1
|
Mühlhofer M, Offensperger F, Reschke S, Wallmann G, Csaba G, Berchtold E, Riedl M, Blum H, Haslbeck M, Zimmer R, Buchner J. Deletion of the transcription factors Hsf1, Msn2 and Msn4 in yeast uncovers transcriptional reprogramming in response to proteotoxic stress. FEBS Lett 2024; 598:635-657. [PMID: 38366111 DOI: 10.1002/1873-3468.14821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/18/2024]
Abstract
The response to proteotoxic stresses such as heat shock allows organisms to maintain protein homeostasis under changing environmental conditions. We asked what happens if an organism can no longer react to cytosolic proteotoxic stress. To test this, we deleted or depleted, either individually or in combination, the stress-responsive transcription factors Msn2, Msn4, and Hsf1 in Saccharomyces cerevisiae. Our study reveals a combination of survival strategies, which together protect essential proteins. Msn2 and 4 broadly reprogram transcription, triggering the response to oxidative stress, as well as biosynthesis of the protective sugar trehalose and glycolytic enzymes, while Hsf1 mainly induces the synthesis of molecular chaperones and reverses the transcriptional response upon prolonged mild heat stress (adaptation).
Collapse
Affiliation(s)
- Moritz Mühlhofer
- Center for Protein Assemblies, Department of Bioscience, Technische Universität München, Garching, Germany
| | - Felix Offensperger
- Institute of Bioinformatics, Department of Informatics, Ludwig-Maximilians-Universität München, München, Germany
| | - Sarah Reschke
- Laboratory for Functional Genome Analysis at the Gene Center, LMU München, München, Germany
| | - Georg Wallmann
- Institute of Bioinformatics, Department of Informatics, Ludwig-Maximilians-Universität München, München, Germany
| | - Gergely Csaba
- Institute of Bioinformatics, Department of Informatics, Ludwig-Maximilians-Universität München, München, Germany
| | - Evi Berchtold
- Institute of Bioinformatics, Department of Informatics, Ludwig-Maximilians-Universität München, München, Germany
| | - Maximilian Riedl
- Center for Protein Assemblies, Department of Bioscience, Technische Universität München, Garching, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis at the Gene Center, LMU München, München, Germany
| | - Martin Haslbeck
- Center for Protein Assemblies, Department of Bioscience, Technische Universität München, Garching, Germany
| | - Ralf Zimmer
- Institute of Bioinformatics, Department of Informatics, Ludwig-Maximilians-Universität München, München, Germany
| | - Johannes Buchner
- Center for Protein Assemblies, Department of Bioscience, Technische Universität München, Garching, Germany
| |
Collapse
|
2
|
Ciccarelli M, Masser AE, Kaimal JM, Planells J, Andréasson C. Genetic inactivation of essential HSF1 reveals an isolated transcriptional stress response selectively induced by protein misfolding. Mol Biol Cell 2023; 34:ar101. [PMID: 37467033 PMCID: PMC10551698 DOI: 10.1091/mbc.e23-05-0153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023] Open
Abstract
Heat Shock Factor 1 (Hsf1) in yeast drives the basal transcription of key proteostasis factors and its activity is induced as part of the core heat shock response. Exploring Hsf1 specific functions has been challenging due to the essential nature of the HSF1 gene and the extensive overlap of target promoters with environmental stress response (ESR) transcription factors Msn2 and Msn4 (Msn2/4). In this study, we constructed a viable hsf1∆ strain by replacing the HSF1 open reading frame with genes that constitutively express Hsp40, Hsp70, and Hsp90 from Hsf1-independent promoters. Phenotypic analysis showed that the hsf1∆ strain grows slowly, is sensitive to heat as well as protein misfolding and accumulates protein aggregates. Transcriptome analysis revealed that the transcriptional response to protein misfolding induced by azetidine-2-carboxylic acid is fully dependent on Hsf1. In contrast, the hsf1∆ strain responded to heat shock through the ESR. Following HS, Hsf1 and Msn2/4 showed functional compensatory induction with stronger activation of the remaining stress pathway when the other branch was inactivated. Thus, we provide a long-overdue genetic test of the function of Hsf1 in yeast using the novel hsf1∆ construct. Our data highlight that the accumulation of misfolded proteins is uniquely sensed by Hsf1-Hsp70 chaperone titration inducing a highly selective transcriptional stress response.
Collapse
Affiliation(s)
- Michela Ciccarelli
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| | - Anna E Masser
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| | | | - Jordi Planells
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| |
Collapse
|
3
|
Interaction of TOR and PKA Signaling in S. cerevisiae. Biomolecules 2022; 12:biom12020210. [PMID: 35204711 PMCID: PMC8961621 DOI: 10.3390/biom12020210] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 01/13/2023] Open
Abstract
TOR and PKA signaling are the major growth-regulatory nutrient-sensing pathways in S. cerevisiae. A number of experimental findings demonstrated a close relationship between these pathways: Both are responsive to glucose availability. Both regulate ribosome production on the transcriptional level and repress autophagy and the cellular stress response. Sch9, a major downstream effector of TORC1 presumably shares its kinase consensus motif with PKA, and genetic rescue and synthetic defects between PKA and Sch9 have been known for a long time. Further, studies in the first decade of this century have suggested direct regulation of PKA by TORC1. Nonetheless, the contribution of a potential direct cross-talk vs. potential sharing of targets between the pathways has still not been completely resolved. What is more, other findings have in contrast highlighted an antagonistic relationship between the two pathways. In this review, I explore the association between TOR and PKA signaling, mainly by focusing on proteins that are commonly referred to as shared TOR and PKA targets. Most of these proteins are transcription factors which to a large part explain the major transcriptional responses elicited by TOR and PKA upon nutrient shifts. I examine the evidence that these proteins are indeed direct targets of both pathways and which aspects of their regulation are targeted by TOR and PKA. I further explore if they are phosphorylated on shared sites by PKA and Sch9 or when experimental findings point towards regulation via the PP2ASit4/PP2A branch downstream of TORC1. Finally, I critically review data suggesting direct cross-talk between the pathways and its potential mechanism.
Collapse
|
4
|
Tran TQ, MacAlpine HK, Tripuraneni V, Mitra S, MacAlpine DM, Hartemink AJ. Linking the dynamics of chromatin occupancy and transcription with predictive models. Genome Res 2021; 31:1035-1046. [PMID: 33893157 PMCID: PMC8168580 DOI: 10.1101/gr.267237.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 04/19/2021] [Indexed: 12/30/2022]
Abstract
Though the sequence of the genome within each eukaryotic cell is essentially fixed, it exists within a complex and changing chromatin state. This state is determined, in part, by the dynamic binding of proteins to the DNA. These proteins—including histones, transcription factors (TFs), and polymerases—interact with one another, the genome, and other molecules to allow the chromatin to adopt one of exceedingly many possible configurations. Understanding how changing chromatin configurations associate with transcription remains a fundamental research problem. We sought to characterize at high spatiotemporal resolution the dynamic interplay between transcription and chromatin in response to cadmium stress. Whereas gene regulatory responses to environmental stress in yeast have been studied, how the chromatin state changes and how those changes connect to gene regulation remain unexplored. By combining MNase-seq and RNA-seq data, we found chromatin signatures of transcriptional activation and repression involving both nucleosomal and TF-sized DNA-binding factors. Using these signatures, we identified associations between chromatin dynamics and transcriptional regulation, not only for known cadmium response genes, but across the entire genome, including antisense transcripts. Those associations allowed us to develop generalizable models that predict dynamic transcriptional responses on the basis of dynamic chromatin signatures.
Collapse
Affiliation(s)
- Trung Q Tran
- Department of Computer Science, Duke University, Durham, North Carolina 27708, USA
| | - Heather K MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Vinay Tripuraneni
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Sneha Mitra
- Department of Computer Science, Duke University, Durham, North Carolina 27708, USA
| | - David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.,Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA
| | - Alexander J Hartemink
- Department of Computer Science, Duke University, Durham, North Carolina 27708, USA.,Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
5
|
Molecular characterization of Hsf1 as a master regulator of heat shock response in the thermotolerant methylotrophic yeast Ogataea parapolymorpha. J Microbiol 2021; 59:151-163. [PMID: 33527316 DOI: 10.1007/s12275-021-0646-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
Ogataea parapolymorpha (Hansenula polymorpha DL-1) is a thermotolerant methylotrophic yeast with biotechnological applications. Here, O. parapolymorpha genes whose expression is induced in response to heat shock were identified by transcriptome analysis and shown to possess heat shock elements (HSEs) in their promoters. The function of O. parapolymorpha HSF1 encoding a putative heat shock transcription factor 1 (OpHsf1) was characterized in the context of heat stress response. Despite exhibiting low sequence identity (26%) to its Saccharomyces cerevisiae homolog, OpHsf1 harbors conserved domains including a DNA binding domain (DBD), domains involved in trimerization (TRI), transcriptional activation (AR1, AR2), transcriptional repression (CE2), and a C-terminal modulator (CTM) domain. OpHSF1 could complement the temperature sensitive (Ts) phenotype of a S. cerevisiae hsf1 mutant. An O. parapolymorpha strain with an H221R mutation in the DBD domain of OpHsf1 exhibited significantly retarded growth and a Ts phenotype. Intriguingly, the expression of heat-shock-protein-coding genes harboring HSEs was significantly decreased in the H221R mutant strain, even under non-stress conditions, indicating the importance of the DBD for the basal growth of O. parapolymorpha. Notably, even though the deletion of C-terminal domains (ΔCE2, ΔAR2, ΔCTM) of OpHsf1 destroyed complementation of the growth defect of the S. cerevisiae hsf1 strain, the C-terminal domains were shown to be dispensable in O. parapolymorpha. Overexpression of OpHsf1 in S. cerevisiae increased resistance to transient heat shock, supporting the idea that OpHsf1 could be useful in the development of heat-shock-resistant yeast host strains.
Collapse
|
6
|
Veri AO, Robbins N, Cowen LE. Regulation of the heat shock transcription factor Hsf1 in fungi: implications for temperature-dependent virulence traits. FEMS Yeast Res 2019; 18:4975774. [PMID: 29788061 DOI: 10.1093/femsyr/foy041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/16/2018] [Indexed: 12/27/2022] Open
Abstract
The impact of fungal pathogens on human health is devastating. For fungi and other pathogens, a key determinant of virulence is the capacity to thrive at host temperatures, with elevated temperature in the form of fever as a ubiquitous host response to defend against infection. A prominent feature of cells experiencing heat stress is the increased expression of heat shock proteins (Hsps) that play pivotal roles in the refolding of misfolded proteins in order to restore cellular homeostasis. Transcriptional activation of this heat shock response is orchestrated by the essential heat shock transcription factor, Hsf1. Although the influence of Hsf1 on cellular stress responses has been studied for decades, many aspects of its regulation and function remain largely enigmatic. In this review, we highlight our current understanding of how Hsf1 is regulated and activated in the model yeast Saccharomyces cerevisiae, and highlight exciting recent discoveries related to its diverse functions under both basal and stress conditions. Given that thermal adaption is a fundamental requirement for growth and virulence in fungal pathogens, we also compare and contrast Hsf1 activation and function in other fungal species with an emphasis on its role as a critical regulator of virulence traits.
Collapse
Affiliation(s)
- Amanda O Veri
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
7
|
Becker-Kettern J, Paczia N, Conrotte JF, Zhu C, Fiehn O, Jung PP, Steinmetz LM, Linster CL. NAD(P)HX repair deficiency causes central metabolic perturbations in yeast and human cells. FEBS J 2018; 285:3376-3401. [PMID: 30098110 DOI: 10.1111/febs.14631] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/20/2018] [Accepted: 08/08/2018] [Indexed: 12/20/2022]
Abstract
NADHX and NADPHX are hydrated and redox inactive forms of the NADH and NADPH cofactors, known to inhibit several dehydrogenases in vitro. A metabolite repair system that is conserved in all domains of life and that comprises the two enzymes NAD(P)HX dehydratase and NAD(P)HX epimerase, allows reconversion of both the S- and R-epimers of NADHX and NADPHX to the normal cofactors. An inherited deficiency in this system has recently been shown to cause severe neurometabolic disease in children. Although evidence for the presence of NAD(P)HX has been obtained in plant and human cells, little is known about the mechanism of formation of these derivatives in vivo and their potential effects on cell metabolism. Here, we show that NAD(P)HX dehydratase deficiency in yeast leads to an important, temperature-dependent NADHX accumulation in quiescent cells with a concomitant depletion of intracellular NAD+ and serine pools. We demonstrate that NADHX potently inhibits the first step of the serine synthesis pathway in yeast. Human cells deficient in the NAD(P)HX dehydratase also accumulated NADHX and showed decreased viability. In addition, those cells consumed more glucose and produced more lactate, potentially indicating impaired mitochondrial function. Our results provide first insights into how NADHX accumulation affects cellular functions and pave the way for a better understanding of the mechanism(s) underlying the rapid and severe neurodegeneration leading to early death in NADHX repair-deficient children.
Collapse
Affiliation(s)
- Julia Becker-Kettern
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Nicole Paczia
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Jean-François Conrotte
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Chenchen Zhu
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Oliver Fiehn
- NIH West Coast Metabolomics Center, University of California Davis, CA, USA
| | - Paul P Jung
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany.,Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA.,Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Carole L Linster
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
8
|
Solís EJ, Pandey JP, Zheng X, Jin DX, Gupta PB, Airoldi EM, Pincus D, Denic V. Defining the Essential Function of Yeast Hsf1 Reveals a Compact Transcriptional Program for Maintaining Eukaryotic Proteostasis. Mol Cell 2016; 63:60-71. [PMID: 27320198 PMCID: PMC4938784 DOI: 10.1016/j.molcel.2016.05.014] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/22/2016] [Accepted: 05/11/2016] [Indexed: 11/18/2022]
Abstract
Despite its eponymous association with the heat shock response, yeast heat shock factor 1 (Hsf1) is essential even at low temperatures. Here we show that engineered nuclear export of Hsf1 results in cytotoxicity associated with massive protein aggregation. Genome-wide analysis revealed that Hsf1 nuclear export immediately decreased basal transcription and mRNA expression of 18 genes, which predominately encode chaperones. Strikingly, rescuing basal expression of Hsp70 and Hsp90 chaperones enabled robust cell growth in the complete absence of Hsf1. With the exception of chaperone gene induction, the vast majority of the heat shock response was Hsf1 independent. By comparative analysis of mammalian cell lines, we found that only heat shock-induced but not basal expression of chaperones is dependent on the mammalian Hsf1 homolog (HSF1). Our work reveals that yeast chaperone gene expression is an essential housekeeping mechanism and provides a roadmap for defining the function of HSF1 as a driver of oncogenesis.
Collapse
Affiliation(s)
- Eric J Solís
- Department of Molecular and Cellular Biology, Northwest Labs, Harvard University, Cambridge, MA 02138, USA; Systems Biology PhD Program, Harvard University, Cambridge, MA 02138, USA
| | - Jai P Pandey
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Xu Zheng
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Dexter X Jin
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Piyush B Gupta
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Edoardo M Airoldi
- Department of Statistics, Harvard University, Cambridge, MA 02138, USA
| | - David Pincus
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| | - Vladimir Denic
- Department of Molecular and Cellular Biology, Northwest Labs, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
9
|
Święciło A. Cross-stress resistance in Saccharomyces cerevisiae yeast--new insight into an old phenomenon. Cell Stress Chaperones 2016; 21:187-200. [PMID: 26825800 PMCID: PMC4786536 DOI: 10.1007/s12192-016-0667-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/27/2015] [Accepted: 01/04/2016] [Indexed: 12/20/2022] Open
Abstract
Acquired stress resistance is the result of mild stress causing the acquisition of resistance to severe stress of the same or a different type. The mechanism of "same-stress" resistance (resistance to a second, strong stress after mild primary stress of the same type) probably depends on the activation of defense and repair mechanisms specific for a particular type of stress, while cross-stress resistance (i.e., resistance to a second, strong stress after a different type of mild primary stress) is the effect of activation of both a specific and general stress response program, which in Saccharomyces cerevisiae yeast is known as the environmental stress response (ESR). Advancements in research techniques have made it possible to study the mechanism of cross-stress resistance at various levels of cellular organization: stress signal transduction pathways, regulation of gene expression, and transcription or translation processes. As a result of this type of research, views on the cross-stress protection mechanism have been reconsidered. It was originally thought that cross-stress resistance, irrespective of the nature of the two stresses, was determined by universal mechanisms, i.e., the same mechanisms within the general stress response. They are now believed to be more specific and strictly dependent on the features of the first stress.
Collapse
Affiliation(s)
- Agata Święciło
- Faculty of Agrobioengineering, Department of Environmental Microbiology, University of Life Sciences in Lublin, Leszczynskiego 7, 20-069, Lublin, Poland.
| |
Collapse
|
10
|
Developmental Growth Control Exerted via the Protein A Kinase Tpk2 in Ashbya gossypii. EUKARYOTIC CELL 2015; 14:593-601. [PMID: 25862153 DOI: 10.1128/ec.00045-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/03/2015] [Indexed: 01/18/2023]
Abstract
Sporulation in Ashbya gossypii is induced by nutrient-limited conditions and leads to the formation of haploid spores. Using RNA-seq, we have determined a gene set induced upon sporulation, which bears considerable overlap with that of Saccharomyces cerevisiae but also contains A. gossypii-specific genes. Addition of cyclic AMP (cAMP) to nutrient-limited media blocks sporulation and represses the induction of sporulation specific genes. Deletion of the protein kinase A (PKA) catalytic subunits encoded by TPK1 and TPK2 showed reduced growth in tpk1 but enhanced growth in the tpk2 strain; however, both mutants sporulated well. Sporulation can be blocked by cAMP in tpk1 but not in tpk2 strains. Similarly, TPK2 acts at a second developmental switch promoting the break in spore dormancy. In S. cerevisiae, PKA phosphorylates and inhibits Msn2/4. The transcript profiles of the tpk1 and msn2/4 mutants were very similar to that of the wild type under sporulation conditions. However, deletion of the single A. gossypii MSN2/4 homolog generated a specific sporulation defect. We identified a set of genes involved in spore wall assembly that was downregulated in the msn2/4 mutant, particularly DIT2, suggesting that poor spore viability may be due to lysis of spores. Our results reveal specific functional differences between the two catalytic PKA subunits in A. gossypii and identified Tpk2 as the key A kinase that transduces developmental decisions of growth. Our data also suggest that Msn2/4 is involved only at a late step of sporulation in A. gossypii and is not a major regulator of IME1.
Collapse
|
11
|
Buck TM, Jordan R, Lyons-Weiler J, Adelman JL, Needham PG, Kleyman TR, Brodsky JL. Expression of three topologically distinct membrane proteins elicits unique stress response pathways in the yeast Saccharomyces cerevisiae. Physiol Genomics 2015; 47:198-214. [PMID: 25759377 DOI: 10.1152/physiolgenomics.00101.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 03/04/2015] [Indexed: 01/11/2023] Open
Abstract
Misfolded membrane proteins are retained in the endoplasmic reticulum (ER) and are subject to ER-associated degradation, which clears the secretory pathway of potentially toxic species. While the transcriptional response to environmental stressors has been extensively studied, limited data exist describing the cellular response to misfolded membrane proteins. To this end, we expressed and then compared the transcriptional profiles elicited by the synthesis of three ER retained, misfolded ion channels: The α-subunit of the epithelial sodium channel, ENaC, the cystic fibrosis transmembrane conductance regulator, CFTR, and an inwardly rectifying potassium channel, Kir2.1, which vary in their mass, membrane topologies, and quaternary structures. To examine transcriptional profiles in a null background, the proteins were expressed in yeast, which was previously used to examine the degradation requirements for each substrate. Surprisingly, the proteins failed to induce a canonical unfolded protein response or heat shock response, although messages encoding several cytosolic and ER lumenal protein folding factors rose when αENaC or CFTR was expressed. In contrast, the levels of these genes were unaltered by Kir2.1 expression; instead, the yeast iron regulon was activated. Nevertheless, a significant number of genes that respond to various environmental stressors were upregulated by all three substrates, and compared with previous microarray data we deduced the existence of a group of genes that reflect a novel misfolded membrane protein response. These data indicate that aberrant proteins in the ER elicit profound yet unique cellular responses.
Collapse
Affiliation(s)
- Teresa M Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rick Jordan
- GPCL Bioinformatics Analysis Core, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - James Lyons-Weiler
- GPCL Bioinformatics Analysis Core, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Joshua L Adelman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Patrick G Needham
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Thomas R Kleyman
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania;
| |
Collapse
|
12
|
Holmes WM, Mannakee BK, Gutenkunst RN, Serio TR. Loss of amino-terminal acetylation suppresses a prion phenotype by modulating global protein folding. Nat Commun 2014; 5:4383. [PMID: 25023910 PMCID: PMC4140192 DOI: 10.1038/ncomms5383] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/13/2014] [Indexed: 01/08/2023] Open
Abstract
N-terminal acetylation is among the most ubiquitous of protein modifications in eukaryotes. While loss of N-terminal acetylation is associated with many abnormalities, the molecular basis of these effects is known for only a few cases, where acetylation of single factors has been linked to binding avidity or metabolic stability. In contrast, the impact of N-terminal acetylation for the majority of the proteome, and its combinatorial contributions to phenotypes, are unknown. Here, by studying the yeast prion [PSI+], an amyloid of the Sup35 protein, we show that loss of N-terminal acetylation promotes general protein misfolding, a redeployment of chaperones to these substrates, and a corresponding stress response. These proteostasis changes, combined with the decreased stability of unacetylated Sup35 amyloid, reduce the size of prion aggregates and reverse their phenotypic consequences. Thus, loss of N-terminal acetylation, and its previously unanticipated role in protein biogenesis, globally resculpts the proteome to create a unique phenotype.
Collapse
Affiliation(s)
- William M Holmes
- 1] Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, Rhode Island 02912, USA [2]
| | - Brian K Mannakee
- Graduate Interdisciplinary Program in Statistics, University of Arizona, 1548 East Drachman Street, Tucson, Arizona 85721, USA
| | - Ryan N Gutenkunst
- Department of Molecular and Cellular Biology, University of Arizona, 1007 East Lowell Street, Tucson, Arizona 85721, USA
| | - Tricia R Serio
- 1] Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, Rhode Island 02912, USA [2]
| |
Collapse
|
13
|
Xiao H, Zhao H. Genome-wide RNAi screen reveals the E3 SUMO-protein ligase gene SIZ1 as a novel determinant of furfural tolerance in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:78. [PMID: 24904688 PMCID: PMC4045865 DOI: 10.1186/1754-6834-7-78] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/12/2014] [Indexed: 05/15/2023]
Abstract
BACKGROUND Furfural is a major growth inhibitor in lignocellulosic hydrolysates and improving furfural tolerance of microorganisms is critical for rapid and efficient fermentation of lignocellulosic biomass. In this study, we used the RNAi-Assisted Genome Evolution (RAGE) method to select for furfural resistant mutants of Saccharomyces cerevisiae, and identified a new determinant of furfural tolerance. RESULTS By using a genome-wide RNAi (RNA-interference) screen in S. cerevisiae for genes involved in furfural tolerance, we identified SIZ1, a gene encoding an E3 SUMO-protein ligase. Disruption of SIZ1 gene function by knockdown or deletion conferred significantly higher furfural tolerance compared to other previously reported metabolic engineering strategies in S. cerevisiae. This improved furfural tolerance of siz1Δ cells is accompanied by rapid furfural reduction to furfuryl alcohol and leads to higher ethanol productivity in the presence of furfural. In addition, the siz1Δ mutant also exhibited tolerance towards oxidative stress, suggesting that oxidative stress tolerance related proteins may be under the SUMO regulation of SIZ1p and responsible for furfural tolerance. CONCLUSIONS Using a genome-wide approach, we identified a novel determinant for furfural tolerance, providing valuable insights into the design of recombinant microbes for efficient lignocellulose fermentation.
Collapse
Affiliation(s)
- Han Xiao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Departments of Chemistry, Biochemistry, and Bioengineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
14
|
Bodvard K, Jörhov A, Blomberg A, Molin M, Käll M. The yeast transcription factor Crz1 is activated by light in a Ca2+/calcineurin-dependent and PKA-independent manner. PLoS One 2013; 8:e53404. [PMID: 23335962 PMCID: PMC3546054 DOI: 10.1371/journal.pone.0053404] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 11/28/2012] [Indexed: 11/19/2022] Open
Abstract
Light in the visible range can be stressful to non-photosynthetic organisms. The yeast Saccharomyces cerevisiae has earlier been reported to respond to blue light via activation of the stress-regulated transcription factor Msn2p. Environmental changes also induce activation of calcineurin, a Ca(2+)/calmodulin dependent phosphatase, which in turn controls gene transcription by dephosphorylating the transcription factor Crz1p. We investigated the connection between cellular stress caused by blue light and Ca(2+) signalling in yeast by monitoring the nuclear localization dynamics of Crz1p, Msn2p and Msn4p. The three proteins exhibit distinctly different stress responses in relation to light exposure. Msn2p, and to a lesser degree Msn4p, oscillate rapidly between the nucleus and the cytoplasm in an apparently stochastic fashion. Crz1p, in contrast, displays a rapid and permanent nuclear localization induced by illumination, which triggers Crz1p-dependent transcription of its target gene CMK2. Moreover, increased extracellular Ca(2+) levels stimulates the light-induced responses of all three transcription factors, e.g. Crz1p localizes much quicker to the nucleus and a larger fraction of cells exhibits permanent Msn2p nuclear localization at higher Ca(2+) concentration. Studies in mutants lacking Ca(2+) transporters indicate that influx of extracellular Ca(2+) is crucial for the initial stages of light-induced Crz1p nuclear localization, while mobilization of intracellular Ca(2+) stores appears necessary for a sustained response. Importantly, we found that Crz1p nuclear localization is dependent on calcineurin and the carrier protein Nmd5p, while not being affected by increased protein kinase A activity (PKA), which strongly inhibits light-induced nuclear localization of Msn2/4p. We conclude that the two central signalling pathways, cAMP-PKA-Msn2/4 and Ca(2+)-calcineurin-Crz1, are both activated by blue light illumination.
Collapse
Affiliation(s)
- Kristofer Bodvard
- Department of Applied Physics, Chalmers University of Technology, Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
15
|
Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev 2012; 76:115-58. [PMID: 22688810 DOI: 10.1128/mmbr.05018-11] [Citation(s) in RCA: 391] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The eukaryotic heat shock response is an ancient and highly conserved transcriptional program that results in the immediate synthesis of a battery of cytoprotective genes in the presence of thermal and other environmental stresses. Many of these genes encode molecular chaperones, powerful protein remodelers with the capacity to shield, fold, or unfold substrates in a context-dependent manner. The budding yeast Saccharomyces cerevisiae continues to be an invaluable model for driving the discovery of regulatory features of this fundamental stress response. In addition, budding yeast has been an outstanding model system to elucidate the cell biology of protein chaperones and their organization into functional networks. In this review, we evaluate our understanding of the multifaceted response to heat shock. In addition, the chaperone complement of the cytosol is compared to those of mitochondria and the endoplasmic reticulum, organelles with their own unique protein homeostasis milieus. Finally, we examine recent advances in the understanding of the roles of protein chaperones and the heat shock response in pathogenic fungi, which is being accelerated by the wealth of information gained for budding yeast.
Collapse
|
16
|
Orzechowski Westholm J, Tronnersjö S, Nordberg N, Olsson I, Komorowski J, Ronne H. Gis1 and Rph1 regulate glycerol and acetate metabolism in glucose depleted yeast cells. PLoS One 2012; 7:e31577. [PMID: 22363679 PMCID: PMC3283669 DOI: 10.1371/journal.pone.0031577] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Accepted: 01/09/2012] [Indexed: 01/10/2023] Open
Abstract
Aging in organisms as diverse as yeast, nematodes, and mammals is delayed by caloric restriction, an effect mediated by the nutrient sensing TOR, RAS/cAMP, and AKT/Sch9 pathways. The transcription factor Gis1 functions downstream of these pathways in extending the lifespan of nutrient restricted yeast cells, but the mechanisms involved are still poorly understood. We have used gene expression microarrays to study the targets of Gis1 and the related protein Rph1 in different growth phases. Our results show that Gis1 and Rph1 act both as repressors and activators, on overlapping sets of genes as well as on distinct targets. Interestingly, both the activities and the target specificities of Gis1 and Rph1 depend on the growth phase. Thus, both proteins are associated with repression during exponential growth, targeting genes with STRE or PDS motifs in their promoters. After the diauxic shift, both become involved in activation, with Gis1 acting primarily on genes with PDS motifs, and Rph1 on genes with STRE motifs. Significantly, Gis1 and Rph1 control a number of genes involved in acetate and glycerol formation, metabolites that have been implicated in aging. Furthermore, several genes involved in acetyl-CoA metabolism are downregulated by Gis1.
Collapse
Affiliation(s)
- Jakub Orzechowski Westholm
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Linnaeus Centre for Bioinformatics, Uppsala University, Uppsala, Sweden
| | - Susanna Tronnersjö
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Niklas Nordberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Microbiology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ida Olsson
- Department of Microbiology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jan Komorowski
- Linnaeus Centre for Bioinformatics, Uppsala University, Uppsala, Sweden
- Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw, Poland
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Hans Ronne
- Department of Microbiology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
17
|
Association of constitutive hyperphosphorylation of Hsf1p with a defective ethanol stress response in Saccharomyces cerevisiae sake yeast strains. Appl Environ Microbiol 2011; 78:385-92. [PMID: 22057870 DOI: 10.1128/aem.06341-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Modern sake yeast strains, which produce high concentrations of ethanol, are unexpectedly sensitive to environmental stress during sake brewing. To reveal the underlying mechanism, we investigated a well-characterized yeast stress response mediated by a heat shock element (HSE) and heat shock transcription factor Hsf1p in Saccharomyces cerevisiae sake yeast. The HSE-lacZ activity of sake yeast during sake fermentation and under acute ethanol stress was severely impaired compared to that of laboratory yeast. Moreover, the Hsf1p of modern sake yeast was highly and constitutively hyperphosphorylated, irrespective of the extracellular stress. Since HSF1 allele replacement did not significantly affect the HSE-mediated ethanol stress response or Hsf1p phosphorylation patterns in either sake or laboratory yeast, the regulatory machinery of Hsf1p is presumed to function differently between these types of yeast. To identify phosphatases whose loss affected the control of Hsf1p, we screened a series of phosphatase gene deletion mutants in a laboratory strain background. Among the 29 mutants, a Δppt1 mutant exhibited constitutive hyperphosphorylation of Hsf1p, similarly to the modern sake yeast strains, which lack the entire PPT1 gene locus. We confirmed that the expression of laboratory yeast-derived functional PPT1 recovered the HSE-mediated stress response of sake yeast. In addition, deletion of PPT1 in laboratory yeast resulted in enhanced fermentation ability. Taken together, these data demonstrate that hyperphosphorylation of Hsf1p caused by loss of the PPT1 gene at least partly accounts for the defective stress response and high ethanol productivity of modern sake yeast strains.
Collapse
|
18
|
Marbaix AY, Noël G, Detroux AM, Vertommen D, Van Schaftingen E, Linster CL. Extremely conserved ATP- or ADP-dependent enzymatic system for nicotinamide nucleotide repair. J Biol Chem 2011; 286:41246-41252. [PMID: 21994945 DOI: 10.1074/jbc.c111.310847] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The reduced forms of NAD and NADP, two major nucleotides playing a central role in metabolism, are continuously damaged by enzymatic or heat-dependent hydration. We report the molecular identification of the eukaryotic dehydratase that repairs these nucleotides and show that this enzyme (Carkd in mammals, YKL151C in yeast) catalyzes the dehydration of the S form of NADHX and NADPHX, at the expense of ATP, which is converted to ADP. Surprisingly, the Escherichia coli homolog, YjeF, a bidomain protein, catalyzes a similar reaction, but using ADP instead of ATP. The latter reaction is ascribable to the C-terminal domain of YjeF. This represents an unprecedented example of orthologous enzymes using either ADP or ATP as phosphoryl donor. We also show that eukaryotic proteins homologous to the N-terminal domain of YjeF (apolipoprotein A-1-binding protein (AIBP) in mammals, YNL200C in yeast) catalyze the epimerization of the S and R forms of NAD(P)HX, thereby allowing, in conjunction with the energy-dependent dehydratase, the repair of both epimers of NAD(P)HX. Both enzymes are very widespread in eukaryotes, prokaryotes, and archaea, which together with the ADP dependence of the dehydratase in some species indicates the ancient origin of this repair system.
Collapse
Affiliation(s)
- Alexandre Y Marbaix
- WELBIO and the Laboratory of Physiological Chemistry, de Duve Institute and Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Gaëtane Noël
- WELBIO and the Laboratory of Physiological Chemistry, de Duve Institute and Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Aline M Detroux
- WELBIO and the Laboratory of Physiological Chemistry, de Duve Institute and Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Didier Vertommen
- Hormone and Metabolic Research Unit, de Duve Institute and Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Emile Van Schaftingen
- WELBIO and the Laboratory of Physiological Chemistry, de Duve Institute and Université Catholique de Louvain, 1200 Brussels, Belgium.
| | - Carole L Linster
- WELBIO and the Laboratory of Physiological Chemistry, de Duve Institute and Université Catholique de Louvain, 1200 Brussels, Belgium.
| |
Collapse
|
19
|
Lambert JP, Fillingham J, Siahbazi M, Greenblatt J, Baetz K, Figeys D. Defining the budding yeast chromatin-associated interactome. Mol Syst Biol 2011; 6:448. [PMID: 21179020 PMCID: PMC3018163 DOI: 10.1038/msb.2010.104] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 11/05/2010] [Indexed: 11/09/2022] Open
Abstract
We previously reported a novel affinity purification (AP) method termed modified chromatin immunopurification (mChIP), which permits selective enrichment of DNA-bound proteins along with their associated protein network. In this study, we report a large-scale study of the protein network of 102 chromatin-related proteins from budding yeast that were analyzed by mChIP coupled to mass spectrometry. This effort resulted in the detection of 2966 high confidence protein associations with 724 distinct preys. mChIP resulted in significantly improved interaction coverage as compared with classical AP methodology for ∼75% of the baits tested. Furthermore, mChIP successfully identified novel binding partners for many lower abundance transcription factors that previously failed using conventional AP methodologies. mChIP was also used to perform targeted studies, particularly of Asf1 and its associated proteins, to allow for a understanding of the physical interplay between Asf1 and two other histone chaperones, Rtt106 and the HIR complex, to be gained.
Collapse
Affiliation(s)
- Jean-Philippe Lambert
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
20
|
Busti S, Coccetti P, Alberghina L, Vanoni M. Glucose signaling-mediated coordination of cell growth and cell cycle in Saccharomyces cerevisiae. SENSORS 2010; 10:6195-240. [PMID: 22219709 PMCID: PMC3247754 DOI: 10.3390/s100606195] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 05/26/2010] [Accepted: 05/27/2010] [Indexed: 01/05/2023]
Abstract
Besides being the favorite carbon and energy source for the budding yeast Sacchromyces cerevisiae, glucose can act as a signaling molecule to regulate multiple aspects of yeast physiology. Yeast cells have evolved several mechanisms for monitoring the level of glucose in their habitat and respond quickly to frequent changes in the sugar availability in the environment: the cAMP/PKA pathways (with its two branches comprising Ras and the Gpr1/Gpa2 module), the Rgt2/Snf3-Rgt1 pathway and the main repression pathway involving the kinase Snf1. The cAMP/PKA pathway plays the prominent role in responding to changes in glucose availability and initiating the signaling processes that promote cell growth and division. Snf1 (the yeast homologous to mammalian AMP-activated protein kinase) is primarily required for the adaptation of yeast cell to glucose limitation and for growth on alternative carbon source, but it is also involved in the cellular response to various environmental stresses. The Rgt2/Snf3-Rgt1 pathway regulates the expression of genes required for glucose uptake. Many interconnections exist between the diverse glucose sensing systems, which enables yeast cells to fine tune cell growth, cell cycle and their coordination in response to nutritional changes.
Collapse
Affiliation(s)
- Stefano Busti
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano Bicocca, Piazza della Scienza, 2-20126 Milano, Italy.
| | | | | | | |
Collapse
|
21
|
Courty PE, Hoegger PJ, Kilaru S, Kohler A, Buée M, Garbaye J, Martin F, Kües U. Phylogenetic analysis, genomic organization, and expression analysis of multi-copper oxidases in the ectomycorrhizal basidiomycete Laccaria bicolor. THE NEW PHYTOLOGIST 2009; 182:736-750. [PMID: 19243515 DOI: 10.1111/j.1469-8137.2009.02774.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In forest soils, ectomycorrhizal and saprotrophic Agaricales differ in their strategies for carbon acquisition, but share common gene families encoding multi-copper oxidases (MCOs). These enzymes are involved in the oxidation of a variety of soil organic compounds. The MCO gene family of the ectomycorrhizal fungus Laccaria bicolor is composed of 11 genes divided into two distinct subfamilies corresponding to laccases (lcc) sensu stricto (lcc1 to lcc9), sharing a high sequence homology with the coprophilic Coprinopsis cinerea laccase genes, and to ferroxidases (lcc10 and lcc11) that are not present in C. cinerea. The fet3-like ferroxidase genes lcc10 and lcc11 in L. bicolor are each arranged in a mirrored tandem orientation with an ftr gene coding for an iron permease. Unlike C. cinerea, L. bicolor has no sid1/sidA gene for siderophore biosynthesis. Transcript profiling using whole-genome expression arrays and quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) revealed that some transcripts were very abundant in ectomycorrhizas (lcc3 and lcc8), in fruiting bodies (lcc7) or in the free-living mycelium grown on agar medium (lcc9 and lcc10), suggesting a specific function of these MCOs. The amino acid composition of the MCO substrate binding sites suggests that L. bicolor MCOs interact with substrates different from those of saprotrophic fungi.
Collapse
Affiliation(s)
- P E Courty
- UMR 1136 INRA-Nancy Université, Interactions Arbres/Microorganisms, INRA-Nancy, 54280 Champenoux, France
- Botanical Institute, University of Basel, CH-4056 Basel, Switzerland
| | - P J Hoegger
- Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, Georg-August-University, D-37077 Göttingen, Germany
| | - S Kilaru
- Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, Georg-August-University, D-37077 Göttingen, Germany
| | - A Kohler
- UMR 1136 INRA-Nancy Université, Interactions Arbres/Microorganisms, INRA-Nancy, 54280 Champenoux, France
| | - M Buée
- UMR 1136 INRA-Nancy Université, Interactions Arbres/Microorganisms, INRA-Nancy, 54280 Champenoux, France
| | - J Garbaye
- UMR 1136 INRA-Nancy Université, Interactions Arbres/Microorganisms, INRA-Nancy, 54280 Champenoux, France
| | - F Martin
- UMR 1136 INRA-Nancy Université, Interactions Arbres/Microorganisms, INRA-Nancy, 54280 Champenoux, France
| | - U Kües
- Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, Georg-August-University, D-37077 Göttingen, Germany
| |
Collapse
|
22
|
Ramsdale M, Selway L, Stead D, Walker J, Yin Z, Nicholls SM, Crowe J, Sheils EM, Brown AJP. MNL1 regulates weak acid-induced stress responses of the fungal pathogen Candida albicans. Mol Biol Cell 2008; 19:4393-403. [PMID: 18653474 PMCID: PMC2555942 DOI: 10.1091/mbc.e07-09-0946] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 06/30/2008] [Accepted: 07/11/2008] [Indexed: 12/31/2022] Open
Abstract
MNL1, the Candida albicans homologue of an orphan Msn2-like gene (YER130c in Saccharomyces cerevisiae) has no known function. Here we report that MNL1 regulates weak acid stress responses. Deletion of MNL1 prevents the long-term adaptation of C. albicans cells to weak acid stresses and compromises their global transcriptional response under these conditions. The promoters of Mnl1-dependent genes contain a novel STRE-like element (SLE) that imposes Mnl1-dependent, weak acid stress-induced transcription upon a lacZ reporter in C. albicans. The SLE (HHYYCCCCTTYTY) is related to the Nrg1 response element (NRE) element recognized by the transcriptional repressor Nrg1. Deletion of NRG1 partially restores the ability of C. albicans mnl1 cells to adapt to weak acid stress, indicating that Mnl1 and Nrg1 act antagonistically to regulate this response. Molecular, microarray, and proteomic analyses revealed that Mnl1-dependent adaptation does not occur in cells exposed to proapoptotic or pronecrotic doses of weak acid, suggesting that Ras-pathway activation might suppress the Mnl1-dependent weak acid response in dying cells. Our work defines a role for this YER130c orthologue in stress adaptation and cell death.
Collapse
Affiliation(s)
- Mark Ramsdale
- Institute of Medical Sciences, School of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Berry DB, Gasch AP. Stress-activated genomic expression changes serve a preparative role for impending stress in yeast. Mol Biol Cell 2008; 19:4580-7. [PMID: 18753408 DOI: 10.1091/mbc.e07-07-0680] [Citation(s) in RCA: 240] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Yeast cells respond to stress by mediating condition-specific gene expression changes and by mounting a common response to many stresses, called the environmental stress response (ESR). Giaever et al. previously revealed poor correlation between genes whose expression changes in response to acute stress and genes required to survive that stress, raising question about the role of stress-activated gene expression. Here we show that gene expression changes triggered by a single dose of stress are not required to survive that stimulus but rather serve a protective role against future stress. We characterized the increased resistance to severe stress in yeast preexposed to mild stress. This acquired stress resistance is dependent on protein synthesis during mild-stress treatment and requires the "general-stress" transcription factors Msn2p and/or Msn4p that regulate induction of many ESR genes. However, neither protein synthesis nor Msn2/4p is required for basal tolerance of a single dose of stress, despite the substantial expression changes triggered by each condition. Using microarrays, we show that Msn2p and Msn4p play nonredundant and condition-specific roles in gene-expression regulation, arguing against a generic general-stress function. This work highlights the importance of condition-specific responses in acquired stress resistance and provides new insights into the role of the ESR.
Collapse
Affiliation(s)
- David B Berry
- Laboratory of Genetics and Genome Center of Wisconsin, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
24
|
Kaino T, Takagi H. Gene expression profiles and intracellular contents of stress protectants in Saccharomyces cerevisiae under ethanol and sorbitol stresses. Appl Microbiol Biotechnol 2008; 79:273-83. [DOI: 10.1007/s00253-008-1431-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 02/23/2008] [Accepted: 02/24/2008] [Indexed: 11/28/2022]
|
25
|
Regulation of thermotolerance by stress-induced transcription factors in Saccharomyces cerevisiae. EUKARYOTIC CELL 2008; 7:783-90. [PMID: 18359875 DOI: 10.1128/ec.00029-08] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The heat shock transcription factor Hsf1 and the general stress transcription factors Msn2 and Msn4 (Msn2/4) are major regulators of the heat shock response in Saccharomyces cerevisiae. Here, we show that transcriptional activation of their target genes, including HSP104, an antistress chaperone gene, is obligatory for thermotolerance. Although Hsf1 activity might be necessary before the exposure of cells to high temperature, severe heat shock induced the binding of hyperphosphorylated Hsf1 to its target promoters. However, promoter-bound, phosphorylated Hsf1 was inactive for transcription because RNA polymerase II was inactive at high temperatures. Rather, our results suggest that Hsf1 activates the transcription of most of its target genes during the recovery period following severe heat shock. This delayed upregulation by Hsf1, which would be induced by misfolded proteins that accumulate in severely heat-shocked cells, is required for the resumption of normal cell growth. In contrast, the factors Msn2/4 were not involved in the delayed upregulation of genes and were dispensable for cell growth during the recovery period, suggesting that they play a role before the exposure to high temperature. These results show that Hsf1 and Msn2/4 act differentially before and after exposure to extreme temperatures to ensure cell survival and growth.
Collapse
|
26
|
Abstract
Unicellular fungi thrive in diverse niches around the world, and many of these niches present unique and stressful challenges that must be contended with by their inhabitants. Numerous studies have investigated the genomic expression responses to environmental stress in 'model' ascomycete fungi, including Saccharomyces cerevisiae, Candida albicans and Schizosaccharomyces pombe. This review presents a comparative-genomics perspective on the environmental stress response, a common response to diverse stresses. Implications for the role of this response, based on its presence or absence in fungi from disparate ecological niches, are discussed.
Collapse
Affiliation(s)
- Audrey P Gasch
- Laboratory of Genetics and Genome Center of Wisconsin, University of Wisconsin Madison, Madison, WI 53706, USA.
| |
Collapse
|
27
|
Different requirements of the SWI/SNF complex for robust nucleosome displacement at promoters of heat shock factor and Msn2- and Msn4-regulated heat shock genes. Mol Cell Biol 2007; 28:1207-17. [PMID: 18070923 DOI: 10.1128/mcb.01069-07] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stress response in yeast cells is regulated by at least two classes of transcription activators-HSF and Msn2/4, which differentially affect promoter chromatin remodeling. We demonstrate that the deletion of SNF2, an ATPase activity-containing subunit of the chromatin remodeling SWI/SNF complex, eliminates histone displacement, RNA polymerase II recruitment, and heat shock factor (HSF) binding at the HSP12 promoter while delaying these processes at the HSP82 and SSA4 promoters. Out of the three promoters, the double deletion of MSN2 and MSN4 eliminates both chromatin remodeling and HSF binding only at the HSP12 promoter, suggesting that Msn2/4 activators are primary determinants of chromatin disassembly at the HSP12 promoter. Unexpectedly, during heat shock the level of Msn2/4 at the HSP12 promoter declines. This is likely a result of promoter-targeted Msn2/4 degradation associated with transcription complex assembly. While histone displacement kinetic profiles bear clear promoter specificity, the kinetic profiles of recovery from heat shock for all analyzed genes display an equal or even higher nucleosome return rate, which is to some extent delayed by the deletion of SNF2.
Collapse
|
28
|
Gibson BR, Lawrence SJ, Leclaire JPR, Powell CD, Smart KA. Yeast responses to stresses associated with industrial brewery handling: Figure 1. FEMS Microbiol Rev 2007; 31:535-69. [PMID: 17645521 DOI: 10.1111/j.1574-6976.2007.00076.x] [Citation(s) in RCA: 334] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
During brewery handling, production strains of yeast must respond to fluctuations in dissolved oxygen concentration, pH, osmolarity, ethanol concentration, nutrient supply and temperature. Fermentation performance of brewing yeast strains is dependent on their ability to adapt to these changes, particularly during batch brewery fermentation which involves the recycling (repitching) of a single yeast culture (slurry) over a number of fermentations (generations). Modern practices, such as the use of high-gravity worts and preparation of dried yeast for use as an inoculum, have increased the magnitude of the stresses to which the cell is subjected. The ability of yeast to respond effectively to these conditions is essential not only for beer production but also for maintaining the fermentation fitness of yeast for use in subsequent fermentations. During brewery handling, cells inhabit a complex environment and our understanding of stress responses under such conditions is limited. The advent of techniques capable of determining genomic and proteomic changes within the cell is likely vastly to improve our knowledge of yeast stress responses during industrial brewery handling.
Collapse
Affiliation(s)
- Brian R Gibson
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | | | | | | | | |
Collapse
|
29
|
Guzy RD, Mack MM, Schumacker PT. Mitochondrial complex III is required for hypoxia-induced ROS production and gene transcription in yeast. Antioxid Redox Signal 2007; 9:1317-28. [PMID: 17627464 DOI: 10.1089/ars.2007.1708] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To survive, respiring organisms must sense and respond to changes in environmental oxygen levels. Complex III of the mitochondrial electron transport chain (ETC) has been implicated in the O2 sensing pathway in mammals through its ability to increase production of reactive oxygen species (ROS) during hypoxia. The present study tested whether Complex III in yeast also contributes to O2 sensing during hypoxia. Strains deficient in mitochondrial DNA (rho0), the Rieske iron-sulfur protein (DeltaRip1) in Complex III, or an enzyme responsible for coenzyme Q biosynthesis (DeltaCoq2) were studied to determine the importance of Complex III activity in the transcriptional response to hypoxia. Loss of Complex III function abrogated the hypoxia-induced increase in ROS in each strain. Northern analysis identified a set of genes that are activated by hypoxia in wild-type but not in rho0, DeltaRip1, or DeltaCoq2 strains. Yeast lacking the transcription factors Yap1p, Mga2p, and Msn2p were also deficient in hypoxic activation of gene transcription, suggesting the importance of redox regulation in hypoxic gene expression. The authors conclude that Complex III of the ETC is required for ROS production and for expression of a group of hypoxia-inducible genes in yeast. These findings indicate that the mitochondrial O2 sensing mechanism is highly conserved throughout evolution.
Collapse
Affiliation(s)
- Robert D Guzy
- Pulmonary and Critical Care, Department of Medicine, The University of Chicago, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
30
|
Poplinski A, Hopp C, Ramezani-Rad M. Ste50 adaptor protein influences Ras/cAMP-driven stress-response and cell survival in Saccharomyces cerevisiae. Curr Genet 2007; 51:257-68. [PMID: 17318632 DOI: 10.1007/s00294-007-0124-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 02/02/2007] [Accepted: 02/03/2007] [Indexed: 11/28/2022]
Abstract
The Ste50 adaptor protein is involved in a variety of cellular pathways that yeast cells use to adapt rapidly to environmental changes. A highly activated Ras-cyclic AMP (cAMP) pathway by deletion of the high-affinity cAMP-dependent phosphodiesterase 2 (PDE2) leads to repression of a stress mediated response and cell survival. Here we show that inactivation of STE50 confers a synthetic genetic interaction with pde2Delta. A hyperosmotic stress growth defect of ste50Delta pde2Delta cells is exacerbated by extracellular cAMP or by galactose as the sole carbon source in the medium. The inactivation of the serine/threonine protein-kinase Akt homologue Sch9 increase stress resistance and extend chronological life span. By pde2Delta-dependent increase of the Ras-cAMP pathway activity, inactivation of STE50 results in an extreme shortening of life span and oxidative stress sensitivity of sch9Delta mutants. Furthermore, sch9Delta can promote transcription of the small heat shock protein HSP26 in a PDE2-dependent manner; however, sch9Delta can promote transcription of the mitochondrial superoxide dismutase SOD2 in a PDE2- and STE50-dependent manner. These data indicate that inactivation of STE50 influences stress tolerance in mutants of the Ras-cAMP pathway, which is a major determinant of intrinsic stress tolerance and cell survival of the Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Andreas Poplinski
- Institut für Mikrobiologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr.1, Geb. 26.12, 40225, Düsseldorf, Germany
| | | | | |
Collapse
|
31
|
Smart KA. Brewing yeast genomes and genome-wide expression and proteome profiling during fermentation. Yeast 2007; 24:993-1013. [PMID: 17879324 DOI: 10.1002/yea.1553] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The genome structure, ancestry and instability of the brewing yeast strains have received considerable attention. The hybrid nature of brewing lager yeast strains provides adaptive potential but yields genome instability which can adversely affect fermentation performance. The requirement to differentiate between production strains and assess master cultures for genomic instability has led to significant adoption of specialized molecular tool kits by the industry. Furthermore, the development of genome-wide transcriptional and protein expression technologies has generated significant interest from brewers. The opportunity presented to explore, and the concurrent requirement to understand both, the constraints and potential of their strains to generate existing and new products during fermentation is discussed.
Collapse
Affiliation(s)
- Katherine A Smart
- Division of Food Sciences, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK.
| |
Collapse
|
32
|
Eastmond DL, Nelson HCM. Genome-wide analysis reveals new roles for the activation domains of the Saccharomyces cerevisiae heat shock transcription factor (Hsf1) during the transient heat shock response. J Biol Chem 2006; 281:32909-21. [PMID: 16926161 PMCID: PMC2243236 DOI: 10.1074/jbc.m602454200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In response to elevated temperatures, cells from many organisms rapidly transcribe a number of mRNAs. In Saccharomyces cerevisiae, this protective response involves two regulatory systems: the heat shock transcription factor (Hsf1) and the Msn2 and Msn4 (Msn2/4) transcription factors. Both systems modulate the induction of specific heat shock genes. However, the contribution of Hsf1, independent of Msn2/4, is only beginning to emerge. To address this question, we constructed an msn2/4 double mutant and used microarrays to elucidate the genome-wide expression program of Hsf1. The data showed that 7.6% of the genome was heat-induced. The up-regulated genes belong to a wide range of functional categories, with a significant increase in the chaperone and metabolism genes. We then focused on the contribution of the activation domains of Hsf1 to the expression profile and extended our analysis to include msn2/4Delta strains deleted for the N-terminal or C-terminal activation domain of Hsf1. Cluster analysis of the heat-induced genes revealed activation domain-specific patterns of expression, with each cluster also showing distinct preferences for functional categories. Computational analysis of the promoters of the induced genes affected by the loss of an activation domain showed a distinct preference for positioning and topology of the Hsf1 binding site. This study provides insight into the important role that both activation domains play for the Hsf1 regulatory system to rapidly and effectively transcribe its regulon in response to heat shock.
Collapse
Affiliation(s)
- Dawn L. Eastmond
- From the Department of Biochemistry and Molecular Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Hillary C. M. Nelson
- From the Department of Biochemistry and Molecular Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
33
|
Singh H, Erkine AM, Kremer SB, Duttweiler HM, Davis DA, Iqbal J, Gross RR, Gross DS. A functional module of yeast mediator that governs the dynamic range of heat-shock gene expression. Genetics 2006; 172:2169-84. [PMID: 16452140 PMCID: PMC1456402 DOI: 10.1534/genetics.105.052738] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Accepted: 01/20/2006] [Indexed: 11/18/2022] Open
Abstract
We report the results of a genetic screen designed to identify transcriptional coregulators of yeast heat-shock factor (HSF). This sequence-specific activator is required to stimulate both basal and induced transcription; however, the identity of factors that collaborate with HSF in governing noninduced heat-shock gene expression is unknown. In an effort to identify these factors, we isolated spontaneous extragenic suppressors of hsp82-deltaHSE1, an allele of HSP82 that bears a 32-bp deletion of its high-affinity HSF-binding site, yet retains its two low-affinity HSF sites. Nearly 200 suppressors of the null phenotype of hsp82-deltaHSE1 were isolated and characterized, and they sorted into six expression without heat-shock element (EWE) complementation groups. Strikingly, all six groups contain alleles of genes that encode subunits of Mediator. Three of the six subunits, Med7, Med10/Nut2, and Med21/Srb7, map to Mediator's middle domain; two subunits, Med14/Rgr1 and Med16/Sin4, to its tail domain; and one subunit, Med19/Rox3, to its head domain. Mutations in genes encoding these factors enhance not only the basal transcription of hsp82-deltaHSE1, but also that of wild-type heat-shock genes. In contrast to their effect on basal transcription, the more severe ewe mutations strongly reduce activated transcription, drastically diminishing the dynamic range of heat-shock gene expression. Notably, targeted deletion of other Mediator subunits, including the negative regulators Cdk8/Srb10, Med5/Nut1, and Med15/Gal11 fail to derepress hsp82-deltaHSE1. Taken together, our data suggest that the Ewe subunits constitute a distinct functional module within Mediator that modulates both basal and induced heat-shock gene transcription.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Steinboeck F, Krupanska L, Bogusch A, Kaufmann A, Heidenreich E. Novel Regulatory Properties of Saccharomyces cerevisiae Arp4. ACTA ACUST UNITED AC 2006; 139:741-51. [PMID: 16672275 DOI: 10.1093/jb/mvj080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
ARP4, an essential gene of Saccharomyces cerevisiae, codes for a nuclear actin-related protein. Arp4 is a subunit of several chromatin-modifying complexes and is known to be involved in the transcriptional regulation in yeast. We used a mutant strain with a single amino acid substitution (G161D) in the conserved actin fold domain to investigate the influence of Arp4 on stress and nitrogen catabolite repression genes. The deficiency of functional Arp4 caused a highly increased sensitivity towards nitrogen starvation and to the macrolide antibiotic rapamycin. We show the changes of mRNA levels of selected genes under these conditions. The upregulation of stress genes as a consequence of treatment with rapamycin was largely Msn2p/Msn4p-dependent. The sensitivity towards rapamycin indicates a participation of Arp4 in the regulation of the TOR pathway. Consistently, arp4G161D cells exhibited an affected cell cycle. Long-term cultivation, which leads to a G1 arrest in wild-type cells, provoked arrest in G2/M (more than 60%) in the mutant strain. The same effect was observed upon treatment with rapamycin, indicating an unexpected relationship of Arp4 to TOR-mediated cell cycle arrest.
Collapse
Affiliation(s)
- Ferdinand Steinboeck
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, A-1090 Vienna, Austria.
| | | | | | | | | |
Collapse
|
35
|
Bösl B, Grimminger V, Walter S. The molecular chaperone Hsp104--a molecular machine for protein disaggregation. J Struct Biol 2006; 156:139-48. [PMID: 16563798 DOI: 10.1016/j.jsb.2006.02.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 02/06/2006] [Accepted: 02/09/2006] [Indexed: 11/25/2022]
Abstract
At the Cold Spring Harbor Meeting on 'Molecular Chaperones and the Heat Shock Response' in May 1996, Susan Lindquist presented evidence that a chaperone of yeast termed Hsp104, which her group had been investigating for several years, is able to dissolve protein aggregates (Glover, J.R., Lindquist, S., 1998. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94, 73-82). Among many of the participants this news stimulated reactions reaching from decided skepticism to utter disbelief because protein aggregation was widely considered to be an irreversible process. Several years and publications later, it is undeniable that Susan had been right. Hsp104 is an ATP dependent molecular machine that-in cooperation with Hsp70 and Hsp40-extracts polypeptide chains from protein aggregates and facilitates their refolding, although the molecular details of this process are still poorly understood. Meanwhile, close homologues of Hsp104 have been identified in bacteria (ClpB), in mitochondria (Hsp78), and in the cytosol of plants (Hsp101), but intriguingly not in the cytosol of animal cells (Mosser, D.D., Ho, S., Glover, J.R., 2004. Saccharomyces cerevisiae Hsp104 enhances the chaperone capacity of human cells and inhibits heat stress-induced proapoptotic signaling. Biochemistry 43, 8107-8115). Observations that Hsp104 plays an essential role in the maintenance of yeast prions (see review by James Shorter in this issue) have attracted even more attention to the molecular mechanism of this ATP dependent chaperone (Chernoff, Y.O., Lindquist, S.L., Ono, B., Inge-Vechtomov, S.G., Liebman, S.W., 1995. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [PSI+]. Science 268, 880-884).
Collapse
Affiliation(s)
- Benjamin Bösl
- Department für Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | | | | |
Collapse
|
36
|
Bro C, Knudsen S, Regenberg B, Olsson L, Nielsen J. Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: example of transcript analysis as a tool in inverse metabolic engineering. Appl Environ Microbiol 2005; 71:6465-72. [PMID: 16269670 PMCID: PMC1287681 DOI: 10.1128/aem.71.11.6465-6472.2005] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Through genome-wide transcript analysis of a reference strain and two recombinant Saccharomyces cerevisiae strains with different rates of galactose uptake, we obtained information about the global transcriptional response to metabolic engineering of the GAL gene regulatory network. One of the recombinant strains overexpressed the gene encoding the transcriptional activator Gal4, and in the other strain the genes encoding Gal80, Gal6, and Mig1, which are negative regulators of the GAL system, were deleted. Even though the galactose uptake rates were significantly different in the three strains, we surprisingly did not find any significant changes in the expression of the genes encoding the enzymes catalyzing the first steps of the pathway (i.e., the genes encoding Gal2, Gal1, Gal7, and Gal10). We did, however, find that PGM2, encoding the major isoenzyme of phosphoglucomutase, was slightly up-regulated in the two recombinant strains with higher galactose uptake rates. This indicated that PGM2 is a target for overexpression in terms of increasing the flux through the Leloir pathway, and through overexpression of PGM2 the galactose uptake rate could be increased by 70% compared to that of the reference strain. Based on our findings, we concluded that phosphoglucomutase plays a key role in controlling the flux through the Leloir pathway, probably due to increased conversion of glucose-1-phosphate to glucose-6-phosphate. This conclusion was supported by measurements of sugar phosphates, which showed that there were increased concentrations of glucose-6-phosphate, galactose-6-phosphate, and fructose-6-phosphate in the strain construct overexpressing PGM2.
Collapse
Affiliation(s)
- Christoffer Bro
- Center for Microbial Biotechnology, BioCentrum-DTU, Building 223, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | | | | | | | | |
Collapse
|
37
|
Seppä L, Makarow M. Regulation and recovery of functions of Saccharomyces cerevisiae chaperone BiP/Kar2p after thermal insult. EUKARYOTIC CELL 2005; 4:2008-16. [PMID: 16339719 PMCID: PMC1317487 DOI: 10.1128/ec.4.12.2008-2016.2005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We described earlier a novel mode of regulation of Hsp104, a cytosolic chaperone directly involved in the refolding of heat-denatured proteins, and designated it delayed upregulation, or DUR. When Saccharomyces cerevisiae cells grown at the physiological temperature of 24 degrees C, preconditioned at 37 degrees C, and treated briefly at 50 degrees C were shifted back to 24 degrees C, Hsp104 expression was strongly induced after 2.5 h of recovery and returned back to normal after 5 h. Here we show that the endoplasmic reticulum (ER) chaperones BiP/Kar2p and Lhs1p and the mitochondrial chaperone Hsp78 were also upregulated at the physiological temperature during recovery from thermal insult. The heat shock element (HSE) in the KAR2 promoter was found to be sufficient to drive DUR. The unfolded protein element could also evoke DUR, albeit weakly, in the absence of a functional HSE. BiP/Kar2p functions in ER translocation and assists protein folding. Here we found that the synthesis of new BiP/Kar2p molecules was negligible for more than an hour after the shift of the cells from 50 degrees C to 24 degrees C. Concomitantly, ER translocation was blocked, suggesting that preexisting BiP/Kar2p molecules or other necessary proteins were not functioning. Translocation resumed concomitantly with enhanced synthesis of BiP/Kar2p after 3 h of recovery, after which ER exit and protein secretion also resumed. For a unicellular organism like S. cerevisiae, conformational repair of denatured proteins is the sole survival strategy. Chaperones that refold proteins in the cytosol, ER, and mitochondria of S. cerevisiae appear to be subject to DUR to ensure survival after thermal insults.
Collapse
Affiliation(s)
- Laura Seppä
- Program in Cellular Biotechnology, Institute of Biotechnology, P.O. Box 56, 00014 University of Helsinki, Finland.
| | | |
Collapse
|
38
|
Silva WLDS, Cavalcanti ARDO, Guimarães KS, Morais Jr. MAD. Identification in silico of putative damage responsive elements (DRE) in promoter regions of the yeast genome. Genet Mol Biol 2005. [DOI: 10.1590/s1415-47572005000500025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
39
|
Imazu H, Sakurai H. Saccharomyces cerevisiae heat shock transcription factor regulates cell wall remodeling in response to heat shock. EUKARYOTIC CELL 2005; 4:1050-6. [PMID: 15947197 PMCID: PMC1151985 DOI: 10.1128/ec.4.6.1050-1056.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The heat shock transcription factor Hsf1 of the yeast Saccharomyces cerevisiae regulates expression of genes encoding heat shock proteins and a variety of other proteins as well. To better understand the cellular roles of Hsf1, we screened multicopy suppressor genes of a temperature-sensitive hsf1 mutation. The RIM15 gene, encoding a protein kinase that is negatively regulated by the cyclic AMP-dependent protein kinase, was identified as a suppressor, but Rim15-regulated stress-responsive transcription factors, such as Msn2, Msn4, and Gis1, were unable to rescue the temperature-sensitive growth phenotype of the hsf1 mutant. Another class of suppressors encoded cell wall stress sensors, Wsc1, Wsc2, and Mid2, and the GDP/GTP exchange factor Rom2 that interacts with these cell wall sensors. Activation of a protein kinase, Pkc1, which is induced by these cell wall sensor proteins upon heat shock, but not activation of the Pkc1-regulated mitogen-activated protein kinase cascade, was necessary for the hsf1 suppression. Like Wsc-Pkc1 pathway mutants, hsf1 cells exhibited an osmotic remedial cell lysis phenotype at elevated temperatures. Several of the other suppressors were found to encode proteins functioning in cell wall organization. These results suggest that Hsf1 in concert with Pkc1 regulates cell wall remodeling in response to heat shock.
Collapse
Affiliation(s)
- Hiromi Imazu
- School of Health Sciences, Faculty of Medicine, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | | |
Collapse
|
40
|
Lozano JJ, Soler M, Bermudo R, Abia D, Fernandez PL, Thomson TM, Ortiz AR. Dual activation of pathways regulated by steroid receptors and peptide growth factors in primary prostate cancer revealed by Factor Analysis of microarray data. BMC Genomics 2005; 6:109. [PMID: 16107210 PMCID: PMC1239914 DOI: 10.1186/1471-2164-6-109] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Accepted: 08/17/2005] [Indexed: 02/01/2023] Open
Abstract
Background We use an approach based on Factor Analysis to analyze datasets generated for transcriptional profiling. The method groups samples into biologically relevant categories, and enables the identification of genes and pathways most significantly associated to each phenotypic group, while allowing for the participation of a given gene in more than one cluster. Genes assigned to each cluster are used for the detection of pathways predominantly activated in that cluster by finding statistically significant associated GO terms. We tested the approach with a published dataset of microarray experiments in yeast. Upon validation with the yeast dataset, we applied the technique to a prostate cancer dataset. Results Two major pathways are shown to be activated in organ-confined, non-metastatic prostate cancer: those regulated by the androgen receptor and by receptor tyrosine kinases. A number of gene markers (HER3, IQGAP2 and POR1) highlighted by the software and related to the later pathway have been validated experimentally a posteriori on independent samples. Conclusion Using a new microarray analysis tool followed by a posteriori experimental validation of the results, we have confirmed several putative markers of malignancy associated with peptide growth factor signalling in prostate cancer and revealed others, most notably ERRB3 (HER3). Our study suggest that, in primary prostate cancer, HER3, together or not with HER4, rather than in receptor complexes involving HER2, could play an important role in the biology of these tumors. These results provide new evidence for the role of receptor tyrosine kinases in the establishment and progression of prostate cancer.
Collapse
MESH Headings
- Biomarkers, Tumor
- Cluster Analysis
- ErbB Receptors/metabolism
- Gene Expression Regulation, Neoplastic
- Genes, Fungal
- Genome, Fungal
- Genotype
- Growth Substances/metabolism
- Humans
- Immunohistochemistry
- Lasers
- Male
- Models, Genetic
- Models, Statistical
- Multigene Family
- Oligonucleotide Array Sequence Analysis/methods
- Peptides/chemistry
- Phenotype
- Phylogeny
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-3/metabolism
- Receptor, ErbB-4
- Receptors, Androgen/metabolism
- Receptors, Steroid/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Saccharomyces cerevisiae/metabolism
- Signal Transduction
- Transcription, Genetic
Collapse
Affiliation(s)
- Juan Jose Lozano
- Bioinformatics Unit, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, One Gustave Levy Pl., New York, NY 10029, USA
- Center for Genome Regulation, Barcelona (Spain)
| | - Marta Soler
- Instituto de Biología Molecular, Consejo Superior de Investigaciones Científicas, c. Jordi Girona 18–26, 08034 Barcelona, Spain
| | - Raquel Bermudo
- Instituto de Biología Molecular, Consejo Superior de Investigaciones Científicas, c. Jordi Girona 18–26, 08034 Barcelona, Spain
| | - David Abia
- Bioinformatics Unit, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Pedro L Fernandez
- Departament de Anatomía Patològica, Hospital Clínic, and Institut de Investigacions Biomèdiques August Pi i Sunyer, c. Villarroel 170, 08036 Barcelona, Spain
| | - Timothy M Thomson
- Instituto de Biología Molecular, Consejo Superior de Investigaciones Científicas, c. Jordi Girona 18–26, 08034 Barcelona, Spain
| | - Angel R Ortiz
- Bioinformatics Unit, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, One Gustave Levy Pl., New York, NY 10029, USA
| |
Collapse
|
41
|
Gatti X, de Bettignies G, Claret S, Doignon F, Crouzet M, Thoraval D. RGD1, encoding a RhoGAP involved in low-pH survival, is an Msn2p/Msn4p regulated gene in Saccharomyces cerevisiae. Gene 2005; 351:159-69. [PMID: 15922872 DOI: 10.1016/j.gene.2005.03.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 02/14/2005] [Accepted: 03/22/2005] [Indexed: 10/25/2022]
Abstract
The RhoGAP Rgd1p is involved in different signal transduction pathways in Saccharomyces cerevisiae through its regulatory activity upon the Rho3 and Rho4 GTPases. The rgd1Delta mutant, which presents a mortality at the entry into the stationary phase in minimal medium, is sensitive to medium acidification caused by biomass augmentation. We showed that low-pH shock leads to abnormal intracellular acidification of the rgd1Delta mutant. Transcriptional regulation of RGD1 was studied in several stress conditions and we observed an activation of RGD1 transcription at low pH and after heat and oxidative shocks. The transcription level at low pH and after heat shock was demonstrated to depend on the STRE box located in the RGD1 promoter. The general stress-activated transcription factors Msn2p and Msn4p as well as the HOG pathway were shown to mainly act on the basal RGD1 transcriptional level in normal and stress conditions.
Collapse
Affiliation(s)
- Xavier Gatti
- Laboratoire de Biologie Moléculaire et de Séquençage, Institut de Biochimie et Génétique Cellulaires, UMR Université Victor Segalen Bordeaux 2-CNRS 5095, France
| | | | | | | | | | | |
Collapse
|
42
|
Monje-Casas F, MICHáN C, Pueyo C. Absolute transcript levels of thioredoxin- and glutathione-dependent redox systems in Saccharomyces cerevisiae: response to stress and modulation with growth. Biochem J 2005; 383:139-47. [PMID: 15222878 PMCID: PMC1134052 DOI: 10.1042/bj20040851] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Revised: 06/18/2004] [Accepted: 06/29/2004] [Indexed: 11/17/2022]
Abstract
We report the co-ordinated fine-tune of mRNA molecules that takes place in yeast (Saccharomyces cerevisiae) in response to diverse environmental stimuli. We performed a systematic and refined quantification of the absolute expression patterns of 16 genes coding for thioredoxin- and glutathione-dependent redox system components. Quantifications were performed to examine the response to oxidants, to sudden temperature upshifts and in association with metabolic changes accompanying culture growth and to explore the contribution of mRNA decay rates to the differences observed in basal expression levels. Collectively, these quantifications show (i) vast differences in the steady-state amounts of the investigated transcripts, cTPxI being largely overexpressed compared with GPX1 during the exponential phase and GPX2 beyond this growth stage; (ii) drastic changes in the relative abundance of the transcripts in response to oxidants and heat shock; and (iii) a unique temporal expression profile for each transcript as cells proceed from exponential to stationary growth phase, yet with some general trends such as maximal or near-maximal basal amounts of most mRNA species at early growth stages when glucose concentration is high and cells are actively growing. Moreover, the results indicate that (i) the half-lives of the investigated transcripts are longer and distributed within a narrower range than previously reported global mRNA half-lives and (ii) transcriptional initiation may play an important role in modulating the significant alterations that most mRNAs exhibit in their steady-state levels along with culture growth.
Collapse
Affiliation(s)
- Fernando Monje-Casas
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales, edificio Severo Ochoa, planta 2, Carretera Madrid-Cádiz Km 396-a, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Carmen MICHáN
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales, edificio Severo Ochoa, planta 2, Carretera Madrid-Cádiz Km 396-a, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Carmen Pueyo
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales, edificio Severo Ochoa, planta 2, Carretera Madrid-Cádiz Km 396-a, Universidad de Córdoba, 14071 Córdoba, Spain
- To whom correspondence should be addressed (email )
| |
Collapse
|
43
|
Yamamoto A, Mizukami Y, Sakurai H. Identification of a novel class of target genes and a novel type of binding sequence of heat shock transcription factor in Saccharomyces cerevisiae. J Biol Chem 2005; 280:11911-9. [PMID: 15647283 DOI: 10.1074/jbc.m411256200] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In response to hyperthermia, heat shock transcription factor (HSF) activates transcription of a set of genes encoding heat shock proteins (HSPs). The promoter regions of HSP genes contain the HSF binding sequence called the heat shock element (HSE), which consists of contiguous inverted repeats of the sequence 5'-nGAAn-3' (where n is any nucleotide). We have constructed an hsf1 mutant of Saccharomyces cerevisiae and analyzed genome-wide changes in heat shock response in the mutant cells. The results have revealed that Hsf1 is necessary for heat-induced transcription of not only HSP but also genes encoding proteins involved in diverse cellular processes such as protein degradation, detoxification, energy generation, carbohydrate metabolism, and maintenance of cell wall integrity. Approximately half of the Hsf1-regulated genes lacked the typical HSE in their promoter regions. Instead, several of these genes have a novel Hsf1 binding sequence that contains three direct repeats of nTTCn (or nGAAn) interrupted by 5 bp. The number and spacing of the repeating units are critical determinants for heat-induced transcription as well as for recognition by Hsf1. In the yeast genome, the presence of the sequence is enriched in Hsf1-regulated genes, suggesting that it is generally used as an HSE in the Hsf1 regulon.
Collapse
Affiliation(s)
- Ayako Yamamoto
- School of Health Sciences, Faculty of Medicine, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | | | | |
Collapse
|
44
|
Keszenman DJ, Candreva EC, Sánchez AG, Nunes E. RAD6 gene is involved in heat shock induction of bleomycin resistance in Saccharomyces cerevisiae. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2005; 45:36-43. [PMID: 15605356 DOI: 10.1002/em.20083] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cells react to environmental and endogenous challenges such as high temperature, reactive oxygen species, DNA damage, and nutrient starvation by activating several defense mechanisms known as stress responses. An important feature is the overlap between different stress responses that contributes at least in part to the phenomenon of cross-protection. We previously demonstrated that pretreatment with a heat shock (HS) induces resistance to the lethal and mutagenic effects of the antineoplastic drug Bleomycin (BLM) in wild-type Saccharomyces cerevisiae. At the DNA level, the HS resulted in more efficient repair of BLM-induced DNA damage. In the present study, we have investigated the mechanisms involved in this HS-induced BLM resistance. Since the RAD6 gene is involved in the ubiquitin system and DNA repair, we analyzed the effects of HS on the lethality of BLM in a rad6Delta (ubc2) mutant strain of S. cerevisiae. The rad6Delta mutant was more sensitive to the lethal effects of BLM than wild-type yeast and HS had no effect on the lethality of BLM in the mutant. Analysis of cell proliferation kinetics indicated that the HS-induced cell cycle delay observed in the wild-type yeast was absent in the rad6Delta mutant strain. BLM treatment impaired mutant cell proliferation, and HS had no effect on the delayed cell kinetics of the mutant. In addition, pulsed-field electrophoresis of chromosomes damaged by BLM indicated that there was very little recovery from damage in the mutant after 24 hr of incubation in BLM-free nutrient medium, and that HS had little effect on the recovery. These data indicate that the RAD6 gene is involved in the HS-induced BLM resistance observed in the isogenic wild-type strain.
Collapse
|
45
|
Ferguson SB, Anderson ES, Harshaw RB, Thate T, Craig NL, Nelson HCM. Protein kinase A regulates constitutive expression of small heat-shock genes in an Msn2/4p-independent and Hsf1p-dependent manner in Saccharomyces cerevisiae. Genetics 2004; 169:1203-14. [PMID: 15545649 PMCID: PMC1449542 DOI: 10.1534/genetics.104.034256] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hsf1p, the heat-shock transcription factor from Saccharomyces cerevisiae, has a low level of constitutive transcriptional activity and is kept in this state through negative regulation. In an effort to understand this negative regulation, we developed a novel genetic selection that detects altered expression from the HSP26 promoter. Using this reporter strain, we identified mutations and dosage compensators in the Ras/cAMP signaling pathway that decrease cAMP levels and increase expression from the HSP26 promoter. In yeast, low cAMP levels reduce the catalytic activity of the cAMP-dependent kinase PKA. Previous studies had proposed that the stress response transcription factors Msn2p/4p, but not Hsf1p, are repressed by PKA. However, we found that reduction or elimination of PKA activity strongly derepresses transcription of the small heat-shock genes HSP26 and HSP12, even in the absence of MSN2/4. In a strain deleted for MSN2/4 and the PKA catalytic subunits, expression of HSP12 and HSP26 depends on HSF1 expression. Our findings indicate that Hsf1p functions downstream of PKA and suggest that PKA might be involved in negative regulation of Hsf1p activity. These results represent a major change in our understanding of how PKA signaling influences the heat-shock response and heat-shock protein expression.
Collapse
Affiliation(s)
- Scott B Ferguson
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, 19104-6059, USA
| | | | | | | | | | | |
Collapse
|
46
|
Seppä L, Hänninen AL, Makarow M. Upregulation of the Hsp104 chaperone at physiological temperature during recovery from thermal insult. Mol Microbiol 2004; 52:217-25. [PMID: 15049822 DOI: 10.1111/j.1365-2958.2003.03959.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Thermal insult at 50 degrees C causes protein denaturation in yeast, but the cells survive if preconditioned at 37 degrees C. Survival depends on refolding of heat-denatured proteins. Refolding of cytoplasmic proteins requires Hsp104, the expression of which increases several-fold upon shift of the cells from physiological temperature 24 degrees C to 37 degrees C. We describe here a novel type of regulation of Hsp104, designated delayed upregulation (DUR). When Saccharomyces cerevisiae cells grown at 24 degrees C, preconditioned at 37 degrees C and treated briefly at 50 degrees C were shifted back to 24 degrees C, Hsp104 expression was negligible for 1 h, but increased then to a three to nine times higher level than that detected after growth at 24 degrees C, returning to normal after 5 h. A heat shock element (HSE) of the upstream sequence of HSP104 was necessary and sufficient for DUR, whereas stress response elements (STRE) were dispensable. Destruction of HSE plus all three STREs abolished Hsp104 expression, resulting in cell death after thermal insult. Deletion of MSN2/4, encoding transcription factors driving STRE-dependent gene expression, decreased DUR. Deletion of HOG1, encoding a heat-responsive and osmosensitive mitogen-activated protein kinase implicated to be functionally connected to Msn2/4p, abolished DUR. We suggest that DUR was regulated via HSE, required Hog1p and involved Msn2/4p-regulated gene products.
Collapse
Affiliation(s)
- Laura Seppä
- Program in Cellular Biotechnology, Institute of Biotechnology, University of Helsinki, Viikinkaari 9, 00710 Helsinki, Finland
| | | | | |
Collapse
|
47
|
Nevitt T, Pereira J, Azevedo D, Guerreiro P, Rodrigues-Pousada C. Expression of YAP4 in Saccharomyces cerevisiae under osmotic stress. Biochem J 2004; 379:367-74. [PMID: 14680476 PMCID: PMC1224068 DOI: 10.1042/bj20031127] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Revised: 12/12/2003] [Accepted: 12/18/2003] [Indexed: 11/17/2022]
Abstract
YAP4, a member of the yeast activator protein ( YAP ) gene family, is induced in response to osmotic shock in the yeast Saccharomyces cerevisiae. The null mutant displays mild and moderate growth sensitivity at 0.4 M and 0.8 M NaCl respectively, a fact that led us to analyse YAP4 mRNA levels in the hog1 (high osmolarity glycerol) mutant. The data obtained show a complete abolition of YAP4 gene expression in this mutant, placing YAP4 under the HOG response pathway. YAP4 overexpression not only suppresses the osmosensitivity phenotype of the yap4 mutant but also relieves that of the hog1 mutant. Induction, under the conditions tested so far, requires the presence of the transcription factor Msn2p, but not of Msn4p, as YAP4 mRNA levels are depleted by at least 75% in the msn2 mutant. This result was further substantiated by the fact that full YAP4 induction requires the two more proximal stress response elements. Furthermore we find that GCY1, encoding a putative glycerol dehydrogenase, GPP2, encoding a NAD-dependent glycerol-3-phosphate phosphatase, and DCS2, a homologue to a decapping enzyme, have decreased mRNA levels in the yap4 -deleted strain. Our data point to a possible, as yet not entirely understood, role of the YAP4 in osmotic stress response.
Collapse
Affiliation(s)
- Tracy Nevitt
- Stress and Genomics Laboratory, Institute of Chemical and Biological Technology, Av. da República, Apt. 127, 2781-901 Oeiras, Portugal
| | | | | | | | | |
Collapse
|
48
|
Lisman Q, Urli-Stam D, Holthuis JCM. HOR7, a multicopy suppressor of the Ca2+-induced growth defect in sphingolipid mannosyltransferase-deficient yeast. J Biol Chem 2004; 279:36390-6. [PMID: 15208314 DOI: 10.1074/jbc.m406197200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast mutants defective in sphingolipid mannosylation accumulate inositol phosphorylceramide C (IPC-C), which renders cells Ca(2+)-sensitive. A screen for loss of function suppressors of the Ca(2+)-sensitive phenotype previously led to the identification of numerous genes involved in IPC-C synthesis. To better understand the molecular basis of the Ca(2+)-induced growth defect in IPC-C-overaccumulating cells, we searched for genes whose overexpression restored Ca(2+) tolerance in a mutant lacking the IPC mannosyltransferases Csg1p and Csh1p. Here we report the isolation of HOR7 as a multicopy suppressor of the Ca(2+)-sensitive phenotype of Deltacsg1Deltacsh1 cells. HOR7 belongs to a group of hyperosmolarity-responsive genes and encodes a small (59-residue) type I membrane protein that localizes at the plasma membrane. Hor7p is not required for high Ca(2+) or Na(+) tolerance. Instead, we find that Hor7p-overproducing cells display an increased resistance to high salt, sensitivity to low pH, and a reduced uptake of methylammonium, an indicator of the plasma membrane potential. These phenotypes are induced through a mechanism independent of the plasma membrane H(+)-ATPase, Pma1p. Our findings suggest that induction of Hor7p causes a depolarization of the plasma membrane that may counteract a Ca(2+)-induced influx of toxic cations in IPC-C-overaccumulating cells.
Collapse
Affiliation(s)
- Quirine Lisman
- Department of Membrane Enzymology, Faculty of Chemistry, Utrecht University, H.R. Kruytgebouw N605, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | |
Collapse
|
49
|
Hahn JS, Hu Z, Thiele DJ, Iyer VR. Genome-wide analysis of the biology of stress responses through heat shock transcription factor. Mol Cell Biol 2004; 24:5249-56. [PMID: 15169889 PMCID: PMC419887 DOI: 10.1128/mcb.24.12.5249-5256.2004] [Citation(s) in RCA: 309] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Revised: 01/26/2004] [Accepted: 03/15/2004] [Indexed: 11/20/2022] Open
Abstract
Heat shock transcription factor (HSF) and the promoter heat shock element (HSE) are among the most highly conserved transcriptional regulatory elements in nature. HSF mediates the transcriptional response of eukaryotic cells to heat, infection and inflammation, pharmacological agents, and other stresses. While HSF is essential for cell viability in Saccharomyces cerevisiae, oogenesis and early development in Drosophila melanogaster, extended life span in Caenorhabditis elegans, and extraembryonic development and stress resistance in mammals, little is known about its full range of biological target genes. We used whole-genome analyses to identify virtually all of the direct transcriptional targets of yeast HSF, representing nearly 3% of the genomic loci. The majority of the identified loci are heat-inducibly bound by yeast HSF, and the target genes encode proteins that have a broad range of biological functions including protein folding and degradation, energy generation, protein trafficking, maintenance of cell integrity, small molecule transport, cell signaling, and transcription. This genome-wide identification of HSF target genes provides novel insights into the role of HSF in growth, development, disease, and aging and in the complex metabolic reprogramming that occurs in all cells in response to stress.
Collapse
Affiliation(s)
- Ji-Sook Hahn
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-0606, USA
| | | | | | | |
Collapse
|
50
|
Görzer I, Schüller C, Heidenreich E, Krupanska L, Kuchler K, Wintersberger U. The nuclear actin-related protein Act3p/Arp4p of Saccharomyces cerevisiae is involved in transcription regulation of stress genes. Mol Microbiol 2003; 50:1155-71. [PMID: 14622406 DOI: 10.1046/j.1365-2958.2003.03759.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A mutational analysis of the essential nuclear actin-related protein of Saccharomyces cerevisiae, Act3p/Arp4p, was performed. The five residues chosen for substitution were amino acids conserved between actin and Act3p/Arp4p, the tertiary structure of which most probably resembles that of actin. Two thermosensitive (ts) mutants, a single and a double point mutant, and one lethal double point mutant were obtained. Both ts mutants were formamide-sensitive which supports a structural relatedness of Act3p/Arp4p to actin; they were also hypersensitive against hydroxyurea and ultraviolet irradiation pointing to a possible role of Act3p/Arp4p in DNA replication and repair. Their 'suppressor of Ty' (SPT) phenotype, observed with another ts mutant of Act3p/Arp4p before, suggested involvement of Act3p/Arp4p in transcription regulation. Accordingly, genome-wide expression profiling revealed misregulated transcription in a ts mutant of a number of genes, among which increased expression of various stress-responsive genes (many of them requiring Msn2p/Msn4p for induction) was the most salient result. This provides an explanation for the mutant's enhanced resistance to severe thermal and oxidative stress. Thus, Act3p/Arp4p takes an important part in the repression of stress-induced genes under non-stress conditions.
Collapse
Affiliation(s)
- Irene Görzer
- Division of Molecular Genetics, Institute of Cancer Research, University of Vienna, A-1090 Vienna, Austria
| | | | | | | | | | | |
Collapse
|