1
|
Smith SS, Chu D, Qu T, Aggleton JA, Schneider RA. Species-specific sensitivity to TGFβ signaling and changes to the Mmp13 promoter underlie avian jaw development and evolution. eLife 2022; 11:e66005. [PMID: 35666955 PMCID: PMC9246370 DOI: 10.7554/elife.66005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/03/2022] [Indexed: 12/02/2022] Open
Abstract
Precise developmental control of jaw length is critical for survival, but underlying molecular mechanisms remain poorly understood. The jaw skeleton arises from neural crest mesenchyme (NCM), and we previously demonstrated that these progenitor cells express more bone-resorbing enzymes including Matrix metalloproteinase 13 (Mmp13) when they generate shorter jaws in quail embryos versus longer jaws in duck. Moreover, if we inhibit bone resorption or Mmp13, we can increase jaw length. In the current study, we uncover mechanisms establishing species-specific levels of Mmp13 and bone resorption. Quail show greater activation of and sensitivity to transforming growth factor beta (TGFβ) signaling than duck; where intracellular mediators like SMADs and targets like Runt-related transcription factor 2 (Runx2), which bind Mmp13, become elevated. Inhibiting TGFβ signaling decreases bone resorption, and overexpressing Mmp13 in NCM shortens the duck lower jaw. To elucidate the basis for this differential regulation, we examine the Mmp13 promoter. We discover a SMAD-binding element and single nucleotide polymorphisms (SNPs) near a RUNX2-binding element that distinguish quail from duck. Altering the SMAD site and switching the SNPs abolish TGFβ sensitivity in the quail Mmp13 promoter but make the duck promoter responsive. Thus, differential regulation of TGFβ signaling and Mmp13 promoter structure underlie avian jaw development and evolution.
Collapse
Affiliation(s)
- Spenser S Smith
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - Daniel Chu
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - Tiange Qu
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - Jessye A Aggleton
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - Richard A Schneider
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
2
|
Liu D, Fu X, Wang Y, Wang X, Wang H, Wen J, Kang N. Protein diaphanous homolog 1 (Diaph1) promotes myofibroblastic activation of hepatic stellate cells by regulating Rab5a activity and TGFβ receptor endocytosis. FASEB J 2020; 34:7345-7359. [PMID: 32304339 PMCID: PMC7686927 DOI: 10.1096/fj.201903033r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/28/2020] [Accepted: 03/08/2020] [Indexed: 01/19/2023]
Abstract
TGFβ induces the differentiation of hepatic stellate cells (HSCs) into tumor-promoting myofibroblasts but underlying mechanisms remain incompletely understood. Because endocytosis of TGFβ receptor II (TβRII), in response to TGFβ stimulation, is a prerequisite for TGF signaling, we investigated the role of protein diaphanous homolog 1 (known as Diaph1 or mDia1) for the myofibroblastic activation of HSCs. Using shRNA to knockdown Diaph1 or SMIFH2 to target Diaph1 activity of HSCs, we found that the inactivation of Diaph1 blocked internalization and intracellular trafficking of TβRII and reduced SMAD3 phosphorylation induced by TGFβ1. Mechanistic studies revealed that the N-terminal portion of Diaph1 interacted with both TβRII and Rab5a directly and that Rab5a activity of HSCs was increased by Diaph1 overexpression and decreased by Diaph1 knockdown. Additionally, expression of Rab5aQ79L (active Rab5a mutant) increased whereas the expression of Rab5aS34N (inactive mutant) reduced the endosomal localization of TβRII in HSCs compared to the expression of wild-type Rab5a. Functionally, TGFβ stimulation promoted HSCs to express tumor-promoting factors, and α-smooth muscle actin, fibronection, and CTGF, markers of myofibroblastic activation of HSCs. Targeting Diaph1 or Rab5a suppressed HSC activation and limited tumor growth in a tumor implantation mouse model. Thus, Dipah1 and Rab5a represent targets for inhibiting HSC activation and the hepatic tumor microenvironment.
Collapse
Affiliation(s)
- Donglian Liu
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Xinhui Fu
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Yuanguo Wang
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Xianghu Wang
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Hua Wang
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Jialing Wen
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Ningling Kang
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| |
Collapse
|
3
|
Gencer S, Oleinik N, Kim J, Panneer Selvam S, De Palma R, Dany M, Nganga R, Thomas RJ, Senkal CE, Howe PH, Ogretmen B. TGF-β receptor I/II trafficking and signaling at primary cilia are inhibited by ceramide to attenuate cell migration and tumor metastasis. Sci Signal 2017; 10:eaam7464. [PMID: 29066540 PMCID: PMC5818989 DOI: 10.1126/scisignal.aam7464] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Signaling by the transforming growth factor-β (TGF-β) receptors I and II (TβRI/II) and the primary cilia-localized sonic hedgehog (Shh) pathway promote cell migration and, consequently, tumor metastasis. In contrast, the sphingolipid ceramide inhibits cell proliferation and tumor metastasis. We investigated whether ceramide metabolism inhibited TβRI/II trafficking to primary cilia to attenuate cross-talk between TβRI/II and the Shh pathway. We found that ceramide synthase 4 (CerS4)-generated ceramide stabilized the association between TβRI and the inhibitory factor Smad7, which limited the trafficking of TβRI/II to primary cilia. Expression of a mutant TβRI that signals but does not interact with Smad7 prevented the CerS4-mediated inhibition of migration in various cancer cells. Genetic deletion or knockdown of CerS4 prevented the formation of the Smad7-TβRI inhibitory complex and increased the association between TβRI and the transporter Arl6 through a previously unknown cilia-targeting signal (Ala31Thr32Ala33Leu34Gln35) in TβRI. Mutating the cilia-targeting signal abolished the trafficking of TβRI to the primary cilia. Localization of TβRI to primary cilia activated a key mediator of Shh signaling, Smoothened (Smo), which stimulated cellular migration and invasion. TβRI-Smo cross-talk at the cilia in CerS4-deficient 4T1 mammary cancer cells induced liver metastasis from orthotopic allografts in both wild-type and CerS4-deficient mice, which was prevented by overexpression of Smad7 or knockdown of intraflagellar transport protein 88 (IFT88). Overall, these data reveal a ceramide-dependent mechanism that suppresses cell migration and invasion by restricting TβRI/II-Shh signaling selectively at the plasma membrane of the primary cilium.
Collapse
Affiliation(s)
- Salih Gencer
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 125 Ashley Avenue, Charleston, SC 29425, USA
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Natalia Oleinik
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 125 Ashley Avenue, Charleston, SC 29425, USA
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Jisun Kim
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 125 Ashley Avenue, Charleston, SC 29425, USA
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Shanmugam Panneer Selvam
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 125 Ashley Avenue, Charleston, SC 29425, USA
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Ryan De Palma
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 125 Ashley Avenue, Charleston, SC 29425, USA
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Mohammed Dany
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 125 Ashley Avenue, Charleston, SC 29425, USA
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Rose Nganga
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 125 Ashley Avenue, Charleston, SC 29425, USA
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Raquela J Thomas
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 125 Ashley Avenue, Charleston, SC 29425, USA
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Can E Senkal
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 125 Ashley Avenue, Charleston, SC 29425, USA
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Philip H Howe
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 125 Ashley Avenue, Charleston, SC 29425, USA
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 125 Ashley Avenue, Charleston, SC 29425, USA.
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| |
Collapse
|
4
|
Yin X, Kang JH, Andrianifahanana M, Wang Y, Jung MY, Hernandez DM, Leof EB. Basolateral delivery of the type I transforming growth factor beta receptor is mediated by a dominant-acting cytoplasmic motif. Mol Biol Cell 2017; 28:2701-2711. [PMID: 28768825 PMCID: PMC5620377 DOI: 10.1091/mbc.e17-05-0334] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 12/25/2022] Open
Abstract
A novel motif within the cytoplasmic tail of the type I TGF-β receptor (TβRI) controls basolateral delivery. While this element functions independent of TβRI recycling and heteromeric TGF-β receptor trafficking, it can dominantly direct an apically expressed receptor to the basolateral membrane in polarized epithelial cells. Delivery of biomolecules to the correct subcellular locales is critical for proper physiological function. To that end, we have previously determined that type I and II transforming growth factor beta (TGF-β) receptors (TβRI and TβRII, respectively) localize to the basolateral domain in polarized epithelia. While TβRII targeting was shown to be regulated by sequences between amino acids 529 and 538, the analogous region(s) within TβRI is unknown. To address that question, sequential cytoplasmic TβRI truncations and point mutations identified a targeting motif between residues 158 and 163 (VxxEED) required for basolateral TβRI expression. Further studies documented that receptor internalization, down-regulation, direct recycling, or Smad signaling were unaffected by motif mutations that caused TβRI mislocalization. However, inclusion of amino acids 148–217 containing the targeting motif was able to direct basolateral expression of the apically sorted nerve growth factor receptor (NGFR, p75; extracellular and transmembrane regions) in a dominant manner. Finally, coexpression of apically targeted type I and type II TGF-β receptors mediated Smad3 signaling from the apical membrane of polarized epithelial cells. These findings demonstrate that the absence of apical TGF-β signaling in normal epithelia is primarily a reflection of domain-specific receptor expression and not an inability to couple with the signaling machinery.
Collapse
Affiliation(s)
- Xueqian Yin
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Jeong-Han Kang
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Mahefatiana Andrianifahanana
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Youli Wang
- Division of Nephrology, Augusta University, Augusta, GA 30904
| | - Mi-Yeon Jung
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Danielle M Hernandez
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Edward B Leof
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| |
Collapse
|
5
|
Varadaraj A, Jenkins LM, Singh P, Chanda A, Snider J, Lee NY, Amsalem-Zafran AR, Ehrlich M, Henis YI, Mythreye K. TGF-β triggers rapid fibrillogenesis via a novel TβRII-dependent fibronectin-trafficking mechanism. Mol Biol Cell 2017; 28:1195-1207. [PMID: 28298487 PMCID: PMC5415016 DOI: 10.1091/mbc.e16-08-0601] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 02/02/2023] Open
Abstract
There is increased recycling of soluble fibronectin from the cell surface for fibrillogenesis. This recycling is regulated by TGF-β in a transcription- and SMAD-independent manner via specific TβRII and integrin α5β1 interactions. The recycling of fibronectin is Rab11 dependent and is required for TGF-β–induced cell migration. Fibronectin (FN) is a critical regulator of extracellular matrix (ECM) remodeling through its availability and stepwise polymerization for fibrillogenesis. Availability of FN is regulated by its synthesis and turnover, and fibrillogenesis is a multistep, integrin-dependent process essential for cell migration, proliferation, and tissue function. Transforming growth factor β (TGF-β) is an established regulator of ECM remodeling via transcriptional control of ECM proteins. Here we show that TGF-β, through increased FN trafficking in a transcription- and SMAD-independent manner, is a direct and rapid inducer of the fibrillogenesis required for TGF-β–induced cell migration. Whereas TGF-β signaling is dispensable for rapid fibrillogenesis, stable interactions between the cytoplasmic domain of the type II TGF-β receptor (TβRII) and the FN receptor (α5β1 integrin) are required. We find that, in response to TGF-β, cell surface–internalized FN is not degraded by the lysosome but instead undergoes recycling and incorporation into fibrils, a process dependent on TβRII. These findings are the first to show direct use of trafficked and recycled FN for fibrillogenesis, with a striking role for TGF-β in this process. Given the significant physiological consequences associated with FN availability and polymerization, our findings provide new insights into the regulation of fibrillogenesis for cellular homeostasis.
Collapse
Affiliation(s)
- Archana Varadaraj
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208
| | - Laura M Jenkins
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208
| | - Priyanka Singh
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208
| | - Anindya Chanda
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29201
| | - John Snider
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208
| | - N Y Lee
- Division of Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH 43210
| | | | - Marcelo Ehrlich
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yoav I Henis
- Department of Neurobiology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Karthikeyan Mythreye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 .,Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC 29208
| |
Collapse
|
6
|
Wilkes MC, Repellin CE, Kang JH, Andrianifahanana M, Yin X, Leof EB. Sorting nexin 9 differentiates ligand-activated Smad3 from Smad2 for nuclear import and transforming growth factor β signaling. Mol Biol Cell 2015; 26:3879-91. [PMID: 26337383 PMCID: PMC4626071 DOI: 10.1091/mbc.e15-07-0545] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 08/27/2015] [Indexed: 01/23/2023] Open
Abstract
Sorting nexin 9 (SNX9) is shown to differentiate Smad3 from Smad2 nuclear delivery by mediating the association of phosphorylated Smad3 with importin 8 and the nuclear membrane. While the absence of SNX9 had negligible effects on transforming growth factor β receptor activity or Smad2 signaling, Smad3-dependent targets and phenotypes were inhibited. Transforming growth factor β (TGFβ) is a pleiotropic protein secreted from essentially all cell types and primary tissues. While TGFβ’s actions reflect the activity of a number of signaling networks, the primary mediator of TGFβ responses are the Smad proteins. Following receptor activation, these cytoplasmic proteins form hetero-oligomeric complexes that translocate to the nucleus and affect gene transcription. Here, through biological, biochemical, and immunofluorescence approaches, sorting nexin 9 (SNX9) is identified as being required for Smad3-dependent responses. SNX9 interacts with phosphorylated (p) Smad3 independent of Smad2 or Smad4 and promotes more rapid nuclear delivery than that observed independent of ligand. Although SNX9 does not bind nucleoporins Nup153 or Nup214 or some β importins (Imp7 or Impβ), it mediates the association of pSmad3 with Imp8 and the nuclear membrane. This facilitates nuclear translocation of pSmad3 but not SNX9.
Collapse
Affiliation(s)
- Mark C Wilkes
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Claire E Repellin
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Jeong-Han Kang
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Mahefatiana Andrianifahanana
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Xueqian Yin
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Edward B Leof
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| |
Collapse
|
7
|
Liu S, Nheu T, Luwor R, Nicholson SE, Zhu HJ. SPSB1, a Novel Negative Regulator of the Transforming Growth Factor-β Signaling Pathway Targeting the Type II Receptor. J Biol Chem 2015; 290:17894-17908. [PMID: 26032413 DOI: 10.1074/jbc.m114.607184] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Indexed: 01/17/2023] Open
Abstract
Appropriate cellular signaling is essential to control cell proliferation, differentiation, and cell death. Aberrant signaling can have devastating consequences and lead to disease states, including cancer. The transforming growth factor-β (TGF-β) signaling pathway is a prominent signaling pathway that has been tightly regulated in normal cells, whereas its deregulation strongly correlates with the progression of human cancers. The regulation of the TGF-β signaling pathway involves a variety of physiological regulators. Many of these molecules act to alter the activity of Smad proteins. In contrast, the number of molecules known to affect the TGF-β signaling pathway at the receptor level is relatively low, and there are no known direct modulators for the TGF-β type II receptor (TβRII). Here we identify SPSB1 (a Spry domain-containing Socs box protein) as a novel regulator of the TGF-β signaling pathway. SPSB1 negatively regulates the TGF-β signaling pathway through its interaction with both endogenous and overexpressed TβRII (and not TβRI) via its Spry domain. As such, TβRII and SPSB1 co-localize on the cell membrane. SPSB1 maintains TβRII at a low level by enhancing the ubiquitination levels and degradation rates of TβRII through its Socs box. More importantly, silencing SPSB1 by siRNA results in enhanced TGF-β signaling and migration and invasion of tumor cells.
Collapse
Affiliation(s)
- Sheng Liu
- Departments of Surgery (the Royal Melbourne Hospital), University of Melbourne, Parkville, Victoria 3050, Australia; Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia
| | - Thao Nheu
- Departments of Surgery (the Royal Melbourne Hospital), University of Melbourne, Parkville, Victoria 3050, Australia
| | - Rodney Luwor
- Departments of Surgery (the Royal Melbourne Hospital), University of Melbourne, Parkville, Victoria 3050, Australia
| | - Sandra E Nicholson
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia; Departments of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Hong-Jian Zhu
- Departments of Surgery (the Royal Melbourne Hospital), University of Melbourne, Parkville, Victoria 3050, Australia.
| |
Collapse
|
8
|
Liu C, Billadeau DD, Abdelhakim H, Leof E, Kaibuchi K, Bernabeu C, Bloom GS, Yang L, Boardman L, Shah VH, Kang N. IQGAP1 suppresses TβRII-mediated myofibroblastic activation and metastatic growth in liver. J Clin Invest 2013; 123:1138-56. [PMID: 23454766 PMCID: PMC3582119 DOI: 10.1172/jci63836] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 12/06/2012] [Indexed: 01/11/2023] Open
Abstract
In the tumor microenvironment, TGF-β induces transdifferentiation of quiescent pericytes and related stromal cells into myofibroblasts that promote tumor growth and metastasis. The mechanisms governing myofibroblastic activation remain poorly understood, and its role in the tumor microenvironment has not been explored. Here, we demonstrate that IQ motif containing GTPase activating protein 1 (IQGAP1) binds to TGF-β receptor II (TβRII) and suppresses TβRII-mediated signaling in pericytes to prevent myofibroblastic differentiation in the tumor microenvironment. We found that TGF-β1 recruited IQGAP1 to TβRII in hepatic stellate cells (HSCs), the resident liver pericytes. Iqgap1 knockdown inhibited the targeting of the E3 ubiquitin ligase SMAD ubiquitination regulatory factor 1 (SMURF1) to the plasma membrane and TβRII ubiquitination and degradation. Thus, Iqgap1 knockdown stabilized TβRII and potentiated TGF-β1 transdifferentiation of pericytes into myofibroblasts in vitro. Iqgap1 deficiency in HSCs promoted myofibroblast activation, tumor implantation, and metastatic growth in mice via upregulation of paracrine signaling molecules. Additionally, we found that IQGAP1 expression was downregulated in myofibroblasts associated with human colorectal liver metastases. Taken together, our studies demonstrate that IQGAP1 in the tumor microenvironment suppresses TβRII and TGF-β dependent myofibroblastic differentiation to constrain tumor growth.
Collapse
Affiliation(s)
- Chunsheng Liu
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Daniel D. Billadeau
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Haitham Abdelhakim
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Edward Leof
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Kozo Kaibuchi
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Carmelo Bernabeu
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - George S. Bloom
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Liu Yang
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Lisa Boardman
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Vijay H. Shah
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Ningling Kang
- GI Research Unit and Cancer Cell Biology Program,
Department of Immunology, and
Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Department of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
9
|
Abstract
TGF-β signaling regulates diverse cellular processes, including cell proliferation, differentiation, apoptosis, cell plasticity and migration. Its dysfunctions can result in various kinds of diseases, such as cancer and tissue fibrosis. TGF-β signaling is tightly regulated at different levels along the pathway, and modulation of TGF-β receptor activity is a critical step for signaling regulation. This review focuses on our recent understanding of regulation of TGF-β receptor activity.
Collapse
Affiliation(s)
- Fei Huang
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, THU-PKU Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | | |
Collapse
|
10
|
Penheiter SG, Singh RD, Repellin CE, Wilkes MC, Edens M, Howe PH, Pagano RE, Leof EB. Type II transforming growth factor-beta receptor recycling is dependent upon the clathrin adaptor protein Dab2. Mol Biol Cell 2010; 21:4009-19. [PMID: 20881059 PMCID: PMC2982134 DOI: 10.1091/mbc.e09-12-1019] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Transforming growth factor-β receptor recycling is regulated by the clathrin adaptor Dab2 protein. In the absence of Dab2, receptors localize in a perinuclear locale because they are unable to transit from the early endosomal antigen 1-positive early endosome to the Rab11-positive endosomal recycling compartment. Transforming growth factor (TGF)-β family proteins form heteromeric complexes with transmembrane serine/threonine kinases referred to as type I and type II receptors. Ligand binding initiates a signaling cascade that generates a variety of cell type-specific phenotypes. Whereas numerous studies have investigated the regulatory activities controlling TGF-β signaling, there is relatively little information addressing the endocytic and trafficking itinerary of TGF-β receptor subunits. In the current study we have investigated the role of the clathrin-associated sorting protein Disabled-2 (Dab2) in TGF-β receptor endocytosis. Although small interfering RNA-mediated Dab2 knockdown had no affect on the internalization of various clathrin-dependent (i.e., TGF-β, low-density lipoprotein, or transferrin) or -independent (i.e., LacCer) cargo, TGF-β receptor recycling was abrogated. Loss of Dab2 resulted in enlarged early endosomal antigen 1-positive endosomes, reflecting the inability of cargo to traffic from the early endosome to the endosomal recycling compartment and, as documented previously, diminished Smad2 phosphorylation. The results support a model whereby Dab2 acts as a multifunctional adaptor in mesenchymal cells required for TGF-β receptor recycling as well as Smad2 phosphorylation.
Collapse
Affiliation(s)
- Sumedha G Penheiter
- Thoracic Diseases Research Unit, Department of Biochemistry and Molecular Biology and Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Li W, Puertollano R, Bonifacino JS, Overbeek PA, Everett ET. Disruption of the murine Ap2β1 gene causes nonsyndromic cleft palate. Cleft Palate Craniofac J 2010; 47:566-73. [PMID: 20500056 DOI: 10.1597/09-145] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Development of the secondary palate in mammals is a complex process that can be easily perturbed, leading to the common and distressing birth defect cleft palate. Animal models are particularly useful tools for dissecting underlying genetic components of cleft palate. We describe a new cleft palate model resulting from a transgene insertion mutation. Transgene insertional mutagenesis disrupts the genomic organization and expression of the Ap2β1 gene located on chromosome 11. This gene encodes the β2-adaptin subunit of the heterotetrameric adaptor protein 2 complex involved in clathrin-dependent endocytosis. Homozygous cleft palate mutant mice express no Ap2β1 messenger RNA or β2-adaptin protein and die during the perinatal period. Heterozygous mice are phenotypically normal despite expressing diminished β2-adaptin messenger RNA and protein compared with wildtype. Remarkably, the paralogous β1-adaptin subunit of the adaptor protein 1 complex partially substitutes for the missing β2-adaptin in embryonic fibroblasts from homozygous mutant mice, resulting in assembly of reduced levels of an adaptor protein 2 complex bearing β1-adaptin. This variant adaptor protein 2 complex is, therefore, apparently capable of maintaining viability of the homozygous mutant embryos until birth but insufficient to support palatogenesis. Nonsyndromic cleft palate in an animal model is associated with disruption of the Ap2β1 gene.
Collapse
Affiliation(s)
- Wei Li
- Department of Oral Facial Development, Indiana University School of Dentistry, Indianapolis, Indiana, USA
| | | | | | | | | |
Collapse
|
12
|
Adra S, Sun T, MacNeil S, Holcombe M, Smallwood R. Development of a three dimensional multiscale computational model of the human epidermis. PLoS One 2010; 5:e8511. [PMID: 20076760 PMCID: PMC2799518 DOI: 10.1371/journal.pone.0008511] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 12/02/2009] [Indexed: 11/18/2022] Open
Abstract
Transforming Growth Factor (TGF-β1) is a member of the TGF-beta superfamily ligand-receptor network. and plays a crucial role in tissue regeneration. The extensive in vitro and in vivo experimental literature describing its actions nevertheless describe an apparent paradox in that during re-epithelialisation it acts as proliferation inhibitor for keratinocytes. The majority of biological models focus on certain aspects of TGF-β1 behaviour and no one model provides a comprehensive story of this regulatory factor's action. Accordingly our aim was to develop a computational model to act as a complementary approach to improve our understanding of TGF-β1. In our previous study, an agent-based model of keratinocyte colony formation in 2D culture was developed. In this study this model was extensively developed into a three dimensional multiscale model of the human epidermis which is comprised of three interacting and integrated layers: (1) an agent-based model which captures the biological rules governing the cells in the human epidermis at the cellular level and includes the rules for injury induced emergent behaviours, (2) a COmplex PAthway SImulator (COPASI) model which simulates the expression and signalling of TGF-β1 at the sub-cellular level and (3) a mechanical layer embodied by a numerical physical solver responsible for resolving the forces exerted between cells at the multi-cellular level. The integrated model was initially validated by using it to grow a piece of virtual epidermis in 3D and comparing the in virtuo simulations of keratinocyte behaviour and of TGF-β1 signalling with the extensive research literature describing this key regulatory protein. This research reinforces the idea that computational modelling can be an effective additional tool to aid our understanding of complex systems. In the accompanying paper the model is used to explore hypotheses of the functions of TGF-β1 at the cellular and subcellular level on different keratinocyte populations during epidermal wound healing.
Collapse
Affiliation(s)
- Salem Adra
- Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
- * E-mail: (SA); (RS)
| | - Tao Sun
- Centre for Cell Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Sheila MacNeil
- Department of Engineering Materials, University of Sheffield, Sheffield, United Kingdom
| | - Mike Holcombe
- Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
| | - Rod Smallwood
- Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
- * E-mail: (SA); (RS)
| |
Collapse
|
13
|
Exploring hypotheses of the actions of TGF-beta1 in epidermal wound healing using a 3D computational multiscale model of the human epidermis. PLoS One 2009; 4:e8515. [PMID: 20046881 PMCID: PMC2796169 DOI: 10.1371/journal.pone.0008515] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 12/02/2009] [Indexed: 11/19/2022] Open
Abstract
In vivo and in vitro studies give a paradoxical picture of the actions of the key regulatory factor TGF-beta1 in epidermal wound healing with it stimulating migration of keratinocytes but also inhibiting their proliferation. To try to reconcile these into an easily visualized 3D model of wound healing amenable for experimentation by cell biologists, a multiscale model of the formation of a 3D skin epithelium was established with TGF-beta1 literature-derived rule sets and equations embedded within it. At the cellular level, an agent-based bottom-up model that focuses on individual interacting units (keratinocytes) was used. This was based on literature-derived rules governing keratinocyte behavior and keratinocyte/ECM interactions. The selection of these rule sets is described in detail in this paper. The agent-based model was then linked with a subcellular model of TGF-beta1 production and its action on keratinocytes simulated with a complex pathway simulator. This multiscale model can be run at a cellular level only or at a combined cellular/subcellular level. It was then initially challenged (by wounding) to investigate the behavior of keratinocytes in wound healing at the cellular level. To investigate the possible actions of TGF-beta1, several hypotheses were then explored by deliberately manipulating some of these rule sets at subcellular levels. This exercise readily eliminated some hypotheses and identified a sequence of spatial-temporal actions of TGF-beta1 for normal successful wound healing in an easy-to-follow 3D model. We suggest this multiscale model offers a valuable, easy-to-visualize aid to our understanding of the actions of this key regulator in wound healing, and provides a model that can now be used to explore pathologies of wound healing.
Collapse
|
14
|
Abstract
Protein kinases are important regulators of intracellular signal transduction pathways and play critical roles in diverse cellular functions. Once a protein kinase is activated, its activity is subsequently downregulated through a variety of mechanisms. Accumulating evidence indicates that the activation of protein kinases commonly initiates their downregulation via the ubiquitin/proteasome pathway. Failure to regulate protein kinase activity or expression levels can cause human diseases.
Collapse
Affiliation(s)
- Zhimin Lu
- Department of Neuro-Oncology and Molecular and Cellular Oncology, University of Texas M. D. Anderson Cancer, Houston, TX 77030, USA.
| | | |
Collapse
|
15
|
Constam DB. Riding Shotgun: A Dual Role for the Epidermal Growth Factor-Cripto/FRL-1/Cryptic Protein Cripto in Nodal Trafficking. Traffic 2009; 10:783-91. [DOI: 10.1111/j.1600-0854.2009.00874.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Abstract
Transforming growth factor-beta (TGF-beta) signaling is tightly regulated to ensure its proper physiological functions in different cells and tissues. Like other cell surface receptors, TGF-beta receptors are internalized into the cell, and this process plays an important regulatory role in TGF-beta signaling. It is well documented that TGF-beta receptors are endocytosed via clathrin-coated vesicles as TGF-beta endocytosis can be blocked by potassium depletion and the GTPase-deficient dynamin K44A mutant. TGF-beta receptors may also enter cells via cholesterol-rich membrane microdomain lipid rafts/caveolae and are found in caveolin-1-positive vesicles. Although receptor endocytosis is not essential for TGF-beta signaling, clathrin-mediated endocytosis has been shown to promote TGF-beta-induced Smad activation and transcriptional responses. Lipid rafts/caveolae are widely regarded as signaling centers for G protein-coupled receptors and tyrosine kinase receptors, but they are indicated to facilitate the degradation of TGF-beta receptors and therefore turnoff of TGF-beta signaling. This review summarizes current understanding of TGF-beta receptor endocytosis, the possible mechanisms underlying this process, and the role of endocytosis in modulation of TGF-beta signaling.
Collapse
Affiliation(s)
- Ye-Guang Chen
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
17
|
Murphy SJ, Shapira KE, Henis YI, Leof EB. A unique element in the cytoplasmic tail of the type II transforming growth factor-beta receptor controls basolateral delivery. Mol Biol Cell 2007; 18:3788-99. [PMID: 17634290 PMCID: PMC1995729 DOI: 10.1091/mbc.e06-10-0930] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Transforming growth factor (TGF)-beta receptors stimulate diverse signaling processes that control a wide range of biological responses. In polarized epithelia, the TGFbeta type II receptor (T2R) is localized at the basolateral membranes. Sequential cytoplasmic truncations resulted in receptor missorting to apical surfaces, and they indicated an essential targeting element(s) near the receptor's C terminus. Point mutations in the full-length receptor confirmed this prediction, and a unique basolateral-targeting region was elucidated between residues 529 and 538 (LTAxxVAxxR) that was distinct, but colocalized within a clinically significant signaling domain essential for TGFbeta-dependent activation of the Smad2/3 cascade. Transfer of a terminal 84 amino-acid fragment, containing the LTAxxVAxxR element, to the apically sorted influenza hemagglutinin (HA) protein was dominant and directed basolateral HA expression. Although delivery to the basolateral surfaces was direct and independent of any detectable transient apical localization, fluorescence recovery after photobleaching demonstrated similar mobility for the wild-type receptor and a missorted mutant lacking the targeting motif. This latter finding excludes the possibility that the domain acts as a cell membrane retention signal, and it supports the hypothesis that T2R sorting occurs from an intracellular compartment.
Collapse
Affiliation(s)
- Stephen J. Murphy
- *Thoracic Diseases Research Unit, Department of Biochemistry and Molecular Biology and Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN 55905; and
| | - Keren E. Shapira
- Department of Neurobiochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yoav I. Henis
- Department of Neurobiochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Edward B. Leof
- *Thoracic Diseases Research Unit, Department of Biochemistry and Molecular Biology and Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN 55905; and
| |
Collapse
|
18
|
Jin Q, Ding W, Mulder KM. Requirement for the dynein light chain km23-1 in a Smad2-dependent transforming growth factor-beta signaling pathway. J Biol Chem 2007; 282:19122-32. [PMID: 17420258 DOI: 10.1074/jbc.m609915200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have identified km23-1 as a novel transforming growth factor-beta (TGFbeta) receptor (TbetaR)-interacting protein that is also a light chain of the motor protein dynein (dynein light chain). Herein, we demonstrate by sucrose gradient analyses that, in the presence of TGFbeta but not in the absence, km23-1 was present in early endosomes with the TbetaRs. Further, confocal microscopy studies indicate that endogenous km23-1 was co-localized with endogenous Smad2 at early times after TGFbeta treatment, prior to Smad2 translocation to the nucleus. In addition, immunoprecipitation/blot analyses showed that TGFbeta regulated the interaction between endogenous km23-1 and endogenous Smad2 in vivo. Blockade of km23-1 using a small interfering RNA approach resulted in a reduction in both total intracellular Smad2 levels and in nuclear levels of phosphorylated Smad2 after TGFbeta treatment. This decrease was reversed by lactacystin, a specific inhibitor of the 26 S proteasome, suggesting that knockdown of km23-1 causes proteasomal degradation of phosphorylated (i.e. activated) Smad2. Blockade of km23-1 also resulted in a reduction in TGFbeta/Smad2-dependent ARE-Lux transcriptional activity, which was rescued by a km23-1 small interfering RNA-resistant construct. In contrast, a reduction in TGFbeta/Smad3-dependent SBE2-Luc transcriptional activity did not occur under similar conditions. Furthermore, overexpression of the dynactin subunit dynamitin, which is known to disrupt dynein-mediated intracellular transport, blocked TGFbeta-stimulated nuclear translocation of Smad2. Collectively, our findings indicate for the first time that a dynein light chain is required for a Smad2-dependent TGFbeta signaling pathway.
Collapse
Affiliation(s)
- Qunyan Jin
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
19
|
Wilkes MC, Leof EB. Transforming growth factor beta activation of c-Abl is independent of receptor internalization and regulated by phosphatidylinositol 3-kinase and PAK2 in mesenchymal cultures. J Biol Chem 2006; 281:27846-54. [PMID: 16867995 DOI: 10.1074/jbc.m603721200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transforming growth factor beta (TGF-beta) modulates a number of cellular phenotypes as divergent as growth stimulation and growth inhibition. Although the Smad pathway is critical for many of these responses, recent evidence indicates that Smad-independent pathways may also have a critical role. One such protein previously shown to regulate TGF-beta action independent of the Smad proteins is the c-Abl nonreceptor tyrosine kinase. In the current study we determined that TGF-beta receptor signaling activates c-Abl kinase activity in a subset of fibroblast but not epithelial cultures. This cell type-specific response occurs in a membrane-proximal locale independent of receptor internalization and upstream of dynamin action. Although c-Abl activation by TGF-beta is independent of Smad2 or Smad3, it is prevented by inhibitors of phosphatidylinositol 3-kinase or PAK2. Thus, c-Abl represents a target downstream of phosphatidylinositol 3-kinase-activated PAK2, which differentiates TGF-beta signaling in fibroblasts and epithelial cell lines and integrates serine/threonine receptor kinases with tyrosine kinase pathways.
Collapse
Affiliation(s)
- Mark C Wilkes
- Department of Biochemistry and Molecular Biology, Thoracic Diseases Research Unit, and Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
20
|
Asano Y, Ihn H, Yamane K, Jinnin M, Tamaki K. Increased expression of integrin alphavbeta5 induces the myofibroblastic differentiation of dermal fibroblasts. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:499-510. [PMID: 16436664 PMCID: PMC1606497 DOI: 10.2353/ajpath.2006.041306] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The biological effect of cytokines is mainly determined by the cytokine-receptor interaction, which is modulated by the concentration and the activity of cytokines and/or their receptors. Because alphav-containing integrins can bind to and/or activate latent TGF-beta, these integrins have been thought to be involved in the pathogenesis of fibrotic disorders. Our recent observations that alphavbeta5 is up-regulated in scleroderma fibroblasts and that the transient overexpression of alphavbeta5 increases the human alpha2(I) collagen gene expression in normal fibroblasts suggest the involvement of alphavbeta5 in the self-activation system in scleroderma fibroblasts. In this study, we established stable transfectants with alphavbeta5 using normal dermal fibroblasts and demonstrated that such cells differentiated into myofibroblasts by the stimulation of autocrine TGF-beta. This observation is explained by 1) alphavbeta5 recruiting latent TGF-beta1 on the cell surface, 2) endogenous active TGF-beta localizing on the cell surface, and 3) alphavbeta5 interacting with TGF-beta receptors. Furthermore, blockade of alphavbeta5 reversed the myofibroblastic phenotype in scleroderma fibroblasts. These data identify a novel mechanism for the establishment of autocrine TGF-beta signaling in dermal fibroblasts by the up-regulation of alphavbeta5 and suggest the possibility of regulating fibrotic disorders, especially scleroderma, by targeting this integrin.
Collapse
MESH Headings
- Activin Receptors, Type I/metabolism
- Autocrine Communication
- Blotting, Northern
- Cell Adhesion
- Cell Differentiation
- Cells, Cultured
- Dermis/metabolism
- Fibroblasts/metabolism
- Humans
- Integrins/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Phenotype
- Protein Serine-Threonine Kinases
- Receptor, Transforming Growth Factor-beta Type I
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/metabolism
- Receptors, Vitronectin/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Scleroderma, Systemic/metabolism
- Scleroderma, Systemic/physiopathology
- Smad2 Protein/metabolism
- Smad3 Protein/metabolism
- Transforming Growth Factor beta/pharmacology
Collapse
Affiliation(s)
- Yoshihide Asano
- Department of Dermatology, University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
21
|
Piddini E, Marshall F, Dubois L, Hirst E, Vincent JP. Arrow (LRP6) and Frizzled2 cooperate to degrade Wingless in Drosophila imaginal discs. Development 2005; 132:5479-89. [PMID: 16291792 DOI: 10.1242/dev.02145] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lysosome-mediated ligand degradation is known to shape morphogen gradients and modulate the activity of various signalling pathways. We have investigated the degradation of Wingless, a Drosophila member of the Wnt family of secreted growth factors. We find that one of its signalling receptors,Frizzled2, stimulates Wingless internalization both in wing imaginal discs and cultured cells. However, this is not sufficient for degradation. Indeed, as shown previously, overexpression of Frizzled2 leads to Wingless stabilization in wing imaginal discs. We show that Arrow (the Drosophila homologue of LRP5/6), another receptor involved in signal transduction, abrogates such stabilization. We provide evidence that Arrow stimulates the targeting of Frizzled2-Wingless (but not Dally-like-Wingless) complexes to a degradative compartment. Thus, Frizzled2 alone cannot lead Wingless all the way from the plasma membrane to a degradative compartment. Overall, Frizzled2 achieves ligand capture and internalization, whereas Arrow, and perhaps downstream signalling, are essential for lysosomal targeting.
Collapse
Affiliation(s)
- Eugenia Piddini
- National Institute for Medical Research, The Ridgeway Mill Hill, London NW7 1AA, UK
| | | | | | | | | |
Collapse
|
22
|
Sponer U, Pieh S, Soleiman A, Skorpik C. Upregulation of alphavbeta6 integrin, a potent TGF-beta1 activator, and posterior capsule opacification. J Cataract Refract Surg 2005; 31:595-606. [PMID: 15811751 DOI: 10.1016/j.jcrs.2004.05.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2004] [Indexed: 11/30/2022]
Abstract
PURPOSE To identify the predominant activation pathway of transforming growth factor (TGF)-beta1 in the lens capsule, studying the spatial and temporal expression pattern of alphavbeta6 and thrombospondin-1. Other PCO-related proteins were also studied. SETTING Departments of Ophthalmology and Optometrics and Clinical Pathology, Medical School, University of Vienna, Vienna, Austria. METHODS The lens capsules of 12 human donor eyes were cultivated in a protein-free medium for up to 28 days (cultivated lens capsules [CLCs]) after lens extraction. Ten intact lenses (ILs) served as the control group and were also cultured. During the culture period, cell dynamics were observed by phase-contrast microscopy. Proteins were detected by double immunofluorescence on frozen sections. RESULTS In ILs, alphavbeta6 was absent but 91.6% of the CLCs showed extensive staining. Remnant lens epithelial cells (LECs) expressed alphavbeta6 immediately after lens extraction. The alphavbeta6 was detected throughout the culture period in all regions of the capsule. Thrombospondin-1 was absent in ILs and CLCs, suggesting that this protein is not significant in TGF-beta1 activation in the lens. Transforming growth factor-beta1 was abundantly expressed in all ILs and CLCs, slightly decreasing during intensive LEC proliferation and migration. The TGF-beta receptor II (RII) was expressed equally in all specimens, decreasing with culture time. Nonresident extracellular matrix proteins and alpha-smooth muscle actin were partially detected in CLCs but not in ILs. Latent TGF-beta binding protein 1 and collagen III were absent in all specimens. All cells found in the cultures expressed vimentin and alphaB-crystallin (LEC markers). CONCLUSION Alphavbeta6 is the main activator of TGF-beta1 in the lens capsule and represents a new target for PCO prevention.
Collapse
Affiliation(s)
- Ulrike Sponer
- Department of Ophthalmology and Optometrics, General Hospital, University of Vienna, Austria
| | | | | | | |
Collapse
|
23
|
Le Roy C, Wrana JL. Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nat Rev Mol Cell Biol 2005; 6:112-26. [PMID: 15687999 DOI: 10.1038/nrm1571] [Citation(s) in RCA: 658] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The internalization of various cargo proteins and lipids from the mammalian cell surface occurs through the clathrin and lipid-raft endocytic pathways. Protein-lipid and protein-protein interactions control the targeting of signalling molecules and their partners to various specialized membrane compartments in these pathways. This functions to control the activity of signalling cascades and the termination of signalling events, and therefore has a key role in defining how a cell responds to its environment.
Collapse
Affiliation(s)
- Christine Le Roy
- Program in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Room 1075, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | |
Collapse
|
24
|
Mitchell H, Choudhury A, Pagano RE, Leof EB. Ligand-dependent and -independent transforming growth factor-beta receptor recycling regulated by clathrin-mediated endocytosis and Rab11. Mol Biol Cell 2004; 15:4166-78. [PMID: 15229286 PMCID: PMC515349 DOI: 10.1091/mbc.e04-03-0245] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Proteins in the transforming growth factor-beta (TGF-beta) family recognize transmembrane serine/threonine kinases known as type I and type II receptors. Binding of TGF-beta to receptors results in receptor down-regulation and signaling. Whereas previous work has focused on activities controlling TGF-beta signaling, more recent studies have begun to address the trafficking properties of TGF-beta receptors. In this report, it is shown that receptors undergo recycling both in the presence and absence of ligand activation, with the rates of internalization and recycling being unaffected by ligand binding. Recycling occurs as receptors are most likely internalized through clathrin-coated pits, and then returned to the plasma membrane via a rab11-dependent, rab4-independent mechanism. Together, the results suggest a mechanism wherein activated TGF-beta receptors are directed to a distinct endocytic pathway for down-regulation and clathrin-dependent degradation after one or more rounds of recycling.
Collapse
Affiliation(s)
- Hugh Mitchell
- Thoracic Diseases Research Unit, Department of Biochemistry and Molecular Biology and Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
25
|
Siddiqui SS, Siddiqui ZK, Malik AB. Albumin endocytosis in endothelial cells induces TGF-β receptor II signaling. Am J Physiol Lung Cell Mol Physiol 2004; 286:L1016-26. [PMID: 14729511 DOI: 10.1152/ajplung.00356.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vascular endothelial cells undergo albumin endocytosis using a set of albumin binding proteins. This process is important for maintaining cellular homeostasis. We showed by several criteria that the previously described 73-kDa endothelial cell surface albumin binding protein is the 75-kDa transforming growth factor (TGF)-β receptor type II (TβRII). Albumin coimmunoprecipitated with TβRII from a membrane fraction from rat lung microvascular endothelial cells. Albumin endocytosis-negative COS-7 cells became albumin endocytosis competent when transfected with wild-type TβRII but not when transfected with a domain-negative kinase mutant of TβRII. An antibody specific for TβRII inhibited albumin endocytosis. A mink lung epithelial cell line, which expresses both the TGF-β receptor type I (TβRI) and the TβRII receptor, exhibited albumin binding to the cell surface and endocytosis. In contrast, mutant L-17 and DR-26 cells lacking TβRI or TβRII, respectively, each showed a dramatic reduction in binding and endocytosis. Albumin endocytosis induced Smad2 phosphorylation and Smad4 translocation as well as increased protein expression of the inhibitory Smad, Smad7. We identified regions of significant homology between amino acid sequences of albumin and TGF-β, suggesting a structural basis for the interaction of albumin with the TGF-β receptors and subsequent activation of TβRII signaling. The observed albumin-induced internalization of TβRII signaling may be an important mechanism in the vessel wall for controlling TGF-β responses in endothelial cells.
Collapse
Affiliation(s)
- Shahid S Siddiqui
- Dept. of Pharmacology, College of Medicine, Univ. of Illinois, 835 South Wolcott Ave. (M/C 868 Chicago, IL 60612, USA.
| | | | | |
Collapse
|
26
|
Murphy SJ, Doré JJE, Edens M, Coffey RJ, Barnard JA, Mitchell H, Wilkes M, Leof EB. Differential trafficking of transforming growth factor-beta receptors and ligand in polarized epithelial cells. Mol Biol Cell 2004; 15:2853-62. [PMID: 15075369 PMCID: PMC420108 DOI: 10.1091/mbc.e04-02-0097] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Epithelial cells in vivo form tight cell-cell associations that spatially separate distinct apical and basolateral domains. These domains provide discrete cellular processes essential for proper tissue and organ development. Using confocal imaging and selective plasma membrane domain activation, the type I and type II transforming growth factor-beta (TGFbeta) receptors were found to be localized specifically at the basolateral surfaces of polarized Madin-Darby canine kidney (MDCK) cells. Receptors concentrated predominantly at the lateral sites of cell-cell contact, adjacent to the gap junctional complex. Cytoplasmic domain truncations for each receptor resulted in the loss of specific lateral domain targeting and dispersion to both the apical and basal domains. Whereas receptors concentrate basolaterally in regions of direct cell-cell contact in nonpolarized MDCK cell monolayers, receptor staining was absent from areas of noncell contact. In contrast to the defined basolateral polarity observed for the TGFbeta receptor complex, TGFbeta ligand secretion was found to be from the apical surfaces. Confocal imaging of MDCK cells with an antibody to TGFbeta1 confirmed a predominant apical localization, with a stark absence at the basal membrane. These findings indicate that cell adhesion regulates the localization of TGFbeta receptors in polarized epithelial cultures and that the response to TGFbeta is dependent upon the spatial distribution and secretion of TGFbeta receptors and ligand, respectively.
Collapse
Affiliation(s)
- S J Murphy
- Thoracic Diseases Research Unit, Department of Biochemistry and Molecular Biology and Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Wilkes MC, Murphy SJ, Garamszegi N, Leof EB. Cell-type-specific activation of PAK2 by transforming growth factor beta independent of Smad2 and Smad3. Mol Cell Biol 2003; 23:8878-89. [PMID: 14612425 PMCID: PMC262664 DOI: 10.1128/mcb.23.23.8878-8889.2003] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2003] [Revised: 06/10/2003] [Accepted: 08/21/2003] [Indexed: 11/20/2022] Open
Abstract
Transforming growth factor beta (TGF-beta) causes growth arrest in epithelial cells and proliferation and morphological transformation in fibroblasts. Despite the ability of TGF-beta to induce various cellular phenotypes, few discernible differences in TGF-beta signaling between cell types have been reported, with the only well-characterized pathway (the Smad cascade) seemingly under identical control. We determined that TGF-beta receptor signaling activates the STE20 homolog PAK2 in mammalian cells. PAK2 activation occurs in fibroblast but not epithelial cell cultures and is independent of Smad2 and/or Smad3. Furthermore, we show that TGF-beta-stimulated PAK2 activity is regulated by Rac1 and Cdc42 and dominant negative PAK2 or morpholino antisense oligonucleotides to PAK2 prevent the morphological alteration observed following TGF-beta addition. Thus, PAK2 represents a novel Smad-independent pathway that differentiates TGF-beta signaling in fibroblast (growth-stimulated) and epithelial cell (growth-inhibited) cultures.
Collapse
Affiliation(s)
- Mark C Wilkes
- Department of Biochemistry and Molecular Biology, Thoracic Diseases Research Unit, and Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
28
|
Abstract
Transforming growth factor beta (TGF-beta) superfamily members are important regulators of many diverse developmental and homeostatic processes and disruption of their activity has been implicated in a variety of human diseases ranging from cancer to chondrodysplasias and pulmonary hypertension. TGF-beta family members signal through transmembrane Ser-Thr kinase receptors that directly regulate the intracellular Smad pathway. Smads are a unique family of signal transduction molecules that can transmit signals directly from the cell surface receptors to the nucleus, where they regulate transcription by interacting with DNA binding partners as well as transcriptional coactivators and corepressors. In addition, more recent evidence indicates that Smads can also function both as substrates and adaptors for ubiquitin protein ligases, which mediate the targeted destruction of intracellular proteins. Smads have thus emerged as multifunctional transmitters of TGF-beta family signals that play critical roles in the development and homeostasis of metazoans.
Collapse
Affiliation(s)
- Arun Mehra
- Dept. of Anatomy and Cell Biology, University of Toronto, Mount Sinai Hospital, ON, Canada
| | | |
Collapse
|
29
|
Tang Q, Staub CM, Gao G, Jin Q, Wang Z, Ding W, Aurigemma RE, Mulder KM. A novel transforming growth factor-beta receptor-interacting protein that is also a light chain of the motor protein dynein. Mol Biol Cell 2002; 13:4484-96. [PMID: 12475967 PMCID: PMC138648 DOI: 10.1091/mbc.e02-05-0245] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2002] [Revised: 08/23/2002] [Accepted: 08/29/2002] [Indexed: 11/11/2022] Open
Abstract
The phosphorylated, activated cytoplasmic domains of the transforming growth factor-beta (TGFbeta) receptors were used as probes to screen an expression library that was prepared from a highly TGFbeta-responsive intestinal epithelial cell line. One of the TGFbeta receptor-interacting proteins isolated was identified to be the mammalian homologue of the LC7 family (mLC7) of dynein light chains (DLCs). This 11-kDa cytoplasmic protein interacts with the TGFbeta receptor complex intracellularly and is phosphorylated on serine residues after ligand-receptor engagement. Forced expression of mLC7-1 induces specific TGFbeta responses, including an activation of Jun N-terminal kinase (JNK), a phosphorylation of c-Jun, and an inhibition of cell growth. Furthermore, TGFbeta induces the recruitment of mLC7-1 to the intermediate chain of dynein. A kinase-deficient form of TGFbeta RII prevents both mLC7-1 phosphorylation and interaction with the dynein intermediate chain (DIC). This is the first demonstration of a link between cytoplasmic dynein and a natural growth inhibitory cytokine. Furthermore, our results suggest that TGFbeta pathway components may use a motor protein light chain as a receptor for the recruitment and transport of specific cargo along microtublules.
Collapse
Affiliation(s)
- Qian Tang
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Transforming growth factor-betas (TGF-betas) regulate pivotal cellular processes such as proliferation, differentiation and apoptosis. After ligand binding, the signals are transmitted by two types of transmembrane serine/threonine kinase receptors. The type I receptor phosphorylates Smad proteins, intracellular effectors which upon oligomerization enter the nucleus to regulate transcription following assembly with transcriptional co-factors and co-modulators. The cellular distribution of TGF-beta receptors along with their oligomerization mode and their complex formation with different cell surface receptors represent crucial steps in determining the initiation of distinct signalling cascades. In addition, the broad array of intracellular proteins that influence the TGF-beta pathway demonstrates that signal transduction does not proceed in a linear fashion but rather comprises a complex network of cascades that mutually influence each other. The present review describes the intricate control of TGF-beta signal transduction on various levels of the cascade with particular focus (i) on the assembly of different receptor subtypes and (ii) on the multitude of crosstalk with signal transducers from other pathways. Integration of the TGF-beta/Smad pathway into the signalling network has taken on added importance as it substantially contributes to elicit the plethora of cell- and tissue-specific effects of TGF-beta.
Collapse
Affiliation(s)
- Marion Lutz
- Department of Physiological Chemistry II, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | | |
Collapse
|
31
|
Yao D, Ehrlich M, Henis YI, Leof EB. Transforming growth factor-beta receptors interact with AP2 by direct binding to beta2 subunit. Mol Biol Cell 2002; 13:4001-12. [PMID: 12429842 PMCID: PMC133610 DOI: 10.1091/mbc.02-07-0104] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) superfamily members regulate a wide range of biological processes by binding to two transmembrane serine/threonine kinase receptors, type I and type II. We have previously shown that the internalization of these receptors is inhibited by K(+) depletion, cytosol acidification, or hypertonic medium, suggesting the involvement of clathrin-coated pits. However, the involvement of the clathrin-associated adaptor complex AP2 and the identity of the AP2 subunit that binds the receptors were not known. Herein, we have studied these issues by combining studies on intact cells with in vitro assays. Using fluorescence photobleaching recovery to measure the lateral mobility of the receptors on live cells (untreated or treated to alter their coated pit structure), we demonstrated that their mobility is restricted by interactions with coated pits. These interactions were transient and mediated through the receptors' cytoplasmic tails. To measure direct binding of the receptors to specific AP2 subunits, we used yeast two-hybrid screens and in vitro biochemical assays. In contrast to most other plasma membrane receptors that bind to AP2 via the mu2 subunit, AP2/TGF-beta receptor binding was mediated by a direct interaction between the beta2-adaptin N-terminal trunk domain and the cytoplasmic tails of the receptors; no binding was observed to the mu2, alpha, or sigma2 subunits of AP2 or to mu1 of AP1. The data uniquely demonstrate both in vivo and in vitro the ability of beta2-adaptin to directly couple TGF-beta receptors to AP2 and to clathrin-coated pits, providing the first in vivo evidence for interactions of a transmembrane receptor with beta2-adaptin.
Collapse
Affiliation(s)
- Diying Yao
- Department of Biochemistry and Molecular Biology and Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
32
|
Penheiter SG, Mitchell H, Garamszegi N, Edens M, Doré JJE, Leof EB. Internalization-dependent and -independent requirements for transforming growth factor beta receptor signaling via the Smad pathway. Mol Cell Biol 2002; 22:4750-9. [PMID: 12052882 PMCID: PMC133902 DOI: 10.1128/mcb.22.13.4750-4759.2002] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2001] [Revised: 11/08/2001] [Accepted: 03/18/2002] [Indexed: 11/20/2022] Open
Abstract
Members of the transforming growth factor beta (TGF-beta) family of proteins signal through cell surface transmembrane serine/threonine protein kinases known as type I and type II receptors. The TGF-beta signal is extended through phosphorylation of receptor-associated Smad proteins by the type I receptor. Although numerous investigations have established the sequence of events in TGF-beta receptor (TGF-beta R) activation, none have examined the role of the endocytic pathway in initiation and/or maintenance of the signaling response. In this study we investigated whether TGF-beta R internalization modulates type I receptor activation, the formation of a functional receptor/Smad/SARA complex, Smad2/3 phosphorylation or nuclear translocation, and TGF-beta-dependent reporter gene activity. Our data provide evidence that, whereas type I receptor phosphorylation and association of SARA and Smad2 with the TGF-beta R complex take place independently of clathrin lattice formation, Smad2 or Smad3 activation and downstream signaling only occur after endocytic vesicle formation. Thus, TGF-beta R endocytosis is not simply a way to dampen the signaling response but instead is required to propagate signaling via the Smad pathway.
Collapse
Affiliation(s)
- Sumedha G Penheiter
- Thoracic Diseases Research Unit and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
33
|
Seto ES, Bellen HJ, Lloyd TE. When cell biology meets development: endocytic regulation of signaling pathways. Genes Dev 2002; 16:1314-36. [PMID: 12050111 DOI: 10.1101/gad.989602] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Elaine S Seto
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
34
|
Guimond A, Sulea T, Zwaagstra JC, Ekiel I, O'Connor-McCourt MD. Identification of a functional site on the type I TGF-beta receptor by mutational analysis of its ectodomain. FEBS Lett 2002; 513:147-52. [PMID: 11904140 DOI: 10.1016/s0014-5793(01)03231-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Six charged amino acid residues located in the ectodomain of the full-length type I transforming growth factor (TGF)-beta receptor were individually mutated to alanine. Mutation of residues D47, D98, K102 and E104 resulted in functionally impaired receptors as demonstrated by a marked decrease in ligand-dependent signaling and ligand internalization relative to the wild-type receptor. The other two mutants (K39A and K87A) exhibited wild-type-like activity. Molecular modeling indicates that the four functionally important residues are located on the convex face of the ectodomain structure. Since mutation of these four residues affects signaling and ligand internalization but not ligand binding, we propose that this functional site is an interacting site between type I and II receptors.
Collapse
MESH Headings
- Activin Receptors, Type I/chemistry
- Activin Receptors, Type I/genetics
- Activin Receptors, Type I/metabolism
- Amino Acid Sequence
- Animals
- Cells, Cultured
- DNA Mutational Analysis
- Humans
- Ligands
- Models, Molecular
- Molecular Sequence Data
- Protein Serine-Threonine Kinases
- Protein Structure, Tertiary
- Rats
- Receptor, Transforming Growth Factor-beta Type I
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/chemistry
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Sequence Homology, Amino Acid
- Signal Transduction
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Alain Guimond
- Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, H4P 2R2, Montréal, QC, Canada
| | | | | | | | | |
Collapse
|
35
|
Garamszegi N, Doré JJ, Penheiter SG, Edens M, Yao D, Leof EB. Transforming growth factor beta receptor signaling and endocytosis are linked through a COOH terminal activation motif in the type I receptor. Mol Biol Cell 2001; 12:2881-93. [PMID: 11553725 PMCID: PMC59721 DOI: 10.1091/mbc.12.9.2881] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Transforming growth factor beta (TGF-beta) coordinates a number of biological events important in normal and pathophysiological growth. In this study, deletion and substitution mutations were used to identify receptor motifs modulating TGF-beta receptor activity. Initial experiments indicated that a COOH-terminal sequence between amino acids 482-491 in the kinase domain of the type I receptor was required for ligand-induced receptor signaling and down-regulation. These 10 amino acids are highly conserved in mammalian, Xenopus, and Drosophila type I receptors. Although mutation or deletion of the region (referred to as the NANDOR BOX, for nonactivating non-down-regulating) abolishes TGF-beta-dependent mitogenesis, transcriptional activity, type I receptor phosphorylation, and down-regulation in mesenchymal cultures, adjacent mutations also within the kinase domain are without effect. Moreover, a kinase-defective type I receptor can functionally complement a mutant BOX expressing type I receptor, documenting that when the BOX mutant is activated, it has kinase activity. These results indicate that the sequence between 482 and 491 in the type I receptor provides a critical function regulating activation of the TGF-beta receptor complex.
Collapse
Affiliation(s)
- N Garamszegi
- Thoracic Diseases Research Unit, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
36
|
Zwaagstra JC, El-Alfy M, O'Connor-McCourt MD. Transforming Growth Factor (TGF)-β1 Internalization. J Biol Chem 2001; 276:27237-45. [PMID: 11356827 DOI: 10.1074/jbc.m100033200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) internalization was studied by monitoring the uptake of (125)I-TGF-beta1 in Mv1Lu cells, which endogenously express TGF-beta receptors types I (RI), II (RII), and III (RIII), and 293 cells transfected with RI and RII. At 37 degrees C internalization occurred rapidly, within 10 min of ligand addition. Internalization was optimal in 293 cells expressing both RI and RII. Internalization was prevented by phenylarsine oxide, a nonspecific inhibitor of receptor internalization, but was not affected by reagents that interfere with clathrin-mediated endocytosis such as monodansylcadaverine, K44A dynamin, and inhibitors of endosomal acidification. Electron microscopic examination of Mv1Lu cells treated with (125)I- TGF-beta1 at 37 degrees C indicated that internalization occurred via a noncoated vesicular mechanism. Internalization was prevented by prebinding cells with TGF-beta1 at 4 degrees C for 2 h prior to switching the cells to 37 degrees C. This was attributed to a loss of receptor binding, as indicated by a rapid decrease in the amount of TGF-beta1 bound to the cell surface at 37 degrees C and by a reduction in the labeling intensities of RI and RII in (125)I-TGF-beta1-cross-linking experiments. Mv1Lu or 293 (RI+RII) cells, prebound with TGF-beta1 at 4 degrees C and subsequently stripped of ligand by an acid wash, nevertheless initiated a signaling response upon transfer to 37 degrees C, suggesting that prebinding promotes formation of stable RI.RII complexes that can signal independently of ligand.
Collapse
Affiliation(s)
- J C Zwaagstra
- Cell Surface Recognition Group, Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec H4P 2R2, Canada.
| | | | | |
Collapse
|
37
|
Ehrlich M, Shmuely A, Henis YI. A single internalization signal from the di-leucine family is critical for constitutive endocytosis of the type II TGF-(β) receptor. J Cell Sci 2001; 114:1777-86. [PMID: 11309207 DOI: 10.1242/jcs.114.9.1777] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endocytosis has an important contribution to the regulation of the surface expression levels of many receptors. In spite of the central role of the transforming growth factor (β) (TGF-(β)) receptors in numerous cellular and physiological processes, their endocytosis is largely unexplored. Current information on TGF-(β) receptor endocytosis relies exclusively on studies with chimeric constructs containing the extracellular domain of the GM-CSF receptors, following the internalization of the GM-CSF ligand; the conformation and interactions of the chimeric receptors (and therefore their endocytosis) may differ considerably from those of the native TGF-(β) receptors. Furthermore, there are no data on the potential endocytosis motif(s) of the TGF-(β) receptors or other receptor Ser/Thr kinases. Here, we report the use of type II TGF-(β) receptors, myc-tagged at their extracellular terminus, to investigate their endocytosis. Employing fluorescent antibody fragments to label exclusively the cell surface myc-tagged receptors exposed to the external milieu, made it possible to follow the internalization of the receptors, without the complications that render labeling with TGF-(β) (which binds to many cellular proteins) unsuitable for such studies. The results demonstrate that the full-length type II TGF-(β) receptor undergoes constitutive endocytosis via clathrin-coated pits. Using a series of truncation and deletion mutants of this receptor, we identified a short peptide sequence (I(218)I(219)L(220)), which conforms to the consensus of internalization motifs from the di-leucine family, as the major endocytosis signal of the receptor. The functional importance of this sequence in the full-length receptor was validated by the near complete loss of internalization upon mutation of these three amino acids to alanine.
Collapse
Affiliation(s)
- M Ehrlich
- Dept of Neurobiochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
38
|
Doré JJ, Yao D, Edens M, Garamszegi N, Sholl EL, Leof EB. Mechanisms of transforming growth factor-beta receptor endocytosis and intracellular sorting differ between fibroblasts and epithelial cells. Mol Biol Cell 2001; 12:675-84. [PMID: 11251079 PMCID: PMC30972 DOI: 10.1091/mbc.12.3.675] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Transforming growth factor-betas (TGF-beta) are multifunctional proteins capable of either stimulating or inhibiting mitosis, depending on the cell type. These diverse cellular responses are caused by stimulating a single receptor complex composed of type I and type II receptors. Using a chimeric receptor model where the granulocyte/monocyte colony-stimulating factor receptor ligand binding domains are fused to the transmembrane and cytoplasmic signaling domains of the TGF-beta type I and II receptors, we wished to describe the role(s) of specific amino acid residues in regulating ligand-mediated endocytosis and signaling in fibroblasts and epithelial cells. Specific point mutations were introduced at Y182, T200, and Y249 of the type I receptor and K277 and P525 of the type II receptor. Mutation of either Y182 or Y249, residues within two putative consensus tyrosine-based internalization motifs, had no effect on endocytosis or signaling. This is in contrast to mutation of T200 to valine, which resulted in ablation of signaling in both cell types, while only abolishing receptor down-regulation in fibroblasts. Moreover, in the absence of ligand, both fibroblasts and epithelial cells constitutively internalize and recycle the TGF-beta receptor complex back to the plasma membrane. The data indicate fundamental differences between mesenchymal and epithelial cells in endocytic sorting and suggest that ligand binding diverts heteromeric receptors from the default recycling pool to a pathway mediating receptor down-regulation and signaling.
Collapse
Affiliation(s)
- J J Doré
- Thoracic Diseases Research Unit and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
39
|
Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, Wrana JL. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell 2000; 6:1365-75. [PMID: 11163210 DOI: 10.1016/s1097-2765(00)00134-9] [Citation(s) in RCA: 1060] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ubiquitin-mediated proteolysis regulates the activity of diverse receptor systems. Here, we identify Smurf2, a C2-WW-HECT domain ubiquitin ligase and show that Smurf2 associates constitutively with Smad7. Smurf2 is nuclear, but binding to Smad7 induces export and recruitment to the activated TGF beta receptor, where it causes degradation of receptors and Smad7 via proteasomal and lysosomal pathways. IFN gamma, which stimulates expression of Smad7, induces Smad7-Smurf2 complex formation and increases TGF beta receptor turnover, which is stabilized by blocking Smad7 or Smurf2 expression. Furthermore, Smad7 mutants that interfere with recruitment of Smurf2 to the receptors are compromised in their inhibitory activity. These studies thus define Smad7 as an adaptor in an E3 ubiquitin-ligase complex that targets the TGF beta receptor for degradation.
Collapse
Affiliation(s)
- P Kavsak
- Program in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Ligand binding to plasma membrane receptors initiates a series of events culminating in a variety of changes in cellular phenotypes. Although numerous publications have documented the activation/inactivation of signalling molecules following receptor binding, relatively few investigations have focused on the cellular compartment responsible for either initiating or selecting the particular pathway that mediates the response. Specifically, does receptor signalling occur only at the plasma membrane; is signalling dependent upon the location of defined endosome populations; or are components of both plasma membrane and endosomal activity operative depending upon the particular signalling pathway or cell type? This review addresses aspects of these questions by discussing the evidence supporting or contrasting the interplay between the endocytic and signalling systems for a subset of tyrosine kinase, serine/threonine kinase and G-protein-coupled receptors.
Collapse
Affiliation(s)
- E B Leof
- Depts of Medicine and Biochemistry and Molecular Biology, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
41
|
Yao D, Doré JJ, Leof EB. FKBP12 is a negative regulator of transforming growth factor-beta receptor internalization. J Biol Chem 2000; 275:13149-54. [PMID: 10777621 DOI: 10.1074/jbc.275.17.13149] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) family polypeptides regulate cell growth and differentiation by binding to single pass serine/threonine kinases referred to as TGF-beta type I and II receptors. Although interaction screens have shown that the immunophilin FKBP12 interacts with TGF-beta type I receptors, the role of FKBP12 in TGF-beta receptor action is presently unclear. Using a chimeric TGF-beta receptor system, we have shown a specific enhancement of internalization when FKBP12 binding to the type I receptor was prevented with rapamycin. Moreover, although earlier studies demonstrated that type II receptor kinase activity was required for optimal internalization in mesenchymal cells, we found that rapamycin functioned downstream of the type II receptor kinase. Thus, rather than modulating TGF-beta signaling, our data suggest a novel role for FKBP12 as a negative regulator of TGF-beta receptor endocytosis.
Collapse
Affiliation(s)
- D Yao
- Thoracic Disease Research Unit and the Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
42
|
PIEK ESTER, HELDIN CARL, DIJKE PETERTEN. Specificity, diversity, and regulation in TGF‐β superfamily signaling. FASEB J 1999. [DOI: 10.1096/fasebj.13.15.2105] [Citation(s) in RCA: 611] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- ESTER PIEK
- Ludwig Institute for Cancer ResearchBox 595S‐75124UppsalaSweden
| | | | - PETER TEN DIJKE
- Ludwig Institute for Cancer ResearchBox 595S‐75124UppsalaSweden
| |
Collapse
|
43
|
Friedrich K, Kammer W, Erhardt I, Brändlein S, Arnold S, Sebald W. The two subunits of the interleukin-4 receptor mediate independent and distinct patterns of ligand endocytosis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:457-65. [PMID: 10491204 DOI: 10.1046/j.1432-1327.1999.00773.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Interleukin-4 (IL-4) triggers cellular responses by interaction with the bipartite interleukin-4 receptor (IL-4R). IL-4-responsive cells specifically endocytose IL-4. We studied the ligand internalization properties of the human IL-4R and analyzed the specific functions of its two subunits IL-4Ralpha and gammac in this process. IL-4 mutant RY, which binds to IL-4Ralpha but does not recruit gammac into the receptor complex was used as a tool to show that IL-4Ralpha can promote independent ligand uptake in human T cells. Internalization was limited, however, by rapid IL-4 dissociation, suggesting that one important function of gammac in IL-4 endocytosis is to retain the ligand sufficiently long within the ternary receptor complex. We then measured IL-4 internalization by murine Ba/F3 cells that were stably transfected with various human IL-4R constructs. Efficient IL-4 uptake required the cytoplasmic section of the receptor. The intracellular domains of IL-4Ralpha and gammac were responsible for independent endocytosis processes with distinct kinetics. IL-4Ralpha-mediated internalization resulted in long-term intracellular maintainance of IL-4, whereas gammac directed the associated radioligand to intracellular breakdown and rapid release in the form of degraded protein. Mutants of either IL-4R subunit deficient in Janus kinase activation were not impaired in internalization, indicating that IL-4 endocytosis is not functionally connected to signal transduction.
Collapse
Affiliation(s)
- K Friedrich
- Theodor-Boveri-Institut für Biowissenschaften (Biozentrum), Physiologische Chemie II, Am Hubland, Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
44
|
Hurst V IV, Goldberg PL, Minnear FL, Heimark RL, Vincent PA. Rearrangement of adherens junctions by transforming growth factor-beta1: role of contraction. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:L582-95. [PMID: 10198356 DOI: 10.1152/ajplung.1999.276.4.l582] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The signal transduction pathways that lead to disruption of pulmonary endothelial monolayer integrity by transforming growth factor-beta1 (TGF-beta1) have not been elucidated. The purpose of this investigation was to determine whether disassembly of the adherens junction is temporally associated with the TGF-beta1-induced decrease in pulmonary endothelial monolayer integrity. Measurement of albumin clearance and electrical resistance showed that monolayer integrity started to decrease between 1 and 2 h post-TGF-beta1 treatment and continued to slowly decrease over the next 6 h. Immunofluorescence microscopy of monolayers between 2 and 3 h post-TGF-beta1 showed that beta-catenin, plakoglobin, alpha-catenin, and cadherin-5 were colocalized both at the cell periphery and in newly formed bands that are perpendicular to the cell-cell border. At 4 h post-TGF-beta1, cells began separating; however, beta- and alpha-catenin, plakoglobin, and cadherin-5 could still be found at the cell periphery at areas of cell separation and in strands between separated cells. By 8 h, these junctional proteins were no longer present at the cell periphery at areas of cell separation. The myosin light chain kinase inhibitor KT-5926 prevented the TGF-beta1-induced change in integrity but did not inhibit the formation of actin stress fibers or the formation of bands containing adherens junction proteins that were perpendicular to the cell-cell junction. Overall, these results suggest that adherens junction disassembly occurs after cell separation during TGF-beta1-induced decreases in pulmonary endothelial monolayer integrity and that the loss of integrity may be due to the activation of a myosin light chain kinase-dependent signaling cascade.
Collapse
Affiliation(s)
- I V Hurst V
- Department of Physiology and Cell Biology, Albany Medical College, Albany, New York 12208, USA
| | | | | | | | | |
Collapse
|
45
|
Doré JJ, Edens M, Garamszegi N, Leof EB. Heteromeric and homomeric transforming growth factor-beta receptors show distinct signaling and endocytic responses in epithelial cells. J Biol Chem 1998; 273:31770-7. [PMID: 9822641 DOI: 10.1074/jbc.273.48.31770] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) induces distinct responses dependent upon the cellular context. It is unclear whether the initial receptor interactions identified in one cell type will be operative in another. Utilizing a chimeric receptor strategy we have examined the signaling and endocytic activity of both heteromeric (type I/type II) and homomeric (type I/type I or type II/type II) TGF-betaR interactions in Mv1Lu epithelial cells. In agreement with that observed in mesenchymal cells, all TGF-betaR signaling in Mv1Lu cells required the formation of a heteromeric type I-type II receptor complex. However, the initial endocytic response to TGF-betaR oligomerization was distinctly regulated in the two cell types. While heteromeric TGF-beta receptors were internalized and down-regulated, homomeric TGF-betaR interactions showed diminished endocytic activity in Mv1Lu cells. This contrasts to that observed in mesenchymal cultures where ligand bound to TGF-betaR homomers was internalized, yet the receptors were not down-regulated. Moreover, while previous reports have suggested that mutations at serine 172 or threonine 176 in the type I TGF-betaR separated transcriptional from proliferative responses, we found no separation of pathways or effect on initial endocytic activity when the analogous mutations were made in the chimeric receptors.
Collapse
Affiliation(s)
- J J Doré
- Thoracic Disease Research Unit and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|