204816200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gut-enriched Krüppel-like factor (GKLF, KLF4) is an epithelial-specific transcription factor that expresses in the gastrointestinal tract and mediates growth arrest of colonic epithelium. The molecular mechanisms governing its growth inhibitory effect have not been fully elucidated. In the present study, we showed that induction of GKLF mRNA and protein expression by interferon-gamma treatment was associated with reduction of ornithine decarboxylase (ODC) gene expression and enzyme activity in colon cancer HT-29 cells. Overexpression of GKLF in HT-29 cells significantly reduced ODC mRNA and protein levels as well as enzyme activity and resulted in growth arrest, indicating that ODC might be a downstream target of GKLF. This conclusion was further supported by data showing that GKLF mRNA and protein concentrations were the highest at the G(1)/S boundary of the cell cycle, where ODC mRNA and protein levels were the lowest and that overexpression of GKLF resulted in cell arrested at the G(1) phase. Reporter gene transfection studies and electrophoretic mobility gel shift assays demonstrated that GKLF repressed ODC promoter activity and that these effects appeared to be mediated through interaction with a GC box in the proximal portion of the promoter. Transfection studies using reporter constructs and chromatin immunoprecipitation assays also demonstrated that GKLF inhibited transactivation of the ODC gene by interfering with the binding of Sp1 to the ODC promoter. These results indicate that GKLF may function as a G(1)/S checkpoint regulator and exert its growth arrest effect through down-regulation of ODC gene expression. Furthermore, GKLF is a transcriptional repressor of the ODC gene, and these effects are mediated by interaction with the GC-rich region on the promoter.
Collapse
Affiliation(s)
- Zhi Y Chen
- Section of Gastroenterology, Veterans Affairs Boston Healthcare System and Boston University School of Medicine, Boston, Massachusetts, 02118, USA
| | | | | |
Collapse
|
49
|
Bianchi L, Tacchini L, Matteucci E, Desiderio MA. A cluster region of AP-1 responsive elements is required for transcriptional activity of mouse ODC gene by hepatocyte growth factor. Arch Biochem Biophys 2002; 401:115-23. [PMID: 12054494 DOI: 10.1016/s0003-9861(02)00019-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ornithine decarboxylase (ODC) activity is regulated by a variety of mechanisms including transcription, translation, and RNA and protein half-life. Since in mouse B16-F1 melanoma cells an early and remarkable (about 6-fold) increase in steady state mRNA levels was observed after hepatocyte growth factor (HGF) treatment, we investigated the transcriptional regulation of mouse ODC promoter. Transient transfection of various ODC-luciferase promoter constructs into the B16-Fl cells in combination with electrophoretic mobility shift assays identified the HGF-responsive element as a cluster of three AP-1 binding sites (-1660 to -1572). Even if each site differs from the canonical TPA responsive element for one nucleotide, only the first two AP-1 consensus sequences seemed to be functional since allowed DNA-binding activity of nuclear proteins after HGF treatment. Comparison of the results of transfection assays with the pOD2.5-luc (2.5 kb gene fragment) and with the construct deprived of the AP-1 cluster pOD-B-luc showed that this 50 bp region was required for ODC transactivating activity in response to HGF. Since in B16-F1 cells HGF increased AP-1 activity and the mRNA expression of various AP-1 subunits, we may conclude that HGF-induced transcription of mouse ODC was largely due to triggering of AP-1 pathway.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites/genetics
- Consensus Sequence
- DNA, Neoplasm/metabolism
- Gene Expression
- Hepatocyte Growth Factor/pharmacology
- Kinetics
- Melanoma, Experimental/genetics
- Melanoma, Experimental/metabolism
- Mice
- Ornithine Decarboxylase/genetics
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Transcription Factor AP-1/genetics
- Transcription Factor AP-1/metabolism
- Transcription, Genetic/drug effects
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Laura Bianchi
- Institute of General Pathology and C.N.R. Center for Research on Cell Pathology, University of Milano, School of Medicine, via L. Mangiagalli, 31-20133 Milan, Italy
| | | | | | | |
Collapse
|
50
|
Abstract
Activation of the luteinizing hormone beta (LHbeta) promoter by gonadotropin-releasing hormone (GnRH) via the transcription factor early growth response protein-1 (Egr1) has been well characterized. To determine the mechanisms affecting Egr1 regulation of LHbeta, we analyzed five different species of LHbeta promoters (equine, mouse, rat, bovine and human). Electrophoretic mobility shift assays (EMSAs) identified multiple transcription factors binding to the Egr regions on the LHbeta promoter. Species-specific differences existed in the binding affinity for Sp1, Sp3, steroidogenic factor-1 (SF-1) and Egr1. Upon mutation of the Egr elements, competition for the binding of all zinc finger proteins was lost, suggesting that the Sp proteins compete for binding to the same site that Egr1 occupies. In addition, the promoters from species that had the highest affinity for Sp1 also had the lowest activation by Egr1 and GnRH. Thus we hypothesize that Sp1 competes for Egr1 binding to the Egr elements on the LHbeta promoter and thus inhibits the ability of GnRH and Egr1 to activate the LHbeta promoter.
Collapse
Affiliation(s)
- Gerald B Call
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160-7401, USA
| | | |
Collapse
|