1
|
Angelbello AJ, Chen JL, Childs-Disney JL, Zhang P, Wang ZF, Disney MD. Using Genome Sequence to Enable the Design of Medicines and Chemical Probes. Chem Rev 2018; 118:1599-1663. [PMID: 29322778 DOI: 10.1021/acs.chemrev.7b00504] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rapid progress in genome sequencing technology has put us firmly into a postgenomic era. A key challenge in biomedical research is harnessing genome sequence to fulfill the promise of personalized medicine. This Review describes how genome sequencing has enabled the identification of disease-causing biomolecules and how these data have been converted into chemical probes of function, preclinical lead modalities, and ultimately U.S. Food and Drug Administration (FDA)-approved drugs. In particular, we focus on the use of oligonucleotide-based modalities to target disease-causing RNAs; small molecules that target DNA, RNA, or protein; the rational repurposing of known therapeutic modalities; and the advantages of pharmacogenetics. Lastly, we discuss the remaining challenges and opportunities in the direct utilization of genome sequence to enable design of medicines.
Collapse
Affiliation(s)
- Alicia J Angelbello
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jonathan L Chen
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jessica L Childs-Disney
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Peiyuan Zhang
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Zi-Fu Wang
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Matthew D Disney
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
2
|
Zappasodi R, Merghoub T. Alphavirus-based vaccines in melanoma: rationale and potential improvements in immunotherapeutic combinations. Immunotherapy 2015; 7:981-97. [DOI: 10.2217/imt.15.64] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Immune checkpoint blockade has formally demonstrated the clinical benefit of immunotherapy against melanoma. New immunotherapeutic modalities are currently explored to improve the management of relapsing/refractory patients. Potent antitumor vaccines would have the advantage to promote long-lasting tumor control while limiting autoimmunity. Alphavirus vectors and nonreplicating particles offer versatile platforms to deliver antigen expression and immunize against cancer. They have shown promising preclinical results and initial proof of clinical activity in melanoma. The growing number of clinically available immunomodulatory agents provides a tremendous opportunity to exploit and revisit anticancer vaccines in the setting of powerful immunotherapeutic combinations. Accelerating the evaluation of alphavirus-based vaccines in patients with immune sensitive, but still very deadly malignancies, such as melanoma, is thus extremely important.
Collapse
Affiliation(s)
- Roberta Zappasodi
- Ludwig Collaborative & Swim Across America Laboratory, New York, NY, USA
| | - Taha Merghoub
- Ludwig Collaborative & Swim Across America Laboratory, New York, NY, USA
- Melanoma & Immunotherapeutics Service MSKCC, New York, NY, USA
| |
Collapse
|
3
|
Semliki Forest virus biodistribution in tumor-free and 4T1 mammary tumor-bearing mice: a comparison of transgene delivery by recombinant virus particles and naked RNA replicon. Cancer Gene Ther 2012; 19:579-87. [PMID: 22722377 DOI: 10.1038/cgt.2012.37] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Semliki Forest virus (SFV) vectors are promising tools for cancer gene therapy because they ensure a high level of transgene expression and a rapid and strong cytopathic effect. However, broad tissue tropism and transient expression make it more difficult to develop an optimal cancer treatment strategy. In this study, we have compared the distribution of recombinant SFV particles (recSFV) and naked viral RNA replicon (recRNA) in tumor-free and 4T1 mammary tumor-bearing mice as a consequence of different vector administration strategies. The high potential of SFV recRNA as a biosafe approach for the development of therapeutic treatment was demonstrated. Intravenous (i.v.) inoculation of recRNA provided primary brain targeting in both tumor-free and 4T1 tumor mouse models, but local intratumoral inoculation revealed a high expression level in tumors. Moreover, we observed the predominant tumor targeting of recSFV at a reduced viral dose on i.v. and intraperitoneal (i.p.) virus inoculation, whereas the dose increase led to a broad virus distribution in mice. To prolong transgene expression, we have tested several i.v. and i.p. reinoculation strategies. A detailed evaluation of vector distribution and readministration properties could have an impact on cancer gene therapy clinical trial safety and efficacy.
Collapse
|
4
|
Silencing of amyloid precursor protein expression using a new engineered delta ribozyme. Int J Alzheimers Dis 2012; 2012:947147. [PMID: 22482079 PMCID: PMC3296272 DOI: 10.1155/2012/947147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 11/01/2011] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease (AD) etiological studies suggest that an elevation in amyloid-β peptides (Aβ) level contributes to aggregations of the peptide and subsequent development of the disease. The major constituent of these amyloid peptides is the 1 to 40–42 residue peptide (Aβ40−42) derived from amyloid protein precursor (APP). Most likely, reducing Aβ levels in the brain may block both its aggregation and neurotoxicity and would be beneficial for patients with AD. Among the several possible ways to lower Aβ accumulation in the cells, we have selectively chosen to target the primary step in the Aβ cascade, namely, to reduce APP gene expression. Toward this end, we engineered specific SOFA-HDV ribozymes, a new generation of catalytic RNA tools, to decrease APP mRNA levels. Additionally, we demonstrated that APP-ribozymes are effective at decreasing APP mRNA and protein levels as well as Aβ levels in neuronal cells. Our results could lay the groundwork for a new protective treatment for AD.
Collapse
|
5
|
Johansson DX, Ljungberg K, Kakoulidou M, Liljeström P. Intradermal electroporation of naked replicon RNA elicits strong immune responses. PLoS One 2012; 7:e29732. [PMID: 22238645 PMCID: PMC3251598 DOI: 10.1371/journal.pone.0029732] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 12/04/2011] [Indexed: 11/18/2022] Open
Abstract
RNA-based vaccines represent an interesting immunization modality, but suffer from poor stability and a lack of efficient and clinically feasible delivery technologies. This study evaluates the immunogenic potential of naked in vitro transcribed Semliki Forest virus replicon RNA (RREP) delivered intradermally in combination with electroporation. Replicon-immunized mice showed a strong cellular and humoral response, contrary to mice immunized with regular mRNA. RREP-elicited induction of interferon-γ secreting CD8+ T cells and antibody responses were significantly increased by electroporation. CD8+ T cell responses remained substantial five weeks post vaccination, and antigen-specific CD8+ T cells with phenotypic characteristics of both effector and central memory cells were identified. The immune response during the contraction phase was further increased by a booster immunization, and the proportion of effector memory cells increased significantly. These results demonstrate that naked RREP delivered via intradermal electroporation constitute an immunogenic, safe and attractive alternative immunization strategy to DNA-based vaccines.
Collapse
Affiliation(s)
- Daniel X Johansson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
6
|
Johansson DX, Ljungberg K, Kakoulidou M, Liljeström P. Intradermal electroporation of naked replicon RNA elicits strong immune responses. PLoS One 2012. [PMID: 22238645 DOI: 10.1371/journal.pone.0029732pone-d-11-11069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
RNA-based vaccines represent an interesting immunization modality, but suffer from poor stability and a lack of efficient and clinically feasible delivery technologies. This study evaluates the immunogenic potential of naked in vitro transcribed Semliki Forest virus replicon RNA (RREP) delivered intradermally in combination with electroporation. Replicon-immunized mice showed a strong cellular and humoral response, contrary to mice immunized with regular mRNA. RREP-elicited induction of interferon-γ secreting CD8+ T cells and antibody responses were significantly increased by electroporation. CD8+ T cell responses remained substantial five weeks post vaccination, and antigen-specific CD8+ T cells with phenotypic characteristics of both effector and central memory cells were identified. The immune response during the contraction phase was further increased by a booster immunization, and the proportion of effector memory cells increased significantly. These results demonstrate that naked RREP delivered via intradermal electroporation constitute an immunogenic, safe and attractive alternative immunization strategy to DNA-based vaccines.
Collapse
Affiliation(s)
- Daniel X Johansson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
7
|
Sullivan JM, Yau EH, Kolniak TA, Sheflin LG, Taggart RT, Abdelmaksoud HE. Variables and strategies in development of therapeutic post-transcriptional gene silencing agents. J Ophthalmol 2011; 2011:531380. [PMID: 21785698 PMCID: PMC3138052 DOI: 10.1155/2011/531380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 02/17/2011] [Accepted: 02/28/2011] [Indexed: 11/24/2022] Open
Abstract
Post-transcriptional gene silencing (PTGS) agents such as ribozymes, RNAi and antisense have substantial potential for gene therapy of human retinal degenerations. These technologies are used to knockdown a specific target RNA and its cognate protein. The disease target mRNA may be a mutant mRNA causing an autosomal dominant retinal degeneration or a normal mRNA that is overexpressed in certain diseases. All PTGS technologies depend upon the initial critical annealing event of the PTGS ligand to the target RNA. This event requires that the PTGS agent is in a conformational state able to support hybridization and that the target have a large and accessible single-stranded platform to allow rapid annealing, although such platforms are rare. We address the biocomplexity that currently limits PTGS therapeutic development with particular emphasis on biophysical variables that influence cellular performance. We address the different strategies that can be used for development of PTGS agents intended for therapeutic translation. These issues apply generally to the development of PTGS agents for retinal, ocular, or systemic diseases. This review should assist the interested reader to rapidly appreciate critical variables in PTGS development and facilitate initial design and testing of such agents against new targets of clinical interest.
Collapse
Affiliation(s)
- Jack M. Sullivan
- Department of Ophthalmology, University at Buffalo SUNY, Buffalo, NY 14214, USA
- Department of Pharmacology and Toxicology, University at Buffalo SUNY, Buffalo, NY 14214, USA
- Department of Physiology and Biophysics, University at Buffalo SUNY, Buffalo, NY 14214, USA
- Neuroscience Program, University at Buffalo SUNY, Buffalo, NY 14214, USA
- Ross Eye Institute, University at Buffalo SUNY, Buffalo, NY 14209, USA
- Veterans Administration Western New York Healthcare System, Medical Research, Buffalo, NY 14215, USA
| | - Edwin H. Yau
- Department of Ophthalmology, University at Buffalo SUNY, Buffalo, NY 14214, USA
- Department of Pharmacology and Toxicology, University at Buffalo SUNY, Buffalo, NY 14214, USA
| | - Tiffany A. Kolniak
- Department of Ophthalmology, University at Buffalo SUNY, Buffalo, NY 14214, USA
- Neuroscience Program, University at Buffalo SUNY, Buffalo, NY 14214, USA
| | - Lowell G. Sheflin
- Department of Ophthalmology, University at Buffalo SUNY, Buffalo, NY 14214, USA
- Veterans Administration Western New York Healthcare System, Medical Research, Buffalo, NY 14215, USA
| | - R. Thomas Taggart
- Department of Ophthalmology, University at Buffalo SUNY, Buffalo, NY 14214, USA
| | - Heba E. Abdelmaksoud
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY 13215, USA
| |
Collapse
|
8
|
Abstract
Although Nature's antisense approaches are clearly impressive, this Perspectives article focuses on the experimental uses of antisense reagents (ASRs) for control of biological processes. ASRs comprise antisense oligonucleotides (ASOs), and their catalytically active counterparts ribozymes and DNAzymes, as well as small interfering RNAs (siRNAs). ASOs and ribozymes/DNAzymes target RNA molecules on the basis of Watson-Crick base pairing in sequence-specific manner. ASOs generally result in destruction of the target RNA by RNase-H mediated mechanisms, although they may also sterically block translation, also resulting in loss of protein production. Ribozymes and DNAzymes cleave target RNAs after base pairing via their antisense flanking arms. siRNAs, which contain both sense and antisense regions from a target RNA, can mediate target RNA destruction via RNAi and the RISC, although they can also function at the transcriptional level. A considerable number of ASRs (mostly ASOs) have progressed into clinical trials, although most have relatively long histories in Phase I/II settings. Clinical trial results are surprisingly difficult to find, although few ASRs appear to have yet established efficacy in Phase III levels. Evolution of ASRs has included: (a) Modifications to ASOs to render them nuclease resistant, with analogous modifications to siRNAs being developed; and (b) Development of strategies to select optimal sites for targeting. Perhaps the biggest barrier to effective therapies with ASRs is the "Delivery Problem." Various liposomal vehicles have been used for systemic delivery with some success, and recent modifications appear to enhance systemic delivery, at least to liver. Various nanoparticle formulations are now being developed which may also enhance delivery. Going forward, topical applications of ASRs would seem to have the best chances for success. In summary, modifications to ASRs to enhance stability, improve targeting, and incremental improvements in delivery vehicles continue to make ASRs attractive as molecular therapeutics, but their advance toward the bedside has been agonizingly slow.
Collapse
MESH Headings
- Animals
- Binding Sites/genetics
- DNA, Catalytic/chemistry
- DNA, Catalytic/therapeutic use
- Drug Delivery Systems/methods
- Drug Delivery Systems/trends
- Humans
- Oligonucleotides, Antisense/adverse effects
- Oligonucleotides, Antisense/chemistry
- Oligonucleotides, Antisense/therapeutic use
- Oligonucleotides, Antisense/toxicity
- RNA, Catalytic/chemistry
- RNA, Catalytic/therapeutic use
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/therapeutic use
Collapse
Affiliation(s)
- Wei-Hua Pan
- Gittlen Cancer Research Foundation, Hershey Medical Center, Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17033, USA
| | | |
Collapse
|
9
|
Romero-López C, Díaz-González R, Berzal-Herranz A. RNA Selection and Evolution In Vitro:Powerful Techniques for the Analysis and Identification of new Molecular Tools. BIOTECHNOL BIOTEC EQ 2007; 21:272-282. [DOI: 10.1080/13102818.2007.10817461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
10
|
Warsinke A, Nagel B. Towards Separation‐Free Electrochemical Affinity Sensors by Using Antibodies, Aptamers, and Molecularly Imprinted Polymers—A Review. ANAL LETT 2006. [DOI: 10.1080/00032710600853903] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Zhang Z, Burke JM. Inhibition of viral replication by ribozyme: mutational analysis of the site and mechanism of antiviral activity. J Virol 2005; 79:3728-36. [PMID: 15731266 PMCID: PMC1075678 DOI: 10.1128/jvi.79.6.3728-3736.2005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A controlled mutational study was used to determine the site and mechanism of the antiviral action of ribozymes that inhibit Sindbis virus replication. A hairpin ribozyme targeting G575 of the Sindbis virus genomic RNA was designed and cloned into a minimized alphavirus amplicon vector. Cells that were stably transfected with this construct expressed low levels of a constitutive transcript containing the ribozyme plus recognition sequences for Sindbis RNA replicase. Upon infection, the ribozyme transcript was amplified to high levels by the viral replicase, resulting in decreased viral production from infected ribozyme-expressing cells. Mutations were then introduced into the viral RNA target sequence to interfere with ribozyme binding, and compensatory changes were generated in the ribozyme recognition sequence. Single mutations in the virus or ribozyme decreased the efficacy of the ribozyme's inhibition of viral replication, and compensatory mutations restored it. To confirm that ribozyme-catalyzed RNA cleavage was actually needed for inhibition, we performed tests with a cell line expressing an inactivated ribozyme and with a virus containing a single nucleotide target mutation that allowed the ribozyme to bind but blocked cleavage at the recognition site. The results show that most of the antiviral activity of ribozymes is due to ribozyme-catalyzed cleavage at the targeted RNA sequence, but some additional inhibition seems to occur through an antisense mechanism.
Collapse
Affiliation(s)
- Zhenxi Zhang
- Department of Microbiology and Molecular Genetics, The University of Vermont, 95 Carrigan Dr., 220 Stafford Hall, Burlington, VT 05405, USA
| | | |
Collapse
|
12
|
Andronescu M, Zhang ZC, Condon A. Secondary structure prediction of interacting RNA molecules. J Mol Biol 2004; 345:987-1001. [PMID: 15644199 DOI: 10.1016/j.jmb.2004.10.082] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 10/18/2004] [Accepted: 10/27/2004] [Indexed: 10/26/2022]
Abstract
Computational tools for prediction of the secondary structure of two or more interacting nucleic acid molecules are useful for understanding mechanisms for ribozyme function, determining the affinity of an oligonucleotide primer to its target, and designing good antisense oligonucleotides, novel ribozymes, DNA code words, or nanostructures. Here, we introduce new algorithms for prediction of the minimum free energy pseudoknot-free secondary structure of two or more nucleic acid molecules, and for prediction of alternative low-energy (sub-optimal) secondary structures for two nucleic acid molecules. We provide a comprehensive analysis of our predictions against secondary structures of interacting RNA molecules drawn from the literature. Analysis of our tools on 17 sequences of up to 200 nucleotides that do not form pseudoknots shows that they have 79% accuracy, on average, for the minimum free energy predictions. When the best of 100 sub-optimal foldings is taken, the average accuracy increases to 91%. The accuracy decreases as the sequences increase in length and as the number of pseudoknots and tertiary interactions increases. Our algorithms extend the free energy minimization algorithm of Zuker and Stiegler for secondary structure prediction, and the sub-optimal folding algorithm by Wuchty et al. Implementations of our algorithms are freely available in the package MultiRNAFold.
Collapse
Affiliation(s)
- Mirela Andronescu
- Department of Computer Science, The University of British Columbia, 201-2366 Main Mall, Vancouver, BC, Canada V6T 1Z4.
| | | | | |
Collapse
|
13
|
Pan WH, Xin P, Morrey JD, Clawson GA. A self-processing ribozyme cassette: utility against human papillomavirus 11 E6/E7 mRNA and hepatitis B virus. Mol Ther 2004; 9:596-606. [PMID: 15093190 DOI: 10.1016/j.ymthe.2003.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Accepted: 12/26/2003] [Indexed: 12/29/2022] Open
Abstract
We have been developing a self-processing triple-ribozyme cassette, which consists of two cis-acting hammerhead ribozymes flanking an internal, trans-acting hammerhead ribozyme (ITRz). Here, the single ITRz was replaced by two contiguous ITRz (dITRz), and a short poly(A) tail was designed onto the 3' end of the liberated dITRz, to produce the "SNIP(AA)" cassette. Self-processing of the cassette appeared to proceed efficiently in cells: The only region of the cassette identified in cells was the liberated dITRz, with approximately 10-20% of the dITRz found within the nucleus. We tested this reagent against two therapeutically important targets, human papillomavirus 11 E6/E7 mRNA and hepatitis B virus (HBV). Library selection protocols were utilized to define accessible target sites, and ribozymes targeted to these sites were very active in vitro. Pairs of the selected ribozymes were then inserted into the SNIP(AA) cassette. SNIP(AA) constructs targeted to the E6/E7 mRNA were tested in cell culture using a cotransfection approach. Significant reductions were produced in E6/E7 target, with 80-90% reductions observed at 5 days following cotransfection. SNIP(AA) constructs targeted to HBV RNA were tested in vivo in a transgenic mouse model. SNIP(AA) constructs were packaged in liposomes, which were targeted to hepatocytes using asialofetuin, and administered ip. After 2 weeks, a >80% reduction in viral liver DNA was observed. Immunohistochemical staining for core antigen showed a similar decrease in the number of hepatocytes staining positively, compounded by a concomitant loss of residual staining intensity. These results demonstrate the in vivo utility of the self-processing SNIP(AA) cassette against HBV.
Collapse
Affiliation(s)
- Wei-Hua Pan
- Department of Pathology, The Gittlen Cancer Research Institute, Hershey Medical Center, Pennsylvania State University, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
14
|
Abstract
With the advent of functional genomics and the shift of interest towards sequence-based therapeutics, the past decades have witnessed intense research efforts on nucleic acid-mediated gene regulation technologies. Today, RNA interference is emerging as a groundbreaking discovery, holding promise for development of genetic modulators of unprecedented potency. Twenty-five years after the discovery of antisense RNA and ribozymes, gene control therapeutics are still facing developmental difficulties, with only one US FDA-approved antisense drug currently available in the clinic. Limited predictability of target site selection models is recognized as one major stumbling block that is shared by all of the so-called complementary technologies, slowing the progress towards a commercial product. Currently employed in vitro systems for target site selection include RNAse H-based mapping, antisense oligonucleotide microarrays, and functional screening approaches using libraries of catalysts with randomized target-binding arms to identify optimal ribozyme/DNAzyme cleavage sites. Individually, each strategy has its drawbacks from a drug development perspective. Utilization of message-modulating sequences as therapeutic agents requires that their action on a given target transcript meets criteria of potency and selectivity in the natural physiological environment. In addition to sequence-dependent characteristics, other factors will influence annealing reactions and duplex stability, as well as nucleic acid-mediated catalysis. Parallel consideration of physiological selection systems thus appears essential for screening for nucleic acid compounds proposed for therapeutic applications. Cellular message-targeting studies face issues relating to efficient nucleic acid delivery and appropriate analysis of response. For reliability and simplicity, prokaryotic systems can provide a rapid and cost-effective means of studying message targeting under pseudo-cellular conditions, but such approaches also have limitations. To streamline nucleic acid drug discovery, we propose a multi-model strategy integrating high-throughput-adapted bacterial screening, followed by reporter-based and/or natural cellular models and potentially also in vitro assays for characterization of the most promising candidate sequences, before final in vivo testing.
Collapse
Affiliation(s)
- Isabelle Gautherot
- Virology Platform, Industrialization and Process Development, AVENTIS PASTEUR, Marcy l'Etoile, France.
| | | |
Collapse
|
15
|
Bergeron LJ, Ouellet J, Perreault JP. Ribozyme-based gene-inactivation systems require a fine comprehension of their substrate specificities; the case of delta ribozyme. Curr Med Chem 2003; 10:2589-97. [PMID: 14529473 PMCID: PMC2902527 DOI: 10.2174/0929867033456486] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The ability of ribozymes (i.e. RNA enzymes) to specifically recognize and subsequently catalyze the cleavage of an RNA substrate makes them attractive for the development of therapeutic tools for the inactivation of both viral RNAs and mRNAs associated with various diseases. Several applicable ribozyme models have been tested both in vitro and in a cellular environment, and have shown significant promise. However, several hurdles remain to be surpassed before we generate a useful gene-inactivation system based on a ribozyme. Among the most important requirements for further progress are a better understanding of the features that contribute to defining the substrate specificity for cleavage by a ribozyme, and the identification of the potential cleavage sites in a given target RNA. The goal of this review is to illustrate the importance of both of these factors at the RNA level in the development of any type of ribozyme based gene-therapy. This is achieved by reviewing the recent progress in both the structure-function relationships and the development of a gene-inactivation system of a model ribozyme, specifically delta ribozyme.
Collapse
Affiliation(s)
| | | | - Jean-Pierre Perreault
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine, Université de Sherbrooke, Sherbrooke, Québec, JIH 5N4, Canada
| |
Collapse
|
16
|
Mattar PA, Holmes KD, Dekaban GA. An antisense construct reducesN-methyl-D-aspartate receptor 2A expression and receptor-mediated excitotoxicity as determined by a novel flow cytometric approach. J Neurosci Res 2003; 74:782-93. [PMID: 14635230 DOI: 10.1002/jnr.10793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The N-methyl-D-aspartate receptor (NMDAR) is a major neurotransmitter receptor in the central nervous system (CNS), with functional roles in learning, memory, and sensation. Several mechanisms potentiate NMDARs, and NMDAR hyperexcitability plays pathophysiological roles in many conditions, such as neurodegenerative disease, ischemia, and chronic conditions arising from spinal cord injury. Previous research suggests that the NR2A subunit of the receptor contributes to NMDAR excitotoxicity in heterologous cells and in neurons in vivo. To investigate the role of NR2A in NMDAR excitotoxicity, we have developed a system based on flow cytometry that allows rapid evaluation of the effect of antisense constructs on protein expression and channel function. The enhanced yellow fluorescent protein (EYFP) was fused to obligatory NMDAR subunits, allowing expression to be monitored in living cultured cells. An NR2A antisense construct, asNR2A, specifically and effectively reduced NR2A-EYFP expression. NR1 and NR2A fusion proteins formed functional, excitotoxic channels upon co-expression. The asNR2A RNA significantly reduced NMDAR excitotoxicity when NR2A levels were limiting for channel formation. Using our assay system, further optimization can be achieved rapidly. The asNR2A construct and the assays developed for this study can be used to provide insights into NMDAR biology and disease.
Collapse
Affiliation(s)
- Pierre A Mattar
- BioTherapeutics Research Group, The John P. Robarts Research Institute, London, Ontario, Canada
| | | | | |
Collapse
|
17
|
Kim Y, Cairns MJ, Marouga R, Sun LQ. E6AP gene suppression and characterization with in vitro selected hammerhead ribozymes. Cancer Gene Ther 2003; 10:707-16. [PMID: 12944990 DOI: 10.1038/sj.cgt.7700623] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
E6AP was originally identified as the ubiquitin-protein ligase involved in human papillomavirus (HPV) E6-mediated p53 degradation and has since been shown to act as an E3 ubiquitin-protein ligase in the ubiquitination of several other protein substrates. To further define E6AP function at the molecular and cellular levels, a ribozyme-based gene inactivation approach was adopted. A library of hammerhead ribozymes, with randomized arm sequences, was used to screen active molecules along the entire E6AP transcript for ribozyme-cleavable sites. Ligation-anchored PCR was adapted to detect cleavage products, and ribozymes designed to the selected sites were characterized both in vitro and in vivo. Ribozyme-mediated reduction in E6AP expression was found to enhance the apoptotic response of HeLa cells to mitomycin C-induced DNA damage. These findings suggest that E6AP has potential as a drug target, as its suppression can potentiate apoptosis in HPV-positive cells treated with a cytotoxic drug.
Collapse
Affiliation(s)
- Yoonah Kim
- Department of Medicine, St Vincent's Hospital Clinical School, University of New South Wales, Sydney 2010, Australia.
| | | | | | | |
Collapse
|
18
|
You KM, Lee SH, Im A, Lee SB. Aptamers as functional nucleic acids:In vitro selection and biotechnological applications. BIOTECHNOL BIOPROC E 2003. [DOI: 10.1007/bf02940259] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Puerta-Fernandez E, Barroso-del Jesus A, Romero-López C, Berzal-Herranz A. HIV-1 TAR as anchoring site for optimized catalytic RNAs. Biol Chem 2003; 384:343-350. [PMID: 12715885 DOI: 10.1515/bc.2003.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ribozymes have a great potential for developing specific gene silencing molecules. One of the main limitations to ensure the efficient application of ribozymes is to achieve effective binding to the target. Stem-loop domains support efficient formation of the kissing complex between natural antisense molecules and their target sequence. We have characterized catalytic antisense RNA hybrid molecules composed of a hammerhead ribozyme and a stem-loop antisense domain. A series of artificial RNA substrates containing the TAR-RNA stem-loop and a target for the hammerhead ribozyme were constructed and challenged with a catalytic antisense RNA carrying the TAR complementary stem-loop. The catalytic antisense RNA cleaves each of these substrates significantly more efficiently than the parental hammerhead ribozyme. Deletion of the TAR domain in the substrate abolishes the positive effect. These results suggest that the enhancement is due to the interaction of both complementary stem-loop motifs. A similar improvement was corroborated when targeting the LTR region of HIV-1 with either hammerhead- and hairpin-based catalytic antisense RNAs. Our results indicate that the TAR domain can be used as an anchoring site to facilitate the access of ribozymes to their specific target sequences within TAR-containing RNAs. Finally, we propose the addition of stable stem-loop motifs to the ribozyme domain as a rational way for constructing catalytic antisense RNAs.
Collapse
Affiliation(s)
- Elena Puerta-Fernandez
- Instituto de Parasitologia y Biomedicina 'López-Neyra', CSIC, Ventanilla 11, E-18001 Granada, Spain
| | | | | | | |
Collapse
|
20
|
Pan WH, Xin P, Bui V, Clawson GA. Rapid identification of efficient target cleavage sites using a hammerhead ribozyme library in an iterative manner. Mol Ther 2003; 7:129-39. [PMID: 12573626 DOI: 10.1016/s0000-000x(00)00000-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A major limitation to the effectiveness of ribozymes is definition of accessible sites in targeted RNAs. Although library selection procedures have been developed, they are generally difficult to perform and have not been widely employed. Here we describe a selection technology that utilizes a randomized, active hammerhead ribozyme (Rz) library in an iterative manner. After two rounds of binding under inactive conditions, the selected, active Rz library is incubated with target RNA, and the sites of cleavage are identified on sequencing gels. We performed this library-selection protocol using human papillomavirus type 16 E6/E7 mRNA as target and constructed Rz targeted to the identified sites. Rz targeted to sites identified with this procedure were generally highly active in vitro and, more importantly, they were highly active in cell culture, whereas their catalytically inactive counterparts were not. This protocol can be used to identify a set of potential target sites within a relatively short time.
Collapse
MESH Headings
- Base Sequence
- DNA Primers
- Hydrolysis
- Kinetics
- Molecular Sequence Data
- Nucleic Acid Conformation
- Oncogene Proteins, Viral/genetics
- Papillomavirus E7 Proteins
- RNA, Catalytic/chemistry
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Wei-Hua Pan
- Department of Pathology, Gittlen Cancer Research Institute, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania 17033, USA
| | | | | | | |
Collapse
|
21
|
Bergeron LJ, Perreault JP. Development and comparison of procedures for the selection of delta ribozyme cleavage sites within the hepatitis B virus. Nucleic Acids Res 2002; 30:4682-91. [PMID: 12409459 PMCID: PMC135815 DOI: 10.1093/nar/gkf598] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2002] [Revised: 09/09/2002] [Accepted: 09/09/2002] [Indexed: 01/01/2023] Open
Abstract
Delta ribozyme possesses several unique features related to the fact that it is the only catalytic RNA known to be naturally active in human cells. This makes it attractive as a therapeutic tool for the inactivation of clinically relevant RNAs. However, several hurdles must be overcome prior to the development of useful gene-inactivation systems based on delta ribozyme. We have developed three procedures for the selection of potential delta ribozyme target sites within the hepatitis B virus (HBV) pregenome: (i) the use of bioinformatic tools coupled to biochemical assays; (ii) RNase H hydrolysis with a pool of oligonucleotides; and (iii) cleavage assays with a pool of ribozymes. The results obtained with delta ribozyme show that these procedures are governed by several rules, some of which are different from those both for other catalytic RNAs and antisense oligonucleotides. Together, these procedures identified 12 sites in the HBV pregenome that can be cleaved by delta ribozymes, although with different efficiencies. Clearly, both target site accessibility and the ability to form an active ribozyme-substrate complex constitute interdependent factors that can best be addressed using a combinatorial library of either oligonucleotides or ribozymes.
Collapse
Affiliation(s)
- Lucien Junior Bergeron
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | |
Collapse
|
22
|
Zhou T, Kim J, Kilani AF, Kim K, Dunn W, Jo S, Nepomuceno E, Liu F. In vitro selection of external guide sequences for directing RNase P-mediated inhibition of viral gene expression. J Biol Chem 2002; 277:30112-20. [PMID: 12050148 DOI: 10.1074/jbc.m200183200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
External guide sequences (EGSs) are small RNA molecules that bind to a target mRNA, form a complex resembling the structure of a tRNA, and render the mRNA susceptible to hydrolysis by RNase P, a tRNA processing enzyme. An in vitro selection procedure was used to select EGSs that direct human RNase P to cleave the mRNA encoding thymidine kinase (TK) of herpes simplex virus 1. One of the selected EGSs, TK17, was at least 35 times more active in directing RNase P in cleaving TK mRNA in vitro than the EGS derived from a natural tRNA sequence. TK17, when in complex with the TK mRNA sequence, resembles a portion of tRNA structure and exhibits an enhanced binding affinity to the target mRNA. Moreover, a reduction of 95 and 50% in the TK expression was found in herpes simplex virus 1-infected cells that expressed the selected EGS and the EGS derived from the natural tRNA sequence, respectively. Our study provides direct evidence that EGS molecules isolated by the selection procedure are effective in tissue culture. These results also demonstrate the potential for using the selection procedure as a general approach for the generation of highly effective EGSs for gene-targeting application.
Collapse
Affiliation(s)
- Tianhong Zhou
- Program in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Seyhan AA, Vitiello D, Shields MT, Burke JM. Ribozyme inhibition of alphavirus replication. J Biol Chem 2002; 277:25957-62. [PMID: 12006558 DOI: 10.1074/jbc.m111360200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A model system to examine the expression and antiviral activity of trans-acting ribozymes in mammalian cells has been developed and evaluated. Hairpin ribozymes were engineered to cleave a specific site, identified by a combinatorial activity-based selection method, within genomic and subgenomic RNA species of Sindbis virus. Transiently transfected cells expressed moderate levels of ribozyme (approximately 50,000 molecules/cell) with predominant nuclear localization and a short half-life (23 min). Stable cell lines expressed ribozymes at modest levels (approximately 2,000 molecules/cell). Ribozyme-mediated RNA cleavage activity was detected in cell extracts. Clonal cell lines were challenged with recombinant Sindbis virus, and viral replication was examined using plaque formation and green fluorescent protein assays. Significant inhibition of viral replication was observed in cells expressing the active antiviral ribozyme, and lower levels of inhibition in control cells expressing inactive or irrelevant ribozymes. These findings are consistent with a model in which inhibition of viral replication occurs via ribozyme cleavage of viral RNAs, suggesting that ribozymes may represent useful antiviral agents.
Collapse
|
24
|
Barroso-DelJesus A, Berzal-Herranz A. Selection of targets and the most efficient hairpin ribozymes for inactivation of mRNAs using a self-cleaving RNA library. EMBO Rep 2001; 2:1112-1118. [PMID: 11743025 PMCID: PMC1084165 DOI: 10.1093/embo-reports/kve247] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2001] [Revised: 10/22/2001] [Accepted: 10/23/2001] [Indexed: 02/05/2023] Open
Abstract
The identification of proficient target sites within long RNA molecules, as well as the most efficient ribozymes for each, is a major concern for the use of ribozymes as gene suppressers. In vitro selection methods using combinatorial libraries are powerful tools for the rapid elucidation of interactions between macromolecules, and have been successfully used for different types of ribozyme study. This paper describes a new method for selecting effective target sites within long RNAs using a combinatorial library of self-cleaving hairpin ribozymes that includes all possible specificities. The method also allows the identification of the most appropriate ribozyme for each identified site. Searching for targets within the lacZ gene with this strategy yielded a clearly accessible site. Sequence analysis of ribozymes identified two variants as the most appropriate for this site. Both selected ribozymes showed significant inhibitory activity in the cell milieu.
Collapse
Affiliation(s)
- A Barroso-DelJesus
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Ventanilla 11, 18001 Granada, Spain
| | | |
Collapse
|
25
|
Grassi G, Grassi M, Platz J, Bauriedel G, Kandolf R, Kuhn A. Selection and characterization of active hammerhead ribozymes targeted against cyclin E and E2F1 full-length mRNA. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2001; 11:271-287. [PMID: 11763345 DOI: 10.1089/108729001753231669] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Proliferation of vascular smooth muscle cells is generally accepted as a key event in the development of restenosis following percutaneous transluminal angioplasty. To prevent human restenosis, we have designed a molecular strategy based on hammerhead ribozymes targeted against the mRNA of cyclin E and E2F1, two proteins relevant in cell cycle progression whose regulation is interconnected by a positive feedback loop. Following the identification of accessible ribozyme target sites by RNase H mapping, several hammerhead ribozymes were generated that cleave with comparable efficiency two different splice forms of cyclin E mRNA and the full-length and a truncated form of E2F1 RNA, respectively. The most active ribozymes were tested in vitro under single-turnover conditions yielding k(react)/K(m) ratios between 36 and 73 x 10(4) M(-1) min(-1), which places them in the top range ribozymes targeted against long and structured substrates. In addition, we show that the most active ribozyme selected in vitro reduces specifically and significantly (p < 0.0028) proliferation of cultured human vascular smooth muscle cells (VSMC).
Collapse
Affiliation(s)
- G Grassi
- Department of Molecular Pathology, University Hospital of Tübingen, Germany.
| | | | | | | | | | | |
Collapse
|
26
|
Krüger M, Beger C, Welch PJ, Barber JR, Wong-Staal F. C-SPACE (cleavage-specific amplification of cDNA ends): a novel method of ribozyme-mediated gene identification. Nucleic Acids Res 2001; 29:E94. [PMID: 11574696 PMCID: PMC60254 DOI: 10.1093/nar/29.19.e94] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
A hairpin ribozyme, RzCR2A, directed against position 323 of the hepatitis C virus 5'-untranslated region (HCV 5'-UTR) was used to establish and validate a novel method for the detection of cellular target molecules for hairpin ribozymes, termed C-SPACE (cleavage-specific amplification of cDNA ends). For C-SPACE, HeLa mRNA containing the transcript of interest was subjected to in vitro cleavage by RzCR2A in parallel with a control ribozyme, followed by reverse transcription using a modified SMART cDNA amplification method and cleavage-specific PCR analysis. C-SPACE allowed identification of the RzCR2A target transcript from a mixture containing the entire cellular mRNA while only requiring knowledge of the ribozyme binding sequence for amplification. In a similar approach, C-SPACE was used successfully to identify human 20S proteasome alpha-subunit PSMA7 mRNA as the cellular target RNA of Rz3'X, a ribozyme originally designed to cleave the negative strand HCV 3'-UTR. Rz3'X was found to substantially inhibit HCV internal ribosome entry site (IRES) activity and PSMA7 was subsequently confirmed to be involved in HCV IRES-mediated translation. Thereby, C-SPACE was validated as a powerful tool to rapidly identify unknown target RNAs recognized and cleaved by hairpin ribozymes.
Collapse
Affiliation(s)
- M Krüger
- University of California San Diego School of Medicine, 0665, 9500 Gilman Drive, La Jolla, CA 92093-0665, USA
| | | | | | | | | |
Collapse
|
27
|
Abstract
The hammerhead ribozyme is an intriguing RNA molecule with the ability to serve as a catalyst to cleave sequence-specifically RNA molecules in an intermolecular reaction. Preferentially Mg(2+) is required for optimal activity by inducing the catalytically competent conformation and by possibly acting as an acid-base catalyst. Even though the three-dimensional structure has been elucidated details of the structure-function relationship and of the mechanism remain unanswered. The hammerhead ribozyme has stimulated the concept of the sequence-specific cleavage of mRNAs intracellularly and thus to inhibit gene expression by preventing translation. This represents an area of considerable interest as it has the potential for the development of drugs.
Collapse
Affiliation(s)
- F Eckstein
- Max-Planck Institut für experimentelle Medizin, Hermann-Rein-Str. 3, D-37075 Göttingen, Germany.
| | | |
Collapse
|
28
|
Mir AA, Lockett TJ, Hendry P. Identifying ribozyme-accessible sites using NUH triplet-targeting gapmers. Nucleic Acids Res 2001; 29:1906-14. [PMID: 11328874 PMCID: PMC37256 DOI: 10.1093/nar/29.9.1906] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2000] [Revised: 03/13/2001] [Accepted: 03/13/2001] [Indexed: 11/12/2022] Open
Abstract
Accurately identifying accessible sites in RNA is a critical prerequisite for optimising the cleavage efficiency of hammerhead ribozymes and other small nucleozymes. Here we describe a simple RNase H-based procedure to rapidly identify hammerhead ribozyme-accessible sites in gene length RNAS: Twelve semi-randomised RNA-DNA-RNA chimeric oligonucleotide probes, known as 'gapmers', were used to direct RNase H cleavage of transcripts with the specificity expected for hammerhead ribozymes, i.e. after NUH sites (where H is A, C or U). Cleavage sites were identified simply by the mobility of RNase H cleavage products relative to RNA markers in denaturing polyacrylamide gels. Sites were identified in transcripts encoding human interleukin-2 and platelet-derived growth factor. Thirteen minimised hammerhead ribozymes, miniribozymes (Mrz), were synthesised and in vitro cleavage efficiency (37 degrees C, pH 7.6 and 1 mM MgCl2) at each site was analysed. Of the 13 Mrz, five were highly effective, demonstrating good initial rate constants and extents of cleavage. The speed and accuracy of this method commends its use in screening for hammerhead-accessible sites.
Collapse
Affiliation(s)
- A A Mir
- CSIRO Division of Molecular Science, PO Box 184, North Ryde, NSW 1670, Australia
| | | | | |
Collapse
|
29
|
Hovig E, Maelandsmo G, Mellingsaeter T, Fodstad O, Mielewczyk SS, Wolfe J, Goodchild J. Optimization of hammerhead ribozymes for the cleavage of S100A4 (CAPL) mRNA. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2001; 11:67-75. [PMID: 11334142 DOI: 10.1089/108729001750171272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Previously, suppression of the S100A4 mRNA by an endogenously expressed ribozyme in osteosarcoma cells was shown to inhibit their metastasis in rats. As a prelude to performing similar studies with exogenous, synthetic ribozymes, we compared a series of hammerhead ribozymes targeted against different sites in the mRNA. The ribozymes differed only in the 7-base flanking sequences complementary to the substrate and were protected against nucleases by chemical modification. Cleavage efficiency varied widely and was not obviously related to the predicted secondary structure of the target RNA. The most active ribozyme of the series was chosen for further optimization. Lengthening its flanking sequences was counterproductive and reduced cleavage even when using excess ribozyme. Using excess substrate (multiple-turnover kinetics), cleavage was fastest with the (6+8) ribozyme having 6 nucleotides (nt) in stem III and 8 nt in stem I. Although these stems strongly influence ribozyme performance, their optimization is still empirical. Faster cleavage was obtained by adding facilitator oligonucleotides to ribozymes with shorter stems of (6+6) and (5+5) nt. Stimulation was particularly strong in the case of the (5+5) ribozyme, which was poorly active by itself. The enhancement caused by different facilitator oligonucleotides paralleled their expected ability to hybridize to RNA as a function of length and chemical modification.
Collapse
Affiliation(s)
- E Hovig
- The Norwegian Radium Hospital, Oslo
| | | | | | | | | | | | | |
Collapse
|
30
|
Beger C, Pierce LN, Kruger M, Marcusson EG, Robbins JM, Welcsh P, Welch PJ, Welte K, King MC, Barber JR, Wong-Staal F. Identification of Id4 as a regulator of BRCA1 expression by using a ribozyme-library-based inverse genomics approach. Proc Natl Acad Sci U S A 2001; 98:130-5. [PMID: 11136250 PMCID: PMC14556 DOI: 10.1073/pnas.98.1.130] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Expression of the breast and ovarian cancer susceptibility gene BRCA1 is down-regulated in sporadic breast and ovarian cancer cases. Therefore, the identification of genes involved in the regulation of BRCA1 expression might lead to new insights into the pathogenesis and treatment of these tumors. In the present study, an "inverse genomics" approach based on a randomized ribozyme gene library was applied to identify cellular genes regulating BRCA1 expression. A ribozyme gene library with randomized target recognition sequences was introduced into human ovarian cancer-derived cells stably expressing a selectable marker [enhanced green fluorescence protein (EGFP)] under the control of the BRCA1 promoter. Cells in which BRCA1 expression was upregulated by particular ribozymes were selected through their concomitant increase in EGFP expression. The cellular target gene of one ribozyme was identified to be the dominant negative transcriptional regulator Id4. Modulation of Id4 expression resulted in inversely regulated expression of BRCA1. In addition, increase in Id4 expression was associated with the ability of cells to exhibit anchorage-independent growth, demonstrating the biological relevance of this gene. Our data suggest that Id4 is a crucial gene regulating BRCA1 expression and might therefore be important for the BRCA1 regulatory pathway involved in the pathogenesis of sporadic breast and ovarian cancer.
Collapse
Affiliation(s)
- C Beger
- Department of Medicine, University of California San Diego, La Jolla, CA 92093-0665, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Leavitt MC, Yu G, Zhou C, Barber JR. Inhibition of interleukin-1beta (IL-1beta) production in human cells by ribozymes against IL-1beta and IL-1beta converting enzyme (ICE). ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2000; 10:409-14. [PMID: 11198924 DOI: 10.1089/oli.1.2000.10.409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We and others have shown previously that hairpin ribozyme genes, when stably expressed in cells, can reduce the steady-state levels of target mRNA and their cognate proteins. Despite this capability, ribozymes have not been as widely used in knockdown experiments as one might expect, probably because specific rules governing the selection of ribozymes that will have high activity have not been described. In this report, we show that parallel screening of less than 10 ribozyme expression constructs, with no advanced knowledge of cleavage activity or preselection, can efficiently identify knockdown ribozymes. This empirical selection study, which used interleukin-1beta (IL-1beta) and IL-1beta converting enzyme (ICE) as example targets, resulted in (1) the rapid identification of ribozymes that can reduce the production of IL-1beta in THP-1 cultures by 10-fold and (2) the consequent direct generation of stable knockdown cell lines. We conclude, based on these and similar studies, that parallel screening of ribozyme constructs could be used in high throughput gene functional analysis programs as a means of rapidly generating specific knockdown cell lines.
Collapse
Affiliation(s)
- M C Leavitt
- Immusol Incorporated, San Diego, CA 92121, USA
| | | | | | | |
Collapse
|
32
|
Abstract
In this chapter we discuss the design, delivery and preclinical testing of mutation-specific ribozymes for the treatment of dominantly inherited retinal disease. We focus particular attention on the initial screening of ribozymes in vitro, because the activity of RNA enzymes in cell-free systems can be used to predict their suitability for animal experiments. Current techniques for delivering genes of interest to cells of the retina using viral vectors are then briefly surveyed emphasizing vector properties that best match to the needs of a ribozyme-based therapy. Using these considerations, analysis of ribozyme gene therapy for an autosomal dominant RP-like disease in a rodent model is outlined emphasizing the desirability of combining biochemical, morphological and electrophysiological measures of therapy. Finally, we describe alternative, perhaps more general, ribozyme approaches that have yet to be tested in the context of retinal disease.
Collapse
Affiliation(s)
- W W Hauswirth
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | | |
Collapse
|
33
|
Bramlage B, Luzi E, Eckstein F. HIV-1 LTR as a target for synthetic ribozyme-mediated inhibition of gene expression: site selection and inhibition in cell culture. Nucleic Acids Res 2000; 28:4059-67. [PMID: 11058100 PMCID: PMC113160 DOI: 10.1093/nar/28.21.4059] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A library of three synthetic ribozymes with randomized arms, targeting NUX, GUX and NXG triplets, respectively, were used to identify ribozyme-accessible sites on the HIV-1 LTR transcript comprising positions -533 to 386. Three cleavable sites were identified at positions 109, 115 and 161. Ribozymes were designed against these sites, either unmodified or with 2'-modifications and phosphorothioate groups, and their cleavage activities of the transcript were determined. Their biological activities were assessed in cell culture, using a HIV-1 model assay system where the LTR is a promoter for the expression of the reporter gene luciferase in a transient expression system. Intracellular efficiency of the ribozymes were determined by cotransfection of ribozyme and plasmid DNA, expressing the target RNA. Modified ribozymes, directed against positions 115 and 161, lowered the level of LTR mRNA in the cell resulting in inhibition of expression of the LTR-driven reporter gene luciferase of 87 and 61%, respectively. In the presence of Tat the inhibitions were 43 and 25%. The inactive variants of these ribozymes exhibited a similar inhibitory effect. RNase protection revealed a reduction of RNA which was somewhat stronger for the active than the inactive ribozymes, particularly for ribozyme 115. Unmodified ribozymes showed no inhibition in the cell. The third ribozyme, targeting a GUG-triplet at position 109, possessed only low cleavage activity in vitro and no inhibitory effect in cell culture.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Codon/genetics
- Down-Regulation
- Gene Expression Regulation, Viral
- Gene Library
- Genes, Reporter/genetics
- Genetic Engineering
- HIV Long Terminal Repeat/genetics
- HIV-1/genetics
- HeLa Cells
- Humans
- Kinetics
- Nuclease Protection Assays
- Nucleic Acid Conformation
- Oligoribonucleotides/chemical synthesis
- Oligoribonucleotides/chemistry
- Oligoribonucleotides/genetics
- Oligoribonucleotides/metabolism
- RNA Stability
- RNA, Catalytic/chemical synthesis
- RNA, Catalytic/chemistry
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Substrate Specificity
- Transcription, Genetic/genetics
- Transfection
Collapse
Affiliation(s)
- B Bramlage
- Max-Planck-Institut für experimentelle Medizin, Hermann-Rein-Strabetae 3, D-37075 Göttingen, Germany
| | | | | |
Collapse
|
34
|
Kruger M, Beger C, Li QX, Welch PJ, Tritz R, Leavitt M, Barber JR, Wong-Staal F. Identification of eIF2Bgamma and eIF2gamma as cofactors of hepatitis C virus internal ribosome entry site-mediated translation using a functional genomics approach. Proc Natl Acad Sci U S A 2000; 97:8566-71. [PMID: 10900014 PMCID: PMC26988 DOI: 10.1073/pnas.97.15.8566] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The 5'-untranslated region of hepatitis C virus (HCV) is highly conserved, folds into a complex secondary structure, and functions as an internal ribosome entry site (IRES) to initiate translation of HCV proteins. We have developed a selection system based on a randomized hairpin ribozyme gene library to identify cellular factors involved in HCV IRES function. A retroviral vector ribozyme library with randomized target recognition sequences was introduced into HeLa cells, stably expressing a bicistronic construct encoding the hygromycin B phosphotransferase gene and the herpes simplex virus thymidine kinase gene (HSV-tk). Translation of the HSV-tk gene was mediated by the HCV IRES. Cells expressing ribozymes that inhibit HCV IRES-mediated translation of HSV-tk were selected via their resistance to both ganciclovir and hygromycin B. Two ribozymes reproducibly conferred the ganciclovir-resistant phenotype and were shown to inhibit IRES-mediated translation of HCV core protein but did not inhibit cap-dependent protein translation or cell growth. The functional targets of these ribozymes were identified as the gamma subunits of human eukaryotic initiation factors 2B (eIF2Bgamma) and 2 (eIF2gamma), respectively. The involvement of eIF2Bgamma and eIF2gamma in HCV IRES-mediated translation was further validated by ribozymes directed against additional sites within the mRNAs of these genes. In addition to leading to the identification of cellular IRES cofactors, ribozymes obtained from this cellular selection system could be directly used to specifically inhibit HCV viral translation, thereby facilitating the development of new antiviral strategies for HCV infection.
Collapse
Affiliation(s)
- M Kruger
- Department of Medicine, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093-0665, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Shaw LC, Whalen PO, Drenser KA, Yan W, Hauswirth WW, Lewin AS. Ribozymes in treatment of inherited retinal disease. Methods Enzymol 2000; 316:761-76. [PMID: 10800713 DOI: 10.1016/s0076-6879(00)16761-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- L C Shaw
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville 32610, USA
| | | | | | | | | | | |
Collapse
|
36
|
Kilani AF, Trang P, Jo S, Hsu A, Kim J, Nepomuceno E, Liou K, Liu F. RNase P ribozymes selected in vitro to cleave a viral mRNA effectively inhibit its expression in cell culture. J Biol Chem 2000; 275:10611-22. [PMID: 10744757 DOI: 10.1074/jbc.275.14.10611] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An in vitro selection procedure was used to select RNase P ribozyme variants that efficiently cleaved the sequence of the mRNA encoding thymidine kinase of herpes simplex virus 1. Of the 45 selected variants sequenced, 25 ribozymes carried a common mutation at nucleotides 224 and 225 of RNase P catalytic RNA from Escherichia coli (G(224)G(225) --> AA). These selected ribozymes exhibited at least 10 times higher cleavage efficiency (k(cat)/K(m)) than that derived from the wild type ribozyme. Our results suggest that the mutated A(224)A(225) are in close proximity to the substrate and enhance substrate binding of the ribozyme. When these ribozyme variants were expressed in herpes simplex virus 1-infected cells, the levels of thymidine kinase mRNA and protein were reduced by 95-99%. Our study provides the first direct evidence that RNase P ribozyme variants isolated by the selection procedure can be used for the construction of gene-targeting ribozymes that are highly effective in tissue culture. These results demonstrate the potential for using RNase P ribozymes as gene-targeting agents against any mRNA sequences, and using the selection procedure as a general approach for the engineering of RNase P ribozymes.
Collapse
MESH Headings
- Animals
- Base Sequence
- Clone Cells
- Endoribonucleases/chemistry
- Endoribonucleases/genetics
- Endoribonucleases/metabolism
- Escherichia coli Proteins
- Genetic Engineering
- Genetic Variation
- Herpesvirus 1, Human/enzymology
- Herpesvirus 1, Human/genetics
- Kinetics
- Molecular Sequence Data
- Mutagenesis
- Nucleic Acid Conformation
- Oligodeoxyribonucleotides
- RNA, Catalytic/chemistry
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Recombinant Proteins/metabolism
- Ribonuclease P
- Sequence Alignment
- Thymidine Kinase/genetics
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- A F Kilani
- Program of Infectious Diseases and Immunity, Program of Comparative Biochemistry, School of Public Health, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The hairpin ribozyme belongs to the family of small catalytic RNAs that cleave RNA substrates in a reversible reaction that generates 2',3'-cyclic phosphate and 5'-hydroxyl termini. The hairpin catalytic motif was discovered in the negative strand of the tobacco ringspot virus satellite RNA, where hairpin ribozyme-mediated self-cleavage and ligation reactions participate in processing RNA replication intermediates. The self-cleaving hairpin, hammerhead, hepatitis delta and Neurospora VS RNAs each adopt unique structures and exploit distinct kinetic and catalytic mechanisms despite catalyzing the same chemical reactions. Mechanistic studies of hairpin ribozyme reactions provided early evidence that, like protein enzymes, RNA enzymes are able to exploit a variety of catalytic strategies. In contrast to the hammerhead and Tetrahymena ribozyme reactions, hairpin-mediated cleavage and ligation proceed through a catalytic mechanism that does not require direct coordination of metal cations to phosphate or water oxygens. The hairpin ribozyme is a better ligase than it is a nuclease while the hammerhead reaction favors cleavage over ligation of bound products by nearly 200-fold. Recent structure-function studies have begun to yield insights into the molecular bases of these unique features of the hairpin ribozyme.
Collapse
Affiliation(s)
- M J Fedor
- Department of Molecular Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, MB35, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
38
|
Pérez-Ruiz M, Barroso-DelJesus A, Berzal-Herranz A. Specificity of the hairpin ribozyme. Sequence requirements surrounding the cleavage site. J Biol Chem 1999; 274:29376-29380. [PMID: 10506198 DOI: 10.1074/jbc.274.41.29376] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Substrate sequence requirements of the hairpin ribozyme have been partially defined by both mutational and in vitro selection experiments. It was considered that the best targets were those that included the N downward arrowGUC sequence surrounding the cleavage site. In contrast to previous studies that failed to evaluate all possible combinations of these nucleotides, we have performed an exhaustive analysis of the cleavage of 64 substrate variants. They represent all possible sequence combinations of the J2/1 nucleotides except the well established G(+1). No cleavage was observed with 24 sequences. C(+2) variants showed little or no cleavage, whereas U(+2) substrates were all cleavable. The maximal cleavage rate was obtained with the AGUC substrate. Cleavage rates of sequences HGUC (H = A, C, or U), GGUN, GGGR (R = A or G), AGUU, and UGUA were up to 5 times lower than the AGUC one. This shows that other sequences besides NGUC could also be considered as good targets. A second group of sequences WGGG (W = A or U), UGUK (K = G or U), MGAG (M = A or C), AGUA, and UGGA were cleaved between 6 and 10 times less efficiently. Furthermore, the UGCU sequence of a noncleavable viral target was mutated to AGUC resulting in a proficiently cleavable substrate by its cognate hairpin ribozyme. This indicates that our conclusions may be extrapolated to other hairpin ribozymes with different specificity.
Collapse
Affiliation(s)
- M Pérez-Ruiz
- Instituto de Parasitología y Biomedicina "López-Neyra," Consejo Superior de Investigaciones Científicas, Ventanilla 11, 18001 Granada, Spain
| | | | | |
Collapse
|
39
|
zu Putlitz J, Yu Q, Burke JM, Wands JR. Combinatorial screening and intracellular antiviral activity of hairpin ribozymes directed against hepatitis B virus. J Virol 1999; 73:5381-7. [PMID: 10364285 PMCID: PMC112594 DOI: 10.1128/jvi.73.7.5381-5387.1999] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A combinatorial screening method has been used to identify hairpin ribozymes that inhibit hepatitis B virus (HBV) replication in transfected human hepatocellular carcinoma (HCC) cells. A hairpin ribozyme library (5 x 10(5) variants) containing a randomized substrate-binding domain was used to identify accessible target sites within 3.3 kb of full-length in vitro-transcribed HBV pregenomic RNA. Forty potential target sites were found within the HBV pregenomic RNA, and 17 sites conserved in all four subtypes of HBV were chosen for intracellular inhibition experiments. Polymerase II and III promoter expression constructs for corresponding hairpin ribozymes were generated and cotransfected into HCC cells together with a replication-competent dimer of HBV DNA. Four ribozymes inhibited HBV replication by 80, 69, 66, and 49%, respectively, while catalytically inactive mutant forms of these ribozymes affected HBV replication by 36, 28, 0, and 0%. These findings indicate that the inhibitory effects on HBV replication were largely mediated by the catalytic activity of the ribozymes. In conclusion, we have identified catalytically active RNAs by combinatorial screening that mediate intracellular antiviral effects on HBV.
Collapse
Affiliation(s)
- J zu Putlitz
- Molecular Hepatology Laboratory, Massachusetts General Hospital Cancer Center, and Harvard Medical School, Boston, Massachusetts 02129, USA
| | | | | | | |
Collapse
|
40
|
Abstract
We have used differential display to address the question of ribozyme specificity in vivo. Stably transfected PC12 cells bearing either a hairpin ribozyme expression plasmid targeted to betaAPP mRNA or the vector alone were analyzed using nine different primer pairs. One of the few differentially expressed genes obtained from this screen corresponded to rat ribosomal protein L19. Steady-state levels of L19 mRNA were lower in ribozyme-transfected cells compared to either vector-transfected cells or native PC12 cells, and a sequence within the L19 message was cleaved by the betaAPP hairpin ribozyme in vitro. These data imply that sequence-specific unintended cleavage of non-target mRNAs may present a formidable problem to the use of hairpin ribozyme therapeutic agents.
Collapse
Affiliation(s)
- R B Denman
- Laboratory of Molecular Neurobiology, Department of Molecular Biology, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, New York, 10314, USA.
| |
Collapse
|