1
|
Aranda S, Alcaine-Colet A, Ballaré C, Blanco E, Mocavini I, Sparavier A, Vizán P, Borràs E, Sabidó E, Di Croce L. Thymine DNA glycosylase regulates cell-cycle-driven p53 transcriptional control in pluripotent cells. Mol Cell 2023:S1097-2765(23)00517-8. [PMID: 37506700 DOI: 10.1016/j.molcel.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/11/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
Cell cycle progression is linked to transcriptome dynamics and variations in the response of pluripotent cells to differentiation cues, mostly through unknown determinants. Here, we characterized the cell-cycle-associated transcriptome and proteome of mouse embryonic stem cells (mESCs) in naive ground state. We found that the thymine DNA glycosylase (TDG) is a cell-cycle-regulated co-factor of the tumor suppressor p53. Furthermore, TDG and p53 co-bind ESC-specific cis-regulatory elements and thereby control transcription of p53-dependent genes during self-renewal. We determined that the dynamic expression of TDG is required to promote the cell-cycle-associated transcriptional heterogeneity. Moreover, we demonstrated that transient depletion of TDG influences cell fate decisions during the early differentiation of mESCs. Our findings reveal an unanticipated role of TDG in promoting molecular heterogeneity during the cell cycle and highlight the central role of protein dynamics for the temporal control of cell fate during development.
Collapse
Affiliation(s)
- Sergi Aranda
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain.
| | - Anna Alcaine-Colet
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Cecilia Ballaré
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Enrique Blanco
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Ivano Mocavini
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | | | - Pedro Vizán
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Blanquerna School of Health Science, Universitat Ramon Llull, Barcelona 08025, Spain
| | - Eva Borràs
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Eduard Sabidó
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain.
| |
Collapse
|
2
|
Lirussi L, Nilsen HL. DNA Glycosylases Define the Outcome of Endogenous Base Modifications. Int J Mol Sci 2023; 24:10307. [PMID: 37373453 DOI: 10.3390/ijms241210307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Chemically modified nucleic acid bases are sources of genomic instability and mutations but may also regulate gene expression as epigenetic or epitranscriptomic modifications. Depending on the cellular context, they can have vastly diverse impacts on cells, from mutagenesis or cytotoxicity to changing cell fate by regulating chromatin organisation and gene expression. Identical chemical modifications exerting different functions pose a challenge for the cell's DNA repair machinery, as it needs to accurately distinguish between epigenetic marks and DNA damage to ensure proper repair and maintenance of (epi)genomic integrity. The specificity and selectivity of the recognition of these modified bases relies on DNA glycosylases, which acts as DNA damage, or more correctly, as modified bases sensors for the base excision repair (BER) pathway. Here, we will illustrate this duality by summarizing the role of uracil-DNA glycosylases, with particular attention to SMUG1, in the regulation of the epigenetic landscape as active regulators of gene expression and chromatin remodelling. We will also describe how epigenetic marks, with a special focus on 5-hydroxymethyluracil, can affect the damage susceptibility of nucleic acids and conversely how DNA damage can induce changes in the epigenetic landscape by altering the pattern of DNA methylation and chromatin structure.
Collapse
Affiliation(s)
- Lisa Lirussi
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
- Section of Clinical Molecular Biology (EpiGen), Akershus University Hospital, 1478 Lørenskog, Norway
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Hilde Loge Nilsen
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
- Unit for Precision Medicine, Akershus University Hospital, 1478 Lørenskog, Norway
| |
Collapse
|
3
|
The Role of Thymine DNA Glycosylase in Transcription, Active DNA Demethylation, and Cancer. Cancers (Basel) 2022; 14:cancers14030765. [PMID: 35159032 PMCID: PMC8833622 DOI: 10.3390/cancers14030765] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Thymine DNA Glycosylase (TDG) is a DNA repair protein that plays an important role in gene regulation. Recent studies have shown that TDG interacts with various transcription factors to activate target genes. TDG also functions in a pathway known as active DNA demethylation, which removes 5-mC from DNA and replaces it with unmethylated cytosine. In this review, we summarize the various functions of TDG in gene regulation as well as the physiological relevance of TDG in cancer. Abstract DNA methylation is an essential covalent modification that is required for growth and development. Once considered to be a relatively stable epigenetic mark, many studies have established that DNA methylation is dynamic. The 5-methylcytosine (5-mC) mark can be removed through active DNA demethylation in which 5-mC is converted to an unmodified cytosine through an oxidative pathway coupled to base excision repair (BER). The BER enzyme Thymine DNA Glycosylase (TDG) plays a key role in active DNA demethylation by excising intermediates of 5-mC generated by this process. TDG acts as a key player in transcriptional regulation through its interactions with various nuclear receptors and transcription factors, in addition to its involvement in classical BER and active DNA demethylation, which serve to protect the stability of the genome and epigenome, respectively. Recent animal studies have identified a connection between the loss of Tdg and the onset of tumorigenesis. In this review, we summarize the recent findings on TDG’s function as a transcriptional regulator as well as the physiological relevance of TDG and active DNA demethylation in cancer.
Collapse
|
4
|
Ozgun G, Senturk S, Erkek-Ozhan S. Retinoic acid signaling and bladder cancer: Epigenetic deregulation, therapy and beyond. Int J Cancer 2021; 148:2364-2374. [PMID: 33128775 DOI: 10.1002/ijc.33374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/10/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022]
Abstract
Retinoic acid (RA) signaling is a crucial developmental pathway involved in urothelium development, differentiation and regeneration. Deregulation of the RA signaling is highly implicated in several cancers, including bladder cancer, underlying the need to unravel the complete regulatory aspects of the retinoids in bladder tumorigenesis. Given the fact that RA receptors are transcription factors functioning at the chromatin level and act in close cooperation with chromatin modifiers, it is known that retinoids show their efficacy by changing the epigenome. Bladder cancer can be defined as a "disease of chromatin" with mutations identified in the genes involved in chromatin regulation in 80% of the patients. Therefore, a careful examination of the epigenetic backgrounds and the breakdown of the emerging and highly underexplored field of RA dependent regulation of the epigenome is essential to fully understand the retinoid-dependent effects on bladder cancer. With this motivation, in this review, we evaluate the role of RA signaling in bladder cancer with a focus on the regulatory and mutational aspects, emphasizing the deregulatory characteristics in bladder cancer and highlighting the potential treatment opportunities with the RA and derivatives alone or in combination with epigenetic drugs.
Collapse
Affiliation(s)
- Gizem Ozgun
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Dokuz Eylül University Izmir International Biomedicine and Genome Institute, Izmir, Turkey
| | - Serif Senturk
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Dokuz Eylül University Izmir International Biomedicine and Genome Institute, Izmir, Turkey
| | | |
Collapse
|
5
|
Baumann C, Zhang X, De La Fuente R. Loss of CBX2 induces genome instability and senescence-associated chromosomal rearrangements. J Cell Biol 2021; 219:152063. [PMID: 32870972 PMCID: PMC7594495 DOI: 10.1083/jcb.201910149] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 06/08/2020] [Accepted: 08/02/2020] [Indexed: 01/05/2023] Open
Abstract
The polycomb group protein CBX2 is an important epigenetic reader involved in cell proliferation and differentiation. While CBX2 overexpression occurs in a wide range of human tumors, targeted deletion results in homeotic transformation, proliferative defects, and premature senescence. However, its cellular function(s) and whether it plays a role in maintenance of genome stability remain to be determined. Here, we demonstrate that loss of CBX2 in mouse fibroblasts induces abnormal large-scale chromatin structure and chromosome instability. Integrative transcriptome analysis and ATAC-seq revealed a significant dysregulation of transcripts involved in DNA repair, chromocenter formation, and tumorigenesis in addition to changes in chromatin accessibility of genes involved in lateral sclerosis, basal transcription factors, and folate metabolism. Notably, Cbx2−/− cells exhibit prominent decondensation of satellite DNA sequences at metaphase and increased sister chromatid recombination events leading to rampant chromosome instability. The presence of extensive centromere and telomere defects suggests a prominent role for CBX2 in heterochromatin homeostasis and the regulation of nuclear architecture.
Collapse
Affiliation(s)
- Claudia Baumann
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA.,Regenerative Bioscience Center, University of Georgia, Athens, GA
| | - Xiangyu Zhang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA.,Regenerative Bioscience Center, University of Georgia, Athens, GA
| | - Rabindranath De La Fuente
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA.,Regenerative Bioscience Center, University of Georgia, Athens, GA
| |
Collapse
|
6
|
Caldwell BA, Liu MY, Prasasya RD, Wang T, DeNizio JE, Leu NA, Amoh NYA, Krapp C, Lan Y, Shields EJ, Bonasio R, Lengner CJ, Kohli RM, Bartolomei MS. Functionally distinct roles for TET-oxidized 5-methylcytosine bases in somatic reprogramming to pluripotency. Mol Cell 2021; 81:859-869.e8. [PMID: 33352108 PMCID: PMC7897302 DOI: 10.1016/j.molcel.2020.11.045] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/01/2020] [Accepted: 11/25/2020] [Indexed: 12/22/2022]
Abstract
Active DNA demethylation via ten-eleven translocation (TET) family enzymes is essential for epigenetic reprogramming in cell state transitions. TET enzymes catalyze up to three successive oxidations of 5-methylcytosine (5mC), generating 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), or 5-carboxycytosine (5caC). Although these bases are known to contribute to distinct demethylation pathways, the lack of tools to uncouple these sequential oxidative events has constrained our mechanistic understanding of the role of TETs in chromatin reprogramming. Here, we describe the first application of biochemically engineered TET mutants that unlink 5mC oxidation steps, examining their effects on somatic cell reprogramming. We show that only TET enzymes proficient for oxidation to 5fC/5caC can rescue the reprogramming potential of Tet2-deficient mouse embryonic fibroblasts. This effect correlated with rapid DNA demethylation at reprogramming enhancers and increased chromatin accessibility later in reprogramming. These experiments demonstrate that DNA demethylation through 5fC/5caC has roles distinct from 5hmC in somatic reprogramming to pluripotency.
Collapse
Affiliation(s)
- Blake A Caldwell
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Monica Yun Liu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rexxi D Prasasya
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tong Wang
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jamie E DeNizio
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - N Adrian Leu
- Department of Biomedical Sciences, School of Veterinary Medicine, Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nana Yaa A Amoh
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher Krapp
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yemin Lan
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emily J Shields
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roberto Bonasio
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher J Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rahul M Kohli
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Marisa S Bartolomei
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Bordin DL, Lirussi L, Nilsen H. Cellular response to endogenous DNA damage: DNA base modifications in gene expression regulation. DNA Repair (Amst) 2021; 99:103051. [PMID: 33540225 DOI: 10.1016/j.dnarep.2021.103051] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/19/2022]
Abstract
The integrity of the genetic information is continuously challenged by numerous genotoxic insults, most frequently in the form of oxidation, alkylation or deamination of the bases that result in DNA damage. These damages compromise the fidelity of the replication, and interfere with the progression and function of the transcription machineries. The DNA damage response (DDR) comprises a series of strategies to deal with DNA damage, including transient transcriptional inhibition, activation of DNA repair pathways and chromatin remodeling. Coordinated control of transcription and DNA repair is required to safeguardi cellular functions and identities. Here, we address the cellular responses to endogenous DNA damage, with a particular focus on the role of DNA glycosylases and the Base Excision Repair (BER) pathway, in conjunction with the DDR factors, in responding to DNA damage during the transcription process. We will also discuss functions of newly identified epigenetic and regulatory marks, such as 5-hydroxymethylcytosine and its oxidative products and 8-oxoguanine, that were previously considered only as DNA damages. In light of these resultsthe classical perception of DNA damage as detrimental for cellular processes are changing. and a picture emerges whereDNA glycosylases act as dynamic regulators of transcription, placing them at the intersection of DNA repair and gene expression modulation.
Collapse
Affiliation(s)
- Diana L Bordin
- Department of Clinical Molecular Biology, University of Oslo, 0318, Oslo, Norway; Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, 1478, Lørenskog, Norway
| | - Lisa Lirussi
- Department of Clinical Molecular Biology, University of Oslo, 0318, Oslo, Norway; Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, 1478, Lørenskog, Norway
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, University of Oslo, 0318, Oslo, Norway; Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, 1478, Lørenskog, Norway.
| |
Collapse
|
8
|
Hans F, Senarisoy M, Bhaskar Naidu C, Timmins J. Focus on DNA Glycosylases-A Set of Tightly Regulated Enzymes with a High Potential as Anticancer Drug Targets. Int J Mol Sci 2020; 21:ijms21239226. [PMID: 33287345 PMCID: PMC7730500 DOI: 10.3390/ijms21239226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/25/2022] Open
Abstract
Cancer is the second leading cause of death with tens of millions of people diagnosed with cancer every year around the world. Most radio- and chemotherapies aim to eliminate cancer cells, notably by causing severe damage to the DNA. However, efficient repair of such damage represents a common mechanism of resistance to initially effective cytotoxic agents. Thus, development of new generation anticancer drugs that target DNA repair pathways, and more particularly the base excision repair (BER) pathway that is responsible for removal of damaged bases, is of growing interest. The BER pathway is initiated by a set of enzymes known as DNA glycosylases. Unlike several downstream BER enzymes, DNA glycosylases have so far received little attention and the development of specific inhibitors of these enzymes has been lagging. Yet, dysregulation of DNA glycosylases is also known to play a central role in numerous cancers and at different stages of the disease, and thus inhibiting DNA glycosylases is now considered a valid strategy to eliminate cancer cells. This review provides a detailed overview of the activities of DNA glycosylases in normal and cancer cells, their modes of regulation, and their potential as anticancer drug targets.
Collapse
|
9
|
Schwarz SD, Grundbacher E, Hrovat AM, Xu J, Kuśnierczyk A, Vågbø CB, Schär P, Schuermann D. Inducible TDG knockout models to study epigenetic regulation. F1000Res 2020; 9:1112. [PMID: 33082936 PMCID: PMC7527862 DOI: 10.12688/f1000research.25637.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 01/09/2023] Open
Abstract
Mechanistic and functional studies by gene disruption or editing approaches often suffer from confounding effects like compensatory cellular adaptations generated by clonal selection. These issues become particularly relevant when studying factors directly involved in genetic or epigenetic maintenance. To provide a genetic tool for functional and mechanistic investigation of DNA-repair mediated active DNA demethylation, we generated experimental models in mice and murine embryonic stem cells (ESCs) based on a minigene of the thymine-DNA glycosylase (TDG). The loxP-flanked miniTdg is rapidly and reliably excised in mice and ESCs by tamoxifen-induced Cre activation, depleting TDG to undetectable levels within 24 hours. We describe the functionality of the engineered miniTdg in mouse and ESCs (TDGiKO ESCs) and validate the pluripotency and differentiation potential of TDGiKO ESCs as well as the phenotype of induced TDG depletion. The controlled and rapid depletion of TDG allows for a precise manipulation at any point in time of multistep experimental procedures as presented here for neuronal differentiation in vitro. Thus, we provide a tested and well-controlled genetic tool for the functional and mechanistic investigation of TDG in active DNA (de)methylation and/or DNA repair with minimal interference from adaptive effects and clonal selection.
Collapse
Affiliation(s)
- Simon D Schwarz
- Department of Biomedicine, University of Basel, Basel, 4058, Switzerland
| | - Eliane Grundbacher
- Department of Biomedicine, University of Basel, Basel, 4058, Switzerland
| | - Alexandra M Hrovat
- Department of Biomedicine, University of Basel, Basel, 4058, Switzerland
| | - Jianming Xu
- Department of Biomedicine, University of Basel, Basel, 4058, Switzerland
| | - Anna Kuśnierczyk
- Proteomics and Modomics Experimental Core Facility (PROMEC), Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Cathrine B Vågbø
- Proteomics and Modomics Experimental Core Facility (PROMEC), Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Primo Schär
- Department of Biomedicine, University of Basel, Basel, 4058, Switzerland
| | - David Schuermann
- Department of Biomedicine, University of Basel, Basel, 4058, Switzerland
| |
Collapse
|
10
|
Schwarz SD, Grundbacher E, Hrovat AM, Xu J, Kuśnierczyk A, Vågbø CB, Schär P, Schuermann D. Inducible TDG knockout models to study epigenetic regulation. F1000Res 2020; 9:1112. [PMID: 33082936 PMCID: PMC7527862 DOI: 10.12688/f1000research.25637.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 12/24/2023] Open
Abstract
Mechanistic and functional studies by gene disruption or editing approaches often suffer from confounding effects like compensatory cellular adaptations generated by clonal selection. These issues become particularly relevant when studying factors directly involved in genetic or epigenetic maintenance. To provide a genetic tool for functional and mechanistic investigation of DNA-repair mediated active DNA demethylation, we generated experimental models in mice and murine embryonic stem cells (ESCs) based on a minigene of the thymine-DNA glycosylase (TDG). The loxP-flanked miniTdg is rapidly and reliably excised in mice and ESCs by tamoxifen-induced Cre activation, depleting TDG to undetectable levels within 24 hours. We describe the functionality of the engineered miniTdg in mouse and ESCs (TDGiKO ESCs) and validate the pluripotency and differentiation potential of TDGiKO ESCs as well as the phenotype of induced TDG depletion. The controlled and rapid depletion of TDG allows for a precise manipulation at any point in time of multistep experimental procedures as presented here for neuronal differentiation in vitro. Thus, we provide a tested and well-controlled genetic tool for the functional and mechanistic investigation of TDG in active DNA (de)methylation and/or DNA repair with minimal interference from adaptive effects and clonal selection.
Collapse
Affiliation(s)
- Simon D. Schwarz
- Department of Biomedicine, University of Basel, Basel, 4058, Switzerland
| | - Eliane Grundbacher
- Department of Biomedicine, University of Basel, Basel, 4058, Switzerland
| | | | - Jianming Xu
- Department of Biomedicine, University of Basel, Basel, 4058, Switzerland
| | - Anna Kuśnierczyk
- Proteomics and Modomics Experimental Core Facility (PROMEC), Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Cathrine B. Vågbø
- Proteomics and Modomics Experimental Core Facility (PROMEC), Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Primo Schär
- Department of Biomedicine, University of Basel, Basel, 4058, Switzerland
| | - David Schuermann
- Department of Biomedicine, University of Basel, Basel, 4058, Switzerland
| |
Collapse
|
11
|
Stratigopoulou M, van Dam TP, Guikema JEJ. Base Excision Repair in the Immune System: Small DNA Lesions With Big Consequences. Front Immunol 2020; 11:1084. [PMID: 32547565 PMCID: PMC7272602 DOI: 10.3389/fimmu.2020.01084] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
The integrity of the genome is under constant threat of environmental and endogenous agents that cause DNA damage. Endogenous damage is particularly pervasive, occurring at an estimated rate of 10,000–30,000 per cell/per day, and mostly involves chemical DNA base lesions caused by oxidation, depurination, alkylation, and deamination. The base excision repair (BER) pathway is primary responsible for removing and repairing these small base lesions that would otherwise lead to mutations or DNA breaks during replication. Next to preventing DNA mutations and damage, the BER pathway is also involved in mutagenic processes in B cells during immunoglobulin (Ig) class switch recombination (CSR) and somatic hypermutation (SHM), which are instigated by uracil (U) lesions derived from activation-induced cytidine deaminase (AID) activity. BER is required for the processing of AID-induced lesions into DNA double strand breaks (DSB) that are required for CSR, and is of pivotal importance for determining the mutagenic outcome of uracil lesions during SHM. Although uracils are generally efficiently repaired by error-free BER, this process is surprisingly error-prone at the Ig loci in proliferating B cells. Breakdown of this high-fidelity process outside of the Ig loci has been linked to mutations observed in B-cell tumors and DNA breaks and chromosomal translocations in activated B cells. Next to its role in preventing cancer, BER has also been implicated in immune tolerance. Several defects in BER components have been associated with autoimmune diseases, and animal models have shown that BER defects can cause autoimmunity in a B-cell intrinsic and extrinsic fashion. In this review we discuss the contribution of BER to genomic integrity in the context of immune receptor diversification, cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Maria Stratigopoulou
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Tijmen P van Dam
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
12
|
Reading Targeted DNA Damage in the Active Demethylation Pathway: Role of Accessory Domains of Eukaryotic AP Endonucleases and Thymine-DNA Glycosylases. J Mol Biol 2020:S0022-2836(19)30720-X. [DOI: 10.1016/j.jmb.2019.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/24/2019] [Accepted: 12/05/2019] [Indexed: 01/07/2023]
|
13
|
Koliadenko V, Wilanowski T. Additional functions of selected proteins involved in DNA repair. Free Radic Biol Med 2020; 146:1-15. [PMID: 31639437 DOI: 10.1016/j.freeradbiomed.2019.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022]
Abstract
Protein moonlighting is a phenomenon in which a single polypeptide chain can perform a number of different unrelated functions. Here we present our analysis of moonlighting in the case of selected DNA repair proteins which include G:T mismatch-specific thymine DNA glycosylase (TDG), methyl-CpG-binding domain protein 4 (MBD4), apurinic/apyrimidinic endonuclease 1 (APE1), AlkB homologs, poly (ADP-ribose) polymerase 1 (PARP-1) and single-strand selective monofunctional uracil DNA glycosylase 1 (SMUG1). Most of their additional functions are not accidental and clear patterns are emerging. Participation in RNA metabolism is not surprising as bases occurring in RNA are the same or very similar to those in DNA. Other common additional function involves regulation of transcription. This is not unexpected as these proteins bind to specific DNA regions for DNA repair, hence they can also be recruited to regulate transcription. Participation in demethylation and replication of DNA appears logical as well. Some of the multifunctional DNA repair proteins play major roles in many diseases, including cancer. However, their moonlighting might prove a major difficulty in the development of new therapies because it will not be trivial to target a single protein function without affecting its other functions that are not related to the disease.
Collapse
Affiliation(s)
- Vlada Koliadenko
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096, Warsaw, Poland
| | - Tomasz Wilanowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
14
|
Caspase-8, receptor-interacting protein kinase 1 (RIPK1), and RIPK3 regulate retinoic acid-induced cell differentiation and necroptosis. Cell Death Differ 2019; 27:1539-1553. [PMID: 31659279 PMCID: PMC7206185 DOI: 10.1038/s41418-019-0434-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 11/20/2022] Open
Abstract
Among caspase family members, Caspase-8 is unique, with associated critical activities to induce and suppress death receptor-mediated apoptosis and necroptosis, respectively. Caspase-8 inhibits necroptosis by suppressing the function of receptor-interacting protein kinase 1 (RIPK1 or RIP1) and RIPK3 to activate mixed lineage kinase domain-like (MLKL). Disruption of Caspase-8 expression causes embryonic lethality in mice, which is rescued by depletion of either Ripk3 or Mlkl, indicating that the embryonic lethality is caused by activation of necroptosis. Here, we show that knockdown of Caspase-8 expression in embryoid bodies derived from ES cells markedly enhances retinoic acid (RA)-induced cell differentiation and necroptosis, both of which are dependent on Ripk1 and Ripk3; however, the enhancement of RA-induced cell differentiation is independent of Mlkl and necrosome formation. RA treatment obviously enhanced the expression of RA-specific target genes having the retinoic acid response element (RARE) in their promoter regions to induce cell differentiation, and induced marked expression of RIPK1, RIPK3, and MLKL to stimulate necroptosis. Caspase-8 knockdown induced RIPK1 and RIPK3 to translocate into the nucleus and to form a complex with RA receptor (RAR), and RAR interacting with RIPK1 and RIPK3 showed much stronger binding activity to RARE than RAR without RIPK1 or RIPK3. In Caspase-8-deficient as well as Caspase-8- and Mlkl-deficient mouse embryos, the expression of RA-specific target genes was obviously enhanced. Thus, Caspase-8, RIPK1, and RIPK3 regulate RA-induced cell differentiation and necroptosis both in vitro and in vivo.
Collapse
|
15
|
Coey CT, Drohat AC. Defining the impact of sumoylation on substrate binding and catalysis by thymine DNA glycosylase. Nucleic Acids Res 2019; 46:5159-5170. [PMID: 29660017 PMCID: PMC6007377 DOI: 10.1093/nar/gky278] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/04/2018] [Indexed: 01/22/2023] Open
Abstract
Thymine DNA glycosylase (TDG) excises thymine from mutagenic G·T mispairs generated by deamination of 5-methylcytosine (mC) and it removes two mC derivatives, 5−formylcytosine (fC) and 5−carboxylcytosine (caC), in a multistep pathway for DNA demethylation. TDG is modified by small ubiquitin-like modifier (SUMO) proteins, but the impact of sumoylation on TDG activity is poorly defined and the functions of TDG sumoylation remain unclear. We determined the effect of TDG sumoylation, by SUMO-1 or SUMO-2, on substrate binding and catalytic parameters. Single turnover experiments reveal that sumoylation dramatically impairs TDG base-excision activity, such that G·T activity is reduced by ≥45-fold and fC and caC are excised slowly, with a reaction half-life of ≥9 min (37°C). Fluorescence anisotropy studies reveal that unmodified TDG binds tightly to G·fC and G·caC substrates, with dissociation constants in the low nanomolar range. While sumoylation of TDG weakens substrate binding, the residual affinity is substantial and is comparable to that of biochemically-characterized readers of fC and caC. Our findings raise the possibility that sumoylation enables TDG to function, at least transiently, as reader of fC and caC. Notably, sumoylation could potentially facilitate TDG recruitment of other proteins, including transcription factors or epigenetic regulators, to these sites in DNA.
Collapse
Affiliation(s)
- Christopher T Coey
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alexander C Drohat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,Molecular and Structural Biology Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
16
|
Boldinova EO, Khairullin RF, Makarova AV, Zharkov DO. Isoforms of Base Excision Repair Enzymes Produced by Alternative Splicing. Int J Mol Sci 2019; 20:ijms20133279. [PMID: 31277343 PMCID: PMC6651865 DOI: 10.3390/ijms20133279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 06/29/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023] Open
Abstract
Transcripts of many enzymes involved in base excision repair (BER) undergo extensive alternative splicing, but functions of the corresponding alternative splice variants remain largely unexplored. In this review, we cover the studies describing the common alternatively spliced isoforms and disease-associated variants of DNA glycosylases, AP-endonuclease 1, and DNA polymerase beta. We also discuss the roles of alternative splicing in the regulation of their expression, catalytic activities, and intracellular transport.
Collapse
Affiliation(s)
| | - Rafil F Khairullin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 9 Parizhskoy Kommuny Str., 420012 Kazan, Russia
| | - Alena V Makarova
- RAS Institute of Molecular Genetics, 2 Kurchatova Sq., 123182 Moscow, Russia.
| | - Dmitry O Zharkov
- Novosibirsk State University, 1 Pirogova St., 630090 Novosibirsk, Russia.
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia.
| |
Collapse
|
17
|
Hassan HM, Underhill TM, Torchia J. Mapping Retinoic Acid-Dependant 5mC Derivatives in Mouse Embryonic Fibroblasts. Methods Mol Biol 2019; 2019:129-141. [PMID: 31359394 DOI: 10.1007/978-1-4939-9585-1_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Methylase-assisted bisulfite sequencing (MAB-seq) is a derivatization technique to evaluate the presence of 5-formylcytosine (5-fC) and 5-carboxylcytosine (5-caC) at base-pair resolution. Although MAB-seq was originally designed to study these metabolites under steady-state conditions, we have developed an alternative protocol to evaluate the dynamics of 5-fC/5-caC accumulation in response to agonists, such as all-trans retinoic acid (ATRA). In addition, this protocol utilizes a lower quantity of the M.SssI enzyme without compromising methylation efficiency and requires less bench time. Herein, we describe the use of MAB-seq assay to evaluate the generation of 5-fC/5-caC in response to ATRA in mouse embryonic fibroblasts, using the hypermethylated in cancer 1 (Hic1) locus as a model system.
Collapse
Affiliation(s)
- Haider M Hassan
- Department of Biochemistry, Western University, London, ON, Canada
- Department of Oncology, The London Regional Cancer Program and the Lawson Health Research Institute, London, ON, Canada
| | - T Michael Underhill
- Department of Cellular and Physiological Sciences and the Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Joseph Torchia
- Department of Biochemistry, Western University, London, ON, Canada.
- Department of Oncology, The London Regional Cancer Program and the Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
18
|
Steinacher R, Barekati Z, Botev P, Kuśnierczyk A, Slupphaug G, Schär P. SUMOylation coordinates BERosome assembly in active DNA demethylation during cell differentiation. EMBO J 2018; 38:embj.201899242. [PMID: 30523148 DOI: 10.15252/embj.201899242] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 11/09/2022] Open
Abstract
During active DNA demethylation, 5-methylcytosine (5mC) is oxidized by TET proteins to 5-formyl-/5-carboxylcytosine (5fC/5caC) for replacement by unmethylated C by TDG-initiated DNA base excision repair (BER). Base excision generates fragile abasic sites (AP-sites) in DNA and has to be coordinated with subsequent repair steps to limit accumulation of genome destabilizing secondary DNA lesions. Here, we show that 5fC/5caC is generated at a high rate in genomes of differentiating mouse embryonic stem cells and that SUMOylation and the BER protein XRCC1 play critical roles in orchestrating TDG-initiated BER of these lesions. SUMOylation of XRCC1 facilitates physical interaction with TDG and promotes the assembly of a TDG-BER core complex. Within this TDG-BERosome, SUMO is transferred from XRCC1 and coupled to the SUMO acceptor lysine in TDG, promoting its dissociation while assuring the engagement of the BER machinery to complete demethylation. Although well-studied, the biological importance of TDG SUMOylation has remained obscure. Here, we demonstrate that SUMOylation of TDG suppresses DNA strand-break accumulation and toxicity to PARP inhibition in differentiating mESCs and is essential for neural lineage commitment.
Collapse
Affiliation(s)
| | - Zeinab Barekati
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Petar Botev
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Anna Kuśnierczyk
- Department of Cancer Research and Molecular Medicine, Proteomics and Metabolomics Core Facility, PROMEC, Norwegian University of Science and Technology, Trondheim, Norway
| | - Geir Slupphaug
- Department of Cancer Research and Molecular Medicine, Proteomics and Metabolomics Core Facility, PROMEC, Norwegian University of Science and Technology, Trondheim, Norway
| | - Primo Schär
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
19
|
Uncovering universal rules governing the selectivity of the archetypal DNA glycosylase TDG. Proc Natl Acad Sci U S A 2018; 115:5974-5979. [PMID: 29784784 DOI: 10.1073/pnas.1803323115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Thymine DNA glycosylase (TDG) is a pivotal enzyme with dual roles in both genome maintenance and epigenetic regulation. TDG is involved in cytosine demethylation at CpG sites in DNA. Here we have used molecular modeling to delineate the lesion search and DNA base interrogation mechanisms of TDG. First, we examined the capacity of TDG to interrogate not only DNA substrates with 5-carboxyl cytosine modifications but also G:T mismatches and nonmismatched (A:T) base pairs using classical and accelerated molecular dynamics. To determine the kinetics, we constructed Markov state models. Base interrogation was found to be highly stochastic and proceeded through insertion of an arginine-containing loop into the DNA minor groove to transiently disrupt Watson-Crick pairing. Next, we employed chain-of-replicas path-sampling methodologies to compute minimum free energy paths for TDG base extrusion. We identified the key intermediates imparting selectivity and determined effective free energy profiles for the lesion search and base extrusion into the TDG active site. Our results show that DNA sculpting, dynamic glycosylase interactions, and stabilizing contacts collectively provide a powerful mechanism for the detection and discrimination of modified bases and epigenetic marks in DNA.
Collapse
|
20
|
Hassan HM, Kolendowski B, Isovic M, Bose K, Dranse HJ, Sampaio AV, Underhill TM, Torchia J. Regulation of Active DNA Demethylation through RAR-Mediated Recruitment of a TET/TDG Complex. Cell Rep 2018; 19:1685-1697. [PMID: 28538185 DOI: 10.1016/j.celrep.2017.05.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/28/2017] [Accepted: 05/01/2017] [Indexed: 02/07/2023] Open
Abstract
Retinoic acid (RA) plays important roles in development, growth, and homeostasis through regulation of the nuclear receptors for RA (RARs). Herein, we identify Hypermethylated in Cancer 1 (Hic1) as an RA-inducible gene. HIC1 encodes a tumor suppressor, which is often silenced by promoter hypermethylation in cancer. Treatment of cells with an RAR agonist causes a rapid recruitment of an RAR/RXR complex consisting of TDG, the lysine acetyltransferase CBP, and TET 1/2 to the Hic1 promoter. Complex binding coincides with a transient accumulation of 5fC/5caC and concomitant upregulation of Hic1 expression, both of which are TDG dependent. Furthermore, conditional deletion of Tdg in vivo is associated with Hic1 silencing and DNA hypermethylation of the Hic1 promoter. These findings suggest that the catalytic and scaffolding activities of TDG are essential for RA-dependent gene expression and provide important insights into the mechanisms underlying targeting of TET-TDG complexes.
Collapse
Affiliation(s)
- Haider M Hassan
- Department of Biochemistry, Western University, London, ON N6A 5C1, Canada; Department of Oncology, The London Regional Cancer Program and the Lawson Health Research Institute, London, ON N6A 4L6, Canada
| | - Bart Kolendowski
- Department of Biochemistry, Western University, London, ON N6A 5C1, Canada; Department of Oncology, The London Regional Cancer Program and the Lawson Health Research Institute, London, ON N6A 4L6, Canada
| | - Majdina Isovic
- Department of Oncology, The London Regional Cancer Program and the Lawson Health Research Institute, London, ON N6A 4L6, Canada
| | - Kerstin Bose
- Department of Cellular and Physiological Sciences and the Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Helen J Dranse
- Department of Cellular and Physiological Sciences and the Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Arthur V Sampaio
- Department of Cellular and Physiological Sciences and the Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - T Michael Underhill
- Department of Cellular and Physiological Sciences and the Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Joseph Torchia
- Department of Biochemistry, Western University, London, ON N6A 5C1, Canada; Department of Oncology, The London Regional Cancer Program and the Lawson Health Research Institute, London, ON N6A 4L6, Canada.
| |
Collapse
|
21
|
Jahn K, Wieltsch C, Blumer N, Mehlich M, Pathak H, Khan AQ, Hildebrandt H, Frieling H. A cell culture model for investigation of synapse influenceability: epigenetics, expression and function of gene targets important for synapse formation and preservation in SH-SY5Y neuroblastoma cells differentiated by retinoic acid. J Neural Transm (Vienna) 2017; 124:1341-1367. [DOI: 10.1007/s00702-017-1769-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 07/23/2017] [Indexed: 12/13/2022]
|
22
|
Limpose KL, Corbett AH, Doetsch PW. BERing the burden of damage: Pathway crosstalk and posttranslational modification of base excision repair proteins regulate DNA damage management. DNA Repair (Amst) 2017. [PMID: 28629773 DOI: 10.1016/j.dnarep.2017.06.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
DNA base damage and non-coding apurinic/apyrimidinic (AP) sites are ubiquitous types of damage that must be efficiently repaired to prevent mutations. These damages can occur in both the nuclear and mitochondrial genomes. Base excision repair (BER) is the frontline pathway for identifying and excising damaged DNA bases in both of these cellular compartments. Recent advances demonstrate that BER does not operate as an isolated pathway but rather dynamically interacts with components of other DNA repair pathways to modulate and coordinate BER functions. We define the coordination and interaction between DNA repair pathways as pathway crosstalk. Numerous BER proteins are modified and regulated by post-translational modifications (PTMs), and PTMs could influence pathway crosstalk. Here, we present recent advances on BER/DNA repair pathway crosstalk describing specific examples and also highlight regulation of BER components through PTMs. We have organized and reported functional interactions and documented PTMs for BER proteins into a consolidated summary table. We further propose the concept of DNA repair hubs that coordinate DNA repair pathway crosstalk to identify central protein targets that could play a role in designing future drug targets.
Collapse
Affiliation(s)
- Kristin L Limpose
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA, 30322, United States
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA, 30322, United States; Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States.
| | - Paul W Doetsch
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA, 30322, United States; Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, United States; Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States; Department of Biochemistry, Emory University, Atlanta, GA, 30322, United States.
| |
Collapse
|
23
|
Wang LJ, Wang ZY, Zhang Q, Tang B, Zhang CY. Cyclic enzymatic repairing-mediated dual-signal amplification for real-time monitoring of thymine DNA glycosylase. Chem Commun (Camb) 2017; 53:3878-3881. [DOI: 10.1039/c7cc00946a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We develop a new fluorescence method for real-time monitoring of thymine DNA glycosylase activity through cyclic enzymatic repairing-mediated dual-signal amplification.
Collapse
Affiliation(s)
- Li-Juan Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Zi-Yue Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | | | - Bo Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Chun-Yang Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
24
|
McLaughlin D, Coey CT, Yang WC, Drohat AC, Matunis MJ. Characterizing Requirements for Small Ubiquitin-like Modifier (SUMO) Modification and Binding on Base Excision Repair Activity of Thymine-DNA Glycosylase in Vivo. J Biol Chem 2016; 291:9014-24. [PMID: 26917720 DOI: 10.1074/jbc.m115.706325] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Indexed: 12/12/2022] Open
Abstract
Thymine-DNA glycosylase (TDG) plays critical roles in DNA base excision repair and DNA demethylation. It has been proposed, based on structural studies and in vitro biochemistry, that sumoylation is required for efficient TDG enzymatic turnover following base excision. However, whether sumoylation is required for TDG activity in vivo has not previously been tested. We have developed an in vivo assay for TDG activity that takes advantage of its recently discovered role in DNA demethylation and selective recognition and repair of 5-carboxylcytosine. Using this assay, we investigated the role of sumoylation in regulating TDG activity through the use of TDG mutants defective for sumoylation and Small Ubiquitin-like Modifier (SUMO) binding and by altering TDG sumoylation through SUMO and SUMO protease overexpression experiments. Our findings indicate that sumoylation and SUMO binding are not essential for TDG-mediated excision and repair of 5-carboxylcytosine bases. Moreover, in vitro assays revealed that apurinic/apyrimidinic nuclease 1 provides nearly maximum stimulation of TDG processing of G·caC substrates. Thus, under our assay conditions, apurinic/apyrimidinic nuclease 1-mediated stimulation or other mechanisms sufficiently alleviate TDG product inhibition and promote its enzymatic turnover in vivo.
Collapse
Affiliation(s)
- Dylan McLaughlin
- From the Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205 and
| | - Christopher T Coey
- the Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Wei-Chih Yang
- From the Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205 and
| | - Alexander C Drohat
- the Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Michael J Matunis
- From the Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205 and
| |
Collapse
|
25
|
Xu X, Watt DS, Liu C. Multifaceted roles for thymine DNA glycosylase in embryonic development and human carcinogenesis. Acta Biochim Biophys Sin (Shanghai) 2016; 48:82-9. [PMID: 26370152 DOI: 10.1093/abbs/gmv083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 07/12/2015] [Indexed: 01/03/2023] Open
Abstract
Thymine DNA glycosylase (TDG) is a multifunctional protein that plays important roles in DNA repair, DNA demethylation, and transcriptional regulation. These diverse functions make TDG a unique enzyme in embryonic development and carcinogenesis. This review discusses the molecular function of TDG in human cancers and the previously unrecognized value of TDG as a potential target for drug therapy.
Collapse
Affiliation(s)
- Xuehe Xu
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0509, USA
| | - David S Watt
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0509, USA
| | - Chunming Liu
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0509, USA
| |
Collapse
|
26
|
Bauer NC, Corbett AH, Doetsch PW. The current state of eukaryotic DNA base damage and repair. Nucleic Acids Res 2015; 43:10083-101. [PMID: 26519467 PMCID: PMC4666366 DOI: 10.1093/nar/gkv1136] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/16/2015] [Indexed: 12/15/2022] Open
Abstract
DNA damage is a natural hazard of life. The most common DNA lesions are base, sugar, and single-strand break damage resulting from oxidation, alkylation, deamination, and spontaneous hydrolysis. If left unrepaired, such lesions can become fixed in the genome as permanent mutations. Thus, evolution has led to the creation of several highly conserved, partially redundant pathways to repair or mitigate the effects of DNA base damage. The biochemical mechanisms of these pathways have been well characterized and the impact of this work was recently highlighted by the selection of Tomas Lindahl, Aziz Sancar and Paul Modrich as the recipients of the 2015 Nobel Prize in Chemistry for their seminal work in defining DNA repair pathways. However, how these repair pathways are regulated and interconnected is still being elucidated. This review focuses on the classical base excision repair and strand incision pathways in eukaryotes, considering both Saccharomyces cerevisiae and humans, and extends to some important questions and challenges facing the field of DNA base damage repair.
Collapse
Affiliation(s)
- Nicholas C Bauer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Paul W Doetsch
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
27
|
Bellacosa A, Drohat AC. Role of base excision repair in maintaining the genetic and epigenetic integrity of CpG sites. DNA Repair (Amst) 2015; 32:33-42. [PMID: 26021671 DOI: 10.1016/j.dnarep.2015.04.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cytosine methylation at CpG dinucleotides is a central component of epigenetic regulation in vertebrates, and the base excision repair (BER) pathway is important for maintaining both the genetic stability and the methylation status of CpG sites. This perspective focuses on two enzymes that are of particular importance for the genetic and epigenetic integrity of CpG sites, methyl binding domain 4 (MBD4) and thymine DNA glycosylase (TDG). We discuss their capacity for countering C to T mutations at CpG sites, by initiating base excision repair of G · T mismatches generated by deamination of 5-methylcytosine (5mC). We also consider their role in active DNA demethylation, including pathways that are initiated by oxidation and/or deamination of 5mC.
Collapse
Affiliation(s)
- Alfonso Bellacosa
- Cancer Epigenetics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, United States.
| | - Alexander C Drohat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201, United States.
| |
Collapse
|
28
|
Ehara T, Kamei Y, Yuan X, Takahashi M, Kanai S, Tamura E, Tsujimoto K, Tamiya T, Nakagawa Y, Shimano H, Takai-Igarashi T, Hatada I, Suganami T, Hashimoto K, Ogawa Y. Ligand-activated PPARα-dependent DNA demethylation regulates the fatty acid β-oxidation genes in the postnatal liver. Diabetes 2015; 64:775-84. [PMID: 25311726 DOI: 10.2337/db14-0158] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The metabolic function of the liver changes sequentially during early life in mammals to adapt to the marked changes in nutritional environment. Accordingly, hepatic fatty acid β-oxidation is activated after birth to produce energy from breast milk lipids. However, how it is induced during the neonatal period is poorly understood. Here we show DNA demethylation and increased mRNA expression of the fatty acid β-oxidation genes in the postnatal mouse liver. The DNA demethylation does not occur in the fetal mouse liver under the physiologic condition, suggesting that it is specific to the neonatal period. Analysis of mice deficient in the nuclear receptor peroxisome proliferator-activated receptor α (PPARα) and maternal administration of a PPARα ligand during the gestation and lactation periods reveal that the DNA demethylation is PPARα dependent. We also find that DNA methylation of the fatty acid β-oxidation genes are reduced in the adult human liver relative to the fetal liver. This study represents the first demonstration that the ligand-activated PPARα-dependent DNA demethylation regulates the hepatic fatty acid β-oxidation genes during the neonatal period, thereby highlighting the role of a lipid-sensing nuclear receptor in the gene- and life-stage-specific DNA demethylation of a particular metabolic pathway.
Collapse
Affiliation(s)
- Tatsuya Ehara
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan Nutrition Research Department, Nutritional Science Institute, Morinaga Milk Industry Co. Ltd., Zama, Kanagawa, Japan
| | - Yasutomi Kamei
- Department of Organ Network and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Xunmei Yuan
- Department of Organ Network and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Mayumi Takahashi
- Department of Organ Network and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Sayaka Kanai
- Department of Organ Network and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Erina Tamura
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Kazutaka Tsujimoto
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Takashi Tamiya
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Yoshimi Nakagawa
- Department of Internal Medicine (Metabolism and Endocrinology), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Metabolism and Endocrinology), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takako Takai-Igarashi
- Department of Health Record Informatics, Tohoku Medical Megabank Organization, Aoba-ku, Sendai, Miyagi, Japan
| | - Izuho Hatada
- Genome Science, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Takayoshi Suganami
- Department of Organ Network and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan Japan Science and Technology Agency, PRESTO, Goban-cho Chiyoda-ku, Tokyo, Japan
| | - Koshi Hashimoto
- Department of Preemptive Medicine and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Yoshihiro Ogawa
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
29
|
Romagnolo DF, Zempleni J, Selmin OI. Nuclear receptors and epigenetic regulation: opportunities for nutritional targeting and disease prevention. Adv Nutr 2014; 5:373-85. [PMID: 25022987 PMCID: PMC4085186 DOI: 10.3945/an.114.005868] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Posttranslational modifications of histones, alterations in the recruitment and functions of non-histone proteins, DNA methylation, and changes in expression of noncoding RNAs contribute to current models of epigenetic regulation. Nuclear receptors (NRs) are a group of transcription factors that, through ligand-binding, act as sensors to changes in nutritional, environmental, developmental, pathophysiologic, and endocrine conditions and drive adaptive responses via gene regulation. One mechanism through which NRs direct gene expression is the assembly of transcription complexes with cofactors and coregulators that possess chromatin-modifying properties. Chromatin modifications can be transient or become part of the cellular "memory" and contribute to genomic imprinting. Because many food components bind to NRs, they can ultimately influence transcription of genes associated with biologic processes, such as inflammation, proliferation, apoptosis, and hormonal response, and alter the susceptibility to chronic diseases (e.g., cancer, diabetes, obesity). The objective of this review is to highlight how NRs influence epigenetic regulation and the relevance of dietary compound-NR interactions in human nutrition and for disease prevention and treatment. Identifying gene targets of unliganded and bound NRs may assist in the development of epigenetic maps for food components and dietary patterns. Progress in these areas may lead to the formulation of disease-prevention models based on epigenetic control by individual or associations of food ligands of NRs.
Collapse
Affiliation(s)
- Donato F Romagnolo
- Department of Nutritional Sciences and University of Arizona Cancer Center, University of Arizona, Tucson, AZ; and
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Ornella I Selmin
- Department of Nutritional Sciences and University of Arizona Cancer Center, University of Arizona, Tucson, AZ; and
| |
Collapse
|
30
|
Shibata E, Dar A, Dutta A. CRL4Cdt2 E3 ubiquitin ligase and proliferating cell nuclear antigen (PCNA) cooperate to degrade thymine DNA glycosylase in S phase. J Biol Chem 2014; 289:23056-23064. [PMID: 24962565 DOI: 10.1074/jbc.m114.574210] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Thymine DNA glycosylase (TDG) is an essential enzyme playing multiple roles in base excision repair, transcription regulation, and DNA demethylation. TDG mediates the cytotoxicity of the anti-cancer chemotherapeutic drug 5-fluorouracil (5-FU) by prolonging S phase, generating DNA strand breaks, and inducing DNA damage signaling. During S phase of the cell cycle, TDG is degraded via the proteasomal pathway. Here we show that CRL4(Cdt2) E3 ubiquitin ligase promotes ubiquitination and proteasomal degradation of TDG in S phase in a reaction that is dependent on the interaction of TDG with proliferating cell nuclear antigen (PCNA). siRNA-mediated depletion of PCNA or components of CRL4(Cdt2), specifically cullin4A/B or substrate adaptor Cdt2, stabilizes TDG in human cells. Mutations in the PCNA-interacting peptide (PIP) motif of TDG that disrupt the interaction of TDG with PCNA or change critical basic residues essential for the action of the PIP degron prevent the ubiquitination and degradation of TDG. Thus physical interaction of TDG with PCNA through the PIP degron is required for targeting TDG to the CRL4(Cdt2) E3 ubiquitin ligase complex. Compared with forced expression of wild type TDG, CRL4(Cdt2)- resistant TDG (ΔPIP) slows cell proliferation and slightly increases the toxicity of 5-FU. Thus, CRL4(Cdt2)-dependent degradation of TDG occurs in S phase because of the requirement for TDG to interact with chromatin-loaded PCNA, and this degradation is important for preventing toxicity from excess TDG.
Collapse
Affiliation(s)
- Etsuko Shibata
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908
| | - Ashraf Dar
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908.
| |
Collapse
|
31
|
Talhaoui I, Couve S, Gros L, Ishchenko AA, Matkarimov B, Saparbaev MK. Aberrant repair initiated by mismatch-specific thymine-DNA glycosylases provides a mechanism for the mutational bias observed in CpG islands. Nucleic Acids Res 2014; 42:6300-13. [PMID: 24692658 PMCID: PMC4041421 DOI: 10.1093/nar/gku246] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 03/09/2014] [Accepted: 03/13/2014] [Indexed: 12/13/2022] Open
Abstract
The human thymine-DNA glycosylase (TDG) initiates the base excision repair (BER) pathway to remove spontaneous and induced DNA base damage. It was first biochemically characterized for its ability to remove T mispaired with G in CpG context. TDG is involved in the epigenetic regulation of gene expressions by protecting CpG-rich promoters from de novo DNA methylation. Here we demonstrate that TDG initiates aberrant repair by excising T when it is paired with a damaged adenine residue in DNA duplex. TDG targets the non-damaged DNA strand and efficiently excises T opposite of hypoxanthine (Hx), 1,N(6)-ethenoadenine, 7,8-dihydro-8-oxoadenine and abasic site in TpG/CpX context, where X is a modified residue. In vitro reconstitution of BER with duplex DNA containing Hx•T pair and TDG results in incorporation of cytosine across Hx. Furthermore, analysis of the mutation spectra inferred from single nucleotide polymorphisms in human population revealed a highly biased mutation pattern within CpG islands (CGIs), with enhanced mutation rate at CpA and TpG sites. These findings demonstrate that under experimental conditions used TDG catalyzes sequence context-dependent aberrant removal of thymine, which results in TpG, CpA→CpG mutations, thus providing a plausible mechanism for the putative evolutionary origin of the CGIs in mammalian genomes.
Collapse
Affiliation(s)
- Ibtissam Talhaoui
- Groupe Réparation de l’ADN, Université Paris Sud, Laboratoire Stabilité Génétique et Oncogenèse CNRS, UMR 8200, Gustave Roussy, F-94805 Villejuif Cedex, France
| | - Sophie Couve
- Laboratoire de Génétique Oncologique EPHE, INSERM U753, Gustave Roussy, F-94805 Villejuif, France
| | - Laurent Gros
- Groupe Réparation de l’ADN, Université Paris Sud, Laboratoire Stabilité Génétique et Oncogenèse CNRS, UMR 8200, Gustave Roussy, F-94805 Villejuif Cedex, France
- AB Science SA, 75008 Paris, France
| | - Alexander A. Ishchenko
- Groupe Réparation de l’ADN, Université Paris Sud, Laboratoire Stabilité Génétique et Oncogenèse CNRS, UMR 8200, Gustave Roussy, F-94805 Villejuif Cedex, France
| | - Bakhyt Matkarimov
- Nazarbayev University Research and Innovation System, Astana 010000, Kazakhstan
| | - Murat K. Saparbaev
- Groupe Réparation de l’ADN, Université Paris Sud, Laboratoire Stabilité Génétique et Oncogenèse CNRS, UMR 8200, Gustave Roussy, F-94805 Villejuif Cedex, France
| |
Collapse
|
32
|
Coey CT, Fitzgerald ME, Maiti A, Reiter KH, Guzzo CM, Matunis MJ, Drohat AC. E2-mediated small ubiquitin-like modifier (SUMO) modification of thymine DNA glycosylase is efficient but not selective for the enzyme-product complex. J Biol Chem 2014; 289:15810-9. [PMID: 24753249 DOI: 10.1074/jbc.m114.572081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thymine DNA glycosylase (TDG) initiates the repair of G·T mismatches that arise by deamination of 5-methylcytosine (mC), and it excises 5-formylcytosine and 5-carboxylcytosine, oxidized forms of mC. TDG functions in active DNA demethylation and is essential for embryonic development. TDG forms a tight enzyme-product complex with abasic DNA, which severely impedes enzymatic turnover. Modification of TDG by small ubiquitin-like modifier (SUMO) proteins weakens its binding to abasic DNA. It was proposed that sumoylation of product-bound TDG regulates product release, with SUMO conjugation and deconjugation needed for each catalytic cycle, but this model remains unsubstantiated. We examined the efficiency and specificity of TDG sumoylation using in vitro assays with purified E1 and E2 enzymes, finding that TDG is modified efficiently by SUMO-1 and SUMO-2. Remarkably, we observed similar modification rates for free TDG and TDG bound to abasic or undamaged DNA. To examine the conjugation step directly, we determined modification rates (kobs) using preformed E2∼SUMO-1 thioester. The hyperbolic dependence of kobs on TDG concentration gives kmax = 1.6 min(-1) and K1/2 = 0.55 μM, suggesting that E2∼SUMO-1 has higher affinity for TDG than for the SUMO targets RanGAP1 and p53 (peptide). Whereas sumoylation substantially weakens TDG binding to DNA, TDG∼SUMO-1 still binds relatively tightly to AP-DNA (Kd ∼50 nM). Although E2∼SUMO-1 exhibits no specificity for product-bound TDG, the relatively high conjugation efficiency raises the possibility that E2-mediated sumoylation could stimulate product release in vivo. This and other implications for the biological role and mechanism of TDG sumoylation are discussed.
Collapse
Affiliation(s)
- Christopher T Coey
- From the Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| | - Megan E Fitzgerald
- From the Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| | - Atanu Maiti
- From the Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| | - Katherine H Reiter
- the Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Catherine M Guzzo
- the Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Michael J Matunis
- the Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Alexander C Drohat
- From the Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| |
Collapse
|
33
|
Jia Y, Nie F, Du A, Chen Z, Qin Y, Huang T, Song X, Li L. Thymine DNA glycosylase promotes transactivation of β-catenin/TCFs by cooperating with CBP. J Mol Cell Biol 2014; 6:231-9. [PMID: 24748645 DOI: 10.1093/jmcb/mju014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Thymine DNA glycosylase (TDG), an enzyme that initiates the repair of G/T and G/U mismatches, has been lately found crucial in embryonic development to maintain epigenetic stability and facilitate the active DNA demethylation. Here we report a novel role of TDG in Wnt signaling as a transcriptional coactivator of β-catenin/TCFs complex. Our data show that TDG binds to the transcriptional factor family LEF1/TCFs and potentiates β-catenin/TCFs transactivation, while TDG depletion suppresses Wnt3a-stimulated reporter activity or target gene transcription. Next, we show that CBP, a known coactivator, is also required for TDG function through forming a cooperative complex on target promoters. Moreover, there is an elevation of TDG levels in human colon cancer tissue, and knockdown of TDG inhibits proliferation of the colon cells. Overall, our results reveal that TDG, as a new coactivator, promotes β-catenin/TCFs transactivation and functionally cooperates with CBP in canonical Wnt signaling.
Collapse
Affiliation(s)
- Yingying Jia
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fen Nie
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Aiying Du
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhangcheng Chen
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuanbo Qin
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tao Huang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaomin Song
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lin Li
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
34
|
Xu X, Yu T, Shi J, Chen X, Zhang W, Lin T, Liu Z, Wang Y, Zeng Z, Wang C, Li M, Liu C. Thymine DNA glycosylase is a positive regulator of Wnt signaling in colorectal cancer. J Biol Chem 2014; 289:8881-90. [PMID: 24532795 DOI: 10.1074/jbc.m113.538835] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Wnt signaling plays an important role in colorectal cancer (CRC). Although the mechanisms of β-catenin degradation have been well studied, the mechanism by which β-catenin activates transcription is still not fully understood. While screening a panel of DNA demethylases, we found that thymine DNA glycosylase (TDG) up-regulated Wnt signaling. TDG interacts with the transcription factor TCF4 and coactivator CREB-binding protein/p300 in the Wnt pathway. Knocking down TDG by shRNAs inhibited the proliferation of CRC cells in vitro and in vivo. In CRC patients, TDG levels were significantly higher in tumor tissues than in the adjacent normal tissues. These results suggest that TDG warrants consideration as a potential biomarker for CRC and as a target for CRC treatment.
Collapse
Affiliation(s)
- Xuehe Xu
- From the Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40506
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wyatt MD. Advances in understanding the coupling of DNA base modifying enzymes to processes involving base excision repair. Adv Cancer Res 2014; 119:63-106. [PMID: 23870509 DOI: 10.1016/b978-0-12-407190-2.00002-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This chapter describes some of the recent, exciting developments that have characterized and connected processes that modify DNA bases with DNA repair pathways. It begins with AID/APOBEC or TET family members that covalently modify bases within DNA. The modified bases, such as uracil or 5-formylcytosine, are then excised by DNA glycosylases including UNG or TDG to initiate base excision repair (BER). BER is known to preserve genome integrity by removing damaged bases. The newer studies underscore the necessity of BER following enzymes that deliberately damage DNA. This includes the role of BER in antibody diversification and more recently, its requirement for demethylation of 5-methylcytosine in mammalian cells. The recent advances have shed light on mechanisms of DNA demethylation, and have raised many more questions. The potential hazards of these processes have also been revealed. Dysregulation of the activity of base modifying enzymes, and resolution by unfaithful or corrupt means can be a driver of genome instability and tumorigenesis. The understanding of both DNA and histone methylation and demethylation is now revealing the true extent to which epigenetics influence normal development and cancer, an abnormal development.
Collapse
Affiliation(s)
- Michael D Wyatt
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA.
| |
Collapse
|
36
|
Léger H, Smet-Nocca C, Attmane-Elakeb A, Morley-Fletcher S, Benecke AG, Eilebrecht S. A TDG/CBP/RARα ternary complex mediates the retinoic acid-dependent expression of DNA methylation-sensitive genes. GENOMICS PROTEOMICS & BIOINFORMATICS 2014; 12:8-18. [PMID: 24394593 PMCID: PMC4411359 DOI: 10.1016/j.gpb.2013.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 11/27/2013] [Accepted: 11/28/2013] [Indexed: 11/28/2022]
Abstract
The thymine DNA glycosylase (TDG) is a multifunctional enzyme, which is essential for embryonic development. It mediates the base excision repair (BER) of G:T and G:U DNA mismatches arising from the deamination of 5-methyl cytosine (5-MeC) and cytosine, respectively. Recent studies have pointed at a role of TDG during the active demethylation of 5-MeC within CpG islands. TDG interacts with the histone acetylase CREB-binding protein (CBP) to activate CBP-dependent transcription. In addition, TDG also interacts with the retinoic acid receptor α (RARα), resulting in the activation of RARα target genes. Here we provide evidence for the existence of a functional ternary complex containing TDG, CBP and activated RARα. Using global transcriptome profiling, we uncover a coupling of de novo methylation-sensitive and RA-dependent transcription, which coincides with a significant subset of CBP target genes. The introduction of a point mutation in TDG, which neither affects overall protein structure nor BER activity, leads to a significant loss in ternary complex stability, resulting in the deregulation of RA targets involved in cellular networks associated with DNA replication, recombination and repair. We thus demonstrate for the first time a direct coupling of TDG’s epigenomic and transcription regulatory function through ternary complexes with CBP and RARα.
Collapse
Affiliation(s)
- Hélène Léger
- Vaccine Research Institute, INSERM U955, Institut Mondor de Recherche Biomédicale, 94011 Créteil, France; Institut des Hautes Études Scientifiques, 91440 Bures sur Yvette, France
| | - Caroline Smet-Nocca
- Unité de Glycobiologie Structurale et Fonctionnelle - CNRS UMR 8576, Group of NMR and Structural Biology, Université Lille 1, 59655 Villeneuve d'Ascq, France
| | | | - Sara Morley-Fletcher
- Unité de Glycobiologie Structurale et Fonctionnelle - CNRS UMR 8576, Neuroplasticity Team, Université Lille 1, 59655 Villeneuve d'Ascq, France
| | - Arndt G Benecke
- Institut des Hautes Études Scientifiques, 91440 Bures sur Yvette, France; CNRS UMR 7224, Université Pierre et Marie Curie, 75005 Paris, France.
| | - Sebastian Eilebrecht
- Vaccine Research Institute, INSERM U955, Institut Mondor de Recherche Biomédicale, 94011 Créteil, France; Institut des Hautes Études Scientifiques, 91440 Bures sur Yvette, France
| |
Collapse
|
37
|
Abstract
Epigenetics is "the branch of biology which studies the causal interactions between genes and their products which bring the phenotype into being" as defined by Conrad Waddington in 1942 in a discussion of the mechanisms of cell differentiation. More than seven decades later we know that these mechanisms include histone tail post-translational modifications, DNA methylation, ATP-dependent chromatin remodeling, and non-coding RNA pathways. Epigenetic modifications are powerful drugs targets, and combined targeting of multiple pathways is expected to significantly advance cancer therapy.
Collapse
|
38
|
Abstract
Transcription is apparently risky business. Its intrinsic mutagenic potential must be kept in check by networks of DNA repair factors that monitor the transcription process to repair DNA lesions that could otherwise compromise transcriptional fidelity and genome integrity. Intriguingly, recent studies point to an even more direct function of DNA repair complexes as coactivators of transcription and the unexpected role of "scheduled" DNA damage/repair at gene promoters. Paradoxically, spontaneous DNA double-strand breaks also induce ectopic transcription that is essential for repair. Thus, transcription, DNA damage, and repair may be more physically and functionally intertwined than previously appreciated.
Collapse
Affiliation(s)
- Yick W. Fong
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Claudia Cattoglio
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Robert Tjian
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
39
|
Activation-induced cytidine deaminase (AID) is necessary for the epithelial-mesenchymal transition in mammary epithelial cells. Proc Natl Acad Sci U S A 2013; 110:E2977-86. [PMID: 23882083 DOI: 10.1073/pnas.1301021110] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Activation-induced cytidine deaminase (AID), which functions in antibody diversification, is also expressed in a variety of germ and somatic cells. Evidence that AID promotes DNA demethylation in epigenetic reprogramming phenomena, and that it is induced by inflammatory signals, led us to investigate its role in the epithelial-mesenchymal transition (EMT), a critical process in normal morphogenesis and tumor metastasis. We find that expression of AID is induced by inflammatory signals that induce the EMT in nontransformed mammary epithelial cells and in ZR75.1 breast cancer cells. shRNA-mediated knockdown of AID blocks induction of the EMT and prevents cells from acquiring invasive properties. Knockdown of AID suppresses expression of several key EMT transcriptional regulators and is associated with increased methylation of CpG islands proximal to the promoters of these genes; furthermore, the DNA demethylating agent 5 aza-2'deoxycytidine (5-Aza-dC) antagonizes the effects of AID knockdown on the expression of EMT factors. We conclude that AID is necessary for the EMT in this breast cancer cell model and in nontransformed mammary epithelial cells. Our results suggest that AID may act near the apex of a hierarchy of regulatory steps that drive the EMT, and are consistent with this effect being mediated by cytosine demethylation. This evidence links our findings to other reports of a role for AID in epigenetic reprogramming and control of gene expression.
Collapse
|
40
|
Li J, Braganza A, Sobol RW. Base excision repair facilitates a functional relationship between Guanine oxidation and histone demethylation. Antioxid Redox Signal 2013; 18:2429-43. [PMID: 23311711 PMCID: PMC3671628 DOI: 10.1089/ars.2012.5107] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SIGNIFICANCE Appropriately controlled epigenetic regulation is critical for the normal development and health of an organism. Misregulation of epigenetic control via deoxyribonucleic acid (DNA) methylation or histone methylation has been associated with cancer and chromosomal instability syndromes. RECENT ADVANCES The main function of the proteins in the base excision repair (BER) pathway is to repair DNA single-strand breaks and deamination, oxidation, and alkylation-induced DNA base damage that may result from chemotherapy, environmental exposure, or byproducts of cellular metabolism. Recent studies have suggested that one or more BER proteins may also participate in epigenetic regulation to facilitate gene expression modulation via alteration of the state of DNA methylation or via a reaction coupled to histone modification. BER proteins have also been reported to play an essential role in pluripotent stem cell reprogramming. CRITICAL ISSUES One emerging function for BER in epigenetic regulation is the repair of base lesions induced by hydrogen peroxide as a byproduct of lysine-specific demethylase 1 (LSD1) enzymatic activity (LSD1/LSD2-coupled BER) for transcriptional regulation. FUTURE DIRECTIONS To shed light on this novel role of BER, this review focuses on the repair of oxidative lesions in nuclear DNA that are induced during LSD1-mediated histone demethylation. Further, we highlight current studies suggesting a role for BER proteins in transcriptional regulation of gene expression via BER-coupled active DNA demethylation in mammalian cells. Such efforts to address the role of BER proteins in epigenetic regulation could broaden cancer therapeutic strategies to include epigenetic modifiers combined with BER inhibitors.
Collapse
Affiliation(s)
- Jianfeng Li
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | |
Collapse
|
41
|
Abstract
DNA methylation has long been considered a very stable DNA modification in mammals that could only be removed by replication in the absence of remethylation - that is, by mere dilution of this epigenetic mark (so-called passive DNA demethylation). However, in recent years, a significant number of studies have revealed the existence of active processes of DNA demethylation in mammals, with important roles in development and transcriptional regulation, allowing the molecular mechanisms of active DNA demethylation to be unraveled. In this article, we review the recent literature highlighting the prominent role played in active DNA demethylation by base excision repair and especially by TDG.
Collapse
Affiliation(s)
- Shannon R Dalton
- Cancer Biology Program, Epigenetics & Progenitor Cells Program, Fox Chase Cancer Center, PA 19111, USA
| | | |
Collapse
|
42
|
Polyakova O, Borman S, Grimley R, Vamathevan J, Hayes B, Solari R. Identification of novel interacting partners of Sirtuin6. PLoS One 2012; 7:e51555. [PMID: 23240041 PMCID: PMC3519869 DOI: 10.1371/journal.pone.0051555] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/01/2012] [Indexed: 02/01/2023] Open
Abstract
SIRT6 is a member of the Sirtuin family of histone deacetylases that has been implicated in inflammatory, aging and metabolic pathways. Some of its actions have been suggested to be via physical interaction with NFκB and HIF1α and transcriptional regulation through its histone deacetylase activity. Our previous studies have investigated the histone deacetylase activity of SIRT6 and explored its ability to regulate the transcriptional responses to an inflammatory stimulus such as TNFα. In order to develop a greater understanding of SIRT6 function we have sought to identify SIRT6 interacting proteins by both yeast-2-hybrid and co-immunoprecipitation studies. We report a number of interacting partners which strengthen previous findings that SIRT6 functions in base excision repair (BER), and novel interactors which suggest a role in nucleosome and chromatin remodeling, the cell cycle and NFκB biology.
Collapse
Affiliation(s)
- Oxana Polyakova
- Platform Technology Sciences, GlaxoSmithKline, Stevenage, Hertfordshire, United Kingdom
| | - Satty Borman
- Platform Technology Sciences, GlaxoSmithKline, Stevenage, Hertfordshire, United Kingdom
| | - Rachel Grimley
- Platform Technology Sciences, GlaxoSmithKline, Stevenage, Hertfordshire, United Kingdom
| | - Jessica Vamathevan
- Computational Biology, GlaxoSmithKline, Stevenage, Hertfordshire, United Kingdom
| | - Brian Hayes
- Allergic Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, Hertfordshire, United Kingdom
| | - Roberto Solari
- Allergic Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, Hertfordshire, United Kingdom
- * E-mail:
| |
Collapse
|
43
|
Zhang H, Zhu JK. Active DNA demethylation in plants and animals. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2012. [PMID: 23197304 DOI: 10.1101/sqb.2012.77.014936] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Active DNA demethylation regulates many vital biological processes, including early development and locus-specific gene expression in plants and animals. In Arabidopsis, bifunctional DNA glycosylases directly excise the 5-methylcytosine base and then cleave the DNA backbone at the abasic site. Recent evidence suggests that mammals utilize DNA glycosylases after 5-methylcytosine is oxidized and/or deaminated. In both cases, the resultant single-nucleotide gap is subsequently filled with an unmodified cytosine through the DNA base excision repair pathway. The enzymatic removal of 5-methylcytosine is tightly integrated with histone modifications and possibly noncoding RNAs. Future research will increase our understanding of the mechanisms and critical roles of active DNA demethylation in various cellular processes as well as inspire novel genetic and chemical therapies for epigenetic disorders.
Collapse
Affiliation(s)
- H Zhang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
44
|
Abstract
The base excision repair system is vital to the repair of endogenous and exogenous DNA damage. This pathway is initiated by one of several DNA glycosylases that recognizes and excises specific DNA lesions in a coordinated fashion. Methyl-CpG Domain Protein 4 (MBD4) and Thymine DNA Glycosylase (TDG) are the two major G:T glycosylases that remove thymine generated by the deamination of 5-methylcytosine. Both of these glycosylases also remove a variety of other base lesions, including G:U and preferentially act at CpG sites throughout the genome. Many have questioned the purpose of seemingly redundant glycosylases, but new information has emerged to suggest MBD4 and TDG have diverse biological functions. MBD4 has been closely linked to apoptosis, while TDG has been clearly implicated in transcriptional regulation. This article reviews all of these developments, and discusses the consequences of germline and somatic mutations that lead to non-synonymous amino acid substitutions on MBD4 and TDG protein function. In addition, we report the finding of alternatively spliced variants of MBD4 and TDG and the results of functional studies of a tumor-associated variant of MBD4.
Collapse
|
45
|
da Costa NM, Hautefeuille A, Cros MP, Melendez ME, Waters T, Swann P, Hainaut P, Pinto LFR. Transcriptional regulation of thymine DNA glycosylase (TDG) by the tumor suppressor protein p53. Cell Cycle 2012; 11:4570-8. [PMID: 23165212 DOI: 10.4161/cc.22843] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Thymine DNA glycosylase (TDG) belongs to the superfamily of uracil DNA glycosylases (UDG) and is the first enzyme in the base-excision repair pathway (BER) that removes thymine from G:T mismatches at CpG sites. This glycosylase activity has also been found to be critical for active demethylation of genes involved in embryonic development. Here we show that wild-type p53 transcriptionally regulates TDG expression. Chromatin immunoprecipitation (ChIP) and luciferase assays indicate that wild-type p53 binds to a domain of TDG promoter containing two p53 consensus response elements (p53RE) and activates its transcription. Next, we have used a panel of cell lines with different p53 status to demonstrate that TDG mRNA and protein expression levels are induced in a p53-dependent manner under different conditions. This panel includes isogenic breast and colorectal cancer cell lines with wild-type or inactive p53, esophageal squamous cell carcinoma cell lines lacking p53 or expressing a temperature-sensitive p53 mutant and normal human bronchial epithelial cells. Induction of TDG mRNA expression is accompanied by accumulation of TDG protein in both nucleus and cytoplasm, with nuclear re-localization occurring upon DNA damage in p53-competent, but not -incompetent, cells. These observations suggest a role for p53 activity in TDG nuclear translocation. Overall, our results show that TDG expression is directly regulated by p53, suggesting that loss of p53 function may affect processes mediated by TDG, thus negatively impacting on genetic and epigenetic stability.
Collapse
|
46
|
Thomson JP, Lempiäinen H, Hackett JA, Nestor CE, Müller A, Bolognani F, Oakeley EJ, Schübeler D, Terranova R, Reinhardt D, Moggs JG, Meehan RR. Non-genotoxic carcinogen exposure induces defined changes in the 5-hydroxymethylome. Genome Biol 2012; 13:R93. [PMID: 23034186 PMCID: PMC3491421 DOI: 10.1186/gb-2012-13-10-r93] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 10/03/2012] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Induction and promotion of liver cancer by exposure to non-genotoxic carcinogens coincides with epigenetic perturbations, including specific changes in DNA methylation. Here we investigate the genome-wide dynamics of 5-hydroxymethylcytosine (5hmC) as a likely intermediate of 5-methylcytosine (5mC) demethylation in a DNA methylation reprogramming pathway. We use a rodent model of non-genotoxic carcinogen exposure using the drug phenobarbital. RESULTS Exposure to phenobarbital results in dynamic and reciprocal changes to the 5mC/5hmC patterns over the promoter regions of a cohort of genes that are transcriptionally upregulated. This reprogramming of 5mC/5hmC coincides with characteristic changes in the histone marks H3K4me2, H3K27me3 and H3K36me3. Quantitative analysis of phenobarbital-induced genes that are involved in xenobiotic metabolism reveals that both DNA modifications are lost at the transcription start site, while there is a reciprocal relationship between increasing levels of 5hmC and loss of 5mC at regions immediately adjacent to core promoters. CONCLUSIONS Collectively, these experiments support the hypothesis that 5hmC is a potential intermediate in a demethylation pathway and reveal precise perturbations of the mouse liver DNA methylome and hydroxymethylome upon exposure to a rodent hepatocarcinogen.
Collapse
|
47
|
Franchini DM, Schmitz KM, Petersen-Mahrt SK. 5-Methylcytosine DNA demethylation: more than losing a methyl group. Annu Rev Genet 2012; 46:419-41. [PMID: 22974304 DOI: 10.1146/annurev-genet-110711-155451] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Demethylation of 5-methylcytosine in DNA is integral to the maintenance of an intact epigenome. The balance between the presence or absence of 5-methylcytosine determines many physiological aspects of cell metabolism, with a turnover that can be measured in minutes to years. Biochemically, addition of the methyl group is shared among all living kingdoms and has been well characterized, whereas the removal or reversion of this mark seems diverse and much less understood. Here, we present a summary of how DNA demethylation can be initiated directly, utilizing the ten-eleven translocation (TET) family of proteins, activation-induced deaminase (AID), or other DNA modifying enzymes, or indirectly, via transcription, RNA metabolism, or DNA repair; how intermediates in those pathways are substrates of the DNA repair machinery; and how demethylation pathways are linked and possibly balanced, avoiding mutations.
Collapse
Affiliation(s)
- Don-Marc Franchini
- DNA Editing in Immunity and Epigenetics, IFOM-Fondazione Istituto FIRC di Oncologia Molecolare, 20139 Milano, Italy.
| | | | | |
Collapse
|
48
|
Tudek B, Speina E. Oxidatively damaged DNA and its repair in colon carcinogenesis. Mutat Res 2012; 736:82-92. [PMID: 22561673 DOI: 10.1016/j.mrfmmm.2012.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 04/02/2012] [Accepted: 04/16/2012] [Indexed: 12/18/2022]
Abstract
Inflammation, high fat, high red meat and low fiber consumption have for long been known as the most important etiological factors of sporadic colorectal cancers (CRC). Colon cancer originates from neoplastic transformation in a single layer of epithelial cells occupying colonic crypts, in which migration and apoptosis program becomes disrupted. This results in the formation of polyps and metastatic cancers. Mutational program in sporadic cancers involves APC gene, in which mutations occur most abundantly in the early phase of the process. This is followed by mutations in RAS, TP53, and other genes. Progression of carcinogenic process in the colon is accompanied by augmentation of the oxidative stress, which manifests in the increased level of oxidatively damaged DNA both in the colon epithelium, and in blood leukocytes and urine, already at the earliest stages of disease development. Defence mechanisms are deregulated in CRC patients: (i) antioxidative vitamins level in blood plasma declines with the development of disease; (ii) mRNA level of base excision repair enzymes in blood leukocytes of CRC patients is significantly increased; however, excision rate is regulated separately, being increased for 8-oxoGua, while decreased for lipid peroxidation derived ethenoadducts, ɛAde and ɛCyt; (iii) excision rate of ɛAde and ɛCyt in colon tumors is significantly increased in comparison to asymptomatic colon margin, and ethenoadducts level is decreased. This review highlights mechanisms underlying such deregulation, which is the driving force to colon carcinogenesis.
Collapse
Affiliation(s)
- Barbara Tudek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
49
|
Saito Y, Ono T, Takeda N, Nohmi T, Seki M, Enomoto T, Noda T, Uehara Y. Embryonic lethality in mice lacking mismatch-specific thymine DNA glycosylase is partially prevented by DOPS, a precursor of noradrenaline. TOHOKU J EXP MED 2012; 226:75-83. [PMID: 22200605 DOI: 10.1620/tjem.226.75] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Thymine DNA glycosylase (TDG) is involved in the repair of G:T and G:U mismatches caused by hydrolytic deamination of 5-methylcytosine and cytosine, respectively. Recent studies have shown that TDG not only has G-T/U glycosylase activities but also acts in the maintaining proper epigenetic status. In order to investigate the function of TDG in vivo, mice lacking Tdg, Tdg (-/-), were generated. Tdg mutant mice died in utero by 11.5 days post coitum (dpc), although there were no significant differences in the spontaneous mutant frequencies between wild type and Tdg (-/-) embryos. On the other hand, the levels of noradrenaline in 10.5 dpc whole embryos, which is necessary for normal embryogenesis, were dramatically reduced in Tdg (-/-) embryos. Consequently, we tested the effect of D, L-threo-3, 4-dihydroxyphenylserine (DOPS), a synthetic precursor of noradrenaline, on the survival of the Tdg (-/-) embryos. DOPS was given to pregnant Tdg (+/-) mice from 6.5 dpc through drinking water. Most of the Tdg (-/-) embryos were alive at 11.5 dpc, and they were partially rescued up to 14.5 dpc by the administration of DOPS. In contrast, the administration of L-3, 4-dihydroxyphenylalanine (L-DOPA) had marginal effects on Tdg (-/-) embryonic lethality. No embryo was alive without DOPS beyond 11.5 dpc, suggesting that the lethality in (-/-) embryos is partially due to the reduction of noradrenaline. These results suggest that embryonic lethality in Tdg (-/-) embryos is due, in part, to the reduction of noradrenaline levels.
Collapse
Affiliation(s)
- Yusuke Saito
- Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Winczura A, Zdżalik D, Tudek B. Damage of DNA and proteins by major lipid peroxidation products in genome stability. Free Radic Res 2012; 46:442-59. [PMID: 22257221 DOI: 10.3109/10715762.2012.658516] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Oxidative stress and lipid peroxidation (LPO) accompanying infections and chronic inflammation may induce several human cancers. LPO products are characterized by carbohydrate chains of different length, reactive aldehyde groups and double bonds, which make these molecules reactive to nucleic acids, proteins and cellular thiols. LPO-derived adducts to DNA bases form etheno-type and propano-type exocyclic rings, which have profound mutagenic potential, and are elevated in several cancer-prone diseases. Adducts of long chain LPO products to DNA bases inhibit transcription. Elimination from DNA of LPO-induced lesions is executed by several repair systems: base excision repair (BER), direct reversal by AlkB family proteins, nucleotide excision repair (NER) and recombination. Modifications of proteins with LPO products may regulate cellular processes like apoptosis, cell signalling and senescence. This review summarizes consequences of LPO products' presence in cell, particularly 4-hydroxy-2-nonenal, in terms of genomic stability.
Collapse
Affiliation(s)
- Alicja Winczura
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 02-106 Warsaw, Poland
| | | | | |
Collapse
|